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Behaviour and physiological responses (e.g. respiratory rate and cloacal temperature) could

be an indication of the thermal comfort or discomfort of broilers chicks. This study aimed

to estimate the cloacal temperature (CT) of chicks in response to different intensities and

durations of thermal exposure during the first week of life using a fuzzy inference system

(FIS) and a fuzzy genetic algorithm (Fuzzy-GA). The experiment was conducted in four

temperature-controlled wind tunnels located at the environmental laboratory of the Fed-

eral University of Lavras (UFLA; Minas Gerais, Brazil). The experimental database is

composed of 114 laboratory-based observations. The duration of thermal challenge (CD;

days) and dry bulb temperature (tdb; �C) were used as input variables for FIS. This paper

proposes a theoretical framework for the development of Fuzzy-GA systems via two

different approaches: the Mogul approach and the Pittsburgh approach. According to our

results, the predicted CT values for both models (FIS and Fuzzy-GA) were similar to the

experimentally-observed CT values. However, we noted that the model based on Fuzzy-GA

exhibited better statistical results than the manual FIS in terms of CT-predicting capability.

Thus, the model based on Fuzzy-GA can be used to predict CT for chicks exposed to

thermal challenges and can therefore aid in decision-making processes.

© 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
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Nomenclature

CT Cloacal temperature (�C)
FIS Fuzzy inference system

Fuzzy-GA Fuzzy genetic algorithm

CD Challenge duration (days)

tdb Dry bulb temperature (�C)
RR Respiratory rate

RH Air relative humidity (%)

RM Linear or non-linear regression models

ANN Artificial neural networks

CI Computational intelligence

NFN Neuro-fuzzy networks

FL Fuzzy logic

GA Genetic algorithms

RMSE Root mean square error

UI User interface

E (Ci) Evaluation function

NPC (Ci) The number of patterns correctly classified by

the MOGUL approach

KDB Knowledge database

RB Rule base

GFRBS Genetic-fuzzy rule-based system
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1. Introduction

Menegali, Tinoco, Carvalho, Souza, and Martins (2013) and

Mujahid (2010) have stated that neonatal chicks, as poikilo-

thermic animals, have difficulties retaining body heat because

their thermoregulatory capacity is not well developed. Thus,

young birds require a warm environment to keep their body

temperature near constant (Cordeiro, Tinôco, Filho, & Sousa,

2011).

Physiological responses, such as respiratory rate (RR) and

cloacal temperature (CT), and behaviours, such as huddling or

spreading, may be indicators of the levels of comfort or

discomfort of broilers. The evaluation of these responses

provides a method by which to assess the effectiveness of

breeding conditions and their impact on the welfare of the

chicks. These physiological and behavioural responses are

directly influenced by the environmental conditions inside

broiler houses (Damasceno, Yanagi Junior, Lima, Gomes, &

Moraes, 2010).

Broilers achieve the best performance when reared under

thermoneutral conditions. Thermoneutral dry-bulb tempera-

ture (tdb) for chicks should range from 32 to 34 �C during the

first week of life (Cony & Zocche, 2004; De Pauli et al., 2008;

Oliveira et al., 2006). Air velocity should be maintained at

less than 0.3 m s�1 until the birds are fully feathered in order

to avoid chilling by draughts.

According to Abreu, Yanagi Junior, Campos, Bahuti, and

Fassani (2017), when variation in CT occurs, broilers dissi-

pate or retain heat, and part of the energy that should be

allocated towards weight gain will be used for thermoregu-

latory processes, thereby reducing productivity. According to

Silva et al. (2003), an increase in CT is a physiological

response to high tdb and relative humidity (RH), resulting in
the storage of metabolic heat. In order to maintain a rela-

tively constant body temperature for the vital organs, body

heat must be maintained or released in response to envi-

ronmental changes (Funck & Fonseca, 2008). While the

maintenance of body temperature is achieved by behav-

ioural and physiological mechanisms (Furtado, Rocha,

Nascimento, & Silva, 2010), internal temperatures will in-

crease andmay, in extreme cases, cause the animals to die of

thermal stress if these mechanisms are not sufficient to

maintain homeothermy.

Hence, the development of tools (models) that assist

broiler producers in making decisions related to maintaining

the production environment within the zone of thermoneu-

trality is crucial to achieving maximum production

(Hern�andez-Julio, Yanagi Junior, �Avila Pires, Aur�elio Lopes, &

Ribeiro de Lima, 2015). These models include linear or non-

linear regression models (RMs), models based on computa-

tional intelligence (e.g. artificial neural networks (ANNs)

((Hern�andez-Julio, Yanagi, de F�atima�Avila Pires, Aur�elio

Lopes, & Ribeiro de Lima, 2014), neuro-fuzzy networks

(NFNs) (Ferraz et al., 2014), fuzzy logic (FL) (Ferreira, Yanagi

Junior, Lacerda, & Rabelo, 2012; Hern�andez-Julio et al., 2015;

Nascimento, Pereira, N€aas, & Rodrigues, 2011; Pereira, Bighi,

Gabriel Filho, & Gabriel, 2008), genetic algorithms (GA), and

fuzzy genetic algorithms (Fuzzy-GA) (Ferraz et al., 2018; Jha,

Ahmad, & Crowley, 2018).

