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One- and two-component colloidal glasses
under transient shear

T. Sentjabrskaja1,a, M. Laurati1,2, and S.U. Egelhaaf1,b

1 Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Ger-
many

2 División de Ciencias e Ingenieŕıas, Universidad de Guanajuato, 37150 León, Mexico

Abstract. In concentrated colloidal mixtures different caging mecha-
nisms exist and result in different arrested states: repulsive, attractive
and asymmetric glasses as well as gel-like states. We discuss their micro-
scopic structure, dynamics and rheological response. Special attention
is given to the non-linear mechanical behaviour, in particular the tran-
sient rheological response after shear is started. Steps in both, shear
rate and shear stress (creep test), are considered. The macroscopic vis-
coelastic response is related to the microscopic structure and dynamics
on the individual-particle level.

1 Introduction

Many particle dispersions used in applications, for example paint or cement, and also
dispersions occurring in nature, for example clays, are characterised by size distribu-
tions of the dispersed phase. The distribution might be continuous, i.e. polydisperse,
or discrete, in the simplest case containing only two distinct species. It is often difficult
to avoid a distribution of particle sizes and hence to prepare a monodisperse system.
Then again, through the presence of several species the properties of a dispersion,
such as its phase behaviour and mechanical properties, can be tuned, for instance to
meet processing or application needs.

The size distribution affects many features, for example crystallization [1–9] and
the glass transition [10–29], but also mechanical and other properties. Here we fo-
cus on the glass transition and the mechanical properties of glasses. One-component
dispersions of hard-sphere colloids have frequently been used as model systems to
study the glass transition [28,29]. In this system, the volume fraction φ is the only
control parameter. For volume fractions beyond φg ≈ 0.58 (and a sufficiently broad
size distribution) dynamical arrest with the absence of long-distance diffusion has
been found [24,27–33]. Arrest is driven by crowding. Particles are trapped in cages
formed by their neighbours, at least until activated processes may restore long-time
diffusion [34].

Addition of a second species significantly affects the dynamics and can melt one-
component glasses [25–27,35–39]. Such mixing effects strongly depend on the size
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ratio δ and the composition. At small to moderate size disparities (up to about 1:3),
the glass transition shifts to larger total volume fractions as compared to the one-
component system, similar to the effect of polydispersity [11,25,12,27,40] or the be-
haviour at random close packing (RCP) where the presence of different species allows
for more efficient packing [41–48]. For large size disparities (beyond 1:5), four qual-
itatively different glasses have been predicted by mode-coupling theory (MCT) [26,
27,24] and self-consistent generalized Langevin equation theory (SCGLE) [12]. The
arrested states differ by the caging mechanisms and include repulsive, attractive and
asymmetric glasses as well as gel-like structures. The transitions between the arrested
states (except between the repulsive and attractive glasses) involve fluids. Some of
these states were observed experimentally [25,13] and in simulations [14,15]. However,
the experimental evidence was limited to the observation of the onset of dynamical
arrest. Only recently the different arrested states were quantitatively characterized in
terms of their microscopic structure and dynamics on the single-particle level [16–18,
49].

The rheological properties, in particular the solid-like behaviour, correlate with
dynamical arrest. The linear viscoelastic moduli reflect the formation and melting of
the different glass states [16–18]. Upon glass formation, the viscoelastic properties are
characterized by a sharp increase of the viscosity and the appearance of a Maxwell
plateau modulus in the linear response [50–65]. Similarly, the melting of a glass is
reflected in a strongly reduced viscosity but also faster particle dynamics [11,50,66,
67].

Shear can induce the melting and flow of arrested states [68–83]. Shear-induced
melting is associated with structural changes, e.g. an irreversible deformation of the
cage [73,77,81,82], and dynamical changes, e.g. the onset of diffusive dynamics [72],
and involves yielding [68–71,83]. The transient regime during which these changes
occur will be discussed in the following. Particular emphasis will be given to the
link between the macroscopic rheological response and the transient structure and
dynamics on the individual-particle level. The experimental investigation of these is-
sues benefits from recent technical advances, namely in confocal microscopy and its
combination with rheology [84,85] as well as in quantitative data analysis methods
[84,86]. We focus on binary mixtures of hard-sphere-like particles [17,87,88], namely
sterically-stabilized polymethylmethacrylate (PMMA) spheres [28,89]. Binary mix-
tures are the simplest multi-component system but nevertheless allow for the investi-
gation of different arrested states and fluids in a single model system. Thus, they are
an ideal colloidal model system. Furthermore, the results might also be relevant for
other glassy materials, including polymers [90] and metallic alloys [91].

