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Characterization of Depressive States in Bipolar
Patients Using Wearable Textile Technology and
Instantaneous Heart Rate Variability Assessment

Gaetano Valenza, Member, IEEE, Luca Citi, Member, IEEE, Claudio Gentili, Antonio Lanatá, Member, IEEE,
Enzo Pasquale Scilingo, Member, IEEE, and Riccardo Barbieri, Senior Member, IEEE

Abstract—The analysis of cognitive and autonomic responses to
emotionally relevant stimuli could provide a viable solution for the
automatic recognition of different mood states, both in normal and
pathological conditions. In this study, we present a methodological
application describing a novel system based on wearable textile
technology and instantaneous nonlinear heart rate variability as-
sessment, able to characterize the autonomic status of bipolar pa-
tients by considering only electrocardiogram recordings. As a proof
of this concept, our study presents results obtained from eight bipo-
lar patients during their normal daily activities and being elicited
according to a specific emotional protocol through the presenta-
tion of emotionally relevant pictures. Linear and nonlinear fea-
tures were computed using a novel point-process-based nonlinear
autoregressive integrative model and compared with traditional
algorithmic methods. The estimated indices were used as the in-
put of a multilayer perceptron to discriminate the depressive from
the euthymic status. Results show that our system achieves much
higher accuracy than the traditional techniques. Moreover, the in-
clusion of instantaneous higher order spectra features significantly
improves the accuracy in successfully recognizing depression from
euthymia.

Index Terms—Bipolar disorder, bispectrum, heart rate vari-
ability (HRV), high-order statistics, mood recognition, nonlinear
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analysis, point process, wearable systems, wearable textile moni-
toring, Wiener–Volterra model.

I. INTRODUCTION

A. Bipolar Disorder

Bipolar disorder is one of the most diffuse psychiatric disor-
ders in the western world. It has been demonstrated that more
than two million Americans have been diagnosed with such a
mood alteration [1] and, in 2005, about 27% of the adult Eu-
ropean population, from 18 to 65 years of age, is or has been
affected by at least one mental disorder [2]. In general, bipolar
patients can experience different types of mood alterations, gen-
erally defined as episodes, typically limited over defined time
intervals and subjected to spontaneous remissions or relapses.
Four possible episodes are generally described: depression, ma-
nia, hypomania, (a less severe form of mania) and mixed state.
When the subject undergoes a remission phase, clinicians refer
to his condition as euthymia.

During depressive episodes, sadness and desperation are of-
ten the most prominent symptoms, although different other
complain are present, including cognitive complaints, suicidal
thoughts, or somatic symptoms like gastrointestinal pain, sex-
ual, and urogenital disorders. Neurovegetative symptoms such
as loss of appetite and insomnia may be present as well. Patients
might also experience pathological ideas of self-pity and guilt,
which might grow toward delusional states. During mania (and
hypomania), a pathologically increased physical and mental ac-
tivity causes loss of attention, reduction of the necessity to sleep,
and an increased speed of the stream of thoughts that eventu-
ally leads to incoherence. Thus, the subject is often hyperactive
but often without specific purposes. Moreover, (hypo)mania is
often dominated by a feeling of an excited mood with the idea
of grandiosity and hypertrophic self-esteem. In mania (but not
in hypomania), such feelings might become delusional with a
progressive detachment from the objective evaluation of the
external world. Mixed state is characterized by the contempo-
rary presence of depressive and maniac or hypomaniac symp-
toms (e.g., patients can have delusions of grandiosity but also
have thoughts of guilt, can have motor retardation but increased
speed of their thoughts). Generally, a diagnosis of the mixed
state is made if the patient fulfills at the same time the crite-
ria for (hypo)maniac and for depressive episode. In between
these episodes, patients typically experience periods of rela-
tively good affective balance (euthymia). Although remissions
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happen in the natural history of bipolar disorders, this condi-
tion is often fostered by treatments (both pharmacological and
nonpharmacological).

Bipolar disorder is a chronic disease: Even if a period of re-
mission could occur, bipolar patients manifest episodes of mood
alteration for decades. Despite its prevalence and high cost of
treatment [1], this disease may go undetected for years before
diagnosed and treated. Patients with mood disorders might ex-
perience a heterogeneous pattern of symptoms which might be
present even during euthymic periods as subthreshold mood
alterations. Moreover, the phenomenology and severity of the
symptoms, the number and duration of the episodes, as well as
the time interval between them are often not consistent among
subjects. Another open issue in diagnosing bipolar disorders as
well as the great majority of mental disorders is that symptoms
are assessed by rating scales both administered by clinicians
and self-completed by patients. So far, neither biological mark-
ers nor physiological correlates were found to be specific and
sensitive enough to be used for clinical purposes [3], [4]. In this
preliminary study, five patients were monitored over a period
of up to 90 days and experienced only depressive and euthymic
episodes. Our goal, therefore, at least within this early acqui-
sition phase, is to discriminate depression from euthymia. In
the next section, we will describe a novel system able to ro-
bustly distinguish depressive from euthymic episodes in bipolar
patients by using wearable textile technology and taking in-
spiration from the mathematical theory of the nonlinear (NL)
dynamical system.

B. Analysis of Cardiovascular Dynamics in Bipolarism

Previous studies on bipolar disorders highlighted changes
in several physiological systems including sleep (as evaluated
both with EEG and behaviorally) [5]–[7], circadian heart rate
rhythms [8], [9], cortisol dynamics [10]–[12], as well as the
autonomic nervous system (ANS) functionality [13], [14]. One
important criterion for the inclusion of bipolar patients in stud-
ies involving ANS monitoring is their full compliance with the
required recording procedures. There are also sensitive issues
in trying to avoid any possible stigmatization due to participa-
tion. For these reasons, wearable, comfortable, and unobtrusive
systems, e.g., sensorized t-shirts [15]–[22] or gloves [23], [24],
are strongly recommended.