On the one hand, fuzzy models are based on FL, which is

founded on the theory of the fuzzy sets introduced by (Zadeh,

1965). According to Hern�andez-Julio et al. (2015), FL works

with approximate rather than exact information to achieve

precision in various applications in a way that is similar to

human reasoning, thereby reducing the time needed for

modelling. These types of models have been used in a variety

of fields, such as knowledge discovery and decision making

(Mota, Damasceno, & Leite, 2018), medical diagnostics

(Hern�andez-Julio et al., 2019a, 2019b; Pota, Esposito, & De

Pietro, 2017), improving crop productivity and the efficient

use of fertilisers (Prabakaran, Vaithiyanathan, & Ganesan,

2018), and the classification of wine quality (Petropoulos

et al., 2017).

Riza, Bergmeir, Herrera, and Benı́tez S�anchez (2015) state

that Fuzzy-GA is a combination approach of fuzzy and genetic

algorithm (GA) methods, in which GA is used to optimise the

parameters of themembership function and rules of the fuzzy

inference system. Fuzzy-GA has also been used in various

processes, such as in estimating microbial rock phosphate

solubilisation in sandy clay loam-textured soil (Jha et al.,

2018), asset allocation (Georgieva, 2016), large-scale re-

gressions (Rodrêguez-Fdez, Mucientes, & Bugarên, 2016), and

in forecasting problems (Koshiyama, Vellasco, & Tanscheit,

2015). Thus, Fuzzy-GA models can aid the implementation of

embedded fuzzy logic controllers e.g. to help control the

heating or cooling systems that maintain the thermoneutral

zone for developing chicks.

Thus, this study aimed to estimate the cloacal temperature

(CT) of chicks in response to different intensities and dura-

tions of thermal challenge during the first week of life by using

a fuzzy inference system (FIS) and Fuzzy-GA.
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2. Materials and methods

2.1. The experiment

The experiment was conducted in four identical temperature-

controlled wind tunnels, which were installed in the envi-

ronmental laboratory of the Federal University of Lavras

(UFLA; Minas Gerais, Brazil). The procedure was approved by

the Ethics Committee on Animal Use (CEUA) of the Federal

University of Lavras (Minas Gerais, Brazil), according to Pro-

tocol 001/12.

The thermally and environmentally controlled wind tun-

nels weremade of steel frames, sheets, and polyvinyl chloride

(PVC) pipes. The target tdb, RH, and air velocity were well

maintained in the wind tunnels throughout the experimental

period, with a standard deviation of 0.3 �C, 0.5%, and

0.10 m s�1, respectively.

Thirteen treatments were performed, combining four tdb
conditions (27, 30, 33, and 36 �C) and four durations of expo-

sure to thermal stress (1e4 days) (Table 1).

A total of 210 mixed-sex Cobb chicks (50% female and 50%

male) were used for the experiment. The birds were randomly

distributed among the treatments. Each trial consisted of four

treatments, (60 birds, 50% female and 50% male, 15 per

treatment) that were divided into three replicate groups of five

birds each. Different numbers of replicates (unbalanced) were

used for control treatments. Specifically, the ninth and elev-

enth treatments had one five-bird replicate group with five

birds per treatment, whereas the tenth and twelfth treat-

ments each had two five-bird replicate groups (Table 1).

Because of this, the total number of birds for all the treatments

was 210 instead of the expected 240.

During the experiment, water and commercial pre-starter

feed were given to the chicks ad libitum to meet their nutri-

tional requirements. A continuous lighting program was

employed during the study period (Abreu et al., 2017). All

experimental chicks had a similar initial body mass, came

from the same hatchery, and received the same vaccines for

Marek's disease, Gumboro disease, and fowl pox.
Table 1 e Dry-bulb temperature (tdb; �C), and duration of
thermal stress (days) used in the study.

Treatments Dry- bulb temperature
(tdb, �C)

Stress duration
(days)

1 27 ± 0.2 1

2 27 ± 0.3 2

3 27 ± 0.2 3

4 27 ± 0.3 4

5 30 ± 0.3 1

6 30 ± 0.3 2

7 30 ± 0.3 3

8 30 ± 0.2 4

9 (control)a 33 ± 0.2 0

10 36 ± 0.6 1

11 36 ± 0.5 2

12 36 ± 0.6 3

13 36 ± 0.5 4

a The optimal temperature (treatment 9) was 33 �C.
The chicks were placed inside the environmentally

controlled wind tunnels on the day of hatching and remained

there until eight days of age. At one day old, the chicks arriving

from the incubator were housed inside the environmentally-

controlled wind tunnels at the control temperature (33 �C)
(Menegali et al., 2013). At two days old, each group of 15 chicks

was subjected to one of the 13 treatments described in Table 1,

with varying intensities and exposure times of tdb. After the

allotted period of thermal exposure, chicks were returned to

the comfort temperature for the rest of the first week (33 �C).
Every day, one chick from each replicate of each treatment

was randomly captured, and CT wasmeasured with the aid of

a high-precision portable digital thermometer (INSTRU-

THERM® S~ao Paulo, SP, Brazil; ± 0.1% accuracy, þ 0.2 �C), for a
total of three animals from each treatment.

Matlab® 2017a (MathWorks, Inc, 2017) was used for the

development of the FIS and the Fuzzy-GA toolbox.

2.2. Datasets

A database containing the raw data for thermal stress (tdb; �C),
the duration of thermal challenge (CD; days), and cloacal

temperature (CT) was generated for the Cobb chicks.

The experimental database was composed of 114 data

points. To perform the necessary analyses, the subsets were

randomly and iteratively distributed as follows: training (70%),

validation (15%), and test (15%) using the “dividerand” Matlab

software command. In addition to these subsets, data were

further subdivided, and another subgroup was used for the

total validation of the systemperformance, whichwas formed

by the mean values of the measurements taken during the

experiments. In total, there were 16 mean values, which were

calculated using the observed replicates from the thirteen

treatments.

