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Abstract
Questions: Does the influence of forest edges on plant species richness and com-
position depend on forest management? Do forest specialists and generalists show 
contrasting patterns?
Location: Mesic, deciduous forests across Europe.
Methods: Vegetation surveys were performed in forests with three management 
types (unthinned, thinned 5–10 years ago and recently thinned) along a macroclimatic 
gradient from Italy to Norway. In each of 45 forests, we established five vegetation 
plots along a south-facing edge-to-interior gradient (n = 225). Forest specialist, gen-
eralist and total species richness, as well as evenness and proportion of specialists, 
were tested as a function of the management type and distance to the edge while 
accounting for several environmental variables (e.g. landscape composition and soil 
characteristics). Magnitude and distance of edge influence were estimated for spe-
cies richness per management type.
Results: Greatest total species richness was found in thinned forests. Edge influ-
ence on generalist plant species richness was contingent on the management type, 
with the smallest decrease in species richness from the edge-to-interior in unthinned 
forests. In addition, generalist richness increased with the proportion of forests in 
the surrounding landscape and decreased in forests dominated by tree species that 
cast more shade. Forest specialist species richness, however, was not affected by 
management type or distance to the edge, and only increased with pH and increasing 
proportion of forests in the landscape.
Conclusions: Forest thinning affects the plant community composition along edge-
to-interior transects of European forests, with richness of forest specialists and 
generalists responding differently. Therefore, future studies should take the forest 
management into account when interpreting edge-to-interior because both modify 
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1  | INTRODUC TION

Forests harbour more than two-thirds of terrestrial biodiversity 
(Millennium Ecosystem Assessment, 2005). In Europe, dramatic de-
forestation in the past has led to habitat loss and fragmentation, both 
being major drivers of biodiversity loss (Secretariat of the Convention 
on Biological Diversity (CBD), 2010). Habitat fragmentation creates 
new forest edges and subsequently leads to a higher edge-to-inte-
rior ratio (Saunders, Hobbs, & Margules, 1991). At least 20% of the 
world’s forest area lies within 100  m of a forest edge (Haddad et 
al., 2015), indicating the need to further our understanding of how 
edges affect forest biodiversity and functioning. Compared with for-
est interiors, forest edges experience more solar radiation, higher 
wind speeds and faster air mixing, resulting in higher light availabil-
ity, decreased soil moisture, higher maximum and lower minimum 
temperatures, and increased diurnal and seasonal variability in tem-
peratures (Chen et al., 1999; Gehlhausen, Schwartz, & Augspurger, 
2000; Matlack, 1993; Schmidt, Lischeid, & Nendel, 2019; Tuff, Tuff, 
& Davies, 2016). In addition to altered microclimatic conditions, for-
est edges, as opposed to forest interiors, are also characterized by 

a higher seed influx of non-forest species (Devlaeminck, Bossuyt, & 
Hermy, 2005), differences in disturbance regimes, and higher nitro-
gen (N) and carbon (C) stocks (Remy et al., 2016). These biotic and 
abiotic factors all influence understorey plant communities, which 
contain more than 80% of total plant species’ richness in temperate 
forests and are essential for several ecosystem functions such as nu-
trient cycling, carbon dynamics and tree regeneration (Gilliam, 2007; 
Landuyt et al., 2019; Whigham, 2004).

In general, higher understorey species richness occurs at for-
est edges because those environmental conditions are intermediate 
between the forest interior and the matrix. However, not all species 
respond similarly, and species can be grouped according to their eco-
logical preferences (Gehlhausen et al., 2000; Guirado, Pino, & Rodà, 
2006; Murcia, 1995). For example, a study in temperate forests in 
northern France found that edge species were more often thermo-
philous (warmth-loving), basophilous (alkaline-loving), nitrogen- and 
light-demanding, and species reproducing by seed only (and not clon-
ally; Pellissier et al., 2013). In contrast, interior species were more often 
slow-colonizing species, acidophilous and reproducing both by seeds 
and vegetatively (Pellissier et al., 2013). The effect of distance to edge, 
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the microclimate, soil processes and deposition of polluting aerosols. This interaction 
is key to predict the effects of global change on forest plants in landscapes character-
ized by the mosaic of forest patches and agricultural land that is typical for Europe.
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hereafter also referred to as ‘edge influence’, on species richness has 
been related to mechanisms such as past land-use change (Berges et 
al., 2016), changes in light regime (Honnay, Verheyen, & Hermy, 2002) 
and altered soil moisture content (Gehlhausen et al., 2000).

