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Introduction

It is common to find in Science objects that appear ubiquitously in many fields and
prove to be central in apparently far theories.

Restricting our focus to Mathematics, one of these remarkable objects is undoubtedly
the algebra of differential forms.

We are in particular interested to study this object in an algebro-geometric frame-
work, more precisely in the context of Lie Theory, where the properties of left and right
invariance of the forms are crucial to obtain many relevant and elegant results.

The study of this kind of problems started in the first half of the twentieth century,
when some mathematicians proposed to face with the concrete problem of better un-
derstanding the topological properties of spaces endowed with a transitive action of an
algebraic group of transformations.

Many works were published around the fifties about this subject, most of them
introducing some new brilliant ideas and powerful instruments as spectral sequences,
fiber bundles and characteristic classes. (See A.Borel’s paper [7] for a more precise
exposition about this fascinating subject)

One of the most famous and elegant results of that period establishes a link between
the cohomology of a simple compact Lie group and the invariants in exterior algebra of
its complexified Lie algebra:

Theorem 0.0.1. Let G be a compact connected Lie group and let g its complexified Lie
algebra. Then
H*(G)®C « (Ag)®

as graded vector spaces.

Observing that, by differentiation, considering Adg invariants corresponds to take
invariants by adg-action of g on itself g, this elegant result can be restated in Lie algebras
representation theory language recalling that considering the g invariants in Ag corre-
spond to identify the trivial representation of g in the exterior algebra. In other terms,
observing that adjoint action preserves the grading, the above theorem is equivalent to

dimcH'(G) ® C = dimg (A'g)® = dimcHomg(Vp, A'g)

Therefore, to compute the Betti numbers of a compact Lie group is sufficient to find
the dimension of the homogeneous components of Ag¥. Moreover, one can ask if this
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invariant subspace has some algebraic structure compatible with the grading that can
make the computation of the graded multiplicities more efficient.

In [17] H.Hopf proved that such a structure on Ag? exists and is again a structure of
exterior algebra:

Theorem 0.0.2 (H.Hopf). Let G be a compact Lie group and let g be its complexified
Lie algebra. Then
Ag? = Az, ..., 2k)

where k is the rank of g and degx; = d; is an odd positive integer for every i.

This shows immediately that a compact simple Lie group has the same cohomology
of a product of odd dimensional spheres. In the language of Poincaré polynomials it can
be translated in the following way:

Corollary 0.0.3. Let G be a compact simple Lie group. Set

dimG ' dimG o
Po(t) = Y dimH'(G)t' = ) dim (A'g)” #
1=0 =0

then the polynomial Pg(t) has the following factorization

rkg

Po(t) =[] (1 + tdi> .

i=1

The problem of computing completely the graded structure of the cohomology ring
of G has been reduced to the problem of find the exponents of the variable ¢ in the above
expression.

The most revolutionary approach to this problem was announced in 1952 by Claude
Chevalley at the International Mathematical Congress (see [9]) as a corollary of his
famous restriction theorem.

The work of Chevalley about the determination of the exponents is based on a re-
sult by André Weil that links the generators {x;} to the invariant polynomials in the
symmetric algebra S(g). More precisely for each homogeneous polynomial p € S(g)¢ of
degree d, Weil constructed a G-invariant differential form of degree 2d — 1. Chevalley
proved that S(g)¢ is generated by k = rkg homogeneous polynomials {p1,...,px}. Ac-
tually the degrees of these generators are exactly the so called exponents {ej,...,e,}
of the Lie algebra, as proved in [10]. It can be shown that Ag? is then generated as
graded algebra exactly by the differential forms constructed by Weil starting from the
homogeneous polynomials {p1,...,pr}. These differential forms have consequently odd
degrees, exactly of the form 2e; — 1.

More in detail, Chevalley’s idea is to relate the G invariants S(g)“ to the invariants
by the action of the Weyl group on the algebra symmetric S(h) of polynomials over a
maximal toral subalgebra b, reducing the computation to a (simpler) problem of finite
group representations.
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Theorem 0.0.4 (C.Chevalley). Let G be a complex connected semisimple Lie group.
Fiz a maximal torus T. Denoting with g and h) the respective Lie algebras we have the
following isomorphism

S(g)% ~ S(h)".

As remarked above, taking the invariants in a G-representation V' corresponds to
locate copies of the trivial representation among the isotypical components of V. Some
interesting questions can be posed now thinking in some sense to a generalization of
these results:

@1: What are the isotypical components appearing in S(g) and in Ag?

Q2: What about their (graded) multiplicities?

For the symmetric algebra this problem has been solved starting from a result by
Kostant (see [25]) proving the decomposition of S(g) as direct sum of the harmonic poly-
nomials submodule with the invariants S(g)“. To find the irreducibles in S(g) and their
graded multiplicities is then equivalent to identify the irreducible subrepresentations and
their graded multiplicities in the harmonic polynomials. Such topic is studied in many
works (see for example [20], [23] and [19]) that give a complete answer to the problem:
the multiplicities are given by some special Kazhdan-Luzstig polynomials determined by
the affine Weyl group of g.

On the other side, in spite of finite dimensionality of Ag, determining the compo-
nents of the exterior algebra seems to be quite difficult. The decomposition of exterior
algebra in its irreducible components has been extensively studied by Kostant in [26]. In
particular, he proves that the exterior algebra is isomorphic, as g module, to the direct
sum of 2'%¢ copies of the tensor product representation V, ® V,, where p denotes the
Weyl vector. Unfortunately, this decomposition is not compatible with grading of AC.
In our special case, Kostant formulated the following very elegant conjecture:

Conjecture 0.0.5 (Kostant). Let be V, the irreducible g-representation of highest weight
p. The irreducible representation V,, appears in the decomposition of V, @V, if and only
if < 2p in the dominance order.

This conjecture, actually unsolved, has surprisingly an uniform solution only in the
case of Lie algebra sl,,, as proved in [5] and [24].

Moreover in [12] it is proved that for simply laced cases this conjecture is implied by
the saturation conjecture.

In the thesis we prove some partial results in the case of the symplectic algebra
§py,. More closely we prove that if u = (p1,..., 1) is a weight smaller than 2p and
i <n—1i+1 (i.e. the shape of pu, viewed as partition, is contained in the shape of 2p)
then V), appears in the irreducible decomposition of Ag.

Moreover, we propose an analogue of Kostant conjecture for the exterior algebra of
little adjoint representation. Our conjecture is trivial in the case B,, and can be verified



by inspection for Fy. In the case C), it seems be quite complicated and linked to the
Kostant conjecture for classical cases.

Coming back to the problem of studying the isotypical components of Ag and chang-
ing a bit our point of view, we can reformulate our "global” problem in terms of g
equivariant functions, aiming to study the space Homgy(V), Ag), usually called the mod-
ule of covariants of type V). On the other hand, the problem of determining the graded
multiplicities is equivalent to find dim Homg(Vy, A’g)

These topics have been extensively studied in literature in some recent papers. In
[26] the dimension of this module is computed for the adjoint representation and in [3]
Bazlov gives an explicit formula for the graded multiplicities of the adjoint represen-
tation in the exterior algebra. Recently, in [15] it has been proved that in the case of
some special representations the module Homgy(Vy, Ag) has a structure of free algebra
over A(z1,...,x_1) and its dimension is computed. On the other side, in 1995 Broer
[8] proved that Chevalley restriction induces a graded isomorphism between module of
covariants for certain representations V) such that A is in the root lattice and X # 2«
for all positive roots a. These representations such that the weight A is "near” to 0 are
called ”small representations”.

Theorem 0.0.6 (Broer). The graded homomorphism induced by the Chevalley restric-
tion theorem S(g)% ~ S(b)W

Homg (V, S(g)) — Homy (VY, S(h))
s a graded isomorphism if and only if V) is small.

In the same year of Broer’s paper, Mark Reeder [29] proposed a proof of the Theorem
0.0.1 based on the invariant theory. More precisely, he proved the isomorphism as graded
vector spaces of the cohomology ring with the invariants for the action of the Weyl Group
on the cohomology of some homogeneous spaces:

Theorem 0.0.7. Let G be a compact Lie Group, T C G a mazimal torus and W the
Weyl Group. The Weyl map ¢ : G/T x T — G induces in cohomology the following
graded isomorphism:

H*(G) =~ (H*(G/T) ® H*(T))" .

Aiming at deepening the study of the exterior algebra, in the following paper [30]
Reeder proves many formulae about graded multiplicities of representations appearing
in Ag using a large amount of techniques coming from combinatorics, Lie theory and
theory of symmetric functions.

More precisely, if I is a subset of the simple roots and denoting by §(I) their sum,
he gives a closed formula for graded multiplicities of representations of highest weights
2p —0(I) in terms of the connected component of the complementary of I in the Dynkin
diagram of g.

In the same paper [30], inspired by Broer’s work, Reeder starts a systematic study
of small representation in the exterior algebra. Using suitable operators on the set of
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dominant weights of g, he proves a general recursive formula for the multiplicity of a
representation V) in Ag. Unfortunately, this formula involves many sign changes and
it seems easy to compute neither the multiplicities in the general case, nor if they are
different form zero.

Nevertheless, the sign changes disappear in the case when 2« is not a weight of V),
i.e. exactly in the case of small representations, for which the following elegant formula
holds:

Theorem 0.0.8. Let A be a small weight and let mg be the dimension of the zero weight
space in the irreducible representation Vy. Then

dimHomg(Vy, Ag) = 22%my.

For the sake of completeness, we specify that in general the left hand side of the
above equality is smaller than the right hand side.

Furthermore Reeder looked at the problem of determining graded multiplicities of
these representations, by studying firstly the simpler case of the adjoint representation
and then generalizing his conjectures to the other small modules. He conjectured that
for small representations in exterior algebra a similar result to the one proved by Broer
holds. Such a conjecture is posed in [30] in terms of Poincaré polynomials of graded
multiplicities:

Conjecture 0.0.9 (Reeder). Let us denote with H' the space of W -harmonic polyno-
mials. Consider the two polynomials

P(Vy, /\g, u) = Zdim Homyg(V, /\g)u”

n>0

k
n>0

If V\ is a small representation of highest weight X\, then the following equality holds:

P(V)n/\gaQ) = PW(V)?a%aQ7q2)

Curiously, this conjecture was implicitly proved for the case A, already before
Reeder’s paper was published in the works of Stembridge [36] for the ” Lie algebra”
part and by Kirillov - Pak and Molchanov for the ”Weyl group” part.

Moreover in [37] many tools potentially useful for a case by case proof of the conjec-
ture are introduced. Of crucial importance for our work are some recursive relations for
the coefficients C)(t,s) in the characters expansion of Macdonald kernels. Such poly-
nomials, specialized in t = —¢ and s = ¢? give exactly the Poincaré polynomials of the
representations V) in Ag.

In the thesis we propose a case by case proof of the conjecture for classical groups
of type B and C using the recursive relations of [37] and closed formulae of [18] for
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the Weyl group part. As mentioned before in [37] some recursive relations are proved
for the coefficients in the expansion of Macdonald Kernels in term of the characters of
irreducible representations of g. An important remark by Stembridge assures that in
such a recursion, for a small weight A, only C,(t,s) associated to other small weights
1 smaller then A in the dominance ordering appear. Our strategy is then based on
inductive reasoning: we compute explicitly a formula for the polynomials Py and then
substitute them in the specialized recurrence.We obtain a triangular system of equations
and we solve it using combinatorial methods to reduce the coefficients of the recurrence
to more a computable form. We hope to prove the remaining cases of the Conjecture in
future works, using the same techniques for the more complicate case of D,, and some
direct computations for the exceptional ones.

The problem of finding an uniform proof of Reeder’s Conjecture is still unsolved but
we have to mention that in [14] the authors proposed a possible strategy to approach
this problem. They prove the existence of a graded map

Py : Homy(V), /\g) — HOHIW(V,{),/\U ®H)

and verified that this is an isomorphism for the adjoint representation. Furthermore,
they formulated the following conjecture:

Conjecture 0.0.10 (De Concini - Papi). The map ®y is injective for all finite dimen-
stonal g representations V.

Recalling that, if V' is a small representation, the equality

dimHomg(V, Ag) = dimHomyy (V, Ah @ H)

holds by ([30], Corollary 4.2), the injectivity would then imply that ®y is an isomor-
phism, obtaining as a consequence an uniform proof of Reeder’s conjecture.

Finally, we have to point out that small representations have been recently on the
focus of some papers in geometric representation theory (see [1], [31], [32] and [33]), where
such representations (and their zero weight spaces) appear in connection with Satake
and Springer correspondences. However, Reeder’s Conjecture has been considered in this
more geometrical setting only very recently in [34] by Reiner and Shepler in the context
of their study of invariant derivations and differential forms in complex reflection groups.

In the first chapter of the thesis we presents the tools involved in our proof of the
Reeder’s Conjecture for the Lie algebras of type B and C'. We study the structure of the
zero weight space for these algebras and find closed formulae for the polynomials Py
using the results of [18]. Moreover we will study the polynomials C),(q,t) recalling the
so called "minuscule” and ”quasi minuscule” recurrences proved by Stembridge in [37].

The following two chapters are dedicated to our proofs of the Reeder’s Conjecture.
Using Stembridge’s recurrences to prove the Reeder’s Conjecture we have to solve an
upper triangular system of linear equations with polynomials coefficients.

In the second chapter we prove the Conjecture in the case of odd orthogonal groups.
Starting from the Stembridge’s minuscule recurrence and using the combinatorics of
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weights and the action of the Weyl group we find some nice closed expressions of the
coefficients. Some consequent simplifications allow us to rearrange the recurrence and
reduce it to a two terms relation between the polynomials C',. An inductive reasoning
concludes the proof in this case.

For the proof in the case C),, contained in Chapter 3, we change our strategy and
use the quasi minuscule recurrence. Fixed a weight A\ the coefficients of the recurrence
for C) are described in terms of some suitable subsets in the orbits of (A,6) by the
action of the Weyl group, where 6 denotes the highest root. We use the combinatorics
of weights to express the associated coefficients in a recursive way. In the case of small
weights of the form wo the system of linear equations reduces easily to a two terms
recursion that we solve using again an inductive process. For the weights wi + wopt1
the problem is more complicated: the zero weight representation V)? of the Weyl group
is non irreducible (except in the case k = 0) and the combinatorics of the coefficients is
more complex. We prove that the system of equation for C,, +4,,,, can be reduced to a
three terms relations involving C,,, and C’wm 11y This allow us to reduce the proof of
the conjecture to prove a univariate polynomials identity that we have verified with the
program SAGE.

Finally in the fourth Chapter we briefly expose some results about Kostant’s Con-
jecture in the case of Symplectic groups. Berestein and Zelevinsky in [4] prove that
the irreducible components appearing in V), ® V,, are in bijection with integral points in
some polytopes described by suitable inequalities. We give an explicit construction of
these integral points for the family of weights with shape contained in the shape of 2p.
Moreover we conjecture that a statement similar to the Kostant conjecture holds for the
exterior algebra of little adjoint representation: the irreducible weights appearing in Ay,
are exactly the dominant weights smaller or equal to 2ps; where p; is half the sum of
the short roots. We prove finally that our conjecture is trivial for the Lie Algebras of
type B by a theoretical argument and for F, and Gy by direct computation. For type
C it seems to be as difficult as the Kostant conjecture by the great number of weights
smaller or equal to 2p;.
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Chapter 1

Poincaré polynomials for graded
multiplicities and Reeder’s
Conjecture

In this chapter we present an overview on the combinatorial aspects of representation
theory of Lie algebras of type C and B we are going to use in our work.

After introducing some classical results about weights and representations, we will
recall some recursive identities proved in [37] for the polynomials P(V), Ag, ¢) and explicit
closed formulae (see [1]) for Py (VY, H,z,y).

1.1 Combinatorics of Representation for Lie Algebras of
type B and C

Let g be a finite dimensional simple Lie Algebra over C of rank n and let § be a
maximal toral subalgebra of g. The action of h on g induces a root space decomposition.
Let us denote by ® the corresponding root system and by W its Weyl Group. Choose a
Borel subalgebra b C g and denote with &1 the corresponding set of positive roots and
with A = {ag,...,a,} the set of simple roots.