Mood has been defined as a long-lasting, diffuse affective
state that is not associated with a specific trigger [25]. In turn,
emotions are considered transient, acute, and arousing responses
to specific stimuli. It is well known, however, that mood sta-
tus affects the normal emotional response, and for this reason,
a possible assessment approach is to study the physiological
variations provoked by external affective cues (e.g., [26]–[33]).
Specifically, paradigms based on emotional reactions have been
proven to be widely able to differentiate among different mood
states both in normal [34] and pathological conditions [35],
[36]. Therefore, in this study, we focus on the ANS changes
induced by emotion-related tasks in bipolar patients. According
to the previous psychophysiological considerations, it is reason-
able to represent the cardiovascular system as a NL dynamical

system and study it by means of “perturbation” analysis, mean-
ing that the analysis will take into account observations during
initial stable conditions (i.e., during rest) and after fast per-
turbations (i.e., emotional elicitation). Hypothesizing that the
ANS responds with different time-varying heartbeat dynamics
according to the patient’s mood state, computational tools able
to discern rapid dynamic changes with high-time resolution are
the best candidates for providing optimal assessments. For this
purpose, standard heart rate variability (HRV) analysis is not
recommended, since it would require relatively long-time in-
tervals of electrocardiogram (ECG) acquisitions [37], [38] and
would be unable to detect instantaneous variations. To over-
come these limitations, we propose a novel stochastic model of
heartbeat dynamics based on point-process theory that is able to
instantaneously assess the patient’s mood state. To our knowl-
edge, this approach provides a novel paradigm in the literature
of psychiatric disorders. The core of the model is the defini-
tion of the interbeat probability function to predict the waiting
time of the next heartbeat, i.e., the R-wave event, given a linear
(L) and NL combination of the previous events.

The use of the point process theory allows for a fully paramet-
ric structure analytically defined at each moment in time, thus al-
lowing to estimate instantaneous measures [27], [39]–[45] with-
out using any interpolation method. It has been demonstrated
that the inverse-Gaussian (IG) distribution well characterizes the
interbeat probability function [39] and, in particular, a L [39]
and NL [27], [42], [43], [45] combination of the past events has
been previously taken into account. These methods have been
demonstrated to provide a faster and more accurate time-varying
assessment than other sliding window beat-to-beat-based meth-
ods [40]. In this study, we propose an improvement of the model
by defining a NL combination of the derivative series of past
events. The resulting quadratic nonlinear autoregressive inte-
grative (NARI) model improves the achievement of stationar-
ity [46] and consequently improves system identification. This
powerful approach further considers an equivalent third-order
input–output Wiener–Volterra model, allowing for the instan-
taneous estimation of the high-order polyspectra [47], such as
bispectrum and trispectrum [48]. Along with mathematical and
modeling reasons, such a NL model is also physiologically justi-
fied. Cardiovascular control mainly refers to the signaling of the
sympathetic and parasympathetic nerves controlling the pace-
maker cells in a NL way [49].

In this study, we validate the engagement of the NL terms of
the model by performing a comparative analysis demonstrating
how the inclusion of instantaneous higher order spectra (HOS)
features indeed improves the accuracy and reduces the uncer-
tainty (variance) in recognizing ANS depressive patterns. We
further compare results from standard analysis with those ob-
tained using the novel model proposed here. Data were collected
within the European funded project PSYCHE whose goal is to
discover possible correlations between the patterns of physio-
logical/behavioral signs and mood fluctuations over short- and
long-term monitoring (see details in Section II-A). This project
proposes a novel approach for bipolar disease management
based on the paradigm that a quasi-continuous monitoring in
a natural environment provides parameters, indices, and trends
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Fig. 1. Prototype of the PSYCHE wearable platform.

that will be used to assess mood status, support patients, pre-
dict and anticipate treatment response in its early phase, prevent
relapse, and to alert physicians in case of a critical event.

II. MATERIALS AND METHODS

A. PSYCHE Project and the Wearable Monitoring Platform

Data used in this study were collected within the European
project PSYCHE (Personaliz ed monitoring SYstems for Care
in mental HEalth), which is funded in the Seventh Framework
Programme (FP7). The PSYCHE system [15]–[18] comprised
a personal, pervasive, cost-effective, and multiparametric mon-
itoring system based on textile electrodes and portable sensing
devices for the long-term and short-term acquisition of data
from an homogeneous class of patients affected by mood disor-
ders. Currently, several physiological signals as well as behav-
ioral parameters are taken into account as part of the PSYCHE
project (e.g., ANS-related signs, voice, activity index, sleep pat-
tern alteration, electrodermal response, biochemical markers).
The core sensing system of the project, the PSYCHE platform
developed by Smartex S.r.l., consists of a comfortable textile-
based sensorized t-shirt that is embedded with fabric-based elec-
trodes and acquires ECG, respiration signals, and body activity
(accelerometers). Fig. 1 shows the wearable system prototype
that employs textile electrodes to detect the ECG and piezore-
sistive sensors to acquire the respiration signal. In addition, a
three-axial accelerometer embedded into the system tracks the
movement. The PSYCHE platform is able to continuously ac-
quire physiological data, stored in a Micro SD card for up to
24 h, using a lithium battery. The ECG is acquired by using a
single lead configuration, 250 Hz of sampling rate and 16 bits of
analog-to-digital conversion resolution. A user-friendly device
such as a smartphone for monitoring environmental information
such as light, temperature, and noise completes the PSYCHE
platform.

Another novelty of the PSYCHE platform is the number
of features estimated by a wide range of signal processing
techniques, as opposed to previous studies carried out on this

topic [5]–[9] where only a few parameters were included. Ex-
tracted from L and NL methods, these features will be investi-
gated for finding possible relationships between physiological
signs and mental disorders. This approach increases the sensi-
tivity and the specificity of the system functionality and, as a
consequence, the success rate. In this study, we focus on novel L
and NL features of heartbeat dynamics which are crucial for the
assessment of the depressive status in bipolar disorder. The re-
liability of the PSYCHE wearable platform, evaluated through
the analysis of data gathered from the sensorized t-shirt, has
been verified in our previous studies [16]–[19]. However, it is
worthwhile mentioning that more than 90% of HRV and res-
piration activity signals recorded during long-term monitoring
(about 18 h) were artifact free [17]. Such a high reliability
is achieved through specific manufacturing choices. In partic-
ular, the use of dry textile-based electrodes provides comfort
and reduces the rate of evaporation reaching electrochemical
equilibrium between the skin and electrodes after a couple of
minutes. Therefore, the signal quality is remarkably improved
and kept as constant as possible. If the contact with the skin is
not good due to size, the quality of the signals cannot be ade-
quate for obtaining meaningful values. To avoid this problem,
a preliminary check on the quality of the data is done using
available shirts with different sizes before giving the system
to the patients. The shirt was designed for females and males
and was made of elastic fibers that allow for tight adhesion to
the user’s body, piezoresistive fibers to monitor fabric stretch-
ing (and consequently respiration activity), and metallic fibers
knitted to create fabric electrodes to monitor the ECG.