2 Quiescent State – Structure and Dynamics

Binary mixtures are characterized by the size ratio δ = RS/RL, where RS and RL are
the radii of the small and large particles, respectively, their total volume fraction φ
and their composition, here quantified by the fraction of small particles, xs = φs/φ,
where φs is the volume fraction of small particles. First, we consider samples with
a constant total volume fraction φ ≈ 0.60 and a small size ratio δ ≈ 0.09, which
results in the largest number of arrested states when the fraction of small spheres,
xs, is varied: repulsive, attractive and asymmetric glasses [26] as well as a gel-like
structure (Fig. 1). The transitions between the arrested states involve fluid states,
except between repulsive and attractive glasses. In all arrested states at least the
large particles are arrested. In the following hence particular emphasis is given to the
dynamics of the large particles.
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Fig. 1. Schematic state diagram as a function of size ratio δ, total volume fraction φ and
fraction of small particles, xs. Depending on these parameters, different states are observed:
repulsive (grey) and attractive glasses (black), gel-like structures (blue), asymmetric glasses
(yellow) and fluids (red).

The one-component samples (xs = 0.0 and 1.0) are repulsive glasses showing
the characteristic arrested dynamics with a localization on a length scale of about
10% of the particle diameter [28,29,92,93]. If a small amount of small spheres is
added (xs ≈ 0.01), the large particles experience depletion-induced attractions and
an attractive glass is formed [26,12], similar to the one observed in colloid-polymer
mixtures [94–98]. They exhibit an extended plateau in the mean squared displacement
(MSD) of the large spheres with a slightly smaller localization length and hence a
tighter cage than in the one-component systems [49]. The tightening is attributed
to attractions induced by the small particles rather than their intercalation between
the large particles. The attractions also lead to a space-spanning network of large
particles with a small correlation length and hence a quite homogenous distribution
of the very dense large particles.

At this composition, the small particles are mobile within the network of large
particles. This resembles the classical Lorentz gas [99–101] with the main difference
that the large particles are not immobile but very slow. In the classical Lorentz gas,
the motion of the small particles becomes localized when the large particles percolate
and thus the voids are disconnected. In the present situation, however, the voids regain
connections on the slow time scale of the rearrangements of the large particles. Thus
the dynamics of the small particles is controlled by percolation, leading to localization,
as well as glassy dynamics, leading to transient localization. This interplay leads to
anomalous transport of the small particles above a critical size ratio, δc ≈ 0.35. For
length scales comparable to the size of the large particles, the density autocorrelation
function as well as the collective and self density fluctuations do not show the power-
law decay predicted for the classical Lorentz gas close to the percolation transition,
but a logarithmic decay that extends over at least three decades in time [102].

If the fraction of small particles is increased beyond xs ≈ 0.01, the amount of large
particles becomes too small to form a glass. Furthermore, the small particles can very
efficiently pack in the voids between the large particles. The pair distribution function
g(r) indeed indicates that small particles are located between the large particles [16–
18]. Due to the efficient packing and the intercalation of small spheres, the remaining
cages of the large particles are distorted, loosened and increasingly delocalized. This
results in faster dynamics of the large particles. The glass melts and a fluid phase
forms.
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For intermediate xs ≈ 0.3, due to the increasing amount of small particles the
depletion-induced attractions between the large particles become strong enough to
induce a gel with many particle contacts and a significant structural heterogeneity
[26,24,49,103]. This leads to an arrest of the large particles. Their localisation length
is considerably smaller than in the repulsive and attractive glasses, but the plateau
and subdiffusion are less pronounced. Similar gels are found in other systems [104–
113].

If the gel-structure is diluted by adding further small particles, the system-spanning
network becomes fluid-like and both particle species mobile. The large particles show
an especially enhanced dynamics where they are in contact with the more mobile
small particles [114,115].

