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Abstract—Existing technologies identify individual lines in a
line plot by matching the symbols in the legend. Identifying each
symbol is crucial to create accessible graphics for people who are
blind so that they provide the best resemblance possible to the
original plot. This resemblance provides better communication
between sighted and vision impaired users. In our work we use
an existing network architecture and improve it in a way that it
will get more semantic information out of the lines and their
symbology. We present these line graphs in the GraVVITAS
system, an approach for providing dynamic and refreshable
accessible graphics, to be used by people who are blind.

I. INTRODUCTION

Line graphs are one of the most commonly used graphs in
published media and in scientific literature. However, they are
not easily accessible by people with vision impairment. One
of the major issues which causes this lack of accessibility is
that their semantic is not part of the graphic production [4].
The visual components are initially created by using various
software packages and then these graphics are manually edited
to make it suitable for the final media. During this process all
the semantic information are lost and the line graph is often
saved in a still image.

We recognise the hurdles of creating such accessible graph-
ics for print and digital media from the graphic designers
perspective. Instead of trying to capture all the semantics
during the design process, we investigated the recognition
of these semantics from the original graphics after they are
produced.

In this paper, we propose a system which takes a line graph
as an input and recognises the semantic information. These
information are then added to a symbolic representation of the
graphic so that they can be presented in various formats. In this
paper, we explored their use with the GraVVITAS system that
we already adopted to present floor plans to visually impaired
users [3].

GraVVITAS is a practical, generic and low cost solution
for providing dynamic and refreshable accessible graphics. It
is used to create and present graphics by using multi-touch
screens of standard tablets augmented with haptic and audio
feedback [5].

II. BACKGROUND

Existing research has focused on solutions that split the
large and complex task of line plot analysis into several
subproblems such as recognition of cartesian axes, legends

and individual lines [9]. They also focus on classification of
the types of existing graphs in scientific documents, like line
plots, bar charts, scatter plots [12] [2].

In this paper we apply image processing and deep learning
techniques to the problem of line detection within line plots.
We tackled the problem by looking at it from a different point
of view than [8] [10]. In [8] authors maintain an approach
strongly linked to pure image analysis techniques and mainly
orient their study towards the search for a path between the
pixels of the same curve, applying traditional techniques such
as PCC (Primitive Chain Code), while [10] mainly aims to
interpret information contained in scientific papers plots. In
FigureSeer, instead, authors investigate to parse the graphic
content in research papers to improve the search and retrieval
of information [11]. Their approach is to create a unified
process of graphical component detection including the axes,
legend and individual lines.

In our work we adopt the approach in FigureSeer and
extend it with specific considerations for accessible line plot
generation.

III. DESIGN

FigureSeer identifies individual lines in a line plot by
matching the symbols in the legend. This is helpful to create
an equivalent representation of the line plot in another format.
However, identifying each symbol is also crucial to create
accessible graphics that provides the best resemblance pos-
sible to the original graph. This resemblance provides better
communication between sighted and vision impaired users as
they can refer to the lines by using the same visual properties
such as colour and style.

In our work we use the network architecture proposed in
[11] as our baseline and improve it in a way that it will be
possible to get more semantic information out of the lines
and their symbology. We use these additional information to
present the graphs in GraVVITAS.

Our work is an ongoing work and at this stage we have
implemented the line detection module which finds the in-
dividual lines in a line graph and outputs their coordinate
points as well as other associated information given on the
legend of the graph in a format that is compatible with the
GraVVITAS system. We will be extending the system so that
it will also include the axis detection and legend detection



Figure 1: One sample line graph.

and understanding module specifically aiming for a complete
representation on the GraVVITAS system.

A. Line Detection Module

Following [11] we investigated two approaches to achieve
better line detection: (i) one image processing approach, and
(ii) one CNN based approach. Figure 1 shows a sample test
image from the dataset [1].

1) Image Processing Approach: in this case we consider
the following steps to detect the lines inside one line graph:
• From the dataset we used, we know a set of annotated

color images of line plots and the corresponding legends
and legend symbols positions;

• We crop all the plot areas and symbols in the legend;
• In each symbols crop, we detect the main color (the color

of the relative curve in the plot) using color clustering
technique (k-means with 2 clusters for clustering);

• Once the main color has been detected, we use a threshold
triple of values (for R, G, B) to set the interval of values
in which a pixel is said to belong to a curve.

In this way every color difference in graphs can be detected,
however several images in the dataset are black-and-white or
contain different lines of the same color but different line
patterns.

In order to solve this problem, similarly to [11], we have
created a feature map f for each line in each image by
taking each symbol crop and rotationally convolving it over
the image, having as main objective to make some kind
of template matching of the crop into the plot area. Being
convolution a rotation-invariant operation, we convolved 30
to 60 different rotations of each crop with each plot, and we
finally created each feature map by taking the maxima of the
resulting tensor for each image pixel. It is worth observing
here that even if the convolution is a part of deep learning
models, in this case this operator is performed in the classical
image processing way.