B. Autoregressive Integrative Identification System

Instantaneous NL heartbeat dynamics can be predicted taking
inspiration from the NL system identification theory, and in our
case through the following NARI form:

E[y(k)] = y(k − 1) + γ0 +
M∑

i=1

γ1(i)Δy(k − i)

+
∞∑

n=2

M∑

i1 =1

· · ·
M∑

in =1

γn (i1 , . . . , in )
n∏

j=1

Δy(k − ij )

(1)

where Δy(k − i) = y(k − i) − y(k − i − 1) and Δy(k − j) =
y(k − j) − y(k − j − 1), n is the degree of nonlinearity and M
is the order, i.e., the number of past samples taken by each term.
The autoregressive structure of (1) allows for the system identi-
fication with only exact knowledge of the output data and with
only few assumptions about the input data. Here, we repre-
sent the NL physiological system by using NL kernels up to
the second order, i.e., γ0 , γ1(i), and γ2(i, j). This choice of
a second-order NARI system retains an important part of the
nonlinearity of the system. In order to complete the NL sys-
tem identification, it is necessary to link the NARI model to
a general input–output form. By defining the extended kernels
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γ′
1(i) and γ′

2(i, j) as

γ′
1(i) =

{
1, if i = 0

−γ1(i), if 1 ≤ i ≤ M
(2)

γ′
2(i, j) =

{
0, if ij = 0 ∧ i + j ≤ M

−γ2(i, j), if 1 ≤ i ≤ M ∧ 1 ≤ j ≤ M
(3)

it is possible to map a quadratic NARI model to an nth-order
input–output model [47]. After the input–output transforma-
tion of the kernels, the choice of a second-order autoregressive
model allows evaluating all the high-order statistics (HOS) of the
system, such as the dynamic bispectrum and trispectrum [50],
[51]. In the following sections, we report the definition of the
point-process framework of the heartbeat dynamics, as well as
mathematical details on the derivation of the NL kernels and of
the HOS tools.

C. NARI-Based Point-Process Models

To mathematically explain the point process framework, the
following definitions are needed:

1) t ∈ (0, T ]: the observation interval.
2) 0 ≤ u1 < · · · < uk < uk+1 < · · · < uK ≤ T : the times

of the R-wave events.
3) N(t) = max{k : uk ≤ t}: the sample path of the {uj}J

j=1
counting process.

4) dN(t): differential of N(t). dN(t) = 1 in case of heart-
beat event, dN(t) = 0 otherwise.

5) Ñ(t) = limτ→ t− N(τ) = max{k : uk < t}: left continu-
ous sample path of N(t).

6) RRj = uj − uj−1 > 0: the jth R-R interval.
Given such definitions, and assuming that RRj = f(RRj−1 ,

RRj−2 , . . . , RRj−n ) (history dependence), the probability dis-
tribution of the waiting time t − uj until the next R-wave event
follows an IG model [39]:

f(t|Ht , ξ(t)) =
[

ξ0(t)
2π(t − uj )3

] 1
2

×exp
{
−1

2
ξ0(t)[t − uj − μRR(t,Ht , ξ(t))]2

μRR(t,Ht , ξ(t))2(t − uj )

}

(4)

with j = Ñ(t) as the index of the previous R-wave event be-
fore time t, Ht = (uj , RRj , RRj−1 , . . . , RRj−M +1), ξ(t) the
vector of the time-varing parameters, μRR(t,Ht , ξ(t)) the first-
moment statistic (mean) of the distribution, and ξ0(t) > 0 the
shape parameter of the IG distribution. Since f(t|Ht , ξ(t)) in-
dicates the probability of having a beat at time t given that a
previous beat has occurred at uj , μRR(t,Ht , ξ(t)) can be inter-
preted as the most probable moment when the next beat could
occur. The use of an IG distribution f(t|Ht , ξ(t)), characterized
at each moment in time, is motivated both physiologically (the
integrate-and-fire initiating the cardiac contraction [39]) and by
goodness-of-fit comparisons [41]. In previous works [40], [41],
the instantaneous mean μRR(t,Ht , ξ(t)) was expressed as a
L combination of present and past R-R intervals (in terms of
an AR model) and as a quadratic NL coupling of the heartbeat

dynamics, based on a NL Volterra–Wiener expansion [42]. Here,
we propose the novel NARI formulation based on (1) that allows
us to define the instantaneous R-R mean as

μRR(t,Ht , ξ(t))

= RRÑ (t) + γ0 +
p∑

i=1

γ1(i, t)
(
RRÑ (t)−i − RRÑ (t)−i−1

)

+
q∑

i=1

q∑

j=1

γ2(i, j, t)
(
RRÑ (t)−i − RRÑ (t)−i−1

)

×
(
RRÑ (t)−j − RRÑ (t)−j−1

)
(5)

considering that the derivative R-R interval series improves the
achievement of stationarity within the moving time window
W (in this study, we have chosen W = 70 s) [46], [52]. Since
μRR(t,Ht , ξ(t)) is defined in continuous time, we can obtain an
instantaneous R-R mean estimate at a very fine timescale (with
an arbitrarily small bin size Δ), which requires no interpolation
between heartbeat arrival times. Given the proposed parametric
model, the NL indices of HRV will be defined as a time-varying
function of the parameters ξ(t) = [ξ0(t), g0(t), g1(0, t), . . . ,
g1(p, t), g2(0, 0, t), . . . , g2(i, j, t)]. The unknown time-varying
parameter vector ξ(t) is estimated by means of a local maximum
likelihood method [39], [53]. Briefly, given a local observation
interval (t − l, t] of duration l, we consider a subset Um :n of the
R-wave events, where m = N(t − l) + 1 and n = N(t) and, at
each time t, we find the unknown time-varying parameter vector
ξ(t) that maximizes the following local log-likelihood:

