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6 MONOTONICITY AND CONCAVITY OF INTEGRAL FUNCTIONALS

INVOLVING AREA MEASURES OF CONVEX BODIES

ANDREA COLESANTI, DANIEL HUG AND EUGENIA SAOŔIN GÓMEZ

ABSTRACT. For a broad class of integral functionals defined on the space ofn-dimensional con-
vex bodies, we establish necessary and sufficient conditions for monotonicity, and necessary con-
ditions for the validity of a Brunn-Minkowski type inequality. In particular, we prove that a Brunn-
Minkowski type inequality implies monotonicity, and that ageneral Brunn-Minkowski type in-
equality is equivalent to the functional being a mixed volume.

1. INTRODUCTION

For a broad class of homogeneous functionalsF defined onKn, the space ofconvex bodies
(non-empty compact convex sets) inRn, a Brunn-Minkowski type inequality of the following
form holds true,

(1) F((1− t)K + tL)1/α ≥ (1− t)F(K)1/α + tF(L)1/α

for allK,L ∈ Kn andt ∈ [0, 1], where(1−t)K+tL is a Minkowski combination ofK andL, and
α is the degree of homogeneity ofF. In other words, condition (1) states thatF

1/α is concave on
Kn. The archetype of these inequalities is the classical Brunn-Minkowski inequality, in whichF is
then-dimensional volume functional (Lebesgue measure) andα = n. This inequality is one of the
cornerstones of convex geometry and connects this subject to many other areas of mathematics.
The interested reader is referred to the survey paper [5] by Gardner. Other important examples
come from the realm of convex geometry itself (intrinsic volumes, mixed volumes and many
others) or from analysis (e.g., eigenvalues of elliptic operators, various notions of capacities); see
for instance [2] and [11].

In many remarkable cases, a functionalF which satisfies a Brunn-Minkowski type inequality
is accompanied by other significant properties like continuity, additivity, and monotonicity with
respect to set inclusion. One of the purposes of this paper isto investigate the interplay between a
Brunn-Minkowski type inequality and monotonicity for someintegral functionals involvingarea
measuresof convex bodies (see Section 2 for definitions and references). For a continuous function
f defined on the unit sphereSn−1 of Rn and an integeri ∈ {1, . . . , n− 1}, we define

(2) K 7→ F(K) :=

∫

Sn−1

f(u)Si(K; du),
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whereSi(K; ·) denotes theith area measureof K. By the properties of area measures ([11,
Section 5.1]) and the continuity off , the functionalF is continuous with respect to the Hausdorff
metric, translation invariant and homogeneous of degreei.

In the particular case wheref is thesupport functionof some fixed convex bodyL, the func-
tionalF is in fact amixed volumeand has two additional interesting properties. The first is mono-
tonicity with respect to set inclusion, which means that forall K,L ∈ Kn,

(3) K ⊂ L ⇒ F(K) ≤ F(L).

Second,F satisfies a Brunn-Minkowski type inequality (1) withα = i, that is,

(4) F((1− t)K + tL)1/i ≥ (1− t)F(K)1/i + tF(L)1/i,

for all K,L ∈ Kn and t ∈ [0, 1]. Since mixed volumes are non-negative, theith root is well
defined.

For generalf , other than a support function, we cannot expectF to satisfy either (3) or (4). Let
us examine the casei = n − 1. In [8], McMullen proved that, in this case, (3) implies thatf is
a support function. A corresponding result for the Brunn-Minkowski inequality has been recently
established in [3]. There it is shown that (4) implies thatf is a support function. Hence, for
i = n− 1, both (3) and (4) are equivalent to the fact thatF is a mixed volume, and therefore they
are equivalent to each other.

These equivalences are no longer true fori < n− 1. For instance wheni = 1, the functionalF
is linear with respect to the Minkowski addition, and, in particular, it satisfies (4) for every choice
of f . On the other hand, as we will see in Theorem 1.2,F is not monotonic for everyf .

In the first part of this paper we find a condition onf which is equivalent to monotonicity ofF.
We first present this condition in the smooth case, that is, for f ∈ C2(Sn−1). We need to introduce
some notation. Foru ∈ S

n−1, we define the(n − 1)× (n − 1) matrix

Q(f, u) := (fij(u) + f(u)δij)
n−1
i,j=1,

wherefij are the second covariant derivatives off with respect to an orthonormal frame onSn−1

andδij are the usual Kronecker symbols. Hence,Q(f, u) is the spherical Hessian matrix off
at u plus f(u) times the identity matrix (see Section 2 again for details).This is a symmetric
matrix, and we will denote byλi(u), i = 1, . . . , n − 1, its eigenvalues. Note that if̄f denotes
the 1-homogeneous extension off to R

n andx ∈ R
n \ {0}, then the set of eigenvalues of the

Euclidean Hessian matrix of̄f atx, denoted byD2f̄(x), is {λ1(u), . . . , λn−1(u), 0}, whereu =
x/‖x‖ ∈ S

n−1. In particular, the convexity of̄f is equivalent to the fact thatQ(f, u) is positive
semi-definite for everyu (see [3, Appendix]).

To state our main results we need the following definition.

Definition 1.1. Letf ∈ C2(Sn−1) andi ∈ {1, . . . , n− 1}. We say thatf satisfies condition(M)i
if for everyu ∈ S

n−1 andI ⊂ {1, . . . , n− 1} with |I| = n− i, we have

(5)
∑

i∈I

λi(u) ≥ 0,

where|I| denotes the cardinality ofI.
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In other words, for any choice of(n − i) eigenvalues ofQ(f, u), their sum is non-negative.
Note that iff satisfies(M)i, for somei, then it also satisfies(M)j for everyj ≤ i. The following
result asserts that condition(M)i is equivalent to monotonicity ofF.

Theorem 1.2. Let f ∈ C2(Sn−1) and i ∈ {1, . . . , n − 1}. Then the functionalF defined by(2)
satisfies(3) if and only iff satisfies condition(M)i.

In the casei = n − 1 condition (M)i amounts to the fact that each eigenvalue must be
non-negative, that is,Q(f, u) is positive semi-definite everywhere onSn−1, and then the 1-
homogeneous extension̄f of f is convex. But this in turn is equivalent to saying thatf is a
support function. Hence we have an alternative proof of the result of McMullen [8], at least in
the smooth case, but our procedure extends to the general case f ∈ C(Sn−1), as the Theorem 1.4
shows.

In the other limiting case,i = 1, condition (5) means that the trace ofQ(f, u) is non-negative
for everyu; equivalently,

trace(D2f̄(x)) = ∆f̄(x) ≥ 0 for all x 6= 0,

where∆ denotes the Euclidean Laplace operator, i.e.,f̄ is a subharmonic function inRn \ {0}.
In general, condition (5) is related to the so-calledr-convexity off or, more precisely, of its

1-homogeneous extension. We recall that a functiong ∈ C2(Ω), whereΩ is an open subset ofRn,
is said to bek-convex, for somek ∈ {1, . . . n}, if for everyx ∈ Ω and forj = 1, . . . , k the jth
elementary symmetric function of the eigenvalues ofD2g(x) is non-negative. In particular, it can
be seen thatn-convexity is equivalent to the usual convexity. It is known(see for instance [10],
Prop. 1.3.3) that ifg is k-convex, then, for everyx ∈ Ω and for every choice ofn− k+ 1 distinct
eigenvalues ofD2g(x), their sum is non-negative. Hence we have the following corollary.

Corollary 1.3. Let i ∈ {1, . . . , n − 1}. Let f ∈ C2(Sn−1), and let f̄ be its 1-homogeneous
extension. Iff̄ is i-convex inRn \ {0}, then the functional defined by(2) is monotonic.

Theorem 1.2 is complemented by the following statement concerning the case in whichf is
just continuous.

Theorem 1.4. Let f ∈ C(Sn−1) and leti ∈ {1, . . . , n − 1}. Then the functionalF defined by
(2) satisfies(3), i.e., it is monotonic w.r.t. set inclusion, if and only if there exists a sequence
fk ∈ C2(Sn−1), k ∈ N, converging tof uniformly onSn−1 and such thatfk satisfies condition
(M)i for everyk ∈ N.