This approach has brought some improvements, but its
application to the huge variety of different symbol patterns
across the images we considered has given variable results. As
we can notice from the images in Figure 2 and Figure 3, solid
lines can be constructed using the intensity levels of the output

Figure 2: Output image from applying a solid line filter to the original
image

Figure 3: Output image from applying a dashed line filter to the
original image

image, however it is not possible to achieve similar results for
the dashed lines. Furthermore this approach does not provide
good results for line styles that have different patterns such
as squares and circles (like e.g. −o− or −♦−) as shown in
Figure 4. We therefore decided to take a different approach
which is based on a Convolutional Neural Networks.

2) CNN-Based Approach: we use a CNN-based approach
[6] [13] to derive feature maps similar to those previously
defined, which allows us to implicitly define and model our
patch transformation (rotations, overlapping, etc.). Similarly
to [11], we learn the embedding of images patches to a low
dimensional features vector using a Siamese Neural Network
based on [13]. Basically, the Siamese Network learns the
similarity between the line in the legend with lines in the plot.
Once trained, the network can then be used to detect the lines
matching each item in the legend. Taking again as input the
plot in Figure 1 the similarity scores computed by the Siamese
network for each of the two plots are shown in Figure 5. With

Figure 4: Output image from applying a pattern filter to the original
image.



Figure 5: Feature maps generated by the CNN-based approach. Each
line in Figure 1 is represented in a separate image.

respect to the previous approach, the density of the feature map
computed by the Siamese network provides better recognition
of lines in terms of their styles. As we can notice, also the
part of the image corresponding to the legend looks similar to
itself and is therefore highlighted in the feature map (on the
top-right corner of the image). In the prediction step the output
of the Siamese network is computed with a sliding window
with stride of two pixels. We trained the Siamese network
using a Nvidia GTX-970 GPU for around 10 hours. Testing
the model less than an hour for 200 images.

After generating with the Siamese network the feature
map we need to extract a symbolic representation of the
plot. To this purpose, we first consider some morphological
operations to extract the skeleton of the line and then consider
a dynamic programming approach to detect the line path from
the corresponding feature maps.

B. Accessible content creation module

We process the feature maps computed from the CNN-based
approach with a morphological erosion and dilation with a
5× 5 pixels kernel followed by medial axis computation. The
intermediate steps for the bottom feature map in Figure 5 are
shown in Figure 6. From top to bottom we show the closed
image (obtained by first dilating and then eroding the image)
and the skeleton obtained by the medial axis computation. As
we can notice the skeleton contains several artifacts and it is
of course computed also for the example line belonging to the
legend.

The resulting medial axis represents a good approximation
of the line path, but cannot be directly used to provide a
symbolic representation of the line. In particular, we should

Figure 6: Processing of the feature map obtained by the CNN-
based approach. Top: closing of the feature map (dilation followed
by erosion with the same structuring element). Bottom: medial axis
computation.

obtain a list of points to be inserted as a polyline in the SVG
file that is required as input to the GraVVITAS application.

To generate this list of points one simple approach is to
sample the points in the feature map at regularly spaced
positions in the horizontal axis and then emit one output value
for each of these samples on the basis of the skeleton. One
disadvantage of this approach is the relatively low precision,
since also artifacts can be sampled instead of the ”true”
skeleton. Another problem is the potential presence of points
coming from the legend in the output list.

To avoid these risks the output is processed by a dynamic
programming algorithm to infer the real curve path. In par-
ticular, similarly to that in [11], our goal is to search for the
optimal path Ps = {pi}ni=1 = {(xi, yi)}ni=1 which is computed
by optimizing the following function:

E(s) =

n∑
i=1

α · f(pi) +
n−1∑

i=1,j=i+1

β · f(pi, pj) (1)

t.c.,∀i, 1 ≤ yi ≤ m, 1 ≤ xi ≤ n, xi+1 = xi + 1

Where the first term indicates the likelihood of a pixel pi
belonging to the path, given its feature map f , while the
second is used to ”encourage” smooth transitions between two
adjacent pixels penalizing the contribution given by pixels to
values of y which are distant from each other.

The output of this algorithm, shown in Figure 7, is used to
create an SVG file, input for GraVVITAS. By closely inspect-
ing the figure, we can notice that there is no output for the line
in the legend in the top-right part of the image. However, the



Figure 7: Dynamic programming algorithm output for the plot in
Figure 1.

algorithm produces one output (actually a straight segment)
also for the first and last part of the plot that is not present
in the original line. These parts can be easily removed by
exporting in the SVG file only points intersecting with the
closed feature map (top map in Figure 6).

C. SVG generation

The GraVVITAS system accepts an SVG file to present
accessible graphics. Thus, our system outputs the resulting
SVG in the following format where each polyline represents
a line in the original image (for simplicity we omit several
details and in particular actual coordinates of the polylines).
In the example, we first define the vertical and horizontal
axes with the corresponding positions. The next two polylines
define the two lines in the example on Figure 1; one dashed
and one solid line. The second part of the SVG contains
information about haptic and audio feedback that can be
differentiated for each line. In this case the attributes of SVG
elements are not set to any value and get the default.

