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Abstract—A novel anomaly detection procedure based on the
Ornstein-Uhlenbeck (OU) mean-reverting stochastic process is
presented. The considered anomaly is a vessel that deviates from
a planned route, changing its nominal velocity v0. In order to hide
this behavior, the vessel switches off its Automatic Identification
System (AIS) device for a time T , and then tries to revert to the
previous nominal velocity v0. The decision that has to be taken
is either declaring that a deviation happened or not, relying only
upon two consecutive AIS contacts. Furthermore, the extension to
the scenario in which multiple contacts (e.g. radar) are available
during the time period T is also considered.

A proper statistical hypothesis testing procedure that builds
on the changes in the OU process long-term velocity parameter
v0 of the vessel is the core of the proposed approach and enables
the solution of the anomaly detection problem. Closed analytical
forms are provided for the detection and false alarm probabilities
of the hypothesis test.

Index Terms—maritime surveillance, long term prediction of
vessel motion, Ornstein-Uhlenbeck process, maritime anomaly
detection, statistical hypothesis test, target tracking, automatic
identification system, radar, real-world data.

I. INTRODUCTION

MARITIME traffic monitoring mostly relies on data col-
lected by heterogeneous sensor systems, including, e.g.

the self-reporting Automatic Identification System (AIS) [1]–
[3], coastal radars [4]–[9], space-borne sensors devices such
as Synthetic Aperture Radar (SAR) [10], video and infrared
cameras [11]. Stealth activities [12], in which the perpetrators
aim to remain hidden and undetected by law-enforcement
bodies throughout the whole duration of the activity, are
among the main issues to deal with. Such activities are ba-
sically drug smuggling, human trafficking, illegal, unreported
or unregulated fishing, illegal immigration, marine pollution
and waste dumping. Ships involved in these activities tend
to follow set patterns depending on the illicit activity in
which they are engaged: deviation from standard routes in-
cludes unexpected AIS activity, unexpected port arrival, close
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Fig. 1. A vessel turns off the AIS transponder and follows a different
trajectory from the nominal one, changing its velocity.

approach, and zone entry [13]. The analysis of real-world
AIS data shows that vessels in open seas maneuver very
seldom, as it is advantageous for them to travel by the most
economical route towards their destination, which is often
either the shortest one or the one at constant bearing. Along
their route, vessels also seek to optimize fuel consumption,
tending to maintain a nearly constant speed. Therefore, the set
patterns previously mentioned can be interpreted as deviations
from such expected conduct and can therefore be associated
to an anomalous behavior. As already pointed out in previous
relevant works [13]–[19], an anomaly detection strategy is
therefore essential.

Ships equipped with AIS transponders broadcast their loca-
tion, course, speed and other details, such as their destination
and ship identifier, at regular intervals. However, as suggested
in [18], AIS reports can be counterfeit or vessels could simply
turn off their AIS transmitters in order to hinder surveillance
systems and operators from detecting illicit activities.

In this work, we study the anomaly detection problem
depicted in Fig. 1, where a certain vessel deviates from its
planned route, changing the nominal velocity v0. The vessel
can hide the deviation by switching off its AIS transponder
for a time period T , and after the deviation it would then try
to revert back to the planned route and to the original nominal
velocity v0. The decision that needs to be taken is whether a
deviation happened or not, relying upon the available contacts
(AIS, radar, etc.).

During the period of silence the vessel might have been loi-
tering or drifting for an unspecified (and unknown) amount of
time, perhaps to encounter other ships; all actions commonly
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classified as anomalous [20]. As also documented in [12], a
practical example could be a mother ship transporting a drug
shipment from its place of origin to the waters off the country
of the ultimate destination, where the drug is then transferred
to a second vessel waiting in a pre-established location, which
eventually brings it ashore.

Fig. 2. The track of cargo vessel reveals rendezvous with four fishing vessels
in the Pacific.

A real-world example of anomalous behavior is provided in
Fig. 2, where the about five-month track of a cargo vessel
is shown. The vessel navigates with a nominal speed of
about 5 m/s in the waters of the Pacific Ocean [21]. Nearby
the Galápagos Exclusive Economic Zone (EEZ), the vessel
shuts the engines down and starts drifting, with an apparent
deviation from its route. The reason of this deviation is to
rendezvous with four tuna longliners at about 1700 miles away
from Galápagos. Each fishing vessel spends about 12 hours
moving along with the vessel at a distance of about 30 m,
which indicates the boats were likely tied up. This behavior
suggests a substantial transfer of cargo was possible [21].

Unlike other works [13]–[19], here the anomaly detection
problem is addressed relying on a hypothesis testing procedure
that builds on the changes of the Ornstein-Uhlenbeck (OU)
process long-run mean velocity parameter, and such a strategy
will be tested against a trajectory of a real transshipment
incident [21].

A ship motion model based on the OU process has been
shown to be more realistic than other conventional kinematic
models for the behavior of the real-world commercial maritime

traffic [3], [10], [22], [23]. In this framework, the OU model
turns out to be a valuable tool when vessel information is not
available, providing an accurate estimation of a ship’s position
and velocity, even after several hours.

The detection strategy proposed here is investigated assum-
ing to have available multiple contacts before and after the
possible anomaly, with possibly no contacts available during
the anomaly itself. The case where only two contacts are
available, for example the last contact before the AIS device
shutdown and the first after the AIS device reactivation, is
of particular interest for real-world applications. The use of
multiple heterogeneous contacts associated with the vessel
along its trajectory is then considered. This situation could
be represented by a scenario where multiple radar contacts
are available in addition to AIS contacts. Even though radar
and AIS are by now standard ship equipment, the reality is
that information from the two systems is seldom used jointly,
apart from being manually combined, especially on a local
scale by individual ships or port authorities. On a larger scale,
at a command and control center level, the opportunity to have
complementary observations of a target is possible thanks to
long range coastal surveillance radar networks and satellite
networks, which provide non-cooperative target measurements
and represent the reference application for our investigations.

It is worth mentioning that, different from the AIS
data, which contain vessel labeling information, other (espe-
cially non-collaborative) sensors (e.g. radar) suffer from the
measurement-origin uncertainty [10]. In this work we assume
that the association of contacts to the vessel of interest is
solved in a preliminary stage, see e.g. [10], [24]. The possible
association error, relevant when several multiple targets are
close to each other (uncommon scenario in open sea), is
neglected and left to future investigation.

The use of multiple contacts compared to the case of only
two contacts can lead to a sensible improvement of detection
performance. However, counterintuitively, there are scenarios
in which the detection performance is degraded. Mathematical
conditions and physical insights related to such scenarios are
provided.

The paper is organized as follows. The problem is formu-
lated in Section II, while the proposed solution is presented in
Section III. Section IV describes the dynamic model employed
for the vessel introducing the OU process. Section V is devoted
to the development of the detection strategy, experimental
results (analyses of both synthetic and real scenarios) are
reported in Section VI, and, finally, conclusive remarks are
provided in Section VII.