Finally we denote with P and @) respectively the weight and coweight lattice, i.e.
the set of A € b such that (A, a) := 2(\,@)/(a, ) € Z (resp. the set of A € b such that
(A, ) € Z) for all « € @, and with P* the set of dominant weights, i.e. (\,a) > 0 for all
a € dt. We recall that the set P is spanned by the fundamental weights {wy, . ..,wn},
defined by (wj, ;) = 6;j, as Z- module. The Weyl vector is the sum of fundamental
weights and is denoted by p.

Remark 1.1.1 (Dominance ordering). The choice of a positive set of roots ®* induces
an ordering on the weights: we say that a weight A is greater than y if and only if A — y
is a sum of positive roots.



Remark 1.1.2. In the dominance order, for every root length, there exists a unique
maximal element in ®, corresponding to the only dominant root of such length. We will
refer to this roots as ”highest” long and short roots an we will denote them as 6 and 6;.

We can now examine more closely the root systems that we are interested in.

The root systems B, and C, can be explicitly constructed starting from a real eu-
clidean space of dimension n with orthonormal basis eq, ..., e, with respect to a positive
definite inner product (, )

Remark 1.1.3 (Construction of Root System B,,). The set of roots ® is made by the
vectors of the form +e; + e; and by the vectors {£ey,...,+e,}. We choose as simple
roots the set e; —ea,...,e,_1 — €n, €,. This choice implies that the set of positive roots
is made by vectors of the form e; + e; with ¢ < j and by {ei,...,e,}. The highest root
for the induced dominance order is 6 = e + eg

In this realization the fundamental weights are w; = e; + --- + ¢; if ¢ < n and

wy, = St Moreover the Weyl vector p is equal to 33 (2n — 25 + 1)e;.

Remark 1.1.4 (Construction of Root System C,). We can chose as set of roots ® the
vectors of the form +e; & e; and the vectors {£2e1,...,+2e,}. We choose as simple
roots the set e; —es,...,ep_1 — €y, 2€,.

The set of positive roots is made by vectors of the form e; &= e; with ¢ < j and by
{2e1,...,2e,}. The highest root is 6 = 2e;

The fundamental weights are all of the form w; = e1 + - - - + ¢;. The Weyl vector is
p=>(n—j+1)e

In both cases the Weyl Group is the Hyperoctaedral Group S,, x (Z/27)". By abuse
of notation, when the context appears clear, we will denote this group with B,,.

We briefly remark some classical results and properties of representations of Lie
Algebras.

Remark 1.1.5. Let V be a finite dimensional representation of g. The diagonalizable
action of h on V induce a weight spaces decomposition

V=@
pell
The set 1I characterizes completely the finite dimensional irreducible representation
of g:
Theorem 1.1.6. Let V a finite dimensional representation of g over C.

o The set Il is saturated, i.e. if p € Il then all its W -conjugates are in 11;

o V is irreducible if and only if there exists a unique dominant integral weight A
mazximal between the weights on 11 for the dominance order.
We will denote the highest weight module of highest weight A by V).

Remark 1.1.7. The Weyl Group acts linearly on the zero weight space of V), hence V)?
is a finite dimensional representation of the finite group W.

A complete description of these representations in the classical cases can be found in
[16] and [21].



1.2 Weyl Group Representations

In this section we display the closed formulae that express explicitly the polynomials
Py appearing in the ”Weyl Group” part of the Reeder Conjecture. These formulae are
proved in [2], where the authors are interested to some properties of special matrix-valued
generating functions linked to the characters of Weyl groups.

Let x be a character for a Weyl group W; following notation of [2] we define the
rational function:

- 1 :
Tz, y) = T (= a1 p;o dimHom(x, H? ® APh)zTyP (1.2.1)

where H" denotes the space W-harmonic polynomials on h of degree n, i.e. the
polynomials of degree n on h that are annihilated by W-invariants costrant coefficients
differential operators with zero constant term. Here the numbers mg,..., m, are the
exponents of the Root System associated to W (as defined in [22]).

We recall that in our Lie theoretic context the Weyl Group acts on the Cartan
subalgebra h as the reflection representation. The above expression is then linked to the
polynomial Py by a simple algebraic relation:

Fogay) [ (1 —a2mt) =
i=1
Z dimHom(x, H? ® APh)aly? =
p,q20

Py (x,,y).

In [2] the authors obtain closed formulae for 7 using the combinatorics of representa-
tions of Weyl Group W. In our case, we are interested to the hyperoctaedral group, i.e.
the Weyl Group of type B,,. If we consider a pair (a, ) of partition such that |a| = k,
|B] = h and k + h = n, we can construct a representation of the Weyl Group W of type
B, in the following way

e Each partition in the pair (a, 8) defines a representation of symmetric groups Sk
and Sj,. We will denote these representation as 7, and mg.

e We can view the group S} as subgroups of Weyl groups of type Bj and consider
the representations y, of B such that y, ~ m, as Si- representation and such
that (Z/2Z)* acts on it trivially.

e Considering similarly S}, as subgroup of B}, we will denote with xg the representa-

tion such that xg ~ mg as S}, representation tensored with the sign representation
of (Z/27Z)".

e Let us denote with x, g the induced representation Inngx B, Xa ® X3



It can be shown that x, g is irreducible and that all the irreducible representations of
B,, can be constructed in this way.

Theorem 1.2.1 ([19], Proposition 3.3). Let x5 a representation of the Weyl Group
W as described above. Then the following formula hold:

. 1 4 ya2e(i+1 1+ ya2e(@i)—1
. — p2n(e)+2n(8)+|6|
T(Xa,8: %, Y) = H T H TR (1.2.2)
(i.j)€a (i.5)eB
where h(i,7), c(i,j) are respectively the hook lenght of the box (i,7) and its content
i — j in the partition, displayed in the English way. Moreover, for a partition A = (A1, >
A2, .. >, An), n(A) denotes the quantity Y (i — 1)\;.

Remark 1.2.2. We can rearrange the formula (1.2.2)as follows, showing a link with the
box structure of the partitions o and f3:

- i1
UCICCCREIN y R el § i

1 — x2h(i5) 1 — 22h(i.4)
(4,4)€c (i,.9)€B
RXCHI| L il W GNP I 1yt
1 — x2h(i.9) 1 — g2h(i.7)
(i.9)€a (3.9)€B

Combinatorially we can interpret this rewriting in the following way: In the first
partition a box in the i-th row of the shape gives a contribution equal to 2(i — 1) to
the exponent of x, otherwise such a contribution for the second partition is equal to
2(i — 1) + 1. We then arrive to the explicit formula we are going to use in the following
chapters.

2(i—1) 2j—1 2i—1 2(j—1)
~ ) . x + YT x +yx
T(Xay8: 2,) = H 1 — 22h(ij) 1 — 22h(ig) (1.2.3)
(i) € (i.4)€B

1.3 Small Representations

In the next chapters we will deal with zero weight spaces of special irreducible rep-
resentations V) such that the maximal weight A is in some sense ”very close ” to 0.

Definition 1.3.1 (Small Representations). Let A be a dominant weight in the root lattice.
We say that Vy is small if X # 2« for every dominant root c.

The small representations for classical groups and the structure of their zero weight
spaces as W representation are classified in the simply laced cases by Reeder in [31].
In [26] Kostant attributes the complete description of zero weight spaces to Chari and
Pressley. Such a classification for Lie Algebras B,, and C,, is displayed in the following



Table 1.1: Zero weight spaces of small representations: Type B

Small Representation
Highest weight

Zero Weight Space
(a, B) description

wi, t < n, =2k
wi, t<n,1=2k+1
2w, n = 2k
2wp, n =2k +1

tables.
irreducible components of V/\0 .

((n = k), (K))
((K), (n = k))
((F), (K))
((k), (k+1))

In the right column of the tables are reported the pair corresponding to the

In particular in the odd orthogonal case the zero weight space representations are all
irreducible. This does not happen for the symplectic group.

Table 1.2: Zero weight spaces of small representations: Type C

Small Representation
Highest weight

Zero Weight Space
(a, B) description

2w1
wo;
w1+ wait1, 0<1

(
(n—i—=1,4),(1) &

((n—=1), (1)
((n —1,7),0)

((n—1i—1,i,1),0)

Here the right part of the last row denotes that the zero weight space of represen-
tations Vi, 4w,,,, is not irreducible as W representations and splits as the direct sum of
two W -representations indexed by partitions in the table.

1.4 Macdonald Kernels

In this section we remark some of the results due to Stembridge (see [37]) about
coefficients in the expansion of Macdonald Kernels. We are in the general context of any
irreducible root system ® associated to a Lie Algebra g.

Definition 1.4.1 (Macdonald Kernel).

MDK(q,1) =[] <1 —4
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This expression defines a formal power series with coefficients in the ring Z(e

i+1

1—tgt

1_qz+1 a
) I s

>0 aced

a>a€<1>

and is clearly invariant for the action of the Weyl Group of ®.

Remark 1.4.2. The Weyl characters ) (i.e. the characters of irreducible representations

of g) are a free Z-basis of the ring Z(e

a>a6<1>~



We can then write the coefficients of M DK (q,t) in Weyl Characters - expansion
obtaining:

MDEK(q,t) = Y Culg,t)xu
ueP+

Actually the polynomials C),(g,t) are elements of Z[g, t| and they inherit from Mac-
donald Kernels some properties related to graded multiplicities in exterior and symmetric
algebras (see [3] and [37]):

e C,(0,t) is the Poincaré polynomial of graded multiplicities of the representation
V,, in the symmetric slgebra Sg

e The polynomial C,,(—g, ¢*) gives the graded multiplicities of the representation V,
in the exterior algebra Ag

We remark that the definition of polynomials C), can be extended to every integral
weight p € II using the following rule:

0 if u+ p is not regular,

o 1.4.1
Cule { (=D")Cy ifo(u+p)=A+p, A€ Pt oeW. A

If there exists o such that o(A + p) = pu + p we will say that A + p is conjugated to
u~+ p (or equivalently that A is conjugated to p) and we will write A 4+ p ~ p + p.

The polynomials C,(q,t) are the main object of [37]. In that paper Stembridge
proposes some recursive relations to explicitly determine their expression. We will use
two of them to prove Reeder’s Conjecture for Lie Algebras of type B, and C,,.

Before recalling Stembridge’s recursive relations we have to introduce some more
definition concerning some special coweights.

Definition 1.4.3. We say that a weight (resp. coweight) w is minuscule if (w,a") €
{0,+1} (resp. (w,«)) for all positive roots and that it is quasi minuscule if (w,a) €
{0, £1, £2} (resp. (w,«)) for all positive roots.

Ezample 1.4.4. If we consider the Lie Algebra B, as realized in 1.1.3, it is clear by direct
inspection that w = e; is a minuscule coweight.

In our construction for the Lie Algebra C,, the coweight Y = e; is a quasi minuscule
coweight.

In our work we will use the following recursions as an effective tool to compute
explicitly the polynomials C,.

Z <t—(p,ww) _ q(“’w)t(p’ww)) Cwu(Q7t) =0, (142)
weW

where w is a minuscule coweight. The previous expression can be modified to obtain a
simpler formula involving stabilizer W, of p in Weyl Group W.



k
Z Cwm(% t) Z (t—(lhwiw _ q(%w)t(ﬂvwﬁ)) =0. (1.4.3)
i=1 ISom

Here wy, ..., wy are minimal coset representatives of W/W, and O, is the orbit

W, -w. We are going to call this recursive relation as minuscule recurrence.
In the case g is not simply laced, the coroot 0" is a quasi minuscule coweight. Set
w = 6V. In such a case Stembridge proves the following recurrence:

SNt a0 g ] Cunipla,t) = 0. (1.4.4)
(x.8) 20

Here the pairs (A, ) are elements of the set {(wp, wd)|lw € W and wh > 0} and the
rational functions ff are are linked to the coefficients of a special generating polynomial:

) - Z t(p,ﬂv)ff(% £)2".

1>0

((122)PF7) —

(1 —t2)(1—qtz) Py

We will refer to the recursive relation (1.4.4) as quasi-minuscule recurrence.

Considering the recurrences 1.4.3 and 1.4.4 with the C,, polynomials in their reduced
form, Stembridge proves a nice characterization of the weights appearing in the recursion
associated to the general dominant weight p.

Remark 1.4.5. The dominant weights appearing in the reduced form of recurrence 1.4.3
and 1.4.4 are exactly the dominant weights smaller or equal to u in dominance order.

As observed by Stembridge in [37], the set of recurrences associated to weights smaller
or equal to u define a triangular system, hence we can use a recursive process to obtain
computable expressions for C),.

More precisely, our strategy is the following: we determine closed formulae for the
polynomials of the ”Weyl Group” part of Reeder’s Conjecture( explicitly computed in
[18]), after that we prove by induction that this closed formulae satisfy the Stembridge’s
specialized recursive relations.






Chapter 2

Reeder’s Conjecture: the B, case

In this chapter we will present a proof of the Reeder’s Conjecture in the case of
odd orthogonal groups. I would like to thank the professors De Concini and Papi for
providing me the sketches of their computations in this case. First of all we find closed
expressions for the polynomials Py for the representations in the Table 1.3. After that
we find formulae for the solutions of system of the linear equations given by recurrences
1.4.3, using combinatorical reasoning to simplify their coefficients. We finally obtain the
Reeder’s Conjecture proving the equality between these two polynomials.

2.1 Small Representations for Odd Orthogonal Groups

As mentioned before in this section we will find closed formulae for the polynomials
PW(VQ ,x,1), where the zero weight spaces V)? are the ones listed in Table 1.3.

We recall that we are interested to the specializations & — ¢? and y — ¢ of these
polynomials. We are going to use extensively the g-analogue notation, which we will
now recall:

Definition 2.1.1 (g-analogue). Let n be a natural number. The q-analogue of n is the
polynomial

Analogously to the case of natural numbers, we can define the the g-factorial and
the g-binomial:

(&) = e

This notation allows us to obtain more compact and handy formulae for Py .

9
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Let us start with the case of generic fundamental weight w; with ¢ even and smaller
than n. Suppose 7 = 2k, then we obtain

P (X (n—k) (k) T, Y) =

—k i k _
”H 1+yz@-D Sy 4y (2 ﬁ(1 ) =

1 — p2(n—k—j+1) 1 — p2(h—i11) )=
Jj=1 =1 i=1

n—k k
n
= ||1 (2J1)l[ (21-2)
(k):UQ j=1 +yx =1 / +y ) )’

which leads us to the specialized formula

n—Fk k—1

Py (X(n—ty () %5 @) = @ (g + 1) (Z) [Ta+¢HJa+4¢". (11)

q* j=1 I—1

Otherwise, if ¢ is smaller then n but odd, supposing i = 2k + 1, a very similar
computations gives the formula

Pw (X (k) (n—k) T, Y) =

ﬁ 1+ yz-1) n— ky2+y 2(21-2) ﬁ ,
- = —a:
— p2(n—k—j+1 2(k—1+1)
7=1 L — a2 i =1 1- i=1
n k . n—k
(1) TT+uet ) II67 + -2
=1 =1

so that
1

k k—
k) — n
Pw (X(k)(n—t) € @) = ¢*F) 1(qul)(k> 4H (1+q% Y J] a+¢"). (21.2)
7 j=1 =1

n—

For 2w, we have to distinguish two cases, depending on the parity of n. We recall
that if n = 2k, the zero weight space VQ(Ln is isomorphic to the representation x(x))-
Otherwise, if n = 2k + 1, it is isomorphic to x(x),(k+1)- The polynomial Py (x, ¢%,q) has
then the following form:

k k—1
B 2% a B
P (X @5 0) = Mg +1) ( i ) ) [Ta+¢"H]J[a+e"™), (2.1.3)
a j=1 =1

k k
_ 2k +1 - _
Pw (X(ky (ki 1), 0% 0) = @ FFD g + 1) H(l + Y71 H(l +¢* . (2.1.4)
k q4 j=1 =1
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2.2 The minuscule recurrence.

