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Abstract
We present the results of computer simulations at low temperature of a two-
dimensional system of dipolar bosons, with dipole moments aligned at an arbitrary
angle with respect to the direction perpendicular to the plane. The phase diagram
includes a homogeneous superfluid phase, as well as triangular and striped crystalline
phases, as the particle density and the tilt angle are varied. In the striped solid, no
phase coherence among stripes and consequently no “supersolid” phase are found, in
disagreement with recent theoretical predictions.
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1 Introduction

Quantum many-body systems in which the elementary constituents possess a finite
dipole moment have elicited significant experimental and theoretical interest, moti-
vated by speculations of novel exotic phases ofmatter that the long-ranged, anisotropic
character of the interactionmay underlie (see, for instance, Ref. [1]). One such phase is
the supersolid [2], namely a homogeneous phase of matter, which displays crystalline
order and is capable at the same time of sustaining flow without dissipation.

After a few decades of intense but so far unsuccessful search for evidence of super-
solid behavior in 4He, attention has turned to cold atoms, which offer the advantage
of a highly controllable physical setting with tunable inter-particle interactions [3].
Indeed, theoretical proposals have been made of specific cold atom systems allow-
ing in principle for the observation of supersolid behavior, for example with Rydberg
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atoms [4–9]; it should be also noted that experimental evidence of novel phases simul-
taneously displaying density ordering and superfluidity has been reported for atomic
Bose–Einstein condensates (BECs) with spin–orbit interactions [10], or coupled to
the modes of optical cavities [11]. More recently, the experimental investigation of a
possible three-dimensional, “droplet” supersolid phase of dipolar bosons with aligned
dipole moments [12,13], which has been theoretically predicted [14–16], has started
to yield promising results [17–19].

Dipolar Bose systems were first suggested as a viable candidate for a supersolid
phase in the (quasi)-2D limit, with dipole moments all aligned in the direction per-
pendicular to the plane, in which case the inter-particle interaction is purely repulsive.
A supersolid phase was hypothesized in the form of an ordered lattice of large solid
clusters floating in a superfluid background, occurring in lieu of the conventional
coexistence of crystal and fluid phases separated by a macroscopic interface [20].
First-principle calculations of the width of the coexistence region, as well as of the
energy of the interface, have, however, ruled out such an intriguing scenario, at least
for practical purposes [21].

It has been subsequently proposed that a superfluid crystal in this system might be
underlain by three-body interactions [22], or might alternatively arise by tilting the
aligned dipoles with respect to the axis perpendicular to the physical plane in which
particles are confined, leading to the appearance of a striped phase [23]. The claimwas
recently made that such a phase displays “supersolid” behavior, in a range of density
and tilt angle [24]. Although the supersolid scenario has been investigated experimen-
tally in different recent works [17–19,25], no close realization of the system in the
quasi-two-dimensional limit explored in Ref. [24] has yet been achieved; nevertheless,
it remains of fundamental theoretical interest, and one for which, at least in principle,
a direct comparison of theory and experiment may be possible at some point in the
future.

In this paper, we present the results of a first-principle numerical study of the phase
diagram of dipolar bosons in 2D, with their dipole moments aligned at an arbitrary
angle with respect to the direction perpendicular to the plane. Our theoretical model of
the system is identical with that of Ref. [24], but we make use of a different numerical
technique, a finite-temperature one which, unlike those adopted in Ref. [24], does
not rely on any a priori physical assumption on the physics of the system and allows
for an unbiased calculation of all cogent physical observables. This turns out to be
a key point, as we shall see. Our computed phase diagram is in agreement with that
of Ref. [24] only as far as the structure of the various phases is concerned, namely
triangular crystal, striped crystal and superfluid. On the other hand, our results show no
evidence at all of the superfluid behavior of the striped crystal proposed in Ref. [24].
In particular, we find the superfluid response of the system in the striped solid phase
to vanish in the thermodynamic limit, including for values of the density and/or tilt
angle for which a ground-state superfluid response∼100% is reported in Ref. [24].We
attribute this radical disagreement between our predictions and those of Ref. [24], to
the computational methodology utilized therein, which is intrinsically biased, and has
in the past yielded several spurious, eventually disproved indications of superfluidity
in other physical systems.
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The remainder of this article is organized as follows: in Sect. 2, we describe the
model of the physical system and the computational methodology adopted in this
study; in Sect. 3 we present our results, while in Sect. 4 we outline our physical
conclusions and discuss the disagreement between our results and those of Ref. [24].