Once the amount of small spheres is large enough (xs ≈ 0.9) they become arrested.
Moreover, they form a dense matrix in which the large particles are embedded and
are also arrested. An asymmetric or torroncino glass has formed [26,49]. Due to the
ability of the small particles to tightly pack around the large particles, the cages are
smaller than cages formed by large spheres, even by large spheres in the presence of
attractions. Correspondingly, the dynamics exhibit the smallest localization length,
an extended plateau and the most pronounced dynamical arrest. Asymmetric glasses
were also reported in binary mixtures of size asymmetric star polymers [116,117] and
are most likely present in binary mixtures of silica particles [13].

As described above, the localization becomes stronger with increasing xs, whereas
the dynamical arrest shows a minimum at intermediate xs. The arrest is particularly
strong for xs ≈ 0.9 but also for small xs, whereas it is less pronounced for the arrested
gel structure at intermediate xs ≈ 0.3. This corresponds to the xs dependence of the
long-time structural relaxation time of the large particles which shows a minimum
at intermediate xs (in contrast to the long-time structural relaxation time of the
small particles which monotonously increases) [18]. It furthermore coincides with a
maximum in the available free volume assuming that this follows the xs dependence
of the volume fraction of random close packing [16–18,41,43–47]. The asymmetry of
the minimum is also attributed to the fact that the addition of small particles melts
the glass of large particles whereas the addition of large particles not only melts
the glass of small particles but also introduces obstacles [118]. Due to the different
xs dependences of the long-time structural relaxation times of the large and small
particles, their structural relaxation times dominate at small and large xs, respectively
[18]. Accordingly, a transition in the arrest mechanism from caging by large to caging
by small particles occurs at intermediate xs [17].

When the particle species become more similar, i.e. δ closer to unity, a smaller
number of arrested states is found [16–18]. Upon an increase to δ = 0.2, the repulsive
and possibly an attractive glass as well as an asymmetric glass are formed but no
evidence for a gel state has been reported yet [16–18]. For larger size ratios (δ & 0.4)
only a repulsive glass state is observed [17]. Finally, for δ & 0.67 small particles were
found to no longer intercalate between the large particles [119], in agreement with
geometrical arguments suggesting a similar limiting size ratio δ ≈ 0.41 [17]. With
increasing δ, furthermore, the difference in the dynamics of the arrested and fluid
states becomes smaller [11,25,17,19,21,40].

3 Transient Response – Rheology, Structure and Dynamics

The composition of binary mixtures affects their rheological response. It influences
the linear and non-linear response in oscillatory shear experiments, including the flow
curve [16,17,120,121], as well as the transient responses after shear is switched on or
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Fig. 2. Evolution of (a) the stress σ (shear rate γ̇ = 0.348 s−1) and (b) the mean squared
displacement (MSD) 〈∆y2〉 (γ̇ = 0.147 s−1) after application of the shear rate as a function
of time t = γ/γ̇. The MSD in the quiescent state (•), after different waiting times (lines,
increasing from right to left) and once the steady-state is reached (•) are shown. The depen-
dences of (c) the location, γpeak, and (d) the magnitude, σpeak/σsteady − 1, of the overshoot
as a function of the fraction of small particles, xs. Sample with a size ratio δ = 0.2, total
volume fraction φ = 0.61 and fraction of small particles xs = 0.9.

off [81,122]. In the following we concentrate on the transient response after shear is
switched on.

3.1 Step in shear rate

In a step rate experiment, a constant shear rate γ̇ is applied to the initially quiescent
sample and the evolution of the stress σ as a function of time t or, equivalently, strain
γ = γ̇ t is measured (Fig. 2a) [16,18,51,72,73,77,78,82,123–126]. The stress initially
increases linearly and then deviates from linear behaviour to reach a maximum. The
overshoot or maximum stress, σpeak, is reached at the strain γpeak, typically γpeak ≈
10%. Upon adding small particles, γpeak decreases, reaches a minimum at xs ≈ 0.3
and then increases again (Fig. 2c), which reflects the distance to the glass transition;
γpeak is larger for systems deeper in the glass [18]. The strain γpeak has been associated
with the yield strain [73,77,82]. After the overshoot, the stress decreases and reaches
a steady state of flow with a constant stress value, σsteady. The magnitude of the stress
overshoot, σpeak/σsteady− 1, characterizes the ability to store and release stress. As a
function of xs, the magnitude of the overshoot also shows an intermediate minimum
which, however, occurs at xs ≈ 0.5 (Fig. 2d) [18]. The minimum has been associated
with the maximum cage compressibility which also occurs for this value of xs and
the release of stored stress in this process. This stress response, in particular the
stress overshoot, has been observed in colloidal glasses [16,18,72,73,77,123–125] as
well as other systems [127–132]. In experiments with metallic glasses, the overshoot
typically is observed at comparable strains if the different shear protocols, namely
uniaxial compression instead of shear strain, are taken into account. The rheological
response has successfully been described by mode coupling theory (MCT) [78,123,
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133]. Furthermore, a phenomenological theory has linked the microscopic nearest
neighbour rearrangements to the macroscopic stress response [83].