Let us start considering the recurrence 1.4.3 and make the evaluation ¢ — —¢q and
t — q%. We recall that in this case p = %2(271 — 2j + 1)ej, the small weights are of
the form w; = e; +---+e¢; for i <n and 2w, =e; + --- + e,. Moreover we can choose
w = ep as minuscule coweight, thus for all non zero small weights A of B,, the inner
product (A, w) is equal to 1. If we set A\ = wy, Stembridge’s recurrence 1.4.3 becomes
consequently:

l k
37 Cun Y (gTHewe) 4 gt+2ewie)) — g, (2.2.1)
i=1 =1

A similar results with the index of the second sum running from 1 to n holds for A = 2w,,.
We consider now, instead of the above recurrence, the one where all the C), are in reduced
form. Such a recurrence is then of the following form:

Y Th(@)Culg) =0 (2.2.2)

P

for some coefficients Ff;(q) (denoted respectively as T'¥ if A\ = wy, u = w; and as T?

if A\ = 2w, u = w;). We will refer to this recurrence as the reduced one. Our purpose is
to make more explicit the coefficients of the polynomials C), using the combinatorics of
the Weyl group.
Remark 2.2.1. The weight appearing as index of the polynomials C, in 2.2.2 are the
ones smaller than ) in the dominance order. Then if A\ = w, in the reduced reccurence
appears the C, indexed by the weights 0 and w; with < < k. In the case A = 2w, all the
Cy,; with 7 < n and Cy,,, appear.

Set

1_q2m

Cm =7 qqu2n+1(1 + gt (2.2.3)
ont2l — g*" 2

Proposition 2.2.2. Set A = wr or A\ = 2w,. The coefficient of C) in the reduced
TeCUTrrence is Cg

Proof. We will prove that C,,\x = C) if and only if w; = id. Let w be an element of
the Weyl Group, first of all observe that the first n — 1 coordinates of wA + p are all
positive independently from the choice of w. Moreover the last one can be equal only
to £1/2 or to 3/2. Then we must obtain A + p from wA + p just by the action of the
Symmetric group .S, and, eventually, by the change of sign on the last coordinate. Now
we have to impose the condition wA + p ~ A + p. If all the coordinates of wA + p
are positive, such coordinates must be a permutation of the ones of A + p, i.e. of the
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vector (2"2“, R 2"722”3, 2”722171, . %) The only way to obtain a coordinate equal to

2t hetween the ones of wA + p is that (wA); = 1. Iterating this reasoning on all the
coordinates we obtain that (wA); = 1 for all j < k (resp j < n) and w have to act
on the fist k (resp n) coordinates as an element of the symmetric group Sy (resp. S,).
Consequently it must be in the stabilizer of A and then be in the same class of id in
the quotient W/Wy. Conversely suppose (wA + p), = —% and let be e; = —w ™! (ey).
Consider \; to be the weight with all coordinates equal to the ones of A, except for
the j-th that we set equal to 0. We obtain that wA + p is the conjugated to wA; + p.
The latter one cannot be conjugated to A + p because we can "add 1”7 at most in k — 1
(resp. m — 1) coordinates and the the resulting weight can not be a permutation of
(2"2+ Lo, 2”_22”3, 2”_22i_1, . %) Recalling that conjugation is an equivalence relation
we obtain an absurd and this case cannot happen.
Now it is easy to compute explicitly the coefficient of C):

F)\ — Z(q*Q(Pvej) + q1+2(pvej)) =
j=1
Z(q—(2n—2j+1) + q1+(2n—2j+1)) _
j=1

7
q—2n+1 Z(QQ]—Q + q4n—2]+1) —
j=1

1—1 %
q72n+1 Zth + q4n+1 Zq72j _
t=0 j=1

—1 —1
—2n-+1 2t 4An—2k+1 27 _
q E " +q || =
t=0 j

Il
=)

¢ -1 _ —2
q2_1q 2n+1(1+q4n 22+1)

O]

We want now to find some similar formulae for the general coefficients T'*. We will
start with the case of coefficient I‘S. We obtain different formulae, depending on the
parity of k (resp. n). To obtain a more compact notation we need some suitably defined
univariate polynomials we are going to introduce now.

Set J(h,k,r) = {((j1,---,Jr)) |R<j1 <jo—1<---<jr—(r—1) < k}. Wecan
then define

r

Plhhkir)= 3 (a+1) 3 (0 +¢726D), (2:25)
jEJ(hok,r) s=1
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Proposition 2.2.3. Set again A = wi, or A = 2w,,. If k = 2s (resp n = 2s) the coefficient
) is equal to

Iy = (-1)°T(1,n,s). (2.2.6)
Otherwise, if k =2s+ 1 (respn =2s+1),

) = (~1)*! K” _j N 1>b1 +T(2,n, s)} . (2.2.7)

Proof. First of all, we want to understand when the weight w;\ 4 p is conjugated to p.

Lemma 2.2.4. Let us suppose w;A + p is conjugated to p. Then

e If k is even then w;A has all the coordinates equal to zero except for k/2 pairs of
consecutive coordinates of the form (—1,1). Moreover w;A + p is conjugated to p
by a permutation o of signature equal to (—1)F/2.

e If k is odd then w;\ has all the coordinates equal to zero, except for a choice of
(k — 1)/2 pairs of coordinates equal to (—1,1) and for the last one that must be

equal to —1. In this case w; A+ p is conjugated to p by a permutation o of signature
equal to (—1)(k=D/2+1,

Proof. As in the Proposition 2.2.2, we observe that the coordinates of w;A + p are all
1

positive independently by w; except to the last one that can be equal to —5. Let us
start with the case where all the coordinates of w;A 4 p ~ p are all positive. In this case
w; A + p is just the vector obtained by a permutation of the coordinates of p. Moreover,
we have some more restriction on the possible values of each coordinate of w;\ + p: the
coordinates of w; A can be only equal to 0 o to +1. Consequently the first coordinate can
be equal to n or n — 1 only. In the first case there are no more restriction on the second
coordinate: iterating the reasoning, it can be equal to n — 2 or n — 1. Otherwise, the
second one is forced to be (w;A 4+ p)2 = n, nevertheless we cannot obtain a coordinate
equal to n and w; A + p cannot be conjugated to p. In other words our request forces
w;A to be of the form (0,)\') or of the form (—1,1,)\”). Iterating the reasoning on X
and N’ we obtain that w;\ is obtained by choosing pair of consecutive indices (k, k + 1)
and setting (w;\)r = —1 and (w;A)g+1 = 1. We have to underline that this analysis
holds only if k is even, and in this case the number of chosen pair is exactly k/2. If k is
odd a similar analysis shows that w;\ is obtained choosing (k — 1)/2 pair of consecutive
indices and setting (w;A)y = —1 and (w;A)g+1 = 1, moreover there is one "unpaired”
coordinate that gives a contribution of +1 to some coordinate. This contribution cannot
be equal to 1, otherwise w;\ + p is not regular. The only possible case is then that its
contribution is on the n-th coordinate: in all the other cases can be checked easily that
w; A + p is not regular. The statements about the signature of ¢ are immediate by the
above construction. O

As an immediate corollary we can compute the number of the weights that give a
contribution to F’g.
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Corollary 2.2.5. Set C’onjgk = {w; |lwjwg + p ~ p}. Then

n—
k’: (§

) if k is even
(") ifk s odd.

(Congy

Proof. By above lemma, the cardinality of Conj{]‘k is equal to the number of choices of
consecutive coordinates between n or n — 1 coordinates respectively when k is even or
odd. We can count the number of these possible choices in the following way: we can
choose k indices from a the set I = {1...n — k} and expand our choices as a pair of
consecutive indices. The assert of the lemma is now immediate. O

The case A = 2w, is exactely the same with n instead of k in the above formulae.
Observe that to each element v € Conji* is a associated a vector of indices (j1, ... js)
such that v;, = 1 for 1 < h < s. We will denote the set of these vectors as J(n, k).
Let us fix one of these vectors, say v = (j1,...Js), and let wwy = 7, € Conji* be the
associated weight. We want to understand which is the contribution of v, to F’g. Suppose
first that k = 2s, by the above lemma we know that w; - (W, -e1) = w; - (e1,...,ex) =
(—€j1s€js41y- - —€jss €jo+1). We obtain that v, contributes to I'f with a term equal to

s

Z |:q2(p’€jt) + q172(pvejz) + qu(pvejrl*l) + q1+2(p7€jt+1)i| —

t=1
s

Z [q2n—2jt+1 I S S q2n—2jt] _
t=1

> g+ 1) [0 4 g2
t=1

Summing up on the vectors v € J(n, k) we obtain that for k = 2s

S
Th=(-1(¢+1) > > (q2(”*jt) + q*2<”*jt>) : (2.2.8)
veJ(n,k) t=1
The case of k = 2s 4+ 1 is very similar, we have only to consider that the last
coordinate of w;wy must be equal to —1 and choose the pairs of consecutive indices
between {1,...n — 1}. To the previous expression we have to sum by, coming from the
contribution of (w;wg), = —1

S

(a+ 1) (29 4 g 2070 by
t=1

=t >

veJ(n—1,2s)

Coarn Y S () (TR

S
veJ(n—1,2s) t=1
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Now we have just to prove that

S

I'(l,n,s)=(¢+1) Z Z ( An=je) 4 ¢=2n= Jt)) (2.2.9)

veJ(n,2s) t=1

and

P@2ns)=(g+1) 3 Z(q ) g2 (2.2.10)
veJ(n—1,2s) t=
We remark that J(n, k) = J(0,n — 1, s) in the even case and J(n, k) = J(0,n — 2, s)
in the odd one. Now our conclusion is immediate observing that if v = (ji1,...Js) €
J(0,n—2,5) (resp v € J(0O,n—1,s) ) thenv' = (n—js+1,...,n—j1 + 1) € J(2,n,s)
(resp. J(1,n,s)).

O
We want now use this proposition to give formulae for generic coeflicient F’g.
Proposition 2.2.6. The coefficient Ff 1s equal to
<n_z_8>ci+f‘(l,n—i;s) (2.2.11)
if k —1i = 2s. Otherwise, if k —i = 2s+ 1 it is equal to
<”_Z:5_1>(c,-+b1)+r(2,n—i;s) (2.2.12)

Proof. Again, we have first of all understand which weights of the form w;w; give a
contribution to the coefficient of C;. Let us denote as

C’onjin’k = {wjwpw, | wjwg + p ~ wi + p}

Lemma 2.2.7. The weight v € Conjin’k gives a contribution to T¥ if and only if

,7: (17"'717’}/)
where v € Conj~ bk
Proof. Again we observe that all the coordinates of v+ p are positive except for the last
one that can be equal to —3 and then we can obtain w; + p just permuting coordinates
and changing the sign to the last one. Imposing v + p ~ w; + p it follows that the first
coordinates of v must be equal to 1. It remains k — i coordinates of v to place in the way
that the last n — j coordinates of v + p, rearranged by the action of S,, and eventually
by the change of sign of the n-th coordinate, are equal to the last n — j coordinates of
p. Considering the immersion B,,_; — B, induced by inclusion of Dynkin diagrams,
this correspond to say that the restriction to B,,_; of 7 is conjugated to 0, or, in other

therms, that ' € Conjy~ b= O
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Now the statement of proposition comes easily from the one for F’g observing that
the single contribution of each vector w;wy is equal to

S

¢+ (-1 (g +1) [q2(n—jt) 4 g 2d0)
t=1

if k—17=2sand to

ci+by + (—1)5tt Z(q +1) [q2(”_jt) + g~ 2An=dv)
t=1

if k —i = 2s4 1. Summing up again on the set Conj?’k and using identities 2.2.9
and 2.2.10 we obtain the thesis. O

Again, if A\ = 2w, all the above resutls holds with n instead of k. For brevity we will
denote with C; the polynomial C,,. We can now write the reduced recurrence in the
following way :

(5]

Cmem = Z (—=1)"Crr—2i-1 ((n a 7Zn * Z) (cm—2i-1+0b1) +T(2,n —m +2i + 1; i))
i=0

(2.2.13)

(3] ,
+Z(_1)Zlc’m—2’b<<n T.n—’_z>cm—2i +F(17n_m+2272)>
i=1

1

The coefficients Ff are now more explicit but less handy for a concrete computation.
In the following proposition we prove an equivalent form of the recurrence with explicit
and compact coefficients.

Proposition 2.2.8.

(] (7]
Cmem = Z Cin—2i41b; + Z Crn—2ibp—m+it1- (2.2.14)
i—1 =1

Proof. We will prove that the coefficient of C;,i < m in the right hand sides of (2.2.13)
and (2.2.14) match. We start checking the statement for the coefficient of Cp.

Lemma 2.2.9. The coefficient of Cy in the expression 2.2.13 is equal to the coefficient
of Cy in 2.2.14.
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Proof. We want to use induction. Assume (2.2.14) holds for Cp,_, h > 1. Then

(== (2521
Cr—hCm—h = Z Cri—h—2i—1biy1 + Z Cr—h—2ibn—mthtit1- (2.2.15)
=0 i=1

First consider the case m = 2k + 1. If h is even, m — h is odd and the coeflicient of Cj
in (2.2.15) is b(yy—p—1y/2- If b is odd, m — h is even the coefficient of Cp in (2.2.15) is
bnt(m—h)/2+1- Substituting into (2.2.13), the coefficient of Cj is
(1) ((" S k) bi+T(2,n; k)) +k§(—1)s <" mt S) br—kt 541 +§:(—1)’“‘1 (" e T) (-
kj o 5=0 § r=1 r

(2.2.16)
We want to show that this coefficients equals byy1, which is the coeflicient of Cy in the
right hand side of (2.2.14). This is in turn equivalent to prove the following equality.

k—1 k—1
n—2k—1+s n—2k—1+r
I'(2,n;k) E S+k+1( >bn k+s+1+§ T+k< >bk—r+1~

s=0 5 r=0 "
(2.2.17)
Set ¥ = (q + 1)(¢*" 2 4 ¢>~?"), we remark that the following relation holds
n—k—2
I'2,nk) = ko1 U+T(2,n—2;k—1)+T(2,n—1;k). (2.2.18)
Since ¥ + b,,_1 = b,, we have by induction
I'2,n;k) =

n—k—2
W
("5 )
_92 k—2

s —2k—-1+s yr n—2k—-1+r
+ (_1) +k< s )bn k+s T Z +k+1< r )bk—r+
r=0

e

D

s§=

k—1 k—1
Z e n—2k+s—2 Z pakfm—2k+1—2
+s +k+1( s >bn_k+s+r:0(_1) +k< r >bk_r+1 N
n—k—2 n—k—3
v by —

k—2
—2k—1+s n—2k+s—2
1 s+k n _ B
+ZO( ) << s ) < s >)bn k+s

S=

k—1
- n—2k+r—2 n—2k+r—2
—1)kbk+1 + Z(—l) +k (( r—1 > + ( >>bkr+1 == (*)
r=1

Now using the well known identity (ZE) ( ) + (3) we have:

k—
n—k—2 n—k— )5k n—2k+s—2
(*):< E_1 )bn_< E_9 ) n— 1+z:: < s—1 >bn—k+s+
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k-1
ar(m—2k—=1+7r
+» (1) +k( . )bkr+1
0

r=

k—3
n—k—2 n—k—3 sikt1(n—2k—1+s
< b1 >bn < 9 >bn1+;( 1) 5 bn—kts+1+

k—1
ar(mn—2k—=1+7r
+Z(—1) +k( >bkr+1 =

r

r=0
k—1 k-1
n—2k—1+s n—2k—14r
(- RS N Jours
S r
s=0 r=0
Now assume m = 2k. Proceeding as above, the equality to prove is
k—1 k-1
_ s1({n—2k+s Af(n—2k+r
bn—k+1 = (_1)k 1F(1,7’L; k) + Zl(_l) 1( s )bn—k:+s+1 + Z_(:)(_l) ( r )bk—r
(2.2.19)
or
k—1 k—1
4f({n—2k+s n—2k+r
L(1nk) =Y (~1)F* 1( )bnmﬂ + Z(—D’“*’”( )bkr
S r
s=0 r=0
As for (2.2.18), we have
n—k—1
I'(1,n;k) = ( b1 >\IJ +I'(1,n—2k—1)+I(1,n— 1;k). (2.2.20)
Again we have by induction
I(1,n;k) =

k—2 k—2
n—k—1 n—2k+s n—2k+r
NG —1)5tk by —1)rtkFL bl—
(e e e (T e+ A [

s=
k—

k—1
s n—2k+s—1 pat (M —2k+1—1
+ (_1) +k+l< )bnkJrs + § (_1) +k< )ka _
0 r=0

—_

S r

S=

k—2
n—k—1 sik( (n—2k+s n—2k+s—1
< k— )\IJ_‘_;(_l) << s > < s ))bn—k+s+
TN .
E—1 n—1
k-1
—2k+r—1 n—2k+r—1
‘1‘2( ) (< . >+< 1 >>bkr+( )" by,

r=1
k—
n—k—1 sakf(n—2k+s—1
< E—1 >\II+ 0( 1) ( s—1 >bn—k+s

s=

[asry
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k—1
n—k—2 n—2k+r
B _1r+k B _lk’ _
+( L1 )bn1+§( ) ( . )bkr+( )"br =

k-3
n—k—1 n—2k+s
( )‘I’ + (—1)S+k+l< 5 >bn—k+s+1

k—1
n—k—2 rak(m—2k+r B
+< E—1 >bn—1 + ;_0(_1) < r )bkr - (*)

and again recalling the properties of binomial coefficients and using ¥ + b,,_1 = b,, we
have

_(n—k-1 n—k— s n—2k+s
(*)—( E—1 )bn_< k9 >n1+z s bn—k+s+1
k—1
)k n—2k+r b
+; < r k—r

—2k+s n—2k+r
-1 k+s—1 bn s k‘-H" b .
(1) < ) kts+1 T+ Z . k

S

kol
—_

@
I
o

O

Now we want prove the equality for the other coefficients. We start identifing such
coefficients in the equation 2.2.13 where we have substituted C,,,_p¢,,—p with the corre-
sponding expression 2.2.14.