2 Methodology

We consider an ensemble of N Bose particles of spin zero, massm and dipole moment
D, moving in 2D. All dipole moments are aligned, pointing in an arbitrary direction
forming an angleα with the axis (z) perpendicular to the plane. Henceforth, we express
all lengths in terms of the characteristic length of the dipolar interaction, namely a ≡
mD2/�

2, whereas ε ≡ (D2/a3) = �
2/(ma2) is the unit of energy and temperature

(i.e., we set the Boltzmann constant kB = 1). The Hamiltonian of the system in
dimensionless units reads as follows:

Ĥ = −1

2

∑

i

∇2
i +

∑

i< j

U (ri , r j ) (1)

where ri ≡ (xi , yi ) is the position of the i th particle in the plane, and the interaction
U between any two particles is given by the classical dipolar potential, namely

U (r, r′) = 1

|r − r′|3
(
1 − 3 cos2θ sin2α

)
(2)

where θ is the angle between the two vectors r and r′. The system is enclosed in a
rectangular cell with periodic boundary conditions. At temperature T = 0, the only
two thermodynamic parameters are the system density n and the angle α.

A system of particles interacting through (2) is thermodynamically stable only for
a tilt angle α ≤ αc = sin−1(1/

√
3), as the dipolar interaction features an infinitely

deep attractive well for greater α, causing the system to collapse unless a short-range
repulsive part is added to (2), a repulsion that is always present in real physical systems.
The ground-state phase diagram of this model for α = 0 only includes a crystalline
(triangular) and a superfluid phase [21]. For 0 < α < αc, the anisotropy of the
interaction promotes the formation of stripes, and the theoretical question is whether
a phase featuring both crystalline (striped) order and superfluidity is possible.

In order to address this issue, we have carried out extensive quantum Monte Carlo
simulations of the system as function of α, n, based on the continuous-space worm
algorithm [26,27], specifically a variant thereof in which the number of particles N
is fixed [28,29]. Our simulations are at finite temperature; because we are ultimately
interested in the physics of the ground state, we need to extrapolate the results to the
T → 0 limit.

Details of the simulation are standard. We used the primitive approximation for
the short imaginary time (τ ) propagator and reported here numerical estimates for
structural and superfluid properties of interest extrapolated to the τ → 0 limit. In
general, physical estimates obtained with a value of the time step τ ∼ 1.5× 10−5 ε−1

123



416 Journal of Low Temperature Physics (2019) 196:413–422

are indistinguishable from the extrapolated ones, within the statistical uncertainties of
the calculation. We carried out simulations of systems comprising a variable number
of particles, 400 being the largest size utilized in this work; as we shall see, however,
the most important physical conclusions can be established on systems of smaller size.
We typically started our simulations frommany-particle configurations corresponding
to the classical ground states for the chosen values of n andα. However, we also carried
out simulations with a different initial configurations and verified convergence to the
same physical results.

The superfluid properties of the system are the most important aspect of this work.
We computed the superfluid fractionρS directly, bymeans of thewell-known “winding
number” estimator [30]; we also assessed the presence of off-diagonal quasi-long-
range order, which characterizes a superfluid transition in 2D, by computing the one-
body density matrix n(r) and studying its behavior as a function of temperature.

3 Results

As stated above, the low-temperature phase diagram obtained in this work is in agree-
ment with that of Ref. [24] (Fig. 1 therein), as far as the structure of the various
phases is concerned. Specifically, a triangular crystal, a homogeneous superfluid and
a striped crystalline phases are observed, and the phase boundaries are in quantitative
agreement with those of Ref. [24], although it is important to note that the crystalline
ground states, both striped and triangular, are always found to be commensurate, i.e.,
free of point defects such as vacancies and interstitials, a fact that is known to have
implications on the superfluid response [31,32].

There is, however, complete disagreement when it comes to the characterization
of the (putative) superfluid properties of the striped phase, to which we restrict our
discussion in the remainder of this paper. In particular, according toRef. [24] the striped
crystal always displays a finite superfluid response, generally anisotropic and typically
with a rather small value of the superfluid fraction in the direction perpendicular to
the stripes (taken here to be the y direction); however, the superfluid fraction reported
in Ref. [24] is essentially 100% in both directions for three specific thermodynamic
(α, n) points, namely K ≡ (0.6, 128), I ≡ (0.55, 256) and F ≡ (0.5, 400) (angles
are in rads) [33].

