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ON THE REGULARITY OF SOLUTIONS TO THE

MOORE-GIBSON-THOMPSON EQUATION: A PERSPECTIVE

VIA WAVE EQUATIONS WITH MEMORY

FRANCESCA BUCCI AND LUCIANO PANDOLFI

Abstract. We undertake a study of the initial-boundary value problem for
the (third-order in time) Moore-Gibson-Thompson (MGT) equation. The key

to the present investigation is that the MGT equation falls within a large class

of systems with memory, with affine term depending on a parameter. For
this model equation a regularity theory is provided, which is also of indepen-

dent interest; it is shown in particular that the effect of boundary data that

are square integrable (in time and space) is the same displayed by the wave
equation. Then, a general picture of the (interior) regularity of solutions cor-

responding to homogeneous boundary conditions is specifically derived for the

MGT equation in various functional settings. This confirms the gain of one
unity in space regularity for the time derivative of the unknown, a feature that

sets the MGT equation apart from other Partial Differential Equations models
for wave propagation. The adopted perspective and method of proof enables

us to attain as well boundary regularity results for both the integro-differential

equation and the MGT equation.

1



2

1. Introduction

The Jordan-Moore-Gibson-Thompson equation is the following quasilinear par-
tial differential equation (PDE) describing the acoustic velocity potential in ultra-
sound wave propagation:

τψttt + ψtt − c2∆ψ − b∆ψt =
∂

∂t

( 1

c2
B

2A
ψ2
t + |∇ψ|2

)
(1.1)

(ψ = ψ(t, x) is the acoustic velocity potential and so −∇ψ is the acoustic particle
velocity), A and B being suitable constants; cf. Moore & Gibson [30], Thompson
[40], Jordan [10].

To give some insight into the specific features of Eq. (1.1), we note that the
classical model with the relaxation time τ = 0 has infinite signal speed due to
the use of the Fourier law for the flux, that is q = −κ∇θ, in its derivation (see
[14], [13]). When τ = 0, the linearized approximation is the strongly damped wave
equation, whose solutions are described by an analytic semigroup, cf. [4]. In order to
amend the aforesaid unphysical behaviour (known as paradox of heat conduction),
the paper [10] proposes to replace the Fourier law with the generalized constitutive
law

q + τ
(
qt + εψ∇q

)
= −κ∇θ

(which in the linearized case ε = 0 reduces to the Maxwell-Cattaneo law) and this
accounts for the third derivative in time in Eq. (1.1). The equation so obtained is
hyperbolic and the velocity of signal propagation is finite.
The reader is referred to [11] for more details on the derivation of Eq. (1.1) and to
[13] for a nice overview of established PDE models of nonlinear sound propagation.

Aiming at the understanding of the quasilinear equation (1.1), a great deal of at-
tention has been recently devoted to its linearization—which is the Eq. (1.2) below,
referred to in the literature as the Moore-Gibson-Thompson (MGT) equation—
whose mathematical analysis is also of independent interest and poses already sev-
eral questions and challenges. Thus, the MGT equation is

τuttt + αutt − c2∆u− b∆ut = 0 in (0, T )× Ω (1.2)

in the unknown u = u(t, x), t ≥ 0, x ∈ Ω, representing the acoustic velocity
potential or alternatively, the acoustic pressure (see [16] for a discussion on this
issue). The coefficients c, b, α are constant and positive; they represent the speed
and diffusivity of sound (c, b), and, respectively, a viscosity parameter (α).

We assume here that Ω ⊂ Rn is a bounded region with C2 boundary Γ := ∂Ω
(it is a natural conjecture that existence results for wave equations in non-smooth
domains ([8]) might be extended to wave equations with memory and to the MGT
equation by using the methods we present in this paper).
Equation (1.2) is supplemented with initial and boundary conditions (BC):

u(0, ·) = u0 , ut(0, ·) = u1 , utt(0, ·) = u2(x) in (0, T )× Ω (1.3)

T u(t, ·) = g(t, ·) on (0, T )× Γ. (1.4)

T denotes here a boundary operator, which associates to a function u either its
trace γ0u := u|Γ on Γ, or the outward normal derivative γ1u := ∂

∂νu
∣∣
Γ

(it would
be the conormal derivative, in the case of a more general elliptic operator than the
Laplacian).
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The original studies of the MGT equation subject to homogenous (Dirichlet
or Neumann) boundary conditions carried out in Kaltenbacher et al. [15] and
Marchand et al. [29] establish appropriate functional settings for semigroup well-
posedenss, as well as stability and spectral properties of the dynamics, depending
on the parameters values. They obtain, in particular:

i) assuming b > 0 the linear dynamics is governed by a strongly continuous
group in the function space H1

0 (Ω)×H1
0 (Ω)×L2(Ω) (in the case of Dirichlet

BC), or H1(Ω)×H1(Ω)× L2(Ω) (Neumann BC);
ii) in the case b = 0 the associated initial-boundary value problems are ill-

posed; see Remark 3.1;

iii) the parameter γ = α − τ c
2

b is a threshold of stability/instability: it must
be positive, if the property of uniform stability is required.

The critical role of γ for a dissipative behaviour was recently pointed out also in
Dell’Oro and Pata [6], within the framework of viscoelasticity. (We add that linear
and nonlinear variants of the MGT equation including an additional memory term
have been the object of recent investigation; see [18] and references therein.)

Here we seek to determine a range of settings in which the MGT equation is
well posed. Recall that an equation in a normed space C and which depends on a
parameter p ∈ P (a second normed space) is well posed when a solution exists for
every p, is unique and depends continuously on p. Thus, focus is on the map

(u0, u1, u2, g) 7−→ u

that associates to initial and boundary data the corresponding solution u = u(t, x)
of problem (1.2)-(1.3)-(1.4); we aim to identifying appropriate settings which guar-
antee that a unique solution does exist, and it is regular, i.e. it depends continuously
on the said data. (We note that the time and more often the space variable x will
generally not be explicit, unless when needed for the sake of clarity. In addition,
in order to simplify the notation we shall put the relaxation time τ equal to 1
throughout.)

As it will be shown in the paper, it will be the embedding of equation (1.2) in a
general class of integro-differential equations (depending on a parameter) to spark
our method of proof for the regularity analysis of the associated initial-boundary
value problem. Indeed, the MGT equation is a special instance of the following
wave equation with persistent memory,

utt − b∆u = −bγ
∫ t

0

N(t− s)∆u(s) ds+ F (t)ξ , (1.5)

which displays an affine term depending on a suitable ξ, and that will be supple-
mented with (initial and boundary) data

u(0) = u0 , ut(0) = u1 , T u = g . (1.6)

The assumptions on the real valued functions N(t), F (t) and on ξ in (1.5) are
specified later; see Theorem 1.2. The initial-boundary value problem (IBVP) (1.5)-
(1.6) reduces to the IBVP (1.2)-(1.3)-(1.4), when

N(t) = F (t) = e−αt , ξ = u2 − b∆u0 . (1.7)

The obtained regularity results will follow by combining the (interior and trace)
regularity theory for wave equations with non-homogenous boundary data—the
Neumann case being the most challenging (see [22], [23], and the optimal result of
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[39])—with the methods developed in [32] for equations with persistent memory. In
order to carry out a regularity analysis of the model equation with memory (1.5),
we shall use the trick of MacCamy [28] and the theory of Volterra equations.
A study of the quadratic regulator problem for Eq. (1.2) with Neumann-absorbing
boundary conditions has been pursued via a semigroup approach in [2]. Existence
of a unique optimal control and its closed-loop expression is estabilished via appro-
priate Riccati operators, by using semigroup theory and variational arguments.

For equations with memory of the form (1.5) the reader is referred, e.g., to [32,
Chapter 2]; see also [5, Chapter 5]. A classical reference on evolutionary integral
equations is [36]. A novelty in the equation (1.5) is brought about by the presence
of the (vectorial) parameter ξ.

It is important to emphasize at the outset that the adopted perspective and
approach allow for a relatively straightforward derivation of regularity estimates
for the normal derivative on ∂Ω of the solutions of to wave equations with memory,
and then to the MGT equation, in light of the corresponding literature on wave
equations without memory. Early results pertain to the case of Dirichlet boundary
conditions; see [20, 21] and [25, p. 195]. A proof for the model equation with
memory (1.5) (depending on the parameter ξ), supplemented with Dirichlet BC, is
given in Theorem 6.2; this brings about a boundary regularity result for the MGT
equation (with the same BC), that is Corollary 6.3. The reader is referred to the
Remarks 6.4 for a discussion and overview of pertinent references on this matter of
topical interest.

1.1. Main results: synopsis. The outcome of the interior regularity analysis
carried out in this paper is stated in Theorem 4.2, pertaining to the general model
equation with memory (1.5), and Theorem 5.3 for the MGT equation itself. Beside
being instrumental in achieving the subsequent ones, the former results are also of
independent interest. The aforeasid results are presented by means of elaborate
tables: thus, aiming at rendering explicit the major achievements on the regularity
of solutions to equations (1.5) and (1.2)—the latter linked and complementing those
in our key reference [15]—we highlight them in Theorem 1.2 below. Theorem 1.2
includes as well a boundary regularity result for the solutions (more precisely, for
the normal derivative of the solutions on the boundary) in the case of homogeneous
Dirichlet BC—an issue which is dealt with in Section 6, see Theorem 6.2 and
Corollary 6.3.

