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Abstract
The human respiratory tract, usually considered sterile, is currently being investigated for human-associated microbial com-
munities. According to Dickson’s conceptual model, the lung microbiota (LMt) is a dynamic ecosystem, whose composition, 
in healthy lungs, is likely to reflect microbial migration, reproduction, and elimination. However, which microbial genera 
constitutes a “healthy microbiome” per se remains hotly debated. It is now widely accepted that a bi-directional gut-lung 
axis connects the intestinal with the pulmonary microbiota and that the diet could have a role in modulating both microbio-
tas as in health as in pathological status. The LMt is altered in numerous respiratory disorders such as obstructive airway 
diseases, interstitial lung diseases, infections, and lung cancer. Some authors hypothesize that the use of specific bacterial 
strains, termed “probiotics,” with positive effects on the host immunity and/or against pathogens, could have beneficial 
effects in the treatment of intestinal disorders and pulmonary diseases. In this manuscript, we have reviewed the literature 
available on the LMt to delineate and discuss the potential relationship between composition alterations of LMt and lung 
diseases. Finally, we have reported some meaningful clinical studies that used integrated probiotics’ treatments to contrast 
some lung-correlated disorders.
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Introduction

The term microbiome was first used by Lederberg and 
McCray “to identify the ecological community of commen-
sal, symbiotic, and pathogenic microorganisms that literally 
share our body space” [1]. In 2015, based on the concept 
of “biome”, i.e., the biotic and abiotic factors of a given 
environment, Marchesi and Ravel, defined the microbiome 
as the entire “habitat” that is comprised of the microorgan-
isms (bacteria, archaea, lower and higher eukaryotes, and 
viruses), their genomes (i.e., genes), and the surrounding 
environmental conditions [2]. Humans co-evolved with 

microbes in the environment and each body habitat has a 
unique set of microorganisms in its microbiota, which is 
established within the first 1–3 years of life and remains 
relatively stable throughout the life span [3]. Residential 
microbes perform metabolic functions and are involved in 
host functions such as defence, metabolism, and reproduc-
tion [4]. The microbiota usually was defined using molecular 
methods relying predominantly on the analysis of 16S rRNA 
genes, 18S rRNA genes, or other marker genes and genomic 
regions, amplified and sequenced from given biological sam-
ples [2]. Taxonomic assignments can be performed using 
a variety of tools that assign each sequence to a microbial 
taxon (bacteria, archaea, or lower eukaryotes) at different 
taxonomic levels according to phyla, classes, orders, fami-
lies, genera, and species [2]. In each body district, only a few 
phyla are represented, accounting for hundreds of bacterial 
species [5] (Fig. 1). Conserved genes are a target that is used 
to study the microbiome, particularly in bacteria. At present, 
the most used molecular method to study the microbiome 
is sequencing of regions of a conserved gene, such as the 
hypervariable regions of the 16S ribosomal RNA gene [6]. 
Other higher resolution methods for microbiota profiling are 
currently being used to disclose the functional link between 
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the lungs and its microbiota [7]. The growing interest in 
the relationship between the microbial population and the 
human body accounts for the large amount of published 
papers on the topic in recent years [8–12].

This paper aims to provide an overview of the lung micro-
biota (LMt); more specifically, we will describe the possible 
LMt role in the genesis of some of the most epidemiologi-
cally relevant respiratory disorders in humans, particularly 
smoke-related diseases. We have also attempted at delineat-
ing the potential therapeutic implications of the relationship 
between the lungs and associated microbiota.

Lung microbiota

Although originally believed to be sterile, the lung shows a 
microbiota that varies in both physiological and pathological 
conditions [13]. Furthermore, bacteria, fungi, viruses, and 
their interactions may all be important in lung health and in 
the development of respiratory diseases [14]. The finding 
that a unique lung harbours a unique microbiota, irrespective 
of health or disease, has prompted a wealth of research to not 
only categorise the distinct microbiota of the healthy lung, 
but also that of the sickly lung [14]. The healthy human lung 
contains a variety of commensal microorganisms, especially 
bacteria, that can show substantial heterogeneity between 
individuals and across the different lung regions [15]. The 
LMt composition differs significantly between the upper 
and lower respiratory tracts in healthy individuals, enquir-
ing if samples of the upper airways can reflect the micro-
biome in the lower respiratory tract [16]. The prevalence 