The quiescent particle structure and dynamics not only influence the rheological
response but, at the same time, the applied shear also modifies the particle arrange-
ment and dynamics with respect to the quiescent state. Shear increasingly deforms the
cage (where the cage might be formed by the large and/or small particles depending
on xs) [73,82]. Accordingly, the MSD exhibits stronger, but now transient, localization
than in the quiescent state (Fig. 2b). With waiting time, the transient localization
is moderately reduced but remains stronger than in the quiescent state, reflecting
the continuing shear-induced deformation of the cage. Moreover, superdiffusive dy-
namics is observed which progressively disappears with waiting time. Superdiffusion
seems to pre-empt the overshoot [73,77,82,123,125]. The overshoot has been asso-
ciated with the maximum sustainable deformation [73,77,78]. When this is reached,
the cage breaks or yields. In the potential energy landscape picture, cage breaking has
been associated with the crossing of energy barriers [127,134–139]. Once the cage is
broken, the stress stored during cage distortion can partially be released and the cage
deformation to some extent relaxed by out-of-cage motions. Stress can also somewhat
be released through cage compression. This leads to the decrease in stress following
the overshoot.

Eventually a steady-state of flow is reached with diffusive particle dynamics and
some residual structural anisotropy [82,140,141]. The diffusion observed at long de-
lay times [16,72,73,84,123–125,140,142] is reached earlier at longer waiting times as
the superdiffusive regime progressively disappears [18] (Fig. 2b). The diffusion in-
volves several particles and movements beyond the cage and hence has been linked to
shear-induced cage break-up [140]. Accordingly, the long-time diffusion coefficient is
dominated by the time scale imposed by shear and has been observed to scale as γ̇0.8

[72] and γ̇1 [143] in one-component glasses and much stronger dependences have been
found in two-component glasses [18]. The diffusion coefficient shows a weak maximum
at intermediate xs ≈ 0.3 which coincides with the fastest long-time dynamics in the
quiescent state and the smallest γpeak [18]. This suggests a link of the fast dynamics
in the quiescent and steady-state with facilitated yielding, i.e. a small yield strain.

These findings indicate the importance of the interplay between the involved time
scales. The structural relaxation time of the system diverges or might be limited
by activated processes leading to diffusion at long times [34]. In any case, it is the
longest time scale of the system. On the other hand, the Brownian time associated
with the short-time diffusion of the large and small spheres is comparable to the time
scale introduced by shear, 1/γ̇. Their relation is quantified by the Peclet number
Pe = 6πηγ̇/〈kBT/R

3〉 where η is the viscosity of the dispersion medium and kBT the
thermal energy.

If the Peclet number Pe is small, i.e. if the shear-induced deformation is slow
compared to the short-time Brownian dynamics, the peak position is approximately
constant, γpeak ≈ 10% [78]. Thus the shear-induced cage deformation must be suf-
ficiently large, γpeak ≈ 10% suggests about the cage size, that the initially caged
particles can escape through Brownian motion in a cooperative manner. This then
allows for the observed structural rearrangements, accelerated dynamics, yielding and
glass melting. In contrast, for large Pe the peak position γpeak increases [18,73,78,82,
125]. With increasing Pe, the particle displacements are increasingly dominated by
shear-imposed affine motion whereas the contribution by Brownian motion decreases
and becomes limiting. The increase of γpeak with increasing Pe suggests that cage es-
cape requires the particles to undergo Brownian motion for some time corresponding
to a certain amount of particle collisions. Therefore, for yielding to occur cooperative
movements are required with at least an affine displacement of about 10% as well as
a minimum average Brownian displacement. The transition between the two regimes
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occurs at Pe ≈ 1 which suggests that it is determined by the interplay between the
shear-induced time scale, 1/γ̇, and the short-time in-cage dynamics responsible for
cage deformations. A similar dependence as for γpeak was observed for the strain at
which the steady state of flow is reached [144].