In Section 4, we consider the case in whichF satisfies a Brunn-Minkowski type inequality and
prove the following theorem.

Theorem 1.5. Let i ∈ {2, . . . , n− 1} and letf ∈ C2(Sn−1) be such that the functionalF defined
by (2) is non-negative and satisfies the Brunn-Minkowski type inequality (4). Thenf satisfies
condition(M)i.

Theorem 1.5 provides anecessarycondition onf so thatF satisfies (4). However we do not
know whether this condition is sufficient as well, apart fromthe casei = n − 1 in which the
answer is affirmative, as proved in [3]. Theorem 1.5 has the following corollary.
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Corollary 1.6. Let i ∈ {2, . . . , n−1} and letf ∈ C2(Sn−1) be such that the functionalF defined
by (2) is non-negative and satisfies the Brunn-Minkowski inequality (4). ThenF is monotonic.

In the case wheref is an even function in the sense thatf(−u) = f(u) for everyu ∈ S
n−1,

and continuous, we have the following extension of Theorem 1.5 and Corollary 1.6 (in the spirit
of Theorem 1.4).

Theorem 1.7. Let i ∈ {2, . . . , n − 1}, let f ∈ C(Sn−1) be even, and letF be defined as in
(2). If F is non-negative and satisfies inequality(4), then there exists a sequence of functions
fk ∈ C2(Sn−1), k ∈ N, which converges uniformly tof on S

n−1 such thatfk satisfies condition
(M)i for everyk ∈ N. In particular,F is monotonic.

In Section 4 we will see that the previous result also holds when the symmetry assumption on
f is replaced by the existence of second weak derivatives in the sense of Sobolev spaces.

Functionals defined by means of (2) can be seen as examples of more general integral function-
als. GivenK1, . . . ,Kn−1 ∈ Kn, letS(K1, . . . ,Kn−1; ·) be their mixed area measure (see Section
2 for precise definitions). Iff ∈ C(Sn−1) andi ∈ {1, . . . , n−1}, let the functionalF : Kn −→ R

be defined by

(6) F(K) =

∫

Sn−1

f(u)S(K[i],K1, . . . ,Kn−i−1; du).

The functional in (2) is recovered from (6) in the special case whereK1, . . . ,Kn−i−1 coincide
with the Euclidean unit ball. Iff is the support function of some convex bodyL, thenF equals
the mixed volume

V (L,K[i],K1, . . . ,Kn−i−1).

In this case,F satisfies a Brunn-Minkowski type inequality for any choice of L,K1, . . . ,Kn−i−1 ∈
Kn. This result is calledgeneral Brunn-Minkowski inequality(see [11, Theorem 6.4.3]). In the
last section of this paper we prove that this property characterizes support functions.

Theorem 1.8. Let f ∈ C(Sn−1) and i ∈ {2, . . . , n − 1} be such that for any choice of convex
bodiesK1, . . . ,Kn−i−1 ∈ Kn the functionalF : Kn −→ R defined by(6) is non-negative and
satisfies

(7) F((1− t)K + tL)1/i ≥ (1− t)F(K)1/i + tF(L)1/i

for all t ∈ [0, 1] andK,L ∈ Kn. Thenf is the support function of a convex body.

The general Brunn-Minkowski inequality (7) for the functionalF defined as in (6) implies that

(8) F((1− t)K + tL) ≥ min{F(K),F(L)}

for all K,L ∈ Kn andt ∈ [0, 1], which is in general weaker than (7). However, in many cases it
can be shown to be equivalent to it by a standard argument based on homogeneity. Note that (8)
does not requireF to be non-negativea priori.

The characterization theorem proved in [3] for the functional F defined by (2) in the case
i = n− 1 was proved under the assumption (8). This leads to the following extension of Theorem
1.8 in which condition (7) of Theorem 1.8 is replaced by (8) and the requirement thatF be non-
negative is removed.
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Theorem 1.9. Let f ∈ C(Sn−1) and i ∈ {2, . . . , n − 1} be such that for any choice of convex
bodiesK1, . . . ,Kn−i−1 ∈ Kn the functionalF : Kn −→ R defined by(6) satisfies(8). Thenf is
the support function of a convex body.

2. PRELIMINARIES

We work in then-dimensional Euclidean spaceRn, n ≥ 2, endowed with the usual scalar
product〈·, ·〉 and norm‖ · ‖. We denote byBn the closed unit ball centered at the origin, and by
S
n−1 the unit sphere. Throughout the paper we will often use the convention that we sum over

repeated indices.

2.1. Convex bodies.As stated in the introduction, forn ≥ 1 we denote byKn the collection of all
non-empty compact convex subsets ofR

n, which are calledconvex bodies, for short. Our reference
text on the theory of convex bodies is the monograph [11] by Schneider. GivenK,L ∈ Kn and
α, β ≥ 0, we writeαK + βL = {αx+ βy |x ∈ K, y ∈ L} for theMinkowski combinationof K
andL with coefficientsα andβ.

ForK ∈ Kn we denote byhK thesupport functionof K, considered as a function on the unit
sphere. We recall that support functions behave linearly with respect to the operations introduced
above. ForK,L ∈ Kn andα, β ≥ 0, we havehαK+βL = αhK + βhL. Another property
of convex bodies which can be expressed in a simple way via support functions is set inclusion.
Indeed, forK,L ∈ Kn,

(9) K ⊂ L if and only if hK ≤ hL onS
n−1.

We will frequently need to work with convex bodies whose boundary is smooth. Let us intro-
duce the following notation. We say that a convex bodyK with non-empty interior is of classC2

+

(briefly, K ∈ C2
+), if its boundary is of classC2 and the Gauss curvature is strictly positive at

every boundary pointx ∈ ∂K.
Forφ ∈ C2(Sn−1), u ∈ S

n−1, andi, j ∈ {1, . . . , n− 1}, we put

qij(φ, u) := φij(u) + δijφ(u),

whereφij denote the second covariant derivatives ofφ, computed with respect to a local orthonor-
mal frame (of vector fields) onSn−1 andδij denote the usual Kronecker symbols. Moreover we
set

(10) Q(φ, u) = (qij(φ, u))
n−1
i,j=1 .

All relevant quantities and conditions will be independentof the particular choice of a local or-
thonormal frame in the following. For the sake of brevity, wesometimes omit the variableu and
simply writeqij(φ) orQ(φ). Note that the matrixQ(φ, u) is symmetricfor everyφ ∈ C2(Sn−1)
and everyu ∈ S

n−1 (see [3, Section 2] for further details). In the special casewhenφ is a support
function, the matrixQ(φ, ·) will play a crucial role in the sequel.

We set
C = {h ∈ C2(Sn−1) | Q(h, u) > 0 for all u ∈ S

n−1} ,

where the notationA > 0 stands for the matrixA being positive definite.
A proof of the following result can be deduced from [11, Sect.2.5].
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Proposition 2.1. If K ∈ C2
+, thenhK ∈ C. Conversely, ifh ∈ C, then there exists a uniquely

determinedK ∈ C2
+ such thath = hK .

Themixed volumeof the convex bodiesK1, . . . ,Kn ∈ Kn is denoted byV (K1, . . . ,Kn). For
themixed area measureof K1, . . . ,Kn−1 ∈ Kn, we writeS(K1, . . . ,Kn−1; ·); see [11, Chapter
5] for the definitions. If in one of these functionals a convexbodyK is repeatedi times, we use
the notationK[i], for instance, we put

V (K[i],Ki+1, . . . ,Kn) := V (K, . . . ,K
︸ ︷︷ ︸

i-times

,Ki+1, . . . ,Kn).

The mixed are measures are Borel measures defined onS
n−1. For the properties of area measures

we refer to [11, Section 5.1]. The close connection between mixed volumes and mixed area
measures is expressed by the relation

V (K1, . . . ,Kn) =
1

n

∫

Sn−1

hKn(u)S(K1, . . . ,Kn−1; du).

For a given a convex bodyK andi ∈ {1, . . . , n − 1}, the ith area measureof K is denoted by
Si(K, ·) and equals the special mixed area measureS(K[i], Bn[n− i− 1]; ·).