Figure 1 shows a two-dimensional density map for a typical striped phase cor-
responding to point I defined above; the temperature T = 60. The arrangement of
particles in parallel stripes is clear [34]. Because the system is anisotropic, one gener-
ally expects ρx

S 	= ρ
y
S , but bothmust be finite in the low-temperature limit, in a genuine

2D supersolid; henceforth, we focus for simplicity on the response ρ
y
S in the transverse

direction. At these physical conditions, we find ρ
y
S to amount to statistical noise, i.e.,

zero within the combined statistical and systematic uncertainties (which we estimate
< 10−3), with no detectable change as T is lowered from T = 240 to T = 60. It
should be mentioned that this is observed on a relatively small (168 particles) system,
for which a spurious superfluid signal could be expected, despite the occurrence of
many-particle exchanges of significant length (see below). Obviously, the question
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Fig. 1 Density map for a system
of 2D dipolar bosons with
aligned dipole moments in a
direction making an angle
α = 0.55 rads with respect to the
direction perpendicular to the
plane. The density is n = 256
and the temperature T = 60, in
the units utilized here (Color
figure online)

Fig. 2 One-particle density matrix n(y), evaluated along the direction perpendicular to the stripes, for
the system at density n = 256 and with angle α = 0.55 rads, at three different temperatures, namely
T = 240, 120 and 60, in the units used here. Statistical errors are smaller than the symbol sizes. Solid
line is an exponential fit to the long-distance part of the function. Inset shows for comparison the one-body
density matrix for the system at the same density and at temperature T = 240 (note the log–log scale),
but with tilt angle α = 0.4 rads. The system is in this case a homogeneous superfluid (ρS ≈ 0.8 at this
temperature) (Color figure online)

immediately arises of how low T = 60 is, i.e., whether a hypothetical superfluid tran-
sition in this systemmight take place at significantly lower temperature. On this point,
we note that a superfluid transition in 2D must conform to the Kosterlitz–Thouless
(KT) paradigm and therefore satisfy the universal jump condition [35] at the critical
temperature Tc, which in turn implies, assuming ρS(T = 0) ≈ 1 as reported in Ref.
[24], that Tc should be≈ T � = n = 256 (see, for instance, Ref. [36]). Thus, at T = 60
(i.e., ∼ T �/4) a robust superfluid response should be observed, were the predictions
of Ref. [24] correct.

Figure 2 shows the one-body density matrix n(y), computed along the transverse
direction at density n = 256, tilt angle α = 0.55 and at the three temperatures
T = 240, 120 and 60, in the units utilized here. The long-distance behavior is clearly
suggestive of and quantitatively consistent with exponential decay, which is observed
up to a distance ∼ 5 times the inter-particle distance (which is actually comparable to
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Fig. 3 Same as Fig. 2 but at
density n = 400 and temperature
T = 60, 30 (Color figure online)

the distance between stripes, see Fig. 1). In this interval, n(r) decays by three orders
of magnitude. No discernible dependence of the results on the temperature can be
observed, within the statistical error of the calculation, which is consistent with the
behavior of a non-superfluid insulator (see, for instance, Ref. [2]).

This can be contrasted with the behavior shown in the inset of Fig. 2, of the (cir-
cularly averaged) one-body density matrix n(r) for a system at the same density at
temperature T = 240, but with tilt angle α = 0.4 rads. The system in this case is in
the superfluid phase, i.e., no crystalline order is present, and the computed superfluid
fraction is ρS = 0.8, within statistical uncertainties. Here, n(r) displays the character-
istic, slow power-law decay of a 2D superfluid. Based on these results, we conclude
that ρ y

S = 0 in the ground state of the system, if α = 0.55 rads.
Figure 3 shows the one-body density matrix for the thermodynamic point F defined

above. Here too, we have explicitly observed the same physical behavior described
above, namely absence of any measurable superfluid response and exponentially
decaying one-body density matrix in the transverse direction, at temperatures as low
as T = 30, i.e., 0.075 T �. The same conclusion applies to the other thermodynamic
point defined above (i.e., K ), and a fortiori to the rest of the phase diagram of the
system, in the region which a striped crystal occurs, as we have verified by performing
a few targeted simulations.

The markedly different superfluid response observed for different values of the tilt
angle α at the same density and temperature is reflected in the frequency of occurrence
of cycles of exchanges involving l particles, P(l), an example of which is shown in
Fig. 4. Here, the density n = 128 and T = 30; results for the two different angles
α = 0.5, for which the system is a fluid with ρ

y
S = 1, and α = 0.6, for which the

system is in the striped crystal and ρ
y
S = 0. (In both cases, the quoted values are