of distinct bacterial species in these compartments suggests 
the hypothesis of niche-specific microbial colonization at 
distinct anatomical sites [17]. Many authors agreed that the 
healthy LMt has a low density of microbial populations, 
mainly represented by phyla such as Firmicutes, Bacterio-
detes, Proteobacteria, Fusobacteria, and Actinobacteria 
[18]. Mathieu et al. [19] hypothesized that small numbers of 
bacteria maybe critical for good health, but which microbial 
genera constitutes a “healthy microbiome” per se remains 
hotly debated. Both anatomical characteristics and breath-
ing patterns seem to influence the access of microbes to 
the lungs [19]. Although the lungs are subjected to con-
stant immigration from the oropharynx, their microbiome 
is distinctive to that of the upper respiratory tract which, in 
turn, displays greater similarities to that of the stomach [20]. 
Dickson et al. [21] proposed three models to explain mainte-
nance of microbial homeostasis in health the modalities with 
which the homeostasis may be lost in disease.

The first model (Fig. 2) postulates that the community 
of species forming the LMt is determined by the balance 
of three factors: migration, elimination, and reproduction 
rates of microbiota as determined by regional growth con-
ditions [21]. Migration to the LMt is at least in part attrib-
utable to micro-aspiration that has long been known to be 
frequent even among healthy subjects [21]. Bacteria elimi-
nation is commonly due to the mucociliary clearance, as 
well as the innate and adaptive immune defences. Accord-
ing to Dickson’s conceptual model [21], factors involved in 
the reproduction rates of LMt include oxygen tension, pH, 
blood perfusion, alveolar ventilation, temperature, and the 
concentration and activation of host inflammatory cells.

Fig. 1  Taxonomic classification: example of Shigella genus



1243Internal and Emergency Medicine (2019) 14:1241–1250 

1 3

The second model implicates the availability of nutri-
tional factors as a key determinant of all reproducing bacte-
rial communities. Since in healthy conditions, the airway 
lumen mainly contains air, the availability of nutrients 
for most bacteria is relatively limited [22]; this fact might 
account for the minor role of local reproduction in the com-
position of the bacterial community in healthy subjects. 
On the other hand, the airways of patients with obstructive 
airway diseases, such as cystic fibrosis, chronic bronchitis, 
bronchiectasis, and asthma, contain a dense, protein-rich 
growth medium of secreted mucus [23]. Furthermore, in 
some clinical conditions, such as pneumonia and acute res-
piratory distress syndrome (ARDS), the alveoli are flooded 
with protein-rich oedema from an injured alveolar–capil-
lary barrier. All these environments may contribute to the 
bacterial overgrowth and microbiota changes during lung 
diseases.

The final proposed mechanism is the so-called “signal-
ling stress response”, a molecular mechanism by which tis-
sues and cells reciprocally communicate perturbations of the 
internal “milieu”. Signalling molecules include hormones 
(e.g., glucocorticoids, oestrogens, and androgens), neuro-
transmitters (e.g., catecholamines and endogenous opioids) 
and cytokines (e.g., TNFs, IL-1, IL-6, and IL-8) [24, 25]. 
Recent data documented that some microbes can identify 
and adapt to the signaling molecules that human cells use to 
communicate [21].

Gut microbiota and the gut–lung axis

The human intestinal microbiota is one of the most densely 
populated microbial communities playing important 