The magnitude of the overshoot, σpeak/σsteady−1, first increases and then de-
creases with increasing Pe [18,73,78,82,125]. This Pe dependence is similar to the
ones of the superdiffusion and long-time diffusion coefficient. Thus the overshoot be-
comes more pronounced for faster dynamics, which also implies a higher probability
of particle collisions. Moreover, the overshoot seems to increase as the localisation
at rest becomes stronger. The transition between the two regimes depends on xs.
Since out-of-cage motions are involved, it is expected to depend on the structural
relaxation time of the caging population in the quiescent state, i.e. the large particles
for xs . 0.3 and the small particles for xs > 0.3 [16–18,73,82], which introduces an
xs dependence. Stress transmission involves particle movements on length scales of
out-of-cage motions that are longer than those required for cage deformations, which
determine γpeak. Thus, the relations of the shear-induced time scale, 1/γ̇, with the
time scales of the short-time and long-time dynamics, respectively, result in two dif-
ferent regimes of the Pe dependences of the yield strain γpeak and the magnitude of
the stress overshoot, σpeak/σsteady−1, as well as in different transitions between these
regimes.

3.2 Step in shear stress (creep)

In a creep experiment, a step to a shear stress σ is applied and the induced deformation
γ measured as a function of time (Fig. 3a) [51,71,91,107,126,145–160]. Different
responses are possible. If the applied stress is comparable to the yield stress σy,
i.e. σ ≈ σy, a characteristic creep response is observed with the strain increasing
sublinearly with time, γ ∼ ta with a < 1. For smaller σ < σy, the deformation occurs
extremely slowly and the system does not reach a steady state within the observation
time. In contrast, if σ � σy a rapid transition to a steady-flow regime occurs, which
implies γ ∼ t. The scenario hence depends on the relation between σ and σy, where
the latter depends on the size ratio δ, composition xs and the total volume fraction
φ. With decreasing δ, the minimum σy and hence the maximum softening becomes
more pronounced and moves towards smaller xs and thus the dependence becomes
more asymmetric with respect to xs [16–18].

The different regimes in the macroscopic strain response γ(t) are reflected in
the single-particle dynamics, namely 〈∆y2(t)〉 (Fig. 3b). For σ < σy, the extremely
slow deformation is reflected in slow particle dynamics. At short times the MSD in-
creases only slightly, indicating caging, whereas at long times subdiffusion occurs with
〈∆y2〉 ∼ tb with an exponent b < 1 which is very similar to the one of the rheolog-
ical response, b ≈ a. No significant dependence on waiting time is observed. Similar
for σ ≈ σy, the macroscopic creep response without steady-state flow is reflected in
subdiffusive particle dynamics. If σ � σy, again caging occurs at short times but
diffusion at long times with a transient superdiffusive regime at intermediate times
that becomes shorter with waiting time and eventually disappears in the steady state
of flow [81,124,140].

In steady flow, the MSD can be related to the strain; 〈∆y2(t)〉 ∼ D(σ)t ∼
[D(σ)/γ̇]γ(t) ∼ γ(t) using for the diffusion coefficient D ∼ γ̇0.8 or D ∼ γ̇1 [72,142,
143]. This relation was implicitly assumed in a recent theoretical approach [161–163].
As expected, this relation is observed in steady-state flow (γ � 10). However, it was
found to also hold in the transient regime prior to steady flow and even in the creep
regime [158]. It is not observed only at very short times or, equivalently, very small
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Fig. 3. Evolution of (a) the strain γ and (b) the mean squared displacement (MSD) 〈∆y2〉
after application of a stress of about the yield stress (σ = 0.01 Pa ≈ 1σy; •) and above the
yield stress (0.05 Pa ≈ 5σy; •) as a function of time t. The MSD in the quiescent state (•),
after different waiting times (lines, increasing from right to left) and once the steady-state is
reached (symbols) are shown. The insets show the average local particle mobilities (indicated
by the colour scale where dark colours correspond to high mobilities) as a function of time
t (left to right, as indicated by dashed lines) for (bottom) σ ≈ 1σy and (top) σ ≈ 5σy. The
box size is 53µm2. Sample with δ = 0.2, φ = 0.61 and xs = 0.1.

strains, i.e. in the initial elastic regime, as well as for short times and large stresses,
which is attributed to the time lag between the particles’ out-of-cage motions and
the onset of macroscopic deformation. The relation between the MSD and the strain
hence seems to be a consequence of the plasticity that develops after the initial elastic
regime.