L(ξ(t) |Um :n ) =
n−1∑

k=m+P −1

w(t − uk+1)

× log[f(uk+1 |Huk + 1 , ξ(t))]

+ log
∫ ∞

t−un

f(τ |Hun
, ξ(t))dτ (6)

where w(τ) = e�τ is an exponential weighting function for
the local likelihood. We use a Newton–Raphson procedure to
maximize the local log-likelihood in (6) and compute the local
maximum-likelihood estimate of ξ(t) [53]. Because there is sig-
nificant overlap between adjacent local likelihood intervals, we
start the Newton–Raphson procedure at t with the previous local
maximum-likelihood estimate at time t − Δ, where Δ defines
the time interval shift to compute the next parameter update. The
model goodness-of-fit is based on the Kolmogorov–Smirnov
(KS) test and associated KS statistics (see details in [39]).
Moreover, autocorrelation plots are considered to test the in-
dependence of the model-transformed intervals [39]. Once the
order {p, q} is determined, the initial NARI coefficients are
estimated by the method of least squares. In order to provide
reliable results, the HRV processing techniques require unin-
terrupted series of R-R intervals. Nevertheless, peak-detection
errors and ectopic beats often determine abrupt changes in the
R-R interval series that may result in substantial deviations of the
HRV indices, especially in changes in the dynamics. In addition,
they could potentially bias the statistical outcomes. Therefore,
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we preprocessed all the actual heartbeat data with a previously
developed algorithm [54], also based on point process statis-
tics, able to perform a real-time R-R interval error detection and
correction.

D. Instantaneous Cardiovascular Assessment:
Quantitative Tools

Our framework allows for three levels of quantitative char-
acterization of heartbeat dynamics: instantaneous time-domain
estimation, L power spectrum estimation, and HOS represen-
tation. The time-domain characterization is based on the first
and the second-order moments of the underlying probability
structure. Namely, given the time-varying parameter set ξ(t),
the instantaneous estimates of mean R-R, R-R interval standard
deviation, mean heart rate, and heart rate standard deviation can
be extracted at each moment in time [39]. From ξ(t), it is also
possible to derive instantaneous quantitative tools such as the
nth-order spectral representations. To summarize, the necessary
steps are the following:

1) From the NL kernels γn (. . .) find the extended kernels
γ′

n (. . .).
2) Compute the Fourier transforms Γ′

n (. . .) of the kernels
γ′

n (. . .).
3) Compute the input–output Volterra kernels Hk (. . .) from

the Γ′
n (. . .) of the autoregressive model.

4) Estimate the nth-order spectra such as the instantaneous
spectrum Q(f, t) and bispectrum Bis(f1 , f2 , t).

Estimation of the Input–Output Volterra Kernels: As men-
tioned previously, the model quantitative tools are defined by
means of the traditional input–output Wiener–Volterra coeffi-
cients. They are related to the Volterra series expansion and
the Volterra theorem [55]. In functional analysis, a Volterra
series denotes a functional expansion of a dynamic, NL, and
time-invariant function and has been widely used in NL physio-
logical modeling [56], [57]. The quadratic NARI model can be
linked to the traditional input–output Volterra models by using
a specific relationship [47] between the Fourier transforms of
the Volterra kernels of order p, Hp(f1 , . . . , fn ), and the Fourier
transforms of the extended NAR kernels, Γ′

1(f1) and Γ′
2(f1 , f2).

In general, a second-order NARI model must be mapped in an
infinite-order input–output Volterra model [47]:

ρ∑

k=mid(ρ)

∑

σ∈σρ

Hk (fσ (1) , . . . , fσ (r) , ωσ (r+1)

+ fσ (r+2) , . . . , fσ (ρ−1) + fσ (ρ)) × Γ′
1(fσ (1)) · · ·Γ′

1(fσ (r))

× Γ′
2
(
fσ (r+1) , fσ (r+2)

)
· · ·Γ′

2
(
fσ (ρ−1) , fσ (ρ)

)
= 0

where ρ is a given integer representing the kernel order,
mid(ρ) = �ρ/2	, r = 2k − ρ, and σρ is the permutation set
of Nρ . Obviously, there is the need to truncate the series to a
reasonable order for actual application. In this study, we chose
to model the cardiovascular activity with a cubic input–output
Volterra by means of the following relationships with the NARI:

H1(f) =
1

Γ′
1(f)

(7)

H2(f1 , f2) = − Γ′
2(f1 , f2)

Γ′
1(f1)Γ′

1(f2)
H1(f1 + f2) (8)

H3(f1 , f2 , f3) = − 1
6

∑

σ3

Γ′
2
(
fσ3 (1) , fσ3 (2)

)

Γ′
1

(
fσ3 (1)

)
Γ′

1

(
fσ3 (2)

)

× H2
(
fσ3 (1) + fσ3 (2) , fσ3 (3)

)
. (9)

Instantaneous Spectral and Bispectral Analysis: The L power
spectrum estimation reveals the L mechanisms governing the
heartbeat dynamics in the frequency domain. In particular, given
the input–output Volterra kernels of the NARI model for the in-
stantaneous R-R interval mean μRR(t,Ht , ξ(t)), we can com-
pute the time-varying parametric (L) autospectrum [46] of the
R-R intervals:

Q(f, t) = 2(1 − cos(ω))Sxx(f, t)H1(f, t)H1(−f, t)

− 3
2π

∫
H3(f, f2 ,−f2 , t)Sxx(f2 , t)df2 (10)

where Sxx(f, t) = σ2
RR . By integrating the (10) in each fre-

quency band, we can compute the indexes within the very low
frequency (VLF = 0.01–0.04 Hz), low frequency (LF = 0.04–
0.15 Hz), and high frequency (HF = 0.15–0.4 Hz) ranges.

