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Abstract

By using the recently introduced framework of unilateral agents interactions, we provide tight graph-theoretical conditions
ensuring asymptotic convergence of opinions in finite networks of cooperative agents towards equilibrium configurations where
at most 2 distinct opinions persist. Such conditions extend previously known results on asymptotic agreement (or consensus).
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1 Introduction

Nowadays, there is an ongoing intense attention
of the scientific community around the most ap-
propriate methodological approaches to deal with
the complex and intricate understanding of social
dynamics. This requires a development of mathe-
matical models that are sufficiently simple to be
examined and capture, at the same time, the com-
plex behavior of real social groups, where opinions
and actions related to them may form clusters of
different size. Unlike many natural and artificial
multi agent systems, whose cooperative behavior
is motivated by the attainment of some global
coordination among the agents (i.e. robot coordi-
nation), actors in social networks usually disagree
and may form irregular factions (clusters). A chal-
lenging problem is to develop models of opinion
dynamics and associated theoretical tools suffi-
ciently instructive to capture the main properties
of real social networks and able to characterize
the kind of emerging behaviour (consensus on a
common opinion, clustering of opinions) that such
models or form of interactions may allow.

A first model, in this respect, was introduced in
[1] to characterize the process of a group of agents

? This work was in part supported by the EPRSC-
ENCORE Network+ project ”Dynamics and Re-
silience of Multilayer Cyber-Physical Social Systems”
and in part by the deparimental project FAIR.

reaching opinion consensus on a common issue
by pooling their subjective opinions (also referred
to as the iterative opinion pooling). The (linear)
interactions are described by a stochastic matrix
and sufficient conditions for achieving opinion
consensus are provided. The model proposed in
[2] extends the idea of Degroot model by taking
into account the actors prejudices, caused by some
exogenous factors eventually leading to opinions
disagreement. Specifically, in the F-J model some
of the agents are stubborn in the sense that they
never forget their prejudices, and thus remain
persistently influenced by exogenous conditions
under which those prejudices were formed ([3]).
The F-J model and its variants have been largely
analysed in several scenarios (i.e. [4–7,11,8] just
to cite a few).
Another specific and more realistic feature intro-
duced in models of opinion dynamics is the notion
of bounded-confidence interaction, that is the pos-
sibility of a state-dependent interaction where two
agents may influence each other if and only if the
difference between their opinions is smaller than a
given confidence bound. Two well known models,
in this respect, are the nonlinear Hegselmann-
Krause (H-K) model [9] and the Deffuant model
([10]). In the first, the dynamic evolution of an
agent’s opinion is affected by all its connected
neighbors, while, in the latter, only the opinion of
some randomly selected neighbors matters (”gos-
sip” mechanism). Confidence-based models are
technically challenging due to the strongly non-
linear nature of agents’ interactions that make
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the network’s topology state-dependent. There-
fore standard graph theory fails to provide accu-
rate and tight analysis of this kind of models. A
variant of the model considers time-varying con-
fidence bound with vanishing amplitude ([16,15])
showing that communities correspond to asymp-
totically connected components of the network,
while another one numerically analyses the case
of changing weights in a confidence range ([14]).
In [26] a simple model of opinion polarization over
structurally balanced graphs has been introduced.
The standard diffusive-type interaction consensus
scenario is extended by considering signed graph
networks in which the edges may assume also
negative weights. The model has been analysed
and extended in several ways (see e.g. [13] and
references therein). Due to the nature of opinion
dynamic framework, many results solving multi
agent consensus problems are applied to the opin-
ion dynamic scenario. In this respect, many works
relate topological property to the type of final
equilibrium ([12], [19], [25], [20],[18] just to cite
a few). Most of the above contributions assume
the presence of bilateral agent interactions, in the
sense that each node with a certain state value
may feel the influence of the neighboring agents
regardless of whether their current state is higher
or lower than its own (precise definitions to be
given later). In some applications, however, node
interactions are likely to be unilateral or specifi-
cally designed to be such. Herein we consider an
opinion dynamics model where an agent may be
willing to update its own belief on the basis of the
input from a certain neighbour only if its opinion
happens to be “optimistic” [and/or “pessimistic”]
(that is larger or smaller) when compared to his
current state value. In this respect, the considered
framework falls within the asymmetric confidence
type, with the notable feature of unbounded confi-
dence intervals (either or both in the positive and
negative directions). As shown in [19], this feature
allows a tight characterization of asymptotic dy-
namics on the basis of suitable graph theoretical
concepts. The proposed model describes situa-
tions where confidence may be granted to opinions
that are more polarized (in either direction) than
the own (i.e. higher or lower; stronger or weaker;
etc..). This may model unilateral agents’ conser-
vatism in diffusion of innovations in social net-
works [21], extremal conformity, social inertia, or
preservation in opinion dynamics [22,23], drastic
risk aversion and conformity in herding phenom-
ena in economic and financial decision-making
[24]. In our model interactions are nonlinear and,
differently from symmetric bounded confidence
models, opinions cannot always freely exchange in
order (i.e. relative opinion changes the sign from
positive to negative and viceversa) without affect-
ing agents’ interaction’s strength. For instance,
concerning political opinions, a Democratic voter
interacting with a person that he believes to be
Republican may accept influence from her/his

opinions only if these reinforce own beliefs, and
not otherwise. Therefore, the model could justify
the survival of extremist opinion in social net-
works. It does not attempt to model their origin,
however. Notice that our results are not trivial as
they point out conditions guaranteeing that only
at most 2 opinions survive in the long run. The
contribution of this paper is to identify conditions
under which opinions are guaranteed to converge
asymptotically towards an equilibrium state with
at most two clusters. This corresponds to a di-
chotomy where, depending upon the topology of
interactions, their relative strength and the dis-
tribution of initial opinions, consensus may be
reached, or, alternatively, a polarisation where
only two opinions are allowed asymptotically. To
the best of our knowledge no existing theory could
predict asymptotic convergence to either bimodal
or unimodal equilibria in the considered nonlinear
time varying set-up. This may be of interest, for
instance, in distributed decision making, where
two alternative choices are possible and one would
like each individual to opt for one or the other
within some reasonable time.