While edge influence has been well studied in dense forests in 
single regions or landscapes, less is known about how edge influence 
interacts with forest management across forest types in Europe. 
Similar to habitat fragmentation, forest management also affects for-
est microclimate, and thus light availability, temperature, soil mois-
ture and nutrient availability (Ash & Barkham, 1976; Grayson et al., 
2012). Understorey plant communities respond to changes in light 
and soil disturbances, which can be induced by forest management 
practices (Ash & Barkham, 1976; Aude & Lawesson, 1998; Decocq 
et al., 2004; Scolastri, Cancellieri, Iocchi, & Cutini, 2017; Strubelt, 
Diekmann, Griese, & Zacharias, 2019; Widenfalk & Weslien, 2009). It 
can be expected that forest management, which influences the over-
all forest structure and edge physiognomy, interacts with edge influ-
ence on understorey species richness and composition by reducing 
the edge contrast with the surrounding matrix (Cadenasso & Pickett, 
2001; Harper et al., 2005; Ries, Fletcher, Battin, & Sisk, 2004). For 
example, open, thinned forests might be more susceptible to the 
penetration of wind and seeds into the forest interior owing to lower 
edge contrast. Moreover, energy exchange in open forests is also 
determined by the lower albedo of dark surfaces in the understorey, 
such as the soil surface, litter and tree trunks, instead of the green 
leaves of the canopy cover (Wright, Kasel, Tausz, & Bennett, 2010).

Here, we studied understorey vegetation biodiversity and com-
position responses to distance to the forest edge in ancient forest 
stands (i.e. continuously forested since the first available land-use 
maps and thus never converted to another land-use type) with dif-
ferent management types (unthinned, thinned and recently thinned) 
in 45 edge-to-interior forest transects across Europe. Our aim was 
to disentangle the effects of the management type and the distance 
to the edge on alpha diversity of understorey plants in multiple 
European regions, while accounting for environmental characteris-
tics. We expected to find (a) higher species richness at edges, with 
forest specialists and generalists responding differently to man-
agement intensity and (b) interactions between distance-to-edge 
influence and forest management on richness. For example, the 
edge-to-interior gradient is expected to become weaker in increas-
ingly managed (thinned) forests and thus have less impact on under-
story plant diversity than in recently thinned forests.

2  | MATERIAL S AND METHODS

2.1 | Study region and set up

Our study area included the temperate, Mediterranean and bore-
onemoral forest biomes of Europe. We focused on deciduous broad-
leaved forests, which are hotspots of biodiversity and a widespread 
and ecologically important forest type in most of Europe (Brus et 
al., 2012). Study sites are situated in typical European fragmented 

landscapes, with forest patches surrounded by a matrix of arable 
fields and grasslands. Forest stands were selected across nine re-
gions along a latitudinal gradient from Italy to Norway to capture 
as much of the macroclimatic variation across Europe as possible 
(Figure 1a). In the south, middle and north of this latitudinal gradi-
ent, more specifically in Italy, Belgium and Norway, an elevational 
gradient with three levels (low, medium and high) was included to 
capture macroclimatic variation caused by elevation. Study sites of 
the elevational gradient were selected to have a similar understorey 
composition to that of the lowlands of the same region (with under-
storey plant species typical for Natura2000 habitat types 9120 and 
9130). A total of 15 sites were thus selected: six regions without an 
elevational gradient and three regions with three levels of elevation 
(Figure 1). A study site description can be found in Appendix S1.

Forest stands were selected in a standardized way to increase 
the comparability of sites. The stands, with a minimum forest area of 
1 ha, were deciduous and mainly dominated by oaks (Quercus robur, 
Quercus petraea, and Quercus cerris), Fagus sylvatica, Betula pubes-
cens, Populus tremula, Ulmus glabra, Alnus incana and Carpinus bet-
ulus. All sites had the same type of land-use history (ancient forest) 
and intermediate soil moisture (mesic).

