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MONOTONICITY AND CONCAVITY OF INTEGRAL FUNCTIONALS
INVOLVING AREA MEASURES OF CONVEX BODIES

ANDREA COLESANTI, DANIEL HUG AND EUGENIA SAORN GOMEZ

ABSTRACT. For a broad class of integral functionals defined on theespéa-dimensional con-
vex bodies, we establish necessary and sufficient condifimmmonotonicity, and necessary con-
ditions for the validity of a Brunn-Minkowski type inequili In particular, we prove that a Brunn-
Minkowski type inequality implies monotonicity, and thatganeral Brunn-Minkowski type in-
equality is equivalent to the functional being a mixed votum

1. INTRODUCTION

For a broad class of homogeneous functiorfaldefined onkC™, the space otonvex bodies
(non-empty compact convex sets) ¥, a Brunn-Minkowski type inequality of the following
form holds true,

(1) F((1—t)K +tL)Y* > (1 — t)F(K)Y> 4 tF(L)Y

forall K, L € K™ andt € [0,1], where(1—t) K +tL is a Minkowski combination of andZ, and

« is the degree of homogeneity Bf In other words, conditiori{1) states tHat/® is concave on
K™. The archetype of these inequalities is the classical BiMimkowski inequality, in whichF' is
then-dimensional volume functional (Lebesgue measure)agrdn. This inequality is one of the
cornerstones of convex geometry and connects this sulgjeotihy other areas of mathematics.
The interested reader is referred to the survey paper [5]dnyiir. Other important examples
come from the realm of convex geometry itself (intrinsicurks, mixed volumes and many
others) or from analysis (e.g., eigenvalues of ellipticrapm's, various notions of capacities); see
for instance[[2] and [11].

In many remarkable cases, a functioffalvhich satisfies a Brunn-Minkowski type inequality
is accompanied by other significant properties like coritynadditivity, and monotonicity with
respect to set inclusion. One of the purposes of this pageriisestigate the interplay between a
Brunn-Minkowski type inequality and monotonicity for sorimeegral functionals involvingrea
measuresf convex bodies (see Sectioh 2 for definitions and refe®né®r a continuous function
f defined on the unit sphe®®~! of R” and an integei € {1,...,n — 1}, we define

2) K= F(K):= | f(u)Si(K;du),
sn—1

Date April 16, 2018.

2010Mathematics Subject ClassificatioRrimary: 52A20; Secondary: 26D15 49Q20 52A39 52A40.

Key words and phrasesConvex bodies; Brunn-Minkowski inequality; area measuarenotonic functional.
1


http://arxiv.org/abs/1602.05994v1

2 ANDREA COLESANTI, DANIEL HUG AND EUGENIA SAORN GOMEZ

where S;(K;-) denotes theth area measureof K. By the properties of area measures ([11,
Section 5.1]) and the continuity gf, the functionalF' is continuous with respect to the Hausdorff
metric, translation invariant and homogeneous of degiree

In the particular case whergis thesupport functiorof some fixed convex body, the func-
tional F is in fact amixed volumend has two additional interesting properties. The firstosioa
tonicity with respect to set inclusion, which means thatdibrs, L € K™,

(3) KCcL = F(K)<F(L).
SecondF satisfies a Brunn-Minkowski type inequalifyl (1) with= 1, that is,
(4) F((1—t)K +tL)Y" > (1 — t)F(K)Y? 4 tF (L)Y,

forall K,L € K" andt € [0,1]. Since mixed volumes are non-negative, itreroot is well
defined.

For generalf, other than a support function, we cannot exgetb satisfy either[(3) o {4). Let
us examine the case= n — 1. In [8], McMullen proved that, in this casd,](3) implies thats
a support function. A corresponding result for the Brunmbkbiwski inequality has been recently
established in[[3]. There it is shown thai (4) implies tifais a support function. Hence, for
1 =n — 1, both [3) and[(4) are equivalent to the fact thais a mixed volume, and therefore they
are equivalent to each other.

These equivalences are no longer trueifern — 1. For instance wheh= 1, the functionalF
is linear with respect to the Minkowski addition, and, intmanar, it satisfies[(4) for every choice
of f. On the other hand, as we will see in Theofem F.25 not monotonic for every.

In the first part of this paper we find a condition @nrwvhich is equivalent to monotonicity df.
We first present this condition in the smooth case, thatisf fo C2(S"~!). We need to introduce
some notation. Fou € S, we define thén — 1) x (n — 1) matrix

Q(f,u) == (fij(u) + f(u)di)i52L,

wheref;; are the second covariant derivativesfalvith respect to an orthonormal frame Bh~!
andd;; are the usual Kronecker symbols. HencX.f,u) is the spherical Hessian matrix ¢f
atu plus f(u) times the identity matrix (see Sectibh 2 again for detailBhis is a symmetric
matrix, and we will denote by, (u), i = 1,...,n — 1, its eigenvalues. Note that jf denotes
the 1-homogeneous extension pto R™ andz € R™ \ {0}, then the set of eigenvalues of the
Euclidean Hessian matrix gf atz, denoted byD? f(z), is {\1(u), ..., \n_1(u),0}, whereu =
z/||z|| € S*~L. In particular, the convexity of is equivalent to the fact thad( f, ) is positive
semi-definite for every: (see[3, Appendix]).

To state our main results we need the following definition.

Definition 1.1. Let f € C?(S" ') andi € {1,...,n— 1}. We say thaff satisfies conditioriM);

if for everyu € S"~tandl C {1,...,n — 1} with|I| = n — i, we have
(5) > Ai(u) >0,
i€l

where|I| denotes the cardinality af.
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In other words, for any choice df. — i) eigenvalues of)(f, ), their sum is non-negative.
Note that if f satisfies M);, for somei, then it also satisfiedM); for every;j < i. The following
result asserts that conditigiMl); is equivalent to monotonicity df.

Theorem 1.2. Let f € C?(S"') andi € {1,...,n — 1}. Then the functionaF defined by{)
satisfieq[@) if and only if f satisfies conditiofiM);.

In the casei = n — 1 condition (M), amounts to the fact that each eigenvalue must be
non-negative, that isQ(f, ) is positive semi-definite everywhere &%~!, and then the 1-
homogeneous extensiof of f is convex. But this in turn is equivalent to saying thiais a
support function. Hence we have an alternative proof of #salt of McMullen [8], at least in
the smooth case, but our procedure extends to the geneeaf cag’(S* 1), as the Theorein 1.4
shows.

In the other limiting case, = 1, condition [5) means that the trace@f f, ) is non-negative
for everyu; equivalently,

trace(D?f(z)) = Af(z) >0 forallz #0,

whereA denotes the Euclidean Laplace operator, fés,a subharmonic function iR" \ {0}.

