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a b s t r a c t

This study investigates the effect of angle of attack on flow-induced vibrations (FIVs) of
sharp-edged rectangular cylinders. In particular, the effect of the afterbody of a rectangular
cross-section with lowmass ratio and the side ratio ranging from 0.67 to 1.5 is analysed by
changing the angle of attack with respect to the oncoming free-stream. As already shown
for a different side ratio’s rectangle, namely a square section (see Nemes et al., 2012), the
angle of attack variation can make the flow-induced amplitude response switch between
vortex-induced vibration (VIV) and galloping. Some considerations with respect to the
interaction between the two phenomena typical of FIV, VIV and galloping, are also given
for the side ratios of 1.5 and 0.67. The amplitude and frequency responses are carefully
analysed, comparing the results with those of a square section of comparable mass ratio.
The results showed amarked effect of the after-body, even for slight increments of the angle
of attack. This can result in different amplitude response curves, as classified by the features
of the response. In addition, the influence of interacting higher harmonics components on
the amplitude response is also shown and discussed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This study examines the influence of the angle of attack variation on the flow-induced vibration (FIV) response of sharp-
edged rectangular cylinders. The cross-section investigated has a side ratio (SR = B/D), defined as the ratio between the body
width (B) and depth facing the fluid flow (D), of 1.5 in the zero angle of attack (α = 0◦) configuration. The body is subjected
to a free-stream water flow perpendicular to its long axis, and the cylinder is constrained to oscillate only transversely to
the free stream. Generally, sharp-edged bluff bodies can be subjected to different forms of aeroelastic phenomena, such as
flutter, galloping and vortex-induced vibration (VIV). For the SR range investigated here two phenomena have been found
to occur, VIV and galloping. If galloping can be referred to as a divergent (not self-limited) aerodynamic instability, generally
occurring in a higher range of reduced velocities, one can identify VIV as a self-limited phenomenon occurring in a bounded
lower velocity range. It occurs when an elastic or elastically-mounted bluff body is immersed in a moving fluid and the
occurrence of a fluctuating pressure distribution on the body may induce a vibrational response at certain velocities or
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natural frequencies. Given that galloping is caused by the aerodynamic forces induced by the transverse motion of the body,
there can be no instability without an initial displacement condition.

Consequently, a body’s motion implies a change of angle of attack, see for example Parkinson and Smith (1964) and
as illustrated in Fig. 1. Thus, galloping is categorized as a type of movement-induced excitation (MIE), whereas VIV is
categorized as a type of instability-induced excitation (IIE), given it is associated with the flow instability involving local
flow oscillations (see Naudascher and Rockwell, 2005). These two phenomena will be discussed here and their mutual
interference investigated. From here on they are referred as interaction VIV–galloping or simply interaction.

Vortex-induced vibration has been extensively investigated firstly on circular cylinders (e.g. Feng, 1968; Sarpkaya, 1979;
Bearman, 1984; Sarpkaya, 2004), and then other body shapes (Bearman and Davies, 1977; Bearman and Currie, 1979;
Bearman andObasaju, 1982; Zhao et al., 2018a). In addition to the full understanding of the vortex shedding physics (Gerrard,
1966; Bearman, 1967; Perry et al., 1982) there has also been considerable interest in conceiving strategies for the suppression
of transverse vibrations, caused by the non-linear resonance between the frequency of vortex shedding (fvs), occurring for
any bodywith an appreciable afterbody, and its natural (structural) frequency of oscillation (fn). These studieswere primarily
conducted on circular section bodies because this means any consideration involving the orientation of the flow (or attack
angle, α) can be neglected. As a result, researchers can focus mainly on the role played by the Reynolds number, (Re), in
affecting other key features of the phenomenon, such as wake turbulence transitions, position of the separation points, lift
and drag crisis, switching behaviour of the Strouhal number (St) in the super-critical range.

Apart from the practical engineering applications in civil and ocean engineering (light poles, power line cables, submerged
structures e.g. offshore platform pillars, risers, wind turbine towers, mooring lines and spars), the circular section is taken as
the canonical section for studying the singular effect of vortex shedding, as other forms of divergent instabilities (galloping or
flutter) cannot occur, given the aerodynamic stability of the section. Conversely, for sharp-edged bluff bodies the separation
points are fixed at the section’s up-stream leading edge. In fact, the near-wake vortex structure presents a negligible Re-
dependence,without changing flow regimes increasing its velocity. In contrast, it has been found that for the circular cylinder
vortex shedding regimes depend on incoming flow velocity (Roshko, 1954; Bloor, 1964).

Galloping is an aerodynamic instability of slender non-axisymmetric structures caused by a self-excitation when the
aerodynamic damping becomes negative. When a cross-section is aerodynamically unstable, as it is in this case, where there
is a lack of axial symmetry, a characteristic of rectangular sections. According to the Glauert–Den Hartog incipient stability
criterion (stating the instability of a system in case Eq. (1) is verified) (Glauert, 1919; Den Hartog, 1932), small-amplitude
vibrations generate forces that increase in amplitude to large values as the flow velocity is increased.

dCL

dα

⏐⏐⏐
α0

+ CD(α0) < 0, (1)

where CL and CD are the lift and drag aerodynamic force coefficients defined in Fig. 1, while α0 indicated the angle of
attack at rest. To-date the only suitable theory to predict transverse 1-DoF galloping oscillations onset velocity and the
post-critical regime is the quasi-steady theory (QS), which has been successfully applied by Parkinson and Smith (1964).
Once the galloping onset velocity (Eq. (4)), which is proportional to the mass and damping ratio, is exceeded the system
manifests itself as limit-cycle harmonic oscillations.

The dynamics of an elastically mounted body constrained to oscillate across the stream depends on the mass of the
oscillating body, m, the mechanical damping c and the system elastic stiffness k (both assumed constant here), the fluid
density ρ, the kinematic viscosity ν, and the free-stream velocity U . It is defined by the equation

mÿ + cẏ + ky = Fy (t) , (2)

where Fy (t) represents the forcing imposed on the cylinder by the fluid. This leads to the key non-dimensional parameters
of the system typically used for FIV: the mass ratio,m∗

= m/md = m/ρV , wheremd is the mass of the fluid displaced by the
body, and V = BDL the immersed body volume; and the damping ratio of the system in water,

ζw = c/
(
2
√
k (m + mA)

)
, (3)

wheremA is the addedmass. The addedmass can be estimated frompotential flow ormeasured directly through its influence
on the natural frequency of the body in quiescent fluid. The reduced velocity is defined by U∗

= U/(fnD), where fn is the
natural frequency of the freely oscillating body in quiescent fluid andD is the cylinder’s characteristic transversal dimension.
In his pioneering paper on the VIV of a circular cylinder in air flow, Feng (1968) showed that a resonance condition can exist
when the frequency of shedding, fvs, and that of the body oscillation, fosc , are synchronized when close to fn. The maximum
amplitude response, A∗

max =max(A/D), occurs in this lock-in region of fvs ≈ f ≈ fn, i.e. after the reduced velocity increases
above, U∗

r = 1/St , where St = fvsD/U is the dimensionless shedding frequency of a fixed cylinder.
According to QS-theory the galloping onset reduced velocity (U∗

g ) is given, in a different non-dimensional form to that
reported in Eq. 19 of Parkinson and Smith (1964), as a function of damping (ζ ), geometry of the cross-section (B, D), fluid
density (ρ),mass ratio (m∗) and slope of the lateral force coefficient around the zero angle of attack, that isA1 =

(
dCFy/dα

)
|0◦ .