2.3. Data preparation

First, it was necessary to define the input and output variables

for modelling. To build the respective dataset, the data were

transformed using extraction and transformation techniques.

In this case, the objective was to arrange the input and output

variables in matrix form (m x n), where m represents the

number of instances and n represents the number of variables

(Riza et al., 2015). In this case, the first two columns of the

transformed dataset represent the input variables and the

third column represents the output variable (Table 2).

2.4. Fuzzy model development

We developed an FIS to predict the CT of broiler chicks in

response to different intensities and durations of thermal

challenge. The duration of thermal challenge (CD; days) and

dry bulb temperature (tdb; �C) were used as input variables

(Table 3). Triangular membership function (MF) curves were

chosen because these are the most commonly used and they

represent the data profile that shows the best fit for the data of

the developed model (Hern�andez-Julio et al., 2015; Ponciano,

Yanagi Junior, Schiassi, Campos, & Nascimento, 2012a;

Schiassi et al., 2012). In this case, the input variables were

the exposure times (1e4 days) and four temperatures (27, 30,

https://doi.org/10.1016/j.biosystemseng.2020.02.005
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33, and 36 �C), indicating that we wanted a maximum mem-

bership degree of (1.0) for each input variable. While devel-

oping the model, experts defined the ranges of each

membership function. The experimental values that formed

the basis for the definition of the inputs and outputs of the

membership curves are shown in Table 3 and Fig. 1.

We used a Mamdani-type FIS to predict CT. According to

Leite, Fileti, and Silva (2010), this inference method yields a

fuzzy set as answers by combining the input values with their

relative degrees of membership using the minimum operator,

and in sequence, the definitions of the rules by the maximum

operator. The defuzzification method was the centre of grav-

ity, which allowed for all output options, thereby converting

the fuzzy set into a numerical value.

The fuzzy inference was manually structured and was

composed of a set of 16 rules that stemmed from the multi-

plication of 4 MFs for tdb and 4 MFs for CD. Experimental data

defined these basic rules and, with the help of experts in the

field, are presented as if/then rules. A total of 16 rules were

generated for each variable response, and a weighting factor

of 1 was assigned to each sentence (Table 3). This assignment

was made because the higher the rule weight, the larger the
Table 2 e Example of Data Extraction and transformation (som

Original dataset

Input 1 Input 2/Output

Days under stress tdb (�C)/CT obs.

27 30 33 36

1 40.0 40.7 40.5 40.9

40.4 41.3 40.7 40.1

40.0 41.2 40.6 40.9

40.1 40.8 40.6 40.8

40.3 40.9 40.6 40.6

39.6 40.6 40.3 40.4

39.7 41.3 41.2

40.6 41.0 41.0

39.3 40.7 41.4

39.7 40.9 40.9

40.0 40.8 40.8

40.5 41.0 40.6

2 40.5 41.0 40.9 41.2

40.2 40.5 41.2 41.4

40.3 40.8 41.2 40.4

40.1 41.1 40.9 41.3

40.4 41.2 41.3 40.9

40.1 41.0 41.6 40.6

40.5 41.3 41.5

40.8 40.5 41.2

40.2 40.7 41.1

3 40.2 40.9 41.1 40.9

40.2 41.2 41.4 41.8

40.4 41.3 41.5 41.0

40.4 41.5 41.5 41.5

40.9 41.9 41.2 41.4

40.1 41.5 41.4 41.1

4 40.7 41.5 41.2 41.9

41.0 41.9 41.3 42.1

41.2 41.4 41.2 41.4

Values on the left side represent the original dataset, while the right side r

bulb temperature. CT Obs.: observed Cloacal temperature.
decision area of each rule (Ishibuchi & Nakashima, 2001),

which can be also interpreted as the strength of each rule.

2.5. Fuzzy-genetic approaches and framework

The use of genetic algorithms has been shown to improve

fuzzy inference models (Ferraz et al., 2018; Jha et al., 2018;

Rodrêguez-Fdez et al., 2016). One of the biggest problems in

executing this type of approach is in finding a methodology

that helps with the implementation of the predicted models.

For this reason, this section proposes a theoretical framework

for the development of Fuzzy-GA systems. Our framework

employs two different approaches: the Mogul approach

(Cord�on, del Jesús, Herrera, & Lozano, 1999; Herrera, 2008;

Herrera, Lozano, & Verdegay, 1998) and the Pittsburgh

approach (Herrera, 2008; Herrera & Magdalena, 1997; Smith,

1980, p. 220).

2.5.1. MOGUL approach
According to Herrera et al. (1998), this approach uses a genetic

algorithm to determine the structure of the fuzzy rules and

the parameters of the membership functions simultaneously
e illustrative values).

Extracted and transformed dataset

Inputs Output

Days under stress Stress Temp tdb (�C). CT obs.

1 27.0 40.0

40.4

40.0

40.1

40.3

39.6

39.7

40.6

39.3

39.7

40.0

40.5

1 30.0 40.7

41.3

41.2

40.8

40.9

40.6

41.3

41.0

40.7

40.9

40.8

41.0

1 33.0 40.5

40.7

40.6

40.6

40.6

40.3

epresents a portion of the extracted and transformed dataset. tdb, dry

https://doi.org/10.1016/j.biosystemseng.2020.02.005
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Table 3 e Fuzzy inference system developed by a fuzzy
model.