<svg i d =” svg−g r a p h i c ” xmlns =”” xmlns : x l i n k =””
wid th =”” h e i g h t =”” viewBox =””
p r e s e r v e A s p e c t R a t i o =””>

< t i t l e ></ t i t l e >

<g i d =”” t r a n s f o r m =””>
<p o l y l i n e p o i n t s =”0 0 0 800” i d =”Y a x i s ”
c l a s s =”” s t y l e =””>

< t i t l e >Y a x i s </ t i t l e >
</ p o l y l i n e >

<p o l y l i n e p o i n t s =”0 800 1200 800”
i d =”X a x i s ” c l a s s =”” s t y l e =””>

< t i t l e >X a x i s </ t i t l e >
</ p o l y l i n e >

<p o l y l i n e
p o i n t s = ” . . . . ”
i d =” l i n e 1 ”
c l a s s =”” s t y l e =””>

< t i t l e >Dashed l i n e </ t i t l e >

</ p o l y l i n e >

<p o l y l i n e
p o i n t s = ” . . . . ”
i d =” l i n e 2 ”
c l a s s =”” s t y l e =””>

< t i t l e >S o l i d l i n e </ t i t l e >
</ p o l y l i n e >

</g>

<m e t a d a t a i d =”” r p i d =”” t i t l e =”” d e s c r i p t i o n =””
c a t e g o r y =”” group =”” subgroup =”” keywords =””
c o l l e c t i o n s =”” o r i e n t a t i o n =””
t a r g e t d e v i c e n a m e =””>

<summary></summary>
<g r a v v i t a s ng−r e p e a t =””>

<id>l i n e 1 </ id>
< i n t e r i o r c o l o r ></ i n t e r i o r c o l o r >
<b o r d e r c o l o r ></ b o r d e r c o l o r >
<c o r n e r c o l o r ></ c o r n e r c o l o r >
<audio ></audio>
<volume></volume>
< t e x t >Dashed l i n e </ t e x t >
<v i b r a t i o n ></ v i b r a t i o n >
<a n n o t a t i o n ></ a n n o t a t i o n >

</ g r a v v i t a s >

<g r a v v i t a s ng−r e p e a t =””>
<id>l i n e 2 </ id>
< i n t e r i o r c o l o r ></ i n t e r i o r c o l o r >
<b o r d e r c o l o r ></ b o r d e r c o l o r >
<c o r n e r c o l o r ></ c o r n e r c o l o r >
<audio ></audio>
<volume></volume>
< t e x t >S o l i d l i n e </ t e x t >
<v i b r a t i o n ></ v i b r a t i o n >
<a n n o t a t i o n ></ a n n o t a t i o n >

</ g r a v v i t a s >

</ me tada ta>
</ svg>

IV. SYSTEM TEST

A correct evaluation of a visualization tool of graphical
information for visually impaired people would require a
suitable usability test by final users. In this case this would
require visually impaired people to use the system to inspect
the line plots and understand its content (e.g inferring the
mutual relationships among lines). As a preliminary partial
evaluation we show in Figure 8 three input plots with different
features and the corresponding output visualized with the
GraVVITAS system on an iPad. Different lines are shown
enlarged and with false colors. Thicker lines (with respect to
the input image) are required because the spatial resolution
on fingers is smaller than the visual acuity. In other words if
the lines are too thin it is really difficult, if not impossible,
to follow them by using the audio feedback provided by
the GraVVITAS system since with a small displacement we
would miss the line. The false colors are of course not visible
to visually impaired people. Rather, these are used by the



GraVVITAS system to provide a different audio feedback for
each line.

Given these considerations by inspecting Figure 8 we can
notice that the conversion system can deal with different types
on line plots handling black and white and colored plots as
well as more than two lines.

As a support to what has been presented, we also show some
quantitative results. Each point pi belonging to the predicted
path Ps = {pi}ni=1 = {(xi, yi)}ni=1 is counted as a true
positive if the difference with the ground-truth y′i is below
a threshold t, i.e (y−y′i) ≤ t [11] (t = 2% image height in our
experiments). A predicted point is counted as false positive if
there exists no curve point in the corresponding ground-truth
image, while a false negative is assessed as such if the ground-
truth image contains a non-predicted point. Moreover, if the
distance between the real y value and the predicted one is
above the threshold t both a false positive and a false negative
are counted up.

With regard to these definitions, the measure we chose as
the evaluation metric is the F-measure [7]. We considered a
line path correctly predicted if its F1-score value is higher than
95%. The F1-scores of the evaluated images range from 97%
to 99%, and this high accuracy is clearly shown in Figure 8.
Note that several components need to be sequentially accurate
for the entire parsing to be considered correct.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented our current work on the conver-
sion of lines plots for the visualization to visually impaired
people. We demonstrated a full pipeline from the line plot
image into a visualization in the GraVVITAS system that can
be used to inspect and understand the plots.

In the ongoing work we will be further developing the CNN
architecture for line plot recognition. This process will include
investigations on existing systems and determining whether
they can be used to improve our system which is specifically
targeting to create accessible line plots.
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Figure 8: Three line plots and the corresponding output in the GraVVITAS system.
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