U∗

g = 2π
2ζ
nA1

=
4mζ

ρD2LA1
=

Sc
A1π

=
4ζm∗

A1

B
D

, (4)
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Fig. 1. Evaluation of the transverse force on a vibrating rectangular cylinder with the QS approach. Urel denotes the apparent flow velocity due to the body
displacement velocity. Axes orientation (x, y) are indicated, while FL , FD , k and c represent respectively the lift and drag aerodynamic forces on the body,
and the mechanical stiffness and damping of the system.

where the Scruton number is considered in the form Sc = 4πmζ/
(
ρD2L

)
. It is worth noting that even if the QS-theory refers

to the n-form of the mass ratio expression, ρD2L/2m, mostly employed in air flow, the previously defined formwill be used,
being the conversion formula in the case of rectangular bodies m∗

= D/(B2n). In aeroelastic oscillations the contribution of
damping and QS forcing terms are comparable. However, it is important to remember that, given the water on air density
ratio ρw/ρa ≈ 800, the only negligible term is damping in water, resulting in a forcing term proportional to the increased
mass ratio.

The lateral force coefficient is calculated here according to the form originally reported in Parkinson and Brooks (1961),
that is

CFy (α) = − sec (α)
(
CL (α) + CD (α) tan (α)

)
(5)

This can be determined by testing each stationary rectangular section’s cylinder for several angles of attack in the vicinity
of α = 0◦. QS theory states that galloping is driven by the instantaneous angle of attack between the body and the
flow, α = tan−1 (ẏ/U) (see Fig. 1), producing an asymmetric pressure distribution. The predictive mathematical model
approximates the CFy vs. α with an odd polynomial in tan (α) = (ẏ/U), whose first coefficient A1 represents the slope of the
lateral force coefficient CFy around zero angle of attack (Eq. (6)).

A1 =
dCFy

dα

⏐⏐⏐⏐
0◦

(6)

Despite its apparent simplicity, A1 has shown a large variability in the reference literature, as recently shown in the survey
reported by Mannini et al. (2014).

Cross-sections of concern in the presentwork have been demonstrated to be particularly prone to the interaction between
VIV and galloping, although this has been for relatively low Sc values (at least well beyond the values characterizing
experiments in water). This interaction was first observed by Parkinson and Brooks (1961) (Fig. 7 in their original paper)
when a low damped square cylinder was found to start oscillating at the critical velocity of the Kármán-vortex resonance
speed, instead of that predicted by the QS theory. Later, the interaction was observed and studied in rectangular cylinders
with various SR values, e.g. in Smith (1962) and Novak and Tanaka (1974). It was also reported by Novak (1972) that
rectangular sections with SR > 1 are more prone to the interaction. It has been derived that the interaction occurs when the
ratio U∗

g /U∗
r is lower than a certain threshold, though the reporting of this shows some variability.

Parkinson and Wawzonek (1981) found a value of Λ = U∗
g /U∗

r = 2.15, was necessary to separate the phenomena, even
if some of the interaction effects were still present for Λ = 8.4. A certain interference between VIV and galloping was
found to be inseparable when U∗

g < U∗
r , a condition that was verified for light, slender low-damped structures in airflow

and necessarily in water flow given the different flow density (Parkinson, 1989). In such conditions an effect referred to as
quenching is exerted by the vortex structure on the body until it reaches U∗

r . This concept comes from non-linear dynamics
(asynchronous quenching (Minorsky, 1947)) which was highlighted by Santosham (1966) and Bouclin (1977).

The interaction can manifest itself differently according to experimental conditions and dynamical system properties,
e.g. in some cases the galloping excitation was seen to start at velocities corresponding to the Kármán-vortex resonance
speed, instead of 5–6 times larger, or at a flow speeds larger than U∗

r but less than one-third of that predicted by the theory
of Santosham (1966) and Parkinson and Wawzonek (1981). Santosham (1966) conducted experimental tests to provide an
insight into the reasons for such a behaviour. The failure of QS theory up to very high values of the reduced flow speed
and large amplitudes of oscillation was suggested to be due to the effect of interacting Kármán vortices. Bouclin (1977)
investigated a certain range ofmass ratios for a square cylinder (SR = 1), usingwater flowmeasurements, and only one value
of mass ratio for a SR = 2 rectangular cylinder. They found the instability onset of the square cylinders quickly develops into
galloping oscillations, and this occurred beforeU∗

r . This appeared to be a direct result of the interactionwith vortex shedding
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and its onset depended on the mass ratio. A secondary resonance (super-harmonic) was found near U∗
r /3, and was more

evident for the rectangular section case.
The first wide parametric study of different geometries (sharp-edged rectangles, D-shaped sections and triangles) and

damping ratios, was carried out by Bokaian and Geoola (1983) in water. The incoming flow turbulence intensity was also
varied. The results showed a strong influence of turbulence intensity on the lateral force coefficient’s formand characteristics,
but not on the vortex-induced vibrations results nor their interaction with the galloping instability. However, the SR and the
damping factor strongly influence the response in amplitude.

Bokaian et al. (1984) also performed a detailed parametric study on the effect of varying the corner radius ratio for the
square cylinder. In addition, they tested several values of the response parameter Ks = ζ/

(
nU∗

r
2), a different mass–damping

parameter’s form dependent on the aerodynamics of the section through the presence of St in the U∗
r formulation. This

was important given the variation of St with the corner radius ratio. It was observed that for low values of the response
parameter Ks the vortex resonance was inseparable from galloping, whereas a complete separation was observed for higher
values of the Ks parameter, leading respectively to a poor or a reasonable response in its amplitude prediction by using the
QS galloping formulation. It was also noticed that, besides the aspect ratio (AR = L/D) and Ks as reasonably expected, the
response strongly depends on the Reynolds number.

Another comprehensive study was conducted in Bokaian and Geoola (1985) on an SR = 0.5 sharp-edged rectangle. The
authors performed a parametric study on the turbulence intensity and structural damping ratio. One of the main results
of interest from their study was that for the first time such a section was demonstrated to be a soft-type oscillator with
respect to the VIV–galloping interference. Differently from those of higher SR, which can gallop spontaneously from rest and
are therefore called ‘‘soft-oscillators’’, rectangular cylinders with shorter after-bodies, say 0.375 < SR < 0.683 according
to Parkinson (1963), are referred as ‘‘hard-oscillators’’ in smooth flow. This means that they need an external quantum of
energy to reach a basin of attraction of the limit cycle (Novak, 1972; Nakamura and Tamonari, 1977).