At each site, three forest stands with different forest manage-
ment were selected: unthinned (1), thinned (2) and recently thinned 
(3) (Figure 1b; see Appendix S2: site selection protocol).

1.	 The first type (unthinned) is typically a dense forest, with a 
well-developed shrub layer, high basal area (mean ± SE was here 
28.8 ± 1.5 m2/ha) and high canopy cover (openness 5.8 ± 0.6%, 
mean of three densitometer measurements, Appendix S3), and 
not thinned for at least 10  years and mostly >30  years ago, 
indicated by, for example, the absence of cut tree stumps.

2.	 The second type is intermediate to types one and three (openness 
6.5 ± 0.6%, basal area 31.4 ± 1.9 m2/ha; Appendix S3); even-aged 
and regularly thinned, but not recently (probably 5–10 years ago).

3.	 The third type is typically an open, even-aged and recently 
thinned forest (probably within 4  years of sampling), indicated 
by the presence of cut tree stumps, and characterized by the 
absence of a shrub and subdominant tree layer, with low basal 
area (21.6  ±  1.3  m2/ha) and low canopy cover (mean openness 
14.8 ± 2.1%; Appendix S3).

We established 100 m transects from the southern forest edge 
to the forest interior of each forest stand at each site. We thus estab-
lished 45 transects in total (15 sites × 3 management types). The tran-
sect started at the hypothetical line of tree stems at the edge of the 
forest stand (0 m). These edges are outer edges, bordering a matrix of 
agricultural land and were created by ancient deforestations (Appendix 
S1). Because edge orientation affects understorey species richness 
and microclimatic conditions (Didham & Lawton, 1999; Honnay et al., 
2002; Matlack, 1993; Orczewska & Glista, 2005), we standardized this 
by only locating the transects at the south-facing edge (or south-west-
ern or south-eastern), bordering with either grassland or arable land 
(Appendix S1). The transect was installed perpendicular to the edge 
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and at least 100  m from any another edge. Elements that affect the 
microclimate at the edge or along the transect (such as water bodies, 
buildings and wide, tarmacked roads) were avoided.

Along each transect, five 3 × 3 m2 quadrats were installed at an 
exponentially increasing distance from the forest edge because of the 
exponential change in microclimatic condition close to the edge (Chen 
et al., 1999; Didham & Lawton, 1999), resulting in a total of 225 plots. 
The centres of the plots were thus at distances of 1.5, 4.5, 12.5, 35.5 
and 99.5 m from the edge (Figure 1c). However, in six plots the cen-
tres were located at different distances (for example at 18 m instead of 
12.5 m) to avoid the influence of forest paths on the vegetation.

2.2 | Plant biodiversity variables: understorey

Vegetation surveys were conducted at the peak of vegetation biomass 
from May until early July 2018, depending on the regional phenol-
ogy (Appendix S1). All vascular plant species were identified and their 
percentage ground cover visually estimated by teams of two persons. 
The herb layer included all vascular species, both woody plants smaller 
than 1 m and non-woody plants, as well as lianas. The shrub layer was 
defined as all woody species with a height between 1 and 7 m and the 
tree layer as all trees reaching heights more than 7  m. Corylus avel-
lana was always classified into the shrub layer, regardless of its height. 
Species nomenclature follows Euro+Med (2006).

Plant species of the herb layer were assigned to five forest guilds 
following Heinken et al. (2019): species that can be mainly found in 
the closed forest (1.1); species that occur typically along forest edges 
and in forest openings (1.2); species that can be found in both forest 
and open vegetation (2.1); species that can be found partly in for-
est, mainly in open vegetation (2.2); and true open habitat species (O) 
(Appendix S4). In our data set, few species belonged to forest guilds 
1.2, 2.2 and O (with 70%, 45% and 86% of the plots containing zero 
species of these guilds, respectively), and therefore all species be-
longing to 1.1 and 1.2 were grouped as forest specialists and those 

belonging to 2.1, 2.2 and O as generalists. Hereinafter, forest guild 
1.2 will be referred to as closed forest species. According to Heinken 
et al. (2019) species can shift forest guilds over the geographical gra-
dient: thus the forest guild a certain species was assigned was depen-
dent on the region it was observed in. Individuals determined only 
to the genus level were excluded from this categorization, as well as 
seven species (out of 383 taxa) for which no data was available to 
classify them as forest specialists or generalists (Appendix S4).