2 Graph-theoretical preliminaries

In the following we make use of the framework of
bicolored interaction graphs defined in [19]. In par-
ticular, a bicolored graph G is a triple {N,Ep, Eo}
WhereN is a finite set of nodes, Ep and Eo are two
(normally) distinct sets of directed edges, Ep ⊂
N ×N and Eo ⊂ N ×N . The subscript refers to
the denomination of such edges as pessimistic or
(respectively) optimistic. Moreover we regard the
edge (n1, n2) as being directed from node n1 to-
wards node n2. Let a set N , |N | denotes its cardi-
nality.

Remark Notice that the graph theoretical tools
needed for our subsequent analysis depart signif-
icantly from the notion of signed graph adopted
to describe the Altafini model [26]. Indeed, we for-
mulate our graph theoretical notions within the
framework of bicolored graph, rather than signed
graph, as edges are allowed to take both colors.
Moreover, the notion of sign of a path, is never
needed and would not correspond to the product
of the sign of its edges. Rather, the color of a path
(albeit never explicitly mentioned below), could be
defined, for instance, only provided all its edges
have the same color.

For a set of edgesE ⊂ N×N we denote its mirrored

image
←−
E as the following set:

←−
E := {(n1, n2) ∈ N ×N : (n2, n1) ∈ E}.

We say that a graph G = {N,E} is undirected if
←−
E = E. The composition of two (possibly distinct)
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set of edges E1, E2 is denoted by E1 · E2 and cor-
responds to the following set of edges:

E1 · E2 := {(n1, n3) ∈ N ×N : ∃n2 ∈ N :

(n1, n2) ∈ E1 and (n2, n3) ∈ E2}.
We remark that composition is an associative, but
non-commutative, binary operation. Also, it is seen

that:
←−−−−
E1 · E2 =

←−
E2 ·

←−
E1. Composition of a set of

edges with itself is also denoted by E2 := E ·E. In
general, without ambiguity, due to associativity of
the operation, we may denote Ei := E ·E · . . . ·E i
times for any positive integer i. The transitive clo-
sure of a set of edges is denoted byE∗ and amounts
to:

E∗ =

+∞⋃
i=0

Ei

where, regardless of E, E0 denotes the diagonal
{(n, n) : n ∈ N} and E1 denotes E. Notice that
(n1, n2) belongs toE∗ iff there exists a finite (possi-
bly empty) path from n1 to n2 in the directed graph
G := {N,E}. A graphG = {N,E} is strongly con-

nected iff E∗ = N ×N . Moreover,
←−−
(E∗) = (

←−
E )∗ so

that the notation
←−
E ∗ can be used without ambigu-

ity. The following notion of connectness for bicol-
ored graphs was seen to play a fundamental role in
determining the asymptotic convergence towards
consensus in the case of networks of agents with
unilateral interaction, [19].

Definition 1 We say thatG := {N,Ep, Eo} fulfils
bicolored quasi-strong connectedness if and only if:←−
Ep
∗ · E∗o = N ×N .

In general, however, the graph G̃ := {N,
←−
Ep
∗ ·E∗o},

may have q > 1 strongly connected components.
When such components are all-to-all we say that
the graph fulfills q-modal bicolored quasi-strong
connectedness as stated below.

Definition 2 We say that a bicolored graph
G = {N,Eo, Ep} fulfills q-modal bicolored quasi-

strong connectedness if G̃ = {N,
←−
Ep
∗ ·E∗o} admits q

strongly connected components which are all to all.

Notice that, as remarked in [19], a standard (mono-
colored) directed graph G = {N,E} can be seen
as a particular case of a bicolored graph in which
Ep = Eo = E. In particular, as shown in [19],
quasi-strong connectivity of G := {N,E} amounts

to strong connectivity of G = {N,
←−
E ∗ · E∗}. On

the other hand, we see that
←−
E · E =

←−−−←−
E · E, and

therefore the graph G = {N,
←−
E ·E} is undirected.

Similar considerations apply to:G = {N,
←−
E ∗ ·E∗}.

This means that, whenever G = {N,
←−
E ∗ ·E∗} has

more than one all to all strongly connected com-
ponent, it is also disconnected. This situation is
not particularly interesting in the study of opinion

dynamics, as it entails the presence of multiple
groups of agents which do not interact with each
other and can, without loss of generality, be re-
cast as three separate multi-agent systems each
one fulfilling quasi-strong connectedness. This is
why conditions for q-modal asymptotic clustering
have never been explicitly stated in the context of
bilateral agents interactions.

The main result in [19] clarifies in what respect
satisfaction of Definition 1 is a tight necessary and
sufficient condition guaranteeing asymptotic con-
sensus of any solutions of the associated network.
With a bit of ingenuity, one may wonder if, in ad-
dition, fulfillment of Definition 2 for q ≥ 2 might
be enough to ensure convergence of solutions to-
wards equilibrium or a corresponding bound on
the number of clusters in the final equilibrium con-
figurations. It turns out that this is not the case.
Roughly speaking this is because individual all-
to-all components may allow existence of “local
leaders” (or group of leaders), normally referred to
as stubborn agents in the opinion dynamics litera-
ture, who might preserve their opinion regardless
of others’ beliefs and, at the same time, propagate
a direct or inderct influence over each others’ local
followers so as to induce persistent oscillatory be-
haviours or additional asymptotic opinion values,
see counterexample in Section 4.