II. PROBLEM FORMULATION

Let us consider a vessel of interest, represented by a point
in a two-dimensional space, which is following its planned
route. The position and velocity of the vessel are expressed
in Cartesian coordinates, resulting from the projection of
the geographic coordinates reported by the on-board AIS
transponder. The OU stochastic process is used to model the
velocity of the vessel with a long-run mean parameter v0,
representing the nominal velocity of the ship [3]. In other
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Fig. 3. Sequence of long-run mean velocities and time intervals characterizing
the N -section path under hypothesis H1.

words, the velocity of the vessel is a modified Wiener process
so that there is a tendency of the process to move back towards
the long-run mean value, with attraction proportional to the
current deviation from that long-run mean. The velocity v0

is therefore a deterministic parameter of the OU stochastic
process.

Let us now suppose that AIS data is unavailable for a time
T after a given instant, due to a lack of communications from
the ship (because of limited sensor coverage, interference,
etc.) or an intentional shutdown of the AIS transponder. In
this context, two hypotheses can be envisioned: the first one,
denoted by H0, that the vessel navigates according to the
nominal condition (along the planned trajectory with a long-
run mean velocity v0), and the alternative one, denoted by
H1, that the vessel moves away from the nominal condition
once the AIS transponder has been shut down. At the end of
the time interval T the AIS device is switched back on and
the vessel keeps on moving under the nominal condition, as
shown in Fig. 1.

We assume that, during the time it went dark, the vessel had
been moving according to a sequence of OU processes with
unknown long-run mean velocities or, equivalently, a single
OU process with long-run mean velocity that is a piecewise-
constant function of time. In Fig. 3 it is shown the sequence of
long-run mean velocities, which identify an N -section path,
that we represent with the 2N -dimensional vector v1:N =[
vT

1 . . .v
T
N

]T
. Considering the set of time instants t1 < ... <

tn < ... < tN , the period taken to cover the n-th section
corresponds to the difference ∆n = tn−tn−1 and the sequence
of these time intervals is denoted with DN = {∆n}Nn=1.

In other words, under H1, the vessel velocity is modeled as
a piecewise OU model, i.e., an OU process with a long-run
mean velocity parameter that is a piecewise-constant function
of time. The time period T , during which the AIS is disabled,
can be expressed as the sum of all the different time intervals
∆n, so that T =

∑N
n=1 ∆n.

The considered problem amounts to determining, in the
absence of AIS data and without any other information during
the time interval T , whether the vessel has been following the
planned trajectory at the nominal velocity v0 or not, by means
of a composite hypothesis testing formulation designed to
identify changes in the velocity parameter. In the first instance,
the problem is studied just relying only upon two contacts
available at the instants t0 and tN = T , respectively. Then,
the problem is extended to the case where multiple contacts
are available, each one located in a generic point along the
N -section path.

III. STATISTICAL HYPOTHESIS TESTING

Let us assume there are K+1 measurements available from
the target, taken at K+1 arbitrary instants of time. Let us also
assume that the target measurements can be combined into
another vector of K elements, y, by suitably taking differences
between consecutive measurements. This new vector conve-
niently encapsulates all the available information about the
target trajectory. The specific dependence of y from the target
measurements varies depending on the measurement model
and hypothesized motion model. Since it is not essential to the
considerations that will follow in this section, its definition is
delayed to Section IV.

The anomaly detection strategy investigated throughout this
paper and fully developed in Section V is the Generalized
Likelihood Ratio Test (GLRT). By denoting with Λ(y) the
test function, the GLRT can be expressed as

Λ(y) = arg max
θ
{ln [pθ(y)]} − ln [pθ0

(y)]
H1

≷
H0

τ, (1)

where pθ0
is the probability distribution under the simple

null hypothesis H0 by which there have been no changes
in the vessel velocity during the AIS transponder shutdown;
conversely, pθ is the probability distribution, depending on
the unknown parameter θ, under the composite alternative
hypothesis H1 by which the vessel has changed its velocity
during the AIS transponder shutdown. With a minor abuse of
notation, that we hope the reader will forgive, the threshold
will be always identified by τ from now on.

It will be shown that the anomaly detection problem previ-
ously described can be traced back to the following Gaussian
composite hypothesis testing problem:{

H0 : y ∼ N (µ0,Cy)

H1 : y ∼ N (µ,Cy)
(2)

where the mean vectors are given by

µ0 = H (DN ) (1N ⊗ v0) , µ = H (DN ) v1:N , (3)

and H (DN ) is the model matrix, whose expression will be
fully provided in Section IV. The dependence of H from DN
will not be reported from now on for ease of notation. 1N is
the vector of N ones, and ⊗ represents the Kronecker product.

Noting that v1:N is always unknown, we will make a
distinction between the case where the number of sections
N and the sequence of the time intervals DN are known
quantities, and the case where N and DN are instead unknown.
Given v0, it will be shown that µ0 is always known even if
H (DN ) is unknown. Then the mean term µ in (3) can be
expressed as

µ
∆
=

{
Hθ if N,DN known
θ if N,DN unknown

(4)

Under the condition of known parameters, H (DN ) is a known
matrix and θ = v1:N is the unknown parameter vector of
size 2N × 1. Under the alternative condition, it is preferable
to directly estimate µ (where θ = µ represents a global
unknown parameter) instead of jointly estimating N , DN and
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v1:N which would require a numerical solution of the GLRT
with no closed-form performance expression available.

The test performance is defined in terms of false alarm
probability PFA, i.e., the probability that the test statistic
exceeds the threshold under H0 and detection probability PD,
i.e., the probability that the test statistic exceeds the threshold
under H1. By letting the threshold τ vary, the PFA and
PD values define a curve in the (PFA, PD) plane named the
Receiver Operating Characteristic (ROC). In particular it will
be seen that the GLRT for the hypothesis testing problem at
hand can be easily traced back to the GLRT for Gaussian
linear model [25], where the test statistics under the two
hypotheses H0 and H1 are characterized, respectively, by a
central and a non-central Chi-squared distributions, both with
d degrees of freedom. In such a way, the detection performance
is described by

PFA = Qχ2
d
(τ), (5)

PD = Qχ′2d (λ)(τ), (6)

where Qχ2
d

and Qχ′2d (λ) are the right tail probabilities of the
central and non-central Chi-squared distributions, respectively.

IV. STATISTICAL REPRESENTATION OF DATA BASED ON
THE ORNSTEIN-UHLENBECK PROCESS

The OU model [3], [26]–[28], validated against a real-world
commercial maritime traffic dataset [3], enables a more accu-
rate representation of the target state in the long-term when
ships are not maneuvering. The OU process is distinguished
from the conventional nearly-constant velocity (NCV) model
mainly by a feedback loop, which ensures that the velocity of
the target does not diverge with time, but is instead bounded
around a desired value, i.e., the velocity of the process tends
to drift over time towards its long-term mean.