[System] Rules

Name ¼ 'simulation

triangular 11 curves'
If (CD ¼ 1) and (Tdb ¼ 1) then

(CT ¼ 3)

If (CD ¼ 1) and (Tdb ¼ 2) then

(CT ¼ 5)

Type ¼ 'mamdani' If (CD ¼ 1) and (Tdb ¼ 3) then

(CT ¼ 11)

Version ¼ 2.0 If (CD ¼ 1) and (Tdb ¼ 4) then

(CT ¼ 5)

NumInputs ¼ 2 If (CD ¼ 2) and (Tdb ¼ 1) then

(CT ¼ 4)

NumOutputs ¼ 1 If (CD ¼ 2) and (Tdb ¼ 2) then

(CT ¼ 5)

NumRules ¼ 16 If (CD ¼ 2) and (Tdb ¼ 3) then

(CT ¼ 7)

AndMethod ¼ 'min' If (CD ¼ 2) and (Tdb ¼ 4) then

(CT ¼ 6)

OrMethod ¼ 'max' If (CD ¼ 3) and (Tdb ¼ 1) then

(CT ¼ 4)

ImpMethod ¼ 'min' If (CD ¼ 3) and (Tdb ¼ 2) then

(CT ¼ 8)

AggMethod ¼ 'max' If (CD ¼ 3) and (Tdb ¼ 3) then

(CT ¼ 7)

DefuzzMethod ¼ 'centroid' If (CD ¼ 3) and (Tdb ¼ 4) then

(CT ¼ 7)

If (CD ¼ 4) and (Tdb ¼ 1) then

(CT ¼ 6)

If (CD ¼ 4) and (Tdb ¼ 2) then

(CT ¼ 8)

If (CD ¼ 4) and (Tdb ¼ 3) then

(CT ¼ 6)

If (CD ¼ 4) and (Tdb ¼ 4) then

(CT ¼ 9)

If (CD ¼ 1) and (Tdb ¼ 1) then

(CT ¼ 3)

If (CD ¼ 1) and (Tdb ¼ 2) then

(CT ¼ 5)

Min:minimum.Max: Maximum. Theweights of all rules were input

as 1.0.
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by using an approximate Mamdani-type fuzzy method. This

method consists of three primary stages:

(i) The genetic generating process (to obtain desirable

fuzzy rules that can include the complete knowledge

base from the set of examples),

(ii) the genetic simplification process (to combine and

eliminate redundant rules, and thereby select the

most cooperative set of rules), and

(iii) the genetic tuning process (which fits the member-

ship functions of the fuzzy rules that deal with the

parameters of the membership functions, thereby

minimising a square error function defined by

means of an inputeoutput data set for evaluation)

(Cord�on et al., 1999; Cord�on & Herrera, 2001; Herrera,

2008; Herrera et al., 1998).
2.5.2. Pittsburgh approach
This approach also works with Mamdani-type and genetic

algorithms. Using this method, GA attempts to optimise the
rule base of the fuzzy model to determine the best if/then

rules without changing the knowledge database (membership

functions). The first if/then rules are considered to be inside

the initial population of the GA method, or more specifically,

one chromosome encodes all if/then rules (entire rule base)

(Herrera, 2008; Herrera & Magdalena, 1997; Smith, 1980, p.

220). According to the authors, crossover and mutation func-

tions are implemented to obtain the new population of chro-

mosomes. The root mean square error (RMSE) is used to

evaluate the fitness of the original chromosomes, and is

calculated between the observed output and the predicted

output. The best set of chromosomes (rules) is obtained after

several generations. The optimal set of rules could be used in

the inference engine to achieve the linguistic output, and the

actual output value is subsequently obtained using the

defuzzification process (Jha et al., 2018; Smith, 1980, p. 220).

2.6. Framework for the development of Fuzzy-GA
systems

2.6.1. Front-end layer
This layer is also called the user interface (UI) (Liu, Sha, Wang,

Li, & Bureau, 2018). In this layer, we can validate and verify

user authentication and employ the user interface to create or

modify Fuzzy-GA systems. Furthermore, the user interface is

displayed according to the role of the user. Themain objective

of this layer is to interact with the backend layer. The user

whomakes decisions about a given topic will interact with the

user interface to enter the input variables and will show the

result by choosing from one or more computational intelli-

gence techniques (if possible). Moreover, each user will have a

graphical user interface.

2.6.2. Back-end layer
This layer is composed of all individual application systems to

be deployed. All applications must have a relationship with

the core of an expert on fuzzy models. The focus of this sec-

tion is to propose a framework of computational intelligence

for the development of Fuzzy-GA systems.

2.6.3. Data layer
The data layer is part of the enterprise architecture data layer.

Nieto Bernal and Luna Amaya (2015) state that this layer is

composed of a set of models that displays the information

integrated into the organisation infrastructure. This phase

begins with conceptual models and ultimately encompasses

the physical design of the database, data warehouses, and

repositories of information. In this layer, the enterprise ar-

chitect must identify and model objects to organise informa-

tion (classes, objects, tables), describe them (relational data

model objects), and design a database from the objects

(physical database); integrate information using enterprise

information integration (EEI); and design comprehensive da-

tabases, data repositories, and data warehouse design and

repositories using the database management system (Nieto

Bernal & Luna Amaya, 2015).