For the statement and understanding of all our findings, we need to introduce
appropriate functional spaces, along with the related notation. Let A be the un-
bounded operator defined as follows:

Aw := (∆− I)w , D(A) =
{
w ∈ H2(Ω): T w = 0 on Γ

}
; (1.8)

namely, A is the (so called) realization of the differential operator ∆− I in L2(Ω),
with homogeneous boundary conditions (BC) defined by T , in the present work of
either Dirichlet or Neumann type; of course, the domain of A depends on T (we
might take the realization of the Laplacian in the case of Dirichlet BC; however,
translating the differential operator allows us to deal with both significant BC at
one time). We further note that A is the infinitesimal generator of an exponentially
stable analytic semigroup and the fractional powers of −A are well defined. Thus,
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we are allowed to introduce the functional spaces Xs defined as follows:

Xs =

{
D((−A)s/2) if s ≥ 0

[D((−A)s/2)]′ if s < 0 ,
(1.9)

endowed with the graph norm if s ≥ 0, while the norm of a dual space is needed
otherwise.

Remarks 1.1. (i) In this paper, T is either γ0 (Dirichlet BC) or γ1 (Neumann
BC). We have Xs = {φ ∈ Hs(Ω): T φ = 0} when s > 1/2 and T = γ0 (when
s > 3/2 and T = γ1, respectively). If instead s < 1/2 (in the Dirichlet case) or
s < 3/2 (in the Neumann case, respectively), one has Xs = Hs(Ω).

(ii) The differential operator ∆ = A + I, originally defined in (1.8), can be ex-
tended to every spaceXs. It turns out that the said extension belongs to L (Xs, Xs−2)
for every s, it is surjective and boundedly invertible. Using the fact that A + I is
a selfadjoint operator with compact resolvent in L2(Ω), the extension is simply
obtained via Fourier expansion.

The next Theorem highlights some of the major results that are obtained in
Sections 4, 5, 6.

Theorem 1.2 (A compendium of main results). Let N(t) ∈ H2(0, T ) for every
T > 0. The following assertions hold:

i) (Interior regularity for the equation with memory (1.5) with homogeneous
BC). Assume F (t) ∈ L2(0, T ) for every T > 0. Let g ≡ 0. If u0 ∈ X0 and
u1, ξ ∈ X−1, then the solution u to the IBVP problem (1.5)-(1.6) exists and
it is unique in the space

u ∈ C([0, T ];X0) ∩ C1([0, T ];X−1) ∩H2(0, T ;X−2)

and depends continuously on the data.
ii) (Interior regularity for the MGT equation (1.2) with homogeneous BC). If

g ≡ 0 and (u0, u1, u2) ∈ X1 × X1 × X0, then the solution u to the IBVP
problem (1.2)-(1.3)-(1.4) exists and it is unique in the space

u ∈ C1([0, T ];X1) ∩ C2([0, T ];X0) (1.10)

and depends continuously on the data.
iii) (Boundary-to-interior regularity for equations (1.5) and (1.2), with trivial

initial data). Assume g ∈ L2(0, T ;L2(Γ)) and u0 = u1 = ξ = 0 (in the
case of Eq. (1.2): u0 = u1 = u2 = 0, and hence u2 −∆u0 = 0). Then there
exists α0 such that a solution to the initial/boundary value problem (1.5)-
(1.6) ( (1.2)-(1.3)–(1.4), respectively)—as given by the one to the integral
equation (3.13)—exists in the space

C([0, T ];Xα0
) ∩ C1([0, T ];Xα0−1) ∩H2(0, T ;Xα0−2) , (1.11)

it is unique and depends continuously on g. The values of α0 depend on the
boundary operator T (and partly on Ω); they are specified in (1.14) below.

iv) (Regularity of boundary traces for the MGT equation (1.2)). Let u =
u(t, x) be a solution to the MGT equation (1.2) corresponding to initial data
(u0, u1, u2) and homogeneous Dirichlet boundary data. Assume (u0, u1, u2) ∈
H1

0 (Ω)× L2(Ω)×H−1(Ω), along with the compatibility condition

u2 −∆u0 ∈ L2(Ω) .
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Then, for every T > 0 there exists M = MT such that∫ T

0

∫
∂Ω

∣∣∣ ∂
∂ν
u(x, t)

∣∣∣2dσ dt ≤M (
‖u0‖H1

0 (Ω) + ‖u1|2L2(Ω)+

+ ‖u2 −∆u0‖2L2(Ω)

)
.

The statements in i) and ii) reveal that while the equation with memory (1.5)
displays a somewhat expected regularity, that is the same as most PDE models for
wave propagation, the interior regularity of solutions to the MGT equation (1.2)
under homogeneous boundary conditions improves. The computations performed
in this paper show how the higher regularity is gained by the solutions of equation
(1.2), when we particularize the formulas using (1.7); see the proof of Theorem 5.3.
Instead, the regularity result in iii) that pertains to the case of non-homogeneous
boundary data (g 6= 0), is not improved by special choices of the kernel N(t), such
as N(t) = e−αt.

It is worth observing that the present study, which develops from the regularity
analysis of a general class of PDE systems with memory, does not disclose that
the dynamics of the MGT equation (1.2)—with Dirichlet or Neumann boundary
conditions—is governed by a group, as proved in [15] and [29].

We note that the values of α0 which occurr in (1.11)—and which correspond
to appropriate Sobolev exponents—are the ones established in the case of linear
hyperbolic equations with L2(Σ) = L2((0, T )×Γ) boundary data (of either Dirichlet
or Neumann type). We record explicitly for the IBVP

utt = ∆u− u+ f in (0, T )× Ω =: Q

u(0, ·) = u0 , ut(0, ·) = u1 in Ω

T u = g on (0, T )× Γ =: Σ

(1.12)

a statement which embodies a complex of successive achievements; see the cited
references. (For a chronological overview with historical and technical remarks see
also [24, Notes on Chapter 8, p. 761].)

Theorem 1.3 ([21], [22], [39]). Assume that u0, u1 = 0, f = 0, and g ∈ L2(Σ).
Then, the unique solution to the IBVP (1.12) satisfies

(u, ut) ∈ C([0, T ];Hα0(Ω)×Hα0−1(Ω)) = C([0, T ];Xα0
×Xα0−1) (1.13)

with

α0 =


0 if T is the Dirichlet trace operator

2
3 if T is the Neumann trace operator and Ω is a smooth domain

3
4 if T is the Neumann trace operator and Ω is a parallelepiped.

(1.14)

Notice that the second equality in Eq. (1.13) follows from the first statement of
Remarks 1.1.

We finally point out the recent progress of [41] on the regularity of wave equa-
tions, dealing with the case of boundary data g that are not ‘smooth in space’,
e.g., g ∈ L2(0, T ;H−1/2(Γ)). In view of the approach taken in the present work,
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it is clear that the results obtained therein could be utilized as well in order to at-
tain regularity results for equations with memory and for the MGT equation under
boundary data that are less regular (than square integrable) in space.

1.2. Orientation. The plan of the paper is briefly outlined below. For the reader’s
convenience and since these tools will be utilized throughout, in Section 2 we provide
a minimal background and references on the approach to linear wave equations via
cosine operator theory.

In Section 3 we perform an analysis of the equation with memory (1.5) that
encompasses the MGT equation. An equivalent equation—in fact easier, since the
convolution term therein does not involve differential operators at all—is derived,
which in turn results in a Volterra equation of the second kind; see Proposition 3.6.
This step will play a crucial role in the proof of our first regularity result, that is
Theorem 4.2, concerning the model equation with memory (1.5). Section 4 is then
almost entirely devoted to the proof of Theorem 4.2.

In Section 5 we return to the third order MGT equation and show how the
(interior) regularity results specifically pertaining to the MGT equation, stated in
Theorem 5.3, follow as a consequence of Theorem 4.2. Finally, Section 6 is devoted
to the regularity of boundary traces; see Theorem 6.2 and Corollary 6.3.
A discussion and explanation of the introduced definition of solutions to the third
order (in time) equation under investigation is postponed to Appendix A.

2. Preliminaries on wave equations

The proofs in the present work rely in a crucial way on the representation of
solutions to linear wave equations by means of cosine operators (introduced in
[38]). We present the key formulas in this section, following [19] which initiated the
use of cosine operators in the study of boundary control problems. The notations of
[1]—which seems to be the first paper to deal with systems with persistent memory
via cosine operators—and [7] are adopted. The IBVP (1.12) is considered with
both f and g square integrable in (0, T ) × Ω and on (0, T ) × Γ, respectively, for
every T > 0. We note that the formulas and results recorded in the present Section
are valid as well if f ∈ L1(0, T ;L2(Ω)); this fact will be used later, in particular in
Section 6.

