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Abstract: In wastewater treatment two separate goals should be jointly pursued: nutrient removal and energy 
conservation.  An efficient controller performance should cope with process uncertainties, seasonal variations and 
process nonlinearities. This paper describes the design and testing of a model predictive controller (MPC) based on 
neuro-fuzzy techniques, capable of estimating the main process variables and provide the right amount of aeration 
to achieve an efficient and economical operation. The algorithm has been field-tested on a large-scale municipal 
WWTP of about 500.000 PE with encouraging results in terms of better effluent quality and energy savings.  

Keywords: Machine learning; Artificial Intelligence; Neuro-Fuzzy computing; Nutrient Removal; Model 
Predictive Control; Real-time Control 

Introduction 
The goal of this study is the design and engineering of a real-time controller for 
nutrient removal, based on artificial intelligence (AI). The Wastewater Treatment 
Plant (WWTP) process scheme is shown in Figure 1, where the dissolved oxygen 
(DO) set-point DOsp and the recycle flow Qr are determined on the basis of the future 
nutrient changes estimated by the artificial intelligence engine (AIE). The MPC 
manipulates these variables to reduce the amount of output total nitrogen and to 
minimise the energy consumption. The artificial intelligence engine predicts the future 
evolution of both ammonia and nitrate and on this basis the model predictive 
controller determines the DO set-point and the internal recycle. 

Figure 1 Process scheme of the WWTP to which the MPC is applied. 

The observed variables in this control scheme are the dissolved oxygen (DO) 
together with the Nitrogen species 4NH +  and 3NO−  in the oxidation tank. The 
controller outputs are the DO set-point and the internal recycle Qr expressed as a 
percentage (0 – 100%) of the maximal allowable flow. The latter arrangement is due 
to the fact that the recycle pump operates at a fixed regime, so the percentage 
represents the fraction of the ON time in each time frame. 
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W  Material and Methods 
The WWTP from which the data were acquired and which is being used as a test plant 
is the municipal plant of the city of Modena, in Northern Italy. It consists of a 
conventional nitrification/denitrification plant, as shown in Figure 1, with a capacity 
of about 500,000 PE.  

The process instrumentation consists of a Dissolved Oxygen meter and a nutrient 
sensor (Hach, Endress+Hauser). These field measurements are routed to the plant 
SCADA for real-time operation. An encrypted connection between the plant and the 
Energy Way centre was been created to allow prototypal test. This arrangement 
enables specific clients to access the controller through LAN. Through VPN 
encrypted tunnelling, clients can mount directories on the controller as NFS folders 
and obtain services directly from the controller, enabling fast analysis iteration and 
maintenance. 

Communication between the centre and the plant SCADA is based on the Modbus 
protocol over TCP/IP, physically linking the controlling machine to the PLC-front-
end with an Ethernet patch cable, enabling peer-to-peer IP communication. 

The process variables are sampled at regular intervals δ = 5 min and the prediction 
and control horizons were suitably defined as α and β multiples of δ respectively, 
which cannot be specified here for industrial confidentiality. The AI components of 
the MPC were trained and validated using plant data spanning over one year of 
operation. 

The proposed model predictive controller (EW stands for Energy Way) is shown in 
Figure 2 where in the lower block a set of neuro-fuzzy networks forecasts the relevant 
process variables α steps ahead, while the upper block implements a heuristic search 
procedure to select the most appropriate value of the DO set-point β steps ahead. 

Figure 2 General scheme of the neuro-fuzzy model predictive controller, referred to as EW. The 
prediction (α) and control (β) horizons are multiples of the sampling interval δ. 