To this end we modify Definition 2 by strengthen-
ing the connectivity requirements within all-to-all
components as follows:

Definition 3 We say that a bicolored graph G =
{N,Eo, Ep} fulfills 2-modal bicolored strong con-

nectedness if G̃ = {N,
←−
Ep
∗ · E∗o} admits 2 strongly

connected components which are all to all and, in
addition, when denoting with Ni i = 1, 2 the set
of nodes associated to each of the all to all compo-
nents, the graphs G1

p := {N1, Ep ∩ (N1×N1)} and

G2
o := {N2, Eo∩(N2×N2)} are strongly connected.

Our first result is an alternative formulation of q-
modal bicolored quasi-strong connectedness.

Lemma 4 A bicolored graph G = {N,Ep, Eo} ful-
fills q-modal bicolored quasi-strong connectedness
if and only if there exists a partition of N =

⋃
iNi,

with Ni ∩ Nj = ∅ for all i 6= j, such that each as-
sociated subgraph

Gi := {Ni, Ep ∩ (Ni ×Ni), Eo ∩Ni ×Ni}

fulfills bicolored quasi-strong connectedness and, in
addition, Ep ∩ (Ni × Nj) = ∅ for all j > i and
Eo ∩ (Ni ×Nj) = ∅ for all j < i.

This lemma clarifies that q-modal quasi-strong
connectedness corresponds to quasi-strong con-
nectedness holding on the subgraphs induced by
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a suitable partition of the sets of agents (which
we may call the quasi-strongly connected compo-
nents). Such partition, however, has to also comply
with the requirement that pessimistic and opti-
mistic edges in between quasi-strongly connected
components are only allowed to exist in the direc-
tion of ascending or descending index respectively.

Proof Consider the graph G = {N,
←−
Ep
∗ ·E∗o}. As-

sume that this has q strongly connected compo-
nents which are all to all. Let Ni, for i = 1, . . . , q
denote the set of nodes belonging to each compo-
nent. It is well known thatNis can be ordered such
that all arcs only happen between Ni and Nj if
j > i. In particular then, no edges occur inNi×Nj
for j < i, that is Ni ×Nj ∩ (

←−
Ep
∗ ·E∗o ) = ∅. Notice

that:

Eo ⊂ E∗o ⊂
←−
Ep

0 · E∗o ⊂
←−
Ep
∗ · E∗o .

Hence, for all j < i:

Ni ×Nj ∩ Eo ⊂ Ni ×Nj ∩ (
←−
Ep
∗ · E∗o ) = ∅.

Similarly:

←−
Ep ⊂

←−
Ep
∗ ⊂
←−
Ep
∗ · E∗o .

Again, for all j < i, we see that:

Ni ×Nj ∩
←−
Ep ⊂ Ni ×Nj ∩ (

←−
Ep
∗ · E∗o ) = ∅.

The latter inclusion is equivalent to:

Nj ×Ni ∩ Ep = ∅, ∀ j < i.

Moreover, by assumption,Ni×Ni ⊂ (
←−
Ep
∗ ·E∗o ), for

all i = 1 . . . q. This completes the proof of the claim
in one direction. Conversely, given the partition of
N as

⋃
iNi, by quasi-strong bicolored connectivity

of the Gi subgraphs we have:

(
←−−−−−−−−−
Ep ∩Ni ×Ni)∗ · (Eo ∩Ni ×Ni)∗ = Ni ×Ni.

Moreover:

(
←−
Ep)
∗·E∗o =

←−−−−−−−−−−−−Ep ∩
⋃
j≥i

Ni ×Nj

∗·(Eo∩⋃
j≥i

Ni×Nj)∗

⊂

(⋃
i

(←−−−−−−−−−
Ep ∩Ni ×Ni

)∗
· (Eo ∩Ni ×Ni)∗

)
∪
⋃
j>i

(Ni×Nj)

=
⋃
i

(Ni ×Ni) ∪
⋃
j>i

(Ni ×Nj).

Conversely:

(
←−
Ep)
∗·E∗o ⊃

(⋃
i

←−−−−−−−−−
Ep ∩Ni ×Ni∗ · (Eo ∩Ni ×Ni)

)

=
⋃
i

Ni ×Ni.

This shows that {N,Ep, Eo} fulfills n-modal quasi-
strong bicolored connectedness.

A consequence of the previous result is also an al-
ternative interpretation of strong q-modal bicol-
ored connectedness, as clarified by the following
result.

Corollary 5 A bicolored graph G = {N,Ep, Eo}
fulfills 2-modal bicolored strong connectedness if
and only if there exists a partition of N = N1∪N2,
with N1 ∩ N2 = ∅, such that each associated sub-
graph

Gi := {Ni, Ep ∩Ni ×Ni, Eo ∩Ni ×Ni}

fulfills bicolored quasi-strong connectedness, Ep ∩
(N1×N2) = ∅,Eo∩(N2×N1) = ∅ and, in addition,
the graphs G1

p := {N1, Ep ∩ (N1 ×N1)} and G2
o :=

{N2, Eo ∩ (N2 ×N2)} are strongly connected.