We shall utilize throughout the operator A in (1.8), which is the realization
of the translation ∆ − I of the Laplacian in L2(Ω), with suitable homogeneous
boundary conditions, according to the (boundary) operator T . (In the Dirichlet
case A might be simply the realization of the Laplacian.) As noted already, A is
boundedly invertibile, i.e. A−1 exists and it is bounded, in fact compact (even if T
represents the normal derivative on Γ). In addition, A is the infinitesimal generator
of an exponentially stable analytic semigroup, and the fractional powers of −A are
well defined. The scale of functions spaces Xs in (1.9)—expressed by means of the
domains of these fractional powers—will be used throughout the paper. We recall
once more that A : Xs → Xs−2 is continuous, surjective and boundedly invertible.

Next, we introduce the Green maps G ∈ L(L2(Γ), L2(Ω)) defined as follows:

G : L2(Γ) 3 ϕ 7−→ Gϕ =: ψ ⇐⇒

{
∆ψ = ψ on Ω

T ψ = ϕ on Γ .
(2.1)
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Remark 2.1. By elliptic theory, it is known that there exists an appropriate s > 0
such that imG ⊂ Xs so that AG ⊂ Xs−2. In particular, because imG ⊂ H1/2(Ω) in
the case of Dirichlet BC and imG ⊂ H3/2(Ω) in the Neumann case, the following
inclusions hold true: imG ⊂ X1/2−σ in the former case, imG ⊂ X3/2−σ in the
latter, respectively, for every σ > 0.

It is known that the solution to the IBVP (1.12) is given by

u(t) = R+(t)u0 +A−1R−(t)u1 −A
∫ t

0

R−(t− s)Gg(s) ds+

+A−1

∫ t

0

R−(t− s)f(s) ds ,

(2.2)

where the operator A, and the families of operators R+(·), R−(·) are defined as
follows:

A = i(−A)1/2 , R+(t) =
eAt + e−At

2
, R−(t) =

eAt − e−At

2
, (2.3)

R+(t) being the strongly continuous cosine operator generated by A in L2(Ω);
see [38], [7], [24, Vol. II]. The previous definitions make sense because A is the
infinitesimal generator of a C0-group of operators; in particular, we have as well

Xs = D(As) if s ≥ 0,

and A is bounded and boundedly invertible from Xs to Xs−1 for every s.
In order to compute the derivatives (in time) of u(t) in (2.2) (the technical

justification is in [31]) we use (R+(t)x)t = AR−(t)x, (R−(t)x)t = AR+(t)x for
every x ∈ domA , thereby obtaining the following equalities:

ut(t) = AR−(t)u0 +R+(t)u1 −A
∫ t

0

R+(t− s)Gg(s) ds+

+

∫ t

0

R+(t− s)f(s) ds ,

(2.4)

and

utt(t) = AR+(t)u0 +AR−(t)u1 −AGg(t)−A
(
A
∫ t

0

R−(t− s)Gg(s) ds
)

+

+ f(t) +A
∫ t

0

R−(t− s)f(s) ds =

= Au(t)−AGg(t) + f(t) .

(2.5)

Remarks 2.2. (i) By using the regularity of G in Remark 2.1, we see from Eq. (2.5)
that utt ∈ L2(0, T ;Xα0−2).

(ii) If f(·) belongs to C1([0, T ]), one is allowed to integrate by parts (in time) in
(2.2) to get

A−1

∫ t

0

R−(t− s)f(s) ds = −A−1
[
f(t)−R+(t)f(0)−

∫ t

0

R+(t− s)f ′(s) ds
]
,

which yields a gain of one unity for space regularity. The integration by parts is
rigorously justified in [31, Lemma 5].
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The explicit formula (2.2), along with (2.4) and (2.5) are among the keys for the
following regularity result. The statement iii) of the Theorem is by far the most
challenging, as its proof is based on pseudo-differential methods and microlocal
analysis.

Theorem 2.3. Let T > 0 be given, and s ∈ R. The following statements hold true
for the solutions to the initial/boundary value problem (1.12).

i) Assume g = 0, f = 0. Then (u0, u1) 7−→ u is continuous from Xs ×Xs−1

into C([0, T ], Xs) ∩ C1([0, T ], Xs−1) ∩ C2([0, T ], Xs−2).
ii) Assume u0 = 0, u1 = 0, g = 0. Then the map f 7−→ u is continu-

ous from L2(0, T ;Xs) into C([0, T ], Xs+1)∩C1([0, T ), Xs), while utt − f ∈
C([0, T ], Xs−1).

iii) Assume u0 = 0, u1 = 0, f = 0. Then, there exists α0 ≥ 0—depending on T
and possibly on the geometry of Ω—such that for every g ∈ L2((0, T )× Γ)
one has u ∈ C([0, T ], Xα0

) ∩ C1([0, T ];Xα0−1) ∩ C2([0, T ], Xα0−2). The
mapping g 7−→ u is continuous in the indicated spaces.

Remarks 2.4. With reference to the assertion iii) above, we remind the reader
that the proper value of the Sobolev exponent α0 is given in (1.14).

The properties stated in the previous Theorem justify (2.2) as a formula for
the solutions to the IBVP (1.12), since the following fact is easily checked: when
u0, u1 ∈ D(Ω) (C∞(Ω) functions with compact support), f ∈ D((0, T ) × Ω), g ∈
D((0, T )× Γ), then u−Gg ∈ C([0, T ],D(A)) ∩C1([0, T ],D(A)) ∩C2([0, T ];L2(Ω))
and the following equality holds:

utt(t) = A(u(t)−Gg(t)) + f(t) ,

along with u(0) = u0, ut(0) = u1. Thus, the boundary condition T u = g is satisfied
in the sense that u(t)−Gg(t) ∈ D(A) for almost any t.

3. The MGT equation as an equation with memory

We initially proceed formally. Rewrite the left hand side of equation (1.2) as

uttt + αutt − c2∆u− b∆ut =

=
(
utt − b∆u

)
t

+ α
(
utt − b∆u

)
− c2∆u+ αb∆u =

=
(
utt − b∆u

)
t

+ α
(
utt − b∆u

)
+ bγ∆u = 0

(3.1)

where we recall that γ = α− c2/b. Solving the equation(
utt − b∆u

)
t

= −α
(
utt − b∆u

)
− bγ∆u

in the ‘unknown’ utt − b∆u gives the following integral equation in the unknown
(and in fact not yet defined as solution) u:

utt − b∆u = e−αtξ − bγ
∫ t

0

e−α(t−s)∆u(s) ds , (3.2)

where we set ξ = u2 − b∆u0.

Remark 3.1. If it happens that γ = 0, then (3.2) is nothing but a wave equation
with affine term f(t) = e−αtξ and the regularity of the corresponding solutions
follows from Theorem 2.3. Thus, we explicitly assume γ 6= 0, and recall from the
Introduction that b is assumed to be positive. It is important to emphasize that
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in the case b = 0 the problem is ill-posed, since the semigroup generation fails, as
proved in [15, Theorem 1.1]; instead, if b < 0 then the PDE becomes a nonlocal
elliptic equation of a kind studied by Skubacevskǐı in [37].

In view of the obtained equation (3.2), we consider the following (more general)
model equation with persistent memory, depending on the parameter ξ:

utt − b∆u = −bγ
∫ t

0

N(t− s)∆u(s) ds+ F (t)ξ (3.3)

(already appeared—as (1.5)—in the Introduction and recorded here for the reader’s
convenience; notice that both the functions N(t) and F (t) equal e−αt in the MGT
equation).

The study of the IBVP for the integro-differential equation (3.3) is carried out
under the assumptions listed below.

Hypotheses 3.2. i) The coefficient b is positive. ii) The memory kernel N(t) and
the function F (t) are real valued; N(t) ∈ H2(0, T ) while F (t) ∈ L2(0, T ) for every
T > 0.

3.1. An equivalent Volterra integral equation. A first step in our analysis
is to show that we can get rid of the (second order) differential operator in the
convolution term of (3.3). To do so, let us preliminarly introduce the Volterra
equation of the second kind

X(t)− γ
∫ t

0

N(t− s)X(s) ds = G(t) , t ∈ [0, T ] . (3.4)

This equation has a unique solution X(t) given by the following formula:

X(t) = G(t)−
∫ t

0

R0(t− s)G(s) ds , (3.5)

where R0(·) is the (unique) solution to the integral equation

R0(t)− γ
∫ t

0

N(t− s)R0(s) ds = −γN(t) , t ∈ [0, T ] . (3.6)

The function t 7−→ R0(t) is the resolvent kernel of the Volterra equation (3.4). An
important observation is thatR0 ∈ H2(0, T ) sinceN ∈ H2(0, T ) andR0(0) = −γN(0).
We then see (either from (3.5) or from (3.4)) that if G(t) is continuous then X(t)
is continuous; if G(t) is square integrable then X(t) is square integrable.

We now perform several formal computations which will lead to a definition
of the solutions to equation (3.3) (with appropriate initial and boundary data).
Rewrite the equation (3.3) in the following different fashion,

∆u− γ
∫ t

0

N(t− s)∆u(s) ds =
1

b

(
utt − F (t)ξ

)
, (3.7)

that is a Volterra integral equation of the second kind in the unknown ∆u. With
reference to the general form (3.4), we have here

G(t) =
1

b

(
utt − F (t)ξ

)
.