More recently, Nemes et al. (2012) showed that the interaction was approached when a square section was tested
in water flow for varying angles of attack. Several transitions between different kind of instabilities, such as galloping,
VIV, intermittent response or more complicated forms of instabilities were found, showing unexpected and peculiar
characteristics as the flow incidence was varied. A previously unreported branch of instability was discovered with very
high amplitudes of oscillation. Subsequently, the analysis was focused on the three most interesting orientations of the
square cylinder, namely α = 0◦, 20◦ and 45◦ (Zhao et al., 2014a). These three angles correspond to the situations where
the responses are dominated respectively by galloping, VIV and a more complex modified VIV. The third test case response
appeared as a VIV response experiencing four response regimes: an initial branch (IB), an upper branch (UB), a higher branch
(HB), and a desynchronization region, where the amplitude is approximately constant. This constitutes an interesting result
with respect to what will be shown in the following.

For airflowmeasurements, there is interest in theα-variation of a square prism byHémon (2012), particularly concerning
the possibility of a low-damped system in being able to lower the galloping instability onset velocity. This could find
applications in energy harvesting purposes. An updated review and some new experimental tests on the interference
between VIV and galloping in air were given in Mannini et al. (2014, 2016). These studies were focused on SR = 1.5, and
its peculiar features and strong susceptibility to interference was shown. Underlying the importance of this work are the
implications in actual codes’ prescriptions from the practical engineering point of view. The typical response consists in
the principal instability branch taking place at U∗

r for the entire range of mass–damping ratios investigated (note that the
overall Scruton number range tested, collected from a number of different papers, was 4 ⩽ Sc ⩽ 238). A secondary self-
limited excitation was observed at low reduced flow speed (0.25 ⩽ U/Ur ⩽ 0.5), that disappeared for a certain Sc value
(somewhere in the range 6 ⩽ Sc ⩽ 15). This secondary resonance is discussed in Mannini et al. (2016), and ascribed to the
resonance with a secondary mode of vortex shedding (e.g. Shiraishi and Matsumoto, 1983).

The study proceeds by describing the experimental methods in Section 2. The results and discussion, including the
Strouhal number and the transverse lift on a fixed cylinder, types of the structural response, and analyses of the oscillation
amplitude and frequency, are presented in Section 3 and discussed in Section 4. Finally, conclusions and some outlooks
for future studies are drawn in Section 5. The summary above highlights the complexity of the interaction between the
flow-induced vibration modes and how this can significantly affects the body’s response. This is clearly what motivated the
study and determined the choices made for the independent variables.

2. Experimental methods

Experimental apparatus

The experiments were conducted in the free-surface recirculating water channel of the Fluids Laboratory for Aeronautical
and Industrial Research (FLAIR) in the Department of Mechanical and Aerospace Engineering at Monash University. Fig. 2
shows pictures of the experimental set-up and the air-bearing system that was employed to model the hydroelastic system.
Thewater channel facility has a test section of 4000mm in length, 600mm inwidth and 800mm in depth. Thiswater channel
permits the user to conduct experiments in smooth flow, characterized by a longitudinal turbulence intensity lower than
1%. Further details on this water channel facility and the air bearing system can be found respectively in Sherry et al. (2010)
and Nemes et al. (2012) and Zhao et al. (2014a, b). The rigid rectangular cylinder model used was made from aluminium
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Fig. 2. The present experimental set-up: (a) side view of the rectangular cylinder model immersed in the water channel, and (b) components of the
air-bearing system employed.

Fig. 3. Two main orientation of the rectangular section and labels used to refer to them: α = 0◦ corresponds to D24 and α = 90◦ corresponds to D37. D25
is the label used to refer to a square cross-sectional model.

Table 1
Specifications of the rectangular cylinder model used. The orientations the
cylinder with SR = 1.5 and 0.67, are referred to as D24 and D37, respectively.

D24 D37 Unit

Side width D 24.75 37.45 mm
Side width B 37.45 24.75 mm
Side ratio (SR = D/B) 1.5 0.67 −

Immersed length (L) 617.50 617.50 mm
Wall thickness (t) 2.14 2.14 mm
AR = L/D 24.90 16.47 −

Blockage 4.2 6.4 %
Total oscillating mass (m) 1280 1280 g
Mass of displaced fluid (md) 572 572 g
Mass ratio (m∗) 2.24 2.24 −

tubing with cross-sectional dimensions of D = 24.75 mm and B = 37.45 mm (these rectangular sectional models will be
from here on identified respectively by D24 and D37) and a wall thickness of 2.14 mm.

The immersed length (L) and aspect ratio (AR) calculated based on side length, were L = 617.5 mm and AR = 25. The
total oscillating mass and the mass of displaced fluid were m = 1280 g and md = 572 g, respectively, giving a mass ratio
of m∗

= m/md = 2.24. The detailed specifications are shown in Table 1. The starting position is with the shorter side
perpendicular to the oncoming flow (α = 0◦), nominating such a reference configuration as D24 corresponding to the side
ratio of SR = 1.5, whereas if it was rotated to α = 90◦ the cylinder has a side ratio of SR = 0.67, and is identified as D37
(Fig. 3). Additionally, a square cross-sectional model (D25 in Fig. 3), as studied in Nemes et al. (2012), will be introduced for
comparisons in the last part of the paper.

The cylinder model was vertically supported by a force balance sting that was coupled with a carriage mounted on the
pair of carbon fibre shafts of the air bearing system (see Fig. 2b). To promote parallel vortex shedding, an end conditioning
platform,was adopted in the present experiments. Although the top and bottom surface do not share the same end condition,
this technique has been demonstrated to be effective for this type of experiments (Khalak andWilliamson, 1996; Zhao et al.,
2014a, b). This platform had a height of 165 mm and a top plate with dimensions of 600 × 400 × 5 mm, giving a small gap
of approximately 1 mm between the cylinder free end and the top plate. The cylinder oscillations were elastically mounted
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Fig. 4. Schematic of experimental rig showing the rectangular cylinder (SR = 1.5) with variable angle of attack, α, and projected length,H , freely oscillating
in the transverse direction, y, to the oncoming flow, U in the stream-wise direction x. The body is mounted and elastically constrained to provide k, the
system spring constant, and c , the structural damping.

by a pair of extension springs, and the shafts constrained the body to move with a single degree of freedom in the transverse
direction to the oncoming flow. Typical values ofmechanical damping (with respect to critical) identified through decay tests
in still water, were around 0.26%, while each spring is characterized by a stiffness of 0.01 N/mm. A linear variable differential
transformer (LVDT) was used to measure the displacement of the cylinder with an accuracy of 1 µm (see Nemes et al., 2012;
Zhao et al., 2014a). The lift and drag forces acting on the cylinder were measured using a multi-component force balance
having an accuracy of 5 mN (see Zhao et al., 2014a, b). For the lift force calculation, the inertial force associated with the
body motion was taken into account to yield the instantaneous fluid force, Fy(t). To obtain a reference, the zero position of
the cylinder was measured for each test in a quiescent fluid. Reference values of the forces were obtained in the same way.