For the proof of our main results it will be important to express the density of the area measures
of a convex bodyK in terms of the matrixQ(hK). Before stating such representations we need to
recall some facts about elementary symmetric functions.

2.2. Elementary symmetric functions and densities of area measures. Let N be an integer.
We denote bySym(N) the set ofN ×N symmetric matrices (with real entries). For an element
A ∈ Sym(N) we writeA > 0 andA ≥ 0 if A is positive definite and positive semi-definite,
respectively.

LetA = (ajk)
N
j,k=1 ∈ Sym(N), with eigenvaluesλj , j = 1, . . . , N , and leti ∈ {0, 1, . . . , N}.

We defineSi(A) as theith elementary symmetric functionof the eigenvalues ofA, that is,

Si(A) =
∑

1≤j1<···<ji≤N

λj1 · · · λji if i ≥ 1,

andS0(A) = 1. Note, in particular, thatS1(A) andSN (A) are the trace and the determinant of
A, respectively. An explicit description ofSi(A) in terms of (the entries of)A is provided in (12)
below.

ForN ,A andi as above, and forj, k ∈ {1, . . . , N}, we set

Sjk
i (A) =

∂Si
∂ajk

(A).

TheN ×N matrix consisting of the entriesSjk
i (A) is sometimes called theith cofactor matrix of

A. We will also need the second derivatives ofSi(A) with respect to the entries ofA, which are
denoted by

Sjk,rs
i (A) :=

∂2Si
∂ajk∂ars

(A),

for everyi, j, r, s ∈ {1, . . . , N}.
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LetK be a convex body of classC2
+ andh ∈ C its support function. Fori ∈ {1, . . . , n − 1},

theith area measureSi(K; ·) ofK is absolutely continuous with respect to the Haussdorf measure
Hn−1 restricted toSn−1, and its density is given by the function

u 7→ Si(Q(h), u), u ∈ S
n−1,

(see, for example, [11, 5.3.2] for a proof). In other words, for everyf ∈ C(Sn−1) we have

F(K) =

∫

Sn−1

f(u)Si(Q(h, u))Hn−1(du).

2.3. A lemma of Cheng and Yau. For φ ∈ C2(Sn−1) and i ∈ {1, . . . , n − 1}, consider the
matrix

(11) (Sjk
i (Q(φ, u)))n−1

j,k=1

as a function ofu ∈ S
n−1. The following lemma will be of great importance in the rest of this

paper. It asserts that if we consider any of the columns of (11) as a vector field onSn−1, its
divergence vanishes pointwise. The casek = n − 1 was originally proved by Cheng and Yau in
[1].

Lemma 2.2. Letφ ∈ C3(Sn−1) andi ∈ {1, . . . , n − 1}. Then, for everyk ∈ {1, . . . , n− 1},

n−1∑

j=1

(

Sjk
i (Q(φ, u))

)

j
= 0 for all u ∈ S

n−1.

We will also need a further generalization of Lemma 2.2. Letφ,ψ ∈ C3(Sn−1). Then, for
u ∈ S

n−1, we define the matrixM =M(u) = (mjk(u))j,k=1,...,n−1 by

mjk(u) = Sjk,rs
i (Q(φ, u))qrs(ψ, u)

(remember that we use the summation convention).

Lemma 2.3. In the above notation, for everyk ∈ {1, . . . , n− 1},

n−1∑

j=1

(mjk(u))j = 0 ∀u ∈ S
n−1 .

Proof. The proof follows the argument used in the proof of [4, Lemma 1]. We use an explicit
formula for theith cofactor matrix in terms of the entries of the original matrix (see for instance
[9] or [10]). ForA ∈ Sym(n− 1) we have

(12) Si(A) =
1

i!

∑

δ

(
j1, . . . , ji
k1, . . . , ki

)

aj1k1 · · · ajiki ,

where the sum is taken over all possible indicesjs, ks ∈ {1, . . . , n − 1} (for s = 1, . . . , i)
and the Kronecker symbolδ

(j1,...,ji
k1,...,ki

)
equals1 (respectively,−1) whenj1, . . . , ji are distinct and
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(k1, . . . , ki) is an even (respectively, odd) permutation of(j1, . . . , ji); otherwise it is0. Using the
above equality, we have, for everyj, k, r, s ∈ {1, . . . , n− 1},

Sjk
i (A) =

1

(i− 1)!

∑

δ

(
j, j1, . . . , ji−1

k, j1, . . . , ki−1

)

aj1k1 · · · aji−1ki−1
,

Sjk,rs
i (A) =

1

(i− 2)!

∑

δ

(
r, j, j1, . . . , ji−2

s, k, k1, . . . , ki−2

)

aj1k1 · · · aji−2ki−2
.(13)

For simplicity, in the following formulas we omit the variable u ∈ S
n−1. Then for the matrix

mjk we obtain

mjk =
1

(i− 2)!

∑

r,s

∑

δ

(
r, j, j1, . . . , ji−2

s, k, k1, . . . , ki−2

)

qj1k1(φ) · · · qji−2ki−2
(φ) qrs(ψ) .

Hence

(i− 2)!
n−1∑

j=1

(mjk)j =

=
n−1∑

j=1

∑

r,s

∑
{

δ

(
r, j, j1, . . . , ji−2

s, k, k1, . . . , k i−2

)

×

×
[

(φj1k1j + φjδj1k1)(φj2k2 + φδi2j2) · · · (φji−2ki−2
+ φδji−2ki−2

) + · · ·

+(φj1k1 + φδj1k1) · · · (φji−3ki−3
+ φδji−3ki−3

)(φji−2ki−2j + φjδji−2ki−2
)
]

(ψrs + δrsψ) +

+(φj1k1 + φδj1k1) · · · (φji−2ji−2
+ φδji−2ki−2

)(ψrsj + δrsψj)

}

.

In the last sum, for fixedj1, . . . , ji−2, k1, . . . , ki−2, j, r, s, we split the terms into two types: those
in which there are no third covariant derivatives ofψ, and those where a third derivative ofψ
appears. As for the first type, consider the terms

A = δ1(φj1k1j + φjδj1k1)C and B = δ2(φjk1j1 + φj1δjk1)C ,

where

δ1 = δ

(
r, j, j1, j2, . . . , ji−2

s, k, k1, k2, . . . , ki−2

)

, δ2 = δ

(
r, j1, j, j2, . . . , ji−2

s, k, k1, k2, . . . , ki−2

)

,

and
C = (φj2k2 + φδj2k2) · · · (φji−2ki−2

+ φδji−2ki−2
)(ψrs + δrsψ).

Clearly δ2 = −δ1. On the other hand, the third order covariant derivatives ofa functiong ∈
C3(Sn−1) satisfy the symmetry relations

gαβγ = gβαγ , α , β , γ = 1, . . . , n− 1 ,

and
gαβγ + gγδαβ ≡ gαγβ + gβδαγ , α , β , γ = 1, . . . , n− 1 .
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Consequently,

A+B = δ1C
(
φj1k1j + φjδj1k1 − φjk1j1 − φj1δjk1

)

= δ1C
(
φk1j1j + φjδj1k1 − φjk1j1 − φj1δjk1

)

= δ1C
(
φk1jj1 + φj1δjk1 − φjk1j1 − φj1δjk1

)

= 0.

For any termA (of the mentioned type) in the above sum, there exists another termB, uniquely
determined, which cancels out withA.

Concerning the terms of the second type, consider the summands

E = δ3(ψrsj + ψjδrs)D and F = δ4(ψjsr + ψrδjs)D ,

where

δ3 = δ

(
r, j, j1, j2, . . . , ji−2

s, k, k1, k2, . . . , ki−2

)

, δ4 = δ

(
j, r, j1, j2, . . . , ji−2

s, k, k1, k2, . . . , ki−2

)

,

and
D = (φj1k1 + φδj1k1) · · · (φji−2ki−2

+ φδji−2ki−2
) .