within statistical uncertainties.) Although exchanges involving significant numbers
of particles occur in both cases, for α = 0.6 they remain mostly local in character,
the frequency of longer cycles decaying very rapidly with l. Quite generally, the
striped crystal behaves essentially as a collection of parallel, largely independent one-
dimensional chains. Although the (quasi)superfluid properties of these chains (in the
Luttinger sense) could be of interest [37], in no case can this system be meaningfully
regarded as a “supersolid”. Thus, allowing for a finite “tilt” angle only leads to an
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Fig. 4 Frequency of occurrence
of exchange cycles involving l
particles for two systems with
density n = 128 at temperature
T = 30. Darker boxes refer to
the case α = 0.5 rads, for which
the system is 100% superfluid,
whereas lighter ones to α = 0.6,
for which the system is in the
striped crystal phase and the
transverse superfluid response
ρ
y
S < 0.001. Note the

logarithmic scale on the y-axis
(Color figure online)

additional (striped) crystalline phase,with respect to the extensively investigatedα = 0
case, but does not lead to novel superfluid behavior in this purely 2D system. The third
(z) dimension is crucial in order to stabilize a supersolid phase.

4 Discussion

It is clearly necessary to assess the origin of such a major, quantitative and qualitative
disagreement between our calculation and that of Ref. [24], as both are based on the
same microscopic Hamiltonian and employ numerical techniques which should yield
compatible results, within statistical errors. The calculations of Ref. [24] are based on
two different ground-state techniques, namely diffusion Monte Carlo (DMC) (see, for
instance, Ref. [38]) and path integral ground state (PIGS) [39,40]. The disagreement
between their results and the ones offered here, as mentioned above, is in the estimates
of the superfluid fraction, as well as in the long-range behavior of the one-body density
matrix, which is claimed in Ref. [24] to display a slow, power-law decay at long
distances, as opposed to the exponential decay found here.

As mentioned above, the phase boundaries obtained in this work are in agree-
ment with those of Ref. [24]. In a T = 0 calculation, phase boundaries are typically
established through a comparison of the energetics arrived at by projecting the lowest
energy state out of initial trial wave functions featuring different kinds of order, and
assuming that the equilibrium phase is that of the wave function yielding the lowest
energy estimate. Although a direct comparison of the energetics obtained in this work
and in Ref. [24] cannot be carried out, as energy values are not furnished therein, it is
altogether not surprising that there is agreement between DMC/PIGS and this work.
For, it is mainly in the calculation of expectation values of observables that do not
commute with the Hamiltonian, chiefly those associated with the superfluid response,
that significant differences arise between the results obtained with ground-state and
finite-temperature methods, due to the fact that DMC/PIGS estimators for the relevant
quantities (e.g., the one-body density matrix) are inherently biased (we come back to
this point below). It need to be emphasized again, however, that in this work crys-
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talline ground states are always found to be commensurate, i.e., free of point defects
like vacancies or interstitials. This is a potentially very important point because it is
possible for a crystalline system to feature a nonzero superfluid response in the pres-
ence of such point defects; nevertheless, such a phase is thermodynamically unstable
[41] with respect to one that is commensurate, i.e., free of defects, for which the super-
fluid response vanishes [42]; this aspect may have been overlooked in Ref. [24], as it
is not discussed at all.

The second point that has to be made is that, although often advertised as “exact,”
ground-state methods are in fact affected by an inherent bias, associated with the
trial wave function out of which the ground state is projected [43]. Such bias (which
does not affect finite-temperature techniques, as they require no a priori input) is
often impractically difficult to remove (even with very long computer runs [44,45]);
moreover, for the some cogent quantities it is in fact not removable at all, at least not
in any systematic way [38]. For example, there exists no numerically exact, unbiased
procedure to compute n(r) within either DMC or PIGS [46]; one has to resort to the
so-called mixed estimators, which by construction depend on the trial wave function
utilized (see, for instance, Ref. [47]).

In other words, the results for ρS and n(r) offered in Ref. [24] are intrinsically
only approximate and affected by a systematic error due to the specific choice of trial
wave function, an error that is ultimately not even quantifiable. In light of all that,
the contentions made in Ref. [24] of, e.g., power-law decay of n(r) at long distance
in the striped crystal phase, much less estimates of the condensate fraction of, e.g.,
∼ 10−3 with a claimed relative precision of 10%, made using either PIGS or DMC are
not at all believable, especially if accompanied by estimates of the superfluid fraction
unphysically close to unity, for a system breaking translational invariance. It is worth
mentioning the numerous past predictions of superfluidity of various Bose systems,
made using ground-state techniques, which were subsequently proven incorrect [48–
53]. Indeed, finite-temperature techniques are now widely regarded as a far superior
option for investigating the ground state of Bose systems (for an extensive discussion
of this subject, see, for instance, Ref. [54]).
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