The formula (3.5) gives

b∆u = utt − F (t)ξ −
∫ t

0

R0(t− s)
(
uss(s)− F (s)ξ

)
ds ,
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with R0(·) defined by (3.6) above. Since R0 ∈ H2(0, T ) we formally integrate by
parts twice, thereby obtaining

b∆u = utt − F (t)ξ −
{
R0(t− s)ut(s)

∣∣s=t
s=0
−
∫ t

0

R′0(t− s)us(s) ds
}

+

+

∫ t

0

R0(t− s)F (s)ξ ds =

= utt − F (t)ξ −R0(0)ut(t) +R0(t)u1 −R′0(0)u(t)−R′0(t)u0−

−
∫ t

0

R′′0 (t− s)u(s) ds+

∫ t

0

R0(t− s)F (s)ξ ds ,

where the memory term does not contain differential operators.

Remark 3.3. The computations carried out so far—known as MacCamy’s trick
(see [28])—are purely formal, since the solutions to the equation (3.3) have not yet
been defined.

The obtained equation is a wave equation perturbed by a persistent memory,
namely,

utt = b(∆− I)u+ (R′0(0) + b)u(t) +R0(0)ut(t) +

∫ t

0

R′′0 (t− s)u(s) ds−

−R′0(t)u0 −R0(t)u1 +
{
F (t)ξ −

∫ t

0

R0(t− s)F (s)ξ ds
}
.

The introduction of the function

v(t) = e−
1
2R0(0)tu(t) (3.8)

enables us to eliminate the term R0(0)ut, and to attain the following equation in
the unknown v:

vtt = b(∆v− v) +

∫ t

0

K(t− s)v(s) ds+βv(t) +
(
h2(t)ξ+h1(t)u1 +h0(t)u0

)
, (3.9)

with the constant β and the functions K(·), hi(·), i = 0, 1, 2 given by the formulas
below:

K(t) = e−
1
2R0(0)tR′′0 (t) is square integrable in (0, T );

β = b+
1

4
R2

0(0) +R′0(0) ;

h0(t) = e−
1
2R0(0)tR′0(t) ∈ H1(0, T ) ;

h1(t) = e−
1
2R0(0)tR0(t) ∈ H2(0, T ) ;

h2(t) = e−
1
2R0(0)t

(
F (t)−

∫ t

0

R0(t− s)F (s) ds
)

is square integrable.

(3.10)

The above suggests the following Definition, which is justified in the Appendix.

Definition 3.4. Let H be a Hilbert space. An H-valued function t 7−→ u(t) is a
solution of equation (3.3) supplemented with the initial/boundary conditions (1.6)
if the function t 7−→ v(t) defined in (3.8) is an H-valued continuous function which
solves the integro-differential equation (3.9), with β, K(·), hi(·), i = 0, 1, 2 defined
by (3.10).
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Remark 3.5. In the case F (t) ≡ N(t) = e−αt, then the above definition yields the
definition of solutions to the MGT equation (1.2), with initial/boundary conditions
(1.3)-(1.4); see Definition 5.1. The present Section investigates the regularity of
solutions to the model equation (3.3) in terms of the independent parameters u0,
u1, ξ and the boundary input g.

On the basis of Definition 3.4 we are led to study the following IBVP:
vtt = b(∆v − v) +

∫ t

0

K(t− s)v(s) ds+ βv(t) +
(
h2(t)ξ + h1(t)u1 + h0(t)u0

)
v(0, ·) = v0 , vt(0, ·) = v1

T v = e−
1
2R0(0)tg ,

(3.11)
where initial data are related to the ones of u via the following relations:

v0 = u0 , v1 = u1 −
1

2
R0(0)u0 . (3.12)

The next Proposition connects the IBVP (3.11) to a Volterra equation of the
second kind, with suitable kernel and affine term.

Proposition 3.6. Any solution to the initial/boundary value problem (3.11) solves
the Volterra equation

v(t) +

∫ t

0

L(t− s)v(s) ds = H(t) , (3.13)

where L(·) is a strongly continuous kernel defined by

L(t)v = − β√
b
A−1R−(

√
bt)v − 1√

b
A−1

∫ t

0

R−(
√
b(t− s))K(s)v ds (3.14)

(and K(·) is defined explicitly in (3.10)), while the affine term H(·) is given by

H(t) =
[
R+(
√
bt)− R0(0)

2
√
b
A−1R−(

√
bt)
]
u0 +

1√
b
A−1R−(

√
bt)u1−

−
√
bA
∫ t

0

R−(
√
b(t− s))Ge− 1

2R0(0)sg(s) ds+

+
1√
b
A−1

∫ t

0

R−(
√
b(t− s))

[
h2(s)ξ + h1(s)u1 + h0(s)u0

]
ds .

(3.15)

Proof. The proof is straightforward, in view of formula (2.2) for the solution to wave
equations with initial and boundary data. We just recall the meaning of symbols
introduced previously: R0(·) is the resolvent kernel of the Volterra equation (3.4)
and so it solves the integral equation (3.6); the abstract operator A is the realization
of the differential operator ∆ − I with boundary conditions driven by T , while
R+(
√
bt), the cosine operator generated by bA, and R−(

√
bt) are defined in (2.3).

We finally note that H(·)z ∈ C([0, T ];Xα), for every z ∈ Xα. �

4. Interior regularity for the equation (1.5)

In this Section we see how the regularity results pertaining to wave equations
stated in Theorem 2.3 can be suitably extended to the general equation with mem-
ory of the form (3.3). This will eventually imply the stronger regularity of solutions
to the third order MGT equation (1.2) (see the next Section).
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The key and starting point is the Volterra integral equation (3.13) in the unknown
v. Its kernel L(·) is now operator valued and strongly continuous from [0,+∞) to
L(Xα) for every α. By using Theorem 2.3 we will derive the regularity properties of
the right hand side of (3.13), that will be inherited by v and then by the solutions
to the wave equation with memory (3.3). These properties will be expressed in
terms of the boundary datum g, as well as of ξ and the initial data u0, u1.

It is convenient to write explicitly the solution of a Volterra integral equation in
a Hilbert space H. Introduce the notation ∗ for the convolution, namely

(L ∗ h)(t) =

∫ t

0

L(t− s)h(s) ds =

∫ t

0

L(s)h(t− s) ds .

Here L(t) is a strongly continuous function of time, with values in L(H) and h(t)
is an integrable H-valued function.
Moreover, let L(∗n) denote iterated convolutions, recursively defined by the follow-
ing equalities

L(∗1) = L , L(∗(n+1)) ∗ h = L ∗
(
L(∗n) ∗ h

)
(for every integrable H-valued function h). Then, the solution to the Volterra
equation (3.13)—that is v + L ∗ v = H, in short—is

v = H +

∞∑
k=1

(−1)kL(∗k) ∗H .

Uniform convergence of the series is easily proved. In the special case of our interest,
with H = Xα and L(t) given by (3.14), the following result follows.

Lemma 4.1. Let T > 0 and let the kernel L(·) be given by (3.14). If H ∈
C([0, T ];Xα), then the solution v of the Volterra equation v + L ∗ v = H satis-
fies v ∈ C([0, T ];Xα).

Proof. It is sufficient to observe that for every t we have L(t) ∈ L (Xα) and L(·) is a
strongly continuous operator valued function in L (Xα). Consequently, v+L∗v = H
is a Volterra integral equation in Xα to which the results in [5, Chapter 5] apply. �

We will repeatedly use Lemma 4.1 in order to pinpoint the regularity of the
solutions to the initial/boundary value problems associated with the equation (3.3).

Theorem 4.2 (Regularity for equation (3.3)). Consider the Eq. (3.3) with initial
data (u0, u1) and boundary data defined by (1.4). Then, the linear map

(u0, u1, ξ, g) 7−→ (u, ut, utt)

is continuous among the spaces detailed in Table 1.

Proof. The proof of the several statements contained in Table 1 is structured in few
major steps.

0. Premise and outline. Consider the Volterra equation (3.13), and note that
the functions vt(t) and vtt(t) solve the same Volterra integral equation of the second
kind in a Hilbert space, yet with different affine terms, H1(·) and H2(·) say, respec-
tively, which will be computed in the next step. In view of Lemma 4.1, the (time
and space) regularity of these affine terms—depending on u0, u1, ξ and g—will
naturally bring about the (time and space) regularity for the triple (v, vt, vtt).
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u0 u1 ξ g u = u(t, x) solution of (3.3)

Xλ 0 0 0 C([0, T ];Xλ) ∩ C1([0, T ];Xλ−1) ∩ C2([0, T ];Xλ−2)

0 Xµ 0 0 C([0, T ];Xµ+1) ∩ C1([0, T ];Xµ) ∩ C2([0, T ];Xµ−1)

0 0 Xν 0


if F (t) ∈ L2(0, T ) then:
C([0, T ];Xν+1) ∩ C1([0, T ];Xν) ∩H2([0, T ];Xν−1) ;
if F (t) ∈ H1(0, T ) then:
C([0, T ];Xν+2) ∩ C1([0, T ];Xν+1) ∩H2([0, T ];Xν)

0 0 0 L2(Σ) C([0, T ];Xα0) ∩ C1([0, T ];Xα0−1) ∩H2([0, T ];Xα0−2)

Table 1. Regularity of solutions of the equation (1.5) (i.e. (3.3)).
The spaces Xλ, Xµ and Xν (with real indices) are defined in (1.9).
The transformations are continuous between the indicated spaces.