It is worth mentioning that the NCV model could also
be adopted in anomaly detection [14]. It is however less
appropriate in two ways, equally important. First, OU appears
to model reality better than NCV, and second, the elevated
uncertainty growth under the NCV versus OU model means
that anomalous excursions stand out less.

Let us indicate the four-dimensional target state at time t ∈
R+

0 with
s(t) = [x(t) ẋ(t)]

T
, (7)

where x(t) and ẋ(t) denote the target position and velocity,
respectively, in a two-dimensional Cartesian reference system

x(t)
∆
= [x(t) y(t)] , ẋ(t)

∆
= [ẋ(t) ẏ(t)] . (8)

The target dynamics, in general, are modeled by a set of
linear stochastic differential equations (SDEs) [29], and in
[3] it is shown how the movement of real non-maneuvering
vessels in the open sea can be represented by a mean-reverting
stochastic process. Specifically, the velocity of the target is
an OU process, and its position is an Integrated OU (IOU)
process. Under this assumption, the SDE for the target motion
model has the following form

ds(t) = A s(t) dt+ G v dt+ B dω(t), (9)

where v = [vx vy]
T is the long-run process mean, and ω(t)

is a standard bi-dimensional Wiener process. The matrices A,
B and G are defined as:

A =

[
0 I
0 −Θ

]
, B =

[
0
Σ

]
, G =

[
0
Θ

]
, (10)

where 0 is a 2×2 null matrix, Σ is a 2×2 matrix defining the
noise process and Θ is a 2× 2 matrix quantifying the mean-
reversion effect, meaning the rate at which the target will tend
back to the desired velocity after a perturbation; its diagonal
terms refer to the x and y components, while the off-diagonals
quantify the coupling effect.

Unless otherwise stated, we will use hereafter subscripted
indexes to denote time dependency, i.e., xn = x(tn), ẋn =
ẋ(tn) and sn = s(tn) by definition. We also assume that Θ
has positive and distinct eigenvalues, so that an affine transfor-
mation can be found that projects the matrix Θ onto another
space, i.e., Θ = RΓR−1, where R is the matrix whose
columns contain the eigenvectors of Θ and Γ is a diagonal
matrix whose elements are the corresponding eigenvalues. For
the sake of simplicity and without loss of generality we assume
that R = I, so that Θ = Γ = diag(γ), with γ = [γx, γy]T. In
short, as described in [3], there are three parameters for each
coordinate: the long-run mean velocity v, the reversion rate γ
and the process noise σ.

Clearly, (9) is only suitable to represent a non-maneuvering
target, i.e., whose long-run mean velocity does not change in
time. However the model can be easily extended to the case of
waypoint navigation [23], that is relevant to our application,
being the navigation mode of substantially all the commercial
maritime traffic. Under this case, we can assume that the long-
run mean velocity of the target is a piecewise-constant function
of the time that takes values from a sequence v1, . . . ,vN .
Under these assumptions, the target state at time ti, given the
target state at the previous i−1 times, can be written in matrix
form, as

si = Φ(ti − ti−1,γ)si−1 + Ψ(ti − ti−1,γ)vi + ωi, (11)

where vi is the long-run mean velocity in the time interval
∆i = [ti−1, ti] and ωi = ω(∆i) is a zero-mean Gaussian
random variable with covariance reported in Appendix A. The
state transition matrix and the control input function, Φ(∆i,γ)
and Ψ(∆i,γ), respectively, are defined as

Φ(∆i,γ) =

[
I
(
I− e−Γ∆i

)
Γ−1

0 e−Γ∆i

]
, (12)

Ψ(∆i,γ) =

[
∆iI−

(
I− e−Γ∆i

)
Γ−1

I− e−Γ∆i

]
. (13)

The target state at time tN , given the target states at the
previous N−1 times, can be expressed recursively as (omitting



5

yk = zk −Φ(Tk)z0

= Φ(∆dpkeδk)


bpkc−1∑
n=1

 bpkc∏
i=n+1

Φ(∆i)

Ψ(∆n)vn + Ψ(∆bpkc)vbpkc

+ Ψ(∆dpkeδk)vdpke︸ ︷︷ ︸
∆
=µk

+ω(Tk) + nk −Φ(Tk)n0

= µk + ω(Tk) + nk −Φ(Tk)n0 ∼ N (µk,Cyk
) .

(14)

γ for clarity)

sN = Φ(∆N )sN−1 + Ψ(∆N )vN + ωN

= Φ(∆N ) [Φ(∆N−1)sN−2 + Ψ(∆N−1)vN−1 + ωN−1]

+ Ψ(∆N )vN + ωN

= Φ(T )s0 + Ψ(∆N )vN + ωN

+
N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
[Ψ(∆n)vn + ωn] , (15)

where we exploited the property of the state transition matrix
by which Φ(∆1)Φ(∆2)...Φ(∆n) = Φ(∆1 + ∆2 + ...+ ∆n),
∀n = 1, ..., N , that can be derived by inspection from (12).

A. Two contacts available (K = 1)

Let us start by considering the case in which two contacts
are available. Specifically, we denote with z and z0 the two
available measurements, respectively, at time T and time t0

z = s(T ) + n, z0 = s0 + n0,

where n and n0 are independent zero-mean Gaussian noises
with covariance matrices Cn and Cn0 , respectively. Clearly,
the measurement noise is independent of the OU process
noise. Even if the distribution of z0 does not affect the
hypothesis test, meaning that s0 has the same distribution
under both hypotheses, such information is important because
s0 represents the starting point of the kinematic terminating in
s(T ). Since z0 is the maximum likelihood estimate of s0, then
it is possible to substitute z0 in the generalized likelihood of
z. Given the linearity of the previous equations and the fact
that z is Gaussian, we can use the following vector of data to
avoid the dependence on s0 in z

y = z−Φ(T )z0

= Ψ(∆N )vN + ω(∆N )

+

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
[Ψ(∆n)vn + ω(∆n)]

+ n−Φ(T )n0. (16)

The terms ωn = ω(∆n) are independent zero-mean Gaussian
random variables with covariance C(∆n). It is shown in
Appendix A that

ω(T )
∆
=

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
ω(∆n)+ω(∆N ) ∼ N (0,C(T ))

(17)

Fig. 4. The parameter pk identifies the time location of the k-th contact along
the N -section path covered by the vessel.

so that y can be recast as follows

y = µ+ ω(T ) + n−Φ(T )n0

∼ N
(
µ,C(T ) + Cn + Φ(T )Cn0Φ(T )T

)
, (18)

where the expression of the mean term µ can be easily traced
back to the matrix format (3) as

µ =

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
Ψ(∆n)vn + Ψ(∆N )vN

= Hv1:N , (19)

where in this case H is a single 4× 2N matrix incorporating
the state transition matrices and the control input functions,
dependent on the number of sections N and the time interval
sequence DN :

H
∆
=

[
Φ

(
N∑
i=2

∆i

)
Ψ(∆1), . . . ,Φ(∆N )Ψ(∆N−1),Ψ(∆N )

]
︸ ︷︷ ︸

4×2N

.