2.6.4. Service infrastructure layer
This layer is part of the enterprise architecture infrastructural

layer. The primary role of this layer is to characterise the

https://doi.org/10.1016/j.biosystemseng.2020.02.005
https://doi.org/10.1016/j.biosystemseng.2020.02.005


Fig. 1 e Membership functions for inputs and output variables.
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business through modelling, design infrastructure architec-

ture, model the physical distribution of the business, design

the physical layout of the business, and to develop the phys-

ical distribution of the business (Lan, Man, Wan, Wireless,

Pan) and the design of the extended physical distribution/

business network (Nieto Bernal & Luna Amaya, 2015). The

execution of this layer employs various operating systems

(OS), web services (WS), open database connectivity (ODBC)

drivers, and pre-processors.

2.6.5. Back-end explanation
Themethodology used to perform this is represented by three

components (fuzzy logic, genetic algorithms, and the genetic-

fuzzy component). The first component is responsible for the

manual development of the fuzzy system. The second

component applies the genetic operators (selection, cross-

over, and mutation) to the initial population and the other

populations resulting from the interactions between the op-

erators. Finally, the third component is the conjunction of the

first two components. The result is the best rule base config-

uration without modification of the database (Pittsburgh

approach) or the best database configuration with or without

modification of the rule base (MOGUL approach). The first two
components are not presented here in detail because they

belong to well-knownmethods of computational intelligence.

However, the third component is presented here in more

detail, as to the best of our knowledge, there are no studies

that address the specific methodology required to perform a

hybridisation of the two techniques.

2.6.6. Evaluation function
According to Pires (2004, p. 128), the same evaluation function

is used for both approaches (i.e. Pittsburgh and MOGUL).

The evaluation function E (Ci) is based on the parameter

values of the rules-based performance or membership func-

tions that were generated from the information contained in

the chromosomes (population) and calculated by the number

of patterns correctly classified using the fuzzy reasoning

method. The evaluation function is expressed by equation (1):

EðCiÞ ¼ NPCðCiÞ (1)

where NPCðCiÞ is the number of patterns correctly classified

using the MOGUL approach (database and rule base) or Pitts-

burgh approach (rule base), generated by the chromosome Ci.

The evalfis function (software command) was used to calcu-

late this value.

https://doi.org/10.1016/j.biosystemseng.2020.02.005
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3. Results and discussion

The parameters of the genetic algorithm (i.e. the maximum

number of generations, population size, the probabilities of

mutation and crossing, and the percentage of elitism) were

defined empirically and are listed in Table 4 (Pires, 2004, p.

128). It is worth noting that all of these values can be changed

at any time during the creation of Fuzzy-GA systems.

The main aim of a Fuzzy-GA is to adjust the parameters of

the input and/or output variables of the determined fuzzy

model in order to improve or modify the performance (accu-

racy) of predicting the value(s) of the output variable(s) (CT)

and to reduce the prediction error (RMSE) (Georgieva, 2016). In

this study, the parameters of the input and output variables

had been manually defined in the FIS. In the elaborated

toolbox (Fuzzy-GA), input and output variables and rule base

were selected to optimise the parameters. The Fuzzy-GA acted

by changing the ranges of the membership functions of the

output variable (MOGUL approach) and the rule base (Pitts-

burgh approach), thereby optimising the model.

The input, output, and rules of the original FIS are listed in

Table 3 and Fig. 1. Table 5 is a comparison of the intervals of

the membership function curves (knowledge database:

MOGUL approach) for the output and the rule base (RB: Pitts-

burgh approach) for FIS and the Fuzzy-GA system.

Descriptive statistical indices (i.e. absolute and standard

deviation, percentage error, the coefficient of determination

[R2; Fig. 2], histograms, standard error, RMSE, regression co-

efficients [slopes], and intercepts) were computed to evaluate

the effectiveness of Fuzzy-GA in improving the proposed FIS

for predicting CT in chicks. The results of the performance of

FIS and Fuzzy-GA for the subset of the test data (means

datasets) are listed in Table 6.

In addition to the descriptive statistical indices, the func-

tional relationships between the CT values predicted by FIS

(Eq. (2) and Fig. 3a) and Fuzzy-GA, (Eq. (3) and Fig. 3b), and the

actual values observed during the experiment period were

analysed, and the following respective equations were found:

CTsimulated by FIS ¼ 0:91032*CTObserved

� 3:6449; ðStandard error ¼ ± 0:0900Þ (2)

CTsimulated by Fuzzy�GA ¼ 0:95936*CTObserved

� 1:6243; ðStandard error ¼ ± 0:0611Þ (3)

As can be observed, the intercept values are not close to

zero (0), for that reason, wewanted to show iswhether there is
Table 4 e Fuzzy-GA parameters.

Parameters Values

Generation maximum number 100

Population size 4 chromosomes

Mutation probability 0.02

Crossover probability 0.01

Selection method Tournament

Crossover method Uniform

Percentage of elitism 5%

Number of repetitions 100
a significant difference in the centre of mass of the predicted

CT values, for doing that, we adjusted the formula and

calculated again the intercepts and slopes values with the

following equation:

CTsimulated by FIS or Fuzzy�GA � 41�C¼m $ ðCTObserved � 41�CÞ þ c; (4)

where the 41 �C represents the median of the observed values

of the cloacal temperature. m and c represent the slope and

the intercepts of the formulae.

With the new formulae, the obtained values for slopes and

intercepts were:

CTsimulated by FIS � 41�C¼1:06315S $ ðCTObserved � 41�CÞ
þ 0:035NS; ðStandard error ¼ ± 0:0973Þ (5)

CTsimulated by Fuzzy�GA � 41�C¼1:0269S $ ðCTObserved �41�CÞ
þ 0:0433S; ðStandard error ¼ ± 0:063Þ (6)

where s means a significant difference at a 95% confidence

interval.