(75 )
fn—m-+1 n—m-+1
Cmem = Z (—1)Z< . )Cm 2—1Cm—2i— 1+Z < )Cm—2icm—2i+

(4 1

1=0
[m 1
n—m-+1
+Z 21(< ; )1+(n m + 21 + z))—i—
3
+) (—1)Ch oD (1,n — m + 2i34) =
=1
(754] S (752 [m=2i=d]
Z (_1)Z< i > Z Crn—2i— 2Jb + Z Cm72i72jflbnfm+2i+j+2 +
=0
[%] . n— i M} [m 21]
+ (_1)1_1< i > Z Cm 21— 2j+1b + Z Cm 21— Zjbn m+2i+j+1 +
i=1 j=1 Jj=1

+ Z (—1)icm_21'_1 <<n ?+Z>bl +F(2 n—m+22+1 Z)> +
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(%]
+) (=D (1,0 — m + 2i51).
1

w[3

.
Il

Now set m — h = 2s, then the coefficient of C}, in the above expression is

m—l m 21

T e

=1

by

m—1 —24
2 2 i1 fm—m-+1 o
+ > (—1) 1( i )bn_h_j+1+(—1) D(1,n — h,s)

i+j=s i=1 j=1

Otherwise if m — h = 2s + 1, the coefficient of C}, is

1

L3 1= 5 . n—m-+1 n—m-+s
Y 0 (T Y e (T e i)
L

We can rearrange the indices observing that the conditions on j are redundant,
obtaining that coefficients are

fn—m-+1
(=1) ( ) )bnhj+1+

Y (n,m,h) =
s—1 . s—1 -
S (-1 (” —me ) bos + S (1) (” e ) bonseion + (1T (Ln— hys)
i=0 t i=1 L
for m — h = 2s and
v (n,m, h) =
s—1
n—m-41 n—m-+1
;(—1) ( ; >bn h—stitl + 2 < ; >bs—z’+1+

(1) ((” o + 5) by +T(2,n — h; s)>

for m — h = 2s + 1. Observe that both 4 and 'yff, with s fixed, are invariant for
translation:

VA, m,h) =P n+1,m+1,h+1)
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On the other hand, for fixed s, the same hold for coefficients b, s+1 and bsq1.
We want prove

bn7m+s+1 = ’Yp(na k? h)
bsr1 =% (n, k, h)

By translation invariance we can then reduce to the case h = 0 that we have proved

in Lemma 2.2.9.
O

2.3 Proof of Reeder’s Conjecture for B,

We are now ready to use this new formulation of minuscule recurrence to prove
Reeder’s Conjecture.

Remark 2.3.1. The Poincaré polynomial for the graded multiplicities of trivial repre-
sentation is well known: it is the Poincaré polynomial of the cohomology of SO(2n +
1). Moreover, V,, in this case is the little adjoint representation an the polyonomial
P(V,,,Ag, q) can be easily computed using the results in [37].

It can be checked by direct inspection that the Reeder’s Conjecture holds in this two
cases. We can then apply induction using (2.2.14).

Theorem 2.3.2. Set h =n—m/2 if m is even and h = (m — 1)/2 is m is odd. Then,
if h <mn,

h —h—
n H ; H _ n—h)—
' = (h) ) (1+q4j 1 1+q4r 1 ( h) +q2( h) l). (231)
q 7j=1 r=1

Proof. We start with the even case: m = 2k; first we write (2.2.14):

k k—1 k—1
Crnem = 202 iy+1bi + Z Cothiybn—sbtitt = ¥ Cojrbe—j + ¥ Cojbn_r—ji1.
= §=0 §=0
(2.3.2)
Set, for h > 0,
g - Jmel)p o A+ ¢ DI A+ ¢ g+ 1) for h>0
- q2H T+ (g +1) for h=0
Recalling (2.2.4), and using by induction 2.3.1 we have, for h > 0
Cont1bi—n + Copbn_g—nt1 = Sp | (1 + ¢*" 1) 2R+ (1 — g1 h=h)=2) (2.3.3)

+ (1 + q4(n7h)71)q4h+2k72n71(1 B q4(nfk:fh+1)72)
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— Sh(q4h - q4(n7h))(q2n72k + q2k72n71)
If h =0 we have
Cibg + CObnkarl =5 q2n72k+1(q + 1)(1 _ q4k72) + (1 + q4n71)q2k72n(1 _ q4n74k+2):|

4n+1)(q2n—2k T q2k—2n—1)‘

= So(q —q

Hence, if we set P, = Su(¢** — ¢*™M), h >0, Py = So(q — ¢**!), we can rewrite
(2.3.2) as

k—1 k—1 k—1
Cmem =Y Cojibr—j+ Y Cojbnijp1 = Y P)(@ 2 + 7271 (2.34)
=0 =0 h=0

Now, by induction,

k—2
Cop_oCol—o = (Z Py) (g2 22 4 2k—2n=3)
h=0

and substituting into (2.3.4) we obtain

k—1 k—1

Cor—2Cak—2 -2k | 2k—2n—1
ZCQjJrlbk—j + Z Cojbp—k—jy1 = (Pe—1 + i q2k_2n_3)(q " g .
j=0 J=0

Now
L—g™* 0 An—4k+5 1= g™ ok onoki2 | k203
k2= 5¢ (") = T T ),
—4q 1—gq
whence ha
Cok—2 _ 11— g2

222 | g2h—2n=3 1— ¢2 ’
and in turn
k—1 k—1 Ak—4

1—gq _ _ —on—
> Cojpabrj+ > Cojbp g1 = (Por + Cok—2—— 5 Z ¢ (@ ),
=0 =0

Now observe that

1—q* —2n+1 An—A4k+1 1—qg** 22k 2k—2n—1 2n—2k
q (1+gq )=——5 (q +q")

R 1oy

so we are reduced to prove that

CQk(l _ q4k)q272k — (1 _ q2)Pk71 + 02k72<1 _ q4k74>q472k. (235)
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Divide both sides of (2.3.5) by ﬁ(kfl)qzl H;‘;f(l + ¢ OIEZ2(1 4 g7 (g +1). We
get, for the r.h.s.

q(l + q4n—4k+3)(1 _ q4k—4) + (q + 1)(q4k—4 - q4n—4k+4) =g+ q4k:—4 _ q4n o q5—4k+4n _

q(l + q4k75)(1 _ q4n74k+4)
and for the Lh.s
q(l + q4k75)(1 _ q4n74k+4)

So equality (2.3.5) holds and the proof is completed in the even case.
Let us pass to the odd case, m = 2k + 1. After a suitable changes of variables we
have

k k-1
Cokt1C2k+1 = E Cojbr—jy1 + § Cojy1bp—p—;
Jj=0 j=0

Let us look at
Cont1bn—k—n + Copbr_p41

From Formula 2.3.3 we immediately deduce that for h > 0,

Cont1bnk—n + Conbp—ns1 = Sp| (1 + ¢*" 1) (1 — g*n=F=1)=2)
(14 q4(n—h)—1)q4h—2k—1(1 _ q4(k—h+1)—2)]
= Su(q™ — "M (@ + )
For h =0,
C1by—i + Coby1 = So [Q%H(q +1)(1 = ¢* ) 4 (14 ¢ (1 - q4k)+2)}
= So(g — ¢" )N + ¢,

Now we know that

k—1
CZkCQk: — (Z Ph)(an—2k + q2k—2n—1)
h=0
and also "
C2k 1—q™" o o

g2k hme1 T g2 4
Thus we deduce that

q4k 2—2k(

1-— —9k—
Cokt1c2k+1 = Copbr + 021@1_7(]261 2

q2k’+q

Multiplying by 1 — ¢* we get

C2k+1(1_q4k+2)q72n+1<1+q4n74k71) — C2k((q+1)(1_q2)+(1_q4k)q272k(q2k+q72k71)) —
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Cor(¢* + ) (g — ¢%)

It this then a simple computation that if we assume the formula for Cy;11, we get that

Coprrcani1(l — ¢%) = Cor(¢* + q) (¢ — ¢*).

O
Note that (2.3.1) can be rewritten as
Cony1 = (") ﬁ 1+ g% ﬁ 1+ ¢ Hm =1 (g + 1) (2.3.6)
2h+1 h i q 1l q q )
—k k—1
C2k—< ) H (1+ g% H " H* g+ 1). (2.3.7)

Making a direct comparison with the formulae 2.1.1, 2.1.2, 2.1.3 and 2.1.4 we obtain
immediately that the Reeder’s conjecture is verified for odd orthogonal groups.



Chapter 3

Reeder’s Conjecture for
Symplectic Groups

The aim of this chapter is to present a complete proof of Reeder’s Conjecture for Lie
Groups of type C. First of all we will list the small representations for C,, and then we
analyze the structure of their zero weights space as representation of W and find some
close formulae for polynomials Pyy. After that we deal with quasi minuscule recurrence,
using some symmetries of the set of weights involved in Stembridge’s formulae to reduce
the associated triangular system. The non-irreducibility of zero weight representation
V/\O if A = w1 +wagt1, leads us to subdivide the proof in two different cases with different
combinatorical aspect.

3.1 Zero weight spaces in Small Representations

In this section we summarize what has been stated in Chapter 1 about small represen-
tations of Lie algebras of type C' and give explicit formulae for the Poincaré polynomials
of graded multiplicities of zero weight representations. We recall from Table 1.3 that the
small weights representations for C,, are of two different kinds:

o Type 1 V) with A = wo; = e1+---+eg;. In this case the zero weight representation
is irreducible.

o Type 2 V) with A = wy +wai41 = 2e1 + - -+ e2;11. The zero weight representation
splits in two irreducible representations.

A very simple remark about the (dominant) ordering of this weights will be very
useful when we will work with Stembridge’s recursive formulae:

Remark 3.1.1. The weights smaller or equal to ws; in dominance ordering are 0 and the
ones of the form wy; with j < 4. The ordering is more complicated for weights of the
form A\ = wy + W2i41:

25
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If n = 2i 4+ 1 then p is smaller than A if and only if 1 = wo; with j <ior u =0 or
B= w1 + w241 with j < 1.
If n > 2i + 1 to the previous list the weight wy(;1 1) should be added.

We now want to compute Py (, s, t) for these representations.

3.1.1 Kirillov-Pak-Molchanov Formulae

As we have remarked in the Chapter 1 we have the following description of the zero

weight space as W representation in the case A = woy:
0 )
Vine = T((n—h%).0)-

As a consequence of this description we can recover the rational function 7(V{, s, t)
as described in [18] using the formula 1.2.3.

We are interested to closed formulae for specializations in (g, ¢?) of the polynomials
Py (V) ,s,t) (i.e. the rational functions 7(V,2, ,s,t) multiplied for ], (1 — %), c.f.r.
1.2.2). We are going to denote these polynomials by the more compact notation Cy ,,(q)
or Ci . Using the formula 1.2.3 we have

Crn(q) = F(T((n-t)0)) (0 ) - [ [ (¢ + 1) =

=1
A(n—2k+1) n—k k—l
4k—1 n (q 4i-1 | 4i—1
" (g + 1)<k> 4 (A =k D) H (¢ +1)
q =1 z:l

Using this explicit formula we obtain that, fixed a value for n, the polynomials Cy, »(q)
with 1 < k < [n/2] are linked by the following relation:

c (q) e (q) q4(q4(nfk+1) _ 1)(q4(n72k71) _ 1)(q4k71 + 1)
k+1n k,n (qXF+1) — 1)(gAn=2k+1) — 1)(g4n—k)=1 4 1)

(3.1.1)

The formulae are more complicate when VY is not irreducible (i.e. when A = wy +
woi+1 and 7 > 0). In this case we have to consider the sum of two 7 rational functions.
We recall first of all that

0 ~
Vortwar, = T((n—k=1,k),(1)) © T((n—k—1,k,1),0)

We have to compute 7 for each irreducible component using again formula 1.2.3 and
then sum up the two corresponding polynomials.

We will denote the polynomials Py (V,, b, it
just Cyy, if the n is fixed or the context is clear)

Differently from the previous case, the recursive relation between the polynomials
Co,n are less compact and more difficult to handle.

It is more convenient to highlight the relations linking Cy;,, with polynomials Cy,

) more compactly by Co|; (s,t) (or
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We start defining the polynomial Py ,, as

Prp = (t+ s)(20 D )2+ 1) 4 (1% 4 st) (1207F) — 1) — 1)

We obtain the following formula for Cy;(q):

C2|k,n(s>t) =
i 1(t2i - 1) i Pk,n

)

H?z_lk_l(l + St2i71) . Hle(tQ + St2i71) .
H(n—k,k+1)(1 -2

Here H(n, k) is a compact notation for the polynomial [, ;(1 — £2h(i.0))

where (7, j) denotes the box of coordinates (i, 7) the partition (n, k) read in English
notation.

We can rewrite the explicit formula for the non specialized Cy, ,, in the following more
compact formula

H?z_lk_l(l + Stzwl) X Hi:-ll(tQ + st%*l) i H?:l(l _ t2i)
Hn—k—1,k+1)

Ck+1,n<87 t) -

H;L:_lk(l + 8t2i—1) . H?:l(t2 + St2i—1) . H?:l(l _ tQi)
H(n—k,k)

Ck,n(s, t) =

Remark 3.1.2. The following relations between the H(n, k) polynomials hold
(t2(n—2k—1) _ 1)(t2(n—k:+1) —1)
(t2(”’2k) _ 1)
(t2(nf2k+1) _ 1)(t2(k+1) —1)
(tQ(n—2k) _ 1)

Hn—kk+1)=Hn—-k—-1,k+1)-

Hn—Fk,k+1)=H(n—kk)-

As an immediate consequence we obtain the announced transition formulae. The
first one is from Cgy1 to Copp

Crk1,nPrn H(n—k—1,k+1)
Aen = (12 L1 —42)  H(n—k,k+1) (381.2)
Ck+1,nPk'rL (t2(n72k) — 1)

(12 4 st2R+1) (1 — 12) ($2(n—2k—1) _ 1) (¢2(n—k+1) _ 1)

and the second one from Cy,, to Co

C B Ck,npkn . H(n B k’ k‘l) _
b = s20-R-1y(1 —2) H(n—k k+1)
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Ck,npkn (t2(n72k) — 1)
(1 4 stQ(n—k)—l)(l _ t2) (tQ(n—2k+1) _ 1)(t2(k+1) _ 1)

In the following sections we want to deal with the specializations of polynomials Cy,
and Cy;,, that satisfies Stembridge’s recurrences presented in [37]. We want to prove
first of all that Ck, = Cgp and then Cyp, = Cypp - Both proof work by induction
showing that the relations between C-polynomials as stated above are satisfied by the
polynomials Cy ,, and Coyp, .