The HOS representation allows for the consideration of statis-
tics beyond the second order, and phase relations between fre-
quency components otherwise suppressed [48], [58]. Higher
order spectra (HOS), also known as polyspectra, are spectral
representations of higher order statistics, i.e., moments and cu-
mulants to the third order and beyond. HOS can detect de-
viations from linearity, stationarity, or Gaussianity. Particular
cases of HOS is the third-order spectrum (Bispectrum), i.e., the
Fourier transform of the third-order cumulant sequence [58].
As detailed next, Bispectrum is defined from the Volterra ker-
nel coefficients estimated within the point process framework.
Let H1(f) and H2(f1 , f2 , t) denote the Fourier transform of
the first- and second-order Volterra kernel coefficients, respec-
tively. The analytical solution for the bispectrum of a NL system
response subject to stationary, zero-mean Gaussian input is [59]

Bis(f1 , f2 , t) = 2H2(f1 +f2 ,−f2 , t)H1(−f1 −f2 , t)H1(f2 , t)

× Sxx(f1 + f2 , t)Sxx(f2 , t) + 2H2(f1 + f2 ,−f1 , t)

× H1(−f1 − f2 , t)H1(f1 , t)Sxx(f1 + f2 , t)Sxx(f1 , t)

+ 2H2(−f1 ,−f2 , t)H1(f1 , t)H1(f2 , t)

× Sxx(f1 , t)Sxx(f2 , t). (11)

The dynamic bispectrum is an important tool for evaluating the
instantaneous presence of nonlinearity in time series [48], [60],
[61]. Since the bispectrum presents several symmetry proper-
ties [58] dividing the (f1 , f2) plane in eight symmetric zones,
for a real signal it is uniquely defined by its values in the tri-
angular region of computation Ω, 0 ≤ f1 ≤ f2 ≤ f1 + f2 ≤ 1.
The sympatho-vagal L effects on the HRV are mainly charac-
terized by the LF and HF spectral powers [37], [38]. Through
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bispectral analysis, it is possible to further evaluate the non-
linear sympatho-vagal interactions by integrating |B(f1 , f2)| in
the appropriate frequency bands. In particular, three bispectral
measures, LL(t), LH(t), and HH(t), can be defined as:

LL(t) =
∫ 0.15

0.04

∫ 0.15

0.04
Bis(f1 , f2 , t)df1df2 (12)

LH(t) =
∫ 0.15

0.04

∫ 0.4

0.15
Bis(f1 , f2 , t)df1df2 (13)

HH(t) =
∫ 0.4

0.15

∫ 0.4

0.15
Bis(f1 , f2 , t)df1df2 . (14)

Equations (12) and (13) can be interpreted as indices of NL
interaction between the sympathetic and the parasympathetic
system, whereas (14) can be exclusively attributed to NL vagal
dynamics.

E. Classification

The performance of the recognition of depressive and eu-
thymic patterns was evaluated using a confusion matrix [62].
The generic element rij of the confusion matrix indicates the
percentage of times a pattern belonging to the class i is classified
as belonging to the class j. The training phase was carried out
on 80% of the feature dataset, i.e., using no less than 16 min for
each acquisition, while the testing phase was on the remaining
20%, i.e., using no less than 4 min for each acquisition. 4 min
for each acquisition, with the constrain that each acquisition can
be either considered as belonging to the training or test set. We
performed a 40-fold cross-validation procedure [63]. In partic-
ular, for each of the 40 validation steps, the examples associated
to the training and testing set are randomly chosen among all the
available examples and results are described as mean and stan-
dard deviation among the 40 confusion matrices obtained. This
procedure allows to obtain unbiased results on the recognition
accuracy.

Multilayer Perceptron (MLP): We adopted the multilayer per-
ceptron [64] with the integrate-and-fire neuron model for the
representation of the relations between input and output values.
We trained it by implementing a supervised learning method,
i.e., input and output values are specified and the relations be-
tween them learnt. Specifically, in the training phase, for each
data record, each activation function of the artificial neurons is
calculated. The weight wij of a generic neuron i at the time
T , for the input vector fk

n = fk
n1 , . . . , f

k
nF is modified on the

basis of the well-established back propagation of the resulting
error between the input and the output values. The response
of the MLP is a boolean vector; each element represents the
activation function of an output neuron. In this study, we imple-
mented a MLP having three layers of neurons: input, hidden,
and output layers. The input layer was formed by seven neurons,
one for each of the feature space dimension. The hidden layer
was constituted by an empirically estimated number of neurons.
Specifically, we chose this number as the upper limit of the half
difference between the number of the input and output neurons,
i.e., 5. The output layer was formed by two neurons, one for
each of the considered classes to be recognized.

TABLE I
CLINICAL LABELS ASSOCIATED TO EACH PATIENT DURING EACH ACQUISITION

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5
BP1 Euth
BP2 Depr
BP3 Depr Euth
BP4 Depr Depr
BP5 Depr Depr Depr Depr Euth
BP6 Depr Depr Euth
BP7 Depr Euth
BP8 Depr Euth

III. EXPERIMENTAL PROTOCOLS

A. Recruitment of Eligible Subjects

Bipolar patients eligible for this study were chosen according
to the following criteria: age 18–65, diagnosis of bipolar disor-
der (I or II), absence of suicidal tendencies, absence of delusions
or hallucinations at the moment of recruitment, and absence of
relevant somatic or neurological conditions. Details on patient
acquisitions and associated mood states are reported in Table I.
Patients were studied with an average frequency of two times
a month. Each patient was evaluated and monitored from the
day of the hospital admission toward remission, i.e., until the
reaching of an euthymic state as long as such a condition was
presented within three months after the first visit. All clinical
states were evaluated by clinicians according to DSM-IV-TR
criteria [65]. In this way, four possible clinical mood labels
(depression, hypomania, mixed state, and euthymic state) were
assigned. The mood label associated with each patients evalu-
ation was assigned independently with respect to the previous
ones. Euthymic state, i.e., clinical remission was defined by
having a score below threshold on a quantitative psychopatho-
logical rating scale (for depressive symptoms, score below 8
on the 16-item Quick Inventory of Depressive Symptomatology
Clinician Rating and for manic symptoms score below 6 on
the Young Mania Rating Scale). The same thresholds were also
used to define a change in mood state. No data selection criteria
were used to choose the time window. A physician presented
the study to each patient. Before entering the study, each patient
signed an informed consent approved by the ethical committee
of the University of Pisa. Once enrolled, the patients were ad-
ministered a set of questionnaires and rating scales in order to
assess the current mood. Clinicians associated a mood label in
agreement with one of the five possible defined mood states:
euthymia, depression, mania, hypomania, and mixed state.

