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ABSTRACT Awind turbine is a complex system used to convert the kinetic energy of the wind into electrical
energy. During the turbine design phase, a risk assessment is mandatory to reduce the machine downtime
and the Operation & Maintenance cost and to ensure service continuity. This paper proposes a procedure
based on Failure Modes, Effects, and Criticality Analysis to take into account every possible criticality that
could lead to a turbine shutdown. Currently, a standard procedure to be applied for evaluation of the risk
priority number threshold is still not available. Trying to fill this need, this paper proposes a new approach
for the Risk Priority Number (RPN) prioritization based on a statistical analysis and compares the proposed
method with the only three quantitative prioritization techniques found in literature. The proposed procedure
was applied to the electrical and electronic components included in a Spanish 2 MW on-shore wind turbine.

INDEX TERMS Reliability engineering, failure analysis, risk analysis, fault detection, wind energy.

I. INTRODUCTION
Wind energy is one of many renewable energy sources that
offer an alternative to burning fossil fuels [1] and is now one
of the most widely used sources of renewable energy [2].
Wind energy is popular because of the lower investment
cost and well-developed technology compared to the other
renewable energy sources [3].

In compliance with WindEurope, (i.e. the Association for
Wind Energy in Europe), the European Union (EU) is moving
toward renewable energy sources, with hundreds of billions
invested in renewable energy development and many new
installations. About 95% of all new EU power installations
in 2018 were for renewable energy: 19.8GW out of a total
20.7GW of new power capacity [4]. To put this into context,
in the last ten years, coal and natural gas have been the
main form of power generation in Europe, each with a total
installed capacity of 150GW to 200GW [4].

The inevitable power fluctuations represent one of the
greatest drawbacks of wind energy, as they introduce seri-
ous technical challenges into the electric power grid, such
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as power system quality and reliability, system protection,
and power flow control [3]. Moreover, compared to other
electricity generation systems, wind turbines (WTs) have
relatively higher failure rates because of the harsher operation
conditions and higher maintenance costs due to their relative
inaccessibility [5].

Consequently, the main purpose of this work is to pro-
pose a simple procedure based on the standardized Failure
Modes, Effects and Criticality Analysis (FMECA) which
must be both cost-effective and cost-efficient. There are few
studies on FMECA for wind turbines presented in litera-
ture. Some paper simply presents the results of a classical
FMEA or FMECA on on-shore or off-shore wind turbine (see
for instance but not only [6]–[8]) without explain how to set
the optimal risk threshold. Other papers [9], [10] integrate the
aspects of traditional FMEAwith some economic parameters.
Arabian-Hoseynabadi et al. [11] presents the results obtained
using a suitable FMEA software package. Tavner et al. [12]
uses the FMECA to compare the prospective reliabilities of
three versions of the geared R80 turbine with different drive
train solutions. Kahrobaee and Asgarpoor [10] presents a
quantitative approach called Risk-Based-FMEA, based on
the failure probabilities and incurred failure costs instead of
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FIGURE 1. Taxonomy classification of the wind turbine under analysis. The turbine is divided in twelve different subsystems, each one composed by
several subunits.

rating scales. Dinmohammadi and Shafiee [13] develop a
fuzzy-FMEA approach for risk and failure mode analysis in
offshore wind turbine systems.

The proposed approach is helpful to identify the most
critical components and optimize the maintenance plan in
order to reduce the unprogrammed system downtime due
to corrective maintenance operation. Moreover, the interna-
tional standard IEC 608212 [14] that regulate the FMECA
technique misses to consider a method to identify a risk
threshold and consequently to divide the failure modes in
critical modes and negligible modes, as well as the existing
literature on FMECA for wind turbine. Therefore, this paper
introduces a new approach to evaluate the optimal risk level
based on statistical parameters and compares it with three
different threshold estimation method found in literature.
Finally, the paper proposes a case study to test and validate
the potentiality of the proposed methodology. A horizontal-
axis wind turbine is a complex system that can be broken
down into several subsystems, including nacelle, rotor, tower,
and blades [15], [16]. The nacelle is an enclosure containing
the electrical/electronic (the topic of this paper) and mechan-
ical components needed to produce electricity (e.g. gearbox,
brake, yaw mechanism, generator, control system, etc.).

