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Abstract. KrLaiM is a coordination language specifically designed to
model and program distributed systems consisting of mobile components
interacting through multiple distributed tuple spaces. The KLAIM’s the-
oretical foundations provided a solid ground for the implementation of
the KrAIM’s programming model. To practically program Kraim-based
applications, the X-KLAIM programming language has been proposed. It
extends KLAIM with enriched primitives and standard control flow con-
structs, and is compiled in Java to be executed. However, due to the limits
of X-KLAIM in terms of usability and the aging of the technology at the
basis of its compiler, X-KLAIM has been progressively neglected. Moti-
vated by the success that KLAIM has gained, the popularity that still has
in teaching distributed computing, and its possible future exploitations
in the development of modern ICT systems, in this paper we propose a
renewed and enhanced version of X-KLAIM. The new implementation,
coming together with an Eclipse-based IDE tooling, relies on recent pow-
erful frameworks for the development of programming languages.

Keywords: Network-aware programming - Coordination language -
Kramv - X-Kvram - Eclipse IDE

1 Introduction

In the mid-90s Rocco De Nicola, to whom this LNCS volume is dedicated, came
up with the idea of combining the work on process algebras, to which he had
turned his research interest so far, with Linda’s notion of asynchronous gen-
erative communication. Linda is a coordination paradigm providing a set of
primitives for decoupling communicating processes both in space and time [41].
Communication is achieved via a shared data repository, called tuple space, where
processes insert, read and withdraw tuples (i.e., sequences of data items). The
data retrieving mechanism uses pattern-matching to find the required data in
the tuple space.

The first attempt is PAL (Process Algebra based on Linda, [35]), a process
algebra obtained by embedding the Linda primitives for interprocess commu-
nication in a CSP-like process description language. Then, this language was
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Fig. 1. The KrAIM family.

extended with localities (i.e., network addresses) as first-class citizens, which can

be dynamically created and communicated. This capability is essential for achiev-

ing the so-called network-aware programming, where processes of a distributed
application can explicitly refer and control the spatial structure of the network
where they are currently deployed. The resulting formalism, LLINDA (Locality
Linda, [22]), considers multiple tuple spaces that are distributed over a collec-
tion of network nodes, and uses localities to distribute/retrieve data over/from
these nodes. As the code of processes is itself data, higher-order communication
is enabled in order to support the definition of applications with mobile compo-
nents. Syntax and semantics of LLINDA were later revised and cleaned up, thus

obtaining the coordination language KLAIM (Kernel Language for Agents Inter-

action and Mobility, [23]). It allows one to design distributed systems consisting
of stationary and mobile components interacting through multiple distributed
tuple spaces.

Since then, a lot of effort has been made on KLAIM. On the one hand, several
variants of KLAIM have been proposed to face the new challenges posed by the
continuously evolving scenario of network-based technology. We show in Fig.1 a
timeline reporting the significant results on this research line. On the other hand,
the theoretical foundations of KLAIM enabled the definition of several verifica-
tion techniques (e.g., type systems [21,24-26,29,42,43|, behavioral equivalences
[27], flow logic [37], model checking [30,33,38]), as well as they provided a solid
ground for the implementation of the KLAIM’s programming model. As a further
evidence of the success and influence that KLAIM has gained, we report here the
number of citations that the seminal paper [23] has received at the time of writ-

ing: in Scopus it is cited by 362 documents, in Web of Science by 225, and in
Google Scholar by 666.

In this paper, we focus on KLAIM’s implementation. In order to program
applications according to the KLAIM’s paradigm, the toolchain depicted in
Fig. 2 was initially developed. Since KLAIM was originally conceived as a formal-
ism rather than as a full-fledged programming language, it had been extended
with high-level process constructs to make the programming task more friendly.
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Fig. 2. X-KLAIM toolchain.

The resulting programming language, called X-KrAmM (eXtended Klaim, [11]),
provides variable declarations, enriched communication primitives, assignments,
conditionals, sequential and iterative process composition. The X-KLAIM com-
piler translates X-KLAIM programs into Java programs that exploit the Java
package KLava (KLAIM in Java, [8]), which provides the runtime environment
for X-KLAIM operations. The produced Java code can be then compiled and
executed in the standard way.