2.3 | Environmental predictor variables

Light transmission differences resulting from overstorey species 
identity were accounted for by means of the shade casting ability 
(SCA) index. The SCA index is a species-specific, expert-based index 
that varies from 1 to 5, indicating low to high shade casting abil-
ity of the canopy species (Verheyen et al., 2012). The SCA of the 
canopy (the shrub and tree layer combined) was calculated as a cover 
weighted mean of the scores listed in Appendix S5.

In all 225 plots, topsoil samples (0–10 cm depth, diameter 30 mm) 
were collected for chemical analyses (pH and soil nutrient concentra-
tion) and between 10–20 cm depth for texture analysis (% silt, clay and 
sand). Within each plot, five random subsamples were taken after re-
moval of the litter layer and pooled together. The 0–10 cm soil samples 
were dried to constant weight at 40°C for 48 h, ground and sieved 
over a 2 mm mesh. These samples were analysed for pH-H2O by shak-
ing a 1:5 ratio soil/H2O mixture for 5 min at 300 r.p.m. and measur-
ing with an Orion 920A pH meter with a Ross sure-flow 8172 BNWP 
pH electrode model (Thermo Scientific Orion, USA). To measure the 
total concentration of C and N in the soil, subsamples were combusted 
at 1,200°C and the gases were measured by a thermal conductivity 
detector in a CNS elemental analyser (vario Macro Cube, Elementar, 
Germany). Bioavailable phosphorus (P) which is available for plants 
within one growing season (Gilbert, Gowing, & Wallace, 2009) was 
measured by extraction in NaHCO3 (POlsen; according to ISO, 11263, 

F I G U R E  1   Study set up. Nine regions 
were selected across a latitudinal gradient 
in Europe (a). To study the effect of forest 
management, we compared unthinned, 
thinned and recently thinned forests 
(b). Study plots were distributed with 
an exponentially increasing distance 
from the south-facing forest edge to the 
interior (c) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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1994) and colorimetric measurement according to the malachite green 
procedure (Lajtha, Driscoll, Jarrell, & Elliott, 1999). Total calcium (Ca), 
potassium (K) and magnesium (Mg) were measured by atomic absorp-
tion spectrophotometry (AA240FS, Fast Sequential AAS) after com-
plete destruction of the soil samples with HClO4 (65%), HNO3 (70%) 
and H2SO4 (98%) in Teflon bombs for 4 h at 150°C. Texture analysis 
was performed by sieving and sedimentation with a Robinson–Köhn 
pipette according to ISO 11277 (2009).

Landscape and topographic characteristics were derived from 
satellite-based global tree cover data with a spatial resolution of 
30  m (Hansen et al., 2013) and a pan-European digital elevation 
model (DEM) with a spatial resolution of 25 m, using Copernicus data 
and information from the European Union (EU-DEM, 2018). The pro-
portion of forest cover, hereafter proportion forest, was assessed 
within a circular buffer area with a radius of 500 m and measured 
as the percentage of area covered by a minimum tree cover of 20% 
(Hansen et al., 2013). Forest edge density was computed by trans-
forming the forest cover mask into contour lines and summing their 
length within the 500 m buffer area using the rasterToContour func-
tion in the R package raster (Hijmans, 2019).

The mean annual temperature (°C) and De Martonne’s arid-
ity index were used to take into account macroclimatic variation 
from latitudinal and elevational differences. De Martonne’s arid-
ity index was calculated by dividing the mean annual precipitation 
(mm) by mean annual temperature plus 10°C (de Martonne, 1926). 
Temperature and precipitation data were extracted for each plot 
from the CHELSA database for 1979–2013 (Karger et al., 2017).