Again, it is clear thatδ3 = −δ4, and by the same reasoning as before we getE + F = 0, which
concludes the proof. �

Remark 2.4. As a consequence of Lemma 2.2, together with the divergence theorem applied
twice on the sphere and the definition (10) of the matrixQ, it is easy to prove that, forh ∈ C and
f, φ ∈ C2(Sn−1),
∫

Sn−1

fSkj
i (Q(h))qkj(φ) dH

n−1 =

∫

Sn−1

(

fφ trace(Skj
i (Q(h))) + fSkj

i (Q(h))φkj

)

dHn−1

=

∫

Sn−1

(

fφ trace(Skj
i (Q(h))) − Skj

i (Q(h))fjφk

)

dHn−1

=

∫

Sn−1

(

fφ trace(Skj
i (Q(h))) + φSkj

i (Q(h))fkj

)

dHn−1

=

∫

Sn−1

φSkj
i (Q(h))qkj(f) dH

n−1.

By Lemma 2.3, the same conclusion holds if we replace the matrix
(

Sjk
i (Q(h))

)

j,k=1,...,n−1
by

the matrix
(

Sjk,rs
i (Q(h))qrs(φ)

)

j,k=1...,n−1
. Note that here we assume thatφ ∈ C2(Sn−1), while

Lemma 2.2 and Lemma 2.3 are stated for functions of classC3. The extension follows by a
straightforward approximation argument.

2.4. Mollification. We recall a standard method to approximate continuous functions on the unit
sphere by smooth functions. Letψ : R → [0,∞) be a function of classC∞ with sprt(ψ) ⊂
[−1, 1] andψ(0) > 0. Then, fork ∈ N, we defineωk : O(n) → [0,∞) by ωk(ρ) := ck ·
ψ(k2 · ‖ρ− id‖2) , whereO(n) is the group of rotations ofRn endowed with the Haar probability
measureν, “id” is the identity element inO(n) andck is chosen such that

∫

O(n) ωk(ρ) ν(dρ) = 1.

As a composition ofC∞ maps,ωk is of classC∞. The following lemma is standard.
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Lemma 2.5. Letf ∈ C(Sn−1). Then, fork ∈ N, the functionfk : Sn−1 → R defined by

(14) fk(u) :=

∫

O(n)
f(ρu)ωk(ρ) ν(dρ) , u ∈ S

n−1 ,

is of classC∞(Sn−1), and the sequence(fk)k∈N converges tof uniformly onSn−1.

3. CONDITIONS FOR MONOTONICITY

In this section we prove Theorems 1.2 and 1.4. We recall thatF is said to be “monotonic”,
whenF is increasing with respect to set inclusion (see (3)).

LetK ∈ Kn be of classC2
+ and leth be its support function, henceh ∈ C. If φ ∈ C2(Sn−1),

then there existsǫ > 0 such that

hs := h+ sφ ∈ C for everys such that|s| ≤ ǫ.

Hence, for everys ∈ [−ǫ, ǫ] there exists a convex bodyKs of classC2
+ such thaths = hKs

(by Proposition 2.1). Note that (9) implies thatφ ≥ 0 if and only if Ks1 ⊂ Ks2 whenever
−ǫ ≤ s1 ≤ s2 ≤ ǫ.

The quantityF(Ks) is well defined for|s| ≤ ǫ, and its derivative ats = 0 is given by

(15)
d

ds
F(Ks)

∣
∣
∣
∣
s=0

=

∫

Sn−1

fSkj
i (Q(h))qkj(φ) dH

n−1.

Next assume thatF is monotonic and letφ be non-negative onSn−1. Thens 7→ F(Ks) is an
increasing function for|s| ≤ ǫ so that

(16)
∫

Sn−1

fSkj
i (Q(h))qkj(φ) dH

n−1 ≥ 0.

Conversely, assume that (16) holds for everyh ∈ C and every non-negativeφ ∈ C2(Sn−1). Let
K andL be convex bodies of classC2

+ such thatK ⊂ L and define

H(s) = F((1− s)K + sL), s ∈ [0, 1].

As above we get

H ′(s) =

∫

Sn−1

fSkj
i (Q(hs))qkj(hL − hK) dHn−1,

wherehs = (1 − s)hK + shL. SinceK ⊂ L, we havehL − hK ≥ 0 on S
n−1. If we apply (16)

with φ = hL − hK , we obtain thatH is increasing. HenceF(K) = H(0) ≤ H(1) = F(L). This
means thatF is monotonic if restricted to convex bodies of classC2

+; but as convex bodies of class
C2
+ are dense inKn andF is continuous, we deduce thatF is monotonic onKn. Thus we have

proved the following statement.

Proposition 3.1. Assume thati ∈ {1, . . . , n − 1} andF is given by(2) with f ∈ C(Sn−1). Then
F is monotonic onKn if and only if

(17)
∫

Sn−1

fSkj
i (Q(h))qkj(φ) dH

n−1 ≥ 0

for all h ∈ C and allφ ∈ C2(Sn−1) with φ ≥ 0 onSn−1.



MONOTONICITY AND CONCAVITY OF INTEGRAL FUNCTIONALS 11

Assume thatf ∈ C2(Sn−1) and thatF is monotonic. Then Remark 2.4 implies that in (17) the
roles off andφ can be interchanged so that

∫

Sn−1

φSkj
i (Q(h))qkj(f) dH

n−1 ≥ 0

for all h ∈ C and allφ ∈ C2(Sn−1) with φ ≥ 0 on S
n−1. From this we infer the pointwise

condition

(18) Skj
i (Q(h, u))qkj(f, u) ≥ 0

for all h ∈ C andu ∈ S
n−1.

The converse is obviously true as well, that is, (18) impliesthe integral condition (17).

Proposition 3.2. Assume thati ∈ {1, . . . , n− 1} andF is given by(2) with f ∈ C2(Sn−1). Then
F is monotonic onKn if and only if (18)holds.

In order to further investigate condition (18), we need the following result.

Lemma 3.3. LetA ∈ Sym(n − 1), A > 0, and letu ∈ S
n−1. Then there exists a (symmetric)

convex bodyK ∈ Kn of classC2
+ such that

Q(hK , u) = A.

Proof. We first consider the caseu = (0, . . . , 0, 1) andA = diag{A1, . . . , An−1}, Ak > 0 for
everyk = 1, . . . , n− 1. We setAn = 1. The function̄h : Rn → R defined by

h̄(x) = h(x1, . . . , xn) =

(
n∑

k=1

Ak x
2
k

)1/2

is convex, and it is the 1-homogeneous extension of the support functionh = hE of an ellipsoid
E . Forx 6= 0 we have

∂h̄

∂xi
(x) =

Ai xi
h̄(x)

and
∂2h̄

∂ xi∂ xj
(x) =

Aiδij

h̄(x)
−
AiAjxixj

h̄3(x)
.

The (Euclidean) Hessian matrix ofh̄ atu is

D2h̄(u) =










A1 0 . . . 0 0
0 A2 . . . 0 0
...

...
.. . 0 0

0 . . . 0 An−1 0
0 0 · · · 0 0










.

To compute the covariant derivatives ofh, we can use the usual partial derivatives ofh̄ (see [11,
§2.5] and also [3, Appendix A.2]) to obtain that

Q(h, u) = diag{A1, . . . , An−1},
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which finishes the proof in the case whereA > 0 is diagonal andu = (0, . . . , 0, 1). In the general
case, letT be an orthogonal(n − 1) × (n − 1) matrix such thatTAT t = diag{A1, . . . , An−1}.
Choose a coordinate system such thatu = T ((0, . . . , 0, 1)), and repeat the above construc-
tion of the ellipsoidE for the matrixTAT t with respect to such a system. Then we have that
TAT t = Q(h, (0, . . . , 0, 1)). Using again the Euclidean derivatives to calculate the covari-
ant derivatives (see [11,§2.5] and also [3, Appendix A.2]), it is not difficult to see that A =
T tQ(h, (0, . . . , 0, 1))T = Q(h, T (0, . . . , 0, 1)) = Q(h, u), which concludes the proof. �

By Proposition 3.1 and the above lemma, we immediately obtain the following result.

Proposition 3.4. Assume thati ∈ {1, . . . , n− 1} andF is given by(2) with f ∈ C2(Sn−1). Then
F is monotonic inKn if and only if

(19) Skj
i (A)qkj(f, u) = tr((Skj

i (A)) ·Q(f, u)) ≥ 0

for all A ∈ Sym(n− 1), A > 0, andu ∈ S
n−1.