KravA has evolved over the years and is still a maintained framework used
for directly programming in Java according to the KLAIM paradigm. Instead,
the X-KLAIM compiler has been progressively neglected, due to the aging of its
underlying technologies, the lack of an IDE supporting the programming and
debugging activity, and the limitations of X-KLAIM on exchangeable data and
supported expressions. These deficiencies undermined the usability of the lan-
guage and, hence, its usage by the coordination community. To fill this gap, in
this paper we propose a renewed and enhanced version of X-KLAIM, by relying
on powerful modern frameworks for the development of domain-specific program-
ming languages. This is not only motivated by the success of KLAIM, as shown
above, but also by the fact that KLAIM is still a popular language for teach-
ing distributed computing in academia'. Moreover, we also envisage possible
exploitations of the renewed X-KLAIM as coordination language for developing
modern ICT systems, in such domains as IoT, Smart Cities, e-Health, etc.

The new version of X-KLAIM is available as an open source project. Sources
and links to Eclipse update site and to complete Eclipse distributions are avail-
able from: https://github.com/LorenzoBettini/xklaim.

The rest of the paper is organized as follows. Section 2 provides an informal
overview of KLAIM, and introduces a simple running example concerning a leader
election algorithm. Section 3 describes the renewed version of X-KLAIM we pro-
pose, together with details on the implementation and the related Eclipse-based

! Kraim has been and is still taught on courses about coordination and distributed
computing at, e.g., Universita di Firenze, Universita di Camerino, Universita di Pisa,
IMT Scuola Alti Studi Lucca, and Danmarks Tekniske Universitet.
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Fig. 3. Tuple space and Linda primitives.

IDE tooling. Finally, Sect.4 concludes the paper by touching upon directions for
future works.

2 KraiMm

In this section, we summarize the key features of KLAIM. It is a formal lan-
guage specially devised to design distributed applications consisting of several
(possibly mobile) components deployed over the nodes of network infrastruc-
ture. Although KLAIM is based on process algebras, it makes use of Linda-like
asynchronous communication and supports distributed data management via
multiple shared tuple spaces. A tuple space is a multiset of tuples, the latter
consisting of sequences of data items. Processes interact by inserting, reading
and withdrawing tuples to/from tuple spaces. The tuple retrieving mechanism
relies on pattern-matching to find the required data in the tuple space. KLAIM
enriches Linda primitives (see Fig. 3) with information about the network locali-
ties where processes and tuples are allocated. Localities can be explicitly referred
and exchanged, thus supporting network-aware programming.

KLAIM syntax is shown in Table 1. We use the following disjoint sets: the set
of physical localities (ranged over by 1), the set of logical localities (ranged over
by u), the set of locality variables (ranged over by r), the set of value variables
(ranged over by x), the set of process variables (ranged over by X), and the
set of process identifiers (ranged over by A). We also use a set of expressions
(ranged over by e), whose exact syntax is omitted; we assume that expressions
contain, at least, values (ranged over by V') and value variables. We shall use £
to denote a locality, either physical or logical, or a locality variable.

Nets N are finite collections of nodes where processes and data can be located
(see Fig. 4). Nets are formed by composing nodes by means of the parallel oper-
ator Ny || Na.

A computational node I::, P is characterized by its physical locality [, a run-
ning process P and an allocation environment p. The latter acts as a name solver
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Table 1. KLAIM syntax.

(Nets)
Nu=1l:pP | lu(et) | N[N

(Processes)
Pu=nmil | aP | P|P | X | A(p)

(Actions)
a = out(t)@/ | in(T)@¢ | read(T)@( | eval(P)@/ | newloc(r)

(Tuples)

tu=e | £ | P | n.n

(Evaluated tuples)

et =V | l ! P ! ety, et

(Templates)

T w=e | £ | P | x| !r | X | TI,D

binding logical localities, occurring in the processes hosted in the corresponding
node, into specific physical localities. The distinguished logical locality self is
used by processes to refer to the physical locality of their current hosting node.
The term [::(et) indicates that the evaluated tuple et is located to the physical
locality I. The tuple space for a given locality consists of all the evaluated tuples
located there.