Following the guidelines provided by the international
standard ISO 14224 (2016) [17], figure 1 illustrates the low-
level taxonomy of the turbine tested during this analysis (in
compliance with [16]). The turbine is divided in twelve dif-
ferent subsystems, and each of them is composed by several

subunits and components. The state of the Art for wind tur-
bine taxonomy is RDS-PP R©, however in this paper a different
approach was chosen because the classical taxonomy leaded
by the guidelines included in the international standard ISO
14224 represents a better solution as initial step to carry out
the FMECA procedure.

II. FMECA METHODOLOGY FOR ONSHORE WIND
TURBINE
Failure modes and effects analysis (FMEA) is a systematic
procedure to identify potential failure modes, their causes,
and their effects on system performance [14]. FMECA (Fail-
ure Modes, Effects, and Criticality Analysis) is an extension
of FMEA to include a means of ranking the risk related to the
failuremodes to allow prioritization of countermeasures. This
is done combining the frequency of occurrence rank (usually
called O), the severity measure rank (usually called S) and the
detection index (usually called D) as follow [14], [18]:

RPN = O · S · D (1)

More details on FMEA and FMECA processes and appli-
cations are given in references [19]–[25].

Table 1 summarizes the factors that influence the criticality
index and the rules to assess the rating of each one. The
table highlights that parameters O, S and D are generally
measured on a 10-point scale wherein greater O and S num-
bers stand for increasing values of the frequency of occur-
rence and of the severity respectively, whereas D is ranked
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TABLE 1. Evaluation criteria for Occurrence, Severity and Detection
according to IEC 61508.

in a reversers order, namely the higher the detection value,
the lower the detection probability of the failure mode. Con-
sequently, the RPN index assumes values within the range
from 1 to 1000; a higher RPN indicates the necessity to solve
the failure mode with maximum priority.

The FMECA is a powerful tool to carry out a risk analy-
sis [25]. Therefore, this paper discusses the risk assessment
using a FMECA tool of a Spanish onshore 2MW wind tur-
bine located in the region of Aragon. As the number of WT
installations continues to grow worldwide, the need for fault
detection systems is increasingly important. Since most wind
turbines are situated on high towers, installed in remote rural
areas or offshore, distributed over large geographic regions,
exposed to harsh environment, and subject to relatively high
failure rates, their maintenance requires significant effort and
cost [26]–[31]. A FMECA makes possible to study every
possible problem that might arise from malfunctions of the
system being tested and to implement the optimal fault detec-
tion and diagnosis system. The investigation should start at
the lowest taxonomic level and continue to the equipment unit
level.

The first phase of the work focuses on the identification
of all the failure modes and their respectively causes for
each of the electrical and electronical components inside the
turbine. Each failure mode can have several failure causes,
and every cause must be included in the FMECA final report.
Thus, all the possible scenarios will be considered in the risk
assessment. This is an important issue because a neglected
cause could produce an un-studied situation linked to risk for
the environment, the operator and the system itself, with a
consequent loss of availability and safety.

The following step is the failure rate evaluation because
the failure rate is an important and useful parameter linked
to the failure probability and can be used to rank occurrence.
The failure mode probability, usually expressed by α, repre-
sents the percentage of time that the equipment will fail in a
given mode [32].