The single-particle dynamics can also be characterized by the distribution of dis-
placements, the van Hove function p(∆x). Its tails reveal that a small number of very
mobile particles exists during the transient regime. The evolution of the fraction of
mobile particles closely follows that of the strain γ(t). Instead of individual particles,
particles located in boxes, i.e. groups of particles, have been considered and a group
defined active if their average particle mobility satisfies the same criterion as used in
the case of the van Hove function (Fig. 3b, insets). Then, essentially independent of
the size of the box or group, the fraction of active groups is found to grow as the
fraction of individual active particles and hence also as γ(t), which is proportional to
〈∆y2(t)〉. This indicates that the mobile particles significantly contribute to 〈∆y2(t)〉.
This is observed for all stresses σ, i.e. below and above σy. A similar connection be-
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Fig. 4. Evolution of the power density σγ̇ as a function of time t after application of a step
to a shear rate γ̇ = 10.2 s−1 (•) and to a stress σ = 30.0 Pa (•), respectively, where the
values of γ̇ and σ are chosen to result in a similar steady-state. (top inset) Time, tflow, and
(bottom inset) work per volume, W , required to reach the steady state of flow as a function
of σγ̇ following both protocols (colours as in main figure). Sample with δ = 0.2, φ = 0.61
and xs = 0.7.

tween the number of active regions and γ was reported for frictional granular particles
[164].

The existence of active particles and active groups of particles implies that the
dynamics is heterogeneous. For σ ≈ σy, active regions exist but they do not grow
and their locations vary randomly with time (Fig. 3b, lower inset). This is consistent
with the subdiffusive particle dynamics. Similar mobilities occur for σ > σy at short
times, i.e. when the localisation plateau in the MSD is observed. However, once su-
perdiffusion occurs, regions with an enhanced mobility emerge, grow and span almost
the whole sample once the system flows, where the characteristic length of the active
regions increases with about t2/3 (Fig. 3b, upper inset). The enhanced local mobilities
occur through the accumulation of only slightly above-average local, non-affine parti-
cle displacements and do not result from sudden large displacements, as proposed in
other systems [165–171]. Therefore, the onset of flow not only coincides with the ap-
pearance of superdiffusive dynamics but also extended active regions and pronounced
non-Gaussian tails in the van Hove function. Once steady flow has developed, these
features disappear and the dynamics again becomes more homogeneous.

3.3 Comparison of steps in shear rate and shear stress

Both protocols, a step to a strain rate and to a stress, result in a comparable steady-
state of flow if the corresponding strain rate and stress, as given by the flow curve,
are chosen (Fig. 4) [51,126,144]. However, a time scale is imposed if a shear rate is
applied, whereas this is not the case in creep tests. In creep experiments, further-
more, regimes below yielding can be accessed. Thus the choice of control parameter
determines the path from the quiescent state to the steady-state of flow. For example
and as explained above, in creep experiments the MSD is proportional to the strain,
〈∆y2(t)〉 ∼ γ, which has no analogue in the strain-controlled case where γ(t) increases
linearly with time but 〈∆y2(t)〉 increases superlinearly in the transient regime. This in-
dicates qualitative differences in the transient response to stress and strain-controlled
shear.
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To allow for a comparison of the transient regimes, the data are represented in
a joint graph as the power density, i.e. the product σγ̇(t) (Fig. 4) [144]. At long
times, the steady state of flow is identical. In the transient regime, however, the
responses differ and hence different paths are followed towards the steady state. For
the step-rate experiment, σγ̇(t) resembles σ(t) (Fig. 2a) since γ̇ is constant. Initially it
steeply increases, reaches the overshoot and decreases to a constant value. In the creep
experiment the increase of σγ̇ is more gradual and hence steady flow is achieved later.
The time required to reach the steady state of flow, tflow, monotonically decreases with
increasing σγ̇ in step-rate experiments (Fig. 4, inset). In creep experiments, it initially
also decrease but then increases again with σγ̇. The decrease for small σγ̇ is similar for
both protocols. Due to the concomitant increase of γ̇, flow begins at about the same
strain independent of σγ̇. In contrast, for large σγ̇ steady flow is reached considerably
later by application of constant stress. Similarly, also yielding is induced faster under
constant shear rate than constant stress [144]. Furthermore, the composition, i.e. the
glass state and caging mechanism, affects yielding in step-rate experiments whereas
it seems not in creep experiments [144]. This might be due to the slower yielding
process in creep experiments, in which the cage deforms intermittently rather than
continuously. This might conceal the effects of the different caging mechanisms.