Processes P are the active computational units of KLAIM. They can be exe-
cuted concurrently, either at the same physical locality or at different localities.
Processes are built up from the empty process nil (which does nothing), basic
actions a, process variables X, and process calls A(p), by means of the action
prefixing operator a.P and the parallel composition Py | P,. Recursive behaviors
are modeled via process definitions; it is assumed that each process identifier A
has a single defining equation A(f) £ P, where f and p denote lists of formal
and actual parameters, respectively. Hereafter, we do not explicitly represent
process definitions (and their migration to make migrating processes complete),
and assume that they are available at any node of a net. Process variables sup-
port higher-order communication, namely the capability to exchange (the code
of) a process and possibly execute it. It is realized by first adding a tuple con-
taining the process to a tuple space and then retrieving/withdrawing this tuple
while binding the process to a process variable.

During their execution, processes perform some basic actions (see Fig.5).
Action out(t)@¢ adds the tuple resulting from the evaluation of ¢ to the tuple
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1

space of the target node identified by £. A tuple is a sequence of the actual
field, i.e., expressions, localities, locality variables, or processes. The evaluation
of a tuple amounts to computing the values of its expressions. Action in(7)@¢
(resp. read(T")@¢) permits to withdraw (resp. read) tuples from the tuple space
hosted at the (possibly remote) locality ¢. If matching tuples are found, one is
non-deterministically chosen, otherwise, the process is blocked. These retrieval
actions exploit templates as patterns to select tuples in a tuple space. Tem-
plates are sequences of actual and formal fields, where the latter are written
'z, !r or ! X and are used to bind variables to values, physical localities, or
processes, respectively. Templates must be evaluated before they can be used
for retrieving tuples; their evaluation is like that of tuples, where formal fields
are left unchanged by the evaluation. Intuitively, an evaluated template matches
against an evaluated tuple if both have the same number of fields and corre-
sponding fields do match; two values/localities match only if they are identical,
while formal fields match any value of the same type. A successful matching
returns a substitution associating the variables contained in the formal fields
of the template with the values contained in the corresponding actual fields of
the accessed tuple; such substitution is applied to the continuation process of
the executed action. Action eval(P)@{ sends the process P for execution to the
(possibly remote) node identified by ¢. Finally, action newloc(r) creates a new
network node with physical locality bound to the locality variable r. Differently,
from all the other actions, this latter action is not indexed with a target locality
because it always acts locally.

We conclude the section with a simple example (inspired by those in [16])
aiming at showing KLAIM at work on the specification of a leader election algo-
rithm.
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Ezample 1 (Running example in KLaiMm). We consider a system where n partic-
ipants distributed on the nodes of a network have to elect a leader. The system
is rendered in KLAIM as the following net:

Loz setfto,unen—ta] P 1 1 setfmts sunessta] P L+ M et 3 psetfmt— s uesnmto] P

Lrgtiseltint,y] (“ID™0) || Lrgisett, ) {ID7 1) || oo || Lt (seteiat,, (1D, —1)

The topology of the network is a ring, which is a common assumption for leader
election algorithms. Thus, the allocation environment of node ;, in addition to
the standard mapping self — [;, maps the logical locality u,e.; to the physical
locality ;11 mod n of the next node in the ring. The node identified by [, acts as a
random generator: it provides different identifiers, retrieved by the participants
at the outset. In this way, each participant will be uniquely identified by an
identifier selected randomly. The leader will be the participant with the smallest
identifier.
The process P deployed in each participant node is defined as follows:

in(“ID” 1 2:4)@l,,.
out(“ID”, x,;4)Qself.
eval(Achecker (wid))@unext .nil

Once a participant has retrieved an identifier, it spawns a mobile checker process
to the next node. This process will travel along the ring to determine if the source
node has to be the leader.