It consists of two main parts: the prediction of the future process variables (lower 
block) and the heuristic search of the “best” input to be applied at the next step (upper 
block). Unlike many industrial processes where an approximating linear model can be 
obtained, WWTP is a highly nonlinear, time-varying process. For this reason ad-hoc 
versions of MPC have been devised (Marsili-Libelli and Giunti, 2002; Hong and 
Bhamidimarri, 2003; Holenda et al., 2008; O’Brien et al., 2011; Han et al., 2014; 
Yang et al., 2014; Francisco et al., 2015; Mulas et al., 2015; Foscoliano et al., 2016; 
Goldar et al., 2016; Haimi et al., 2016; Marsili-Libelli, 2016; Han et al., 2017). 
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W  Another aspect of WWTP management, is the harmonisation of two control objectives 
to balance the effluent quality requirements with the energy conservation (Flores et 
al., 2007; Hakanen et al., 2013; Han and Qiao, 2014; Mustapha et al., 2018; Qiao et 
al., 2018; Torregrossa et al., 2018). In our controller, shown in Figure 2 the predictive 
section (lower block) is implemented as a set of neuro-fuzzy networks (Jang, 1993; 
Jang et al., 1998) further modified by Marsili-Libelli, (2016) and Bartoletti et al., 
(2018) while the predictive controller (upper block) is based on a heuristic search 
which selects the best future air flow ( )*

aU t α+  as the one which yields the DO value 

closest to the future set-point ( )*
spDO t α+ , by testing an array of input values. In 

details, the neuro-fuzzy networks shown in Figure 3 forecast the nutrient 
concentrations at α steps ahead, while Figure 4 shows how this information is 
repeatedly used by the heuristic search engine to compute the best air flow, as 
described earlier. So while the prediction horizon is α steps ahead, the control horizon 
is β step ahead for the DO set-point and the air flow, with β < α. 

Figure 3 Neuro-fuzzy networks to predict the 
future outputs (lower block of Figure 2). 

Figure 4 Inverse network to select the best input by 
heuristic search (upper block of Figure 2). 

The prediction accuracy is assessed through the following performance indexes 
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where y represents the actual generic variable and ŷ  its estimate. The inverse 
network of Figure 4 computes the next DO set-point at each time step by minimising 
the following weighted sum of process variables as the following objective function 
which takes into account both the predicted process variables (Nitrogen species) and 
the energy consumption, represented by the blower energy. 
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W  While the constraints with the γ weights are always active, those with the ρ 
coefficients are engaged whenever the pertinent variable activates its constraint, 
namely 
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The recycle flowrate is then updated according to the forecasted process variables 
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Results and Discussion 
The estimated process variables at the end of the prediction horizon (t, t+α) provided 
by the trained neuro-fuzzy predictors are shown in Figure 5 while the improvement in 
effluent quality and energy saving are shown in Figure 7 and in Table 1. 

Figure 5 Preliminary off-line prediction of the process variables at time t+α for the nutrients and at t+β 
for the air flow provided by the trained neuro-fuzzy networks. Normalised values are shown for 
confidentiality. 

A sensitivity assessment was then performed on the model by observing the 
variations of the output variables ( )4 3,NH NO+ −  caused by a ±20% variation in DO. 
Figure 6a shows that a positive DO variation of 20% produces a 4NH +  decrease in 
95.8% of the cases (red bars), while a -20% DO variation results in an increase of 

4NH +  in 96.1% of the times (blue bars). Likewise, Figure 6b shows that a +20% DO 
increase is followed by an 3NO−  increase in 91.7% of the cases, while a -20% DO 
decrease results in a lower 3NO−  in 92.3 % of the times. The spread in the response is 
due to the influence of other process conditions. 

Figure 6 Sensitivity assessment of the predictive model of Figure 3. The ammonium-N variations in 
response to a 20% change in DO are shown in (a), while (b) shows the corresponding changes in 
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W  nitrate-N. Notice the inverted response of the two output variables. 

After testing the consistency of the predictions via sensitivity analysis the proposed 
MPC has been compared with the conventional controller (CC) previously in 
operation. The total Nitrogen (Ntot) comparison of Figure 7 shows that the EW 
controller, operating between samples 190 and 300, can keep the output Ntot lower 
than the conventional one. 

Figure 7 Comparison of total-N output with the conventional and EW controller, operating between 
samples 190 and 300 (shaded area) corresponding to the period of test in March 2019. A lower Ntot 
output was obtained by the EW controller.  

Based on this encouraging result, Table 1 shows the improvement obtained with 
the EW controller after an extended run in March 2019. 