(20)

Drawing a distinction between the two cases in which
parameters N and DN are known or not, µ can be expressed
as in (4). In the case of known parameters, such a matrix
is known and θ = v1:N . Under the null hypothesis H0, by
defining the vector θ0

∆
= 1N ⊗ v0, it is possible to show that

µ0 = Ψ(T )v0 = Hθ0 by exploiting the following equality

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
Ψ(∆n) + Ψ(∆N ) = Ψ(T ). (21)

In the case of N and DN unknown, θ = µ given in (19)
and θ0 = µ0 = Ψ(T )v0.
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Pk =


Φ(∆dpkeδk)Φ

bpkc∑
i=2

∆i

Ψ(∆1), . . . ,Φ(∆dpkeδk)Φ

 bpkc∑
i=dpke−1

∆i

Ψ(∆dpke−2),Φ(∆dpkeβk)Ψ(∆dpke−1),Ψ(∆dpkeβk)

︸ ︷︷ ︸
4×2dpke

,


0 · · · 0

...
. . .

...
0 · · · 0


︸ ︷︷ ︸
4×2(N−dpke)


(22)

B. Multiple contacts available

Let us now assume that, in addition to the contacts in t0 and
T , a number of contacts is available at any time during the pe-
riod between t0 and T . We hence assume that we have a stack
of K + 1 measurements, as [z0, . . . , zk, . . . , zK ]T, where the
k-th measurement is given by zk = s(Tk) + nk, and the mea-
surement noise terms nk are assumed to be independent and
identically distributed according to a zero-mean Gaussian with
covariance Cnk

. Accordingly, it is possible to consider the
vector y of size 4K, defined as y = [y1, . . . ,yk, . . . ,yK ]T.

The k-th measurement is available at time Tk =
pk
N T , where

pk ∈ [0, N ] is by definition a fraction of the interval [0, N ]
representing the time location of the contact with respect to
the N piecewise OU velocities, as shown in Fig. 4, where pk
is located at some point along the n-th section of the path.
The k-th vector, yk, is defined in (14), and its components are
analyzed hereafter.

Similarly to (17) we can compute the OU process noise
ω(Tk) at time Tk, which is given by

ω(Tk)
∆
= Φ(∆dpkeδk)

bpkc−1∑
n=1

 bpkc∏
i=n+1

Φ(∆i)

ω(∆n)

+ Φ(∆dpkeδk)ω(∆bpkc) + ω(∆dpkeδk)

∼N (0,C(Tk)) , (23)

where δk = pk − bpkc, with d·e and b·c denoting respectively
the ceiling and the floor functions.

Consequently, the vector yk is Gaussian with mean µk,
defined in (14) and derived in the same way as the mean
term (19) in the case of only two contacts, and covariance
matrix given by

Cyk

∆
= C(Tk) + Cnk

+ Φ(Tk)Cn0
Φ(Tk)T,

assuming the independence of the noise terms in (14).
At this point we can proceed as done in the previous section

computing the relation between the hypotheses and the vector
of data. The mean term µk in (14) under hypothesis H1 can
be traced back to the matrix format (4) as

µk = Pk v1:N , (24)

where Pk is the k-th sub-matrix constituting H, which
includes the state transition matrices and the control input
functions related to the k-th radar contact, whose expression
is specified in (22), where

βk =

{
1 if δk = 0

δk if δk 6= 0
.

Specifically, the null matrix appearing in (22) cancels the long-
run mean velocities contributing later than the time Tk of
the k-th contact. Notice that, for pk = N , Pk is just the
matrix (20) found in the previous case where only two contacts
are available.

The vector of data y is therefore characterized as follows

µ = E [y | H1] = Hv1:N =

P1

...
PK

v1:N , (25)

Cy
∆
=


C11 C12 · · · C1K

C21 C22 · · · C2K

...
...

. . .
...

CK1 CK2 · · · CKK

 (26)

where ∀i, j = 1, . . . ,K (see Appendix C)

Cij =

{
C(Ti) + Cni + Φ(Ti)Cn0Φ(Ti)

T if i = j

C(Ti)Φ(Tj − Ti)
T + Φ(Ti)Cn0Φ(Tj)

T if i < j

and Cji = CT
ij .

Under the null hypothesis H0 the mean term is given by

µ0 = E [y | H0] = Ψyv0, (27)

being Ψy
∆
= [Ψ(T1),Ψ(T2), . . . ,Ψ(TK)]

T the control input
matrix related to the total information available from the K
contacts. Exploiting equality (21) we can recast µ0 in terms
of H, as follows

µ0 = H (1N ⊗ v0) . (28)

Exploiting equations (25)-(28) µ can be expressed as in (4),
with θ = v1:N and θ0 = 1N ⊗ v0 when the H is known (or
equivalently when N and DN are known), otherwise θ = µ
and θ0 = µ0.

V. DETECTION STRATEGY PERFORMANCE

In this section we develop the detection strategy for the case
where multiple contacts are available, making a distinction
between the case where N and DN are unknown and the one
where such parameters are known.

In particular, the detection strategy for the hypothesis testing
problem at hand is based on the GLRT approach that can be
easily traced back to the GLRT for Gaussian linear model [25],
as anticipated in Section III. Finally the issue arising from this
strategy will be highlighted and investigated.
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A. Scenario 1: N and DN unknown parameters

In this case we have µ = θ = Hv1:N under H1 and µ0 =
θ0 = H (1N ⊗ v0) under H0. The GLRT is derived from the
GLRT (1), introduced in Section III, as follows(

θ̂ − θ0

)T

C−1
y

(
θ̂ − θ0

) H1

≷
H0

τ, (29)

where θ̂ represents the ML estimate for the parameter θ. In
Appendix B it is shown that θ̂ = y.

As anticipated in Section III, the test statistics under the
two hypotheses H0 and H1 are characterized, respectively,
by central and non-central Chi-squared distributions, both
with d = 4K degrees of freedom, corresponding to the size
of the known parameter θ0. The detection performance is
therefore given by (5) and (6) with the following non-centrality
parameter

λ = (θ − θ0)
T

C−1
y (θ − θ0) , (30)

= (v1:N − 1N ⊗ v0)
T

HTC−1
y H (v1:N − 1N ⊗ v0) .