3 Set-up and problem formulation

Throughout this paper we consider nonlinear, pos-
sibly time-varying networks of interacting agents.
Each agent is characterized by an opinion, that is
a variable ranging in R which quantifies his ori-
entation on a particular topic or issue. Its abso-
lute value, normally, does not carry any specific
meaning, but its relationships to the opinions of
his neighbors does and is seen a measure of relative
agreement on the specific subject. More closely,
we consider networks of individuals whose interac-
tions pull individuals towards mutual agreement
and this may happen with time-varying or time-
invariant intensity, according to different set-ups.
For a finite number n of individuals we collect their
opinions in the state vector x = [x1, x2, . . . , xn]′

and consider its time evolution according to the
differential equation given below:

ẋ(t) = f(t, x(t)). (1)

The function f : R×Rn → Rn is locally Lipschitz
in x, uniformly in t, and piecewise continuous in t,
for each frozen value of x. Moreover, it fulfills the
following condition:

f(t, α1) = 0 ∀ t, α ∈ R.

This is simply to make sure that consensus states
(where each individual carries the same opinion)
are indeed equilibria of (1). Besides consensus
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states, more general configuration of opinions are
possible. In particular, it is useful to classify equi-
librium states on the basis of the different number
of opinions that these exhibit. Specifically, we de-
fine the multiplicity of a vector x = [x1, x2, . . . , xn]
as follows:

m(x) = card({x1, x2, . . . , xn}).

where repeated elements are only counted once. Of
course m(x) ≤ n and m(x) = 1 iff x is a consensus
state. Additional assumptions are typically con-
sidered for f in (1) to guarantee that interactions
are pulling individuals towards a mutual agreeent.
One such assumption, which is sometimes only im-
plicitly assumed, but will play a major role in the
subsequent analysis, is the notion of cooperativity
([27]).

Definition 6 A network as in (1) is cooperative if
for all i, fi(t, x) is monotonically non-decreasing
with respect to xj for all j 6= i and all t.

Our problem of interest is to provide sufficient con-
ditions for networks as in (1) to exhibit solutions
that, regardless of initial conditions, converge to-
wards equilibrium. Moreover, we wish to charac-
terize for all equilibrium states xe an upper-bound
to the number m(xe), as this is then an estimate
of the number of distinct opinions that the sys-
tem can afford asymptotically. Our criteria will be
based on graph-theoretical descriptions of social
interactions according to the framework estabil-
ished in [19]. In particular, to every network we as-
sociate a bicolored graph according to the follow-
ing procedure. Every agent is a node of the graph.
In particular we deal with a finite set of nodes
N = {1, 2, . . . , n}. Arcs between nodes represent
agents interactions. Accordingly, an optimistic arc
from node i to node j signifies that agent j is sus-
ceptible to the influence of node iwhenever the lat-
ter has an opinion which is higher in value than the
current opinion of node j. Similarly, a pessimistic
edge from node i to node j signals susceptibility of
agent j to the influence of agent i, whenever the
latter has a lower opinion than node’s j. In the case
of cooperative networks the following definitions
(originally proposed in [19]) are appropriate.

Definition 7 (Pessimistic edge) We say that
(j, i) ∈ Ep ⊂ N2 is a pessimistic edge connecting
j to i for a cooperative network (1), if for all com-
pacts K ⊆ R, there exist εK > 0 and sufficiently
large TK > 0 so that for any t ≥ 0, for all pairs
xi > xj ∈ K2 it holds:∫ t+TK

t

fi(τ, xi1+ ej(xj −xi)) dτ ≤ −εK(xi−xj).

(2)

Definition 8 (Optimistic edge) We say that
(j, i) ∈ Eo ⊂ N2 is an optimistic edge connecting

j to i for a cooperative network (1), if for all com-
pacts K ⊆ R, there exist εK > 0 and sufficiently
large TK > 0 so that for any t ≥ 0, for all pairs
xi < xj ∈ K2 it holds:∫ t+TK

t

fi(τ, xi1 + ej(xj − xi)) dτ ≥ εK(xj − xi).

(3)

It is worth pointing out that inequalities (2) and (3)
are a uniform lower bound of how much a displaced
j-th agent (with respect to an agreement configu-
ration where all agents are equal to xi) can influ-
ence, either from below (in the pessimistic case) or
above (in the optimistic one) the current state of
agent i over a sufficiently long time interval (TK).
Only when these are fulfilled the edge is intro-
duced in the interaction graph. Therefore, while
fi(t, x) is time varying, the graph is time-invariant
and captures connectivity over the whole interval
[0,+∞[. Notice, also, that integration is performed
on frozen state variables and not along solutions
of (1). Intuitively, conditions (2) and (3) represent
a way to quantify existence of attraction of agent
i towards agent j when the latter is either below
or. respectively, above the former. Moreover, such
attraction grows, over a uniform and sufficiently
long time-window, at least linearly in the current
distance of opinions.

In traditional formulations of consensus protocols
absence of an edge between two agents does not
have any implications besides lack of fulfillment
of the conditions for existence of that very edge
(for instance if two agents are interacting too spo-
radically for the condition to be fulfilled or with
vanishing intensity) or, of course, are not interact-
ing at all. In the present set-up, however, we re-
quire a dichotomy of behaviour concerning agents
interactions, namely, either (pessimistic or opti-
mistic) interactions between two agents exist, and
in this case they fulfill the edge existence condi-
tions, or they don’t. Hence, absence of an edge be-
tween nodes signifies absence of influence between
the corresponding agents.

Assumption 9 (Dichotomy of interactions)
If edge (j, i) /∈ Ep then the following holds:

∂fi
∂xj

(t, x) = 0 ∀ t, ∀x : xj ≤ xi.