3.2 Case 1: Small weights of the form wo;

Before starting the proof of the Conjecture we have to point out what happens to the
quasi minuscule recurrence 1.4.4 in our case. After that we have to deal with the problem
of solve a triangular system of equations with coefficients in C[g,t]. The combinatorial
structure of these coefficients will help us to find a two terms recurrence that solves our
problem.

3.2.1 The recurrence for the C)(q,t)

Set A = wor. As we have seen in the Chapter 1, Stembridge proves the following
recurrence:
S [t =l )] Cunintat (3.2.1)

(1,B) 120

where w is a quasi minuscule coweight, (i, 3) are element of the set {(wA, wé)|w €
W, wh > 0} and the rational functions fiﬁ are defined by the following generating
polynomial:

(1—t2)(1 = qt2)((p, BY))z. = 3 _ PP (g, 1),

120

In our case the weight A = w9 = €1 + -+ + eqk, the root 6 is equal to 2e; and
w = 0V = e1 is a quasi minuscule weight. The recurrence above the can be rewritten in
the following form:

>3 [ Han - aff @] Cumiey (a.0), (3.2.2)

(u,2e5) 120

where we denote with flj the rational function ffej defined implicitely as above.

Remark 3.2.1. The C, appearing in the above recursion are not in general indexed by
dominant weights. They can be reduced in the form eC,, whit v integral dominant weight
and € € {£1,0} following the rule 1.4.1. As remarked in 3.1.1, in the recurrence for woy,
appear only the C,,,, with 0 <h <k.
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Now, suppose to reduce in dominant form each C,, in the equation (3.2.2); we want
to investigate the coefficients of each C,,,, in the recursion. Set B; = (p,e;) =n—j+1.
We can give explicit formulae for the rational functions f as follows:

e Casei=0. We have fg = 1/t5i,
e Casei=1. In this case fJ = (t2 — (q+ 1)t)/t5i,
e (Case2 <1< Bj—1. We have

FI = (B2 = (q+ 125 4 q2142) 1B = [2172(t — q)(t — 1)] /5,

Case i = Bj. We have fé]_ = (—(q+ DBl 4 qtBi=2),
. . y _ B
e Casei = B;+ 1. In this last case fjjgj_H = qt~i.
So we obtain explicit expressions for the coefficients Fz] = ff(q, t) — qff(q_l, t=1):
J 1 B;j
Fy(g,t) = i L

(t—(¢+1))

j t .
Fl(g:t) = gla—aqt —1) -t —37—>,

; [2i-2 4B,
Flan=t-o6-1 (T - ).

A 2B —1) th  t(t—(¢+1))
J —
FBj (q7t) - tBj (q - qt - t) - tQ(Bj_l) t2 )
; 1
B.
Féj+1(Q7t) = qt - tBj .

Remark 3.2.2. 1f we set A(i,§) =n —i— j+ 2 we have F/ = —Fi(ij). In particular if
A(i, j) = i we obtain FJ = 0.

Now we want to investigate the coefficients of the generic polynomial C, in the
recurrence. Let us fix n and set as above A = wy. Set

Tid = {(wh,e) w e W, e € {£1} | wer = €5, Cur_2ie,) = €Co}
Lemma 3.2.3. We have a bijection between Ty and VA

This bijection sends a pair (w, €) to a pair of the form (w'\, —e¢).

Proof. Let (i1, ..., pn) be the coordinates of wA. By definition of '’ we have pyj = 1-2i.
We define

[ ifh#j
W pu—
(1) {1—2(n—j—i+2) if h=j
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It follows immediately from the definition that ¥(u) + p differs from p + p just for
the j-th coordinate which is equal to

n—j+1-2n+2j+2i—-3=-n+j+2i—-2=—-n—j+1)—(1-2i)=—(u+p);

Actually (¥(u), —€) is an element of T’ and we can complete the proof observing that

the map W is an involution. O

Substituting the polynomials C), in their reduced form, we can rewrite 3.2.2 as

k

Z Af ’ncwzi

=0

for some polyonomial coefficients Af" We will use Lemma 3.2.3 and Remark 3.2.2 to
give a first simplification in the explicit computation of these coefficient.

Let J be the set of pairs (¢, ) such that 1 < j <n and i < B; + 1 and let I be the
subset of pairs such that ¢ Zn —j — i+ 2.

By the remark 3.2.2 and by the definition of fij , those are exactly the pairs (i, j) that
can give a non zero contribution to a coefficient in the recurrence.

We can partition I in two subset I’ and I” in the following way

I'={(i,j) |i<n—j—i+2},

I"={(i,j) |i>n—j—i+2}

The generic coefficient AF™ of the polynomial C', can then be written in the following
form

A= D BN = 0 FIY

(i5)el’ (@5)el”

This expression by Lemma 3.2.3 can be written as

b= 3 RN =R = 3 (R - R) NP =2 3 FIr)
(ij)el’ (i.5)el’ (i.5)el’

Without loss of generality, we can then consider only the contributions to A],f’n given
by the pairs in I’, i.e. we can suppose i <n — i — j + 2.

This simplification implies that 2i —1 < n — j + 1 = p;. This very simple remark
leads us to the recursive relations between the coefficients A&'™ we were looking for:

Fix i and j and suppose w(e1) = e;, one can observe that the coordinates of wway, —
2ie; + p have modulus smaller or equal to 1 except for the j-th coordinate which is equal
to 1 — 2i. Now, let fix only i and consider j = max{j|i <n —j —i+2}. We have
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0 <n—j+1+(1-2i) = pj+(wwop—2ie;); < pj+(wwap—2iej); = n—j+1+(1-2i) Vj < j

This implies that, for the pairs in I’, the coordinates of wwg, — 2ie; are all non
negative and the reduced form of wa%,giej in our case can be computed just by the
action of the symmetric group on wwqok — 2ie; + p.

Let us start the explicit computation of the coefficients Ai’n with a general remark.

Remark 3.2.4. Set A = wyy, and suppose w(e1) = e;. If wA—2ie; is conjugated to wap,, we
can write wA — 2ie; 4 p in the form ((wzh +P)o(1)s -+ -5 (Wan + p)g(n)), i.e. a coordinate
permutation of the vector (n +1,...,n—2h+2,n—2h,...,1).

If follows from our assumption on 4 and j that (wA — 2ie; + p); > p; only if t # j
and (wA); > 0. Then, to obtain a contribution to the coefficient of C,,,,, the first 2h
coordinates of wA — 2ie; must be equal to 1.

2h

As an immediate consequence of this observation we obtain that the only contribu-
tions to the coefficient of C,,,, in the recursion (3.2.2) for A = wy; come from the case
i = 0. More precisely, w(wsr — 2ie1) + p must be equal to wor + p and this implies
1 = 0 as stated above, but also force w to be a permutation of the first k£ coordinates.
On the other side, if w is a permutation of the first k£ coordinates and i = 0, we have
w(wa — 2i€1) + p = wap — 2iey(1) + p = wak, + p.

This immediately implies that the pair {(u,e;)} appearing in the quasi minuscule
recurrence (3.2.2) and giving contribution to Az’" are all of the form (wo,e;) with
1 <75 <2k and that

2k 2k
. 1 ) tQk—l _ t?n tQk -1
AZ,TL _ 2 :Fé,n _ z : < _ qtn1+1> — ( q )( ) (323)
=1

— n—i+1 tn+2k—l(t _ 1)

If we analyze the coefficient Az’n, it is harder to find an equivalent explicit closed

formula but we can use Remark 3.2.4 to obtain relations between the Az’" coeflicients .
First of all, we need to prove an useful Lemma.

Lemma 3.2.5. Consider a dominant weight \ of the form A = woy,. Let w be an element
of the Weyl group W. Then:

1. wA+ p is conjugated to p if and only if the 2k non zero coordinates of wA are pair
of consecutive coordinates ((wA)(;), (WA)(jy41) of the form (—1,1).

n—k)'

2. The number of weights wA such that wA + p ~ p is equal to ( i

3. If wA is conjugated to 0, then there exists a permutation o € S, of length l(o) = k
such that o(w\ + p) = p.
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Proof. 1. First observe that (w\); can not be equal to 1, because in this case the 1-st
coordinate is equal to n+1 and wA+ p is not conjugated to p. If (w\); = 1 we have
(wA+p)j =n—j+2, but in wA + p must appear a coordinate equal to n — j + 1.
This can be obtained or adding 1 to the j 4+ 1-th component or adding —1 to the
j — 1-th component. In the first case the fact that w\ 4+ p must be regular forces
to have (wA), =1 Vh > i and w\ + p cannot be conjugated to p. The second case
is exactly the thesis.

2. We have to count the number of placements of k pairs of coordinates in a vector
of length n. This is equivalent to choose k coordinates in a vector of length n — k,
doubling the chosen ones. The number of this choices is exactly equal to (”;k)

3. If {((wA)hy, (WN)hy41), - -5 (WA, (WA)p,+1)} are the pairs of coordinates as in
(1), to prove (3) we can consider the permutation o = []%_, (hi, hi +1).
O

Example 3.2.6. Consider the case of we € Cy. In this case the weights wws conjugated
to 0 are (—1,1,0,0), (0,—1,1,0) and (0,0,—1,1).

As observed in 3.2.4, the weight w(war — 2ie1) + p must be conjugated to wap + p
by a permutation o € S,,, furthermore the first 2h coordinates of w(wgy) must be equal
to 1. Now, to understand more about the pairs (wway, ;) that give contribution to the

coeflicient AZ’” in 3.2.2, we have to analyze two two cases:

e Case 1: w(l) = j < 2h. This case give a contribution to the coefficient only if
i = 0 because, as just observed, (w(war — 2ie1); = (wax); — 2ie; must be equal
to 1. In this case wwyy is of the form wop + wr, where v is the vector that has
coordinates equal to 1 from the 2h 4 1-st to the 2k-th entry and zero elsewhere.
This weight corresponds to the weight wy(,_p) when contracted to the subalgebra
Chr—an — Cy, where the restriction is induced by inclusion of Dynkin diagrams.
Furthermore wv + p must be conjugated to p and the same holds for the projection
to C,_op. Using the Lemma 3.2.5 we know that the number of different weights of

the form wv is, in this case, equal to (("_22):]5]“_“) = (";’j;k) The contribution

core (U ),

o Case 2: o(1) = j > 2h. In this second case the first 2h coordinates of wwoy, are all
equal to 1, then wwor = wop, + wr, where v is defined as above and wv, projected

on Cp,_op is such that (wv)sep + pp—p is conjugated to p,—op. This second case
h,n—2h

to Az’n is then equal to

then gives a contribution equal to A’g_

Summing up what we have just observed we obtain the following recursive formula

2h
Ao _ Ak—h,n—2h k—h j(n—h—k\ _ AE—hsn—2h ket g (T h—k
o =g +(-1) ZFO e_p ) T o +(=1) h k—h
i—1



33

Finally, we want produce a recursive relation for the coefficient related to the weight 0.
Remark that, if h = 0, we can obtain the coefficient Alg’n as the sum of the contributions
obtained fixing a value of i. In other words, we have

i [n/2] i
Ag" = Z Agi™
i=0

We want use the Remark 3.2.4 to find a recurrence relation for the i-th contribution.
Let fix i > 0, we start describing the set Flg:i" = {w(\ —2iey) | w(\—2ie;) 4+ p ~ p}.
Again, we have to consider some different cases:

o Case 1: p € FIS’? and p; = 0. In this case p can be contracted to a weight
/ k,n—1 ’
pe Ly
e Case 2: u € Flg’? and gy = —1. The condition w(A — 2iey) + p ~ p forces uy =1
and g is of the form (—1,1, '), where p/ is a weight in Fg;l’ nl

o (Case 3: p € FIS? and p1 = 1 — 2i. First of all suppose k = i. In this case there is

only one weight with this property, that precisely is the weight (1 —2¢,1,...,1).
If k > i we obtain that p must be of the form (1 —24,1,...,1, ') where y is such
that 1/ + pn—2i ~ pn—2i.

In the first case we obtain a contribution to Ag;" equal to Ag;”_l, in the second case
it is equal to —Ag; Ln=2 and in the third case, using again what we have proved in the
—(k—2i)

Lemma 3.2.5, the contribution is equal to (—1)k*i+1ﬂ1’”(("72i]1_i ). Summarizing

we obtain
k,n _ Ak,n—1 k—1,n—2 k—itl oln (T — i—k
Ao =Ny — Aoy + (=), < b

If ¢ = 0 the recursion for the coefficient must be treated differently. In fact for A]g’on
the case 3 discussed above does not appear. It is substituted by weights of the form

wX = (—=1,1, ) where w(1) = 2 and p/ + pp—2 ~ pp—2. Using again Lemma 3.2.5 we
obtain that the contribution of these weights is equal to (—l)kFg’n(n;le). We can now

. . k,n
compute a recursive expression for Ay, :

k, kyn—1 k—1,mn—2 n—k—1
Ao,on = Ao,on — Moo s (1)kF02< E—1 >’

and finally sum all the contributions obtaining

k .
k,n k,n—1 k—1,n—2 n—k—1 2n —q 1,n n—i—k
AR — Afm=l A +(—1)k< o )FO +) (-1, ( L >
=1

We can summarized what is proved above about in the following proposition.
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Proposition 3.2.7. Rewriting the recurrence 3.2.2 using the reduced form of the poly-
nomials C,,, yields the following equation:

k

Ry, : Z C’wm(q,t)Af’" =0
=0

where the coefficients Af’" satisfies the following recursive relations and closed formulae:

(tQk—l o qt2”)(t2k _ 1)
tn+2k—1<t _ 1) ’

k,n
Ay" =

Az,n _ Algfh,anh n (_1>k,hAZ7n <n ;l_z ; k;))

k .
n n— —1,n— —-k—-1 n i n —71—k
AP = AR AR 2+(_1)k<”k_ >F02’ + 3 (kRS (”k ! )
=1

—1

We end our investigation about the coefficients of the recurrence with the computa-
tion of A[l)’”.

Lemma 3.2.8.
(t—q)t*" 2 —1)
=1t —1)

A" =— (3.2.4)

Proof. If i = 0 we are looking for weights such that w(1,1,0,...,0) + p ~ p. By the
Lemma 3.2.5 these weights are of the form (0...0,—1,1,0...,0), then w(1) € {2,...,n}
and the contribution to Ay is equal to — > g

By a similar argument the weights such that w(—1,1,0,...,0)+p ~ p are again of the
form (0...0,—1,1,0...,0) but in this case w(1) € {1,...,n — 1} and the contribution
is equal to — Z;‘;ll ",

Observing that Foj’n = FOQ’"_jJr2 and Flj_l’n = Fll’”_jJr2 we obtain

n n

1n in |, mi—ln 2 | plj (t—q*"*-1)
Ao :_Z(Fg +F )Z_Z(FOJJrFlJ):_ tn=1(t — 1)

=2 j=2

As a first corollary we can re-prove a known formula (see [37]) for C,,(q,t).

Corollary 3.2.9.
t(t—q)(t*"* - 1)
(1—q>=1)(t? = 1)

ng,n(Q7 t) = CO,n
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Proof. By our computation of the coefficients for the recurrence R; we obtain

(t—q)(t*"*-1)
nL(t — 1)

(1—q® H(E+1)

Ry m

ng,n(Qv t) -

Com =0

which implies the equality stated by the corollary. O

3.2.2 Reeder’s Conjecture for \ = wy

We are now ready to prove Reeder’s conjecture. The conjecture hold for k =1 as a
consequence of the Corollary 3.2.9. We want use an inductive argument to obtain the
general proof.

Notation 3.2.10. Coherently with notation in Section 2, will denote the polynomial
Closyn (g, t) with the more concise notation Cy, ,,(g,t) or by Cj .