To do so we will set to zero all data but one. Finally, the derived regularity prop-
erties will be inherited by the triple (u, ut, utt) pertaining to the original equation
with persistent memory (3.3), still depending on u0, u1, ξ and g.

1. The affine terms of Volterra equations. We rewrite (3.13) in the form

v(t) +

∫ t

0

L(s)v(t− s)ds = H(t)

and compute the derivatives of both the sides. Inserting the expressions (3.14) and
(3.15) of L(t) and H(t), and replacing initial data v0 and v1 with their respective
expressions in terms of u0 and u1 (see (3.12)), we obtain the following Volterra
integral equations in the unknowns vt(t) and vtt(t):

vt(t) +

∫ t

0

L(t− s)vs(s) ds = H1(t) , (4.1)

vtt(t) +

∫ t

0

L(t− s)vss(s) ds = H2(t) (4.2)
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where

H1(t) := −L(t)v0 +Ht(t) =

=
[ β√

b
A−1R−(

√
bt)u0 +

1√
b

∫ t

0

R−(
√
b(t− s))A−1K(s)u0 ds

]
+Ht(t) , (4.3)

H2(t) :=
[ β√

b
A−1R−(

√
bt)u1 +

1√
b
A−1

∫ t

0

R−(
√
b(t− s))K(s)u1 ds

]
−

− R0(0)

2
√
b

[
βA−1R−(

√
bt)u0 +A−1

∫ t

0

R−(
√
b(t− s))K(s)u0 ds

]
+

+ βR+(
√
bt)u0 +

∫ t

0

R+(
√
b(t− s))K(s)u0 ds+Htt(t) ,

while the explicit expression (3.15) of H(t) is recorded here for the reader’s conve-
nience:

H(t) =
[
R+(
√
bt)− R0(0)

2
√
b
A−1R−(

√
bt)
]
u0 +

1√
b
A−1R−(

√
bt)u1−

−
√
bA
∫ t

0

R−(
√
b(t− s))Ge− 1

2R0(0)sg(s) ds+

+
1√
b
A−1

∫ t

0

R−(
√
b(t− s))

[
h2(s)ξ + h1(s)u1 + h0(s)u0

]
ds .

As it will appear clear immediately below, we neglected to write explicitly the
derivatives of H(t), just because their regularity is easily deduced invoking once
more Theorem 2.3.

2a. Effects of boundary data action. With u0, u1, ξ ≡ 0, g ∈ L2(Σ), the affine
term H(t) in (3.13) (recorded above) reduces to

H(t) = −
√
bA
∫ t

0

R−(
√
b(t− s))Gg(s) ds . (4.4)

Therefore we know from assertion iii) of Theorem 2.3 that

(H,Ht, Htt) ∈ C([0, T ];Xα0
×Xα0−1 ×Xα0−2) .

Thus, Lemma 4.1 shows that the solutions of the Volterra equation (3.13) as well
as those pertaining to the former equation with memory (3.3) belong to

C([0, T ];Xα0
) ∩ C1([0, T ];Xα0−1) ∩ C2([0, T ];Xα0−2) .

2b. Effects of the initial datum u0. Assume u1, ξ = 0, g = 0, and u0 ∈ Xλ.
The affine term of the equation (3.13) in the unknown v becomes

H(t) =
[
R+(
√
bt)− R0(0)

2
√
b
A−1R−(

√
bt)
]
u0 +

1√
b
A−1

∫ t

0

R−(
√
b(t− s))h0(s)u0 ds ,

so that readily

H ∈ C([0, T ];Xλ) ∩ C1([0, T ];Xλ−1) ∩ C2([0, T ];Xλ−2) ,

which immediately implies v(t) ∈ C([0, T ];Xλ). Recall now the term H1 in (4.3)
and notice that its regularity is determined by the regularity of Ht. Then, H1—as
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well as vt, in view of Lemma 4.1—belongs to C1([0, T ];Xλ−1), while H2 and then
vtt(t) belong to C1([0, T ];Xλ−2), which establishes the first row of Table 1.

2c. Effect of the initial datum u1. Assume u0, ξ = 0, and g = 0 while u1 ∈ Xµ.
In this case

H(t) =
1√
b
A−1R−(

√
bt)u1 +

1√
b
A−1

∫ t

0

R−(
√
b(t− s))h1(s)u1 ds ,

so that we have a slight regularization

(H,Ht, Htt) ∈ C([0, T ];Xµ+1 ×Xµ ×Xµ−1) .

The transformation u1 7−→ H is continuous in the indicated spaces (cf. assertion i)
of Theorem 2.3).
The obtained regularity for H and its derivatives holds for Hi, i = 1, 2, and then is
inherited by the solution v(t): namely,

v ∈ C([0, T ];Xµ+1) ∩ C1([0, T ];Xµ) ∩ C2([0, T ];Xµ−1) ;

in turn, the same is valid for u, thereby confirming the second row of Table 1.

2d. Effect of the parameter ξ. We finally discuss the dependence on ξ. Assume
u0, u1 = 0, and g = 0 and ξ ∈ Xν . In this case

H(t) =
1√
b
A−1

∫ t

0

R−(
√
b(t− s))h2(s)ξ ds

and, from (3.10), h2(t) ∈ L2(0, T ), just like F (t).
We invoke once more item ii) of Theorem 2.3, and ascertain again a slightly regu-

larizing property: the transformation ξ 7−→ v is continuous fromXν to C([0, T ];Xν+1)∩
C1([0, T ];Xν)∩H2([0, T ];Xν−1) (while if in addition F (t)—and consequently, h2(t)—
is continuous, then v ∈ C2([0, T ];Xν−1)).

In the case F ∈ H2(0, T ) (as the case of the MGT equation) we have a stronger
regularization, since we can integrate by parts as follows:

H(t) = −1

b
A−1

∫ t

0

d

ds
R+(
√
b(t− s))h2(s)ξ ds =

= −1

b
A−1

[(
h2(t)−R+(

√
bt)h2(0)

)
ξ −

∫ t

0

R+(
√
b(t− s))h′2(s)ξ ds

]
;

(4.5)

a rigorous justification is found, e.g., in [31, Lemma 5].
For a better understanding, we compute explicitly for t ∈ (0, T ):

Ht(t) = −1

b
A−1

[
���h′2(t)ξ −

√
bAR−(

√
bt)ξ −���h′2(t)ξ−

−
√
bA
∫ t

0

R−(
√
b(t− s))h′2(s)ξ ds

]
=

=
1

b
A−1R−(

√
bt)ξ +

1

b
A−1

∫ t

0

R−(
√
b(t− s))h′2(s)ξ ds ∈ Xν+1 ,

and

Htt(t) = R+(
√
bt)ξ +

∫ t

0

R+(
√
b(t− s))h′2(s)ξ ds ∈ Xν ,

that complete the membership H ∈ Xν+2.
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It is important to note that the space regularity increases of one unity and
we get the result in the third row of Table 1, where H2(0, T ;Xν) is replaced by
C2([0, T ];Xν) if furthermore F ∈ C2([0, T ]), that is the case of the MGT equation.

�

Remark 4.3. The noticeable outcome of the obtained regularity result is that u1

and ξ are regularized by one and, respectively, two unities. Hence, when g = 0, u0 =
0 while u1 and ξ belong to Xr, then (u(t), ut(t), utt(t)) evolves in Xr+1×Xr×Xr−1.

From Table 1 of Theorem 4.2 we deduce, in particular, the following regularity
result.

Corollary 4.4. Consider equation (3.3) with initial data (u0, u1), and trivial bound-
ary data, namely, g ≡ 0 in (1.4). If F (·) ∈ C1 and if (u0, u1, ξ) ∈ Xr×Xr−1×Xr−2

(for every r the spaces Xr are defined in (1.9)), then the corresponding weak solu-
tion satisfies

(u, ut, utt) ∈ C([0, T ];Xr ×Xr−1 ×Xr−2) .

5. Interior regularity for the MGT equation

In this Section we utilize the analysis performed for the general class of equations
with memory (3.3), in order to derive a result pertaining to the MGT equation, that
is Theorem 5.3 below. This theorem establishes, in particular, the statements of
Theorem 1.2 detailing the regularity from the boundary to the interior for the MGT
equation (i.e. item iii)), as well as the one pertaining to the interior regularity, under
homogeneous boundary data (i.e. item ii)). The latter result is consistent with the
analyis formerly carried out in [15], that brought about semigroup well-posedness
of the MGT equation in the space D(A1/2)×D(A1/2)×L2(Ω), A being the proper
realization of the Laplacian in L2(Ω); see [15, Theorem 1.2]. The peculiar regularity
of the MGT equation is here (re)confirmed in a wealth of functional settings.