3. Results

3.1. Static tests

The aerodynamic characterization of each section is obtained by differently orientating the cylinder through static tests.
Results of force measurements are employed here to detect two nondimensional parameters, the Strouhal number (St)
and the A1 parameter, which has been already introduced and is given by

(
dCFy/dα

)
|0◦ . To perform such tests the shafts

supporting the model in the air bearing system were clamped to the channel walls so as to prevent any transversal motion.
The force balance connecting the model to the rigid arm was fixed to the moving part of the system in a way that was
rigid enough for the purposes of these tests. It was expedient to set the desired angle of attack early in the experimental
campaign bymanually imposing it and ranging from−5◦ < α < +95◦, without imposing a fixed step angle and refining the
measurements around α0. Given such a large α-range, a modification in the rig was aimed at a more refined α-discretisation
and a shorter amount of measurement time. The experimental rig used was originally designed to investigate the transverse
FIV of a circular cylinders under forced rotation by Wong et al. (2017); Zhao et al. (2018b) (Fig. 5) and here is referred to as
the rotational rig. The rotational rig consisted of a rotary motor that could be screwed to the bottom of the force balance,
in the same manner as the sectional model. After inserting the model inside it by means of an aluminium adapter, it was
fastened with four lateral grub screws. The aluminium adapter was designed and manufactured with great care to prevent
wobbling or other undesired effects.

The rotor was externally controlled using a Parker 6K2motion controller, which allowed us to impose the desired angular
position or constant velocity on the cylinder. Here it was programmed to obtain angular rotations instead of velocities. The
procedure for the detection of effective angles was made independently of the precise assignment of the perfect α = 0◦

position. The cylinder was simply adjusted in a reference near-zero position, then it was programmed to automatically start
from a negative angle (α = −5◦) and moving with a fixed angular step of roughly ∆α = 0.5◦ up to α = 100◦, that was
α = −10◦ for the SR = 0.67 case. In this way the angle of attack range was well discretized.

Each position assumed by the cylinder was captured using a PCO2000 camera (2072 pixel × 2072 pixel) placed exactly
under the cylinder and beneath the water channel floor. It was triggered with the motion controller by sending a TTL signal
for each change in the angular position. Once the TTL signal was received an image was automatically saved through the
camera control software. This approached saved considerable time.

Once the resulting images and signals were obtained the real values of each angle was determined by digitally post-
processing the images using customized Python codes, comparing each actual image with the initial one, originally captured
at the nominal zero angle.
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Fig. 5. Rotor rig view from the water surface level.

Fig. 6. Measurements of CFy for the entire range of α tested though the rotor rig.

The entire α-range (−5◦ ⩽ α ⩽ 110◦) investigated is shown in Fig. 6 for six free-stream velocities (corresponding in turn
to six Re-ranges since Reynolds number is defined on the projected area, see later), so that a subtle Re-dependency could
be better observed in Fig. 7a for the SR = 1.5 case. The only exception is at the lowest flow velocity, showing apparent
deviations of the CFy curve from the cases at higher velocities. This is probably because the flow exerts very low forces on
the gauges for this case, which may be near the sensitivity of the measurement system. The Reynolds number used here is
defined by Re = UH/ν, where H is the frontal projected height (H = D cos (α) + B sin (α), see Fig. 4) and ν is the kinematic
viscosity of the fluid. The SR = 0.67 case in Fig. 7b appears to be more Re-sensitive. This may be simply due to a stronger
response to the vortex shedding by the wider side facing the flow, in addition to the slightly lower stiffness offered by the
rotational rig, as the presence of the rotor backlash does not guarantee a perfect fixed-end constraint.

Using the above-mentioned procedure, static force measurements were used to calculate A1, which is a measure of the
proclivity of a section to galloping instabilities. Both the SR cases were found to be a soft-type oscillator in water flow, in
agreement with the above-mentioned results reported by Bokaian and Geoola (1983). This is apparent from Fig. 7, where
both the cases show a positive slope of CFy around the zero angle of attack,making the body prone to the instability from rest.
Not reported here are the results for a square section, as it has already been demonstrated to exhibit the same behaviour in
the first paper by Parkinson and Smith (1964). For the rectangle with SR = 1.5, labelled here D24, the order of magnitude of
the maximum reached by CFy is consistent with previous results (see Fig. 5 in Mannini et al. (2016) for experiments in air).
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Fig. 7. Reynolds number dependency of the lateral force coefficient CFy for the D24 and D37 cases in (a) and (b), respectively. The (·̄) notation indicates the
mean values considered in calculating the lateral force coefficient CFy .

Fig. 8. Evaluation of A1 parameter from the slope (in blue line) of lateral force coefficient CFy for the maximum Re of the SR = 1.5 (D24) case. The red
squares represent negative angles of attack mirrored in order to assess the perfect symmetry of the sectional model.

Nevertheless, it is apparent that there are differences compared to the usual curve profiles of CFy versus α reported in
the literature. In both cases a linear trend continues until reaching the peak value corresponding to the apparent angle of
attack from which the section experiences the reattachment of the shear layer on the side making the section stable. This
value for SR = 1.5 occurs before α ≈ 7.5◦ while for SR = 0.67 at α ≈ 13◦. Parkinson (1963) gave a value of α ≈ 7◦ for a
SR = 2 rectangular section in air flow, while for a square section it was approximately 13◦ (Parkinson and Smith, 1964). For
SR = 1.5 in airflow results reported in figures 3.17–3.18 of Massai (2015) and figures 20–21 in Mannini et al. (2016) for two
different aspect-ratio models (different Re and cross-sectional dimensions) are at α ≈ 9◦.