In general, condition[(5) is related to the so-calledonvexity off or, more precisely, of its
1-homogeneous extension. We recall that a fungiienC?($2), wheref2 is an open subset &",
is said to bek-convex, for somé € {1,...n}, if for everyxz € Q and forj = 1,...,k the jth
elementary symmetric function of the eigenvaluesdf;(x) is non-negative. In particular, it can
be seen that-convexity is equivalent to the usual convexity. It is knoggee for instance [10],
Prop. 1.3.3) that if is k-convex, then, for every € 2 and for every choice af — &k + 1 distinct
eigenvalues oD?g(z), their sum is non-negative. Hence we have the following ltaumo

Corollary 1.3. Leti € {1,...,n — 1}. Letf € C*(S*"!), and let f be its 1-homogeneous
extension. Iff is i-convex inR™ \ {0}, then the functional defined Iff) is monotonic.

Theorem_1.R is complemented by the following statement eanieg the case in whiclf is
just continuous.

Theorem 1.4.Let f € C(S* ') and leti € {1,...,n — 1}. Then the functionaF defined by
(@) satisfies(@), i.e., it is monotonic w.r.t. set inclusion, if and only ifete exists a sequence
fr € C?(S"1), k € N, converging tof uniformly onS™~! and such thatf;. satisfies condition
(M); for everyk € N.

In Sectior[ 4, we consider the case in whiglsatisfies a Brunn-Minkowski type inequality and
prove the following theorem.

Theorem 1.5.Leti € {2,...,n— 1} and letf € C%(S"~!) be such that the function&@ defined
by (@) is non-negative and satisfies the Brunn-Minkowski typeuakty (4). Then f satisfies
condition(M);.

Theoren_1b provides mecessarycondition onf so thatF satisfies[(4). However we do not
know whether this condition is sufficient as well, apart frtime case = n — 1 in which the
answer is affirmative, as proved [n [3]. Theorem 1.5 has theviing corollary.
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Corollary 1.6. Leti € {2,...,n—1} and letf € C?(S"~1) be such that the function®! defined
by (2) is non-negative and satisfies the Brunn-Minkowski inegqu). ThenF is monotonic.

In the case wherg is an even function in the sense thgt-u) = f(u) for everyu € S"71,
and continuous, we have the following extension of Thedrdinahd Corollary 16 (in the spirit
of Theoreni 1.14).

Theorem 1.7. Leti € {2,...,n — 1}, let f € C(S*!) be even, and IeF be defined as in
(@). If F is non-negative and satisfies inequali@), then there exists a sequence of functions
fr € C%2(S"1), k € N, which converges uniformly tf on S"~! such thatf;, satisfies condition
(M), for everyk € N. In particular, F is monotonic.

In Sectior 4 we will see that the previous result also holdemiine symmetry assumption on
f is replaced by the existence of second weak derivativexis¢hse of Sobolev spaces.

Functionals defined by means bf (2) can be seen as examplesegeneral integral function-
als. Givenky, ..., K, € K", letS(Ky,...,K,_1;-) be their mixed area measure (see Section
[2 for precise definitions). If € C(S*~!)andi € {1,...,n—1}, let the functionaF : K — R
be defined by

© PK) = [ S SKEL Ky ocrsd).

The functional in[(R) is recovered frorl(6) in the specialecashereK, ..., K,_;,_1 coincide
with the Euclidean unit ball. Iff is the support function of some convex boflythenF equals
the mixed volume

V(L,K[i], K1,...,Kn—i—1).
In this caseF satisfies a Brunn-Minkowski type inequality for any choi¢d.oK4, ..., K,_;_1 €
K™. This result is calledyeneral Brunn-Minkowski inequalitfsee [11, Theorem 6.4.3]). In the
last section of this paper we prove that this property charaes support functions.

Theorem 1.8. Let f € C(S" ') andi € {2,...,n — 1} be such that for any choice of convex
bodiesK,,...,K,_;_1 € K" the functionalF : K* — R defined by{) is non-negative and
satisfies

@) F((1—t)K +tL)Y" > (1 - t)F(K)Y? 4 t F(L)Y
forall t € [0,1] and K, L € K™. Thenf is the support function of a convex body.

The general Brunn-Minkowski inequalitlyl(7) for the functa F defined as in(6) implies that
(8) F((1-t)K +tL) > min{F(K),F(L)}

forall K, L € K™ andt € [0, 1], which is in general weaker thanl (7). However, in many cases i
can be shown to be equivalent to it by a standard argument lmasbBomogeneity. Note thdil(8)
does not requir®' to be non-negativa priori.

The characterization theorem proved lin [3] for the funaiioR defined by [(R) in the case
1 = n — 1 was proved under the assumptibh (8). This leads to the failpextension of Theorem
[1.8 in which condition[{[7) of Theoremn 1.8 is replaced bl (8) &me requirement thdf be non-
negative is removed.



MONOTONICITY AND CONCAVITY OF INTEGRAL FUNCTIONALS 5

Theorem 1.9. Let f € C(S"!) andi € {2,...,n — 1} be such that for any choice of convex
bodiesKy, ..., K,_;_1 € K™ the functionalF : K" — R defined by{@) satisfies(8). Thenf is
the support function of a convex body.

2. PRELIMINARIES

We work in then-dimensional Euclidean spad®®, n > 2, endowed with the usual scalar
product(-, -} and norm|| - ||. We denote byB" the closed unit ball centered at the origin, and by
S~ the unit sphere. Throughout the paper we will often use tm¥eation that we sum over
repeated indices.

2.1. Convex bodies. As stated in the introduction, fer > 1 we denote byC™ the collection of all
non-empty compact convex subset®Rdf which are called¢onvex bodiedor short. Our reference
text on the theory of convex bodies is the monograph [11] Byn8icler. Givenk, L € K" and
a,B > 0,wewriteaK + 5L = {ax + By |z € K, y € L} for the Minkowski combinatiof K
and L with coefficientsa and 3.

For K € K™ we denote byix the support functiorof K, considered as a function on the unit
sphere. We recall that support functions behave linearl veispect to the operations introduced
above. ForK,L € K" anda,3 > 0, we haveh,k .31, = ahyg + Shr. Another property
of convex bodies which can be expressed in a simple way vipostifunctions is set inclusion.
Indeed, forK, L € K",

(9) K c L ifandonlyif hx <hgyonS" !

We will frequently need to work with convex bodies whose kaany is smooth. Let us intro-
duce the following notation. We say that a convex bédwith non-empty interior is of class*_%
(briefly, K € Ci), if its boundary is of clas€? and the Gauss curvature is strictly positive at
every boundary point € K.