Next we further study condition (19). LetN = n−1. Given the matrixB = diag{b1, . . . , bN},
we write diag{b̂j} to denote the(N − 1) × (N − 1) matrix diag{b1, . . . bj−1, bj+1, . . . , bN}
obtained fromB by removingbj from the diagonal. We notice, that ifA ∈ Sym(N) has the

eigenvaluesλ1, . . . , λN , then the matrix(Skj
i (A)) has the eigenvalues∂Si(A)

∂λℓ
= Si−1(diag{λ̂ℓ}),

ℓ = 1, . . . , N (see [10, Proposition 1.4.1]). For a fixedu ∈ S
n−1, we denote byM the matrix

Q(f, u) ∈ Sym(N). By a proper choice of the coordinate system, we may assume that M is
diagonal,M = diag{µ1, . . . , µN}, and that(Skj

i (A)) is diagonal as well. Therefore we can
restate condition (19) in the form

N∑

j=1

µjSi−1(diag{λ̂j}) = tr((Skj
i (A))M) ≥ 0

for everyA = diag {λ1, . . . , λN} > 0.
By a standard continuity argument the latter is equivalent to

(20)
N∑

j=1

µjSi−1(diag{λ̂j}) = tr((Skj
i (A))M) ≥ 0

for everyA = diag {λ1, . . . , λN} ≥ 0.
Using its equivalent form (20), we will prove that (19) for the matrixM is equivalent to condi-

tion (Mi) expressed by (5) in the introduction.

Lemma 3.5. Let i ∈ {1, . . . , N} and letM ∈ Sym(N). Then condition(20)holds if and only if

(21)
∑

j∈J

µj ≥ 0

for all J ⊂ {1, . . . , N} of cardinality |J | = N − i+ 1.

Proof. It is straightforward to prove that condition (20) implies (21) by evaluating the inequality
for positive semidefinite matricesA = diag{λ1, . . . , λN} with λk ∈ {0, 1} for k = 1, . . . , N .
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Indeed, it is enough to consider all such matrices whereN − i+1 elements in the diagonal vanish
and the remainingi− 1 entries are equal to one.

For the converse, observe that
N∑

j=1

µjSi−1(diag {λ̂j}) =

N∑

j=1

µj
∑

|I|=i−1

[(
∏

i∈I

λi

)

1{j /∈I}

]

=
∑

|I|=i−1

N∑

j=1

µj1{j /∈I}

(
∏

i∈I

λi

)

=
∑

|I|=i−1

(
∏

i∈I

λi

)
N∑

j=1

µj1{j /∈I}

=
∑

|I|=i−1

(
∏

i∈I

λi

)
∑

j /∈I

µj .

Sinceλk ≥ 0 for all 1 ≤ k ≤ N , using (21) we obtain (20). �

The above lemma and Proposition 3.4 provide the proof of Theorem 1.2.

Next we proceed to prove Theorem 1.4 with the help of the regularization procedure presented
in the previous section.

Proof of Theorem 1.4.We assume that the functionalF is defined as in (2) withf ∈ C(Sn−1) and
that it is monotonic. Then, for everyk ∈ N, let fk be defined by (14) as in Lemma 2.5 and letFk

be the functional given by (2) withf replaced byfk. ThenFk is monotonic as well. Indeed, letK
andL be convex bodies of classC2

+ with support functionshK andhL, respectively, and assume
thatK ⊂ L. Then

Fk(K)− Fk(L)

=

∫

Sn−1

fk(u)(Si(Q(hK , u))− Si(Q(hL, u))H
n−1(du)

=

∫

O(n)
ωk(ρ)

∫

Sn−1

f(ρu)(Si(Q(hK , u)) − Si(Q(hL, u))H
n−1(du) ν(dρ).

Now, for eachρ ∈ O(n), we have
∫

Sn−1

f(ρu)(Si(Q(hK , u)) − Si(Q(hL, u))H
n−1(du)

=

∫

Sn−1

f(u)(Si(Q(hK , ρ
−1u))− Si(Q(hL, ρ

−1u))Hn−1(du)

=

∫

Sn−1

f(u)(Si(Q(hρK , u)) − Si(Q(hρL, u))H
n−1(du)

= F (ρK)− F (ρL) ≤ 0,

where in the last inequality we have usedρK ⊂ ρL and the monotonicity ofF.
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This proves thatFk is monotone for everyk ∈ N. Sincefk is of classC2(Sn−1), it satisfies
condition(M)i by Theorem 1.2, and this concludes the proof of Theorem 1.4.

�

Remark 3.6. In the introduction, we already pointed out the meaning of condition (M)i in the
special casesi = n− 1 andi = 1. Let us consider the casei = 2. It can be proved that for every
A andB in Sym(n − 1) we have

tr(Skj
2 (A) ·B) = tr(Skj

2 (B) ·A).

Hence, iff ∈ C2(Sn−1), condition (19) becomes

tr(A(Skj
2 (Q(f, u)))) ≥ 0 for everyA ∈ Sym(n− 1), A > 0,

for everyu ∈ S
n−1. This is equivalent to the condition(Skj

2 (Q(f, u))) ≥ 0 for everyu ∈ S
n−1.

4. CONDITIONS FOR CONCAVITY

This section is devoted to the proof of Theorem 1.5 and some ofits extensions. We consider
a functionalF of the form (2), and we assume thatF is non-negative onKn and satisfies the
Brunn-Minkowski inequality

(22) F((1− t)K + tL)1/i ≥ (1− t)F(K)1/i + tF(L)1/i

for all K,L ∈ Kn and t ∈ [0, 1]. As noted in the introduction, ifi = 1 thenF is linear with
respect to Minkowski addition and (22) is satisfied (with equality) for everyf . Moreover, the case
i = n − 1 has been settled in [3]. Hence we will consider the cases where 2 ≤ i ≤ n − 2 in the
following.

Proof of Theorem 1.5.As a first step towards the proof, we show that ifF is not identically zero,
thenF(K) > 0 for everyK ∈ C2

+. Indeed, asC2
+ bodies are dense inKn andF is continuous,

there exists at least one of them, denoted byK0, such thatF(K0) > 0. On the other hand, for any
otherK ∈ C2

+, a suitable rescaled version ofK0 is asummandof K, i.e., there existsK ′ ∈ Kn

andλ ∈ (0, 1) such thatK = (1− λ)K ′ + λK0 (see [11, Corollary 3.2.13]). From (22) it follows
immediately thatF(K) ≥ λiF(K0) > 0. On the other hand, ifF is identically zero, then, in
particular, it is monotonic so that condition(M)i holds (cf. Theorem 1.2). From now on we will
assume thatF is strictly positive forC2

+ convex bodies.

ConsiderK ∈ Kn of classC2
+ and denote byh its support function, thenh ∈ C. For φ ∈

C∞(Sn−1), let ǫ > 0 be such that

hs := h+ sφ ∈ C for everys such that|s| ≤ ǫ.

Fors ∈ [−ǫ, ǫ] letKs ∈ C be such thaths = hKs . We compute the first and second derivatives of
H(s) := F(Ks) ats = 0. In fact, we already saw in (15) that

H ′(s) =

∫

Sn−1

fSkj
i (Q(hs))qkj(φ) dH

n−1
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(recall that we use the convention that we sum over repeated indices). Asf ∈ C2(Sn−1), applying
Lemma 2.2 to the last equality we get

H ′(s) =

∫

Sn−1

φSkj
i (Q(hs))qkj(f) dH

n−1.

Differentiating once more with respect tos (ats = 0) and using the notation introduced in Section
2.2, we obtain

H ′′(0) =

∫

Sn−1

φSkj,rs
i (Q(h))qkj(f)qrs(φ) dH

n−1.

SinceK(1−λ)s+λs′ = (1 − λ)Ks + λKs′ , inequality (22) yields that the functions 7→ G(s) :=

H(s)1/i is concave fors ∈ [−ǫ, ǫ]. SinceF(K) > 0, H(0) > 0 andG is twice differentiable at
s = 0, we conclude thatG′′(0) ≤ 0, and hence

H(0)H ′′(0)−
i− 1

i
H ′(0)2 ≤ 0.