metabolic and protective roles in human health. The gut 
microbiota contains a plethora of bacteria, with most of 
them being obligate anaerobes from the phyla Actinobac-
teria, Verrucomicrobia, Firmicutes, Fusobacteria, Proteo-
bacteria, and Bacteroidetes, Firmicutes, and Bacteroidetes 
represent about 90% of the gut microbiota [26]. It is hard 
to identify exactly what phyla characterize a microbiota, 
but it is even more difficult to know which bacterial genera 
make it up. For example, in the gut microbiota, Firmicutes 
phylum is composed of more than two hundred different 
genera (most frequently Bacillus, Lactobacillus, Enterococ-
cus, Clostridium, and Ruminicoccus); on the other hand, the 
Bacterioidetes phylum mainly consists of genera represented 
by Prevotella and Bacterioides [27]. In an animal model of 
the human gut ecosystem, Turnbaugh et al. discovered that 
the gut microbiota of younger adults mice highly depends 
on their diet and lifestyle, suggesting a similar situation in 
human [28]. Accordingly, the later life stages have been 
associated with changes in gut microbiota due to several dif-
ferent factors such as those depicted in Fig. 3. Individual gut 
microbiota are characterized by clusters of bacteria called 
enterotypes [26]. There are three dominant bacteria clusters 
characterized, respectively, by Bacteroides in enterotype I, 
Prevotella in enterotype II, and Ruminococcus in enterotype 
III. Each enterotype harbours hundreds of bacteria genera 
[29]. Although a specific microbial population cannot define 
a unique healthy gut microbiome, the stability of bacteria 
genera in each enterotypes seems crucial in healthy status 
[29]. Indeed, bacteria in each enterotype that characterize 
individual gut microbiota remain stable from adulthood and 
can be modified by a process called “dysbiosis”. Dysbiosis 
is a change in gut microbiota composition and may be the 
cause or consequence of disorders. It is hard to establish if 
a change in gut microbiome is beneficial or damaging. In 
health, the gut microbiome can prevent the attachment of 

Fig. 2  Representation of the first Dickson’s model. In health subjects, 
lungs microbial community is mainly determined by the balance of 
immigration (micro-aspiration) and elimination (cough, mucocili-
ary clearance and immune defences). Microbial niches are a steady 
state of dynamic equilibrium, determined by the balance of immigra-
tion and elimination factors, influenced by anatomical, functional and 
clinical features

Fig. 3  Major factors influencing the development of gut microbiome
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exogenous pathogenic bacteria to the wall of the gastroin-
testinal tract and it also has direct bactericidal effects [30].

There is a clear cross-talk between the gut and the lungs, 
also called gut–lung axis, that is vital for maintaining 
homeostasis and educating the host immune system [31]. 
Interestingly, gut dysbiosis is also associated with lung dis-
orders and infections, such as asthma and infections. Soluble 
microbial components and metabolites transported via the 
circulation, such as peptidoglycans or lipopolysaccharide 
(LPS), recognized by host cells may play a role in protec-
tion against asthma [32]. More precisely, reduction in genus 
Bifidobacteria and increase in genus Clostridia in the gut are 
associated with early life asthma [33]. Reciprocally, changes 
in lung microbial community can influence the gut micro-
biota composition, suggesting that gut and lung are linked 
organs [34]. In mice depleted of a microbiota, intrarectal 
LPS administration restored the capacity to mount  TH2 
responses, suggesting the ability of intestinal microbiota-
derived LPS to affect pulmonary responses to allergens [35]. 
This is a bi-directional modulation; for instance, infection 
lung disease, such as pneumonia caused by Pseudomonas 
Aeruginosa, leads to a reduction in gut epithelial prolifera-
tion and blocks the M phase of cell cycle and induces dys-
biosis [36]. Another example of the intricate relationship 

between gut microbiota and LMt is the possible relationship 
between lung function parameters and microbiome composi-
tions in some pulmonary diseases [37]. Gut microbes help in 
assimilating nutrients that are indigestible by humans (i.e., 
fibres), and those whose metabolites can modulate gastro-
intestinal and lung immunity. As illustrated in Fig. 4, in vitro 
and in vivo studies have shown that nutritional factors are 
used by the gut microbiota bacteria to synthesize metab-
olites, including chain fatty acids (SCFAs), from soluble 
fibers [38]. The SCFAs (acetate, propionate, and butyrate) 
promote recruitment and maturation of immune cells, and 
therefore, they may represent a protective factor against 
inflammatory response [39]. Antigens are processed by 
gastro-intestinal tract dendritic cells that promote the prolif-
eration and expansion of T cells, which, in turn reach various 
sites, where infection or antigen exposure occurred. Dys-
biosis in the gut microbiota may, therefore, lead to impaired 
proliferation and expansion of T-cell subsets, as well as to 
increased inflammation contributing negatively on health 
and systemic immune response [40].