Also the efficiency to achieve yielding or to induce flow has been considered [144].
The work per volume, W , required to reach yielding or the steady state of flow is
given by W =

∫
σγ̇(t)dt where the integral ranges from the application of shear

until yielding or flow is reached. It depends on the time-dependent power density,
σγ̇(t), but also the time required to achieve yielding or flow. Less work is required
if a step rate is applied which is due to the shorter time required to reach yielding
and flow. The work increases with increasing σγ̇ indicating that yielding and flow
is most efficiently, although slowly, achieved by applying a small stress (beyond the
yield stress) or strain rate. At large σγ̇, the work increases about linearly with σγ̇
for all compositions xs with the limiting behaviour occurring already at smaller σγ̇
for weaker glasses. In this regime, fluidization is reached quickly. This suggests that,
beyond a minimum stress or shear rate, flow is induced almost instantaneously and
cannot be achieved faster while the required work still increases. Hence the process
becomes less efficient without any significant gain in time.

The different characteristic times and the required work can be related to the
single-particle dynamics already discussed above [18,158]. In a creep experiment,
〈∆y2(t)〉 ∼ γ and both increase superlinearly in the transient regime. In contrast, if
a step-rate is applied, the MSD also shows transient superdiffusive behaviour but the
strain γ(t) increases only linearly with time. Thus the dynamics increases faster than
the strain γ(t) and, therefore, faster than in a creep experiment. This is consistent
with the faster yielding and transition to flow observed in step-rate experiments and
indicates that the enhanced dynamics are responsible for yielding and flow.

4 Conclusions

We summarized findings on the structure, dynamics and rheological response of
glasses formed by binary colloidal mixtures. Special attention was given to the contri-
butions of the authors, namely the link between the macroscopic rheological response
and the microscopic structure and dynamics of the individual particles and groups of
particles, as obtained by rheology and confocal microscopy, respectively. These find-
ings are put in the context of the work of other groups, providing a comprehensive
picture of the behaviour of concentrated colloidal mixtures.

Depending on the size ratio, mixing ratio and total volume fraction, the properties
of the concentrated binary mixtures as well as the caging mechanism change. They
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form repulsive, attractive and asymmetric glasses as well as gel-like structures and
fluids. Binary mixtures thus offer the possibility to investigate and compare different
glass states. The state determines the rheological response, but also affects shear-
induced changes in the particle structure and dynamics. We focus on the transient
responses to the application of a step in shear rate and a step in stress (creep). Shear
induces affine motions but also enhances the Brownian motion which facilitates out-
of-cage diffusion and leads to the deformation of cages. Under applied stress, the
single-particle MSD is approximately linearly related to the macroscopic deformation
even in the transient non-linear response regimes, where both increase superlinearly
with time if a stress beyond the yield stress is applied. Moreover, also the fraction
of active particles as well as active regions, i.e. groups of particles, is proportional to
the macroscopic strain. The spatial distribution and evolution of these active regions
determines the onset of flow. In contrast, the application of a constant shear-rate
implies a linearly increasing strain but causes superdiffusive single-particle dynamics
and the deformation and elongation of cages. This results in yielding and the sub-
sequent release of accumulated stresses which causes the stress overshoot. Finally a
steady state of flow is reached. In both cases, therefore, the application of shear can
induce melting of the glass. The transient response, namely the time and work re-
quired to reach yielding and flow, however, depends on the shear protocol. Yielding
and flow are achieved faster and more efficiently if a step rate rather than a step
stress is applied. This appears to be linked to the faster dynamics in strain-controlled
experiments and supports the expectation that yielding and flow are controlled by
the dynamics.
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We thank M. Fuchs, R. Castañeda-Priego, P. Chaudhuri, Th. Franosch, A. Heuer, J.
Horbach, G. Petekidis, W. C. K. Poon, K. Samwer, M. Sperl, Th. Voigtmann, E. Zac-
carelli and A. Zaccone for many very helpful and inspiring discussions. We gratefully
acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through the
research unit FOR1394, project P2, and funding of the confocal microscope through
grant INST 208/6171 FUGG.