By extrapolating the most reliable result for the case of SR = 1.5, usually corresponding to the maximum Re (higher
loads are better measured by instruments), it is possible to find a value for A1. The linear regression is reported in Fig. 8,
together with the negative angle of attack values mirrored in the positive quarter, giving a measure of the model symmetry;
apparently the α-peak resulted occurred at α ∼= 7.11◦. The value of A1 = 5.13 is finally proposed here for SR = 1.5,
whereas a value of A1 = 5.5 has recently been reported in Mannini et al. (2016). An apparent feature shown in Fig. 8 is
the lack of the inflection point reported in previous studies (e.g. Parkinson, 1963) for SR = 0.5 and 1 cylinders; this has
been seen by Massai (2015) and Mannini et al. (2016) for SR = 1.5 in two different wind tunnel facilities. The soft-oscillator
character of both sections has beenmentioned above, and is reported in previous studieswheremeasurementsweremade in
water flow. Nevertheless, it is interesting to note that Novak and Tanaka (1974) presented data collected in smooth air flow
measurements on a sharp-edged rectangle with the same side ratios (1.5 and 0.67), in which it is apparent that SR = 0.67
resulted in a hard-type oscillator. However, for SR = 1.5 the shape of the CFy versus α curve shows similar features to those
reported in the present work. No inflection points are clearly visible, resembling the shape reported in Fig. 7a, although the
maximum point is reached for tan (α) = 0.18 ⇔ α ≈ 10◦.
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Fig. 9. Re- and α-dependency of Strouhal number values determined by changing the angle manually (a) and automatically using the rotator rig (b). In the
figure (c) maximum Re data of the two above showed techniques are reported together with hot-film anemometry results for four angles only, and with
the chosen values at the two main orientations of the rectangular cylinder.

Particular attention was paid to the characterization of the Strouhal number, considering that it is directly linked to the
definition of the critical velocity (U∗

r = 1/St). The spectral analysis of the transverse lift provides the St detection for each
angle of attack, by picking up the lift spectral peak values for each test point. The Re-dependent results of St are shown in
Fig. 9a and b for the angle of attack settingmodes of manual and automatic (via the rotational rig), respectively. There seems
to be qualitative and quantitative agreement in the results for the two techniques; the major differences are (i) a lower
Re-dependency for the first case (manual) and (ii) a more refined and wider α-range investigated in the second (automatic).
A hot-film anemometer was also placed 150 mm downstreamwith respect to the trailing edge of the SR = 1.5 case (≈ 1.2D
in the transverse direction in the near wake of the cylinder), at four angles of attack (α = 0◦, 40◦, 70◦ and 90◦). The most
representative results are presented by coloured square markers in Fig. 9c, together with those referred to the maximum
Re of the first two measurement techniques. Measurements using hot-film anemometry were also carried out for two flow
velocities to confirm the results by recording at the same point for two different durations (5 and 20 min). Good agreement
between the different techniques was found, with St = 0.104 for SR = 1.5 and St = 0.137 for SR = 0.67. A value of
St = 0.131 has been given in Zhao et al. (2014a) for a square section (D25) tested in the same water channel facility. The
present results are in agreement with previous studies, e.g. St = 0.108 by Smith (1962) and St = 0.106 by Mannini et al.
(2016) for rectangular cylinders with SR = 1.5.
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Fig. 10. The amplitude response (A∗

10) as a function of reduced velocity, U∗ , with all angles of attack, α, superimposed in (a). 3D plot of amplitude response
against U∗ and α in (b). The bold lines refer to the SR = 1.5 case (blue bold line in the online version) and the SR = 0.67 case (red bold line in the online
version). (c) shows the mean amplitude response (ȳ/D) against U∗ for varying α between 0◦ and 90◦ , at 5◦ increments, and the 3D view is shown in (d).

3.2. Hydroelastic response

Results from the hydroelastic campaign conducted with the SR = 1.5 rectangular cylinder at a very low value of the
mass ratio m∗, 2.24 (see Table 1), are reported in this section. The main response parameter considered as statistically
representative of the signals recorded is the so-called A∗

10, defined as the mean of the top 10% of the peaks, and already
used in Hover et al. (1998), Morse et al. (2008), Nemes et al. (2012) and Zhao et al. (2014a). To confirm its use the A∗

10 was
comparedwith themaximal amplitude peak, referred asA∗

max, to give additional information about howwell they statistically
compare in extracting results from pseudo-sinusoidal signals.

Types of structural response. Given the amount of data collected and the number of angles of attack tested, a useful and
comprehensive results summary is presented using two- and three-dimensional plots of the A∗

10 and ȳ/D response curves for
the α-range investigated (Fig. 10). This provides a global view on how varying the angle of attack changes the FIV response
curves shape. In particular, plots in the left column of Fig. 10 are the 2D side views of the corresponding 3D plots (right
column) seen from the U∗-A∗

10 plane. Higher U∗ values are neglected in this representation to have a close-up view on the
global results, while the entire velocity range will be shown in the following. A net mean lift in asymmetric configurations is
generated by the increase of the angle of attack. The A∗

10 response for increasing velocities and angles of attack (Fig. 10a and
b) reveals different response shapes, here grouped into nominated Types, each one having common and identifiable features.
Type I, is typical of α = 0◦ (SR = 1.5), and α = 1◦, and is highlighted with a bold grey line for α = 0◦ (red in the online
version). Type II response is typical of the SR = 0.67 section, that is α = 90◦ (darker bold line and blue in the online version),
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Fig. 11. Logarithmic-scale reduced frequency power spectrum contours of the lift coefficient f ∗

L (a) and of the body displacement f ∗
yb (b). In figure (c) the

normalized amplitude response A∗ as a function of U∗ is reported. (a)–(c) figures are relative to α = 0◦ while (d)–(f) are relative to α = 1◦ configuration.
Empty and filled markers respectively indicate A∗

max and A∗

10 response. Dark and light grey areas are labelled as VIV and galloping response branches
respectively.

but also comprehensively covers α = 2.5◦, 5◦, 10◦, 80◦ and α = 85◦. The third, and largest range, Type III (angles ranging
within 15◦ ⩽ α ⩽ 75◦), exhibits different and mixed response features. The mean amplitude response (ȳ/D) is also reported
(Fig. 10c and d), providing information about the lifting direction of the different orientations.

Representative cases of each response Typewill be investigated in detail to better show their similarities and differences,
and, thence, try to understand the reasons behind the transitions clearly visible in Fig. 10b.

Type I response. Two cases at α = 0◦ and 1◦, have been assigned to this category, and given their similarities it is of interest
to analyse and compare them. In Fig. 11 the nondimensional amplitude response curves, in terms of A∗

max and A∗

10 are shown
below two other plots expressing the logarithmic-scale reduced frequency power spectrum contours of two quantities, the
lift coefficient (f ∗

L = fL/fn) and the body-displacement(f ∗
yb = fyb/fn = f /fn). These latter plots give us detailed characteristics

of the instability that can be observed using the response curves graphs (namely Fig. 11c and f respectively for α = 0◦ and
1◦): the frequency domain information helped in the definition of two areas, which are coloured in dark and light grey. The
first (darker) region refers to a velocity range characterized by VIV response, while the second denotes a pure galloping
response.
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In the frequency response contour plots a darker colour means a more pronounced peak in the spectrum of the signal,
i.e. that there is higher energy contained in the response. Reference vertical straight lines (red-coloured in the online
version) on the A∗ plots presents a vertical dashed line to show the reduced resonance velocity (1/St0◦ ≃ 9.58). From
static measurements the corresponding Strouhal numbers, found through spectral analysis of the lift force, are St0◦ = 0.104
and St1◦ = 0.106, these are shown in the frequency response contour plots with the same line-type. Only for SR = 1.5 two
additional lines in the f ∗

−U∗ plots, one dash–dot and one dotted lines, have been added indicating respectively 2St (fvs super-
harmonic) and St/2 (fvs sub-harmonic) slopes. These are useful in comparing the slopes of the dominant frequencies shown
by the darker traces.