In particular we obtain the conjecture as a consequence of the following proposition.

Proposition 3.2.11. Let {R;};< be the set of recursion defined in 3.2.7. Then there
exist a family of integers {Af"}zgk such that

D AR = AP Crn(g.t) + Ay (Croin(@ ) + - + Conl(g. 1))

Proof. Let us start defining the integers Az’". We will use a recursive definition setting:

0 ifh>k
1 ifh=k
Al — 3.2.5
h Al b2 ifk>h>1 (3:2:5)
Zf:z(—l) (nzlll)Ak P it h =1

Aiming to prove Proposition 3.2.11, we can rearrange the expression » Af’nRi

k k i k
Y arn =3 (ary e, ) <3 (S| o
i=1 i=1 j=0 J=0 \=j
k—1
Aknokn Z ZAknAzn jn-
7=0

So we are reduced to prove the following identity

k

kmnin A 1ln—2k42
S AP = A .
i=h

We need now two preliminary Lemmata
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Lemma 3.2.12.

Fll,n—2k+3 + F[)Q,n—2k+3 _i_Fkl,n _ Fll,n—2k+2 + Fo2,n—2k+2.

Proof. First of all we remark that

(t—a)( 2 +1)
mn

"+ Ryt =
By simple algebraic computations we obtain

(t2(n72k+3) + t) (t _ 1)(t2k72 _ t2n72k)

1,n—2k+3 2,n—2k+3 1n _
Fl + FO + Fk - (t - q) tn—2k+3 + tn -
(t— )22k 4 271y (t— (P24 p) Fln=2k+2 | p2in—2k+2

- tn - tn—2k+2 -1 0 :

]
Lemma 3.2.13. Let Alf’" be the integers defined above, then AlZ’n = AZ’R_l + Aﬁ_l’"_l.

Proof. Observe that without loss of generality it is sufficient show the thesis for h = 1.
In fact by the definition we have

o k—h,(n—1)—2h k—h—1,(n—1)—2h - -
AZ,,n:Allc h,n 2h:A1 ,(n—1) —|—A1 ,(n—1) :Ai,n 1+A;<:L 1,n 1.

Now we can write down the expression for A’f’nil and Alffl’nfl using the definition:

k .
A1 _ Z(_l)i n—i—2 AE-1n=3
) - i—1 i—1

i—2
k—1 .
ALl _ i(n—1—2 ph—2m=3
i = Z(—l) i1 i1
=2
and then
Af},n 1+Ai€ 177’1, 1 —
k-1 )
(n—1—2 k—2,n-3 |, 4k—2n-3 n—k—=2\ k1n-3
(—1)’( o ) [AH T AT }+(—1)’“ o Abmln=s
=2

k-1 .
i(m—1—2\ k—1np-2 n—k—2\ k1n-2
(-1) ( i1 >Ai1 +(_1)k< k1 A =
i—2
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where for the second to last equality we used the identity Ak 1 3= 1= Ak 1" 2,
Now we can write

k
n—i=2\ jina_
(G U G M

7

;(_1 [(n_2_1> (n o )] A ln2
k

1—1
k n—1—2\ k_1np-2
AP — Z (2_2 )AZ._I” :

=2

To complete the proof it is enough show the identity

(=1 =2\ k—1n-2
Z(_1)1< i—9 )Ai—l =0
=2
If we translate the index i by 1 setting i = ¢ + 1 we obtain
k—1
Z(_l)t-i-l n—2—-t—1 Ak 1n-2 _
t—1
t=1
k—1
k—1,n—2 n—2—t—1\ r 2,4
At S (T T e ]
=2
Now recalling the definition of Alffl’"fz we remark that
= n—2-—i—1
Akfl,an — 71 - - Ak) 2n 4
1 ZZ;( )’ i1

obtaining the thesis.
O

Now we can start the proof of Proposition 3.2.11 from the case h = 0. We want
prove the following identity:

k

knai,n A ln—2k42
E:Az A0 _AO
i=1

We recall the general form for the zero coefficient from Proposition 3.2.7

k,n k,n— k—1,n— n—Fk—1 n i n n—1—k
Ap™ = AR AR 2+(—1)’“< o )F2 +Z k=Rl ( L )
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and use it to expand the expression Zle Af’"Aé’n.

k k

k .
L - _ R — 7 — 1
Soarmayt o YAkt Sl (M) (R )

i=1 i=1 i=1
k i n—i—j
k, - 1, —i—
AT, n( i i )
=2 =2 J
k ' k ' k ' i1
S - YA (s ) (oo (U )
i=1 i=2 i=1 L
i d n—i—j
k, - 1, —i—
#3 Aoy (M)
=2 =2 J
k ' k-1 k . n i1
S - S () [-at e et (")
i=1 t=1 =2 B
k k N
17 k» - +1
ey [ty ()
Jj=2 1=j
k k k—j+1
kmnopdn—1 1,n—2k+2 1, k, n—25—t+1
YR oY i O I G A
i=1 =2 =1

Where by inductive hypothesis we replaced S ¢} Af_l’n_zAg’n_2 with Aé’"_2k+2.

k k k—j+1 N2 —t4l
k) ‘a -1 1, —2k+2 17 k’ — —
S abap A S S e (M
=1 j=2 =1
k k k—j+1 .

o - itln2) 2 42-t—1
ZAf’nAf)’n 1 _A(l),n 2k+2+ZFj1,n Z Af j+1,n 2g+2(_1)t<n ]t—i-_l > B
i=1 ! —

k

ka 47 _1 1, —2]13-‘1-2 ]_7
St
i=1

Now we use Lemma 3.2.13 to expand Af’"

k k
ko pi,n—1 1,n—2k+2 1n kn—1 k—1,n—1 i,n—1 1,n—2k+2 1n
E:Ai Ag™ = Ao - Fy _E:[Ai + 4 Agm = Ao - B =

i=1 =1
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k—1
ZAkn lAzn 1+2Ak 1,n— lAzn 1 Aln 2k+2 Fkl,n:
=1 i=1

A(l),n—2k+1 +A(1),n—2k+3 - A(l),n—2k+2 o Fli,n _

n—2k+3 n—2k+2

1,n—2k+1 2,5 1,5 2,J 1,5 In _

A - Y BRI+ Y R RY - R =
=2 =2

A(l),n—2k+l o Fll,n—2k+3 o FOQ,n—Zk—H’) - Fli,n

and by Lemma 3.2.12
A(l),n—2k+1 _ Fll,n—2k+3 B F02,n—2k+3 _ Fkln

A(l),nf2k+1 - [Fll,n72k+2 X Fg,n72k+2} _

n—2k+1 . n—2k+2 ‘
-3 [F()?J +F11’J} _ [Fll,n—2k+2 +F02,n_2k:+2} _ [Ff] +F027J} —
j=2 J=2

A(1) n—2k-+2

We can now finish the proof of Proposition 3.2.11 using the case h = 0 to prove the
case k> h > 0.

k k—h k—h
kmnin kn A h+in k,n A h+in kn A hyn
D AN =Y AN = AT+ AT A

Recalling the recursive identity 3.4.5 in Proposition 3.2.7 we can expand AZH’n obtaining

k—h
kn p h+in knahn
D AR 4 APTART =

1

n 2,n— in_Qh_i n n n
ZAMA o (T2 g Al -

kh kh n—92h—i
k—h,n—2h x i,n—2h h, k, i (n—2h — kn |
ZAi AT AR Ah"+z(—1)l( ; >Ah-|T—Lz =
=1 =1
hh n—2h—i
1,n—2k+2 h, k, (n—2h — k—h,n—2h
A" TR AT Ah"+Z(—1)l( . >Ai g ]
=1

Replacing ¢ with t = ¢ + 1 we can rewrite the expression as

1,n—2k+2 hn

k—h+1
—2h—t+1
kn _1)\t—1 k—h,n—2h _
AT+ ;:2( 1) < 1 >A ]
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k—h+1

A TR LA A - N (- (” - th+_21_ - 1>Af__f"”_2h] _
k—h+1t:2
ALP=2RH2 | ph | gl La=2he2 Z (_1)t(n - th+—21_ t— 1) Afh+1,n2h+2] _
= A(l),n—2k+2
where for the last equality we used the definition of Alf_h+1’"_2h+2. O

We are now ready to prove that Reeder’s Conjecture holds for Lie Groups of type C
and small weights of the form woy.

Theorem 3.2.14. In the same notation of Proposition 3.2.11, the following formula
holds:

(t2(n_2k_1) _ 1)(t2(n—k+1) _ 1)(1 _ thk—l)tQ

Crtin(a,t) = (t2n=2k+1) — 1)(2(k+1) — 1)(1 — qe2(n—R)-1) Crn(a:)- (3.2.6)

Proof. By Proposition 3.2.11

A Crrin(a,t) = A" (Crnl(a,t) + - + Conlg, 1))
Multiplying by A[l)’"_%Jr2 we obtain

k+1, ;n—2k
Akii nA(l) n—2 +20k+1,n(Q7 t) -
—Ag" A" T (Chn(g, 1) + -+ + Conlg, 1) =
“AGTEAG T O, ) = AT [AG™ T (Chon(a,t) + -+ 4 Conla, 1)
Now by induction we have

AR (g, 1) = —Ag" 2 (Coin(a,t) + - + Conlg, 1)

and substituting we obtain

AT O (g t) — AT AT (g, t) + - - + Conla, t))] =
A AT, () 4 ARG (1) =
A R

And then

1,n—2k 1,n—2k+2 k,n
AG" (Mg — A

AFFLn g Ln—2k+2 Cin(g, 1)
k+1 o

Ck+1,n(Q7 t) = -
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We have closed expressions for all the A-coefficients in the formula (see Proposition
3.2.7 and equation 3.2.4). Replacing them with their closed formulas we obtain exactly
the statement of Theorem. O

Corollary 3.2.15.

4( A(n—k+1) 4(n—2k—1) _ 4k—1
N (! —1)(q D" +1)
Crs1n(=¢.0") = Cn(—0.0") (D) — 1) (gAn=2k+1) 1) (gAn—R)=1 4 1)

(3.2.7)

Proof. This is just the specialization (q,t) — (—g, ¢?) in the formula 3.2.6. O

Finally, we have proved that for fixed n, the polynomials C ,(—q, ¢*) and the poly-
nomials Cy, ,,(¢q) satisfy the same transition formula from & to k + 1.

By Corollary 3.2.9 is known that Cy,(—¢,¢?) = C1.n(q) and then the polynomials
must be equal for each k > 0. This prove the Reeder’s Conjecture in our case.

3.3 Stability of the coefficients

We observed empirically that the coefficients of the polynomials Cy ,, and C, 41 are
the same in a range of degrees that depends by n and k.

By duality we know that polynomials C, ,, must be reciprocal polynomials, symmetric
by a central term of degree n(2n + 1)/2.

We want now to determine the maximum degree M of ¢ in C},,,, smaller than n(2n+
1)/2 and such that Cj, and C}, 41 have the same i-th coefficients for all i < M.

By direct computation one can obtain a transition formula from Cj, to Cj ny1,
similar to 3.1.1 in first section.

_ q4(n72k+2)) (1 + q4(n+1fk)71) (1 _ q4(n+1))
(1 _ q4(n—k+2)) (1 _ q4(n—2k+1))

1
CZk;n+1(Q) = CQk;n(Q) (

Now we can compute explicitly M just looking at the degree of the lowest degree
monomial with non zero coefficient in the polynomial D(q) = Ci pnt1 — Ci -

D(q) = Cry1n — Cn =

1 — g*n—2k+2)) (1 4(n+1—k)—1 1 — gn+1)
Crn(a) - ) (14 A )—1]:

(1 _ q4(nfk+2)) (1 _ q4(nf2k+1))

Conld (1 _ q4(n—2k+2)) (1 4 q4(n+1—1€)—1> (1 _ q4(n+1)) _ (1 _ q4(n—k+2)) (1 _ q4(n—2k+1))]
kn\d

(1 _ q4(nfk+2)) (1 _ q4(n72k+1))

The numerator is equal to

_gAn=2k42) _ Ant) | AC2n—2k43) | An—k)+3 _ (ACn—3k)H11 _ AQn—k)+T
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_‘_q4(2n73k)+15 _ A(2n—3k+3) + q4(nf2k+1) + q4(nfk+2) — q4(n72k+1)P(q)

q

where P(q) is a polynomial and P(0) = 1.
Now we recall that ¢**~! divides Cy ,(¢) and then we can write

D(q) = g*" 3 (CWP(Q)>

q4k—1

Actually C;’Z’,f,(f)P(q) is a polynomial and its evaluation at 0 is equal to 1. Hence we

obtain the following statement.

Theorem 3.3.1. Let Cy, ,(q) and Cjpnr1(q) be the polynomials described in section 1,
then

[¢'1Ckn(q) = [¢']Cht1(q)

for all i smaller than 4n — 4k + 3, where the symbol [¢'] denote the coefficient of the i-th
power of q in the polynomial. Equivalently, for all i < 4n — 4k + 3, the following equality
holds:

dimHomgp,, (Vi s A'spay,) = dimHomsp, ,, 1) (Vg A'sPo o)

3.4 Case 2: Small weights of the form w; + wopi1

As observed in the Section 1 of this Chapter, in this case (except when k = 0, which
has a different zero weight structure and is treated in a different way) the zero weights
space of V) is not irreducible. Anyway our strategy is very similar to the case wor: we
will find some recursive relations between coefficients in the recurrence and then use
such relations to reduce the triangular system of equations to a three terms recurrence
that we solve by induction.

Notation 3.4.1. We will denote with Cy ,, and Cj, respectively the polynomials Cy, 4., 4

and C,, in the reduced Stembridge’s recurrence.

Differently from the previous one, in this case we will look a transition from Cy
to Cr and Cy41: using the "natural” one from Cy; to Cyp_y has revealed to be too
complicated for a general computation.

3.4.1 The recurrence for the C)(q,t)

Set A = w1 +war1. This weight, in ej-notation, is equal to 2e; +ea +- - -+ eap41 and
then the inner product (\,w) = (w1 + wak+1,€1) is equal to 2 for all k. The recurrence
1.4.4 can be rewritten in the following form:

Z Z {fzj(q?t) - q2fij(q_17t_l> Cu—2iej (q,t) (341)

(u,2e5) 120
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Remark 3.4.2. Differently from the case wor we have to distinguish two different sets of
(), appearing in the recursion, depending on n.

In the case n = 2k + 1 the weights smaller or equal to w; + wog+1 in the dominance
order are the weights wy; and wy + woj41 with j < k.

In the other case, with n > 2k+1, to the set above we must to add the weight wy(r11)

We are going now to make some remarks about the coefficients in the recursion that
hold independently for the two cases. However prove the conjecture in the two cases
needs different computations and then we will treat them separately.

Setting again with B; = (p,e;) = n — j + 1, we can give also in this case explicit
formulae for the coefficients F; = fl-j (q,t) —¢* ff (¢~ 1,71 in the non reduced recurrence:

2,28,
j (1 —g%t7%)
FO (Q7t) - tBj }
' =¢* -1
Fi(g.t) = (¢ 1) - B 4=t =t)
1(q7)_t?]( —q— )_q t2 )
. 22 B
Flgt)=(t-q(t-1) ( B t2> »
: 12(Bj—1) qtBi t(t—(g+1))
J _ ot —t) —
FBj (q7t) - tBj (q qt t) tQ(Bj_l) t2 )
2B;
j _q(t*7 = 1)
FBj-i-l (q?t) - tBj :

Remark 3.4.3. As in the wy case, there is a kind of ”inductive stability” for the Fl]”

We have, for 0 > h,
F;]+h,n+h _ F'Z],n

Notation 3.4.4. For some reasons that will be clear in the next pages, it is convenient to
denote by ¥}™ the following expression

Jn _ pimne_ pan
Wyt = F - JjB(i,j)
where B(i,j) =n—i—j+3

As done in the case of the weights wsi, we want to investigate some symmetry in the
weights appearing in the non reduced form of the recursion.
Let us fix n and set A = w;y + wag11. Set

Ff;j = (w>‘7€) weW, ee {:l:l} ’ weyp = €5, Cw(A—%ej) = 601/}
Lemma 3.4.5. We have a bijection between F,i)j and Ff(i’j)’j.
This bijection sends a pair (WA, €) in a pair of the form (w'\, —e¢).
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Proof. Let (u1, ..., pn) be the coordinates of wA. By definition of I's we have pj = 2—2i.
We define

ith#j
Y =4 M o Thsg
2-2n—j—i+3) ifh=j

It follows immediately from the definition that ¥(u) + p differs from p + p just for
the j-th coordinate which is equal to

n—j+1-2m+2j+2—-4d=-n+j+2-3=—-(n—7j+1)—(2—2i)=—(u+p);
Actually (¥(u), —€) is an element of 12093 and we can complete the proof observing
that the map W is an involution. ]

Notation 3.4.6. We will denote with A;Ifbn and with Ailk’n respectively the coefficients

of Uy, and Cy in the Stembridge’s recurrence.