Another important link between gut and lungs is the 
migration of immune cells from the gut to the lungs by 
common mucosal immune system [41]. In brief, immune 
cells can migrate and colonise inductive sites forming the 

Fig. 4  Gut–lung axis. Gut and lung are linked organs that can recip-
rocally influence their homeostasis. The gut microbiota dysbiosis is 
associated with lung disorders and infections. SCFAs short-chain fatty 
acids, LPS lipopolysaccharide, DC-T cells dendritic cell-T cell, IL-6 

interleukin-6, IFNγ interferon-gamma, TNFα tumor necrosis factor 
alpha, CCR 4/6 CC chemokine receptor 4/6, CD 4+ cluster of differ-
entiation antigen 4, Th1 T-Helper Cell Type 1
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mucosa-associated lymphoid tissue, the gut-associated 
lymphoid tissue, and the nasopharyngeal-associated tis-
sue; migration occurs via the lymphatic system [41]. Thus, 
the lymph may represent the connecting organ between the 
gut—where primary sensitization occurs—and the lung [41].

Lung microbiota and respiratory diseases

Lung microbiota and smoke

Relatively few studies have addressed the problem of micro-
biome density and variability in the airway and lungs of 
smoking subjects, so that most of current knowledge derives 
from data performed in animal models. Cigarette smoke con-
tains thousands of chemical components including nitric 
oxide, carbon monoxide, nicotine, formaldehyde, acetone, 
ammonia, and acrolein. These substances contact the res-
piratory mucosa and are associated with chronic inflamma-
tion in smokers. Recently, Zhang et al. [42] studied that 40 
mice exposed to tobacco smoke and observed that micro-
bial diversity was higher in the smoking group, suggesting 
that smoke exposure increases the risk of bacterial infec-
tion, thereby increasing microbial diversity. The authors 
concluded that smoking influences microbial diversity and 
communities of the lower respiratory tract, suggesting that 
future studies on smoke-induced inflammation should also 
consider the LMt variation [42]. In recent years, it has been 
shown that the lungs of healthy smokers contain a bacterial 
microbiome that is quantitatively and qualitatively diverse 
from that of the oral cavity and extra-thoracic airways [43]. 
However, the role of microbial diversity remains unclear, 
since in contrast with Zhang et al. [42], human LMt diver-
sity is often lower in subjects with poor lung function, and 
it is most commonly associated with dominance by Pseu-
domonas spp. The fact that some smokers, with spirometric 
evidence of lung disease, had a less different LMt compared 
with smokers, with normal lung function, and indicates that 
LMt changes can be an earlier sign of respiratory disease 
[43]. A novel study performed in smokers addressed the 
question of whether the LMt is related to the smoking status 
and to the development of ARDS in trauma patients [44]. 
Cigarette smoking is commonly associated with increased 
ARDS’ risk in patients after severe trauma, but the underly-
ing mechanism is unknown. In trauma patients with ARDS, 
Panzer et al. [44] documented that the smoking status was 
significantly associated with lung bacterial community 
composition at admission, particularly with a significant 
enrichment of potential pathogens, including Prevotella, 
Haemophilus, Streptococcus, Treponema, and Fusobacte-
rium. Furthermore, ARDS development was characterised 
by relative enrichment of Enterobacteriaceae and of specific 

taxa enriched at baseline in smokers, including Prevotella 
and Fusobacterium.