B. Affective Elicitation Protocol

Patients BP1, BP2, BP3, BP4, and BP5 underwent a dedi-
cated affective elicitation protocol which started with two, 5-min
phases in resting state with eyes closed and open. Subsequently,
passive (international affective picture system (IAPS) [66]), last-
ing for 6 min, and active (thematic apperception test (TAT) [67]),
lasting for at least 2 min, visual stimuli were administered. Fi-
nally, in order to provide a common point of reference, patients
were asked to recite a paragraph from the Universal Declaration
of Human Rights lasting two more minutes. The IAPS database
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Fig. 2. Timeline of the affective elicitation protocol.

consists of hundreds of pictures tagged by specific emotional rat-
ings in terms of valence, arousal, and dominance. The protocol
implies a slideshow of pictures having two classes of arousal,
either minimum or maximum, and random valence, ranging
from unpleasant to pleasant. After IAPS elicitation, the patients
were asked to describe several TAT images. The TAT, a pro-
jective psychological test, is supposed to tap the subject’s sub-
conscious and reveal repressed aspects of personality, motives
and needs for achievement, power and intimacy, and problem-
solving skills. However, in this protocol, the pictures were only
used to elicit spontaneous comments from the patients. Of note,
as there is no standardization of the use of the texts/pictures ac-
cording to the subjects’ clinical state, text/picture stimuli were
always proposed in the same order. A schematic timeline of the
experimental protocol is shown in Fig. 2.

C. Unstructured Activity

In order to study the capability of the proposed NARI method-
ology in generalizing the recognition of depressive and euthymic
patterns of bipolar patients on the experimental protocol, we fur-
ther studied three bipolar patients (i.e., BP6, BP7, and BP8) who
were asked to wear the PSYCHE wearable monitoring platform
at all times until the battery ran out, i.e., approximately 18 h.
Therefore, there was no need of particular experimental condi-
tions as the patient was free to perform normal activities. Here,
we analyzed a smaller part of these long-term acquisitions in
order to study the same amount of data with respect to the first
affective elicitation protocol. Therefore, no less than 20 min
of heartbeat dynamics gathered during unknown (unstructured)
activities were taken into account.

D. Analysis Overview

We analyzed eight bipolar patients having depressive and
euthymic states. ECG was acquired by using the PSYCHE plat-
form and R-R interval series were extracted and analyzed by the
NARI model to obtain the cardiovascular indices. Then, a set of
features extracted from the L and the NL kernels was used to
implement the automatic mood-tracking system. Experimental
results are shown in terms of statistical inference and confusion
matrices [62]. A comparative study considering the same fea-
tures extracted using standard signal processing techniques was
further performed. Classification performances encompass both
experimental protocols.

We considered the median values over the estimated instanta-
neous time series according to the protocol timeline. All ranges
reported in this study are expressed as median and its respective
absolute deviation (i.e., for a feature X , we report Median(X) ±
MAD(X) where MAD(X) = Median(|X − Median(X)|)).

IV. RESULTS

For each subject, the NARI model was applied to the
R-R series detected from the recorded ECG. The optimal model
order was chosen by means of the Akaike information cri-
terion (AIC) [39] applied to the first 5-min R-R recordings.
The AIC analysis indicated 6 ≤ p ≤ 8 and 1 ≤ q ≤ 2 as opti-
mal orders. All the KS distances were <0.06 and no less than
97% of the autocorrelation points were inside the boundaries.
The L and NL indices, described in Section II-B, were eval-
uated for all available recordings. The instantaneous identifi-
cation (5-ms resolution) was averaged within a time window
of 1 s. Representative tracking results are shown in Fig. 3
for BP1 (euthymic phase, top) and BP2 (depressive phase,
bottom).

A preliminary statistical analysis was performed in order to
evaluate the intrasubject contribution of each feature. Statistical
inferences were performed to test the null hypothesis of no signi-
ficative differences occurring among different mood states. Such
analyses were performed on patients undergoing the affective
elicitation protocol and having more than one acquisition, i.e.,
BP3, BP4, and BP5. First, the whole feature pattern (L and NL)
was treated as multivariate distribution and tested by means of
nonparametric multivariate analysis of variance (npMANOVA).
Such a test revealed statistical differences among acquisitions
for all the three patients (BP3: p < 10−6 ; BP4: p < 0.005; BP5:
p < 10−6). No significant conclusions can be drawn from this
analysis, which is therefore insufficient for an effective discrim-
inative task. As a consequence, further monovariate statisti-
cal analyses were performed to evaluate the difference among
acquisitions for each of the extracted features. Nonparametric
Kruskal–Wallis and Rank-Sum tests were used to investigate
the intersubject variability among the five acquisitions of BP5
and the two acquisitions of BP3 and BP4, respectively. These
results are summarized in Tables II, III, and IV. All of the fea-
tures coming from the L and NL coefficients were taken into
account. We obtained significative p-values in all cases but the
LF/HF ratio of BP4. Remarkably, this is the only patient having
more than one acquisition with the same mood label. More-
over, an intersubject analysis was performed to reveal the mood
pattern, which would be in common among patients. Discrimi-
nation of the mood states was performed using the well-known
MLP neural network [64]. All results are expressed in the form
of confusion matrix, after 40-fold cross validation.

For each experimental protocol (affective elicitation and
unstructured activity), we compared the MLP accuracy by
creating two feature sets. The first set, α, is composed by
μRR(t,Ht , ξ(t)), σRR , and the spectral indices LF, HF, and
LF/HF. In other words, the feature set α comes from the L
terms of the model. The second set, β, includes the NL LL,
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TABLE II
RESULTS FOR THE INTRASUBJECT EUTHYMIA-DEPRESSION DISCRIMINATION

Fig. 3. Instantaneous HRV statistics computed from Subject 1 (top) and Sub-
ject 2 (bottom) during the euthymic and depressive state, respectively. The
estimated μRR (t,Ht , ξ(t)) is superimposed on the recorded R-R series. Fol-
lowing next, the instantaneous heartbeat standard deviation, the instantaneous
heartbeat spectral LF, and HF powers and their ratio. Finally, bottom rows report
on the three bispectral statistics.