For the VIV response region, the slope in nondimensional frequency response barely violates the Strouhal law, as is typical
of the lock-in range,which iswell known to be flattened in air flow because of the negligible addedmass contribution (Sumer
and Fredsøe, 1997). It is apparent that the lock-in region is well below the resonance velocity, and this constitutes the first
peculiarity in the SR = 1.5 case for such a low mass ratio. The dark vertical shadowing in f ∗

L plot (Fig. 11a) detects the peak
in the amplitude response, followed by a desynchronization region (7.5 < U∗ < 15.5 for the SR = 1.5 case) in which the
maximum frequency response curiously follows the 2St slope, meaning a continually lowering oscillation amplitude with
an increasing vibration frequency. This desynchronization region extends until there is a jump upwards in amplitude at
U∗

= 15.7, where there is a corresponding sharp drop in frequency response. After this the reduced frequency appears to
be stable at a value of 0.5 and remains stable over the rest of the U∗ range investigated. This f ∗ value is the half that usually
obtained in air flow (f ≃ fn).

Within the galloping response region the signals aremore noisy than in the synchronization and desynchronization ranges,
as evidenced by the diffused dark grey around the dominant frequency line. Also, there is themoremarked presence of higher
harmonics which interact with each other. In the galloping region in Fig. 11a, the higher 2nd, 3rd and 6th harmonics of f ∗ are
clearly visible. The 6th harmonic interacts with a fvs super-harmonics, forming what appears to be a bifurcation trace in the
frequency domain, which correspond to the 1.5St in slope. At this corresponding point, U∗

= 20.6, there appears to be an
increase in the slope of A∗ response. From a closer examination of the time histories of displacements (not reported here for
sake of brevity) with the signals showing modulations with higher wavelength compared to those at lower velocities. A last
remark about this fact is that the (practically linear) amplitude response in the velocity ranges 3.9 ⩽ U∗ ⩽ 6.6 (resonance
region) and 15.7 ⩽ U∗ ⩽ 20.6 (first part of galloping region) appear to align on the same linear trend. In the α = 1◦ relative
plots, for which less velocity points were recorded during experiments, it is apparent that the behaviour is similar, except for
the evident lowering of the velocity threshold at which the above-described jump upwards in amplitude take place (from
U∗

= 15.7 to U∗
≃ 14).

Such sensitivity in the response with respect to such a slight change in angle of attack warranted further investigation.
A second set of tests was carried out at α = 0◦ after having dismounted and then remounted the same set-up and model
to double-check repeatability, first increasing and then decreasing the flow velocity, to assess for any presence of hysteresis
cycles. The results are reported in Fig. 12. In the central part of the figure the two amplitude (A∗

10) curves with increasing
and decreasing flow velocity are shown. In the figure, the larger markers identify the points for which time histories were
taken. They are labelled in alphabetical order and referred to increasing velocities. It is apparent that the jump upwards is
localized and occurs in the proximity of U∗

≃ 20, which is different from the same test case curve proposed in Fig. 11c. From
the time traces (Fig. 12(a)–(f)) there appears to be a ‘‘competition zone’’ ranging from U∗

≃ 15.7 to U∗
≃ 20 in which it is

likely that two branches, somewhat unstable, are competing with each other, resulting in the solution switching to one state
to another. The recorded signals here are 5min long, and the waiting time before increasing/decreasing velocity was around
2 min. (The statistical convergence of the signals were also double-checked with longer measurements.) The damping ratio
for this test case was slightly higher (0.3% against 0.26%) than in the previous case, and may be a reason for this delayed
switch from desynchronization to the galloping response branch. For these reasons it seems unlikely to be profitable to
discuss at length any hysteresis behaviour in this case. Such behaviour was not observed for α = 90◦, in fact the curves
recorded with increasing and then decreasing flow velocity overlaps entirely.

Type II response. When the angle of attack reaches α = 2.5◦, even though the hydrodynamics do not appear to change
noticeably (St2.5◦ = 0.108), the hydroelastic response completely changes and exhibits different shapes and features.
Recalling the 3D response graph (Fig. 10) the most peculiar feature is apparent: the amplitude response curve shape
resembles that of SR = 0.67, which corresponds to α = 90◦ with St90◦ = 0.137. From an examination of the whole
α-range, the test cases included in the Type II response are the angles of attack in the upper (80◦ ⩽ α ⩽ 90◦) and lower
(2.5◦ ⩽ α ⩽ 10◦) ranges. It is interesting to compare (as proposed above Fig. 11), the most representative case α = 90◦

and the case α = 2.5◦ (Fig. 13). These two cases appear to have almost identical response curves for both the amplitude
and frequency responses. Clearly, this response type is completely different from Type I: the instability developed from
the lowest velocities in the synchronization region, where the oscillation frequency tends to closely follow the Strouhal
vortex shedding frequency, prior to the lock-in region (marked in dark grey). In the galloping-dominated region at higher
U∗ values, the amplitude response tends to increase linearly, while the oscillation frequency is split into two components,
with one close to fn and the other following the trend of the Strouhal vortex shedding. This region develops directly from
the instability branch. Remarkably, in contrast to near-zero angles of attack, harmonic frequencies are clearly visible in the
synchronization region,while the galloping region is characterized bynonperiodic oscillations evidencedbybroadbandnoise
in the frequency response.
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Fig. 12. Selection of time traces reporting the intermittent behaviour in terms of oscillation amplitude in proximity of U∗
= 20 ≃ 2U∗

r : (a)–(f) and (g)–(l)
series have been both ordered for increasing velocity points.

Type III response. In the range 15◦ ⩽ α ⩽ 75◦, there are a number of different mixed response types. More precisely this
response type should be divided into, at least, two subgroups as will be shown below. The reason for including all these
orientation cases in one group is that they never gallop, or, at least, no clear galloping trends were observable within the
tested U∗ range. Hence, the FIV response appears to be somewhat chaotic in this α range.