As in the previous case, we are looking for recursive expressions of the coefficient
in the reduced Stembridge’s recursion with the aim to simplify the computations. The
following remarks are crucial for this purpose

Remark 3.4.7. We recall that the rational functions FZJ are defined by a generating
polynomial of degree B; 4 1, i.e. the polynomials F’ éj 4o are equal to 0. This behavior
of the concrete expression of the coefficients breaks the symmetry in the following sense:
if there is a pair (u,€) appearing in I';? it gives a contribution equal to € F} to the
(4,5).3

coefficient of C, and its symmetric weight in Ff 7 gives a contribution —e F é(

4,5)
Altough the set o7 s symmetric to Ffj 27 and then the only contribution in this case
is eFy.
Remark 3.4.8. By previous remark, we can reduce to compute weights in the sets ry
for i <n —i—j+ 3 with the convention that a weight in '}’ gives a contribution to the
coefficient equal to \IIZ if i > 0 and equal to Fj if i = 0.
This simplification implies that we can suppose 2i —2 < n—j+1 = (ej,p). Asin the
case woy, this simple observation lead us to some recurrence rations between the A?,lk’n.
Suppose w(e;) = e;. Observe again that the coordinates of wA — 2ie; have modulus
smaller or equal to 1 except for the j-th coordinate that, in this case, is equal to 2 — 2i.
If we fix i and consider j = maxz{j|i <n —j —i+ 3}, we have

0 <n—j+1+(2-2i) = p;+(wA—2ie;); < pj+(wA—2iej); =n—j+1+(2-2) Vj <j

This implies again that without loss of generality we can suppose the coordinates
of wA — 2ie; are all non negative and the the reduced form of Cy)—2ie; can be again
computed just by the action of the symmetric group on wA — 2ie; + p.

Let us start the explicit computation of the coefficients Ai'k’n with a general obser-
vation
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Remark 3.4.9. Similarly to what observed in the case wsk, to obtain a contribution to
the coefficient of Cy, 14, ,, the first coordinate of wA must be equal to 2 and the latter
2h ones must be equal to 1

As an immediate consequence of this remark, we obtain that the only contributions
to the coefficient of Cy), 4w,,,, in the recursion 3.2.2 come from the case i = 0.

Recalling the Lemma 3.2.5, we can compute easily the coefficient A;IZ’” in the fol-
lowing way:

As observed before, the only possibility to obtain a contribution to Agzn is that the
vector (w1, ... wAgpy1) is equal to (2,1,...,1), in particular i = 0 and w(e;) = e;. The
other n — 2h — 1 coordinates must restrict to a weight of the form wwy,_p) conjugated
to 0 in Cp,_o,_1. Then we obtain immediately from the Lemma 3.2.5 that

A;}Zn — (~1)FhELn ((n —2h ; 1_)h_ (k— h)) A <n - Z : Z - 1>‘
(3.4.2)

Now we want find a recursive expansion of the coefficients A,lek’n looking at the
combinatoric structure of the weights in Fﬁ’n = {w(w1 + wokt1 — 2iey) | w(w + wopt1 —
2ie1) + p ~ wap, + p} We will recall that, by our assumption on ¢, the coordinates of
w(w1 +wak+1—2ie1 ) must be a permutation of the coordinates of wyp +p. Let us suppose,
first of all, that h > 1. We have five different cases:

o (Case 1: The fist two coordinates of wA are equal to 1. Then the weight wA contract
to a weight of the form w(w; + wy(r—1)4+1) conjugated to wy(y_1) in Cp2

e (Case 2; The first coordinate of wA is equal to 1 and the second is equal to 0. To
obtain the weight wy;, we must have coordinates equal to n and n — 1 (this holds
only if & > 1) and this force the third one to be equal to 2 and the fourth to be
equal to 1. The remaining n — 4 coordinates contract to a weight wwy(_1) in Cp—g
conjugated to wy(,_1)-

e Case 3: The first coordinate is equal to 1 and the second is equal to —1. Again,
because h > 1, we must have some coordinate equal to n and n — 1, this forces the
third coordinate to be equal to 2. But now it is impossible to obtain n — 1 adding
1 to coordinates from the third to the n-th.

e Case 4: The first coordinate is equal to 0. This forces the second one to be
equal to 2 and the coordinates from the third to the 2h-th to be equal to 1. The
remaining coordinates must contract to a weight wy_p11) in Cp_2, conjugated
to 0. It is crucial in the formulation of the recursions to observe that this is
equivalent to contract (wls, ..., w\,) to a weight w(wi4wsg11) in Cp—1 conjugated
to w1 + wa(p—1)+41-

e (Case 5: The first coordinate is equal to —1. This force the second one to be equal
to 2 and again is impossible to obtain a coordinate equal to n adding 1 to the
remaining ones.
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We can translate this enumerative analysis in the following recursive relation:

2k, 2lk—1,n—2 2|k,n—1 keh3n(Mm—k—h—1
Ay =N = Ay — ()R n<

k—h+1

The case h =1, i.e. w(wy + wogt1 — 2ie1) + p ~ we + p is very similar to the latter

e (Case 1: The first two coordinates of wA are equal to 1. Then the weight wA
contract in C,_o to a weight of the form w'(w; + Wa(k—1)+1) conjugated to 0

o (Case 2; The first coordinate of wA is equal to 1 and the second is equal to 0. To
obtain the weight ws we must have a coordinate equal to n and this force the third
one to be equal to 2. Now (wy,...,w\,) must contract to a weight of the form
wwar_1 conjugated to 0. Such a weight cannot exist by a parity argument.

o (Case 3: The first coordinate is equal to 1 and the second is equal to —1. Again we
must have some coordinate equal to n and this forces the third coordinate to be
equal to 2. The remaining coordinates must contract to wwo(;_1) conjugated to
Zero.

e Case 4: The first coordinate is equal to 0. Again this is equivalent to contract
(wAz, ..., wA,) to a weight w(wy + wog+1) in C,—1 conjugated to the weight 2w;.

o (Case 5: The first coordinate is equal to —1. This force the second one to be equal
to 2 and again is impossible to obtain a coordinate equal to n adding 1 to the
remaining ones.

In terms of coefficients, the prevuous analysis can be transleted in the following

recurrence:

2|k,n
Ag;

2|k, 2/k—1,n—2 2|k,n—1 3n(n—k—2
Al‘n:A()' ! _A2l)n +(—1)kF0n< k—1>

The zero case is again more complicated and we need to examine it very carefully.

If we denote with Ag'fn the contribution to the coefficient Ag‘k’n for a fixed ¢ we have

k+1
2kn 2k,n
AT = g AO,i .
=0

. 2|k,n .
We want recover again a recurrence for Ay summing up recurrences for each

. Such recurrences depend from the fist coordinates of u € I‘g’n = {w(wy +wokt1 —

2ie1) | w(wy + woks1 — 2ie1) + p =~ p}:

e 41y is equal to 0. Then p can be contracted to a weight ' for C),_1 conjugated to
0.

o 1 is equal to —1 and pg = 1. Then p is of the form (—1, 1, ') with p’ conjugated
to 0in C)_o
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o The first j coordinates are equal to —1.. In this case u + p is then of the form

(n—1,...,n—27,...). We must obtain a coordinate equal to n because u + p
have to be conjugated to 0. This is possible only if j = 2 and ug =2 (i.e. i =0
and we; = e3). Moreover (jig,. .., i,) is a weight for C,,_3 of the form wwy 1)

conjugated to 0.

o The first coordinate is equal to 2 — 2i. The first coordinate of u + p is equal to
n+2—2i=mn—(2i—1)+ 1 This forces the second coordinate of p to be equal to
1, idem for the third and so on until the 2¢ — 1-th. We cannot add 1 to the 2i-th
coordinate because otherwise (1 + p)1 = (1 + p)2; and p + p is not regular. We
obtain p is then of the form (2—2i,1,...,1,...). The latter (n—2i+1) coordinates
contract to a weight wwy(x_;41) conjugated to 0 in Cp,—y;

We can translate what stated above in the following two relations:

. —k—1
AQ\kzn _AQ\k:n 1 _A2\k 1,n—2 _q kit gl n
0,2 +(=1) t\k—i+1

if ¢ > 0. Conversly, in the case ¢ = 0 we obtain

A2E 2k -1 2k:1 -2 1p3nf(n—k—2

and finally we can sum up all the contributions obtaining

k+1 .
_ .- , —k—1
A2|k,n:Az|k,n 1_A2\k Ln=2 « qyk—1 n— F3n k i+l L n
0 0 0 +(-1) k—l +Z N

We can summarized what is proved above about the coefficients of the recursion in
the following proposition.

Proposition 3.4.10. Rewriting the recursion 3.2.2 using the reduced form of the poly-
nomials C,, in the general case n # 2k 4+ 1 we obtain the recursion

k k+1
2 k,n 2|k, n
Rk' : Z Cw1+w2i+l QIZ + ZCWQzA | = (343>
i =0
where the coefficients of the form A;}f’n have the following closed form
2|k, n - 1,n n—k—h—1
A2ih = (-1 F ( k—h > (3.4.4)

. 2|k . . .
and the coefficients Ah| """ satisfies the recursive relations below:

2lkn _ p2lk—1,n—2 2lk,n—1 kehp3n(m—k—h—1
Ay AT —A2|h1 — (=D "Fy ( Ehai (3.4.5)
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2lk,;n 4 2lk—1n—2 2lk,n—1 kp3n(n—Fk—2
A= AT Ao " (-1)F "< L1 > (3.4.6)
2|k 2k,n—1 ,2/k—1,n—2 n—k—2\ 3 AR infn—Fk—i
AR psR L A Zlk— L e -1 k—1 Fom 1 k;—z‘+1\1/‘,n
0 0 0 +(=1) b1 0 +;( ) A T
(3.4.7)
If n =2k + 1, otherwise, the polynomial Cyx11 does not appear in the recursion:
k i k i
2 2
Ry Z Cwl+w2i+1A2Ii "+ Z Csz‘Ai| =0 (3.4.8)
=0 i=0

and the coefficients Ah‘ " satisfy recursive relations similar to the previous ones:

A = ()RR (3.4.9)

e (3.4.10)

F L Vi (B D5 2 S (3.4.11)

Y (0 Ly ) S %(—1)““\1:}’”. (3.4.12)
=1

Before to start dealing with the general case of the Reeder Conjecture, we need some
basic steps for inductive reasoning about coefficients.

3.4.2 The ”well known” case \ = 2w, revised

This case is very different from the other ones (i.e. k£ > 0). It is well known in
literature and the polynomials of graded multiplicities has been previously computed,
for example by Stembridge in [37] or in [15]. The most important difference concerns
the W-representation (Va,,)? which is irreducible and isomorphic to m(,_11)¢ (see [1]).

To be more precise, in Stembridge’s paper appears the following formula

Theorem 3.4.11.
(t—q)(t* —1)

Conla:t) = Cola: ) Ty = 1y

As a first computation we want to show again this result. Let us examine closely the

sets I'" for v € {2w1, wa, 0}. All the previous observations about the simplifications in
2|0,n

a0 We have the

the computation of coefficients holds. In particular for the coefficient A
following formula:
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1— 2t2n
Now we want examine the elements of the set FZUZ The weight w(2w; — 2ie1) + p
must be conjugated to wy + p = (n+ 1,n,n — 2,...,1). Our assumption on i (i.e.
i <n—j—i+ 3) implies that the components of w(2w; — 2ie;) must be all positive
and we must have a component equal to n + 1, then the only possible case is ¢ = 0 and
w(2wr) = (0,2,0,...,0). Moreover w(2w1)-+p is conjugated to we+ p by the permutation
(12). It follows that the coefficient Aflo’n can be expressed as:

2,2n—2
210,n 2n _ (1 —q°t )
AT = —FyT = - T
Finally, we need to compute the coefficient Aj 20m 1f e fix a value of i, then w(2 —

24,0,...,0)4p must be conjugated to p. If we suppose we; = e;, then (w(2-2;,0,...,0)+
p)j = (n—j—|—1)+(2—2i) =n—j—2i+3=n—(j+2i—2)+ 1. Recall that, by
our assumption on i, the coordinates of w(2 — 2;,0,...,0) + p are all positive. Then
w(2 —24,0,...,0) 4 p is regular and conjugates to 0 only if i = 1. Then we have

U ),¢5)}.

Then we can describe the coefficient AO‘ ™ by the following formula:

2|On Z\Il:“’

Remark 3.4.12.

)

t—q)(1+qt
bt = e = _(t-qU+qt) q)i +at)

i ol ol (t— @t = 1)1 = q?0D)
Uyt =R - Fy = 4 :
Lemma 3.4.13.
A2on _ _(t—q)(1+qt*""Y)

Proof. By the previous remark, the identity holds for n = 1. The thesis is then a just
an explicit computation.
O

Now we are ready to prove again the Stembridge’s result. We start from the recursion
for Couy m(g,t).

Ro + A0" Couyn(a,1) + AT Cy n(a,1) + A" Co (g, ) = 0.

We now recall the explicit formula for C; from the previous case:
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Remark 3.4.14.
2t — q)(* D — 1)

(1 — gt )2 — 1)

Cin(q,t) = Con(q,t)

We can then substitute this expression in the recurrence, obtaining;:

20, 2(n-1) _q
2t =gt ) 20 p20m )
t”(l _ thn—l)(t2 _ 1)

A§I87n02wl7”(q¢) = —Conl(g,t) (

Finally, using the explicit expressions for the coefficient stated above, we prove the
thesis

200,
A | nC2w1,n(Q7t) =

2)0
~Con@:) g = q(;n_f; &) (t2(t2(”—1) — D)1= D) 4 (1 - P (- 1)) =
o8 — = ("~ D1 = 2.
and then
C2w1,n<Q7t) =
t— t"
CO,n(Qvt)tn(l — q(tgn(lzi(tg ) (t*" = 1)(1 — ¢*t*") - = gen) —

(t—q)(t* —1)

CO,n(q7t) (1 — thn—l)(tQ _ 1) .

3.4.3 Recurrences, Coefficients and Closed Formulae

In this section we give a proof of the Reeder’s Conjecture in the case of A\ = w; +wak+1
for the Lie Algebras of type C,,.

We have just proved the conjecture for £ = 0 in the previous sections. We want use
induction to obtain the general proof.

We are going to obtain the conjecture as a consequence of the following proposition.

Proposition 3.4.15. Let {R;}i<j be the set of recursion defined as in 3.4.10, then there
exist a family of integers {Bf’n}igk such that if n =2k + 1
I‘\k,2k+1 =

Z Bf’%HRi _ A;IZ%HCM + FZ,2k+1Ck + Flg,2k+1 (Ck—l Tt Co)-

and, for generic n
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Tkn .—

" BE"R: = A" G+ TEL G + T Ch + TE"™ (Cimy + -+ Co)

Proof. Let us start, as in the previous case, by defining the integers Bl,j’n. We will use a
recursive definition, setting:

0 ifh >k
1 if h =k
B — 4.1
h i if k>h>0 (3:4.13)

S (LTI BE® ith =0

K3 (2

Remark 3.4.16. The following, more general, identity holds:

k .
§2(1V%<”_Z:Z_l)3?%:o (3.4.14)

i=h
It can be proved making the substitution t = i — h.