Forg € C?(S"1),u € S" !, andi,j € {1,...,n — 1}, we put

qij (b, u) == @ij(u) + 6ijd(u),
whereg;; denote the second covariant derivative®pfomputed with respect to a local orthonor-

mal frame (of vector fields) of" ! andJ;; denote the usual Kronecker symbols. Moreover we
set

(10) Q(,u) = (gi(¢,w)} 72, -

All relevant quantities and conditions will be independefthe particular choice of a local or-
thonormal frame in the following. For the sake of brevity, seametimes omit the variabke and
simply write g;;(¢) or Q(¢). Note that the matrix)(¢, u) is symmetridor everys € C?(S*1)
and everyu € S"~! (see(3, Section 2] for further details). In the special aalend is a support
function, the matrix@Q(¢, -) will play a crucial role in the sequel.
We set
C={heC*S" )| Q(h,u) >0 forallu e S" '},

where the notatiom > 0 stands for the matrixl being positive definite.
A proof of the following result can be deduced from][[11, S&ch].
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Proposition 2.1. If K € C?H thenhx € €. Conversely, ifv € €, then there exists a uniquely
determinedk € C?% such thath = hg.

Themixed volumef the convex bodie«y, ..., K,, € K" is denoted by (K, ..., K,). For
themixed area measuref K,...,K,_; € K", we write S(K1, ..., K,_1;-); seel[11, Chapter
5] for the definitions. If in one of these functionals a contdy K is repeated times, we use
the notationK[i], for instance, we put

V(K[i], Kis1,... Kp) = V(K, ..., K,Kis1,...,Kn).
H,—/
i-times

The mixed are measures are Borel measures defin880n For the properties of area measures
we refer to [11, Section 5.1]. The close connection betweetednvolumes and mixed area
measures is expressed by the relation

1
V(Kl,...,Kn):E/ hKn(’u,)S(Kl,...,Kn_l;d’u,).
S§n—1
For a given a convex bodi andi € {1,...,n — 1}, theith area measuref K is denoted by

S;(K,-) and equals the special mixed area measi{é€|[:], B"[n —i — 1];-).

For the proof of our main results it will be important to exggehe density of the area measures
of a convex bodyx in terms of the matrixQ(h k). Before stating such representations we need to
recall some facts about elementary symmetric functions.

2.2. Elementary symmetric functions and densities of area measas. Let V be an integer.
We denote bysym(V) the set ofN x N symmetric matrices (with real entries). For an element
A € Sym(N) we write A > 0 and A > 0 if A is positive definite and positive semi-definite,
respectively.

LetA = (ajk)szl € Sym(N), with eigenvalues\;, j = 1,..., N, and leti € {0,1,...,N}.
We defineS;(A) as theith elementary symmetric functiaf the eigenvalues ofl, that is,

Si(A) = > Ay, (i1
1<j1<<ji<N

andSy(A) = 1. Note, in particular, thas;(A) andSy(A) are the trace and the determinant of
A, respectively. An explicit description of;(A) in terms of (the entries ofjl is provided in[(1R)
below.

For N, A andi as above, and fof, k € {1,..., N}, we set
_0S;
N 8&jk

s1*(4) (4).
The N x N matrix consisting of the entrie%jk(A) is sometimes called thi¢gh cofactor matrix of
A. We will also need the second derivativesSf A) with respect to the entries of, which are
denoted by

. 628,

ST (A) = (A

o) 8ajk8am( )

for everyi, j,r,s € {1,...,N}.
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Let K be a convex body of clas@_% andh € ¢ its support function. Foi € {1,...,n — 1},
theith area measur§;(K; -) of K is absolutely continuous with respect to the Haussdorf oreas
H"~! restricted tS"~!, and its density is given by the function

ur— S;(Q(h),u), uesS

(see, for example [11, 5.3.2] for a proof). In other words,dveryf € C(S"~!) we have

F(K) = F(w)Si(Q(h, w)) H" ™ (du).

S§n—1

2.3. A lemma of Cheng and Yau.For ¢ € C%(S"~!) andi € {1,...,n — 1}, consider the
matrix

(11) (S75(Q(,w))) T3k

as a function of, € S*~!. The following lemma will be of great importance in the rethis
paper. It asserts that if we consider any of the columns$_gf &kla vector field oi$” !, its
divergence vanishes pointwise. The case n — 1 was originally proved by Cheng and Yau in

[1].
Lemma2.2. Lety € C3(S" 1) andi € {1,...,n — 1}. Then, for every: € {1,...,n — 1},

n—1
3 (Sg'k(Q(qs, u))) =0 forall we s,
i=1 !

We will also need a further generalization of Lemima 2.2. et € C3(S*~1). Then, for
u € S, we define the matrin/ = M (u) = (mjg(u))jr=1,. n—1 DY

mk(u) = SI(Q(6, 1)) grs (1, u)

(remember that we use the summation convention).

Lemma 2.3. In the above notation, for evelye {1,...,n — 1},
n—1
Z(m]k(u))] =0 VYuc Sn_l .
j=1

Proof. The proof follows the argument used in the proof(df [4, Lemrha\We use an explicit
formula for theith cofactor matrix in terms of the entries of the original masee for instance
[9] or [10]). For A € Sym(n — 1) we have

j 7"'7]Z
(12) Si Z' Zé<k1 >aj1k1' "k

where the sum is taken over all possible indigest; € {1,...,n — 1} (for s = 1,...,1)
and the Kronecker symbdl(gi’::jfg_) equalsl (respectively,—1) whenjy, ..., j; are distinct and
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(k1,...,k;) is an even (respectively, odd) permutation fff, . . . , j;); otherwise it is0. Using the

above equality, we have, for evejyk: r,s€{1,...,n—1},
ik ]jlv"'>]ll
SiH(A) = 0! (k i E 1>%k1 TG kg
jk,rs _ ; T7j>j1>"'>ji—2 ) o
(13) S;T(A) = (i —2)! Z 5((5.7 ok, .., ki_2>a]1kl Ajioki—o

For simplicity, in the following formulas we omit the vari@b, € S*~!. Then for the matrix
m;;, We obtain

_ 1 r7j7j17"'7ji—2
mjE = m ; Z 5<37 k ki, ... ,ki_2>qj1k1 (¢) o QGioki—o (¢) ‘Jrsw)) .