The checker process is defined as follows:

Achecker(myld) 2 read(“ID”,! z)@self.
if myld < x then
eval(A hecker (MyId))Quyp ey nil
else if myld > x then
eval(A,otifier(MyId))Quyeqs.nil
else
out(“LEADER”)@Qself .nil
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The process carries the identifier of the source node (parameter myld) and
compares it with the identifier of the node where it is running (retrieved via a
read action and stored in the variable x). If the source identifier is smaller than
the current one, the currently hosting node is not the leader: the process moves
to the next node and restarts. Instead, if the source identifier is greater than the
current one, the source node is not the leader: the process activates the notifier
process that crosses the rest of the ring to come back to the source node and
insert this information in the local tuple space. If the two identifiers are identical,
the process is back on the source node (thus no node with a smaller identifier
has been found in the ring) and inserts the information that this is the leader in
the local tuple space.
The notifier process is defined as follows:

Apotifier(myld) = read(“ID”,! z)@self.
if x = myld then
out(“FOLLOWER” )@self .nil
else
eval(Anotifier (MyId))Quy ey .nil

It simply looks for the node with identifier myld; when it finds this node, it
inserts in the local tuple space the information that this node is a follower.

Notably, for the sake of simplicity, we resort in this example of the conditional
construct if epeong then P else . This is a macro that can be expressed here
by exploiting pattern-matching and parallel composition as follows:

out(“ITE”, epcond)Aself.
(in(“ITE”, true)@self. P
| in(“ITE”, false)@self.Q)

3 X-KramM 2.0

In this section we present the new version of X-KLAIM. In particular, we first
briefly recap the limitations of the old implementation of X-KLAIM. Then, we
illustrate the main features of the new version of X-KLAIM by showing the
implementation of the leader election example, which has been presented in
Kramv in Example 1, Sect.2. Finally, we present a few interesting additional
features of the new version of X-KLAIM, including its debugging mechanism
integrated in the Eclipse IDE.

3.1 The Old Implementation

As mentioned in the Introduction, X-KLAIM programs are compiled into Java
programs that make use of the Java library KLAVA, which provides the runtime
environment for X-KLAIM operations. KLAVA is a Java library with some classes
and methods to develop Java programs according to the KLAIM programming
model.
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KLAVA is also meant to be used directly for programming in Java according to
the KLAIM primitives and mechanisms. It allows the programmer to fully exploit
Java mechanisms and the libraries of its huge ecosystem, while using the KLAIM
programming model. While using KLAVA in Java, the programmer can benefit
from IDE tooling, such as content assist, code navigation and debugging. How-
ever, this also implies that the programmer will have to deal with the verbosity
of Java, which also makes it hard to directly use KLAIM primitives. For exam-
ple, using KLAIM tuple space operations with KLAVA requires some additional
Java instructions to set up the tuple (in particular, its formal fields if any) and
to update possible variables representing formal fields with the values retrieved
from pattern-matching. KLAVA strives for making Java programmers life easy
but it can only do that by obeying the rules of Java. Originally, X-KLAIM
was designed to give the programmers a language as close as possible to the
KLAIM programming model, while still providing typical programming features
such as variable declarations, control structures, etc. Thus, with X-KLAIM, the
programmer could easily write KLAIM tuple space operations without additional
boilerplate code. However, X-KLAIM programs could not rely on the Java ecosys-
tem and making X-KLAIM program and Java program communicate with each
other required too much programming effort. Moreover, no IDE mechanisms for
the X-KLAIM compiler were implemented, forcing the X-KLAIM programmer
to write an X-KLAIM program with a text editor, without any assistance from
any IDE,; explicitly call the X-KLAIM command line compiler waiting for pos-
sible compilation errors, and finally manually compile the generated Java code.
Finally, debugging X-KLAIM programs was not possible: the programmer had
to debug the generated Java code, and debugging automatically generated code
is known to be quite hard. Summarizing, the benefits of the X-KLAIM program-
ming language were evident only for very small prototype programs.

On the other hand, KLAVA kept on evolving during the years. For example,
starting from our experience in implementing KLAVA network and code mobility
mechanisms, we proposed a general framework for implementing Java network
applications with code mobility, called IMC (Implementing Mobile Code) [7].
Then, we refactored KLAVA completely, implementing it in terms of IMC. Due
to the limitations of X-KLAIM, though, we decided it was not worthwhile to
port its compiler to the new version of KLAVA. This decision was also due to the
limitations of the compilation technologies at that time and to the programming
effort required to implement IDE mechanisms for the compiler, e.g., on top of
Eclipse.