Microbiota and COPD

Chronic obstructive pulmonary disease (COPD) is a het-
erogeneous disorder characterized by persistent respiratory 
symptoms, airflow obstruction, chronic airway inflamma-
tion, and frequent exacerbations [45]. COPD treatment 
is guided by the degree of airflow limitation or airway 
obstruction, but these variables alone may not suffice for 
optimal management [45]. In COPD, a multitude of bacteria, 
including potential respiratory pathogens, is often present. 
In addition, with increasing degrees of airflow limitation, 
there is also an increased recovery of opportunistic patho-
gens such as Pseudomonas aeruginosa [46]. This bacterial 
colonization correlates with the severity of inflammatory 
response, radiological changes, pathological variations of 
a local immune response, and increased daily symptoms 
[47]. As mentioned above, insults such as tobacco smoke, 
the major COPD cause, can impair innate immune defences 
and lead to a change in the abundance, taxonomic com-
position, and phylogenetic diversity of the LMt. In 2010, 
Hilty et al. [48] compared the microbiota of five patients 
with COPD to that of eleven subjects with asthma and eight 
healthy controls. They found that pathogenic Proteobacteria, 
particularly Haemophilus, were more frequent in asthmat-
ics and COPD than in controls. Conversely, Bacteroidetes, 
particularly Prevotella, were less frequent in asthmatics and 
COPD. Erb-Downward et al. [43] compared BAL fluid from 
3 cohorts of subjects: smokers without airflow obstruction, 
subjects with obstruction, and healthy subjects as control. 
They observed similar concentrations of 16S rRNA genes 
across groups, suggesting a similar range of bacterial bur-
dens across groups, but decreased diversity in individuals 
with the most severe airflow limitation [43]. Finally, Sze 
et al. [49] examined the LMt in five explanted lungs from 
COPD patients with severe airflow obstruction and four 
healthy donor lungs. Dysbiosis in LMt, in particular expan-
sion of Proteobacteria and Actinobacteria phyla in COPD 
patients and in Bacteroidetes and Firmicutes in the control 
group, was associated with increased alveolar destruction 
and greater immune cells’ infiltration. These authors [50] 
also examined the LMt profiles linking with micro-computed 
tomography, quantitative histology, and host gene expression 
data from lung explants of COPD patients with severe lung 
disease. The presence of emphysema and airway remodel-
ling was associated with decreased bacterial diversity, which 
negatively correlated with  CD4+ T cell infiltration. Members 
of the Proteobacteria and Actinobacteria phyla were found 
to be more abundant in COPD versus control tissue samples, 
whereas Firmicutes and Bacteroidetes were less prevalent in 
emphysematous lung areas [50]. The observed microbiota 
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compositional differences were also associated with infiltrat-
ing numbers of eosinophils, neutrophils and B cells as well 
as a number of differentially expressed genes, suggesting that 
host-immune responses correlated with the lung dysbiosis 
[50]. Wang et al. [51] studied sputum samples of 87 subjects 
with COPD collected during stability, exacerbation, 2 and 
6 week post-therapy; dysbiosis in LMt appeared to be associ-
ated with exacerbation events and indicative of two specific 
exacerbation phenotypes (bacterial and eosinophilic) [51]. 
In the “bacterial” phenotype, Proteobacteria was increased, 
while in “eosinophilic” phenotype, an increase in Firmicutes 
was observed. In an individual COPD patient, LMt changes 
may represent a potential biomarker, as well as a therapeutic 
intervention target for COPD [51]. A different study [52] 
analyzed sputum samples from 102 patients, hospitalized 
due to acute COPD exacerbation (AECOPD) and followed 
up all patients for 1 year after discharge. The authors suggest 
that the sputum dysbiosis in AECOPD is associated with 
the 1-year mortality and may identify subjects with a poor 
prognosis at the hospitalization time.

Finally, the AERIS (Acute Exacerbation and Respira-
tory InfectionS) study in COPD patients analysed the LMt 
at both stable and exacerbation time points in 584 sputum 
samples from 101 patients with COPD over 1 year [53]. LMt 
dysbiosis in COPD patients correlated with disease severity 
and exacerbations. Exacerbations within individuals showed 
higher microbiome variability than at stable time points, and 
patients with frequent exacerbations had significant changes 
in LMt patterns. The AERIS study confirmed the associa-
tion of some bacterial genera, with disease severity, frequent 
exacerbation events and presence of bronchiectasis. This 
study may help to identify lung bacterial phenotypes and 
biomarkers that may be used for classification of COPD phe-
notypes and facilitate appropriate treatments [53].

Taken together, the result of studies performed so far on 
COPD patients seem to indicate that characterisation of the 
microbiome may provide important, additional information 
regarding COPD phenotypes, the inflammatory degree of 
and immunological dysfunction, as well as the susceptibility 
to disease exacerbations and progression.

Microbiota impact in asthma

Emerging and increasing data suggest that the microbiome 
may play a crucial role in the asthma development [54]. 
Asthma is a disease that often presents with a variety of 
clinical features and different patterns of immune responses, 
likely reflecting diverse genetic and environmental compo-
nents [54]. Reduced lower gut microbiota diversity in early 
life seems to correlate with the occurrence of asthma [55]. 
An association between a lower numbers of some bacteria 
genera (Bifidobacteria, Akkermansia and Faecalibacterium) 
and higher risk of developing atopy and/or early life asthma 

[56]. In addition, the impairment of gut microbiota balance, 
resulted by continuative antibiotic use, increases the risk of 
asthma [57]. According with the so-called hygiene theory 
[58], reduced exposure to microbes in urban areas is associ-
ated with a higher incidence of allergy and asthma Cana-
dian children at asthma risk shows decreased gut colonies 
of Lachnospira, Veillonella, Faecalibacterium, and Rothia 
[59]. On the contrary, inoculations of these bacteria in germ-
free mice have a protective effect against airway inflamma-
tion and asthma [60]. An analysis of bronchoalveolar lavage 
(BAL) from children with severe asthma has shown abun-
dance of Proteobacteria (mainly Haemophilus), Firmicutes 
Staphylococcus and Streptococcus), Bacteroidetes (mainly 
Prevotella), and Actinobacteria. In detail, Staphylococcus 
and Haemophilus were more abundant in asthmatic chil-
dren than control subjects, the latter showing abundance of 
Prevotella [48].