_n_ T7j>j1>"'>ji—2
a ;;Z{(S(S,k,kl,...,k’i_Q) x

X [(¢j1k1j + ¢j5j1k1)(¢j2k2 + ¢5i2j2) T (¢ji72ki72 + ¢d 'i—2ki—2) +--

+(¢j1k1 + ¢5j1k1) T ((bjikaifB + ¢5ji73ki—3)(¢ji—2ki72j + ¢j5ji72ki72):| (wrs + 5r8¢) +

+(¢j1k1 + (bajlkl) T (¢ji—2ji—2 + @0 ‘i72ki72)(/l/}7”5j + 57“8¢j)}'

In the last sum, for fixed, ..., j;_o2, k1, ..., ki_2,J,7, s, we split the terms into two types: those
in which there are no third covariant derivatives«of and those where a third derivative ¢f
appears. As for the first type, consider the terms

A =01(bjikj + 0j05k,)C and - B = 62(jk,jy + 0510k, )C
T7j7j17j27"'7ji—2 T7j17j7j27"'7ji—2
6 =9 0y =190
! <37k7k17k27"'7ki—2>, 2 <S7k7k17k27---7ki—2>’

C= (¢jzk2 + ¢5j2k2) T (¢ji72ki72 + ¢d 'ifzkifz)(wrs + 57’81/})-
Clearly 6o = —d;. On the other hand, the third order covariant derivativea @iinctiong <
C3(S"~1) satisfy the symmetry relations

where

and

gaﬁ“/:gﬁa’ya 047ﬁ77:17---7n—17

and
ga67+975a659a75+965a77 047/87'7:17---7774_1-
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Consequently,

A+ B =61C(djikj + Di0j1ky — Gikrjr — i1 0jkr)
= 510(¢/€1J1j + 95051k — Pjkajy — ¢j15jk1)
= 61C (Prijjs + D1 Ojky — Pjkrjs — D51 sy )
=0.

For any termA (of the mentioned type) in the above sum, there exists antéhe B, uniquely
determined, which cancels out with
Concerning the terms of the second type, consider the sudBnan

E = 63(¢rsj + ¢j5rs)D and F = 54(7[)3'37" + T;Z)réjs)D

Where . . . . . . . .
2915025+ -50i—2 JsT 015725+ -5 Ji—2
03 =10 g =0
s <37k7k17k27"'7ki—2>7 * <S7k7k17k27---7ki—2>’
and
D = (¢j1k1 + ¢5j1l€1) T (¢ji72k5i72 + ¢d 'i—2ki—2) .

Again, it is clear that; = —d4, and by the same reasoning as before welgjet F' = 0, which
concludes the proof. O

Remark 2.4. As a consequence of Lemrhal2.2, together with the divergdmearém applied
twice on the sphere and the definitibnl(10) of the maf}ixt is easy to prove that, for € ¢ and
f.oe (s,

[ 1sPQua@ = |

S§n—1

( ¢ trace(S; J (Q(R))) +f5fj(Q(h))¢kj) dHr!
/Sn ) (f¢trace (SH(Q(h))) — Sfj(Q(h))fj¢k) -1
L

dtrace(SF (Q(R))) + 65T (Q(M)) fy; ) dH"*
= [ 9SPQUh))aw; (f) dH .

By Lemmal2.8, the same conclusion holds if we replace theixn gk(Q(h))) - , by
Jr=L...,n—=

the matrix(Sgk’”(Q(h))qrs(qs)) . Note that here we assume thiat C?(S"~1), while
7,k=1...n—

Lemmal[2.2 and Lemma 2.3 are stated for functions of ofzés The extension follows by a
straightforward approximation argument.

2.4. Mollification. We recall a standard method to approximate continuousitumgbn the unit
sphere by smooth functions. Lét: R — [0,00) be a function of clas€’> with sprt(y) C
[-1,1] and¥(0) > 0. Then, fork € N, we definew, : O(n) — [0,00) by wr(p) := ¢ -
(k% -||p—id|?), whereO(n) is the group of rotations d&” endowed with the Haar probability
measure/, “id” is the identity element ifD (n) andcy, is chosen such thdb(n) wi(p) v(dp) = 1.
As a composition o> mapswy, is of classC'*°. The following lemma is standard.
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Lemma 2.5. Let f € C(S™1). Then, fork € N, the functionf;, : S"~! — R defined by

(14) Ji(u) = o )f(pU)wk(p)V(dp), uesS" 1,

is of classC®°(S"~1), and the sequendgf)ren converges tgf uniformly onS™—1,

3. CONDITIONS FOR MONOTONICITY

In this section we prove Theorerms11.2 1.4. We recall fha said to be “monotonic”,
whenF is increasing with respect to set inclusion (4ge (3)).

Let K € K™ be of clasxC2 and leth be its support function, hendee €. If ¢ € C?(S*71),
then there exists > 0 such that

hs :=h+s¢ € € foreverys such thats| < e.

Hence, for everys € [—e, €] there exists a convex body, of classC?% such thath; = hg,
(by Proposition 2]1). Note thal(9) implies that > 0 if and only if K, C K,, whenever
—e<s51<s9<e.

The quantityF (K) is well defined forjs| < ¢, and its derivative a¢ = 0 is given by

d

15 —F (K,
(15) JF(K)

Next assume thdf is monotonic and lep be non-negative of”~!. Thens — F(K,) is an
increasing function fofs| < e so that

(16) IS Q)ans (0) aH ! > 0.

Conversely, assume that{16) holds for eviery ¢ and every non-negative ¢ C?(S"~!). Let
K andL be convex bodies of clags? such thatk’ ¢ L and define

H(s)=F((1—-s)K+sL), sel0,1].

= | 187 @)ani(0)dr .
s=0 n—1

As above we get
(s = [ 18E(QUe)arsn — hac) a
Sn—

whereh, = (1 — s)h + shr. SinceK C L, we haveh — hx > 0onS™~L. If we apply [16)
with ¢ = hz, — hx, we obtain thafd is increasing. HencE(K) = H(0) < H(1) = F(L). This
means thaF is monotonic if restricted to convex bodies of class; but as convex bodies of class
C? are dense iK™ andF is continuous, we deduce thBtis monotonic onC”. Thus we have
proved the following statement.

Proposition 3.1. Assume that € {1,...,n — 1} andF is given by(2) with f € C(S"~1). Then
F is monotonic oriC™ if and only if

) [ ISP Q) (9) a1 20

forall h € €and all¢ € C?(S*~ 1) with¢ > 0 onS™—L.
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Assume thaff € C%(S"~1) and thafF is monotonic. Then Remalk 2.4 implies that[inl(17) the
roles of f and¢ can be interchanged so that

L OST@QU)ay (fdH 20

forall h € € and all¢p € C%(S*!) with ¢ > 0 onS*~!. From this we infer the pointwise
condition

(18) S (Q(h,u))gr; (f,u) > 0

forall h € € andu € S,
The converse is obviously true as well, that[is] (18) impifesintegral condition (17).