If edge (j, i) /∈ Eo then the following holds:

∂fi
∂xj

(t, x) = 0 ∀x : xj ≥ xi.

Our main result for this Section is stated below.

Theorem 10 Let network (1) admit an associated

5



bicolored interaction graph that fulfills 2-modal bi-
colored strong connectedness. Then, for all initial
conditions x(0) ∈ Rn, the corresponding solution
x(t) admits a limit xe as t → +∞ and the latter
equilibrium fulfills:

m(xe) ≤ 2. (4)

Before proceeding to the proof of Theorem 10, we
introduce some notations and formulate prelimi-
nary Lemmas. For a vector x = [x1, x2, . . . , xn]T ,
we denote by xM and xm the following scalars:

xM = max
i∈{1,...,n}

xi xm = min
i∈{1,...,n}

xi,

(5)
moreover we assume that, according to the par-
tition N = N1 ∪ N2, the state vector x is sim-

ilarly arranged as x = [x1
T
, x2

T
]T and the vec-

tor field as f = [f1
T
, f2

T
]T . We also introduce,

xjM = maxi∈Nj xi, x
j
m = mini∈Nj xi, j = 1, 2 and,

with a slight abuse of notation, 11 and 12 as the
vectors of ones of dimension equal to |N1| and |N2|
respectively. In particular, 1 = [11T ,12T ]T . Let
j ∈ N be arbitrary and K ⊂ R a compact interval.
For any x ∈ Kn denote by x̄j and xj the following:

x̄j = x1M 1 +
(
xj − x1M

)
ej ,

xj = x2m 1 +
(
xj − x2m

)
ej .

Let, with a slight abuse of notation (as dependence
upon j and t is not emphasized), x̃(·) and

˜
x(·) de-

note the solutions of equation (1) from initial state
x̄j at time t (viz. x̃(·) = φ(·, t, x̄j)) and from initial
state xj , respectively (viz.

˜
x(·) = φ(·, t, xj)).

Lemma 11 The functions x1M (t) and x2m(t) are
(respectively) monotonically non-increasing and
non-decreasing.

Proof Equivalently we show that the set:

Mc := {x : max
i∈N1

xi ≤ c},

is forward invariant for all c ∈ R. Let x in Mc be
arbitrary. SinceMc is convex, its tangent cone at
x is simply given by TCxMc = {z : zi ≤ 0,∀ i ∈
N1 : xi = c} (see Proposition 5.5, [28]). Moreover,
for any t, any x ∈ Mc and all i ∈ N1 such that
xi = c, it holds:

fi(t, x
1, x2) = fi(t, x

1,min{x2, c12}) ≤

≤ fi(t, x1, c12) ≤ fi(t, c1) = 0,

where the first equality follows from Assumption 9
and the latter inequalities by monotonicity. Hence
f(t, x) ∈ TCxMc. As this holds for all x ∈ Mc

it proves forward invariance ofMc (by Nagumo’s
Theorem - [17]) and monotonicity of x1M (t). A sym-
metric argument can be used to prove monotonic-
ity of x2m(t) by proving forward invariance ofNc =
{x : mini∈N2

xi ≥ 0}. �

Lemma 12 Assume there exist a finite positive in-
teger k̄, µ > 0 (uniform in t and x) such that for
each given j ∈ N1 the corresponding x̃ and

˜
x solu-

tions fulfill for all i ∈ N1:

x̃i(t+ k̄T ) ≤ x1M (t)− µ|x1M (t)− x̃j(t)| (6)

and, respectively, ∀i ∈ N2, having fixed any j ∈ N2:

˜
xi(t+ k̄T ) ≥ x2m(t) + µ|x2m(t)−

˜
xj(t)|, (7)

then, similar inequalities hold for the solution
x(·) = φ(·, t, x), viz.:

xi(t+ k̄T ) ≤ x1M (t)− µ|x1M (t)− xj(t)| (8)

and:

xi(t+ k̄T ) ≥ x2m(t) + µ|x2m(t)− xj(t)|. (9)

Proof Fix j ∈ N1 and let x̃ be the solution corre-
sponding to initial condition x̄j(t). Clearly, x̄j(t) ≥
x(t), and therefore, by monotonicity of system (1)
we have: x̃(τ) ≥ x(τ) for all τ ≥ t. In particular,
then,

xi(t+ k̄T ) ≤ x̃i(t+ k̄T ) ≤ x1M (t)−µ|x1M (t)−x̃j(t)|

= x1M (t)− µ|x1M (t)− xj(t)|.
A symmetric argument applies to x

˜
(·).

The Lemma asserts that, for monotone networks,
there exists a “worst-case” scenarios for the initial
distribution of agents with respect to convergence
speed towards equilibrium. These are described by
vectors x̄j (or xj , respectively): initial conditions in
which all agents have maximum (respectively min-
imum) and equal value, except for a single node j,
which may take any lower (or, respectively higher)
value.

Proof of Theorem 10 Let the compact interval
K be given and x0 ∈ Kn arbitrary. Fix any j ∈ N1.
We denote by x(t)

.
= φ(t, 0, x0). For any assigned

t ≥ 0 we let:

x̃(·) = φ(·, t, x̄j(t)),

according to the notations of Lemma 12. By as-
sumption, there exist a path in G1

p between any
couple of nodes i and j in N1 (or, respectively, in
G2
o among nodes in N2). Let d(q) : N1 → N denote

the distance from j to node q along such path. We
need to verify that, for any node i ∈ N1 the fol-

6



lowing inequality holds:

x̃i(t+ 2d(i)T ) ≤ x1M (t)− µ|x1M (t)− x̃j(t)|. (10)

We use an induction argument.
STEP 1
The statement is trivial for i = j, viz. d(i) = 0.
In this case, x̃1j (t) ≤ x1M (t), it results for any µ0 ∈
(0, 1):

x̃1j (t)− x1M (t) ≤ −µ0|x1M (t)− x̃1j (t)|.