Thus, if λ is the failure rate of the component, then the
mode failure rate λ(M ) is given by:

λ(M )
= α · λ (2)

Table 2 shows the criteria proposed to assess occurrence
based on themode failure rate. As the table shows, occurrence
is ranked on a scale from 1 (best case) to 10 (worst case);

TABLE 2. Proposed evaluation criteria to assess occurrence for a wind
turbine.

this scale appears on standard FMECA forms. The rating
is based on the methodology proposed in the international
standards IEC 60812 (2006) [33] and IEC 60812 (2018) [14].
In particular, a 1-to-10 scale is assessed, where the higher
is the mode failure rate, the higher is the occurrence rate.
In order to determine the mode failure rate intervals, data
coming from the owner of the wind turbine tested are used.
In particular, the minimum and the maximum mode failure
rate was used to set the range for occurrence O = 1 and
occurrence O = 10 respectively. The intermediate ranges are
determined in such a way to set themwith all the same length.

The consequences of each failure mode on system element
operation, function, or status need to be identified, evaluated
and recorded. Failure effects are classified as local and global
effects. The local effects describe the consequences of a fail-
ure mode on the operation, function, or status of the specific
item under consideration, while the global effects stand for
the consequences on the operation, function, or status of the
higher-level taxonomy categorization. In this work, it refers
to the effects on the nacelle and the whole wind turbine.
In addition, this paper includes two effective parameters to
evaluate the risk level:
• Turbine functionality: this parameter gives the turbine
operational status after the failure:
– No impact: the turbine continues its work although

the failure mode has occurred.
– No impact in the short term: initially the turbine

continues its work with all functionality, but a main-
tenance action is needed.

– Reduced: Redundancy and auxiliary systems allow
the turbine essential functionality; the turbine con-
tinues to provide electricity, but some operations are
not available.

– Strongly reduced: Most operations are not avail-
able; the turbine continues to provide electricity
with low efficiency.
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– Doesn’t work: The turbine can’t produce electricity.
• Safety loss: This parameter indicates if the failure modes
could reduce the safety level, with a consequent risk for
the environment, the operator, or the turbine itself.

Table 3 shows the rules to assess severity based on the two
previous parameters: turbine functionality and safety loss.

At the initial phase of a project, little information about
diagnostic systems is generally available. Therefore, detec-
tion is classified on a 3-value scale, from 1 (best case) to
3 (worst case), where 2 represents the partially detectable
scenario, as shown in Table 4.

This solution is used to mitigate one of the RPN drawbacks
that many papers pointed out, that is the same relative impor-
tance of O, S and D in equation (1) [18], [34]–[39]. The use
of a 1-3 scale introduces a different importance between the
three parameters, saving the nature of the standard RPN and
giving more weight to Severity and Occurrence.

According to these ratings, using eq. (1), the RPN can
assume value in the interval [1; 300].

III. APPLICATION TO E/E/PE COMPONENTS OF THE
WIND TURBINE
The wind turbine tested is a G80/2000machine manufactured
by Gamesa Corporación Tecnológica. The turbine is mounted
on the top of a 60-meter tubular tower and is operated by
Vestas Wind Systems.

TABLE 3. Proposed evaluation criteria to assess severity for a wind
turbine.

TABLE 4. Proposed evaluation criteria to assess detection for a wind
turbine.

This study focuses on the (E/E/PE) components (i.e. elec-
trical/electronic/programmable electronic items) inside the
turbine. As Figure 1 shows, all the E/E/PE items are gath-
ered together in two subsystems: the control system and the
electrical system.

FIGURE 2. Control system taxonomy classification.

Figure 2 shows the taxonomy of the control system level
‘‘Equipment unit (6),’’ as per ISO 14224 [17]. The items
inside the top boxes belong to the ‘‘Subunit (7)’’ level; the
‘‘Maintainable Items (8)’’ level boxes are at the bottom of the
figure.