Recall that for the special case of the MGT equation we have in particular

N(t) = F (t) = e−αt , ξ = u2 − b∆u0

in (3.3). The meaning given to solutions is still the one in Definition 3.4.
We restart from the integral equation which defines the resolvent associated

with the convolution kernel −γN(t) of (3.3), that is equation (3.6) and that in the
present case—with N(t) = e−αt—reads as

R0(t)− γ
∫ t

0

e−(t−s)R0(s) ds = −γe−αt . (5.1)

It is then easily verified that the solution to (5.1) is given by

R0(t) = −γe(γ−α)t = −γe− c
2

b t , (5.2)

which gives R0(0) = −γ and hence

v(t) = e
γ
2 tu(t)

for v defined in (3.8).

In view of Definition 3.4, and taking into account the actual expression of R0(t)
in (5.2), the following instance of Definition 3.4 comes into the picture.
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Definition 5.1 (Instance of Definition 3.4). A function u = u(t, x) is a solution of
the IBVP (1.2)-(1.3)-(1.4) for the Moore-Gibson-Thompson equation if and only if

the function v(t, x) = e
γ
2 tu(t, x) solves

vtt = b(∆v − v) +

∫ t

0

K(t− s)v(s) ds+ βv(t)

+ h2(t)
(
u2 − b∆u0

)
+ h1(t)u1 + h0(t)u0 ,

where

K(t) = −γ(γ − α)2e( 3
2γ−α)t , β = b− γ

(3

4
γ − α

)
,

h0(t) = −γ(γ − α)e( 3
2γ−α)t , h1(t) = −γe( 3

2γ−α)t , h2(t) = e( 3
2γ−α)t .

Remark 5.2. The definition of ξ = u2 − ∆u0 makes sense in L2(Ω) when u0 ∈
H2(Ω). More broadly, we will also consider u0 ∈ Xs for any s, in which case ∆
will mean A − I, where A is the extension of the operator in (1.8) described in
Remark 1.1.

We note that C∞-functions with compact support are not dense in H2(Ω) ∩
H1

0 (Ω), which is the domain of the operator A (defined in (1.8)) in the case of
Dirichlet BC. Hence, its dual is not a space of distributions. Consequently, for
instance when u is smooth (say H2) and Dirichlet BC are in place, the trace of u
on the boundary ∂Ω—that we denote γ0u—enters Au (A is the extended operator),
and then

ξ = u2 − b∆u0 = u2 − b∆
(
u0 −G (γ0u)

)
= u2 − b(A+ I)u0 + b(A+ I)G (γ0u) .

When particularizing to the MGT equation the results in Theorem 4.2, we find
the following result.

Theorem 5.3 (Regularity for the MGT equation). Let u = u(t, x) be the solution
to the MGT equation (1.2), defined as the solution to the Volterra integral equa-
tion (3.13), with L and H as in (3.14)-(3.15), where F (t) = N(t) = e−αt. The
maps (u0, u1, u2) 7−→ u (when g = 0) and g 7−→ u (when u0 = u1 = u2 = 0, so that
ξ = u2−∆u0 = 0) are linear and continuous in the spaces described by the Table 2.

Proof. Along the lines of the first steps of the proof of Theorem 4.2, we return to
the Volterra equation (3.13) and once again appeal to Lemma 4.1; the affine term
H(t) in (3.15) must be rewritten taking into account that in the present case we
have ξ = u2 − b∆u0.

1. The case of trivial initial data, namely u0 = u1 = u2 = 0, is easily discussed:
indeed, in this case H(t) simply reduces to

H(t) = −
√
bA
∫ t

0

R−(
√
b(t− s))Ge

γ
2 sg(s) ds ,

which is nothing but the solution to a linear wave equation with trivial initial data,
trivial affine term, and g̃(s) = e

γ
2 sg(s) as a boundary datum. Consequently, because

g̃ ∈ L2(Σ), the results in Theorem 1.3 and Remark 2.2(i) apply, bringing about the
last row of Table 2.
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u0 u1 u2 g u = u(t, x) solution of the MGT equation

Xλ 0 0 0 C1([0, T ];Xλ) ∩ C2([0, T ];Xλ−1)

0 Xµ 0 0 C([0, T ];Xµ+1) ∩ C1([0, T ];Xµ) ∩ C2([0, T ];Xµ−1)

0 0 Xν 0 C([0, T ];Xν+2) ∩ C1([0, T ];Xν+1) ∩ C2([0, T ];Xν)

0 0 0 L2(Σ) C([0, T ];Xα0
) ∩ C1([0, T ];Xα0−1) ∩H2([0, T ];Xα0−2)

Table 2. Regularity of solutions to the MGT equation (1.2). The
spaces Xλ, Xµ and Xν (with real indices) are defined in (1.9). The
transformations are continuous between the indicated spaces.

2. Assume next that the boundary datum instead is trivial, i.e. g ≡ 0. Return to
H(t) in (3.15), and focus on its last summand, that is

1√
b
A−1

∫ t

0

R−(
√
b(t− s))

[
h2(s)

(
u2 − b∆u0

)
+ h1(s)u1 + h0(s)u0

]
ds ,

and more specifically on the most tricky term

T (t) =
1√
b
A−1

∫ t

0

R−(
√
b(t− s))h2(s)[u2 − b∆u0] ds .

We rewrite

T (t) =
1√
b
A−1

∫ t

0

R−(
√
b(t− s))h2(s)u2 ds︸ ︷︷ ︸

T1(t)

−

−
√
bA−1

∫ t

0

R−(
√
b(t− s))h2(s)∆u0 ds︸ ︷︷ ︸

T2(t)

(5.3)
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and compute

T2(t) = −
√
bA−1

∫ t

0

R−(
√
b(t− s))h2(s)

(
∆u0 − u0 + u0

)
ds =

= −
√
bA−1

∫ t

0

R−(
√
b(t− s))h2(s)Au0 ds︸ ︷︷ ︸

T21(t)

−

−
√
bA−1

∫ t

0

R−(
√
b(t− s))h2(s)u0 ds︸ ︷︷ ︸

T22(t)

.

(5.4)

Assuming u0 ∈ Xλ, then Au0 ∈ Xλ−2; moreover, recall that A = A2, and the rela-
tion between the operators R−(·) and R+(·). Then proceed with the computations,
integrating by parts to get

T21(t) = −
√
bA−1

∫ t

0

R−(
√
b(t− s))h2(s)Au0 ds

= −
√
bA
∫ t

0

R−(
√
b(t− s))h2(s)u0 ds =

=

∫ t

0

d

ds

{
R+(
√
b(t− s))h2(s)u0

}
ds−

∫ t

0

R+(
√
b(t− s))h′2(s)u0 ds =

= h2(t)u0 −R+(
√
b(t))h2(0)u0 −

∫ t

0

R+(
√
b(t− s))h′2(s)u0 ds .

(5.5)

Combine (5.5) with (5.4) and (5.3), insert the resulting expression of T (t) in
H(t), to obtain

H(t) =������
R+(
√
bt)u0 −

R0(0)

2
√
b
A−1R−(

√
bt)u0 +

1√
b
A−1R−(

√
bt)u1−

−
√
bA
∫ t

0

R−(
√
b(t− s))Ge− 1

2R0(0)sg(s) ds+

+
1√
b
A−1

∫ t

0

R−(
√
b(t− s))h2(s)u2 ds+

+ h2(t)u0������
−R+(

√
bt)u0 −

∫ t

0

R+(
√
b(t− s))h′2(s)u0 ds−

−
√
bA−1

∫ t

0

R−(
√
b(t− s))h2(s)u0 ds+

+
1√
b
A−1

∫ t

0

R−(
√
b(t− s))

[
h1(s)u1 + h0(s)u0

]
ds ,

where the term R+(
√
bt)u0 appears twice with opposite signs, and hence cancel.
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Rearranging the summands and replacing t− s with s in the integrals we attain

H(t) =
(
h2(t)− R0(0)

2
√
b
A−1R−(

√
bt)
)
u0 −

∫ t

0

R+(
√
bs)h′2(t− s)u0 ds+

+A−1

∫ t

0

R−(
√
bs)
( 1√

b
h0(t− s)−

√
bh2(t− s)

)
u0 ds+

+
1√
b
A−1R−(

√
bt)u1 +

1√
b
A−1

∫ t

0

R−(
√
bs)h1(t− s)u1 ds−

+
1√
b
A−1

∫ t

0

R−(
√
bs)h2(t− s)u2 ds ,

(5.6)

which allows the understanding of the regularity of H(t), along with the sought
regularity properties of solutions to the MGT equation.