Fig. 14 shows the amplitude and frequency responses as a function of U∗ for three different cases of α = 20◦, 45◦

and 50◦ (the same as previously presented), with each of them showing different, particular features. The cases α = 20◦

(Fig. 14a–b) and α = 50◦ (Fig. 14e–f) present significantly different amplitude responses. In the α = 20◦ case, a clearly
VIV region is observed for 5.6 ≲ U∗ ≲ 7.4, where the frequency response, deviating from the Strouhal vortex shedding
frequency trend, comprises multiple harmonics. Beyond this the dominant frequency tends to the trend of the Strouhal
vortex shedding frequency (the red dashed line) at higher U∗ values, which is indicative of desynchronization. The main
differences with respect to the case of α = 50◦ are the onset and the U∗ range of the resonance, the presence of a larger
number of fvs harmonics, and the f ∗ response features of the desynchronization region. In fact, for α = 50◦ the lock-in region
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Fig. 13. (a) Logarithmic-scale reduced frequency power spectrum contours of the lift coefficient f ∗

L and (b) body-displacement responses f ∗
yb . (c) The

normalized amplitude response A∗ for the SR = 0.67 cylinder at α = 90◦ as a function of U∗; (d), (e) and (f) are relative to α = 2.5◦ . Open and filled
markers represent the A∗

max and A∗

10 values, respectively. Dark and light grey zones stay for VIV and galloping range respectively as in Fig. 11.

occurs at a lower U∗
r , in accordance with the f ∗ response, and also the desynchronization region begins with a decreasing

amplitude response.
Furthermore, in addition to the 2nd and 3rd harmonics of fvs, which are also evident in the caseα = 20◦, the sub-harmonic

fvs/2 and harmonics of 3fvs/2 and 5fvs/2 are present within the synchronization region at α = 50◦. Because of this these two
cases are referred to as Type IIIa.

Forα = 45◦ shown in Fig. 13c–d, the dominant oscillation frequency component appears to be close to the Strouhal vortex
shedding frequency, with other harmonics present clearly in the range of 7 ⩽ U∗ ⩽ 9.5. In this region, the body oscillation
frequency is synchronized with that of the vortex shedding. Also, there is a jump in the amplitude response associated with
the onset of the synchronization region. This case has been categorized as Type IIIb response. The cases of α = 15◦ and 75◦

were found to be similar and fitted in this category of response type.
A global view on the above-described response Types collection of amplitude response curves is proposed in Fig. 15. The

response parameter chosen here is the equivalent nondimensional sine wave amplitude signals (
√
2y′/D, where y′ indicates

the rms of y/D), to reduce scattering in the curves and make themmore visible by means of continuous lines. A case apart is
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Fig. 14. (a), (c) and (e): Logarithmic-scale reduced frequency power spectrum contours of the lift coefficient f ∗

L and (b), (d) and (f): the normalized amplitude
response A∗ for α = 20◦, 45◦ and 50◦ , respectively, as a function of U∗ . Open and filled markers indicate A∗

max and A∗

10 responses, respectively; the slope
dashed lines denote the Strouhal vortex shedding frequency; the vertical dashed lines denote U∗

= 1/St in the amplitude response plots.

represented by α = 15◦, given that almost null amplitudes were recorded, except around U∗
= 7.5 which is characterized

by a very chaotic response.

4. Discussion

The results presented constitute a somewhat indirect measure of the physical mechanisms that underlie the fluid–
structure interactions (FSI) seen in this study. In seeking to interpret such outcomes, it seems likely that there could be
added insight and hence significant interest in identifying the transitions between the response types of the rectangular
cylinders with the side ratio varying from SR = 1.5 to SR = 0.67, through a middle value of SR = 1. To this end, Fig. 16
shows the comparisons of the amplitude and frequency responses between the present rectangular cylinder with the two
side ratios and a square cylinder previously studied by Nemes et al. (2012), where a low-mass-ratio square section was
studied in a similar way, i.e. at different angles of attack, and showed, among the other results, the impressive similarity of
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Fig. 15. Equivalent sinusoid nondimensional amplitude response divided in the Typesmentioned within the body text.

the response for α = 45◦ orientation with that of a circular cylinder. It is worth noting that these two sharp-edged cylinders
have comparable mass ratios, that ism∗

= 2.24 andm∗
= 2.2 for D24/D37 and D25 respectively.

From the amplitude responses, it is apparent that the SR = 1 case differs more from the SR = 1.5 case than from the
SR = 0.67. Evidently, the square case is dominated by galloping almost from the beginning of the velocity range (except for a
small resonance region at the first two points), whereas both cases of SR = 0.67 and 1.5 exhibit identifiable VIV (in dark grey)
and galloping (in light grey) regions. In particular, a pronounced increase in the amplitude response can be seen in the VIV
regions. However, the slopes of the amplitude response show increasing trends in the galloping regions that are comparable
for the three cases. It can be seen that the dominant oscillation frequency in the galloping regions tends to become stable at
high reduced velocity but it tends to decrease with increasing side ratios, i.e. f ∗

= 0.75, 0.64 and 0.57 for SR = 0.67, 1 and
1.5, respectively.

It should be noted that while the response of the square cylinder is dominated by galloping, that of the rectangular
cylinder with SR = 1.5 exhibits an apparently different form, with respect to what happens for VIV–galloping interaction
in air flow. Theoretically, cross-sections aerodynamically unstable and having very low mass and damping ratio, fall in
the case of ‘‘asynchronous quenching’’ (firstly proposed by Minorsky (1947) and recalled in Santosham (1966), see in the
Introduction), implying that the ‘‘auto-periodic’’ oscillations are suppressed by the ‘‘hetero-periodic’’ ones, meaning that the
vortex-shedding has a stabilizing effect on the body. Otherwise, under the action of the quasi-steady term of forces, it would
be aerodynamically prone to follow the galloping instability branch at the reduced onset velocity predicted by QS-theory,
which is presently lower than the resonance one. Such a condition is automatically verified in the case ofwater flows because
the QS-galloping onset theoretical velocity is much lower than that required for VIV (Parkinson, 1989).

To illustrate this, the order of magnitude of the velocity ratio Λ = U∗
g /U∗

r is equal to 0.0028, 0.0037 and 0.0044
respectively for SR = 1.5, 0.67 and 1, respectively, in the present study, i.e. from a very low velocity range. In air flow,
the onset of the instability branch corresponds to U∗

= U∗
r , where the body is driven by the Kármán vortices, acting as an

external excitation to the system (e.g. leading-edge vortex (LEV) shedding, caused by the interaction between upper and
lower shear layers in the near-wake), then exhibiting linearly growing unrestricted oscillations.
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Fig. 16. A∗
max(a) and f ∗

yb (b) response against reduced velocity U∗ , of the D24 rectangular cylinder (SR = 1.5). Overlapped, the same kind of representation
for the square cylinder D25 (SR = 1, , blue-coloured online). (c)–(d): D37 configuration (SR = 0.67).
Source: D25 data from Nemes et al. (2012).