This implies

F(K) ·

∫

Sn−1

φSkj,rs
i (Q(h))qkj(f)qrs(φ) dH

n−1

≤
i− 1

i

(∫

Sn−1

φSkj
i (Q(h))qkj(f) dH

n−1

)2

(23)

for everyh ∈ C andφ ∈ C2(Sn−1). For brevity, we set

(24) M = (mrs(u))r,s=1,...,n−1 := F(K) ·
(

Skj,rs
i (Q(h, u))qkj(f, u)

)

r,s=1,...,n−1

for u ∈ S
n−1. Integrating by parts and using Lemma 2.3, we rewrite (23) inthe form

(25)
∫

Sn−1

φ2trace(M) dHn−1 ≤

∫

Sn−1

mrsφrφs dH
n−1 +

(∫

Sn−1

φg dHn−1

)2

,

for everyφ ∈ C∞(Sn−1), where

(26) g(u) =

√

i− 1

i
Skj
i (Q(h, u))qkj(f, u) , u ∈ S

n−1.

The next step, which is the crucial part of the proof, is to show that (25) implies the pointwise
matrix condition

(27)
(

Skj,rs
i (Q(h, u))qkj(f, u)

)

r,s=1,...,n−1
≥ 0

for all u ∈ S
n−1. For this, we need a result similar to Lemma 3.3 in [3], which is Lemma 4.1

presented at the end of this proof. This result applied to (25) immediately gives (27). In particular,
asQ(h) ≥ 0 onS

n−1, we get

Skj,rs
i (Q(h, u))qkj(f, u)qrs(h, u) ≥ 0

for all u ∈ S
n−1. On the other hand, by the homogeneity of the elementary symmetric functionSi

and its derivatives, we have

Skj,rs
i (Q(h))qrs(h) = c · Skj

i (Q(h))
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for some constantc > 0 and for everyk, j ∈ {1, . . . , n− 1}. Hence

Skj
i (Q(h, u))qkj(f, u) ≥ 0, u ∈ S

n−1,

for everyh ∈ C, that is, condition (18), which is equivalent to the monotonicity of F and also to
condition(M)i (see Proposition 3.1 and comments below). Hence Theorem 1.5is proved.

�

Lemma 4.1. For r, s ∈ {1, . . . , n − 1} andmrs ∈ C(Sn−1) let M := (mrs)r,s=1,...,n−1 and
g ∈ C(Sn−1). If inequality (25) holds for everyφ ∈ C∞(Sn−1), thenM(u) ≥ 0 for every
u ∈ S

n−1.

The proof follows the lines of that of Lemma 3.3 in [3]; we provide it for the reader’s conve-
nience.

Proof. By standard approximation (25) can be extended to everyφ ∈ C(Sn−1) which is Lipschitz
onSn−1 (interpreting the first derivatives ofφ as functions definedHn−1-a.e. onSn−1).

We proceed by contradiction. Let us assume there existū ∈ S
n−1 and v̄ = (v̄1, . . . , v̄n−1) ∈

R
n−1 such that

n−1∑

r,s=1

mrs(ū)v̄r v̄s < 0 .

Without loss of generality we may assumeū = (0, . . . , 1) andv̄ = (1, . . . , 0). Then we have

n−1∑

r,s=1

mrs(ū)v̄rv̄s = m11(ū) < 0 .

We identifyH := {x = (x1, . . . , xn) ∈ R
n : xn = 0} with R

n−1 and, forρ ∈ (0, 1), we set

Dρ : = {(x1, . . . , xn−1) ∈ R
n−1 : |xi| ≤ ρ , i = 1, . . . , n− 1} ,

D̃ρ : = {u = (u1, . . . , un) ∈ S
n−1 : un > 0 , (u1, . . . , un−1) ∈ Dρ} .

We construct a Lipschitz functionφ such that inequality (25) fails to be true. Define firstḡ :
[−1, 1] → R+ asḡ(t) = 1 − |t|, and denote byg(t) the periodic extension of̄g to the whole real
line. Let ǫ > 0 and definegǫ(x) = ǫg(x/ǫ). Notice thatgǫ ց 0 uniformly onR, asǫ tends to0.
Let

G(t) :=







1, for t ∈ [−1/2, 1/2],
0, for |t| ≥ 1,
linear extension, otherwise.

ThenG is a bounded Lipschitz function inR. Let us fixρ ∈ (0, 1). The function

Φǫ(x1, . . . , xn−1) = gǫ(x1)G(x1/ρ) . . . G(xn−1/ρ) , (x1, . . . , xn) ∈ Dρ,

is a bounded Lipschitz function inDρ andsprt(Φǫ) ⊂ Dρ. Fork 6= 1 we have

∂Φǫ

∂xk
(x1, . . . , xn−1) =

1

ρ
gǫ(x1)G

′(xk/ρ)
∏

j 6=k

G(xj/ρ) ,
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for Hn−1-a.e.(x1, . . . , xn−1) ∈ Dρ. AsG ≤ 1, |G′| ≤ 2 and|gǫ| ≤ ǫ in R,
∣
∣
∣
∣

∂Φǫ

∂xk

∣
∣
∣
∣
≤

2ǫ

ρ
Hn−1-a.e. inDρ,

and then

(28) lim
ǫց0

∂Φǫ

∂xk
= 0 , Hn−1-a.e. inDρ.

On the other hand, fork = 1 and forHn−1-a.e.(x1, . . . , xn−1) ∈ Dρ

∂Φǫ

∂x1
(x1, . . . , xn−1) =

1

ρ
gǫ(x1)G

′(x1/ρ)
∏

j>1

G(xj/ρ) + g′ǫ(x1)
n−1∏

j=1

G(xj/ρ) .

As |g′ǫ| = 1 holdsH1-a.e. inR, we get

(29)

∣
∣
∣
∣

∂Φǫ

∂x1

∣
∣
∣
∣
(x1, . . . , xn−1) −→

n−1∏

j=1

G(xj/ρ) for Hn−1-a.e.(x1, . . . , xn−1) ∈ Dρ,

asǫց 0. In particular, the above limit equals oneHn−1-a.e. inDρ/2. Consider the function

φǫ(u) = φǫ(u1, . . . , un) := Φǫ(u1, . . . , un−1) , u ∈ D̃ρ ,

and extendφǫ to be zero in the rest of the unit sphereSn−1. In the sequel, foru = (u1, . . . , un) ∈

D̃ρ, we setu′ = (u1, . . . , un−1) ∈ Dρ. Asρ < 1, the support ofφǫ is contained in the open hemi-
sphereSn−1 ∩ {xn > 0}. We may takeρ small enough such that there exists a local orthonormal
frame of coordinates oñDρ. Taking covariant derivatives with respect to this frame, by (25) we
have
∫

Sn−1

φ2ǫ trace (M) dHn−1(u) ≤

∫

Sn−1

n−1∑

j,k=1

(φǫ)j(φǫ)kmjk dH
n−1 +

(∫

Sn−1

φǫg dH
n−1

)2

.

SinceΦǫ converges to zero uniformly asǫ ց 0, the same is valid forφǫ, hence

(30) 0 ≤ lim inf
ǫց0

∫

Sn−1

n−1∑

j,k=1

mjk(φǫ)j(φǫ)k dH
n−1 .

The covariant derivatives ofφǫ can be computed in terms of partial derivatives ofΦ with respect
to Cartesian coordinates onDρ; in particular, there exists a(n − 1) × (n − 1) matrix C =
(crs)r,s=1,...,n−1, depending onu, with crs ∈ C(Dρ) for r, s = 1, . . . , n− 1, such that

(φǫ)j(u) =

n−1∑

s=1

cjs(u
′)
∂Φǫ

∂xs
(u′) , for Hn−1-a.e.u ∈ D̃ρ.