STEP 2
Now we make the inductive step and prove that,
if the statement (6) holds for nodes q at distance
d(q) from j, then it holds for nodes k at distance
d(k) = d(q) + 1 with (q, k) ∈ Ep ∩ (N1 × N1).
From Assumption 9, and remarking that x̃k(τ) ≤
x1M (τ) ≤ x1M (t) for all τ ≥ t, the following equali-
ties holds for τ ∈ [t+ 2d(q)T, t+ 2d(k)T ]:

x̃k(τ)− x̃k(t+ 2d(q)T ) =

∫ τ

t+2d(q)T

fk(θ, x̃(θ)) dθ

=

∫ τ

t+2d(q)T

fk(θ, x̃1(θ),min{x̃2(θ), x1M (t)12}) dθ.

Next, we exploit non-decreasingness of fk with re-
spect to all xis, with i 6= k, in order to derive:

x̃k(τ)− x̃k(t+ 2d(q)T ) ≤∫ τ

t+2d(q)T

fk(θ, x1M (t)11 + (x̃q(θ)− x1M (t))eq

+ (x̃k(θ)− x1M (t))ek,min{x̃2(θ), x1M (t)12}) dθ

≤
∫ τ

t+2d(q)T

fk(θ, x1M (t)11 + (x̃q(θ)− x1M (t))eq

+ (x̃k(θ)− x1M (t))ek, x
1
M (t)12)) dθ

=

∫ τ

t+2d(q)T

fk(θ, x1M (t)1 + (x̃q(θ)− x1M (t))eq

+ (x̃k(θ)− x1M (t))ek) dθ

≤
∫ τ

t+2d(q)T

fk(θ, x1M (t)1 + (x̃q(θ)− x1M (t))eq) dθ

− L
∫ τ

t+2d(q)T

[x̃k(θ)− x1M (t)] dθ.

Let x̂q = maxθ∈[t+2d(q)T,t+2d(k)T ] x̃q(θ), it results:

x̃k(τ)− x̃k(t+ 2d(q)T ) ≤∫ τ

t+2d(q)T

fk(θ, x1M (t)1 + (x̂q − x1M (t))eq) dθ

− L
∫ τ

t+2d(q)T

[x̃k(θ)− x1M (t)] dθ.

In particular then, for all τ ∈ [t+ (2d(q) + 1)T, t+

2d(k)T ] we see that:

x̃k(τ)− x1M (t) ≤ x̃k(τ)− x̃k(t+ 2d(q)T )

≤ −εK(x1M (t)− x̂q)

− L
∫ τ

t+2d(q)T

[x̃k(θ)− x1M (t)] dθ.

From now on the derivations may be conducted
along the same lines of Lemma 16 in [19], yielding:

x̃i(t+ k̄1T )− x1M (t) ≤ −µ1|x1M (t)− x̃1j (t)|.

where k̄1 and µ1 ∈ (0, 1) are positive real (uni-
form for x0 in Kn) function of |N1|. This concludes
the proof of inequality (6) that, by Lemma 12,
yields the inequality in (8). Given the arbitrariness
of nodes (i, j) ∈ N1 × N1 and the assumption of
strong connectivity of G1

p we may conclude:

x1M (t+ k̄1T )− x1M (t) ≤ −µ1|x1M (t)− x1m(t)|.
(11)

Similar considerations for the agents inN2 and the
graph of optimistic interactions G2

o yield:

x2m(t+ k̄2T )− x2m(t) ≥ µ2|x2m(t)− x2M (t)|.
(12)

Finally, inequalities (11) and (12), imply that:

lim
t→+∞

x1M (t) = lim
t→+∞

x1m(t)

and
lim

t→+∞
x2M (t) = lim

t→+∞
x2m(t).

Hence, all agents in N1 asymptotically con-
verge towards x1M (∞) and all agents in N2

towards x2m(∞). As a consequence, only two
possibilities arise, namely: m(xe) = 1 (consen-
sus: x1M (∞) = x1m(∞) = x2M (∞) = x2m(∞) )
or m(xe) = 2 (2-cluster consensus: x1M (∞) =
x1m(∞) 6= x2M (∞) = x2m(∞)). This proves the
claim (4) and completes the proof of Theorem 10.

Notice the resemblance of the result with the condi-
tions for asymptotic agreement formulated in [19].
Notice that in such paper (in the case of coopera-
tive networks), only quasi-strong (1-modal) bicol-
ored connectedness is required for asymptotic con-
sensus to hold.

4 Examples and counterexamples

In the following we will consider examples (and
counterexamples) designed in order to illustrate,
in the simplest possible instances, the graph theo-
retical assumptions of our main result.
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1

2

3

4

Fig. 1. A network fulfilling 2-modal bicolored
quasi-strong connectedness

4.1 Stubborn agents and strong connectedness

We start by considering the following 4 agents
time-invariant network:

ẋ1 = 0

ẋ2 = (x1 − x2) + min{x4 − x2, 0}
ẋ3 = (x4 − x3) + max{x1 − x3, 0}
ẋ4 = 0.