Proposition 3.2. Assume that € {1,...,n — 1} andF is given by(@) with f € C?(S"~!). Then
F is monotonic oriC™ if and only if (18) holds.

In order to further investigate condition (18), we need tifving result.

Lemma 3.3. Let A € Sym(n — 1), A > 0, and letu € S"~!. Then there exists a (symmetric)
convex bodyK € K of classC? such that
Q(hg,u) = A.

Proof. We first consider the case = (0,...,0,1) andA = diag{A;,..., 4,1}, A > 0 for
everyk =1,...,n — 1. We set4d,, = 1. The functionh : R™ — R defined by

n 1/2
h(z) = h(z1,...,1,) = <Z Ay, wi)
k=1

is convex, and it is the 1-homogeneous extension of the sufiptction h = he of an ellipsoid
E. Forx # 0 we have

871 - AZ' €Ty
95 = )

and -
82h - Azéz] _ AiAjI'iI'j

7202, = T T @
The (Euclidean) Hessian matrix bfatu is

AL 0 ... 0 0
0 A ... 0 0
D*h(u)=| & 0 0
0 ... 0 Ay O
0 0 - 0 0

To compute the covariant derivatives lafwe can use the usual partial derivativeshasee [11,
§2.5] and also[B, Appendix A.2]) to obtain that

Q(h,u) = diag{ A1, ..., An_1},
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which finishes the proof in the case whete> 0 is diagonal and. = (0,...,0,1). In the general
case, letl’ be an orthogonaln — 1) x (n — 1) matrix such that’ AT* = diag{A;,..., A,_1}.
Choose a coordinate system such that= 7'((0,...,0,1)), and repeat the above construc-

tion of the ellipsoid€ for the matrix TAT* with respect to such a system. Then we have that
TAT' = Q(h,(0,...,0,1)). Using again the Euclidean derivatives to calculate theagov
ant derivatives (see [1%2.5] and alsol[B3, Appendix A.2]), it is not difficult to see thd =
T'Q(h, (0,...,0,1)T = Q(h,T(0,...,0,1)) = Q(h,u), which concludes the proof. O

By Propositiori 3.11 and the above lemma, we immediately olike following result.

Proposition 3.4. Assume that € {1,...,n — 1} andF is given by(@) with f € C?(S"*~!). Then
F is monotonic inC™ if and only if

(19) S (A)ar; (fw) = (S} (4)) - Q(f,w) 2 0
forall A € Sym(n — 1), A > 0, andu € S* 1.

Next we further study conditioh (19). L& = n— 1. Given the matrixB = diag{by,...,bnx},
we write diag{b;} to denote the N — 1) x (N — 1) matrix diag{by,...b;_1,bj41,...,bx}
obtained fromB by removingb; from the diagonal. We notice, that # € Sym(N) has the
eigenvalues\;, ..., Ay, then the matrixsfj(A)) has the eigenvalue%%f—f) = S;_1(diag{\s}),
¢ =1,...,N (seel[10, Proposition 1.4.1]). For a fixedc S*~!, we denote byM the matrix
Q(f,u) € Sym(N). By a proper choice of the coordinate system, we may assuaté\this

diagonal, M = diag{ui,...,un}, and that(Sfj(A)) is diagonal as well. Therefore we can
restate conditior (19) in the form

N
> S (diag{A;}) = ({7 (4))M) = 0

j=1

for every A = diag {\1,...,An} > 0.
By a standard continuity argument the latter is equivalent t

N
(20) Y S (diag{As}) = ({7 (A))M) > 0

j=1

forevery A = diag {\1,...,An} > 0.
Using its equivalent forni_(20), we will prove that (19) foetimatrix M/ is equivalent to condi-
tion (M) expressed by (5) in the introduction.

Lemma3.5. Leti € {1,..., N} and letM € Sym(N). Then conditior(20) holds if and only if
(21) > 1 =0

jeJ
forall J C {1,..., N} of cardinality|J| = N —i + 1.

Proof. It is straightforward to prove that condition_(20) impli€&llj by evaluating the inequality
for positive semidefinite matriced = diag{\i,...,Anx} with A\, € {0,1} for k = 1,..., N.
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Indeed, it is enough to consider all such matrices wiérei + 1 elements in the diagonal vanish
and the remaining — 1 entries are equal to one.
For the converse, observe that

N N
Z,ujsi—l(diag {Xy}) = Zﬂj Z [(H Ai) 1{j¢1}]

j=1 j=1 [I|l=1—1 iel

> i pilijgn (H Ai)

[T|=i—1 j=1 iel

= > (HA ) > milgen

[I|=i—1 \iel
> (1) T
[I|=i—1 \d€l j¢l
Since), > 0forall 1 < k < N, using [21) we obtairf(20). O
The above lemma and Proposition]3.4 provide the proof of fidred.2.
Next we proceed to prove Theorémll1.4 with the help of the eegation procedure presented
in the previous section.

Proof of Theorerh I]4Ve assume that the functiorBlis defined as i {2) wittf ¢ C(S"~!) and
that it is monotonic. Then, for evelly € N, let f; be defined by[(14) as in Lemrha R.5 andlet
be the functional given by 12) witli replaced byf,.. ThenF', is monotonic as well. Indeed, I&f
and L be convex bodies of claﬁi with support functiong i andhy,, respectively, and assume
that K C L. Then

Fi(K)—Fy(L)
= £ (Si( Qs u) — Si(Q(hr,w) H™ ™ (du)

gn—1
= /()( )wk(ﬁ) - F(pu)(Si(Q(hx,u)) — Si(Q(hr,u)) H™ *(du) v(dp).
Now, for eachp € O(n), we have

Flpu)(Si(Q(hrc, w)) — Si(Q(hr,u)) H" ™" (du)

Snfl
= [ F)(SQ. ™) = QU ™) ' ()
/ F ) (SH(QUhpi,0)) — Si(QUp, ) HP ™ (du)

= F(pK)— F(pL) <0,

where in the last inequality we have useld C pL and the monotonicity oF.
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This proves thaFy is monotone for every € N. Sincef; is of classC?(S"~1), it satisfies
condition(M); by Theoreni_LI2, and this concludes the proof of Thedrein 1.4.

O

Remark 3.6. In the introduction, we already pointed out the meaning ofdition (M), in the
special cases= n — 1 andi = 1. Let us consider the cage= 2. It can be proved that for every
A andB in Sym(n — 1) we have

tr(Sh7(A) - B) = tr(S57(B) - A).
Hence, iff € C2(S"~1), condition [19) becomes
tr(A(SY(Q(f,u)))) >0 foreveryA € Sym(n —1), A > 0,

for everyu € S"~!. This is equivalent to the conditiof®5’ (Q(f,u))) > 0 for everyu € S"~ 1.