We may assume thatC(ū′) = C(0, . . . , 0) is the identity matrix. Then, forHn−1-a.e.u ∈ D̃ρ,

n−1∑

j,k=1

mjk(u)(φǫ)j(u)(φǫ)k(u) =
n−1∑

j,k=1

n−1∑

r,s=1

mjk(u)cjs(u
′)ckr(u

′)
∂Φǫ

∂xr
(u′)

∂Φǫ

∂xs
(u′) .
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This expression is bounded, by the boundedness of the partial derivatives ofΦǫ. Moreover, by (28)
and (29),

lim
ǫց0

n−1∑

j,k=1

mjk(u)(φǫ)j(u)(φǫ)k(u) =
n−1∏

s=1

G2(us/ρ)
n−1∑

j,k=1

mjk(u)cj1(u
′)ck1(u

′) .

Note that
n−1∑

i,j=1

mij(ū)ci1(ū
′)cj1(ū

′) = m11(ū) < 0 .

Consequently, we may chooseρ sufficiently small so that
n−1∑

i,j=1

mij(u)ci1(u
′)cj1(u

′) ≤ c < 0 , u ∈ D̃ρ .

Then

lim
ǫց0

∫

Sn−1

n−1∑

i,j=1

mij(φǫ)i(φǫ)j dH
n−1

=

∫

Sn−1

n−1∏

i=1

G2(ui/ρ)

n−1∑

i,j=1

mij(u)ci1(u
′)cj1(u

′)Hn−1(du)

=

∫

D̃ρ

n−1∏

i=1

G2(ui/ρ)

n−1∑

i,j=1

mij(u)ci1(u
′)cj1(u

′)Hn−1(du)

≤

∫

D̃ρ/2

n−1∑

i,j=1

mij(u)ci1(u
′)cj1(u

′)Hn−1(du)

≤ cHn−1(D̃ρ/2) < 0 ,

which contradicts (30). �

Proof of Theorem 1.7.Proceeding as in the first part of the proof of Theorem 1.5 (butwithout
integration by parts), we arrive at the following inequality (see (23))

F(K) ·

∫

Sn−1

fSkj,rs
i (Q(h))qkj(φ)qrs(φ) dH

n−1

≤
i− 1

i

(∫

Sn−1

fSkj
i (Q(h))qkj(φ) dH

n−1

)2

,(31)

for everyh ∈ C and everyφ ∈ C∞(Sn−1). If, in particular,h is even (and hence is the support
function of a centrally symmetric convex body) andφ is odd, then the right hand-side of (31)
vanishes (asf is even), being the integral of an odd function onS

n−1. We may assume, as in the
previous proof, thatF(K) > 0 for everyK ∈ C2

+. Hence we get

(32)
∫

Sn−1

fSkj,rs
i (Q(h))qkj(φ)qrs(φ) dH

n−1 ≤ 0
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for everyh ∈ C even andφ ∈ C∞(Sn−1) odd. Letψ ∈ C∞(Sn−1) be such that its support is
contained in a open hemisphereH+, and letφ : Sn−1 → R be defined by

φ̄(u) =

{

ψ(u), if u ∈ H+,

−ψ(−u), if u ∈ S
n−1 \H+.

Thenφ̄ ∈ C∞(Sn−1) is an odd function. For this choice of̄φ in (32), in view of the symmetry of
f andh, we get

(33)
∫

Sn−1

fSkj,rs
i (Q(h))qkj(ψ)qrs(ψ) dH

n−1 ≤ 0,

for everyψ ∈ C∞(Sn−1) with support contained in an open hemisphere. We can now apply to
f the regularization procedure indicated in Section 2 in a similar way as in the proof of Theorem
1.4. As the left hand-side of (33) is linear with respect tof , we obtain thatfk satisfies (33) as
well, for everyk ∈ N. Note that the functions on which the proof of Lemma 4.1 is based are
all supported in an open hemisphere. Hence we can apply this lemma tofk and conclude that it
satisfies condition (18) for everyh ∈ C even. By Lemma 3.3 (note that the proof of this lemma
requires the use of even functions only) we have that condition (19) holds and then, via Lemma
3.5, condition(M)i holds as well.

�

We conclude this section with the following variant of Theorem 1.5 in which the regularity
assumption onf is weakened, and the symmetry hypothesis appearing in 1.7 isreplaced by the
assumption thatf belongs toW 2,1(Sn−1), the Sobolev space of functions inL1(Sn−1) having
second weak derivatives inL1(Sn−1).

Theorem 4.2. Let i ∈ {1, . . . , n − 1}, let f ∈ W 2,1(Sn−1) be continuous, and letF be defined
as in (2). If F is non-negative and satisfies inequality(4), then there exists a sequencefk ∈
C2(Sn−1), k ∈ N, which converges uniformly onSn−1 to f such thatfk satisfies condition(M)i
for everyk ∈ N. In particular,F is monotonic.

Proof. As in the proof of Theorem 1.5, the validity of Brunn-Minkowski inequality (4) implies
(25), whereM andg, defined by (24) and (26) respectively, involve weak second derivatives off .
Moreover, we can assume thatF is positive on convex bodies of classC2

+. Then inequality (25)
can be restated in the form

∫

Sn−1

φ(u)2 trace
(

Skj,rs
i (Q(h, u))qkj(f, u)

)

Hn−1(du)

−
i− 1

iF (K)

(∫

Sn−1

φ(u)Skj
i (Q(h, u))qkj(f, u)H

n−1(du)

)2

≤

∫

Sn−1

n−1∑

i,j=1

Skj,rs
i (Q(h, u))qkj(f, u)φi(u)φj(u)H

n−1(du),(34)

for all K ∈ Kn of classC2
+ with support functionh and allφ ∈ C∞(Sn−1). Forρ ∈ O(n), ρK

is also of classC2
+ and its support function ish ◦ ρ−1. Applying now (34) withρK, h ◦ ρ−1, and

φ = φǫ ◦ ρ
−1, whereφǫ is as in the proof of Lemma 4.1. Multiplying both sides of (34)with
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the mollifierωl, l ∈ N, integrating over the rotation group and using the rotationinvariance of
Hausdorff measures, we get on the right-hand side

∫

O(n)
ωl(ρ)

∫

Sn−1

n−1∑

i,j=1

Skj,rs
i (Q(h ◦ ρ−1, ρu))qkj(f, ρu)

×((φǫ) ◦ ρ
−1)i(ρu)((φǫ) ◦ ρ

−1)j(ρu)H
n−1(du) ν(dρ)

=

∫

O(n)

∫

Sn−1

n−1∑

i,j=1

Skj,rs
i (Q(h, v))ωl(ρ)qkj(fρ, v)(φǫ)i(v)(φǫ)j(v)H

n−1(dv) ν(dρ)

=

∫

Sn−1

n−1∑

i,j=1

Skj,rs
i (Q(h, v))qkj(fl, v)(φǫ)i(v)(φǫ)j(v)H

n−1(dv).

On the other hand, we can bound the resulting two integrals onthe left-hand side by
∣
∣
∣
∣
∣

∫

O(n)
ωl(ρ)

∫

Sn−1

((φǫ) ◦ ρ
−1)(u))2 trace

(

Skj,rs
i (Q(h ◦ ρ−1, u))qkj(f, u)

)

Hn−1(du) ν(dρ)

∣
∣
∣
∣
∣

≤

∫

O(n)
ωl(ρ)‖φǫ‖

2
L∞(Sn−1)c1(h)‖f‖W 1,2(Sn−1) ν(dρ)

≤ c2(h, f)‖φǫ‖
2
L∞(Sn−1)

and
∣
∣
∣
∣
∣

∫

O(n)
ωl(ρ)

i− 1

iF (ρK)

(∫

Sn−1

(φǫ) ◦ ρ
−1)(u)Skj

i (Q(h ◦ ρ−1, u))qkj(f, u)H
n−1(du)

)2

ν(dρ)

∣
∣
∣
∣
∣

≤

∫

O(n)
ωl(ρ) (min{F (ρK) : ρ ∈ O(n)})−1 ‖φǫ‖

2
L∞(Sn−1)c3(h)‖f‖

2
W 1,2(Sn−1) ν(dρ)

≤ c4(h, f)‖φǫ‖
2
L∞(Sn−1).