(13)

The associated bicolored graph is shown in Fig. 1.
Notice that we may partition N = {1, 2, 3, 4} as
N1 ∪N2, with N1 = {1, 2} and N2 = {3, 4}. These
fulfill the conditions of Lemma 4; hence, the net-
work’s topology fulfills quasi-strong 2-modal bi-
colored connectedness. It does not, however, ful-
fill strong 2-modal bicolored connectedness, as the
subgraphs associated with N1 and N2 are trees,
and are not strongly connected (neither the op-
timistic nor the pessimistic one). In particular,
agents 1 and 4, can be seen to be stubborn agents,
namely agents who do not change their opinion in
time. While existence of 2 stubborn agents might
seem compatible with achieving at most two clus-
ters at equilibrium, it is easily seen that this is not
the case. In fact, stubborn agents may influence
other agents and compete with each other in order
to spread their influence in such a way that addi-
tional asymptotic opinion values are created. For
instance, state xe = [2, 1, 1, 0]′ is an equilibrium
for which m(xe) = 3 > 2. Moreover, this exam-
ple can easily be modified and made time-varying
in order to create oscillating solutions that never
settle to a particular equilibrium value. This, in a
sense, justifies strengthening Definition 2 to strong
bicolored 2-modal connectedness as in Definition
3.

4.2 A simulative example

We consider the network composed of eight agents
in Fig. 2. We see that agents 4 (resp. 2 and 3) is
influenced by agents 8 (resp. 6 and 5) provided
this is supplying an ‘optimistic’ information. This

1

2

3

4

5

6

7

8

Fig. 2. Graph fulfilling bicolored strong connectedness:
continuous and dashed arrows respectively highlight
optimistic and pessimistic edges. Continuous line high-
lights bidirectional and bilateral edges.

translates into a continuous arrow from 8 to 4.
Agent 2, instead, is bidirectionally influenced by
agent 1, and viceversa. Influence of agent 1 towards
agent 5 is of pessimistic nature only, and this is
therefore modeled as dashed arrow (see the scheme
in Fig 2). Notice that, if not allowing pessimistic
and optimistic influences to be accounted for sep-
arately, the above network’s equation would only
afford a single bilateral influence from node 1 to 2,
(which is clearly insufficient for achieving consen-
sus). In other words the actual graph of influences
between neighboring agents would be heavily un-
derestimated.

We can cluster the agents in two subgroups:
N2 = {1, 2, 3, 4} and N1 = {5, 6, 7, 8}, with
N1 ∩N2 = ∅. Moreover, Eo ∩N2×N1 = ∅, viz. no
optimistic edges from nodes in N2 towards nodes
in N1 and, symmetrically, Ep ∩ N1 × N2 = ∅, no
pessimistic arcs from nodes in N1 towards nodes
in N2. Hence, by virtue of Lemma 4, quasi-strong
bicolored connectedness holds. Moreover, each
subraph G1

p, G
2
p, G

1
o and G2

o is strongly connected,
hence the topological conditions of our Theorem
10 are fulfilled, and one should expect, for a corre-
sponding system of differential equations, that all
solutions will asymptotically converge to equilib-
rium states with at most 2 clusters.

Different orderings of initial state variables may
induce different equilibrium. For instance starting
from the initial condition xi ≤ xj , i = 1, . . . , 4, j =
5, . . . , 8 (i.e. x(0) = [1 2 3 4 5 6 7 8]′)
the optimistic and pessimistic edges activation in-
duces a topology that guarantees consensus (sim-
ulations in Fig. 3). Now we consider the node ini-
tial conditions x(0) = [6 2 8 4 1 7 3 5]′

such that in the scheme of Fig 2 there are not
pessimistic arcs connecting nodes 1 and 3 to 5
and 7, respectively. Being x3(0) > x5(0) also the
optimistic edge from node 5 to 3 is inactive. Fi-
nally the opinion network dynamic evolution in-
duces at some instants t1, t2 x4(t1) > x8(t1) and
x2(t2) > x6(t2) such that the network splits into
two connected components. This yields an equilib-
rium configuration with two clusters (simulations
in Fig. 4).
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4.3 The case n ≥ 3

While graph theoretical notions of n-modal con-
nectedness have been defined, it turns out that
Theorem 10 only holds for strong 2-modal bi-
colored connectedness, and cannot be gener-
alized to the case of n > 2. As a counter-
example take the graph with N = {1, 2, 3},
Ep = {(3, 2)} and Eo = {(1, 2)}. Then

←−
E p =

{(2, 3)} and
←−
E ∗p = {(1, 1), (2, 2), (3, 3), (2, 3)}.

Similarly E∗o = {(1, 1), (2, 2), (3, 3), (1, 2)}. Com-

posing the two edge sets yields:
←−
E ∗p · E∗o =

{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}. This is a graph
with 3 strongly connected components, associ-
ated with N1 = {1}, N2 = {2} and N3 = {3},
moreover, there are no edges in Ni ×Nj whenever
j < i. Hence 3-modal strong bicolored connect-
edness is fulfilled (trivially, as each subgraph is a
singleton). One can easily build an associated set
of differential equations as follows:

ẋ1 = 0

ẋ2 = a12(t) max{0, x1 − x2}+ a23(t) min{0, x3 − x2}
ẋ3 = 0.

(14)
where a12(·) and a23(·) are non-negative measur-
able locally essentially bounded functions, fulfill-
ing for some T > 0 and all t ≥ 0∫ t+T

t

a12(τ)dτ ≥ 1

∫ t+T

t

a23(τ)dτ ≥ 1.