The control system is a very critical unit characterized by
several purposes, such as:
• To collect information coming from the SCADA (Super-
visory Control and Data Acquisition) system and from
the other external sensors;

• To communicate with the operating center sending infor-
mation about the current status of the turbine, including
process information and diagnostic data useful for eval-
uate the health state of the system;

• To process the acquired data in order to manage all the
turbine functionalities using the actuators, such as the
movement of the nacelle toward the wind direction,
the activation of the brake when the wind speed is too
high, the management of the gearbox and the generator
and so on;

The electrical equipment unit (see Figure 3) is a generic
subsystem containing all the electrical components in the
turbine, except the generator. The taxonomy of the electrical
level, ‘‘Equipment unit (6),’’ shown in Figure 3, contains the
following equipment:
• Apower converter including an IGBTmodule, a rectifier
bridge, a crowbar system and other discrete components;

• A PFC system used to improve the power factor;
• A soft starter used with AC electrical motors to tem-
porarily reduce the load and torque in the power train
and electric current surge of the motor during start-up;
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TABLE 5. Extract of the FMECA-tool for the risk assessment of the E/E/PE components of the WT under test.

FIGURE 3. Electrical subsystem taxonomy classification.

• A grounding system;
• Transformers;
• Other generic electrical components, such as contactors,
relays and so on.

Table 5 shows an extract of the FMECA assessed for
the E/E/PE components of the G80/2000 WT. The complete
report includes 100 different failure modes: 38 modes refer

to the control system, while 62 modes refer to the electrical
subunit.

The proposed approach should be carried out at the early
phase of the design so that it is more cost-effective and
efficient. Field data about components’ failures of the turbine
under test are not available during design phase, and the
statistics available in literature may not be as detailed as
necessary for the investigation, therefore are not taken into
account. Since there are no specific standards or handbooks
containing failure data of wind turbine, then many generic
handbooks are used to carry out the functional failure analysis
of the G80/2000 WT tested in this work. The main sources
are: HDBK-217plus (2015) [40], Telcordia SR-332 (2016)
[41], MIL-HDB 338B (1998) [42], IEC TR 62380 (2004)
[43], Italtel IRPH (2003) [44] and Siemens SN 29500-1
(2010) [45].

The first section of Table 5 gives an overview of the studied
components. The ‘‘Upper level taxonomy’’ column includes
the higher hierarchical levels; the ‘‘Classification’’ column
shows the current taxonomy level; the ‘‘Taxonomy’’ col-
umn identifies the components, and the ‘‘Function’’ column
explains the objective of the components. The table has a sec-
ond section for the standard FMEA procedure including the
‘‘FailureMode’’, ‘‘Failure Cause,’’ and a detailed explanation
of the failure effects, as described in the previous section.
Some useful parameters are included in the third section,
such as the ‘‘Turbine functionality’’ and the ‘‘Safety loss’’
used to assess the ‘‘Severity rate’’ and the mode failure rate
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FIGURE 4. Number of occurrences of each RPN assessed for the turbine
under test.

information used to evaluate the ‘‘Occurrence rate’’. The
final section of the table illustrates the risk evaluation carried
out assessing the Risk Priority Number using the O, S, and
D indexes.

Figure 4 summarizes the complete results of the RPN val-
ues assessed for the E/E/PE components of theG80/2000WT.

IV. RISK THRESHOLD EVALUATION
The components covered by the FMECA procedure are usu-
ally very different from a risk value point of view. The most
important failure modes, characterized by a high RPN, should
be separated from those characterized by a significantly lower
RPN value. The selection of ‘‘high priority’’ failure modes
is a very critical issue for the development of corrective
action plans. The question is: ‘‘How can such separation be
achieved?’’

The international standard IEC 60812 (2018) [14] which
define and standardize the FMECA procedure miss to con-
sider a method to evaluate the RPN threshold, as well as
recent literature. Usually companies define this threshold
using questionnaires to take into account the judgement of
multiple experts in qualitativemanner. Only three quantitative
approaches were found in literature, and they are explained
below.