Table 1 Performance improvement achieved by our predictive controller (EW) over the conventional 
controller (CC) represented by the shaded area in Figure 7. 

Measured averages Estimated 
average 

Ammonium-N Nitrate-N Total-N Air Flow Electric power
Δ(EW-CC) +2.8% -7.6% -5.1% -10.7% -10.4%

Two more test runs are now examined, each optimised according to a differing 
objective. In the first test the emphasis was placed on the effluent quality during a 
high-load period and the results are shown in Figure 8. 

In Figure 8a the DO set-point varies according to the predicted treatment 
requirements, computed by the forecasting engine of Figure 4, and the DO controller 
operates in such a way to maintain the DO level close to its set point. Figure 8b shows 
the corresponding airflow variations, providing more air flow whenever the organic 
load increases. In particular it can be seen that around samples 1500 and 3400 the DO 
set-point was raised to cater for the increased treatment demand. The other airflow 
fluctuations are a consequence of the controller reaction to the varying load, which 
requires differing level of air flow to track the DO set-point. Figure 8c shows that the 
predicted Ntot is very close to the measured value at all times. The reliability of the 
forecasting engine of Figure 4 is at the basis of the successful controller of Figure 3. 
Further, the two DO peaks at samples 1500 and 3400 correspond to an increased 
organic load, as reflected by the two Ntot peaks. 
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W

Figure 8. Output process variables during a high-load test period during which the output quality was 
optimised. (a) DO vs. DO set-point; (b) Airflow; (c) Comparison between predicted and measured total 

N (normalised). 

Figure 9 Relative weights in the loss function eq. (1) during the run of Figure 8. 

Figure 9 shows the relative weights of the loss function during the quality effluent
optimisation. The blue bars, corresponding to the unconstrained Ntot term, are 
comparatively larger than any other one, indicating that the emphasis is primarily 
placed on the minimisation of the output Nitrogen. The green bars show that the 
further constraint on *

totN  is also activated most of the time, because the Nitrogen 
values are near the high end of the allowable band. 

Figure 10 Relative weights in the loss function under the energy conservation objective. 
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W  Conversely, when the organic load is below its critical level the emphasis is placed 
on limiting the energy consumption. Figure 10 shows the new arrangement of the 
weights in the loss function (2) with more emphasis being placed on the unconstrained 
energy term (γ2), while the variable weights (ρ1, ρ2, ρ3) are never engaged, given the 
low value of the organic load. 

From the previous performance figures it can be seen that the controller is able to 
switch between these two operational modes and selects the objective to be pursued 
depending on the incoming load estimated by the predictor of Figure 3. In fact, the 
two loss functions of Figure 9 and Figure 10 were produced at different times by the 
same controller which dynamically adapts its objective function depending on the 
present and predicted loading conditions. As shown, during high-load periods the 
emphasis is placed on the output quality, while in low-load condition energy 
conservation becomes the main goal. A blend of these two objectives is achieved by 
the comprehensive loss function (2) where the variable weights (ρ1, ρ2, ρ3) contribute 
to the optimal target only under certain circumstances. 

Conclusions 
This paper has described the design and field testing of the EW MPC based on neuro-
fuzzy networks and heuristic search. Its key aspect is the ability to predict sufficiently 
in advance (α > 30 min) the Ntot peaks, thus anticipating the required values of 
dissolved oxygen and air flow to secure safe effluent standards and thus saving energy 
and improving the effluent quality. The forecast performances of the neuro fuzzy 
models obtained during the offline test were also maintained during closed-loop real-
time operation, as shown in Figure 8c.  

During the initial test the two controllers (EW and CC) were alternatively engaged 
as shown in Figure 7. The good performance obtained with EW controller (Table 1) 
with respect to the two management goals (effluent quality and energy conservation) 
eventually led to the decision of adopting the EW controller on a permanent basis. 
The flexibility of the controller is also demonstrated by comparing the relative 
weights of the loss function (2) in two periods with differing treatment requirements, 
as demonstrated in Figure 9 and Figure 10. The system is presently in operation at the 
plant described, where it has replaced the previous conventional controller. 
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