Indeed, for initial conditions x1(0) ≤ x2(0) ≤
x3(0) we have, xi(t) = xi(0) for all t ≥ 0 and
all i = 1, 2, 3 and therefore m(xe) ≤ 3. On
the other hand, the opposite condition in which
x1(0) > x2(0) > x3(0) results in solutions of the
following form:

x1(t) = x1(0),

x2(t) = e

∫ t
0
a12(τ)+a23(τ)dτx2(0)+∫ t

0
e

∫ t
τ
a12(s)+a23(s) ds[x1(0)a12(τ) + x3(0)a23(τ)] dτ,

x3(t) = x3(0).

(15)
Such solutions oscillate forever and are asymp-
totically periodic provided a12 and/or a23 are
(for instance) non-constant periodic functions.
Therefore, asymptotic convergence towards equi-
librium is in all such cases violated. This example
illustrates the difficulty in generalizing (in a time-
varying set-up) results predicting existence of
equilibria with n > 2 opinion clusters. The same
arguments used to prove our main result, can,
however be used to prove the following Theorem.

Theorem 13 Let network (1) admit an associated
bicolored interaction graph that fulfills q-modal bi-

colored quasi-strong connectedness. Let moreover,
the two graphs, G1

p := {N1, Ep ∩ (N1 × N1)} and

G2
o := {Nq, Eo∩(Nq×Nq)} are strongly connected.

Then, for all initial conditions x(0) ∈ Rn, the cor-
responding solution x(t) admits an ω-limit ω(x(0))
such that the following bound is fullfilled:

∀x ∈ ω(x(0)), m(x) ≤ 2 +

q−1∑
i=2

|Ni|. (16)

5 Symmetric networks

Consider networks with additive dynamics of the
following type:

ẋi =

n∑
j=1

fpij(t, xi, xj) + foij(t, xi, xj) (17)

where the o and p explicitly remark the pessimistic
or optimistic nature of each interaction term. A
very special case arises wen the following piecewise
linear expression is valid:

ẋi =

n∑
j=1

apij(t) min{xj−xi, 0}+aoij(t) max{xj−xi, 0}.

(18)
Notice that sums in (17) and (18) are taken for
j = 1 . . . n. This does not imply an all-to-all net-
work of pessimistic and optimistic interactions as
we allow for some of these additive terms to be
identically 0 (and therefore the corresponding edge
won’t exist in the graph). We say that the network
is symmetric if for all t ≥ 0, all xi, xj ∈ R and
i, j ∈ N2 the following holds:

foij(t, xi, xj) = −fpji(t, xj , xi).

Similarly, in the context of piecewise-linear net-
works, symmetric networks fulfill:

aoij(t) = apji(t) ∀ t ≥ 0, ∀ i, j ∈ N2.

Notice that, under such conditions, agent i attracts
agent j iff agent j is attracting agent i, with ex-
actly the same strength. This generalizes the well
known condition of symmetric networks guaran-
teeing average consensus. In particular, in fact:

n∑
i=1

ẋi = 0,

is fulfilled and therefore the average value of agents
opinions doesn’t change in time. Understanding
how initial distributions of opinions affect the
asymptotic number of clusters appears to be a very
hard task, in general. Intuitively, mixing of opin-
ions from both subgroups should promote consen-
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sus, whereas, separation into disjoint subgroups
could more likely result into bimodal asymptotic
equilibria. For general networks, one may conclude
asymptotic coexistence of two opinions as soon as
the following inequality is fulfilled:

min
i∈N1

xi(t) > max
i∈N2

xi(t).

A stronger result holds for symmetric networks.

Theorem 14 Let x(0) be the initial vector of
agents’ opinions. Assume that:∑

i∈N1
xi(0)

|N1|
>

∑
i∈N2

xi(0)

|N2|
, (19)

where |Ni| denotes the cardinality of set Ni, i =
1, 2. Then, under the same assumptions of Theorem
10, the following limit exists limt→+∞ x(t) = xe
and m(xe) = 2.

Proof By virtue of symmetry and 9 we see that:

d

dt

∑
i∈N1

xi(t) =
∑
i∈N1

ẋi(t) =

=
∑
i∈N1

∑
j

foij(t, xi(t), xj(t))+f
p
ij(t, xi(t), xj(t)) =

=
∑
i∈N1

∑
j∈N2

foij(t, xi(t), xj(t))+f
p
ij(t, xi(t), xj(t)) =

=
∑
i∈N1

∑
j∈N2

foij(t, xi(t), xj(t)) ≥ 0.

Hence,

lim
t→+∞

∑
i∈N1

xi(t)

|N1|
≥
∑
i∈N1

xi(0)

|N1|
.

A similar argument can be used to infer that:

lim
t→+∞

∑
i∈N2

xi(t)

|N2|
≤
∑
i∈N2

xi(0)

|N2|
.

By the inequality (19) then:

lim
t→+∞

∑
i∈N1

xi(t)

|N1|
> lim
t→+∞

∑
i∈N2

xi(t)

|N2|
,

which proves the claim.

6 Conclusions

A model of nonlinear networks affording equi-
libria with a single opinion value (consensus) or
multiple clustered opinions are introduced and an-
alyzed. In particular, multiple opinions may result
as a consequence of unilateral agents interactions
(viz. asymmetric confidence where influence of
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Fig. 3. Dynamic state evolution and convergence to
consensus equilibria
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Fig. 4. Dynamic state evolution and convergence to
cluster equilibria

one agent upon another is conditioned to a par-
ticular order relationship between their opinions).
Suitable connectedness properties are proposed
to guarantee, in the presence of possibly time-
varying interactions, convergence towards equilib-
ria with at most n distinct opinions. Simulations
are proposed to show how initial conditions may
affect the final outcome for the same pattern and
strength of interactions.
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