A. BLUVBAND METHOD
Bluvband et al. [46] and Bluvband and Grabov [47] recom-
mend the application of a simple but effective graphical tool
for RPN analysis. This tool creates a graph of ordered RPN
values, much like the Scree Plot used in principal component
analysis. Scree Plot settings require preliminary ordering of
RPN values by size, from smallest to largest. These values
are then plotted by size across the graph. The calculated
RPNs usually form a right-skewed distribution, with a first
tail on the left (negligible risk values) and a second tail on
the right (critical risk values representing ‘‘outliers’’ from the
distribution analysis point of view). The long lower part of
the plot is characterized by a gradual increase of the RPN
values, usually in a straight line f1(x) with a slight slope. The
RPN values scattered around this line should be considered
a kind of ‘‘information noise’’, as they do not require imme-
diate attention. The short uppermost part of the Scree Plot
is characterized by a very steep increase of the RPN values

FIGURE 5. Evaluation of RPN threshold using Bluvband method.

(RPN jumps), in the form of a straight line f2(x) with a very
strong slope. The RPN values scattered around this line are
related to the most critical issues of FMECA and must be
dealt with promptly. The Risk Priority Numbers evaluated in
the previous section were subjected to the Bluvband method
to determine the most hazardous failures. The ‘‘Curve Fitting
Tool’’ by MATLAB could be used to implement the linear
regression method to evaluate the algebraic description of
the straight lines f1 (x) and f2 (x). The coefficients in the
following equation are evaluated at a 95% confidence level:

f1 (x) = p1 · x + p2 where

{
p1 = 1.101
p2 = −0.748

(3)

f2 (x) = p′1 · x + p
′

2 where

{
p′1 = 7.391
p′2 = −572.3

(4)

Note that the slope of the two straight lines f1 (x) and f2 (x)
is considerably different. In particular, the line that fits the
uppermost part of the plot is almost seven times greater than
the other line.

1slope =
p′1
p1
=

7.391
1.101

= 6.7130 (5)

The results of the proposed method are illustrated in the
Scree Plot in Figure 5.

Analysis of the Scree Plot in Figure 5 makes it possible
to define an RPN threshold value that represents the division
between the negligible failure modes and the critical failure
modes from the risk value point of view.

The threshold can be identified by evaluating the ordinate
of the intersection between the two fit lines in Figure 5, and
the result is approximately 100.

B. ZHAO METHOD
Zhao et al. [48] propose an alternative method to evaluate the
RPN threshold value as follows:
• Create Scree plot, following the rules explained in
Section IV.A.

• Fix the turning point of the RPN plot linear growth trend
using the linear regression method. Fit the RPN values
into a straight line and obtain the turning point using the
confidence interval.
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FIGURE 6. Evaluation of RPN threshold using Zhao method.

• Determine the threshold value of RPN from the turning
point.

The results of the procedure applied on the E/E/PE com-
ponent of the WT under test considering a 95% confidence
level are illustrated in the Scree Plot in Figure 6.

The RPN threshold provided by the Zhao procedure using
the linear regression method and with a 95% confidence level
is approximately 140. The 1st-degree polynomial fitting curve
is the following:

fZhao (x) = pz1 · x + p
z
2 where

{
pz1 = 1.262
pz2 = −6.024

(6)

C. 80/20 PARETO METHOD
The use of the 80:20 Pareto principle is the most established
approach in reliability analysis to rank failure modes accord-
ing to their RPN value and to optimize corrective actions
for critical components. The Pareto diagram is helpful to
visualize the differences between the rankings for the failures
and effects.

The 80:20 principle can be explained as follow: 80% of the
total Risk Priority Numbers calculated during the FMECA
procedure comes from only the 20% of the potential failure
modes.

Pareto analysis starts with the prioritization of failure
modes by ranking them in order, from the highest risk priority
number to the lowest. The Pareto chart combines a bar graph
with a cumulative line graph; the bars are placed from left to
right in descending order, while the cumulative line distribu-
tion shows the percent contribution of all preceding failures.
The combined chart uses the 80:20 rule to indicate where the
engineering effort should be focused more [49]–[56].