3.2 The New Implementation

Compiler and IDE technologies have evolved since then. In particular, the frame-
work XTEXT quickly gained popularity. XTEXT [9] is an Eclipse framework
for the development of programming languages and domain-specific languages
(DSLs). Starting from a grammar definition, XTEXT generates a parser, an
abstract syntax tree, and a complete IDE support based on Eclipse (e.g., edi-
tor with syntax highlighting, code completion, error reporting and incremental
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building). XTEXT comes with good defaults for all the above mechanisms and
the language developer can easily customize all such mechanisms.

Thus, we decided to re-implement X-KLAIM, targeting the new version of
KravA. Since we implemented this new version of X-KLAIM from scratch, we
also took the chance to make its syntax similar to mainstream languages, in par-
ticular, we gave it a Java-like shape. This means that programs written in the
previous version of X-KLAIM are not compliant with this new version (however,
we do not think that it is a considerable problem). Concerning the integration
into Eclipse, we used XTEXT with all its powerful and useful mechanisms, men-
tioned above, which help the programmer. Furthermore, we also rely on another
mechanism provided by XTEXT, that is, XBASE. XBASE is an extensible and
reusable expression language, which provides a Java-like syntax and which is
meant to be embedded in your own XTEXT DSL. By using XBASE in X-KLAIM,
besides inheriting XBASE rich Java-like syntax, we also inherit its interoper-
ability with Java and its type system. This means that an X-KLAIM program
can seamlessly access any Java type available in the classpath of the project.
This allows us to get rid of one of the worst drawbacks mentioned above of
the previous implementation: Java and X-KLAIM programs can now interoper-
ate automatically, and X-KLAIM programs can reuse the whole Java ecosystem.
This also implies that one can write a Java application where some parts are
written directly in Java using KLAVA, and other parts are written in X-KLAIM
(using the parts written in Java).

The syntax of XBASE is similar to Java, but it removes much “syntactic noise”
from Java (for example, terminating semicolons are optional, as well as other
syntax elements like parenthesis when invoking a method without arguments).
XBASE should be easily understood by Java programmers. Moreover, XBASE
comes with a powerful type inference mechanism, compliant with the Java type
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proc InitialProc(String nodeName) {
val rg = getPhysical(logloc("rg"))
val next = logloc("next")
in("ID", var Integer xid)@rg
out("ID", xid)@self
eval(new CheckerProc(xid)) @next
in(var String result) @self
println(nodeName + ": result is " + result)

}

Fig. 7. The process P of Example 1 deployed in each participant node implemented in
X-KLAIM.

proc CheckerProc(Integer mylId) {

val next = logloc("next") proc NotifierProc(Integer myld) {

read("ID", var Integer x) @self val next = logloc("next")

if (myld < x) { read("ID", var Integer x) @self
eval(new CheckerProc(myld)) @next if (x == myld) {

} else if (myld > x) { out("FOLLOWER") @self
eval(new NotifierProc(myld)) @next } else {

} else { eval(new NotifierProc(myld)) @next
out("LEADER") @self }

} }

}

Fig. 8. The processes Achecker and Anoufier of Example 1 implemented in X-KLAIM.

system, that allows the programmer to avoid specifying types in declarations
when they can be inferred from the context.

The X-KLAIM compiler implemented with XTEXT/XBASE is now completely
integrated into Eclipse. Thus, IDE mechanisms like content assist and code nav-
igation are available in the X-KLAIM editor. Moreover, the compiler is now
integrated in the automatic building mechanism of Eclipse: saving an X-KLAIM
file automatically triggers the Java code generation, which in turns triggers the
generation of Java byte-code. This avoids the manual compilation tasks of the
previous implementation. Finally, it is now possible to debug an X-KLAIM pro-
gram while the generated Java code is executed (as shown in Sect. 3.5). We show
the renewed X-KLAIM toolchain in Fig. 6.