4. CONDITIONS FOR CONCAVITY

This section is devoted to the proof of Theorem 1.5 and sonies @ktensions. We consider
a functionalF' of the form [2), and we assume thBtis non-negative ork’" and satisfies the
Brunn-Minkowski inequality

(22) F((1-t)K +tL)Y" > (1 — t)F(K)Y? 4 tF (L)Y

forall K,L € K™ andt € [0,1]. As noted in the introduction, if = 1 thenF is linear with
respect to Minkowski addition and (22) is satisfied (with @&iwy) for every f. Moreover, the case
i = n — 1 has been settled inl[3]. Hence we will consider the casesenher i < n — 2 in the
following.

Proof of Theoreri T]15As a first step towards the proof, we show thaFifs not identically zero,
thenF(K) > 0 for everyK € C?. Indeed, ag”? bodies are dense " andF is continuous,
there exists at least one of them, denotedslay such thaiF'(Kj) > 0. On the other hand, for any
otherK ¢ C-Qw a suitable rescaled version A% is asummandf K, i.e., there existg(’ ¢ K"
and € (0,1) such that = (1 — \)K’ + AK (see[[11, Corollary 3.2.13]). From (22) it follows
immediately thafF (K) > M\'F(Ky) > 0. On the other hand, iF is identically zero, then, in
particular, it is monotonic so that conditigdM); holds (cf. Theorerh 1]12). From now on we will
assume thaF is strictly positive for(]?r convex bodies.

ConsiderK € K" of cIassCi and denote by: its support function, theh € €. For¢
C>(S"~1), lete > 0 be such that

hs :=h+s¢p € € foreverys such thats| < e.
Fors € [—¢, €] let K € € be such thabs = hx,. We compute the first and second derivatives of
H(s) := F(K,) ats = 0. In fact, we already saw if_(15) that

H(s) = | £S5 (Qhs)aws(0) dH"™
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(recall that we use the convention that we sum over repeaticks). Asf € C%(S*~1), applying
Lemmd 2.2 to the last equality we get

H(s)= | 657 (Qhs))as(f) dH""
Differentiating once more with respectidat s = 0) and using the notation introduced in Section
[2.2, we obtain

H"(0 / SET (QUR)) iy (F)aoa() AH .

SinceK(1_ystas = (1 = A)Ks + MKy, inequality [22) yields that the function— G(s) :=

H(s)'/"is concave fors € [—¢,¢]. SinceF(K) > 0, H(0) > 0 andG'is twice differentiable at
s = 0, we conclude that”(0) < 0, and hence

H(0)H"(0) — : Loy <o.
This implies
F(E) - | 057" (Q))a (Hars(9) dr™™
- ) 2
23 < ([ est@uan )

for everyh € ¢ and¢ € C%(S"~1). For brevity, we set
@4) M= (@)t = FE) - (SP7Q w)a (Fw)

for u € S"~1. Integrating by parts and using Lemmal2.3, we rewfité (23hénform

2
(25) ¢ trace(M) dH" ™" < / Mrsdr s d%"—1+< ¢gd%n—1> ,
Sn—t Sn—1 §n—1
for everyp € C°°(S"~1), where
—
(26) glw) = /== QM w)ars (fu), we S

The next step, which is the crucial part of the proof, is tovsliieat [25) implies the pointwise
matrix condition

27) (SH97(Qh,w)ars (£, ) >0

r,s=1,...n—1
for all w € S"~'. For this, we need a result similar to Lemma 3.3[ih [3], whish.emmd 4.1l
presented at the end of this proof. This result applied thif@Bediately gives (27). In particular,
asQ(h) > 0onS"™ !, we get
SEPT(Q(hy )k (f, ) grs(hyw) > 0

for all w € S*~1. On the other hand, by the homogeneity of the elementary strimiunctions;
and its derivatives, we have

SEIT(Q(h))grs(B) = ¢~ SF(Q(h))
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for some constant > 0 and for everyk, j € {1,...,n — 1}. Hence
Sy (Q(h,w)ar; (fru) 2 0, wes,

for everyh € €, that is, condition[(18), which is equivalent to the monatdp of F and also to
condition(M); (see Proposition 3.1 and comments below). Hence Theloréim firbved.

O
Lemma 4.1. For r,s € {1,...,n — 1} andm,s € C(S"7!) let M := (mys)rs=1,..n—1 and
g € C(S™1). If inequality (25) holds for everyp ¢ C>(S"~!), then M (u) > 0 for every
we S,

The proof follows the lines of that of Lemma 3.3 [ [3]; we pide it for the reader’s conve-
nience.

Proof. By standard approximatiof (25) can be extended to eyeryC(S™~!) which is Lipschitz
onS™~! (interpreting the first derivatives af as functions define@"'-a.e. orS*1).

We proceed by contradiction. Let us assume there axistS*~! ando = (v1,...,0,_1) €
R™~! such that
n—1
Z Mys (1) 0,05 < 0.
r,s=1
Without loss of generality we may assume-= (0, ...,1) ando = (1,...,0). Then we have
n—1
> mes(W),0s = ma1 (@) < 0
r,s=1

We identify H := {z = (z1,...,2,) € R" : 2, = 0} with R*~! and, forp € (0, 1), we set
Dy:={(z1,...,an1) ER" |2 <p,i=1,....,n—1},
Dy:={u=(u1,...,u,) €S" " up >0, (u1,...,un_1) € D,}.

We construct a Lipschitz function such that inequality[(25) fails to be true. Define figst

[-1,1] — R4 asg(t) = 1 — |¢|, and denote by(¢) the periodic extension gf to the whole real

line. Lete > 0 and defingy.(z) = eg(x/¢). Notice thatg. ~, 0 uniformly onR, ase tends to0.

Let

1, fort € [-1/2,1/2],
G(t) :=< 0, for [t| > 1,
linear extension otherwise.
ThenG is a bounded Lipschitz function iR. Let us fixp € (0, 1). The function

P (z1,...,Tn-1) = ge(x1)G(x1/p) ... G(xp=1/p), (21,...,20) € D,,
is a bounded Lipschitz function ik, andsprt(®.) C D,. Fork # 1 we have

O (1 tno1) = Lgelan) G (axs) T] Gl ),
p Ak

oxy,
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for H*t-a.e.(x1,...,25-1) € D,. ASG < 1,|G'| < 2and|g| < €inR,

0d 2¢
o g n—l.a.e.inD,,
9z | = 5 H e.inD,
and then
P, .
(28) 11{% gxk =0, H"l-ae.inD,.