B. Scenario 2: N and DN known parameters

In this case θ = v1:N under H1 and θ0 = 1N ⊗ v0 under
H0 . Similarly to what seen in the previous case, the GLRT
has the following form:(

θ̂ − θ0

)T

HTC−1
y H

(
θ̂ − θ0

) H1

≷
H0

τ, (31)

where θ̂ is the ML estimate of the parameter θ, given by (see
Appendix B)

θ̂ =
(
HTC−1

y H
)−1

HTC−1
y y, (32)

when H is a full rank matrix. Therefore it is possible to achieve
a direct estimate of the vector incorporating the velocities
assumed by the vessel under the hypothesis H1 instead of
an estimate of the global parameter as shown in the previous
case1. The detection performance is given by (5) and (6), but
in the current case the number of degrees of freedom for both
central and non-central Chi-squared distributions is d = 2N ,
corresponding to the size of the known parameter θ0, and the
non-centrality parameter is given by (30).

On the other hand, when H is ill-conditioned, a problem of
matrix inversion arises in the ML estimate expression (32).
This is identified as a rank deficiency problem that can
be approached by using the Singular Value Decomposition
(SVD) [31] of matrix H, given by

H = USVT, (33)

where U is a 4K × 4K unitary matrix, S is a 4K × 2N
rectangular diagonal matrix with non-negative real numbers
on the diagonal, corresponding to the singular values of H,
and V is a 2N × 2N unitary matrix.

The central idea is to replace H by its rank reduced version,
and this is referred to as truncating the SVD [30]. It is shown
that p ∆

= rank(H) = rank(S) and it is equal to the number

1When H holds a rank equal to the number of its rows, we fall back into
the case where H is unknown, so that H θ̂ = y, as shown in [30].

of non-zero singular values of H. Therefore p provides the
effective size of the matrices involved, meaning that USVT =
ŨS̃ṼT, where Ũ, of size 4K × p, and ṼT, of size p× 2N ,
are respectively the matrices of the left-singular vectors and
of the right-singular vectors of H, while S̃ is a p×p diagonal
matrix. In such a way, by using the reduced rank version of
H, it is possible to get

Hθ = ŨS̃ṼTθ = Ũθ̃, (34)

where θ̃ = S̃ṼTθ is a p-dimensional unknown vector result-
ing from a process of rotation and scaling of the vector θ. In
the same way, under hypothesis H0, we obtain Hθ0 = Ũθ̃0.

By applying the SVD (34) to the GLRT (31) and considering

C−1
y = C̃TC̃,

with C̃ lower triangular matrix with positive elements on the
diagonal, derived from the Cholesky Decomposition [31], the
reformulation the GLRT is achieved as(̂̃

θ − θ̃0

)T

ŨTC̃TC̃Ũ

(̂̃
θ − θ̃0

)
=

(̂̃
θ − θ̃0

)T

H̃TH̃

(̂̃
θ − θ̃0

)
H1

≷
H0

τ,

(35)

where H̃ = C̃Ũ and ̂̃θ is the ML estimate of parameter θ̃,
given by ̂̃

θ =
(
H̃TH̃

)−1

H̃TC̃y, (36)

where the problem of matrix inversion does not arise since
H̃TH̃ is a full-rank matrix p×p by construction, and therefore
invertible. In this case the number of degrees of freedom is
d = p corresponding to the size of the known parameter θ̃0,
while the non-centrality parameter is always given by (30).

C. More on the detection performance

Assuming that we know the matrix H (see scenario 2) we
expect that the detector (35) outperforms the detector (29)
designed under the assumption that H is unknown (see sce-
nario 1). Indeed, given that the parameter λ is equal for both
the scenarios, the number of degrees of freedom d makes the
difference. In scenario 1, d = 4K, while, for scenario 2, d
depends on the structure of H (or equivalently of contact
time locations): d = p = rank(H) ≤ min (4K, 2N). Then,
scenario 2 is never worse than scenario 1 when p < 4K and
equivalently when p = 4K.

In both scenarios by increasing K we would like to ob-
tain an improvement of performance. Unfortunately, this is
not guaranteed. However, when K is large enough and the
structure of H allows λ to increase with K, the scenario 2
has performance improving with K, since d is bounded by
2N , implying that PD −→ 1 for any fixed PFA.

Conversely, in scenario 1, when λ increases with K, the
performance is not guaranteed to improve as d = 4K increases
as well with K. In the following we give the scaling law of
λK to obtain improving performance of the detection strategy
in scenario 1.
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Scaling law of λK
Let us indicate dK = 4K. The decision statistic (29) has a Chi-
squared distribution, that is equivalent to the sum of squares
of dK independent Normal random variables x2

i with finite
mean under H1 (zero mean under H0) and unit variance

QK =

dK∑
i=1

x2
i{

H0 : xi ∼ N (0, 1) , QK ∼ χ2
dK

H1 : xi ∼ N (ξi, 1) , QK ∼ χ
′2
dK

(λK),

where λK =
∑dK
i=1 ξ

2
i . Moreover, we have

E[QK ] =

{
dK H0

λK + dK H1

V ar[QK ] =

{
2dK H0

2(dK + 2λK) H1

Exploiting the central limit theorem [32] and normalizing the
decision statistic QK under H0, we obtain the normalized
decision statistic

Q̃K =
QK − dK√

2dK

H1

≷
H0

τ. (37)

Such a distribution converges to Gaussian for large K:{
H0 : Q̃K −→ N (0, 1)

H1 : Q̃K −→ N
(
λ̃∞, σ̃

2
∞

)
.

Under hypothesis H1, Q̃K can be written as

QK − λK − dK√
2(dK + 2λK)︸ ︷︷ ︸
Q̃(H1)

K −→N (0,1)

√
dK + 2λK

dK︸ ︷︷ ︸
σ̃K−→σ̃∞

+
λK√
2dK︸ ︷︷ ︸

λ̃K−→λ̃∞

, (38)

where the first limit is a convergence in distribution to a normal
random variable while the others are limit of deterministic
sequences. Summarizing we have

λ̃∞ = lim
K→∞

λ̃K = lim
K→∞

λK√
2dK

,

σ̃2
∞ = lim

K→∞
σ̃2
K = 1 + lim

K→∞
2
λK
dK

.

Exploiting the previous convergence properties, we can an-
alyze the asymptotic detection performance of the decision
statistic Q̃K , specifically we have

P∞D = lim
K→∞

PD,K = lim
K→∞

P
(
Q̃K > τ |H1

)
(39)

= Q

(
Q−1 (P∞FA)− λ̃∞

σ̃∞

)
, (40)

where P∞FA is the asymptotic false alarm probability, obtained
exploiting the convergence in (37) and τ = Q−1 (P∞FA).

Let us recall that dK = O(K) and assume λ̃K = O(K
n
2 ).

