
Received: 13 August 2019 Revised: 15 September 2019 Accepted: 16 September 2019

DOI: 10.1002/itl2.131

U S E C A S E L E T T E R

Teaching software-defined network security through malicious
tenant detection

Farzaneh Abazari1 Flavio Esposito2 Hassan Takabi1 Hamid Hosseinvand3

Tommaso Pecorella4

1Department of Computer Science and

Engineering, University of North Texas,

Texas,

2Computer Science Department, Saint Louis

University, Missouri

3Technical and Engineering Department,

Shahed University, Tehran, Iran

4Department of Information Engineering,

University of Firenze, Florence, Italy

Correspondence
Farzaneh Abazari, Department of Computer

Science and Engineering, University of

North Texas, TX 77030.

Email: farzaneh.abazari@unt.edu

Software-Defined Networking (SDN) has radically changed how we manage our

network, increasing flexibility, and enabling network programmability. Providing

security for tenants is one of the most significant issues in SDN. In this paper, our

goal is to introduce with an educational use case, four types of attack vectors asso-

ciated with malicious tenants that seriously challenge the SDN foundation. We also

provide suggestions to teach how to investigate the mitigation of these techniques

against the attacks. Our solution, to be tested in the classroom, introduce an approach

that utilizes several concepts, such as a topological graph to detect malicious tenants.

Unlike other methods to teach how to secure SDNs, our proposed approach teaches

how to detect and secure a system without requiring any changes to the underlying

protocols.

K E Y W O R D S
education, malicious tenant, OpenFlow, SDN security, topology poisoning

1 INTRODUCTION

Software-Defined Networks (SDN) provide a new approach to manage networks. Controllers are the operating systems in SDN,

that make network control more programmable and dynamic. Being the OS of the network, an SDN controller provides users a

great tool to design and control the underlying network.1,2

Security is one of the critical aspects of networking in SDN. Modern architectures in SDN introduces new potential security

vulnerabilities in networking.3

By surveying the recent literature, we identified three main reasons that make SDN vulnerable to malicious tenants:4

(a) SDNs do not have any built-in security mechanism to prevent malicious switches or tenants from packet spoofing. (b)

Unlike a traditional network, SDN switches are considered to be dumb forwarding entities that forward packets based on the

installed rules on controllers. So many traditional attacks, including ARP poisoning and LLDP spoofing, could be performed

on vanilla SDN environments. (c) Software switches such as Open vSwitches are more attractive targets to even naive attackers

than hardware switches since it is harder to compromise hardware switches to modify routing rules.

Studying SDN security threats and countermeasures will help students understand why modern networking mechanisms use

the SDN paradigm, despite their vulnerabilities, and how such vulnerabilities may lead to other severe damages.

Besides, using SDN vulnerabilities as case studies, students can learn the principles of secure design of SDN applications.

However, designing practical case studies that are engaging and that meet course educational objectives requires significant

time investments. In this paper, we help towards this goal by presenting a few case studies to demonstrate the vulnerabilities of

the SDN and the effect of malicious tenants. The only requirement is Mininet as a lightweight virtualization/container-based

emulator. Malicious tenants are considered to generate packets. Meanwhile, various tools are used to perform attacks such as

DoS and MITM. Malicious Tenant floods the network with the spoofed traffic from the victim tenant. They can also launch

Internet Technology Letters. 2019;2:e131. wileyonlinelibrary.com/journal/itl2 © 2019 John Wiley & Sons, Ltd. 1 of 6
https://doi.org/10.1002/itl2.131

https://orcid.org/0000-0002-2139-5684

2 of 6 ABAZARI ET AL.

packet injection and topology poisoning as well. Besides, they intercept traffic intended for another tenant. A malicious host

can continuously send forged ICMP scanning to form a DoS attack.

We believe the most similar work is by SR et al. in,5 where the authors employed three different approaches to expose SDN

to experimenters while achieving isolation and fair sharing goals. We are different as our goal is to evaluate SDN security by

showcasing several experiments. To do so, we present a few attacks that can be performed by a malicious tenant by exploit-

ing vulnerabilities in the OpenFlow protocol or the SDN platform within the network operating system. We demonstrate the

feasibility of these attacks in Mininet, a network emulation environment based on namespaces and the Linux traffic control

command tc. Finally, we introduce a new approach to detect malicious tenants based on their behavior on the network.