On the other hand, fot = 1 and forH"!-a.e.(x1,...,2,_1) € D,

0P,
8951

n—1
(@1.ev0m0) = o) an/p) [ Glay /o) + allan) [ Glalo).
J=1

i>1

As |g.| = 1 holds#!-a.e. inR, we get

n—1
O, _
(29) o, (@1,.. 1) — [[ Glaj/p) for H"1-ae.(z1,...,201) € D),
j=1

ase \, 0. In particular, the above limit equals of*!-a.e. inD, . Consider the function

de(u) = de(ury ... up) :i= Pc(ug, ..., up—1), u€ [)p,
and extendy, to be zero in the rest of the unit sph&f&!. In the sequel, for = (uy, ..., u,) €
D,, we set' = (uy,...,un—1) € D,. Asp < 1, the support o is contained in the open hemi-
sphereS”' N {z,, > 0}.~We may takep small enough such that there exists a local orthonormal

frame of coordinates of,. Taking covariant derivatives with respect to this frame (25) we
have

2
¢2 trace (M) dH"( /S B Z be)j (e )k mjp dH™ 1 4 < gbegdH"_l) .

sn—1 ] k=1 S§n—1

Since®, converges to zero uniformly as\, 0, the same is valid fo¢., hence

(30) 0 <hm1nf/ ) Z Mk (@e)j(Pe)k dH™™ 1

J,k=1

The covariant derivatives af. can be computed in terms of partial derivativesbolvith respect
to Cartesian coordinates afl,; in particular, there exists &n — 1) x (n — 1) matrix C =
(Crs)rs=1,...n—1, depending om, with ¢, € C(D,) forr,s =1,...,n — 1, such that

n—1
U) = Z st(’LL/
s=1

We may assume that (@) = C(0,...,0) is the identity matrix. Then, fok"~'-a.e.u € D,

)gq)e (W), forH" l-a.e.u e D,.

Ts

n—1 n—1

n—1
> () (9c)s o = Y3 gl e () ) ST

Jk=1 jk=1r,s=1
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This expression is bounded, by the boundedness of thelgietigatives ofd.. Moreover, by[(2B)

and [29),
hm Z mjx(u H G?(us/p) Z mjg(u)cir(uw)egr (W) .

Jk 1 k=1
Note that

Z m” Czl le( ) mll(ﬂ) < 0.
i,j=1
Consequently, we may choogesufficiently small so that

Zm” u)ei (u)eq(u') < e <0, uef)p.
i,j=1
Then

n—1
ton [ 3 myfeo an

2%

/Sn 1 H G2 Uz/P Z mZJ Czl Cyl( )Hn l(du)

i=1 i,j=1

which contradicts[(30). O

Proof of Theoreni_117Proceeding as in the first part of the proof of Theofem 1.5 @ithout
integration by parts), we arrive at the following inequalisee [(23))

RO - [ FSPT(QR) ks (@)ars(9) dH" ™
. 2
3) < ([ rstemmse o)

]

for everyh € € and everyp € C>°(S"~1). If, in particular, h is even (and hence is the support
function of a centrally symmetric convex body) ands odd, then the right hand-side &f {31)
vanishes (ag is even), being the integral of an odd function®t!. We may assume, as in the
previous proof, thaF (k') > 0 for everyK € Ci. Hence we get

(32) ISP Q)4 (P)ars(8) dHTH <0
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for everyh € € even andp € C°(S"!) odd. Letyy € C>°(S"~!) be such that its support is
contained in a open hemispheike™, and letp : S*~! — R be defined by

) Y(w), if uec HT,
olu) = {—w(—u), if ue S\ HT.

Theng € C>(S"~1) is an odd function. For this choice ofin [32), in view of the symmetry of
f andh, we get

(33) [ ISP QU @ (Wars(v) dH T <0,

for everywy € C°°(S"~1) with support contained in an open hemisphere. We can nowy appl
f the regularization procedure indicated in Seckibn 2 in dlaimway as in the proof of Theorem
[1.4. As the left hand-side of (83) is linear with respectftonve obtain thatf, satisfies[(33) as
well, for everyk € N. Note that the functions on which the proof of Lemmal 4.1 isedaare

all supported in an open hemisphere. Hence we can applyetmisé tof;, and conclude that it
satisfies condition (18) for everly € ¢ even. By Lemma_3I3 (note that the proof of this lemma
requires the use of even functions only) we have that camdiL9) holds and then, via Lemma
[3.5, condition(MM); holds as well.

d

We conclude this section with the following variant of Them{1.5 in which the regularity
assumption ory is weakened, and the symmetry hypothesis appearihglin teplaced by the
assumption thay belongs tolW21(S"~1), the Sobolev space of functions it (S*~!) having
second weak derivatives ' (S?~1).

Theorem 4.2. Leti € {1,...,n — 1}, let f € W21(S"~1) be continuous, and I&F be defined
as in (@). If F is non-negative and satisfies inequal{@), then there exists a sequeng¢g €
C?(S™1), k € N, which converges uniformly d*~! to f such thatf; satisfies conditioriM);
for everyk € N. In particular, F is monotonic.

Proof. As in the proof of Theorerh 115, the validity of Brunn-Minkaksnequality [4) implies
(25), whereM andg, defined by[(2l) and (26) respectively, involve weak secamivatives off.
Moreover, we can assume thatis positive on convex bodies of claé& . Then inequality[(25)
can be restated in the form
[ 9w? race (SP7 (@M w)ans (f)) ' ()
1 —1

2
= w) Sk Q(h,u (fou) H  (du
ZF(K) < - QS( )Sz ( (h> ))Qk](fa ) (d )>

n—1
(34) < [ 3 ST @ ) () ()6, 0 1 ),
n— ii—1
for all K € K" of classC?% with support functionh and all¢ € C>°(S"~!). Forp € O(n), pK

is also of clas€”2 and its support function i8 o p=1. Applying now [34) withpK, h o p~!, and
¢ = ¢ o p~1, whereg, is as in the proof of Lemmia4.1. Multiplying both sides [of(34ijh
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the mollifier w;, I € N, integrating over the rotation group and using the rotatimariance of
Hausdorff measures, we get on the right-hand side

n—1
L [ 3 S @ue 7 a0
n =1
X((62) 0 07 ilpu) (60) 0 p71); (ou) W ) v(dp)
- f S S QU (Pt Ui )61 (650K () )

i,j=1

/Sn 1 ZS’“”” (hy0))ar; (frs ) (@e)i(v) () (V)H™ ™ (dw).

i,j=1
On the other hand, we can bound the resulting two integrath@feft-hand side by

[ o) [ (0005w trace (SE7(QUro o™ s (f.0) ' (du) (dp)
O(n) Sn—1

S/O( )wl(p)H(bEH%OO(S"*l)Cl(h)”f”W1,2(Sn71) V(dp)