Idiopathic pulmonary fibrosis and microbiota

Most of our knowledge to date regarding the LMt impact 
on interstitial lung diseases mainly relates to the idiopathic 
pulmonary fibrosis (IPF), where environmental exposures, 
gastro-oesophageal reflux, and microbial agents have been 
hypothesized to initiate the aberrant healing response [61]. 
In IPF lungs, there is an increased bacterial burden and over-
representation of potential pathogens associated with disease 
exacerbations and progression [62]. In addition, a specific 
host immune response to an altered LMt is associated with 
the prognosis [63]. Since antibiotic administration or immu-
nization against pathogens may improve IPF outcomes, the 
LMt has recently been proposed as a potential therapeutic 
target [64]. Han and colleagues showed that Veillonella, 
Prevotella, and Cronobacter species were the most prevalent 
in IPF patients; furthermore, the presence of abundant Strep-
tococcus or Staphylococcus sequences were associated with 
a clinically significant reduction in progression-free survival 
time [62]. A prospective study, comparing microbial com-
position in bronchoalveolar lavage fluid of IPF patients and 
normal controls, observed that IPF patients had significantly 
higher bacterial burden [65]. Among IPF patients, a higher 
bacterial load was associated with a significantly reduced 
progression-free survival time, an effect independent of age 
and smoking status [64].

However, much more studies are required.

Microbiota and lung infections

According to Dickson’s model of lung biogeography, even 
healthy lungs are subjected to constant immigration from 
oropharyngeal microbes via micro-aspiration [66]; this 
immigration is thought to be regulated by the dynamics 
of the aerodigestive tract and may, therefore, be boosted 
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in conditions of reduced level of consciousness, during 
mechanical ventilation and by endotracheal intubation. As 
a result, a state of increased immigration, decreased elimi-
nation, and favourable growth conditions for potential path-
ogens can ensue [67]. Any source of alveolar injury and 
inflammation can trigger a cascade of effects eventually 
leading to increased concentrations of intra-alveolar catecho-
lamines, which in turn can promote the growth and viru-
lence of select bacterial communities and perpetuate alveolar 
inflammation [68]. Ecologically, infections are characterised 
by an increase in microbial burden and a decrease in com-
munity diversity, along with an increased host inflammation 
and tissue injury. Bacterial pneumonia exemplifies these fea-
tures: it is characterised by increased bacterial burden and 
low community diversity [69].

Microbiota and lung cancer

The role of microbiome in lung cancer is ill defined. Since 
the inflammatory responses is linked with the lung cancer 
development [70], some studies documented that infections 
such as tuberculosis or pneumonia increase the risk of lung 
cancer [71]. Although some discrepancies exist, two bacte-
rial genera (Veillonella and Megasphaera) have been found 
to be increased significantly in lung cancer patients [72]; 
Yan et al. [73] demonstrated that the salivary microbiome 
was different in lung cancer patients compared with controls, 
suggesting the salivary microbiome as a potential bacterial 
biomarker of lung cancer.

The limited studies, evaluating the microbiome in lung 
cancer, their small sample sizes, and the range of sampling 
techniques used, prevent any firm conclusions being made.