The rest of the paper is organized as follows. An overview of the concepts in SDN is discussed in Section 2. We then explore

our considered threat model followed by our experiments on Section 3. Section 4 introduces the proposed approach, and Section

5 concludes the work.

2 OPENFLOW AND LINK DISCOVERY PROCEDURE BACKGROUND

SDNs propose a promising architecture where the control and data planes are separated. In this section, we explain a few

underlying concepts and introduce some definitions.

OpenFlow, as an SDN protocol, offers developers control of the network software. It creates a standard, network-accessible

interface to control the data-plane of network equipment. Using OpenFlow, control-plane logic can be moved from individual

network devices to a centralized controller. Network protocol changes, traffic engineering requirements, as well as other updates,

can be accomplished by reconfiguring the controller instead of upgrading or replacing network hardware.

In order to handle the dynamic nature of tenants in SDN, many controllers often implement Host Tracking Services (HTS)

and Link Discovery Services (LDS). HTS keeps a tenant profile that includes a MAC address, an IP address, some location

information, and VLAN ID, which is updated dynamically. LDS dynamically discover topology and changes. In contrast with

a traditional network, the link service in an SDN network is special due to its logically centralized controller. This service is

implemented inside OpenFlow controllers and uses Open Flow Discovery Protocol (OFDP), which transfers LLDP (Link Layer

Discovery Protocol) packets through SDN switches. So LLDP packets are used to detect switch-to-switch links (Figure 1A).

The process is repeated for each port of all the switches in the network. The whole link discovery procedure is performed

periodically at fixed intervals.

Dst
MAC

01:80:c2:00:00:0e Switch Port MAC 0X88CC

Src
MAC

Ether-
Type

Chassis
ID TLV

Port ID
TLV

DPID of Switch
Port Number of

Switch

TTL
TLVs

Time To
Live

END
LLDP

0x0000E.g., System
Description

Optional
TLVs

1: Sending Packet-Out
 Containing LLDP

LLDP Packet LLDP Packet

2: Broadcasting Packet-Out
 Containing LLDP

LLDP Packet

3: Sending Packet-In
 Containing LLDP

4:Update Link Information
Between Switch 1 and 2

Links

1 -> 2

Switch 1 Switch 2

(A)

(B)

F I G U R E 1 Link layer discovery protocol. A, Packet. B, Protocol

ABAZARI ET AL. 3 of 6

Figure 1B depicts the link discovery procedure in an SDN. First, the OpenFlow controller creates a single LLDP “Packet-Out”

packet for each port on switch A. The controller sends these messages to switch A with the payload of a controller-specific

LLDP packet. The payload of the LLDP packet contains DPID and the output port of switch A. When receiving the LLDP

packet, Switch A broadcasts it to all of its ports. When switch B receives the packet, it reports the incoming LLDP packet to the

controller with the ingress Port ID and DPID of Switch B via a “Packet-In” message. Because all switches have a pre-installed

rule in their flow table that forwards any LLDP packet received from any port, except for the controller port, to the controller

via an OpenFlow “Packet-In” message. Upon receiving the “Packet-In” message from Switch B, the OpenFlow controller can

detect a link from switch A to Switch B.

3 THREAT MODEL

Malicious tenants in SDN can be used to compromise the whole network. In this section, we introduce the possible threats of a

malicious tenant in SDN that we have considered.

3.1 Topology poisoning attack
First, we analyze a topology poisoning attack.6 This attack can be performed on an SDN controller to destroy its view of

the network by using detrimental “Packet-In” messages sent by the switches. These malicious “Packet-In” messages could

be generated by malicious tenants, which can send spoofed LLDP messages to affect connectivity across links between the

switches. Since there is no built-in mechanism in the SDN controller to ensure the integrity of LLDP packets, attackers can

perform topology poisoning efficiently.3 In the following, we discuss two scenarios that lead to fake topology attacks: (a)

Fabricated LLDP Injection and (b) LLDP Replay. These attacks affect the operation of network applications that are running in

the controller, such as packet routing, network virtualization, and mobility tracking.