According to Tedeschi (2006), accuracy increases as the

intercept approaches 0, and the slope approaches 1. For both

equations, the values of the slopes are close to 1, with Eq. (6)

more accurate than Eq. (5). The intercept values of both are

close to 0, which indicates a more accurate prediction of the

output (Tedeschi, 2006).

The two final models for predicting CT were compared

using different methods. According to these results, the pre-

dicted CT values for both models (FIS and Fuzzy-GA) were

similar to those that were observed experimentally. However,

it should be noted that the model based on Fuzzy-GA exhibi-

ted both higher and statistically significant outcomes in its

capacity to predict CT in comparison to themanual FIS, as can

be seen in Table 6, Fig. 2, and Fig.3. The statistical indices

indicate that predictions using Fuzzy-GA concentrated errors

(88%) over a smaller range of absolute deviations (from 0 to

0.1 �C), while the remaining 12% of the absolute deviations

were between 0.15 and 0.2 (Fig. 2). The percent prediction ac-

curacy for Fuzzy-GA was significantly higher than for FIS

(higher R2, Fig. 3b) when the means dataset was used as the

test dataset. The difference between the maximum value of

absolute deviations in both models (0.065) was statistically

significant (p > 0.01). These results indicate an improvement

in the previously functional predictive capacity of the FIS

model. In consideration of the two approaches to genetic al-

gorithms (i.e. MOGUL and Pittsburgh), it should be noted that

both approaches played a role in the improved predictive ca-

pacity observed in the present study. While the MOGUL

approach recognises the structure (knowledge database) and

estimates the parameters of the models simultaneously

(Herrera, 2008; Herrera&Magdalena, 1997; Herrera et al., 1998;

Riza et al., 2015; Smith, 1980, p. 220), the Pittsburgh approach

also changed the original FIS rule-based configuration in this

case (Table 6), showing that in some cases, attempting to

change the rule database can be helpful. Furthermore, it can

be observed that modifying a single parameter in the original

FIS can influence the performance of the developed model

(Ferraz et al., 2018). For example, the maximum values of the

statistical deviations (absolute and standard deviations, and

percentage errors) exhibited notable differences in the present

https://doi.org/10.1016/j.biosystemseng.2020.02.005
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Table 5 e Comparison between the knowledge and rule base of the two systems.

Cloacal Temperature (CT, �C)

Membership functions Membership function curves (KDB Parameters) RB

A B C Rules

aMF1 38.06 38.50 38.94 If (CD ¼ 1) and (Tdb ¼ 1) then (CT ¼ 3)

38.50 38.50 38.94 If (CD ¼ 1) and (Tdb ¼ 1) then (CT ¼ 4)

MF2 39.13 39.57 40.01 If (CD ¼ 1) and (Tdb ¼ 2) then (CT ¼ 5)

39.13 39.57 40.09 If (CD ¼ 1) and (Tdb ¼ 2) then (CT ¼ 6)

MF3 39.70 40.00 40.30 If (CD ¼ 1) and (Tdb ¼ 3) then (CT ¼ 11)

39.70 40.00 40.30 If (CD ¼ 1) and (Tdb ¼ 3) then (CT ¼ 11)

MF4 40.10 40.40 40.66 If (CD ¼ 1) and (Tdb ¼ 4) then (CT ¼ 5)

40.10 40.40 40.66 If (CD ¼ 1) and (Tdb ¼ 4) then (CT ¼ 6)

MF5 40.40 40.90 41.00 If (CD ¼ 2) and (Tdb ¼ 1) then (CT ¼ 4)

40.44 41.00 41.21 If (CD ¼ 2) and (Tdb ¼ 1) then (CT ¼ 5)

MF6 40.77 41.10 41.40 If (CD ¼ 2) and (Tdb ¼ 2) then (CT ¼ 5)

40.77 41.10 41.40 If (CD ¼ 2) and (Tdb ¼ 2) then (CT ¼ 6)

MF7 41.05 41.40 41.60 If (CD ¼ 2) and (Tdb ¼ 3) then (CT ¼ 7)

41.05 41.40 41.67 If (CD ¼ 2) and (Tdb ¼ 3) then (CT ¼ 8)

MF8 41.41 41.50 42.00 If (CD ¼ 2) and (Tdb ¼ 4) then (CT ¼ 6)

41.41 41.50 42.00 If (CD ¼ 2) and (Tdb ¼ 4) then (CT ¼ 7)

MF9 41.76 42.00 42.40 If (CD ¼ 3) and (Tdb ¼ 1) then (CT ¼ 4)

41.76 42.00 42.00 If (CD ¼ 3) and (Tdb ¼ 1) then (CT ¼ 5)

MF10 38.60 39.10 39.50 If (CD ¼ 3) and (Tdb ¼ 2) then (CT ¼ 8)

38.60 39.10 39.50 If (CD ¼ 3) and (Tdb ¼ 2) then (CT ¼ 8)

MF11 40.30 40.60 41.00 If (CD ¼ 3) and (Tdb ¼ 3) then (CT ¼ 7)

40.30 40.60 41.00 If (CD ¼ 3) and (Tdb ¼ 3) then (CT ¼ 8)

If (CD ¼ 3) and (Tdb ¼ 4) then (CT ¼ 7)