2.4 | Data analysis

In total, six response variables were tested comprising measurements 
for alpha diversity of the understorey layer. The number of forest spe-
cialist species (1), as well as generalist richness (2) and total species 
richness (3) per plot, were calculated. In addition, Pielou’s evenness 
index (4; Pielou, 1966) and the proportion of forest specialists com-
pared with the total number of species (5) were also determined. As 
two forest guilds (1.1 and 1.2) were grouped as forest specialists, the 
number of closed forest species (6) was also calculated to allow com-
parison of the closed forest species and forest specialists.

Two out of 225 plots did not contain any understorey species. 
These two plots were therefore omitted from the analysis on even-
ness and proportion of specialists.

To take into account the hierarchical structure of the data, (gen-
eralized) linear mixed-effects models were used with transect nested 
within region as random effect (random intercepts). Poisson error dis-
tributions were applied for the count data (such as species richness), 
while a binomial distribution was used for the proportion of forest 
specialists. Evenness was initially modelled with a binomial distribu-
tion as well, but this models had convergence issues, and therefore a 
Gaussian error distribution was applied for the model presented here.

Models were built in a two-step process (Perring et al., 2018). First, 
a model including latitude, elevation (as continuous variables), soil 

variables (pH, C:N ratio, % silt, % clay, Olsen-P and K), SCA, the pro-
portion of forest and edge density was assessed for each of the eight 
response variables. Mg, Ca and sand (%) were highly correlated with 
other explanatory variables and thus left out of the analysis (Appendix 
S6). Olsen-P and K were log-transformed to symmetrize the skewed 
distribution and eradicate influential outliers. For the sake of simplicity, 
quadratic terms were not included to keep the number of explanatory 
variables as low as possible. The most parsimonious model (single best 
model) was selected based on the Akaike Information Criterion (AIC) 
with the dredge-function of the package MuMIn (Barton, 2019). Second, 
the focal explanatory variables, that is, the distance to the edge and the 
forest management type, were added to the simplified model as a two-
way interaction, resulting in the final model. Parallel to these analyses, 
the same procedure was followed for analyses taking macroclimatic 
variables into account by replacing latitude and elevation with the 
mean annual temperature and De Martonne’s aridity index.

The distance to the edge was log-transformed to linearize the rela-
tionship. The figures presented show the back-transformed results. All 
continuous explanatory variables were scaled (z-transformation) to fa-
cilitate comparisons. A protocol for data exploration and model evalu-
ation was followed precisely (Zuur, Ieno, & Elphick, 2010). All analyses 
were performed in R (R Core Team, 2018), with packages lme4 (Bates, 
Machler, Bolker, & Walker, 2015) and MuMIn (Barton, 2019).

In addition, the magnitude of edge influence (MEI) and distance of 
edge influence (DEI) were calculated per management type for spe-
cialists, generalist and total species richness. For each transect, MEI 
was estimated for the four edge plots as (e − i)/(e + i) where e is the re-
sponse value at the edge (either at 1.5 m, 4.5 m, 12.5 m or 35.5 m), and 
i the response value at the forest interior (99.5 m), resulting in four MEI 
values per transect. We report the mean and standard error of MEI 
calculated per management type. Next, we calculated the distance at 
which MEI was significantly different from zero per management type 
(this is the DEI), by means of a randomization test of edge influence 
(RTEI) with blocking (Harper & Macdonald, 2011). A routine provided 
by Dodonov, Harper, and Silva-Matos (2013) was used: (a) For each dis-
tance to the edge, the observed MEI was calculated relative to the inte-
rior plot (99.5 m). (b) A data set was created with the edge and interior 
values. (c) One value was randomly assigned to be the new edge value, 
and the leftover as the interior value. (d) We calculated randomized 
MEI based on the randomized edge and interior values. (e) Steps 3–4 
were repeated 5,000 times for a significance level of 1%, resulting in a 
distribution of randomized MEI values. (f) Two times the percentile of 
the observed MEI within the distribution of the randomized MEIs was 
used as the p-value (alpha = 0.01) for this distance. This routine was 
repeated per distance to the edge per management type. The DEI was 
estimated as the farthest distance from the edge that was preceded by 
no more than one non-significant value (Dodonov et al., 2013).