3.1.1 Fabricated LLDP injection
In this scenario, an attacker generates intended fake LLDP packets into an OpenFlow network to announce a dummy internal

link between two SDN switches. Since the malicious tenant is connected to the switch, by monitoring the traffic from OpenFlow

switch, and decoding the LLDP packets, the attacker can extract packet fields. Then, the attacker can capture the specific format

of the LLDP packet, because each OpenFlow controller leverages specific syntax and TLVs for verification. Moreover, due to

the open-source nature of most controllers, the attacker can find out the format of the LLDP packet. As soon as the attacker

captures the LLDP packet and decodes it, he can modify the DPID and port number field of the LLDP packet, and launch the

Link Fabrication Attack. Figure 2A shows fake LLDP injection attack process. At the end of the attack, the controller view of

the network has changed: a new fake link is added to the links table.

3.1.2 LLDP replay attack
Instead of injecting manipulated LLDP packets, the attacker can replay a captured traffic through the network, in order to forge

target switch without any modification. The result of this attack is a fake topology view in the OpenFlow controller. A fake

internal link will be formed between two SDN switches (Figure 2B).

Typical non-SDN attacks can also be performed within an SDN-managed network. For example, malicious tenants and

switches can mount DoS attacks by flooding the network with traffic to random tenants to exhaust its resources, switches and

Switch 1 Switch 3Switch 2 Switch 4

1. Broadcast
LLDP Packet

3. Send LLDP as
Packet-In message

2. Change LLDP
Packet and forge

Links

1 <-> 2
2 <-> 3
3 <-> 4
4 -> 1

4. Add new fake link
from Switch 4 to 1

Switch 1 Switch 2 Switch 3

1: Receives LLDP
packet from Switch 1

2. Capture LLDP
packet

Links

1 <-> 2
2 <-> 3
1 <-> 3

6. Add new fake link
from Switch 3 to 1

4. Replay LLDP
packet to Switch 3

3. Send LLDP packet
to other host

LLDP Packet

5. Send LLDP
packet to controller

(A) (B)

F I G U R E 2 Topology poisoning attack. A, Fabricated LLDP injection attack in SDN. B, LLDP replay attack in SDN

4 of 6 ABAZARI ET AL.

SDN controller, thereby affecting forwarding in the data plane. Moreover, a man-in-the-middle (MITM) attack can be performed

by sniffing traffic to discover IP addresses on the network, and then perform impersonification of the gateway or victim MAC

address by using ARP spoofing.

3.2 Use case experiment
To propose a method in enhancing the security of SDN, first, we deploy four attacks in Mininet that are performed by mali-

cious tenants to exploit SDN vulnerabilities. In each scenario, first, we build a custom topology with Mininet as a lightweight

virtualization/container-based emulator. Next, we set up a Floodlight controller and consider a malicious tenant that can gener-

ate packets and send them to the network. In each scenario, various tools can be used to perform the attack, such as Wireshark,

Scapy, Ettercap, Ping, and sFlow-RT. Each scenario is described in a separated section. We denote with h a Host/Tenant, and

we use S to denote a Switch.

3.2.1 Fabricated LLDP injection
In this scenario, we deploy fake LLDP attacks in an SDN network. First, we start Wireshark in h1 then capture the LLDP packets

that are sent by switch S1 and analysis the packet to retrieve LLDP packet components like TLVs and chassis ID. Second, we

create an LLDP packet and set the Src Mac, Chassis ID, and Port ID based on the switch S4 information with the Scapy library

and send the forged packet to h1.

When the attack occurred, a new link will appear between switch S1 and S4. Since those ports on the switches that were

connected to the tenants, reconnect to other ports in other switches, h1 and h2 lose their connection. Floodlight's log after the

attack shows an update in attachment between (Switch ID = 4, Port ID = 2) and (Switch ID = 1, Port ID = 1).