If (CD ¼ 3) and (Tdb ¼ 4) then (CT ¼ 8)

If (CD ¼ 4) and (Tdb ¼ 1) then (CT ¼ 6)

If (CD ¼ 4) and (Tdb ¼ 1) then (CT ¼ 7)

If (CD ¼ 4) and (Tdb ¼ 2) then (CT ¼ 8)

If (CD ¼ 4) and (Tdb ¼ 2) then (CT ¼ 9)

If (CD ¼ 4) and (Tdb ¼ 3) then (CT ¼ 6)

If (CD ¼ 4) and (Tdb ¼ 3) then (CT ¼ 7)

If (CD ¼ 4) and (Tdb ¼ 4) then (CT ¼ 9)

If (CD ¼ 4) and (Tdb ¼ 4) then (CT ¼ 10)

a The first row in everyMembership Function (MF) and every rule represents the FIS values, while the second row represents the Fuzzy-GA. Bold

values indicate the difference between the original Fuzzy Inference System (FIS) and the valuemodified by Fuzzy-GA. A, B, and C represent the

parameters of the triangular memberships function of the fuzzy sets. KDB: knowledge data base. RB: Rule Base.
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Fig. 2 e The occurrence frequency of absolute deviations between the data for cloacal temperature as simulated by (a) the

fuzzy inference system and (b) the Fuzzy-GA system and the means datasets.
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Table 6 e Statistical indices applied to cloacal temperature (CT) as predicted by the fuzzy inference system (FIS) and the
fuzzy genetic algorithm (Fuzzy-GA) and experimental observations.

Input variables Fuzzy-GA FIS

Duration
of stress
(days)

Dry bulb
temperature (�C)

Output
CT

Fuzzy-
GA

Absolute
deviation

Standard
deviation

Percentage
error

FIS Absolute
deviation

Standard
deviation

Percent
error

1 27 40.00 40.00 0.000 0.000 0.000 40.00 0.000 0.000 0.000

1 30 40.90 40.88 0.017 0.012 0.042 40.77 0.133 0.094 0.326

1 33 40.60 40.63 0.033 0.024 0.082 40.63 0.033 0.024 0.082

1 36 40.80 40.88 0.083 0.059 0.203 40.77 0.033 0.024 0.082

2 27 40.30 40.39 0.087 0.061 0.215 40.39 0.088 0.062 0.217

2 30 40.90 40.88 0.017 0.012 0.042 40.77 0.133 0.094 0.326

2 33 41.20 41.37 0.173 0.122 0.420 41.35 0.150 0.106 0.365

2 36 41.10 41.09 0.010 0.007 0.024 41.09 0.010 0.006 0.021

3 27 40.40 40.39 0.013 0.010 0.033 40.39 0.012 0.009 0.031

3 30 41.40 41.37 0.027 0.019 0.065 41.64 0.238 0.168 0.575

3 33 41.40 41.37 0.027 0.019 0.065 41.35 0.050 0.035 0.120

3 36 41.30 41.37 0.073 0.052 0.177 41.35 0.050 0.036 0.122

4 27 41.00 41.09 0.090 0.064 0.219 41.09 0.091 0.065 0.223

4 30 41.60 41.64 0.037 0.026 0.089 41.64 0.038 0.027 0.091

4 33 41.00 41.09 0.090 0.064 0.219 41.09 0.091 0.065 0.223

4 36 41.80 41.93 0.131 0.093 0.314 41.93 0.130 0.092 0.311

Mean 0.057** 0.040** 0.138** 0.080 0.057 0.195

Minimum 0.000 0.000 0.000 0.000 0.000 0.000

Median 0.035** 0.025** 0.085** 0.069 0.049 0.170

Maximum 0.173** 0.122** 0.420** 0.238 0.168 0.575

Standard error 0.061** 0.090

Root Mean Squared Error 0.074** 0.101

Bold values in performance metrics (max, min, mean, etc.) represent the best performance for the fuzzy genetic algorithm. ** indicates a sig-

nificant difference with a level of significance of 0.01.
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Fig. 3 e The functional relationship between the observed values for cloacal temperature and the means dataset simulated

by the models: (a) fuzzy inference system and (b) fuzzy genetic algorithm. ** indicates a significant difference with a level of

significance of 0.01.
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study. The FIS exhibited a standard error of 0.090, while the

standard error for the genetic fuzzy rule-based system (GFRBS)

was 0.061, indicating an improvement in the predictive ac-

curacy of CT when using the Fuzzy-GA tool (Table 6).

Abreu et al. (2017) estimated an R2 of CT as a function of tdb
of 0.75, while Ponciano, Yanagi Junior, de Lima, Schiassi, and

Teixeira (2012b) observed that the R2 for four model equations

was 0.73 with a mean absolute error of 0.32, 0.35, 0.69, and
0.38 �C for the four equations and average percentage errors of

0.79, 0.86, 1.68, and 0.94%, respectively. The standard de-

viations were 0.22, 0.25. 0.49 and 0.27, respectively, for each

regression model. Ferreira et al. (2012), obtained a mean devi-

ation of 0.13 �C and a mean percentage error (MPE) of 0.31%

when comparing the elaborated fuzzy system and data

measured experimentally (R2 ¼ 0.9318), indicating that the

fuzzy system satisfactorily simulates the CT of broiler

https://doi.org/10.1016/j.biosystemseng.2020.02.005
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Fig. 4 e Block diagram of the feedback of a fuzzy logic controller (Yamakawa, 2011).
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chickens. Ferraz et al. (2018) used a fuzzy-GA system to predict

the RR of chicks exposed to thermal challenges. In addition, the

fuzzy genetic system resulted in an improvement in the pre-

dictive accuracy of RR, yielding an R2 value of 0.9837 for FIS and

0.9864 for the fuzzy genetic system, with maximum absolute

deviation values of 4 and 3.10, respectively (a difference of 0.9).