TABLE III
RESULTS FOR THE INTRASUBJECT EUTHYMIA-DEPRESSION DISCRIMINATION

P-values are obtained from the Rank-Sum test.

TABLE IV
RESULTS FOR THE INTRASUBJECT EUTHYMIA-DEPRESSION DISCRIMINATION

LH, and HH indices which will be joined to the α set for future
evaluations.

A. Affective Elicitation Protocol

In this section, the results of the classification using data gath-
ered from patients undergoing the affective elicitation protocol
(i.e., BP1, BP2, BP3, BP4, and BP5), are reported. In order to
take into account the imbalanced number of available examples
per class, two different learning rates were considered in the
MLP training phases giving the euthymic examples three times
more penalty with respect to the depressive examples. The MLP
results using the NARI model are summarized in Table V. It
shows the recognition accuracy by considering all five patients.
Using dataset α, correct recognition of the euthymic state is
below 75%, whereas accuracy increases up to 99% using dataset
α + β. To further justify the instantaneous point-process NARI
approach, we estimated the L and NL features of the α and
β sets by means of standard AR models [68] and then tested
the MLP capability of mood discrimination. The relative confu-
sion matrices are shown in Table VI. In this case, neither using
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TABLE V
RESULTS FOR THE INTERSUBJECT EUTHYMIA-DEPRESSION DISCRIMINATION

IN PATIENTS BP1, BP2, BP3, BP4, AND BP5 USING

THE POINT PROCESS NARI MODEL

TABLE VI
RESULTS FOR THE INTERSUBJECT EUTHYMIA-DEPRESSION DISCRIMINATION IN

PATIENTS BP1, BP2, BP3, BP4, AND BP5 USING STANDARD BIOSIGNAL

PROCESSING TECHNIQUES

TABLE VII
RESULTS FOR THE INTERSUBJECT EUTHYMIA-DEPRESSION DISCRIMINATION IN

PATIENTS BP6, BP7, AND BP8 USING THE POINT PROCESS NARI MODEL

MLP-3 Patients Dataset Euthymia Depression

Euthymia α 60.36 ± 18.35 14.34 ± 7.80
α + β 82.38 ± 14.97 13.88 ± 10.99

Depression α 39.64 ± 18.35 85.66 ± 7.80
α + β 17.60 ± 14.99 86.12 ± 10.99

Bold indicates the best classification accuracy for each class.

the α feature set nor using the joined α + β set, a sufficient
satisfactory recognition was reached.

B. Unstructured Activity

In this section, the results of the classification using data
gathered from patients performing unstructured activity (i.e.,
BP6, BP7, and BP8), are reported. MLP results using the NARI
model are summarized in Table VII. It shows the recognition
accuracy by considering all three patients. Using dataset α,
correct recognition of the euthymic state is below 61%, whereas
accuracy increases up to 82.38% using the feature set α + β,
i.e., considering the instantaneous NL cardiovascular dynamics.

C. Joined Dataset

In order to investigate whether common patterns of heart-
beat L and NL dynamics exist between euthymia and depres-
sive states regardless of the experimental protocol/elicitation,
we performed the intersubject euthymia-depression classifica-
tion using data gathered from all patients. The two datasets
representing instantaneous cardiovascular dynamics in bipolar
patients during affective elicitation protocol and unstructured
activity were joined. The classification results are shown in
Table VIII, which also confirms the crucial role of heartbeat
NL dynamics in pathological mood states. When processing
the feature set α + β, in fact, the recognition accuracy dra-
matically increases, and the corresponding average accuracy is
beyond 90%.

TABLE VIII
RESULTS FOR THE INTERSUBJECT EUTHYMIA-DEPRESSION DISCRIMINATION

ON ALL EIGHT PATIENTS USING THE POINT PROCESS NARI MODEL

V. DISCUSSION AND CONCLUSION

In both normal psychology and psychopathology, mood is
considered quite a stable characteristic of the individual affective
dimension, while emotions are considered transient, acute, and
arousing responses to specific environmental stimuli. However,
it is very well documented both in clinical experience and in re-
search studies that mood affects emotions, emotional regulation,
and emotional response. For this reason, a possible approach to
investigate mood recognition is to explore emotional changes
provoked by external stimuli. Accordingly, along the concep-
tual rationale behind the PSYCHE project, we have proposed
a novel system along with an experimental/methodological ap-
proach for the assessment of instantaneous ANS patterns of
depression in bipolar patients. The use of ANS dynamics rep-
resents a reasonable way to explore neurobiological and psy-
chophysiological correlates of mood disorders. The feasibility
of this approach has been documented in other research arti-
cles both for depression and bipolar disorders [15]–[18], [69],
[70]. For instance, Levy [71] showed a higher ANS activation
in bipolar patients as compared to controls and linked chronic
ANS arousal to neurodegeneration and toxiticty. It is also well
known that emotional modulation techniques (used in the psy-
chotherapy of mental disorders) modulates ANS activity [72],
[73]. Finally, vagal nerve stimulation is currently used as treat-
ment for refractory depression [74] based on the fact that a
boost of parasympathetic activity can modulate positive mood.
All of these research points to a link between ANS dynamics
and bipolar disorders, i.e., links the peripheral nervous system
to a disorder of the central nervous system. In-depth psycho-
physiological reasons of such a link are still debated, although
few hypotheses can be drawn. In particular, it is important to note
that the ANS is indirectly affected by central nervous system
activity: Anxiety, fear, disgust, and the other primary emotions
have both central and peripheral correlates. For instance, the
central activity of some brain structures such as amygdala, an-
terior cingulate, hypothalamus, ventromedial prefrontal cortex
can directly affect ANS discharge through the modulation of
sympathetic and vagal nuclei of the brain stem [75], [76]. We
believe that since this modulation is present in healthy sub-
jects, it is also present in an anomalous way in patients with
mood disorders and dysfunctions of emotion expressions and
regulations [77].