3.3 The Leader Election Example in X-KLAIM

We will now describe the main features of the new version of X-KLAIM by show-
ing the implementation of the leader election example, which has been presented
in KLAIM in Example 1, Sect. 2.

First of all, the process P deployed in each participant node is defined in
X-KLAIM as shown in Fig. 7. Note that the types such as String and Integer
are actually Java types, since, as mentioned above, X-KLAIM programs can refer
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net LeaderElectionNet {
node L1 [next —> L2] {
eval(new InitialProc("L1")) @self

}

node L2 [next —> L3] {
eval(new InitialProc("L2")) @self

}

node L3 [next —> L1] {
eval(new InitialProc("L3")) @self

node RG logical "rg" {
out("ID", 0)@self
out("ID", 1)@self
out("ID", 2)@self
}
}

Fig. 9. The net of Example 1 implemented in X-KLAIM.

directly to Java types. Expressions and statements in X-KLAIM are based on the
XBASE syntax. Variable declarations in XBASE start with val or var, for final
and non-final variables, respectively. The type of the variable can be omitted
if it can be inferred from the initialization expression. XBASE syntax has been
extended with KLAIM operations. Formal fields in a tuple are specified as variable
declarations, since, just like in KLAIM, formal fields implicitly declare variables
that are available in the code after in and read operations. Boolean non-blocking
versions of in and read are also available: in_nb and read_nb, respectively.
logloc (and phyloc, not shown in the example) are syntactic sugar for creat-
ing instances of localities. Finally, getPhysical and println are Java methods
available in the runtime library of X-KLAIM, which, of course, includes KLAVA.
Notably, since X-KLAIM aims at being a programming language, localities, which
in KLAIM can be used without explicit declarations, must be explicitly declared
and initialized in X-KLAIM. The only exception is self, which is a predefined
locality also in X-KLAIM. Since we are in a Java-like context, process invocation
corresponds to the creation of an instance of the process (using the new oper-
ator); we did not use the same “invocation” syntax of KLAIM since that would
conflict with the standard Java-like syntax for method invocation.

The processes Achecker and Aporifier of Example 1 are defined in X-KLAIM
as shown in Fig. 8.

Finally, the net of Example 1 is defined in X-KLAIM as shown in Fig.9 (here
we fix the number of the nodes to 3). Note that the mapping for self is implicit
in every node, so it does not have to be defined. Explicit locality mappings
(corresponding to KLAIM allocation environments, Sect. 2) are specified for each
node with the syntax [ 11 -> 12 ]. For example, the node L1 maps next to
L2. A node can specify the logical locality with which it will be known in the
containing net, with the logical clause, as in the node RG. If this clause is
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not specified, a node is automatically known to the net with a logical locality
corresponding to its name (like L1, L2 and L3).

3.4 Additional Features

The syntax of net and nodes shown above allows the programmer to quickly
specify a “flat” net, where all nodes are at the same level. However, X-KLAIM
implements the hierarchical version of the KLAIM model as presented in [12,13].
This implies that, if a node is not able to resolve a logical locality into a phys-
ical locality then it delegates it to the “parent” node, that is, to the containing
net. However, the programmer can also define a node outside a net element and
explicitly use the operations of login and accept (or the versions dealing explic-
itly with logical localities, subscribe and register). This will allow X-KLAIM
programs to define a custom hierarchical net. For example, this is an X-KLAIM
program defining a node accepting remote connections from other nodes, which
will then be part of its network (note how physical localities are expressed in
terms of the standard TCP syntax host:port):

node Receiver physical "localhost:9999" {
while (true) {
val remote = new PhysicalLocality
accept(remote)

}
}

and this is a possible client node connecting to this network and evaluating a
process remotely:

node Sender [server —> phyloc("localhost:9999")] {

login(server)

val myLoc = getPhysical(self)

eval({
println(String.format("Hello %s...", server))
println(". . .from a process coming from " + myLoc)
out("DONE")@myLoc

b@server

in("DONE") @self

logout(server)

System.exit(0)