In cases of low values of mass–damping (i.e. m∗
− ζ ) parameter, such as found in air flow, a secondary resonance occurs

in the range 0.25 ≲ U/Ur ≲ 0.5, the physics of which has been discussed carefully in Mannini et al. (2016). This self-limited
secondary form of instability has been recognized to be likely due, for rectangular cylinders with SR = 1.5 to 2, to the
impinging leading-edge vortices (ILEV) mechanism (Naudascher and Rockwell, 2005). This mechanism arises due to the
vortices forming at the leading edge impinging on the trailing edges, which causes alternate pressures on the body sides so
to interfere and control the generation of the leading edge vortices (Rockwell and Naudascher, 1979). SR = 1 and SR = 0.67
are usually too short in stream-wise length to activate ILEV without experiencing a very large vibration (e.g. at very low
Sc values). This means that the secondary resonance does not normally manifest itself, although some examples are present
in the literature e.g. Bouclin (1977) and Bokaian et al. (1984), inwater flow, for highermass ratios, and Suda et al. (2016) in air
for a SR = 1.18. For these reasons, the square section response in water flow, here proposed for comparison, is in line with
what could be expected according to previous results in the literature. No secondary resonance, amplitudes develop from
reduced velocities lower than the resonance one (as reported by Bouclin (1977) for m∗ ≲ 9.79 and seemingly by Bokaian
et al. (1984) for a m∗

≃ 7.17). Even the response of SR = 0.67 qualitatively and quantitatively corresponds to the one
obtained by Bokaian and Geoola (1985), in which, for a SR = 0.5, two test cases were shown having an m∗

≃ 9.96 and
m∗

≃ 16.9. It can be seen in figure 8 of Bokaian and Geoola (1985) that unrestricted amplitude developing linearly from rest
and presenting an amplified amplitude response around U∗

r which makes the body oscillate at an amplitude of about the
section depth. This could mean the amplitude response does not depend on the mass ratio for this section.

What is quite unusual is the behaviour of the SR = 1.5 case. The only comparable case is the rectangular cylinder
with SR = 1.5 and m∗

≃ 12.48 reported in Bokaian and Geoola (1983), and the SR = 2 and m∗
≃ 11.52 tested by

Bouclin (1977). In Bokaian and Geoola’s study, the SR = 1.5 rectangle cylinder develops only one branch of instability,
having its onset at U∗

r and presenting a clear change in the amplitude response slope at U∗
≃ 25.5, similar to the present

SR = 1.5 case at U∗
≃ 20. However, the desynchronization region after the resonance at very low reduced velocities,

characterized by slowly decreasing oscillation amplitudes and increasing dominant f ∗ response, is completely missing. On
the other hand, Bouclin’s rectangular cylinder with SR = 2, shows a secondary resonance, occurring before U∗

r and centred
at U∗

r /2 (0.3 < U/Ur < 0.68). The principal galloping instability develops from here, following the trend of the galloping
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branch of SR = 1.5. In contrast, the frequency response of Bouclin’s SR = 2 presents different features to the SR = 1.5
case. Furthermore, it shows no upward jump in the amplitude response and no sharp cut in the frequency response (see
respectively Fig. 16(a), (b) around U∗

≈ 16) are apparent, though f ∗ reaches a value of about 0.75 at the highest velocities
tested (more in line with the value presently given for SR = 0.67 and 1). Hence, the SR = 1.5 case appears to be highly
sensitive to the effect of the mass ratio. This behaviour is similar to the circular cylinder case with studies of Khalak and
Williamson (1996) for very low mass ratio in water, compared to a much higher value found in air by Feng (1968).

Here the rectangle response of SR = 1.5, the different form of interaction and the VIV–galloping plays its role in the sense
that the quasi-steady component of forcing term is dominated by the non-stationary part in the lower range of velocity. At a
certain value of velocity the negative aerodynamic damping abruptly occurs, in the form of the above described sudden jump
upwards in amplitude, making the response curve to switch in the pure quasi-steady galloping branch. The effect of VIV is
present in both SR = 0.67 and 1.5 response curves, though in a different way, given that for both it implies the oscillation
amplitudes increase in the lock-in range (Fig. 16). Outside the resonance regions we observe a different behaviour: while for
SR = 1.5, in the desynchronization region, the vortex shedding is able to almost stabilize the body before the violent onset
of galloping branch, in the case of SR = 0.67 the resonance intervenes when the quasi-steady galloping branch has already
taken place.

5. Conclusions

The effect of angle of attack variation on the flow-induced vibration response of a rectangular cylinder with low side ratio
(SR = 1.5) and low mass ratio (m∗

= 2.24) has been investigated experimentally in water flow. Starting from the cross-
section aerodynamics, the characteristics in terms of the vibration amplitude and frequency of the hydroelastic systemwith
two orientations, namely α = 0◦ (SR = 1.5) and 90◦ (SR = 0.67), have been shown.

Measurements of the Strouhal number revealed that for an angle of attack covering the entire range from−5◦ ⩽ α ⩽ 105◦,
the results agree well with previous work. Another key factor, i.e. the lateral force coefficient CFy, has been experimentally
determined for the two main orientations (α = 0◦ and 90◦) both resulted soft-type oscillators with respect to galloping
instability. Neglecting any consideration of the effect of turbulence, it can be derived here and also using previous literatures’
results, that for SR = 0.67 (but the same can be extended to SR = 0.5 case, which is more studied in literature) it exhibits
the form of a soft-type oscillator in water flow conditions, whilst being a hard-type oscillator in air flow.

Different response Types have been categorized based on the characteristics of the amplitude and frequency response.
Three major response types have been identified, more or less dividing the angle of attack range into three distinct parts,
underlying some trends in the evolution of the response curves. Representative cases for each response Type have been
analysed in-depth, in particular by the means of a frequency response analysis providing detailed frequency components
and corresponding PSD contours over the reduced velocity range investigated. A brief summary of the present findings is
given below for the sake of clarity:

- Type I, obtained for the quasi-zero attack angles of the SR = 1.5 case, exhibits a clear VIV response in the lowest
velocities range, though far below the critical velocity, and a galloping branch in the higher velocity range of the
response curve. These two different response branches are separated by a desynchronization branch. The most
interesting aspect is the sudden jump in oscillation amplitudes at a certain value of reduced velocity, sharply dividing
the desynchronization from the galloping branches. The three different branches are clearly delimited and identifiable
in the frequency domain.

- Type II, somewhat curiously starts from α = 2.5◦, and characterizes near-zero angles for the two side ratio cases
(SR = 1.5 and 0.67); the VIV and desynchronization region are, however, inverted, and the amplitude response curve
presents different features respect to Type I.

- Type III collects all the other amplitude response curves that cannot be ascribed to Type I and II. These show mixed
and more chaotic properties, for both the amplitude and frequency response domain.

The results for the SR = 1.5 have been compared with those of a previously-studied square cylinder, and also with
rectangular cylinders of comparable SR in previous studies. The comparison between the present rectangle and the square
cross-section shows they lack of any form of resonance or desynchronization occurring in the galloping response branch,
which linearly develops almost from rest. The results revealed the key-role played by the mass ratio in determining the
occurrence of such a form of instability, which would warrant further investigation, perhaps using direct measurement
techniques such as particle-image velocimetry.
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