The results of the analysis are illustrated in Figure 7. Each
blue bar stands for the RPN assessment of the corresponding
failure mode (y-scale on the left side of the chart), while the
red curve represents the cumulative percentage distribution of
the RPN (y-scale on the right side of the chart).

According to the 80:20 rule, the RPN threshold provided
by the Pareto chart is approximately 48. Figure 7 shows the
evaluation of the threshold using Paretomethod. The first step
is the identification of the 80% of the cumulative distribution
of the Risk Priority Numbers, then the RPN threshold value is

FIGURE 7. Evaluation of RPN threshold using Pareto chart and
80:20 principle.

given by the value of the Risk Priority Number of the failure
mode linked to the 80% of the cumulative percentage.

V. A NEW APPROACH FOR RPN THRESHOLD
EVALUATION
The three procedures analyzed above give quite different
results. The Zhao technique suggests considering only four
failure modes inside the group of the most critical fail-
ure modes (threshold equal to 140), whereas the Bluvband
approach recommends considering 11 failure modes inside
this group (threshold equal to 100), and the Pareto chart
indicates that 55 failure modes are critical (threshold equal
to 48).

Analyzing in detail the obtained results, it is clear that all
the previous techniques have some critical drawbacks. For
instance, according to the 80:20 rule of the Pareto method,
80% of the criticality should arise from 20% of the causes.
The study’s results suggest this principle does not fit very
well with this kind of application. As a matter of fact, 80%
of the RPNs of the E/E/PE components in the wind turbine
represent 55% of the failure modes. The Pareto chart can-
not be considered a powerful technique to identify the RPN
threshold of a system, actually the principle used to select
the numerical value of the threshold should be reviewed and
specifically defined for each kind of application. In this case,
it is absolutely not reasonable select a threshold of 48 indi-
cating that more than half of the failure modes are critical.

Quite the opposite, the Zhao method suggests for the
system under test that only four failure modes are critical.
More generally, this technique provides untrustworthy results
for many applications because of the manner in which the
threshold is evaluated. In fact, using this procedure very few
risk priority numbers overpass the 95% confidence bound
falling in the critical modes group.

The Bluvband method provides interesting results, both
threshold value and number of modes considered critical is
reasonable. Anyway, the procedure for the threshold evalu-
ation is vague and extremely subjective. According to the
authors, the calculated RPNs form a right-skewed distribu-
tion, with a first tail on the left and a second tail on the
right with very different slopes, but no information about
how to divide the distribution in two sections are given. As a
consequence, the identification of the threshold is dependent
on the judgment of the designer that carry out the procedure.
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Therefore, a new approach has been introduced to over-
comes the limits of the previous methodologies. The pro-
posed procedure consists of the following steps:

1) Calculation of the Risk Priority Numbers according to
the guidelines provided in section II;

2) Identification of the main statistical parameters of
the RPN set (25th percentile, mean value, median
value, 75th percentile, outliers, minimum and maxi-
mum value);

3) Generation of the boxplot of all the assessed RPNs;
4) The negligible modes are all the failure modes with

RPNs below the median value;
5) The critical modes are all the failure modes with RPNs

above the 75th percentile;
6) The interval between the median value and the 75th per-

centile is considered ALARP (‘‘as low as reasonably
practicable’’) region.

As the acronyms suggests, the ALARP region refers to
reducing risk to a level that is as low as reasonably practi-
cable. In practice, this means that the operator has to show
through reasoned and supported arguments that there are no
other practicable options that could reasonably be adopted to
reduce risks further [57].

If a failure mode is characterized by an RPN value that
falls inside the ALARP zone, then designers have to analyze
possible countermeasures to reduce the risk bearing in mind
the benefits resulting from its acceptance and taking into
account the costs of any further reduction. Then designers
could choose to apply countermeasures or not based on the
previous consideration. The upper and lower limits of the
ALARP region must be considered as low as reasonably
practicable too.