The above example also shows how X-KLAIM code can access Java code, like
the static methods String.format and System.exit. Moreover, it also shows
how X-KLAIM allows the programmer to specify anonymous processes, e.g., for
remote evaluation with eval (just like KLAIM):

in(var String s) @self
eval( in(s) @self ) @1
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In the code snippet above, the process in(s)@self will be evaluated at the
remote locality 1. Note that when a process migrates, it is closed with respect to
the variables of the original enclosing scope, like the s in the example. Anony-
mous processes with several statements must be enclosed in a code block {.. .},
like in the previous Sender example. In order to insert an anonymous process,
with code p_code, into a tuple space, the syntax proc { p_code } must be used.
This is required to disambiguate with a code block that would be evaluated to
produce a value to be part of the tuple:

in(var String s) @self
out( proc { in(s)@self } )@1

A process can be retrieved from a tuple space with a formal field of type
KlavaProcess (defined in the KLAvA library), e.g.,

in(var KlavaProcess X) @self
eval(X) @self

The above X-KLAIM code corresponds to the KLAIM process
in(!1X)@self. eval(X)@self .nil

Code mobility is completely delegated to KLava and IMC, which automati-
cally collect the Java classes of the migrating process so that they can be loaded
at the remote destination (as described in details in [5]). However, in this new
version of X-KLAIM, strong mobility is not supported yet. We will implement
this feature in the compiler according to the transformation described in [6].

As a further improvement, the new version of X-KLAIM allows the program-
mer to fully exploit the recursive nature of processes in a way that was not
possible in the previous version nor in KLAIM itself. In fact, a process can refer
to itself with the Java keyword this, which has the same semantics as in Java.
It allows a process to spawn itself to a remote site. This can also be used in
anonymous processes. This mechanism allows one to write complex (possibly
anonymous) recursive processes. For example, the process in Fig. 10 implements
the leader election example without additional process definitions, showing how
this correctly refers to the current anonymous process, even in the presence of
nesting. This also shows how X-KLAIM automatically deals with the closure of
the enclosing scope (e.g., the myId and next used by the anonymous migrating
processes).

3.5 Debugging X-KLAIM Programs

As already anticipated, thanks to XTEXT/XBASE, the new version of X-KLAIM,
and in particular its integration in Eclipse, allows the programmer to debug an
X-KLAIM program, as shown in Fig. 11. In this example, based on the X-KLAIM
code of Fig. 10, we set a breakpoint in the X-KLAIM program, and during the
execution, we can see the current values of variables, either in the “Variables”
Eclipse view or by hovering over a variable in the program (like myId).
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proc InitialProc(String nodeName) {
val rg = getPhysical(logloc("rg"))
val next = logloc("next")
in("ID", var Integer myld)@rg
out("ID", myld)@self
eval({ // anonymous process (1)
read("ID", var Integer x) @self
if (myId < x) {
eval(this) @next // this refers to (1)
} else if (myId > x) {
eval({ // anonymous nested process (2)
read("ID", var Integer x1)@self
if (x1 == myld) {
out("FOLLOWER") @self
} else {
eval(this) @next // this refers to (2)

}
}H@next

} else {

out("LEADER") @self

}
D @next

in(var String result) @self
printin(nodeName + ": result is " + result)

}

Fig. 10. The recursive process in X-KLAIM with migrating operations, implementing
altogether the processes of Figs. 7 and 8.

We believe that being able to debug an X-KLAIM program directly is a cru-
cial feature when programming distributed applications accessing remote tuple
spaces and dealing with code mobility. The debugging mechanisms of X-KLAIM
are as powerful as the standard Java debugging mechanism of Eclipse. For
example, during an X-KLAIM debugging session, we can evaluate expressions
on the fly. For example, as shown in Fig. 12, we can retrieve the current physical
locality where the debugged process is executing, by calling the KLAVA method
getPhysical.

Of course, the current debugging mechanism allows the developer to debug
only a local running process. Currently, it is not possible to debug a process that
runs on a remote node. In order to achieve also this mechanism, a dedicated
debugging protocol should be implemented in the KLAVA runtime library. It will
be interesting to investigate this feature as a future work.