As is evidenced by this study, both models used here (FIS

and Fuzzy-GA) demonstrated better predictive performances

than other previously published models.

The values obtained during the experimental period

showed that the CT always presented lower values for ani-

mals exposed to 27 �C in comparison to the other tempera-

tures evaluated (i.e. 30, 33, and 36 �C) (Table 6). The low CT

values indicate that the experimental chicks experienced

discomfort in response to the cold, although the CT values

observed here were greater than those found in the literature

(Elson, 1995). Moreover, the physiological responses of the

chicks to temperature change occurred even when the expo-

sure timewas only one day. According to Cordeiro et al. (2011),

when young chicks are subjected to low temperatures in the

first days of life, development can be delayed and animals

may not adequately recover.

High tdb is known to increase CT (Chowdhury, Tomonaga,

Nishimura, Tabata, & Furuse, 2012) and may cause heat

stress in broiler chickens (Singh, Ghosh, Creswell, & Haldar,

2015). Furthermore, increases in CT have been shown to be

proportional to age (Marchini, Silva, Nascimento, and Tavares

(2007), while the stress caused by high CT results in decreases

in mass gain (Costa, Saraiva, & dos Santos, 2012).

However, the present study shows that tdb of 36 �C did not

cause heat stress in broiler chicks, and that the CTs of these

animals were very similar to the those of animals subjected to

33 �C, except on day 4 of exposure to 36 �C. In this case, CT

increased when the chicks were exposed to higher tempera-

tures, demonstrating the influence of the thermal environ-

ment on the physiological response of broiler chicks.

As the thermoregulatory systemof chicks is not completely

developed in the first days of life, chicks need to be raised in

thermoneutral temperatures. According to Funck and Fonseca

(2008), developing chicks need to absorb all the nutrients and

antibodies necessary for healthy development in the embry-

onic sac. This absorption will only happen if chickens are

maintained at a thermoneutral temperature and ingest ample
amounts of food and water. On the one hand, if tdb is too low,

chickens will remain huddled and may go to the feeders and

drinkers less frequently. On the other hand,when the tdb is too

high, part of the feed energy intake that could be used for

growth or production is diverted to thermoregulation in order

to maintain homeostasis. Furthermore, a higher formation

rate of vital organs suchasheart, lungs, immune, anddigestive

systems occur during the first seven days of the broiler chick's
life. Thus, a thermoneutral temperature is essential early in life

to both meet the requirements of thermal comfort for chicks

and for healthy development (Tinôco, 2001).

Although this study was undertaken in a laboratory envi-

ronment, the results can be used to drive decision-making

processes aimed at creating satisfactory environmental con-

ditions for chicks. Furthermore, it is essential to emphasise

that submitting young chicks to thermal challenge, even for a

small period, may affect their growth, development, welfare,

and they may not be able to recover adequately. For this

reason, the proposed FIS could be embedded in environmental

control systems to maintain an adequate microclimate inside

the broiler houses and to ultimately improve production. In

this case, the model could be embedded in a fuzzy logic

controller as proposed by Yamakawa (2011) (Fig. 4) or Kobersi,

Finaev, Almasani, and Abdo (2013) for turning on/off the

heating or cooling systems to maintain the thermoneutral

zone for the birds (Tdb ¼ 33 �C).
In order to do this, we can use the Simulink toolbox in

Matlab. To implement to the fuzzy logic controller system, any

dry bulb temperature sensor can be used to obtain the Tdb. The

other input variables can be calculated based on the date

format of the system (calculating the number of days that the

same dry bulb temperature has been observed). The output of

the fuzzy logic controller would be CT. If the output (CT) is

stressful (below or above 41 �C), then the system would turn

on/off the heating or cooling system until CT attains the rec-

ommended temperature (41 �C).
4. Conclusions

This paper presented a detailed framework for the develop-

ment of Fuzzy-GA systemsusing two different approaches: The

Mogul and the Pittsburgh approaches. Themain contribution of

https://doi.org/10.1016/j.biosystemseng.2020.02.005
https://doi.org/10.1016/j.biosystemseng.2020.02.005


b i o s y s t em s e ng i n e e r i n g 1 9 9 ( 2 0 2 0 ) 1 0 9e1 2 0 119
this study is two-fold. First, the proposed methodology was

successfully employed to improve manually developed fuzzy

models, allowing a reduction in predictive errors and the gen-

eration of more realistic estimates. We further improved the

fuzzy models by using genetic algorithms. Most importantly,

this computational technique enables an improvement in the

membershipefunction curves using the MOGUL approach, as

well as an improvement in the rule base using the Pittsburgh

approach, which depends directly on the behaviour of the data

and the experience of experts.

Secondly, the Fuzzy-GA tool exhibited a good interaction

with the FIS, which has been previously modelled by spe-

cialists, and demonstrated an improvement in the precision of

CT predictions. Thus, the model based on Fuzzy-GA can be

used to predict CT for chicks subjected to thermal challenges

and can be embedded in a fuzzy-logic controller to assist in

decision-making processes related to turning on/off heating

or cooling systems in order to maintain the thermoneutral

zone of the chicks.
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