Therapeutic implications

Much remains to be learned on if and how the microbiome 
can therapeutically be targeted to improve the outcomes of 
respiratory disorders. A diet rich in fibre simultaneously 
changes the intestinal and LMt, indicating diet influence on 
lung immunity [74]. Nutrition and administration of probiot-
ics could be a valid strategy to maintain or restore a func-
tional microbiome [74]. Fibre intake increases SCFAs’ lev-
els in blood and has been reported both to provide protection 
against allergic inflammation in lung and to reduce mortality 
from respiratory disease [39]. Studies on mice models [75] 
indicate that the administration of probiotic bacteria-such as 
Lactobacillus rhamnosus, Bifidobacterium lactis, and Bifido-
bacterium breve, which are gut microbiota components-sup-
presses allergic and autoimmune responses, reduces allergic 
symptoms, and inhibits allergic airway response [76]. Some 
evidence suggests beneficial effects of probiotics on human 
immune responses [76]; however, data from the literature 

are not fully consistent and discrepancies have been found 
regarding probiotic effectiveness [77]. In addition, the die-
tary intake has been shown to modify systemic inflamma-
tion in asthma, particularly in the neutrophilic inflamma-
tory phenotype [33]. As food fibers are used by gut bacteria 
to biosynthesize SCFAs [78], higher intakes of fruits and 
vegetables may have a positive impact on asthma risk and 
control. In fact, recently, the European Academy of Allergy 
and Clinical Immunology recommended in clinical practice 
to increase the net intake of fruits and vegetables to decrease 
the asthma risk, especially in children [79]. Dietary interven-
tion should, therefore, be incorporated into the routine clini-
cal management of patients with asthma, to achieve overall 
health benefits and disease management [79]. In vitro studies 
of cigarette smoke induced diseases, such as COPD, indicate 
that the administration of Lactobacillus rhamnosus and Bifi-
dobacterium breve abolishes the release of pro-inflammatory 
mediators by the macrophages in response to cigarette smoke 
[75]. Moreover, probiotics may restore natural killer cell 
activity, which is depressed in smokers [80]. Oral feeding 
of the Lactobacillus acidophilus to mice lung cancer model, 
receiving cisplatin treatment, shows reduction in tumour size 
and higher survival rate [81]. Interestingly, Daillère R. et al. 
showed better outcomes in advanced lung cancer patients 
when Enterococcus hirae and Barnesiella intestinihominis 
were administered in combination with chemoimmuno-
therapy possibly due to an improved immunomodulatory 
action by these probiotics [82]. Attention should also be 
given to identify the detrimental effects of some of the cur-
rent therapies (such as inhaled and systemic corticosteroid 
and antibiotics) for lung diseases on the functionality of the 
microbiota. The current anti-AECOPD treatments are known 
to impact on LMt and, especially with antibiotics and oral 
steroids, their effect may persist well after discontinuation 
[83]. Antibiotics exert sustained suppressive effects, whereas 
steroids increase relative abundance of many bacterial com-
munities, such as members of the Proteobacteria phylum 
(Moraxellaceae, Pasteurellaceae, Pseudomonadaceae, and 
Enterobacteriaceae) [83]. Furthermore, patients treated with 
both antibiotics and steroids showed a significant increase 
in Proteobacteria abundance. Conceivably, drug-induced 
phenotypical alterations in LMt contribute to the frequency 
and severity of exacerbations, especially with prolonged 
therapies. Current guidelines recommend the use of inhaled 
corticosteroids (ICS) for asthma to control airway inflam-
mation [84]. The ICS’ impact on the airway microbiome in 
asthma is unclear. Chronic use of ICS seems to be associ-
ated with a greater richness and diversity in microorganism 
samples compared with samples of non-exposed subjects 
[83]. In patients with mild-to-moderate asthma, irrespective 
of the ICS’ use, Proteobacteria is the dominant phylum, 
suggesting that airway dysbiosis may be a feature of asthma 
itself and is not solely attributable to ICS therapy. Indeed, a 
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recent study confirmed that the diversity and composition of 
the bronchial microbiome was not influenced by ICS’ treat-
ment alone but rather by the combination therapy of oral and 
ICS’ treatment [85].

Conclusions

Growing evidence indicates that the LMt may have an 
important role in lung health and disorders. LMt modifica-
tions characterise chronic lung diseases and may account 
for exacerbations caused by endogenous microbiota altera-
tions and susceptibility to new infections. Much remains to 
be done via adequate nutritional and/or pharmacological 
interventions in attempt to restore a healthy microbiota in 
pulmonary and non-pulmonary diseases, whose origin and 
clinical outcomes appear to be strongly influenced by the 
microbiota. We think that the fine evaluation of gut and LMt 
represents a new and stimulating research field with theoreti-
cally unlimited prospective and may be in the future, it will 
be a key therapeutic target for the prevention and treatment 
of critical lung illness.
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