3.2.2 LLDP replay attack
To successfully launch an LLDP replay attack, the attacker first needs to find at least two tenants; a connection test can achieve

that. In the attack scenario, we capture LLDP traffic in h1, replay the captured traffic in another tenant (h2) and view the poisoned

topology in Floodlight.

3.2.3 MITM attack
In this scenario, we use Ettercap as a comprehensive tool for MITM attacks to launch a MITM in SDN that causes a malicious

tenant to sniff victim tenant traffic. First we open h1 terminal and start Ettercap on h1. From the Ettercap menu, we scan for

tenants. Add victim tenants h2 and h3 in tenants list as Target 1 and Target 2. We choose Arp poisoning from the MITM tab, then

check sniff remote connections and start sniffing. Then we launch the DVWA website on h3 and enter username and password

to log in. Ettercap outputs the username and password.

3.2.4 DoS attack
In this scenario, we use the Ping command to launch a DoS attack in SDN that causes a decrease in victim tenant performance.

SFlow-RT, an analytic software can monitor the traffic between tenants. We start a web server on host h1 and make a HTTP

request from host h2. Then we create a sFlow agent to capture the traffic. Finally, we launch the attack by generating a flood

directed to h1. The total transferred bytes are always less than 1 K during the experiment. However, the total transferred bytes

are over 300 K when h3 runs “ping -f 10.0.0.1” command.

4 PROPOSED EDUCATIONAL APPROACH

Our proposed educational approach involves showing students how to prevent the attacks mentioned above with a methodology

based on three steps. First, students should monitor all the controller communication and identify relevant OpenFlow, ARP,

scanning, and other relevant packets. Due to the absence of encryption in the control plane, it is possible to capture control

and data plane traffic. In the second step, students should analyze this information separately based on their protocol types.

For example, OpenFlow packets can be used to build a topological network graph, or ARP packets can be used by Active ARP

inspection7 to detect ARP poisoning attacks. The topology graph approximates the actual network among tenants based on their

ABAZARI ET AL. 5 of 6

Step 1
monitor all the

controller
communication:
OpenFlow, ARP,

scanning, ...

Step 3
detect malicious

tenants based on the
analyzed

information

Step 2
analyze the
information

separately based on
their protocol types

malicious
tenant
list

F I G U R E 3 Malicious tenant detector architecture

LLDP Packet LLDP Packet

LLDP/ARP/ICMP Packet

Switch A Switch B

Captured
OpenFlow

Packets

Topology Graph
Generator

Malicious
Tenant List

SDN

Active ARP
Inspection

Arp
Packets

DoS Detector

Scanning
Packets

F I G U R E 4 Malicious tenant detector architecture

T A B L E 1 Summary of the related literature comparing response methods

References Method Modification TP DoS MITM
2 Sphinx: Build incremental flow graphs Yes ✓ — —

6 Monitor LLDP packets and topology update No ✓ — —

8 Considering LLTP switch-to-switch time Yes — — ✓
9 LLDP Packet Authentication Yes ✓ — —

10 Using stealthy probing-based verification No ✓ ✓ ✓
11 Add encrypted timestamps to LLDP Yes ✓ — —

12 Present secure and efficient OFDP Yes ✓ — —

communication flow. We analyze specific OpenFlow control messages to build this topology graphs. This graph is continuously

updated for changes. A simple program in the first step can passively capture OpenFlow messages, ARP packets, and other

relevant protocols. Then, a parser extracts high-level information related to the topology graph, ARP inspection, and scanning

attacks. In the last step, students can write code or use visual inspection to detect suspicious tenants. For example, to detect

malicious tenants based on the topology graph, students should look for a unidirectional edge in the graph. The tenant who is

attached to a switch with a unidirectional edge is suspicious. The output of our method is a Malicious Tenant List. A response

module can manage and quarantine malicious tenants in the entire network by changing the flow table strategy.13,14 Figure 3

depicts the steps and Figure 4 illustrates the components of the proposed approach. We investigate previous approaches used in

detecting or mitigating the mentioned threats. Table 1 compares different approaches in detecting malicious tenants.