The proposed approach allows the mathematical representa-
tion of the cardiovascular system as a NL dynamical system
characterized by means of a “perturbation” analysis, i.e, analy-
sis before and after short-time emotional elicitation. In order to
show a preliminary validation of the proposed methodologies,
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we analyzed data coming from five patients experiencing de-
pressive and euthymic episodes, and enrolled them to partic-
ipate in dedicated affective elicitation protocol. Furthermore,
data from three bipolar patients while performing unlabeled and
unstructured normal activities were taken into account. In both
cases, a comfortable, textile-based sensorized t-shirt (namely
the PSYCHE platform) was used to perform noninvasive
recordings of physiological variables, and a novel point-process
NARI model was implemented and applied to the R-R series
derived from the ECG in order to produce novel instantaneous
features. In particular, standard features in both the time (i.e.,
μRR(t,Ht , ξ(t)) and σRR ), and frequency domain (i.e., LF, HF,
and LF/HF) along with higher order NL features, i.e., LL, LH,
and HH, were extracted from the processed R-R series. The
NARI model was used to characterize the mean of an IG dis-
tribution representing the interbeat probability function. Such
an approach allows for the instantaneous estimation of all HRV
measures without any interpolation method [39]. The method is
also personalized, fully parametric, and able to improve nonsta-
tionary identification [46].

All of the mentioned features coming from the NARI repre-
sentation of the heartbeat dynamics were investigated by using
statistical inference and pattern recognition methods in intra-
and intersubject analyses, respectively. Multivariate statistical
analysis by using an npMANOVA approach on patients un-
dergoing the affective elicitation protocol revealed significant
within subject differences among different mood states, whereas
monovariate analyses pointed out that only the LF/HF is statisti-
cally similar between two depressive phases. Pattern recognition
algorithms (MLP) were then applied to the estimated features
to classify the mood state of the patients (i.e., “euthymia” or
“depression”), and two feature sets were compared. The first
set, α, was comprised of only the standard feature set, whereas
the NL indices were added to the second set, β. We performed a
comparative classification analysis in order to evaluate the role
of the NL dynamics on the intersubject variability. Considering
the dataset comprised of data coming from the five patients emo-
tionally elicited, a classification accuracy of up to about 74% for
the α (L) set, and up to about 99% for the α + β (L and NL) set
was achieved for the euthymic class (see Table V). Therefore,
it is clear that the high-intersubject variability strongly affects
the information given by the L contribution (set α) of the model
whereas it does not affect the NL one (set α + β). A further com-
parison analysis using traditional signal processing techniques
revealed that noninstantaneous information was not sufficient
for a reliable assessment (see Table VI). The crucial role of NL
dynamics for the characterization of depressive states in bipolar
patients was also confirmed when testing the capability of the
proposed methodology with data gathered from unstructured
activities (see Tables VII and VIII).

Our results demonstrate that a common pattern of instanta-
neous heartbeat features can be found despite the intersubject
variability and experimental protocol undertaken. Our results
also show that the inclusion of NL indices gives improved results
and smaller variance with respect to the classification performed
by only using the standard features. The results obtained using
data gathered during the affective elicitation protocol (99.56%

accuracy) went beyond expectations, also considering that the
few misclassified samples can be easily interpreted as either al-
gorithmic/mathematical artifacts or physiological outliers, i.e.,
events not related to mood markers for whatever reason. On
the other hand, we expected a lower classification accuracy
using data coming from unstructured activity. Moreover, it is
possible to hypothesize that the altered ANS dynamics related
to pathological mental states, modulated by the central func-
tional structures of the brain, can be revealed without particular
experimental conditions and using NARI point-process mod-
els. However, structured emotional relevant experimental con-
ditions can contribute in increasing the accuracy of the system.
It is worthwhile mentioning that the chosen affective elicitation
protocol does not strictly require a wearable monitoring sys-
tem to acquire ANS data. However, a comfortable monitoring
system dramatically increases the patient’s compliance and im-
proves the reliability of the physiological variations, which are
instantaneously detected by the proposed NARI model. Such an
experimental procedure is part of a more comprehensive study
involving long-term monitoring of bipolar patients in naturalis-
tic environments [15]–[18], [78], i.e., the unstructured activity
analysis.

The presented point-process NL analysis represents a pioneer-
ing study in the field of mood assessment in bipolar patients. In
our approach, we consider the acquisition paradigm (including
high and low arousing IAPS and TAT) as a whole, without sub-
dividing the protocol in separate epochs. More than a limitation,
we consider that the overall results give additional strength to
our approach. Indeed, it is not a matter of specific emotional re-
sponse but, more in general, the central issue is the reactivity of
the ANS to be affected in bipolar disorders. The fact that we were
able to detect changes in ANS during the protocol as compared
to a resting state baseline is enough to say that we are studying
ANS reactions despite subjective measurements of emotional
arousal or valence related to the cues we used. Future studies
will progress to increasing the number of patients enrolled in
order to confirm the reliability of the proposed approach. We
will also explore additional aspects of the L and NL identifica-
tion as related to depression and other pathological states of the
bipolar disorder. Moreover, we will carefully explore the phys-
iological meaning of the dynamic autonomic signatures both
in the context of the underlying mood state and as a result of
the different stimuli administered within the dedicated protocol.
Our approach will be also further extended within the PSYCHE
project, including several other available variables (e.g., voice,
activity index, sleep pattern alteration, electrodermal response,
and biochemical markers).
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[73] C. Vögele, S. Sorg, M. Studtmann, and H. Weber, “Cardiac autonomic
regulation and anger coping in adolescents,” Biol. Psychol., vol. 85, no. 3,
pp. 465–471, 2010.

[74] J. Martin and E. Martin-Sanchez, “Systematic review and meta-analysis
of vagus nerve stimulation in the treatment of depression: variable results
based on study designs,” Eur. Psychiatry, vol. 27, no. 3, pp. 147–155,
2012.

[75] C. Chang, C. D. Metzger, G. H. Glover, J. H. Duyn, H.-J. Heinze, and
M. Walter, “Association between heart rate variability and fluctuations in
resting-state functional connectivity,” Neuroimage, vol. 68, pp. 93–104,
2013.
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