References

1. M. Dijkstra, R. van Roij and R. Evans, Phys. Rev. E 59, 5744 (1999).
2. R. Roth, R. Evans and S. Dietrich, Phys. Rev. E 62, 5360 (2000).
3. D. J. Ashton, N. B. Wilding, R. Roth and R. Evans, Phys. Rev. E 84, 061136 (2011).
4. A. D. Dinsmore, A. G. Yodh and D. J. Pine, Phys. Rev. E 52, 4045 (1995).
5. N. Hunt, R. Jardine and P. Bartlett, Phys. Rev. E 62, 900 (2000).
6. P. Bartlett, R. H. Ottewill and P. N. Pusey, Phys. Rev. Lett. 68, 3801 (1992).
7. X. Cottin and P. A. Monson, J. Chem. Phys. 102, 3354 (1995).
8. A. B. Schofield, Phys. Rev. E 64, 051403 (2001).
9. A.-P. Hynninen, L. Filion and M. Dijkstra, J. Chem. Phys. 131, 064902 (2009).
10. R. Seyboldt, D. Hajnal, F. Weysser and M. Fuchs, Soft Matter 8, 4132 (2012).
11. G. Foffi, W. Götze, F. Sciortino, P. Tartaglia and Th. Voigtmann, Phys. Rev. Lett. 91,

085701 (2003).
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98. T. van de Laar, K. Schroën and J. Sprakel, Sci. Rep. 6, 22725 (2016).
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780 (2008).

117. C. Mayer, F. Sciortino, C. N. Likos, P. Tartaglia, H. Löwen and E. Zaccarelli, Macromol.
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Krüger, M. Laurati, K. J. Mutch, G. Petekidis, M. Siebenbürger, Th. Voigtmann and J.
Zausch, Phys. Rev. Lett. 110, 215701 (2013).

123. J. Zausch, J. Horbach, M. Laurati, S. U. Egelhaaf, J. M. Brader, Th. Voigtmann and
M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008).

124. N. Koumakis, J. F. Brady and G. Petekidis, Phys. Rev. Lett. 110, 178301 (2013).
125. M. Laurati, K. J. Mutch, N. Koumakis, J. Zausch, C. P. Amann, A. B. Schofield, G.

Petekidis, J. F. Brady, J. Horbach, M. Fuchs and S. U. Egelhaaf, J. Phys. Condens. Matter
24, 464104 (2012).

126. J. Mewis and N. J. Wagner, Colloidal Suspension Rheology (Cambridge University
Press, New York, 2012).

127. J. S. Harmon, M. D. Demetriou, W. L. Johnson and K. Samwer, Phys. Rev. Lett. 99,
135502 (2007).

128. K. Osaki, T. Inoue and T. Isomura, J. Polym. Sci. B 38, 1917 (2000).
129. M. T. Islam and L. A. Archer, J. Polym. Sci. B 39, 2275 (2001).
130. W. Letwimolnun, B. Vergnes, G. Ausias and P. Carreau, J. Non-Newton. Fluid Mech.
141, 167 (2007).

131. B. van Aken, P. de Hey and J. Sietsma, Mater. Sci. Eng. A 278, 247 (2000).
132. W. L. Johnson, J. Lu and M. D. Demetriou, Intermetallics 10, 1039 (2002).



Will be inserted by the editor 15

133. J. M. Brader, Th. Voigtmann, M. Fuchs, R. G. Larson and M. E. Cates, Proc. Natl.
Acad. Sci. 106, 15186 (2009).

134. M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
135. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
136. F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier,

M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego and S. U. Egelhaaf, Eur. Phys.
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