Notice first that in comparison with the general model equation with memory
(1.5) the space regularity of H(t) is not improved, owing to the presence of the term
h2(t)u0. Instead, the regularity of Ht(t) is improved thanks to the cancellation

of the term R+(
√
bt)u0: in fact, if g ≡ 0, u1 = u2 = 0, u0 ∈ Xλ, then Ht ∈

C([0, T ];Xλ), while Htt ∈ C([0, T ];Xλ−1). However, the said cancellation (of a
term depending only on u0) has no effect on the remaining terms: the dependence
on u1 and u2 is subject to the smoothing effect already described in Table 1 (in
terms of u1 and ξ). Thus, the results displayed in Table 2 follow. (The cancellation
has also another significant effect: the summand h2(t)u0 decays in time, but does
not propagate in space, as explained in the second item of Remarks 5.4.) Observe
that in the term

1√
b
A−1

∫ t

0

R−(
√
b(t− s))h2(s)u2 ds

one may integrate by parts, thereby obtaining

1√
b
A−1

∫ t

0

R−(
√
b(t− s))h2(s)u2 ds = −1

b
A−2

{
h2(t)u2 −R+(

√
b(t)h2(0)u2

+

∫ t

0

R+(
√
b(t− s))h′2(s)u2 ds

}
that confirms the said smoothing effect.

Using once more that the functions hi(t), i = 0, 1, 2 are twice differentiable, it is
easily seen that when u0 ∈ Xλ, u1 = u2 = 0, g = 0, then

H(t) ∈ C1([0, T ];Xλ) ∩ C2([0, T ];Xλ−1) ; (5.7)

the regularity of v and the one of u follow accordingly. In conclusion, the represen-
tation (5.6) of H(t) shows that all the regularity results summarized in the rows of
Table 1 remain valid, with the exception of those in the first row, that are improved
consistently with (5.7). �

Remarks 5.4. (i) The first line of Table 2 asserts that both the solution u to the
MGT equation and its derivative ut belong to C([0, T ];Xλ), whereas a unity of
regularity (in space) is lost in the second derivative: utt ∈ C([0, T ];Xλ−1). This
feature (to be contrasted with the general property in the first line of Table 1) is
peculiar of the MGT equation, as seen in the proof of Theorem 5.3.
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(ii) We further note that R−(
√
bt)u0 and R+(

√
bt)u0 solve the wave equation,

and so the ‘shape’ of u0 is propagated in space, as in the wave equation. Instead,
the term h2(t)u0 (which decays exponentially in time) is a stationary wave and
does not propagate in the space variables.
Thanks to the formulas for the solutions of the Volterra integral equations, this
stationary wave appears also in the solution of the MGT equation.

6. Boundary regularity

In this Section we establish a sharp regularity result for the normal trace on
Γ = ∂Ω of solutions to the MGT equation (1.2), supplemented with (homogeneous)
Dirichlet boundary condition. This result, presented as Corollary 6.3, follows from a
boundary regularity result pertaining to the family of wave equations with memory
(1.5), depending on ξ ∈ L2(Ω), that is Theorem 6.2 below. In doing so we re-obtain,
in the case ξ = 0, a result established under distinct assumptions (on the memory
kernel) in previous papers; see the discussion at the end of the section.

We point out that the present approach to the analysis of wave equations with
memory enables us to establish the boundary (beside the interior) regularity of
solutions in a direct and straightforward way: the existing results on the trace
regularity of the wave equation are lifted to the equation with memory by simply
using the properties of linear operators. Thus, our method of proof paves the way
for the derivation of appropriate boundary regularity results for the model equation
with memory (1.5), as well as for the MGT equation (1.2), when supplemented with
Neumann boundary conditions (a case which, for the wave equation, is drastically
more difficult).

Let the operator T be the Dirichlet trace on Γ = ∂Ω, and let G be the Green map
defined by (2.1) accordingly, i.e. with T = γ0. Then, an elementary computation
which utilizes the (second) Green Theorem yields, for φ ∈ D(A), the following trace
result:

G∗Aφ = −∂φ
∂ν

∣∣∣
Γ

∀φ ∈ D(A) ; (6.1)

see, e.g., [24, Vol. I, p. 181].
The following result is by now well known (cf. [20], [25], [21], [26]).

Theorem 6.1. Let u = u(t, x) be a solution to the initial/boundary value problem
(1.12) for the wave equation with homogeneous Dirichlet boundary data (i.e. g = 0).
Then, for every T > 0 there exists M = MT such that∫ T

0

∫
∂Ω

∣∣∣ ∂
∂ν
u(x, t)

∣∣∣2dσ dt ≤M (
‖u0‖H1

0 (Ω) + ‖u1|2L2(Ω) + ‖f‖2L1(0,T ;L2(Ω))

)
.

We now show that this property is inherited by the solutions to the equation with
memory (depending on ξ) (1.5), and next by the solutions to the MGT equation
(1.2), provided a suitable compatibility condition for initial data is satisfied; see
(6.6) below. The first statement is as follows.

Theorem 6.2. Under the standing Hypotheses 3.2 and assuming ξ ∈ L2(Ω), let
u = u(t, x) be a solution to the equation with memory (3.3), with initial data (u0, u1)
and homogeneous Dirichlet boundary data. Then, for every T > 0 there exists
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M = MT such that∫ T

0

∫
∂Ω

∣∣∣ ∂
∂ν
u(x, t)

∣∣∣2dσ dt ≤M (
‖u0‖H1

0 (Ω) + ‖u1|2L2(Ω) + ‖ξ‖2L2(Ω)

)
. (6.2)

Proof. Since the equation is supplemented with Dirichlet boundary conditions, we
may take A = ∆, with domain H2(Ω) ∩H1

0 (Ω). The estimate (6.2) is obtained as
a simple consequence of the boundary regularity of solutions to the equation with
memory in (3.11), that reads as

vtt = ∆v + k0v +

∫ t

0

K(t− s)v(s)ds+ F(t) , (6.3)

where we have set b = 1 for the sake of simplicity, k0 = β − 1, while F(t) is now

F(t) :=
(
h2(t)ξ + h1(t)u1 + h0(t)u0

)
,

with the scalar functions hi(·), i = 0, 1, 2 (as well as β) introduced in (3.10).

(Note that h2 ∈ L2(0, T ), along with ‖h2‖L2(0,T ) ≤
√
T‖h2‖L1(0,T ).)

It then follows that

v(t) = R+(t)v0 +A−1R−(t)v1︸ ︷︷ ︸
=:w(t)

+

+A−1

∫ t

0

R−(t− s)
[
k0v(s) +

∫ s

0

K(s− r)v(r)dr
]
ds+

+ A−1

∫ t

0

R−(t− s)F(s) ds︸ ︷︷ ︸
=:T (t)

.

We note first of all that the estimate (6.2) holds true for the function w(t), since
it represents the solution of a classical wave equation (without the memory term).
Next, we observe that the integral term T (t) depends on u0, u1 and ξ, as the
function F(t) does. We examine the dependence on ξ (the dependence on u0 and
u1 is studied analogously).

Recall the following version of Young inequality: if h ∈ L1(0, T ;R) and X ∈
L2(0, T ;R), then the convolution X ∗ h satisfies

‖X ∗ h‖L2(0,T ;R) ≤ ‖X‖L2(0,T ;R) ‖h‖L1(0,T ;R) .

The desired regularity estimate is established first when ξ ∈ D(A), and then ex-
tended to ξ ∈ L2(Ω) by continuity.
If ξ ∈ D(A), then for a.e. t ∈ [0, T ] we have:∣∣∣∣ ∂∂νA−1

∫ t

0

R−(t− s)h2(s)ξ ds

∣∣∣∣
L2(Γ)

=

∣∣∣∣D∗A [∫ t

0

A−1R−(t− s)h2(s)ξ ds

]∣∣∣∣
L2(Γ)

=

=

∣∣∣∣[∫ t

0

D∗A
(
A−1R−(t− s)ξ

)
h2(s) ds

]∣∣∣∣
L2(Γ)

≤
∫ t

0

|h2(t− s)| ‖X(s)‖L2(Γ) ds ,

where we set

X(t) := D∗A
[
A−1R−(t)ξ

]
=

∂

∂ν

[
A−1R−(t)ξ

]
.
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The inequality pertaining to the wave equation establishes∥∥∥D∗A [A−1R−(t)ξ
] ∥∥∥

L2(0,T ;L2(Γ))
=
∥∥∥ ∂
∂ν

[
A−1R−(t)ξ

] ∥∥∥
L2(0,T ;L2(Γ))

≤M‖ξ‖L2(Ω) ,

which is extended by continuity to every ξ ∈ L2(Ω). Young inequality then gives∥∥∥∫ ·
0

h2(· − s)X(s) ds
∥∥∥
L2(0,T ;L2(Γ))

≤M‖ξ‖L2(Ω) .