We distinguish three different cases depending on the param-
eter n ≥ 0. If 0 ≤ n < 1, the test cannot distinguish H0 from
H1 because λ̃∞ = 0 and σ̃∞ = 1, consequently from (40)

P∞D = P∞FA. If n = 1 then λ̃∞ <∞, σ̃∞ = 1 and the detection
probability converges to a value less than 1 provided by (40).
If n > 1 and τ < ∞ then under H1 dividing the decision
statistic (38) by λ̃K we obtain

Q̃K
λ̃K

= Q̃(H1)
K︸ ︷︷ ︸

−→N (0,1)

σ̃K/λ̃K︸ ︷︷ ︸
−→0

+1,

implying that Q̃K/λ̃K converges to one in probability under
H1. Then, following (39) and given that τ/λ̃K −→ 0, the
detection probability converges to one. Summarizing for any
P∞FA < 1 we have:

P∞D = P∞FA if 0 ≤ n < 1,

P∞D = Q
(
Q−1 (P∞FA)− λ̃∞

)
if n = 1,

P∞D = 1 if n > 1.

Remark
Note that the sequence ξi, for i = 1, . . . , dK , where in
general ξi 6= ξj for i 6= j, represents the heterogeneity of the
contacts. Each ξi is a measure of the information contained in
a component of a single measurement (position or velocity
along one of the Cartesian axes). Clearly, if ξi � 1 this
component is adding mostly noise to the decision statistic
degrading the detection performance. This concept will be
clear in Section VI.

VI. EXPERIMENTAL RESULTS

A. Analysis of a synthetic scenario

Performance of tests (29) and (35) will be examined for a
situation of concern where multiple contacts are considered.
We set a configuration for the analyses of a synthetic scenario,
where a vessel is navigating under nominal conditions along
a straight route with velocity v0 = [8 0]

T m/s and at some
point it turns its AIS device off for a time period T = 12 h.
Under hypothesis H1 the vessel is supposed to follow an N -
section path and the time intervals are assumed all equal, so
that ∆n = T/N ∀n = 1, ..., N . The reversion rate of the
underlying OU dynamic model is set as γx = γy = 0.9 · 10−2

and ΣΣT = σ2I, with noise level σ2 = 10−2. The noise
covariance matrix is set as Cnk

= diag(502, 502, 1, 1) ∀k =
1, ...,K, while Cn0 is assumed to be negligible.

A comparison between the tests (29) and (35) derived in the
previous sections is highlighted here, where we distinguish
two specific case studies depending on the time location of
multiple contacts. Specifically we assume to observe two AIS
contacts (the last one before, and the first one just after the AIS
device shutdown) and two radar contacts located along the path
covered by the vessel, which under hypothesis H1 consists of
N = 4 sections characterized by the following sequence of
long-run mean velocities |v1| = 7.9, |v2| = 8.6, |v3| = 7.8,
|v4| = 7.8. The two radar contacts are denoted with k1 and k2

and the corresponding time locations with pk1
and pk2

. This
means that the contacts are observed at T1,2 =

pk1,2

N
T .

Performance curves are provided in terms of missed detec-
tion probability, 1− PD, versus false alarm probability, PFA,



9

Fig. 5. Case study 1.(a): GLRT (29) performance for case study (a). Fig. 6. Case study 1.(b): GLRT (29) performance for case study (b).

Fig. 7. Case study 2.(a): GLRT (35) performance for case study (a). Fig. 8. Case study 2.(b): GLRT (35) performance for case study (b).
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ẋ

ẏ
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TABLE I
NON-CENTRALITY PARAMETER AND DEGREES OF FREEDOM FOR RADAR

CONTACTS LOCATED IN pk1
= 2.7, pk2

= 3

AIS AIS + k1 AIS + k2 AIS + k1 + k2
λ 3.3072 50.9995 7.4007 134.4314

d
1.(a) 4 8 8 12
2.(a) 4 6 6 6

(see Figs. 5-8). Specifically, for both case studies, while the
solid line is related to the detection procedure performed by
using the only AIS contribution, the dot-dashed and dashed
lines represent the test performance achieved by using AIS
data and the measurement provided by the radar contact k1

and k2, respectively. Furthermore performance related to the
combined use of both radar contacts and AIS is denoted with
an o-marker line.

Case study (a): Performance of GLRT (29) and (35) for the
case study (a) is depicted in Fig. 5 and Fig. 7 respectively. The
two radar contacts are located in pk1

= 2.7 and in pk2
= 3. It is

easy to verify that, in both cases, the improvement obtained by
using k2 is not significant since it is located where the vessel
is very close to the expected position as if the deviation never
happened, while the use of k1, located where the anomalous
behavior and the nominal condition are significantly distant,
provides a remarkable improvement. Finally the combined
use of both radar contacts improves the performance with
respect to the use of a single radar contact. We observe that
in both cases performance improves with increasing number
of radar contacts, however as discussed in Section V, given
that λ is equal for both detectors, GLRT (35) exhibits better
performance because d is smaller comparing to the case of
GLRT (29), see also the discussion in Section V-C. In Table I
are reported the values of λ and d for cases 1.(a) and 2.(a).

Case study (b): Performance of GLRT (29) and (35) for
the case study (b) is depicted in Fig. 6 and Fig. 8 respectively,
where the two radar contacts are now located at pk1

= 3.3
and pk2

= 3.7, that is, along a part of the path where the
anomalous behavior is very close to the nominal condition,
and therefore the two hypotheses are difficult to distinguish.
In this case, compared to the case of AIS information only,
the performance of the GLRT (29) gets worse with increasing
number of radar contacts. This phenomenon is explained in
Section V-C, and basically it is the case in which adding new
contacts in location where H1 is close to H0 has the effect
of adding mostly noise to the decision statistic. On the other
hand, GLRT (35) shows increasingly better performance, even
though the improvement is quite small because of the radar
contacts contain limited information for discriminating the two
hypotheses. In Table II are reported the values of λ and d for
cases 1.(b) and 2.(b).

B. Analysis of real-world vessel traffic data

The strategy proposed in this work has been applied to the
real-world AIS track depicted in Fig. 2.

Let us focus on the observation window confined to the
area of concern where an actual anomalous behavior occurs.

TABLE II
NON-CENTRALITY PARAMETER AND DEGREES OF FREEDOM FOR RADAR

CONTACTS LOCATED IN pk1
= 3.3, pk2

= 3.7

AIS AIS + k1 AIS + k2 AIS + k1 + k2
λ 3.3072 4.1040 3.6086 4.1040

d
1.(b) 4 8 8 12
2.(b) 4 4 4 4

The related AIS track, shown in Fig. 9, does indeed reveal a
deviation from the normal route during a time frame of about 5
days, and Fig. 11 displays the test statistic (29) which exceeds
the threshold (plotted for different values of the false alarm
probability: PFA ∈

{
10−4, 10−6, 10−8

}
) corresponding to

the deviation from the nominal condition. In particular, the
deviation from the nominal velocity is highlighted in Fig. 13
where the velocity components show an apparent change in
that specific time frame.