< ca(h, f)HQ%”%oo(Sn*l)

and
2

w i1 o p~ ) (u)Sk op~tu (f,u) H (du v
L s ([ (00 00 @ e 57t s (0 ) ) )

< /0( )wz(ﬂ) (min{F(pK) : p € O(n)})™" [ Pell7 e (gn-1yes (I £ 13y 1.2(sn-1) v (dp)

< C4(h7 f)”qbeH%‘X’(S"*l)

The constantsy, . .., ¢4 depend only on the parameters indicated in brackets. Hetsathat the
minimummin{F (pK) : p € O(n)} is positive and depends only ¢gnand K, sincep — F(pK)
is continuous and positive. Frofi@|| ;e s»-1y — 0 ase \, 0, we now deduce that

n—1
gt [ 37 1@ s (06010000 0) ) 20

for all I € N. Sincef, € C*°(S" 1), we can apply the argument used in the proof of Lerhmha 4.1
to see that the matrix

(Sfj“(@(h, ©))qi; (1, v))ﬁ

is positive-semidefinite for allc N, h € ¢ and allv € S"~1,
From this point, we can proceed as in the proof of Thedrer fites €7), obtaining thayfl
satisfies conditioiM);.
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5. PROOF OFTHEOREM[L.9

This section contains the proof of Theorém| 1.9, and hencehebiien_1.B, preceded by an
auxiliary lemma.

For the proof we proceed by induction over the dimension 3. The proof uses in an essential
way the special case= n — 1 treated in[[3].

We start with an auxiliary lemma. For this, &t denote the Dirac measure with unit mass in
the pointz € R”. We denote by * the mixed volume of convex bodies containediindefined
on Kdim E.

Lemma 5.1. Let £ be an(n — 1)-dimensional linear subspace R™ with unit normalu. Let
Kyq,...,K,_o C E be convex bodies. Lé&8 = B™ N E, whereB" is the Euclidean unit ball in
R"”andR € R, R > 0. If n ¢ S*~! is an arbitrary Borel set, then

S(K17 o 7Kn—27 B + R[_ena en]777)
R

n —

1SE(K1, o KN E)+VE(K, ... K2, B)(6, +6_,)(1n).

Proof. Without loss of generality we can assume that ¢,. Using the linearity of the surface
area measures, we have that

S(Kla o 7Kn—27 B + R[Oa en]a 77)
= S(K17 e 7Kn—27 B777) + RS(K17 e 7Kn—27 [07 €n]777)
Let . € K™ be an arbitrary convex body with support functibp and K1, ..., K, o € K™
Then we have
/ hi(w) S(Ka, ., K, [0, en]s du)
Snfl
= nV(LJ K17 s 7Kn—27 [07 €n])

= VE(L|E>K1|E7 cee 7Kn—2|E)

1
= / hL|g,u) SE(K, ..., Ky_;du)
Snfl

n—1

_ ! / h(L,u)1 () SE(Ky, ... Kn_o; du),
Snfl

T n—1
where we used [11, (5.68)]. Hence we obtain that

1

SE(Ky,....K, o:nNE).
n—1 (17 ) n—251 )

S(K17 s 7KTL—2> [07 en]an) =

In order to prove that
S(K17 s 7Kn—27 B777) = VE(K17 s 7Kn—27B) (5677, + 6_677,) (77)
we observe that for a convex body C F, it is known (see[11, p. 220-221]) that

S(Kln—1;-) = (du(-) + 5-u())VE(K).
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ConsideringK = Z:‘:‘f o; K; + a1 B, using the multilinearity of area measures and mixed
volumes, and then comparing corresponding coefficient®thf &xpressions, we obtain

S(Kla v 7Kn—27B;77) = VE(K17' .. 7Kn—27B)(56n +5—8n)(77)7

which finishes the proof. O

Proof of Theoreri T19We proceed by induction om > 3 with 2 < i < n — 1. The first step of
the induction is the case = 3, and hencé = 2. More generally, fom = ¢ + 1 > 3, we know
from [3, Theorem 1.1] that the assumption implies th& the support function of a convex body.
Notice that in this case the integration defining the fun@ld" involves the usual surface area
measure and there are no other convex bodies.

Now we assume that the result is true for @l— 1)-dimensional Euclidean subspacesR3f
and2 < i < n — 2. We prove that inequality [8) for the functional (6) defined/"™ and with
i€ {2,...,n—1} implies thatf is a support function. Since the case n— 1 is already covered
by [3, Theorem 1.1], we can assume tBat i < n — 2. For this, letf ¢ C(S"‘l) be such that
the functionalF given in [8) satisfied {8), for alk,..., K, ;1 € K".

Let E be any(n — 1)-dimensional subspace &". Without loss of generality we can choose
E={x € R" : (z,e,) = 0} =: e;- and identify it withR"~!. Let B = B"N E andR € R,
R>0.ForK,Ky,...,K,_;_oc K" ! (arbitrary) defineF" : K»~! — R by

F(K) = /S J@) SR Koo B+ RO, e0]; d).

We notice that a8 < ¢ < n — 2, we haven > 4.
From the assumptiof](8) d#, it follows thatF satisfies

(35) F((1 - K + L) > min {F(K), F(T)}

forallt € [0,1], K,L € K" 1, and any choice oK 1,..., K, _; » € K"~!. Lemmd5.1l shows
that

R
n—1 §n—2
+ (fen) + f(—e))WVE(K[i],K1,..., Kn_i_2,B),

F(K) = flo(z) SE(EK, K1, ..., Kn_i_z: dz)
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and similarly forL and(1 — ¢t)K + tL. We plug this into[(35) and divide the resulting inequality
by R. Then, for allK, L € K"~! andt € [0, 1], we get

1— _

—F((1—-t)K +tL

SF(1 - K +1T)

- fle@) SE((1 — OF + D). Ky, .., Kpi_a; d)
n — 1 §n—2

£ (flen) + e VI~ O + D] Ko, Koi,B)
> min {n i T o fle(z) SE(F[i],Fl, oo, K93 dx)

+ %(f(en) b f—en)VEEL K. Knis, B),

1
n_]. Sn—

+ %(f(en) b e WETNL KL, Ko is, B)} .

When R tends to infinity, we obtain that the functional defined/@t! and given by

) f‘E(fﬂ) SE(Z[ZLFM vy Kpioo; dl’)

K~ fle(@) SP(Ki), K1, Kn_i—9; dx)
Sn—2

satisfies[(B). Hence, the induction hypothesis yields fihatis a convex function irE. Since the
same argument works for an arbitrary subspaceve conclude thaf is a convex function, that
is, (the homogeneous extension ¢fls the support function of a convex body.

O
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