Analogous estimates hold true for the remaining summands (which depend on u0

and u1) in T (t).
Therefore, the normal trace of v reads as

∂

∂ν
v(t)

∣∣∣
Γ

= −G∗Av(t) = −G∗A
[
w(t) +A−1

∫ t

0

R−(t− s)F(s) ds
]
ds−

−G∗A
[
A−1

∫ t

0

R−(t− s)
(
k0v(s) +

∫ s

0

K(s− r)v(r)dr
)
ds
]
,

and we showed so far that there exists a constant M = MT (possibly depending on
T ) such that∥∥∥∥−G∗A[w(t) +A−1

∫ t

0

R−(t− s)F(s) ds
]
ds

∥∥∥∥2

L2(0,T ;L2(Γ))

≤

≤M
(
‖u0‖2H1

0 (Ω) + ‖u1‖2L2(Ω) + ‖ξ‖2L2(Ω)

)
. (6.4)

We claim that a similar inequality is valid for the second summand. Indeed, we
know (cf. the second statement of Theorem 1.2) that v ∈ C([0, T ];H1

0 (Ω)), with
continuous dependence on initial data. Therefore, the second summand satisfies

G∗A
[
A−1

∫ t

0

R−(t− s)
(
k0v(s) +

∫ s

0

K(s− r)v(r)dr
)
ds
]
∈ C(0, T ;L2(Γ)) ,

which combined with (6.4) implies that there exists M = MT such that∫ T

0

∫
∂Ω

∣∣∣ ∂
∂ν
v(x, t)

∣∣∣2dσ dt ≤M (
‖u0‖H1

0 (Ω) + ‖u1|2L2(Ω) + ‖ξ‖2L2(Ω)

)
. (6.5)

This in turn establishes the sought estimate (6.2), thereby concluding the proof. �

For the MGT equation, one obtains readily the following result.

Corollary 6.3. Let u = u(t, x) be a solution to the Moore-Gibson-Thompson equa-
tion (1.2), with initial data (u0, u1, u2) and homogeneous boundary data. Assume
(u0, u1, u2) ∈ H1

0 (Ω)× L2(Ω)×H−1(Ω), along with the compatibility condition

u2 −∆u0 ∈ L2(Ω) . (6.6)

Then, for every T > 0 there exists M = MT such that∫ T

0

∫
∂Ω

∣∣∣ ∂
∂ν
u(x, t)

∣∣∣2dσ dt ≤M (
‖u0‖H1

0 (Ω) + ‖u1‖2L2(Ω) + ‖u2 −∆u0‖2L2(Ω)

)
.
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Remarks 6.4. The issue of extending the trace regularity result in Theorem 6.1 to
wave equations with memory has been the object of investigation since at least the
beginning of the nineties. Distinct perspectives and techniques have been adopted,
along with distinct assumptions on the memory kernel.

We note that the starting point for the proof of Theorem 6.2 is the (equivalent)
integro-differential equation (6.3) in the unknown v, where—in contrast with (3.3)—
the convolution term does not display the differential operator. The regularity
estimate (6.5), which in the proof of Theorem 6.2 establishes the estimate (6.2),
seems to appear in the literature for the first time in the papers by Yan [42] and
Kim [17], focused on the same model equation, in the absence of the affine term
F(t). Both papers [42] and [17] deal with the non-convolution case, namely, with
more general kernels K = K(t, s) which are assumed to satisfy suitable regularity
assumptions. The sought inequality for the normal trace of the solutions to the
equation with memory is obtained as a consequence of the known inequality for
solutions to the wave equation. See also [31], where the proof is based on the
Fubini Theorem.

The recent proof given by Loreti and Sforza [27] for the equation with memory
(3.3) with ξ = 0, under Dirichlet BC, is carried out via energy methods, by using
an ad hoc multiplier. The convolution kernel k(·) (that is γN(·) in the notation of
the present paper) is subject to various constraints, which are satisfied in the case
of relevant kernels of exponential type.

An abstract approach to admissibility—a commonly used term, in the context
of systems and control theory, beside to a direct inequality—via harmonic analysis
is found in the papers by Yung [12] and Jacob and Partington [9]. In these papers
the space of observations is finite dimensional.

The proof given in the present section is consistent with the chosen perspective
of systems with memory. See also the proofs of corresponding inequalities in [33],
[34], [35], where waves, plates and three-dimensional viscoelasticity are studied.
A somewhat similar approach is found in Cavalcanti et al. [3], under stronger
assumptions on the memory kernel (in particular, smallness of the kernel as well as
of its derivatives).

Appendix A. Justification of Definition 3.4

Let us recall that in order to give a Definition of solutions to the MGT Equa-
tion (1.2) we proceeded as follows: formal calculations were used to reduce equation
(1.2) to the integro-differential equation (3.3) and then to the Volterra integral
equation (3.13) in the unknown v. By definition, u solves (1.2) when v(t) =
e−(R(0)/2)tu(t) solves the Volterra integral equation (3.13) (with g replaced by
e−(R(0)/2)tg(t)). In this Appendix we provide a formal justification of the said
Definition.

The argument is similar to the one used in Section 2 in the case of wave equations:
we prove that the solution u is smooth and can be replaced in both the sides of
(1.2) when the initial data and the control are “smooth” and then we use continuous
dependence as stated in Table 2 to justify the definition in general. This procedure
is a bit more elaborated than the one pertaining to the wave equation, since the
third derivative (in time) comes into the picture, which requires more information
on the solutions of the wave equation.
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In order to distinguish the memoryless wave equation from the equation with
memory and the MGT equation, we will denote by u3 the solution to equation
(1.12) (this is because we use suitable results from [32, § 2.2], where u3 solves the
wave equation when the initial data and the affine term are zero). We assume
u3(0) ∈ D(Ω), ∂

∂tu3

∣∣
t=0
∈ D(Ω), g ∈ D((0, T )× ∂Ω), where D denotes the space of

C∞ functions with compact support in the indicated open set (which should not
be confused with the domain of an operator), while ∂Ω is relatively open respect
to itself. The assumptions on the affine term F (t) are made explicit below. For the
sake of simplicity, in the sequel the time derivative will be denoted by ′.

It is known that u3 is given by formula (2.2): it is also clear that if g, f ≡ 0,
then in view of the Sobolev embedding theorems one has u3 ∈ C∞((0, T )×Ω), for
every T > 0. Our aim is to show that a similar property holds true when g 6= 0,
f 6= 0.
Let us study separately the effects of g and f : accordingly, we assume first f = 0,
so that

u3(t) = −A
∫ t

0

R−(s)Gg(t− s) ds = Gg(t) +

∫ t

0

R+(s)Gg′(t− s) ds .

As already noted we have u3(t) − Gg(t) ∈ D(A) and the boundary condition is
satisfied; moreover,

A (u3(t)−Gg(t)) = −Gg′′(t) +

∫ t

0

R+(s)Gg′′′(t− s) ds ∈ C∞
(
[0, T ];L2(Ω)

)
.

Observe that, by definition,

A (u3(t)−Gg(t)) = (∆− I)u3(t) ∈ C∞
(
[0, T ];L2(Ω)

)
that is u3(t) ∈ C∞

(
[0, T ];H2(Ω)

)
with suitable homogeneous boundary condition.

Analogously,

A
{
A
[
u3(t)−Gg(t)

]
+Gg′′(t)

}
=

∫ t

0

R−(s)Gg(4)(t− s) ds

which again is of class C∞([0, T ];L2(Ω)). So we have

A
{
A
[
u3(t)−Gg(t)

]
+Gg′′(t)

}
∈ C∞([0, T ];X1) ,

that is u3 ∈ C∞
(
[0, T ];H3(Ω)

)
.

By iteration we see that in the interior of (0, T ) × Ω the solution u3 is of class
C∞ and hence, when computing the derivatives, the order can be interchanged.

Let us consider now the effect of the affine term f(t). We assume f ∈ C∞
(
[0, T ]×

Ω
)

and that for every fixed t ≥ 0 f(t, ·) ∈ D(Ω), and yet possibly f(0, ·) 6= 0.
The contribution of this affine term is

u3(t) = A−1

∫ t

0

R−(s)f(t− s) ds ∈ C∞
(
[0, T ]×X1

)
since f (n)(0) ∈ D(Ak) for every couple of integers n and k, so that

u3(t) ∈ C∞
(
[0, T ];Xk

)
for every k.

In particular, u3 ∈ C∞ ([0, T ]× Ω) as above.

We now extend the obtained properties to the solutions v to the Volterra integral
equation (3.13) so that it is possible to track back the computation and to see that
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equality (1.2) holds pointwise (when the boundary control and the initial conditions
have the stated regularity, u2 ∈ D(Ω) included).

We confine ourselves to examine the effect of the boundary data g (the effect
of initial data can be examined in a similar way). Moreover, multiplication by
e−R(0)t/2 does not affect the desidered results and hence is ignored; i.e. we assume
v(t) ≡ u(t).

Because equation (3.13) has the form of equation (2.25) in [32, § 2] (the notations
are easily adapted, in particular b is substituted by c2 in [32]) following the proof
of [32, Theorem 2.4, item 2] we see that y(t) = v(t)−Gg(t) solves

y(t) = (u3(t)−Gg(t)) +

∫ t

0

L(s)Gg(t− s) ds+

∫ t

0

L(s)y(t− s) ds

so that

Ay(t) =

∫ t

0

AL(s)Gg(t− s) ds+

∫ t

0

L(s)Ay(t− s) ds

(note that AL(t) is a continuous operator for every t). It then follows that y(t) ∈
C∞ ([0, T ];X1).

Exploiting the definition of L(t) and integrating by parts the integral which
contains g(t) we see that y(t) ∈ C∞ ([0, T ];X2). Iterating this procedure, we obtain
u ∈ C∞ ([0, T ]× Ω). Using this regularity result we can track back the computation
leading to the fact that u(t) solves the MGT equation, including the fact that the
Laplacian and the time derivative can be interchanged.
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