The OU parameters are estimated in the path section im-
mediately preceding the one where the deviation actually hap-
pens (v0 = [5.29, 0.03] ,γ =

[
2.30× 10−4, 4.19× 10−3

]
,

σ =
[
1.13× 10−2, 2.23× 10−2

]
), and the detection strategy

is tested considering simulated gaps in AIS data, as shown
in Fig. 10, with the corresponding velocity gaps shown in
Fig. 14. The first gap occurs in a section of the trajectory
where there is no deviation from the nominal conditions, while
the second one occurs where the deviation actually happens.
From the application of the detector (29) with PFA = 10−6,
the deviation can be properly detected while no detection is
correctly declared in the first gap, as shown in Fig. 12.

VII. CONCLUSION

In this paper the maritime anomaly detection problem
has been studied assuming an OU mean-reverting stochastic
motion model for the vessel dynamics. The aim was to reveal
a possible deviation of the vessel under consideration from its
nominal conditions, during an AIS device disablement, relying
on a hypothesis testing procedure based on the generalized
likelihood ratio decision statistic that builds on the changes in
the OU process long-term velocity parameter.

A detailed description of the proposed detection strategy,
built by exploiting multiple contacts has been provided, pre-
senting both synthetic and real world analyses.

As confirmed by the numerical analysis, the joint use of
radar and AIS information compared to the case of only AIS
can lead to a remarkable improvement of detection perfor-
mance, while it has been shown that under certain conditions
detection performance not only does not improve, but actually
deteriorates. Such conditions depend on the timing of radar
contacts with respect to the differences between nominal and
anomalous trajectories.

Moreover, a case of a real anomalous trajectory has been
processed by exploiting the proposed detection strategy allow-
ing to assess its performance.

For the sake of clarity the radar model does not consider
false alarms and association error with other vessels, leading
to a closed form expression for the detector and detection per-
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Ω2(∆n) =


f(∆nγx) h(∆n,γ) k(∆nγx)

g(γy ∆n
2 )

γy
− g((γx+γy) ∆n

2 )
γx+γy

h(∆n,γ) f(∆nγy)
g(γx ∆n

2 )
γx

− g((γx+γy) ∆n
2 )

γx+γy
k(∆nγy)

k(∆nγx)
g(γx ∆n

2 )
γx

− g((γx+γy) ∆n
2 )

γx+γy
g(∆nγx) g

(
(γx + γy)∆n

2

)
g(γy ∆n

2 )
γy

− g((γx+γy) ∆n
2 )

γx+γy
k(∆nγy) g

(
(γx + γy)∆n

2

)
g(∆nγy)


(41)

formance expressed as central chi-squared under the nominal
condition and non-central chi-squared if anomaly occurs.

APPENDIX A
OU PROCESS

A. OU process covariance matrix

As given in [3], the OU process covariance matrix is

C(∆n) = R̃ΩR̃T (42)

where Ω = Ω1 ◦ Ω2(∆n), with the ◦ operator denoting the
Hadamard product, and R̃

∆
= [R 0; 0 R]. Matrix Ω1 has the

following form

Ω1 =



σ2
x

γ3
x

σxy

γxγy

σ2
x

2γ2
x

2σxy

γx
σxy

γxγy

σ2
y

γ3
y

2σxy

γy

σ2
y

2γ2
y

σ2
x

2γ2
x

2σxy

γy

σ2
x

γx

2σxy

γx+γy
2σxy

γx

σ2
y

2γ2
y

2σxy

γx+γy

σ2
y

γy

 , (43)

while Ω2(∆n) is defined in (41) by using the following
functions:

f(t)
∆
=

1

2

(
2t+ 4e−t − e−2t − 3

)
,

g(t)
∆
=

1

2

(
1− e−2t

)
,

which are the prediction position and velocity error normalized
variance, respectively, and

h(t,γ)
∆
= t− 1− e−tγx

γx
− 1− e−tγy

γy
+

1− e−t(γx+γy)

γx + γy
,

k(t)
∆
= e−2t

(
1− et

)2
.

B. Proof of ω(T ) ∼ N (0,C(T ))

It can be easily shown returning the synthetic characteriza-
tion of ω(T ) (17) as follows

E[ω(T )] =

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
E[ω(∆n)]+E[ω(∆N )] = 0.

Cov[ω(T )] = E
[
ω(T )ω(T )T

]
i)
=

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
C(∆n)

[
N∏

i=n+1

Φ(∆i)
T

]
+ C(∆N )

ii)
= C

(
N∑
n=1

∆n

)
= C(T ).

Since the ω(∆n) are independent zero-mean Gaussian random
variables, the terms involving the mean of the mixed products,
E [ω(∆n)ω(∆m)], are zero, and equality i) is valid.

The equality ii) is proved by making the following con-
siderations. For N = 2, by using the definitions of C(∆n)
in (42) and Φ(∆n) in (12), we can show that

Φ(∆2)C(∆1)Φ(∆2)T + C(∆2) = C(∆1 + ∆2).

It can be easily shown that for N = 3, exploiting the previous
expression, we can get

Φ(∆2 + ∆3)C(∆1)Φ(∆2 + ∆3)
T

+ Φ(∆3)C(∆2)Φ(∆3)
T

+ C(∆3)

= Φ(∆3)
[
Φ(∆2)C(∆1)Φ(∆2)

T
+ C(∆2)

]
Φ(∆3)

T
+ C(∆3)

= Φ(∆3)C(∆1 + ∆2)Φ(∆3)
T

+ C(∆3)

= C(∆1 + ∆2 + ∆3).

This procedure is valid for each N by induction.

APPENDIX B
MAXIMUM LIKELIHOOD ESTIMATION

Incorporating the term independent of the unknown param-
eter appearing in the GLRT (1) in the threshold τ , under the
condition of scenario 1, in which N and DN are unknown,
the maximum likelihood estimate of µ = θ is given by

θ̂ = arg max
θ
{ln [pθ(y)]}

= arg min
θ

{
(y − θ)

T
C−1

y (y − θ)
}
,

whose exact expression can be found by setting to zero the
derivative with respect to θ:

∂

∂θ

{
θTC−1

y θ − 2θTC−1
y y

} ∣∣∣∣
θ=θ̂

= 0,

from which it follows that the ML estimation of the unknown
parameter corresponds to data, θ̂ = y.

In the alternative case where N and DN are known, the
maximum likelihood estimation of the vector θ = v1:N is
given by

θ̂ = arg min
θ

{
(y −Hθ)

T
C−1

y (y −Hθ)
}
,

whose exact expression can be found by setting to zero the
derivative with respect to θ:

∂

∂θ

{
θTHTC−1

y Hθ − 2θTHTC−1
y y

} ∣∣∣∣
θ=θ̂

= 0,

from which

θ̂ =
(
HTC−1

y H
)−1

HTC−1
y y.
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In the same way it is shown that the ML estimate of the
unknown parameter θ̃, achieved by applying the rank reduction
method, is given bŷ̃

θ =
(
H̃TH̃

)−1

H̃TC̃y.