Note that the X-KvLAIM Eclipse support also includes the ability to directly
run or debug an X-KLAIM file, with dedicated context menus: there’s no need
to run the generated Java code manually.



130 L. Bettini et al.

2 LeaderElectionRecursive.xklaim 2 = B ||®-Variables % | % Breakpoints & Expressio
1 package xklaim.example.leaderelectionrec
2
3=proc InitialProc(String nodeName) { Name Value

4 val rg = getPhysical(logloc("rg")) B no method return
5 val next = logloc("next") ) . )
6 in("ID", var Integer myId)@rg S » & this InitialProc$1$1 (it
7 out("ID", myId)@self v ox1 Integer (id=414)
8e eval({ // anonymous process (1) 5
9 read("ID", var Integer x)@self value 2

108 if (myId < x) { » o _Tuple_2 Tuple (id=415)
11 eval(this)@next // this refers to (1)

12e } else if (myId > x) {

13e eval({ // anonymous nested process (2)

14 read("ID", var Integer x1)@self

» 1560 if (x1 == myId) {

i?* } el.::tz F myld= Integer (id=430)

18 eval(t & value= 1

19 }

20 })@next

21e } else {

22 out("LEADER")@

23 } 1

Fig. 11. Debugging an X-KLAIM program.

=Variables ° Breakpoints “9"‘ Expressions 2 =8
B +#X% ~
Name Value
» < locality "tcp-127.0.0.1:41987" (id=4
» © sessionld IpSessionld (id=445)
% Add new expression

Fig. 12. Evaluating expressions while debugging an X-KLAIM program.

4 Concluding Remarks

Motivated by the success that the KLAIM language gained over the last years,

and believing that still nowadays it can provide further contributions to the

coordination research field and application area, we have brought X-KrLAIM back

to life. In doing that, by resorting to modern compiler and IDE technologies, we

have enhanced X-KLAIM making it a usable and effective coordination language.
The fundamental novelties of this renewed version of X-KLAIM are:

— Java-like syntax, which should be easily understood by programmers;

— full interoperability with Java, so that X-KLAIM code can access the whole
Java ecosystem;

— type inference mechanism, allowing programmers to avoid specifying types
that can be inferred from the context;

— IDE support and debugging facilities;

— recursive definition of processes.
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The support of these features clarifies how the contribution of this work repre-
sents a significant advancement with respect to the previous version of X-KLAIM
introduced in [11]. Comparisons with other implementations of Linda-like lan-
guages and code mobility frameworks are provided in [8,11], such as Jada [17],
MARS [15], Jini [3], JavaSpaces [48], IBM T Spaces [53], IBM Aglets [46],
pCODE [49], Lime [50], Sumatra [2]. More recently, other implementations of
the Linda paradigm have been proposed. GigaSpaces [1] is a commercial imple-
mentation of tuple spaces mainly used for big data analytics. Differently, from
X-KrAmM, GigaSpaces supports database-like features, such as complex queries,
transactions, and replication. This could be obtained in X-KLAIM by using its
interoperability mechanisms to access Java code. Tupleware [4] is a framework
providing a scalable (both distributed and centralized) tuple space. It is based
on distributed hash tables, similar to other distributed implementations of tuple
space like Blossom [51] and DTuples [45]. The focus of these frameworks is on
the performance of the search in the distributed tuple space, rather than on the
programming facilities to support the development of tuple-space-based appli-
cations. Differently from X-KLAIM, they do not consider code mobility features.
Instead, LuaTS [47] provides a reactive event-driven tuple space system that
also supports code mobility. While X-KLAIM is based on the mainstream Java
technology, LuaTS relies on Lua. Finally, we refer to [18] for a recent survey of
coordination tools, including both those based on Linda and the ones relying on
different coordination models.

As future work, we plan to assess the effectiveness of X-KLAIM in program-
ming distributed, possibly mobile, applications in different domains, such as IoT
and Bioinformatics. To this aim, we will use X-KLAIM to implement different
case studies from academia and industry. We also intend to appropriately val-
idate the usability of the language, by involving students of BSc and MSc in
Computer Science, as well as developers from different industrial settings.
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