3  | RESULTS

In total, 351 understorey plant species were identified to the species 
level, and 32 only to the genus level. Of all species, 97 were forest 
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specialists across all regions and 224 generalists, while 23 species 
switched forest guilds across regions (Appendix S4). Recently thinned 
forest stands were, in general, richer in generalists compared with 
unthinned forest stands (on average 13.3 and 11.4 species, respec-
tively) (Figure 2). The total number of species as well as the number of 
generalists decreased from the edge to the interior (Figure 2), but for 
generalists, this pattern was dependent on the management type: in 
unthinned forests, no effect of the distance to the edge was detected 
(Figure 2c). However, in thinned and recently thinned forests, the 
number of generalist species was highest at the edge and declined ex-
ponentially towards to forest interior. Generalist richness decreased 
more strongly from edge to interior in thinned than in recently thinned 
forests. In thinned (and recently thinned) forests, on average 8.3 (8.3) 
generalist species were found at the edge, compared with only 4.5 
(5.7) generalist species at the forest interior. Because of the decreas-
ing generalist and stagnant specialist numbers from the edge to inte-
rior, the proportion of specialist species increased (Table 1). Neither 
the distance to the edge nor the management type influenced the 
number of forest specialists (Figure 2b).

Richness of forest specialists, generalists and total species rich-
ness increased with the increasing proportion of forest in a radius 
of 500 m (Figure 3a). Furthermore, the community-weighted SCA of 
the tree and shrub layer positively affected the proportion of forest 
specialists, but negatively affected total species richness and gen-
eralist richness (Figure 3c). In contrast, soil pH was positively cor-
related with the total number of plant species and with the species 
richness of forest specialist (Figure 3b). Finally, the proportion of for-
est specialists was the highest when the amount of edge in a radius 
of 500 m was minimal (Table 1). Evenness increased with percent-
age silt in the topsoil (Table 1). Analysing the closed forest species 
richness alone provided the same findings as for specialist rich-
ness (Appendix S7).The macroclimatic analysis, with mean annual 

temperature and De Martonne’s aridity index replacing latitude and 
elevation, did not differ much from the initial analysis (reported in 
Appendix S8).

The MEI and DEI results were in line with the outcomes of the 
previous results. Both MEI and DEI varied across management types 
and species richness variables (Figure 4). The MEI was greatest in 
(recently) thinned forests for generalists and total richness, while 
it was close to zero for forest specialist richness (Figure 4a). The 
edge influence was not significant for forest specialists in all three 
management types (Figure 4b). Total species and generalist richness 
were significantly higher at the first 1.5–4.5 m and 18–35.5 m, re-
spectively, in (recently) thinned forests. In unthinned forests, the 
MEI was not significantly different from zero for any of the three 
response variables.

4  | DISCUSSION

Forest management interacted with edge-to-interior gradients on gen-
eralist species richness in ancient forests along a latitudinal gradient 
across Europe. Contrary to our hypothesis, the edge-to-interior gradi-
ent in (generalist) species richness was stronger in thinned forests than 
in unthinned forests, where richness gradients were weaker. Forest 
edges in unthinned forests were likely more densely vegetated along 
the entire vertical gradient compared with those in thinned and re-
cently thinned forest. This ‘vegetation wall’ may thus have served as 
an effective barrier that buffered the forest interior from seed inflow 
from the matrix (Devlaeminck et al., 2005), from wind and solar radia-
tion (Honnay et al., 2002; Matlack, 1993), and from influx of warm air 
thereby preserving the microclimatic conditions typical of the forest 
interior. In this study, edge sealing might have occurred at the non-
forest side of the 0 m edge plot, as the detected MEI was close to zero. 