APPENDIX C
OFF-DIAGONAL TERMS IN Cy CALCULATION

The off-diagonal terms in the covariance matrix Cy (26)
can be derived as follows. Let us suppose for simplicity that
pi and pj , denoting the time location of the i-th and the j-th
contacts, respectively, are integer quantities. The result is still
valid even if pi and pj are not integer.

Cij =E
[
(yi − µi)(yj − µj)T

]
=E

[
(ω(Ti) + ni + Φ(Ti)n0)(ω(Tj) + nj + Φ(Tj)n0)T

]
=E

[
ω(Ti)ω(Tj)

T
]

+ Φ(Ti)Cn0
Φ(Tj)

T

i)
=

pi∑
n=1

[
pi∏

l=n+1

Φ(∆l)

]
C(∆n)

[
pj∏

l′=n+1

Φ(∆l′)
T

]
+ Φ(Ti)Cn0

Φ(Tj)
T

=C(Ti)Φ(Tj − Ti)T + Φ(Ti)Cn0
Φ(Tj)

T,

∀i, j = 1, ...,K. In i) it has been considered that the
random variables ω(∆n) involved in the expressions of
ω(Ti) and ω(Tj) given in (23) , are all independent so that
E[ω(∆n)ω(∆m)T] = 0 if n 6= m. In the same way it is
shown that Cji = CT

ij , ∀i, j = 1, 2, . . . ,K with Ti < Tj .
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waters off Ecuador: Implications for national and international fisheries
policy,” International Journal of Fisheries Sci Res., 2017.

[22] L. M. Millefiori, P. Braca, and P. Willett, “Consistent estimation of
randomly sampled Ornstein-Uhlenbeck process long-run mean for long-
term target state prediction.” IEEE Signal Processing Letters, vol. 23,
no. 11, pp. 1562 – 1566, November 2016.

[23] P. Coscia, P. Braca, L. M. Millefiori, F. Palmieri, and P. Willett, “Mar-
itime traffic representation based on sea-lanes graph construction criteria
using multiple Ornstein-Uhlenbeck processes,” IEEE Transactions on
Aerospace and Electronic Systems, to be published, 2018.

[24] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applica-
tions to tracking and navigation: theory algorithms and software. John
Wiley & Sons, 2004.

[25] B. Porat and B. Friedlander, “Performance analysis of a class of transient
detection algorithms-a unified framework,” IEEE Transactions on Signal
Processing, vol. 40, no. 10, pp. 2536–2546, Oct 1992.

[26] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Phys. Rev., vol. 36, pp. 823–841, Sep 1930.

[27] S. Coraluppi and C. Carthel, “Stability and stationarity in target kine-
matic modeling,” in 2012 IEEE Aerospace Conference, March 2012, pp.
1–8.

[28] S. Coraluppi, C. Carthel, P. Braca, and L. Millefiori, “The mixed
Ornstein-Uhlenbeck process and context exploitation in multi-target



14

tracking,” in 2016 19th International Conference on Information Fusion
(FUSION), July 2016, pp. 217–224.

[29] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part
I. Dynamic models,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 39, no. 4, pp. 1333–1364, Oct 2003.

[30] A. Thorpe and L. Scharf, “Data adaptive rank-shaping methods for solv-
ing least squares problems,” IEEE Transactions on Signal Processing,
vol. 43, no. 7, pp. 1591–1601, July 1995.

[31] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, 1996.

[32] E. Lehmann, Elements of Large-Sample Theory. New York: Springer
Science & Business Media, 2004.

Enrica d’Afflisio received the M.Sc. degree (summa
cum laude) in telecommunication engineering from
the University of Naples Federico II, Naples, Italy,
in 2016.

Since 2016, she has been a Visiting Researcher
at the NATO Science and Technology Organization
Center for Maritime Research and Experimentation,
La Spezia, where she joined the Research Depart-
ment as a Scientific Assistant in 2018. Her research
interests include statistical signal processing, target
tracking and data fusion.

Paolo Braca (M’14–SM’17) received the Laurea
degree (summa cum laude) in electronic engineering
and the Ph.D. degree (highest rank) in information
engineering from the University of Salerno, Salerno,
Italy, in 2006 and 2010, respectively.

In 2009, he was a Visiting Scholar with the
Department of Electrical and Computer Engineering,
University of Connecticut, Storrs, CT, USA. From
2010 to 2011, he was a Post-Doctoral Associate with
the University of Salerno. In 2011, he joined the
NATO Science and Technology Organization Center

for Maritime Research and Experimentation, La Spezia, as a Scientist with
the Research Department. He has co-authored of over 100 publications in
international scientific journals and conference proceedings. His research
interests include statistical signal processing with an emphasis on detection
and estimation theory, wireless sensor network, multiagent algorithms, target
tracking and data fusion, adaptation and learning over graphs, and distributed
radar (sonar) processing.

Dr. Braca was awarded the National Scientific Qualification to function
as an Associate and Full Professor in Italian universities by a qualification
committee of professors respectively in 2017 and 2018. He was a recipient
of the Best Student Paper Award (first runner-up) at FUSION Conference in
2009. He received the NATO STO Scientific Achievement Award 2017 from
the NATO Chief Scientist. He serves as an Associate Editor of the IEEE T-SP,
the IEEE T-AES, the ISIF JAIF, and the EURASIP JASP. In 2017, he was the
Lead Guest Editor of the Special Issue on “Sonar Multi-Sensor Applications
and Techniques” in IET RSN. He served as an Associate Editor of the IEEE
SPM (E-Newsletter) from 2014 to 2016.

Leonardo M. Millefiori (S’12–M’14) received the
B.Sc. degree in aerospace information engineering
and the M.Sc. degree (summa cum laude) in commu-
nication engineering with a focus on radar systems
and remote sensing from the Sapienza University of
Rome, Rome, Italy, in 2010 and 2013, respectively.

In 2013, he was a Visiting Researcher at the
NATO Science and Technology Organization Cen-
ter for Maritime Research and Experimentation, La
Spezia, where he joined the Research Department
under the Maritime Security Program as a Scientist

in 2014. His research interests include target motion modeling, statistical
signal processing, target tracking, and data fusion and radar systems.

Peter Willett (F’03) received the B.A.Sc. degree in
engineering science from the University of Toronto,
Toronto, ON, Canada, in 1982, and the Ph.D. degree
from Princeton University, Princeton, NJ, USA, in
1986.

Since 1986, he has been a Faculty Member at the
University of Connecticut, Storrs, CT, USA, where
he has been a Professor since 1998. He is Chief Ed-
itor of the IEEE AES MAGAZINE, and was Editor-
in-Chief of the IEEE SP LETTERS (2014-2016) and
the IEEE TRANSACTIONS ON AES (2006-2011). He

has held numerous positions in IEEE SPS snd AESS. He was the General Co-
Chair of the IEEE/ISIF Fusion Conference in Florence in 2006, in Cologne in
2008, and in Chicago in 2011, and the IEEE SPS SAM in Sheffield in 2018.