Instead, if the RPN is above the 75th percentile then the
risk is regarded as intolerable and cannot be justified in any
ordinary circumstance, so corrective actions must be imple-
mented.

The proposed approach was applied to the case study
described in the previous sections, and the results of the
statistical analysis are the following:

• Range of admissible values [1; 300]
• Minimum: 8
• Maximum: 180
• 25th Percentile: 24
• Median: 54

FIGURE 8. Proposed approach for the Risk Priority Number threshold
based on boxplot.

TABLE 6. Comparison between proposed method and existing
techniques.

• 75th Percentile: 87
• Outliers: none (considering outliers all the RPNs more
than three standard deviations away from the median).

Figure 8 shows the boxplot of the RPNs for the WT under
test, highlighting with different colors the area of interest.
The green zone (below the median) stands for the negligible
failures, the yellow region represents the ALARP and the red
region (above the 75th Percentile) indicate the critical failure
modes.

In particular, the proposed method suggests 25 failure
modes inside the critical group (RPN higher than 87), 27 fail-
ure modes inside the ALARP region and 48 negligible modes
(RPN lower than 54).

Table 6 compares the results obtained with the proposed
approach and the other methods (100 failure modes were
identified in the subsystems under test).

The threshold to identify the critical modes of the proposed
approach falls between Bluvband and Pareto method, as well
as the number of critical modes. Considering only the red
zone of figure 8, the Boxplot method is a more conservative
approach respect to the one proposed by Bluvband. Designers
must always choose the best solution in terms of cost and
risk level. It is generally more advisable to select the worst-
case scenario, that is, the procedure providing the lowest RPN
threshold, considering a larger number of failure modes in
the critical area. In this application, the worst-case scenario
is the 80:20 rule applied in the Pareto chart, but it provides
not reasonable results in terms of the cost of the corrective
actions. Indeed, it is not possible to apply countermeasures
on the 55% of the failure. Therefore, the optimal trade-off
between cost and threshold level is provided by the proposed
method. Moreover, the new technique allows to introduce
also an ALARP zone where each mode could be considered
critical or negligible, depending on the scenario.

VI. CONCLUSION
This paper focuses on risk assessment of a 2MW onshore
wind turbine using a new procedure based on Failure Mode,
Effects, and Criticality Analysis.

The proposed procedure starts with a functional failure
analysis that is mandatory during the initial phase of the
system design to identify every possible failure mode, failure
cause, and failure effect related to the component tested.
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Every analyzed failure mode is reported in Figure 4 in RPNs
in ascending order, highlighting the frequency of the repeti-
tion of each RPN value.

To separate the failure modes into critical and negligible
failures, the paper compares three different RPN prioritiza-
tion procedures: the 80:20 rule applied in the Pareto chart
and two graphical procedures proposed respectively by Blu-
vband and Zhao. The Bluvband method includes 11 failure
modes inside the group of the most critical failure modes,
but the procedure is vague and extremely subjective. The
Zhao method is too optimistic because it provides only two
critical modes. The Pareto chart is just the opposite; it is too
conservative and considers more than 50% of failure modes
as critical. This is mainly linked to the way the Pareto method
is defined and evaluated. In theory, the 80:20 rule suggests
that 80% of the criticality should arise from 20% of the
causes, therefore considering the 80% as threshold value the
20% of the modes should be critical. Actually, the case study
presented in this paper highlights that this is not true. With
this kind of dataset, the 80:20 relationship is not verified, and
the number of critical modes is much higher than the 20%,
leading to inaccurate and too conservative results.

Therefore, this paper introduces a new approach based
on a statistical analysis and a boxplot to separate negligible
and critical modes. The proposed methodology represents the
optimal trade-off between cost and threshold level, and it has
several advantages:
• It is an easy, practical and repeatable solution;
• Unlike other methods it takes into account the ALARP
region;

• It is based on statistical analysis;
• It suffers no subjectivity in threshold definition.
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