F I G U R E  2   Effects of the distance to the forest edge on generalist richness depend on the forest management type. Effects of the 
distance to the forest edge on species richness (a–c) in forests with different forest management types. The interaction effect is significant 
at the 0.05 level for total species richness (a), and the main effect of distance to edge is significant for generalist richness (c). Lines represent 
model estimates of the effects, with other continuous variables set at their observed mean. Shaded areas indicate 95% confidence intervals 
[Colour figure can be viewed at wileyonlinelibrary.com]
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In recently thinned forests, forest edge and interior microclimates did 
not contrast much probably owing to more incoming solar radiation in 
the forest interior, resulting in a more gradual gradient that levels off 
more quickly in species richness. For example, sparse Mediterranean 
temperate forests in southern Australia are found to have less pro-
nounced edge influence on the microclimate than in closed forests, 
with reversed patterns being recorded (e.g. warmer and drier forest 
interiors compared with edges; Wright et al., 2010). In thinned forests, 
however, interior and edge conditions were presumably most dissimilar 
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F I G U R E  3   Understorey species richness increases with the 
proportion of forest cover in the landscape (a), soil pH (b) and 
decreasing shade casting ability (SCA) index of the overstorey 
(c). Lines represent model estimates with the other continuous 
variables set at their observed mean and with forest management 
set to thinned. Shaded areas indicate 95% confidence intervals. A 
small amount of random variation is added to the location of each 
point along the y-axis of panel c to avoid overplotting (jittering) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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and edges relatively open, resulting in steep edge-to-core gradients in 
species richness penetrating 35.5 m into the forest. Hence, forest man-
agement modifies the contrast in structure and composition, which in 
turn determines the magnitude and distance of edge influence (Harper 
et al., 2005).

Distance to the edge had the most significant effects on species 
richness. Indeed, the decline of total species richness from the edge 
to interior corroborates the findings of Fraver (1994), Gehlhausen et 
al. (2000), Guirado et al. (2006), Honnay et al. (2002), Pellissier et al. 
(2013), Vallet, Beaujouan, Pithon, Roze, and Daniel (2010) and Willi, 
Mountford, and Sparks (2005). Greater species richness at forest 
edges compared with forest interiors was mostly driven by increased 
generalist richness at the edge, while forest specialists richness was 
constant along the edge-to-interior transects. Forest specialists 
thrive best in spatially/temporal varying intermediate light conditions 
and are characterized by a slow demography (Whigham, 2004), and 
can thus persist at the edge. At the same time, many generalists can 
opportunistically colonize edge habitats, which are characterized by 
increased disturbance regimes (Godefroid & Koedam, 2003), warmer 
temperatures and a relatively greater amount of available resources, 
such as light and nutrient inputs (Brunet et al., 2011; Thimonier, 
Dupouey, & Timbal, 1992). As a result, forest edges were more 
species-rich compared with interiors in our study (14 and 11 spe-
cies per plot, respectively, on average), and the proportion of forest 
specialists was highest in the forest interior, and lowest at the edge. 
Conversely, some studies also detected decreasing richness from 
edge to interior for forest specialists, for example, in oak (Q. robur) 
and chestnut (Castanea sativa) dominated forests in northern France 
(Vallet et al., 2010). However, that study was performed at a smaller, 
regional scale and forests were not selected to be continuously for-
ested since the last available land-use maps. In addition, Guirado et al. 
(2006) observed higher forest species richness at the edge compared 
with the interior over a distance of 500 m in oak and pine dominated 
Mediterranean forests in Spain, indicating that distance-to-edge in-
fluence is dependent on the specific condition of the studied system.

Furthermore, forest management also influenced species diver-
sity patterns. Recently thinned forest stands harboured an overall 
greater generalist diversity compared with thinned and unthinned 
stands. In contrast, forest specialist as well as total species richness 
did not consistently differ between the three forest management 
practices tested. Forest management practices, such as thinning, can 
indeed strongly modify the understorey environmental conditions 
by enhancing the amount of solar radiation penetrating the canopy, 
increasing disturbances and modifying resource availability and 
microclimatic conditions (e.g. light, temperature, humidity and soil 
moisture; Ash & Barkham, 1976; Grayson et al., 2012). Changes in 
the amount of light along with microclimatic stability and soil distur-
bance are the most important drivers of understory plant diversity 
following forest management practices (Ash & Barkham, 1976; Aude 
& Lawesson, 1998; Brunet, FalkengrenGrerup, & Tyler, 1996; Decocq 
et al., 2004; Scolastri et al., 2017; Strubelt et al., 2019; Widenfalk 
& Weslien, 2009), which explains why light-demanding generalists 
can thrive in thinned, open forests. In contrast, forest specialists 
can tolerate the changed environmental conditions. Forest special-
ists often lag behind environmental drivers (Hermy, 2015), requiring 
them to cope with altered environmental conditions (Decocq et al., 
2004) and show extinction debts (Vellend et al., 2006). However, 
most forest specialists depend on intermediate disturbance for long-
term survival.