The constantsc1, . . . , c4 depend only on the parameters indicated in brackets. Here weuse that the
minimummin{F (ρK) : ρ ∈ O(n)} is positive and depends only onf andK, sinceρ 7→ F (ρK)
is continuous and positive. From‖φǫ‖L∞(Sn−1) → 0 asǫց 0, we now deduce that

lim inf
ǫց0

∫

Sn−1

n−1∑

i,j=1

Skj,rs
i (Q(h, v))qkj(fl, v)(φǫ)i(v)(φǫ)j(v)H

n−1(dv) ≥ 0

for all l ∈ N. Sincefl ∈ C∞(Sn−1), we can apply the argument used in the proof of Lemma 4.1
to see that the matrix

(

Skj,rs
i (Q(h, v))qkj(fl, v)

)

r,s=1,...,n−1

is positive-semidefinite for alll ∈ N, h ∈ C and allv ∈ S
n−1.

From this point, we can proceed as in the proof of Theorem 1.5 after (27), obtaining thatfl
satisfies condition(M)i. �



MONOTONICITY AND CONCAVITY OF INTEGRAL FUNCTIONALS 21

5. PROOF OFTHEOREM 1.9

This section contains the proof of Theorem 1.9, and hence of Theorem 1.8, preceded by an
auxiliary lemma.

For the proof we proceed by induction over the dimensionn ≥ 3. The proof uses in an essential
way the special casei = n− 1 treated in [3].

We start with an auxiliary lemma. For this, letδx denote the Dirac measure with unit mass in
the pointx ∈ R

n. We denote byV E the mixed volume of convex bodies contained inE, defined
onKdimE .

Lemma 5.1. Let E be an(n − 1)-dimensional linear subspace inRn with unit normalu. Let
K1, . . . ,Kn−2 ⊂ E be convex bodies. LetB = Bn ∩ E, whereBn is the Euclidean unit ball in
R
n andR ∈ R,R > 0. If η ⊂ S

n−1 is an arbitrary Borel set, then

S(K1, . . . ,Kn−2, B +R[−en, en]; η)

=
R

n− 1
SE(K1, . . . ,Kn−2; η ∩ E) + V E(K1, . . . ,Kn−2, B)(δu + δ−u)(η).

Proof. Without loss of generality we can assume thatu = en. Using the linearity of the surface
area measures, we have that

S(K1, . . . ,Kn−2, B +R[0, en]; η)

= S(K1, . . . ,Kn−2, B; η) +RS(K1, . . . ,Kn−2, [0, en]; η).

Let L ∈ Kn be an arbitrary convex body with support functionhL andK1, . . . ,Kn−2 ∈ Kn.
Then we have

∫

Sn−1

hL(u)S(K1, . . . ,Kn−2, [0, en]; du)

= nV (L,K1, . . . ,Kn−2, [0, en])

= V E(L|E ,K1|E, . . . ,Kn−2|E)

=
1

n− 1

∫

Sn−1

h(L|E , u)S
E(K1, . . . ,Kn−2; du)

=
1

n− 1

∫

Sn−1

h(L, u)1E(u)S
E(K1, . . . ,Kn−2; du),

where we used [11, (5.68)]. Hence we obtain that

S(K1, . . . ,Kn−2, [0, en]; η) =
1

n− 1
SE(K1, . . . ,Kn−2; η ∩ E).

In order to prove that

S(K1, . . . ,Kn−2, B; η) = V E(K1, . . . ,Kn−2, B) (δen + δ−en) (η)

we observe that for a convex bodyK ⊂ E, it is known (see [11, p. 220-221]) that

S(K[n− 1]; ·) = (δu(·) + δ−u(·))V
E(K).
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ConsideringK =
∑n−2

i=1 αiKi + αn−1B, using the multilinearity of area measures and mixed
volumes, and then comparing corresponding coefficients of both expressions, we obtain

S(K1, . . . ,Kn−2, B; η) = V E(K1, . . . ,Kn−2, B)(δen + δ−en)(η),

which finishes the proof. �

Proof of Theorem 1.9.We proceed by induction onn ≥ 3 with 2 ≤ i ≤ n − 1. The first step of
the induction is the casen = 3, and hencei = 2. More generally, forn = i + 1 ≥ 3, we know
from [3, Theorem 1.1] that the assumption implies thatf is the support function of a convex body.
Notice that in this case the integration defining the functional F involves the usual surface area
measure and there are no other convex bodies.

Now we assume that the result is true for all(n − 1)-dimensional Euclidean subspaces ofR
n

and2 ≤ i ≤ n − 2. We prove that inequality (8) for the functional (6) defined on Kn and with
i ∈ {2, . . . , n−1} implies thatf is a support function. Since the casei = n−1 is already covered
by [3, Theorem 1.1], we can assume that2 ≤ i ≤ n − 2. For this, letf ∈ C(Sn−1) be such that
the functionalF given in (6) satisfies (8), for allK1, . . . ,Kn−i−1 ∈ Kn.

Let E be any(n − 1)-dimensional subspace ofRn. Without loss of generality we can choose
E = {x ∈ R

n : 〈x, en〉 = 0} =: e⊥n and identify it withRn−1. LetB = Bn ∩ E andR ∈ R,
R > 0. ForK,K1, . . . ,Kn−i−2 ∈ Kn−1 (arbitrary) defineF̄ : Kn−1 −→ R by

F(K) =

∫

Sn−1

f(x)S(K[i],K1, . . . ,Kn−i−2, B +R[0, en]; dx).

We notice that as2 ≤ i ≤ n− 2, we haven ≥ 4.
From the assumption (8) onF, it follows thatF satisfies

(35) F((1− t)K + tL) ≥ min
{
F(K),F(L)

}

for all t ∈ [0, 1], K,L ∈ Kn−1, and any choice ofK1, . . . ,Kn−i−2 ∈ Kn−1. Lemma 5.1 shows
that

F(K) =
R

n− 1

∫

Sn−2

f |E(x)S
E(K[i],K1, . . . ,Kn−i−2; dx)

+ (f(en) + f(−en))V
E(K[i],K1, . . . ,Kn−i−2, B),
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and similarly forL and(1 − t)K + tL. We plug this into (35) and divide the resulting inequality
byR. Then, for allK,L ∈ Kn−1 andt ∈ [0, 1], we get

1

R
F((1 − t)K + tL)

=
1

n− 1

∫

Sn−2

f |E(x)S
E(((1 − t)K + tL)[i],K1, . . . ,Kn−i−2; dx)

+
1

R
(f(en) + f(−en))V

E(((1 − t)K + tL)[i],K1, . . . ,Kn−i−2, B)

≥ min

{
1

n− 1

∫

Sn−2

f |E(x)S
E(K[i],K1, . . . ,Kn−i−2; dx)

+
1

R
(f(en) + f(−en))V

E(K[i],K1, . . . ,Kn−i−2, B),

1

n− 1

∫

Sn−2

f |E(x)S
E(L[i],K1, . . . ,Kn−i−2; dx)

+
1

R
(f(en) + f(−en))V

E(L[i],K1, . . . ,Kn−i−2, B)

}

.

WhenR tends to infinity, we obtain that the functional defined onKn−1 and given by

K 7→

∫

Sn−2

f |E(x)S
E(K[i],K1, . . . ,Kn−i−2; dx)

satisfies (8). Hence, the induction hypothesis yields thatf |E is a convex function inE. Since the
same argument works for an arbitrary subspaceE, we conclude thatf is a convex function, that
is, (the homogeneous extension of)f is the support function of a convex body.

�
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[6] H. HADWIGER, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer-Verlag, Berlin-Göttingen-

Heidelberg, 1957.
[7] P. MCMULLEN, Continuous translation invariant valuations on the spaceof compact convex sets, Arch. Math.34

(1980), 377–384.
[8] P. MCMULLEN, Monotone translation invariant valuations on convex bodies, Arch. Math.55 (1990), 595–598.
[9] R. C. REILLY , On the Hessian of a function and the curvatures of its graph,Michigan Math. J.20(1973), 373–383.

[10] P. SALANI , PhD Dissertation Thesis, University of Florence, 1997.
[11] R. SCHNEIDER, Convex Bodies: The Brunn–Minkowski Theory(second extended edition), Cambridge University

Press, Cambridge, 2014.



24 ANDREA COLESANTI, DANIEL HUG AND EUGENIA SAOŔIN GÓMEZ
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