5 CONCLUSION AND FUTURE WORK

In this paper, we performed an analysis of vulnerabilities and threats in OpenFlow protocol and SDN infrastructure that could

lead to serious attacks. Besides, we introduced four types of attack vectors associated with malicious tenants that seriously

challenge the SDN foundation. Then the mitigation techniques against malicious tenants are investigated. Finally, we introduced

6 of 6 ABAZARI ET AL.

an approach that utilized the topology graph, ARP inspection, and DoS detector to detect malicious tenant. Despite other methods

such as TopoGuard,6 our approach does not need any changes to underlying protocols.

We believe that with our simple approach, students could understand with simple hands-on experiments why SDN is

vulnerable, how such vulnerabilities lead to other severe damages, and why many security mechanisms are needed.

ORCID

Farzaneh Abazari https://orcid.org/0000-0002-2139-5684

REFERENCES

1. Mousavi SM, St-Hilaire M. Early detection of ddos attacks against sdn controllers. In Computing, Networking and Communications (ICNC),

2015 International Conference on, pp. 77–81, IEEE; 2015.

2. Dhawan M, Poddar R, Mahajan K, Mann V. Sphinx: detecting security attacks in software-defined networks. Proceedings of the 22nd Annual

Network and Distributed System Security Symposium NDSS. Internet Society; 2015.

3. Khan S, Gani A, Wahab AWA, Guizani M, Khan MK. Topology discovery in software defined networks: threats, taxonomy, and state-of-the-art.

IEEE Communications Surveys & Tutorials. 2017;19(1):303-324.

4. Benton K, Camp LJ, and Small C, Openflow vulnerability assessment. In Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking, pp. 151–152, ACM, 2013.

5. Sivaramakrishnan SR, Mikovic J, Kannan PG, Choon CM, Sklower K. Enabling sdn experimentation in network testbeds. In Proceedings of the
ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization, pages 7–12. ACM, 2017.

6. Hong S, Xu L, Wang H, and Gu G. Poisoning network visibility in software-defined networks: new attacks and countermeasures. In Proceedings

of the 22th Annual Network and Distributed System Security Symposium NDSS, 2015.

7. Xia J, Cai Z, Hu G, Xu M. An active defense solution for Arp spoofing in openflow network. Chinese Journal of Electronics. 2019;28(1):172-178.

8. Nguyen T-H, Yoo M. A hybrid prevention method for eavesdropping attack by link spoofing in software-defined internet of things controllers.

International Journal of Distributed Sensor Networks. 2017;13(11):1–9.

9. Alharbi T, Portmann M, Pakzad F. The (in) security of topology discovery in openflow-based software defined network. International Journal
of Network Security & its Applications. 2018;10(3):1–16.

10. Alimohammadifar A. Verifying Network Topology in Software Defined Networks Using Stealthy Probing-based Verification (SPV). PhD thesis,

Concordia University; 2018.

11. Skowyra R, Xu L, Gu G et al. Effective topology tampering attacks and defenses in software-defined networks. In 2018 48th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), pp. 374–385, Luxembourg: IEEE, 2018.

12. Azzouni A, Boutaba R, Trang NTM, Pujolle G. softdp: secure and efficient topology discovery protocol for sdn. arXiv preprint arXiv:1705.04527,

2017.

13. Liu L, Ko RK, Ren G, Xu X. Malware propagation and prevention model for time-varying community networks within software defined networks.

Security and Communication Networks. 2017;2017:2910310:1–2910310:8.

14. Jero S, Bu X, Nita-Rotaru C, Okhravi H, Skowyra R, Fahmy S. Beads: Automated attack discovery in openflow-based sdn systems. In: Dacier M,

Bailey M, Polychronakis M, Antonakakis M, eds. International Symposium on Research in Attacks, Intrusions, and Defenses. Atlanta, GA:

Springer; 2017:311-333.

How to cite this article: Abazari F, Esposito F, Takabi H, Hosseinvand H, Pecorella T. Teaching software-defined

network security through malicious tenant detection. Internet Technology Letters. 2019;2:e131.

https://doi.org/10.1002/itl2.131

https://orcid.org/0000-0002-2139-5684
https://orcid.org/0000-0002-2139-5684
https://doi.org/10.1002/itl2.131