While we focused on the effects of forest edges, forest manage-
ment and their interaction, we also took into account environmen-
tal variables that potentially influence understorey species richness 
and composition. The amount of forest in the surrounding landscape 
was important to predict the number of total species, specialists and 
generalists. Specialist richness was associated with the forest cover. 
High forest cover in the landscape may positively influence dispersal 
and colonization of forest specialists, as obligate forest specialists 
are poor colonizers (Ehrlen & Eriksson, 2000). What is intriguing is 
that generalist richness increased similarly with the amount of for-
est cover in the landscape. This pattern might be associated with 

F I G U R E  4   Magnitude of edge influence (MEI) (a) and distance of edge influence (DEI) (b) per management type per response variable. In 
(a) the mean is depicted with error bars indicating 95% confidence intervals [Colour figure can be viewed at wileyonlinelibrary.com]
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land-use intensity, as more forest at the landscape level gives an 
indication about the (semi-)naturalness of the environment, and is 
likely negatively related to the amount of intensive agriculture and 
nitrogen input (Jamoneau et al., 2011; Paal, Kuett, Lohmus, & Liira, 
2017; Takkis et al., 2018). Alternatively, high forest cover in the sur-
rounding landscape is also linked to a higher availability of forest 
edges (at least in fragmented landscapes), and thus perhaps to more 
available habitat for generalists. However, the density of forest edge 
in the landscape, a measure of fragmentation, did not explain addi-
tional variability in generalist richness. The density of forest edges 
did affect the proportion of forest specialists negatively, although 
this model explained little variation in response, and the numbers of 
generalists and specialists were not impacted significantly (Table 1). 
This indicates that the amount of forest in the landscape has pos-
itive effects on understorey species richness, while the density of 
forest edge in the surrounding landscape is of minor importance.

High community-weighted SCA (shade casting ability), a measure 
for light transmission differences caused by overstorey composition, 
resulted in lower total and generalist species richness. Thus, in our 
study, the greatest species richness was detected in forest stands 
dominated by Betula pubescens, Quercus robur and Populus tremula, 
species with relatively low SCA. In contrast, understorey species rich-
ness was least under canopies dominated by species with relatively 
high SCA such as Fagus sylvatica, Carpinus betulus and Ulmus glabra. 
Shade-intolerant generalists were suppressed by a lack of light, as the 
proportion of specialist species increased slightly with increasing SCA 
levels. The composition of the overstorey has been shown to be im-
portant to explain compositional shifts in understorey communities, 
by changing the availability of light (Baeten et al., 2009).

Of all the soil variables measured, only soil pH had a significant 
influence. Specialist richness increased with increasing soil pH re-
sulting in increasing total species richness, consistent with litera-
ture (Borchsenius, Nielsen, & Lawesson, 2004; De Keersmaeker 
et al., 2004). However, the true relationship between pH and rich-
ness of total species and generalists is may be more hump-shaped, 
with an optimum around pH 5.5 (Figure 3b; Schuster & Diekmann, 
2003). Our results are in agreement with Brunet et al. (2011), who 
found that forest specialists are not affected by light (measured as 
the tree and shrub cover), but by soil pH, while the opposite was 
found for generalist species. On acidic soils, the share of forest 
specialists is generally lower (and thus the share of forest gen-
eralists higher) than on base-rich soils, because there is a very 
limited species pool of forest specialists on acidic soils (Schmidt, 
Kriebitzsch, & Ewald, 2011).

We have shown over a large geographic gradient that thinning 
as forest management does not affect forest specialist species 
richness negatively in ancient forests, while generalists showed 
a contrasting pattern. Our results underpin how forest manage-
ment affects edge influences on forest plant biodiversity. We rec-
ommend taking this interaction between forest management and 
edge-to-interior gradients into account in future research as well 
as in conservation decisions because both modify the microclimate, 
soil processes and deposition of polluting aerosols. Therefore, this 

interaction is key to predicting the effects of global change on for-
est plants in landscapes characterized by a mosaic of forest patches 
and agricultural land, which is now typical for many parts of Europe.
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