Aiming to prove the Proposition 3.4.15 we can rearrange the expression Bf "R,

i/i+1

k k )
Y B R =) Bf’”i:A;;nCQJ + Z B Z ACy | =
i=1 i=0 §=0

k k+1/k k '
S (Smmg) o 3 (3 s ) o,
7=0 =7 7=0 i=j—1

k/k+1

2|kn k. j 2lin kmn g 2|in
2|k C2U€+Z ZB nA2|g Cojj + Z Z B; nAj Cj
=0 \i=j—1

Where the notation k/k+ 1 simply remarks the fact that if n = 2k:+ 1 the polynomial

Cy41 is not involved in the recursive formula. Let us denote with %" the coefficient

2lh

k
kn k,n y 2|in
Lol = ZBi Ay

Lemma 3.4.17. In the above notation, for all 0 < h < k, we have F;Z =0

Proof. We recall that, by above combinatorical computation, the following explicit ex-

pression for the single coefficient Agl;n holds:

2i,n ichplm(n—i—h—1
= cphagn (M4
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k.n

ojp We obtain

Substituting this formula in the expression for the coeflicient I'

k k )
kn Emn o\ 2lim kn i hpln(n—t—h—1\
Dy = 2 B Ay = 2B ()" < i—h >_
i=h i=h

R (fi(—l)i-th’” G 1)) -

i=h

By equation 3.4.14 we obtain what we were looking for.

To prove the Proposition 3.4.15 it is enough to show that, for all h < k& we have

k k
kma2lin  kn  kn ko 2|in
ZB’L Ah _Fh _FO _ZBz AO
i=h =0

We need now two preliminary Lemmata

Lemma 3.4.18.
B}kl:—i-l,n—s—l _ B]l;:—&—l,n + B}k;’n.

Proof. Without loss of generality it is sufficient show the thesis for h = 0, in fact by the
definition we have

—hn— k—h,(n—1)—2h k—h—1,(n—1)—2h - —1n—
B}l:,n:B(I]C h,n 2h:B0 ,(n—1) +BO ,(n—1) :Bk’n 1_|_Blli 1,n—1

h
Now we can write down the expression for Bg =1 and Bg ~ln—d using the definition:
r n—i—1
kn _ i+1 R k,
m =y (M)
1=
am, n—i—i
k+1n _ i1 (=t — k+1,
B =S (1T
1=
and then
BYy" + Byt =
k .
t1(n—t1—1 k, k41, k2 (M —k =2\ Lkt1m
S (M) [l me) o () B -
i=1

k .
it1(n—i—1 k—in—2i k—it1n—2it1 k2 (M=K =2\ Skrin .
) (I - e R e ] G L te
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k ,
1 (M= 1= 1\ Lk—itin-2it1 n—k—2\ ki1,
Z(_l)l—i_l( i >BO rnmE +(_1)k+2( | Bkiln:

b n—i—1 n—k—2
i -t k+1,n+1 k — K= k+1,n
Z(—n“( , )Bi +(-1) +2< - )Bk+1 —

3
k .
Z(_l)i+1 (” -t 1> gltlnt+l
, i ‘

where for the marked equality we used the equation 3.4.14 and for the last one we used,
by definition, Bllzﬂ’"“ = Bllzﬂ" Now we will use the well know identity between

binomial coefficients
n—i¢—1 _(n— 7 n—1—1
i o\ i—1

to expand the sum and obtain the thesis

b . n—1i—1
S (M e

=1
k n—i n—i—1
-1 i+1 - - -t B{c—i—l,n—i—l _*

S () - ()]

k . k
i1 (M= 1\ pktlntl (n+1) =t =1\ Skt1nt1

S pr - ey (MY T g
=1 t=0

k
1)—t—1 _
B(/)€+1,n+1 . Z(_l)t + ((n+ )t >B£€n 1 _« B§+1,n+1

t=0

where the equalities marked by a * are obtained using again equation 3.4.14 and the
D-marked one uses the definition of Bf ’n. O

Lemma 3.4.19. For h < k — 1 the following identity holds

k .
3 (-1t (n o Z N 2) BF = . (3.4.15)

i=h

Proof. First of all we observe that without loss of generality we can suppose h = 0. In
fact, setting ¢ =i — h, we obtain

k—h

k .
in(n—1—h—2 n n—2h—t—-2 n
E (-1) h( i >Bf’ :E (_1)t< . >Bt’1h:

t=0
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k—h
n—2h—t—2 k—h.n—2h
S (T,

t=0
Now, recalling the definition of BS’", we have the following identity

k

}:@4y<"_§_1)3f”:0

=0

Now we can subtract the expression 3.4.15 with h = 0 obtaining

i(—l)i (” o I)Bf’" - i(—w(” e 2) Bh

=0

()

S (T ) m e () me

i=1 =1

If £ > 1 (we are using here the hypothesis h < k — 1) the latter expression is equal
to zero by equation 3.4.14. This implies immediately our thesis.
O

Now we can start the proof of Proposition 3.4.15 showing an iterative formula to
compute the coefficients Ffl’n. Let us start from the case K —1 > h > 1. We have:

k
kn k,n p 2|in
Fh - Z Bi Ah
i=h—1

Using Proposition 3.4.10 we can first of all expand the coefficient Ai‘m for n £ 2k + 1

k
kn kmnop2li,n
Fh - Z Bi Ah -

i=h—1
b b b n—i—h—1
k7 2 A_17 -2 k7 2 Aa -1 i—h k7 - - - 37
Z BinAhlil n—2 Z BinAQIzh:LI _[Z(_l)z +lBin< i h ) FOTZ:Def
i=h—1 i=h—1 i=h—1
i ; i ; n—i—h-—1
Z Bf):ll,n72A}21‘i—11,TL—2 _ Z Bf),’n (_1)1,—h+1 . Fol,nfl_i_
i=h—1 i=h—1 i—h+l

3 j—
FO NS :tﬁz 1

k .
4 —i—h-1
| 3 (ryyiHipEn (T
L (=1) i\ i—h+1
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i—h+1
k .
} —i—h—1
N iy e S
2. Y i\ i—h+1

k—1

k—1n—242[t,n—2  k—1,n—2
> B Ay =0
t=h—2

A b 4 n—t1—h-—1
Bf_Ln_QAi'E?_Q . [ Z (_l)z—h-i—le,n( )] F()l,n—1+
i

3,n __FEquation 3.4.14
Fy" =

The result is exactly the same if n = 2k + 1, but in this case the much simpler
recursions lead to simpler computations:

k k
kn _ knop2li,n koo 2li—1n—2  ¢—i—1
Fh - 2 : Bl Ah - § : BZ Ah—l -
i=h—1 i=h—1
k—1 k—1
k—1n—242[t,n—2 k—1n—2,2[t;n—2  k—1,n—2
E B, Ay = E:Bt Ao =
= —h—

t=h—2 t 2

We want prove a similar formula for the coefficient Flf’"

k
kn knoa2lin
Fl - § :Bz Al -

i=0
i : i ; i : n—i—2
ZBf,nA?l*l:”*? _ ZBZEJLA;I(@)’”?I + Z(_1)1—2B£€7n< . ) ann __Def
i=1 i=0 i=0 =
i ; b ; n—1t—1
e | Lt
i=1 i=0 !
k n—1t—2
_qyi2gka (T A _t—i-1
e () A
i b . n—i—1
> BN [ <—1>le’"< z. ) By
t=0 i=0
b n—1i—2
-1 ’L'—QB{CJI -t F3,77» _Def
F e | A
k—1
Z Bf—l,n—2A3|t,n—2 _ Flg_l’n_2.
t=0

The case n = 2k + 1 is more complicated and needs a preliminary Lemma

Lemma 3.4.20. B;?’Q’k =0 for all j <k.
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Proof. First of all observe that if n = 2k, for all i we have

n—k—j—-1\ [(2k—k—j5-1\ [(k—3j—1 _0
k—j B k—j \ k-5 ) 7
Let suppose now j = k — 1, then by definition

k, kn(n—k—(k—1)—1 k,
0=-B" +Bkn< 1 =-B".

Iterating the argument we can prove the statement for a general j: let’s suppose Bf 2k
0 for all ¢ > j, then by definition
r % —s—j—1 k—j—
—j —5—)— k2K —j ok, — k,2k —i ok,
0=> (-1 ﬂ( ; )Bj = (-1)° JB’“”+< N >B = (1" 7B

poy §—J —J

O]

Now we are ready to expand the expression for Fk 2k+1,

k
kn kg 2lin
Iy = ZBi AT =
=0

O

1=0

km g 2li—1,n—2 kyn j 2li,n—1 3n _D
ZB Ay ZB A2|0 By = o

2li—1 2 2 1 _
ZBk nA li—1,n— ZBknAQIBn _t—i

k—1 k—1
kn oy 2lt,n—2 k—1,n—1 kn—1]| x2li;m—1 _ Lemma 3.4.20
E  B1A, E |:Bi + B; } Ao =

i=

-1 k—1

- - 2t,n—2 - - 2li,n—1
2 :Btk 1,n QAO\ n _2 :Blk 1,n 1A li,n _
t=0 ]

2|0
k 1,n—2 k—1n—2
I‘O _F2|0
k—1,n—2
F0

We have finally to compute the coefficient FIS’”

k .
n n— 1 n—k—1 ,n i nfn—i—k
Algv — Ag; 1 . A]g 1, 2 + (1)k( k o )FO2 + E (71)k +1FZ~1 < k . >
i=1

and use it to expand the expression Zle Bf ’"Aé’".
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k
kn kmnoa2lin
To" =) B A" =
=0

k .
k,n g 2li,n—1 k 2|zn2 i—1 pkn (V=1 — 3,
E B, ”A E BZﬁA El(—l)z Bi"< i1 )F "4
1=

k i+1

#3ptSye(U 1)
, , 1—j+1
=0 7j=1
k ' k—1 k ' n—i_2
ZBf,nA(Z)h,n—l . ZBZk_i_qulzn 2 + Fg),n (Z(_l)lleﬂ( o >> +
i=0 i=0 i=1
k+1 k n—i ]
1,n _1yi—j+1 -t kn | _t—i—j+1
| 3 e (e ) -
J=1 i=j—1
b » n—1ti—2
zy%W"lEymm””+@”éllfwﬁ(iq,»*
i=1
k+1 k—j+1 .
1 n — 2] —t+1 k,
(S e (T e -
t=0

k .
kmn p 2li,n—1 k 2|i,n—2 3, i1 ok, n—1—2
ZB nA i,n— ZBH_T;A 2,n— +F0n<zl(_1)z an< i >>_|_
1=
k+1 k—j+1 .
1 n—2j—t+1 k—j+1n—2j+2 —i
+2w"(z-»( e

t=0
Al n—s—3
ZBk nA2\zn 1 ZBZ—niAth 2 Fg,n <Z(_1)SB§f1< . )) +
s=0
k+1 k—j+1 .
1 n—=2j—t+1\ k—jt1n—2j+2
+2w"(z-»< 7 )
t=0
i Ekn y 2lin—1 = kmn p2lin— 2 3,n — kein—2f((n—2)—s—1
D_BIAGTT =Y BN By (- )*BET ( s ) "
i=0 i=0 s=0
k—j+1 .
1 t(n—27 —t+1\ k—jt1n-2j+2 ln _D
e (3 (U ) ey, o
t=0

ZBknAth 1 ZBZSAQ‘”L 2 + \I/k+1

Now we can expand Bf’” using the Lemma 3.4.18 and use the properties of the Bf’n to
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complete the computation

k2 1 ko y 2 2
ZB nA |i,n— ZBzﬁA |i,n— —|—\Ilk+1:

k
Z[ kn l—l—Bk 1,n— 1:| A2|zn 1 ZBk 1,n— 2A2|zn 2+\I/k+1:
1=0 1=0

ZBkn 1A2\zn 1 ZBk 1,n— 1A2|zn 1 ZBk 1,n— 2A2|zn 2+\Pk+1:
=0 1=0 =0

Flg,n—l n (Flg—l,n—l _ Fig—1,n—2> i ‘I’kﬂ

The case n = 2k+1 is very similar but in the last part we use extensively the lemmata
proved before

k
kn kg 2lin
FO _z :Bz AO -
=0

k—1 k-1 k )
S st st (e (M) )

=0 i=1 i=1
i+1 . .
+ Z 1)i—j+1\lll,n n—i1—7j _Prev. Case
]Zl i \i—j+1
kn oy 2]i,n—1 k. 2li—1,n—2 __Lemma 3.4.18
§ jB Ay ZB Ay +UT =
=0 =1
k-1 k—1 k—1
kn—1,2)i;n—1 k—1,n—1 4 2|i,n—1 k—1,mn—2 4 2|i,n—2 _ Lemma 3.4.20
> BT, +> B A - B A + U =
=0 =0 1=0

k—1,n—1 k—1,n—2
g —To + U

We can now complete the proof of Proposition 3.4.15 using as crucial tool the follow-
ing Lemma, which proves equality between Flf’n and Fg’” and give us important closed
formulae for these coefficients.

Lemma 3.4.21. Let us denote with V(n, k) the rational function defined as follows

k+1
\Ii(n, k) — Z \1]7{1671,4’2,71 + Fé€+27n.
=1

The following identities hold:
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1.
e =Y (k).
j=2k+1
2 2 2(n—2k)—1
"+ @ —g)(#" " +1)
W(n, k) = =2kt 1 :
3.
U(n,k)=¥(n-—2k—1).
4.
A
.

(£ + )t — ("M — 1)
tn72k+1(t _ 1) ’

k/l?n j—
Iy =

Proof. Observe that, by definition
U(n, k) =U(n—1,k—1)+¥7.
We will use extensively induction to prove the above statements.

1. Suppose there exists a minimal pair (n, k) such that 1) does not hold. If n = 2k+1
the following must hold

Fg,n _ Fg—l,n—l _ Fg—ln—Q i \Illlgibl :Ind. \I/(n _ 17 k— 1) + \Illlffl = \I/(’n,’ ]{)

Otherwise for generic n we have a similar argument

kn
ry” =

k—1,n—1 k—1,n—1 k—1,n—2 1,n _ Ind.
Ly + (I'g - Iy )+ =

"+ U(n -1,k —1)+ 0,7 =
n

e U k) = Y W k)
j=2k+1

Then such a pair (n, k) cannot exists and 1) is proved.

2. We will use again an inductive process. For n = 3 a direct computation shows that

(t* +q)(t —q)(t+1)
t2

Suppose there exists a minimal pair (n, k) such that 2) does not hold, then
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U(n,k)=WU(n—1,k—1)+ &7

k+1 —
P+t — @201 4 1) B+ q)(g -t -t -1)
tn—2k+2 + $n+2k+2 -
(t* + )t — (P21 4 1)
n—2k+1

3. It follows immediately from 2)

4. First of all let’s observe that if n = 2k 4+ 1 the result is an immediate consequence

of part 1) and 3) of the Lemma: The coefficients Flg’zkﬂ and Fg_l’"_l are exactly
U(2k+ 1,k) and U(2(k — 1)+ 1,k —1).
Otherwise
rp" =
Fg—l,n—l + (I—\(k):—l,n—l o Fg—lm—?) + \Illlgﬁl _

e 4 W(n, k) =
e L W(n, k).
Now we have the following equivalences
Lg " P W(n,k) =T 7" = U(n,k) =15 V" 2T P = (n—2,k—1)
and the statement comes directly from 3).

5. By 4) it is enough prove the statement for £ = 1. For n = 3 we showed that

(t* +q)(t —q)(t+1)
t2

Iy° = Fp? + 0% 4 0,° =

And now by induction

Ty =Ty" ' 4+ ¥(n,1) =
2+ q)(t — @) (>3 — 1) N (24 q)(t — q)(2"D1 1)

=2t — 1) g1
(t? +t?1)_(f —q) t(tQE:__g)l)— 1) 4 (221 | =
(* + q)(t — @) (>~ — 1)

tn=1(t — 1)
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As an immediate Corollary of the Lemma, recalling that Fz’" = FZ:?n_Q if h >0

and reasoning by induction we obtain that

kn __Lem. pkon _ pk=1n—2 _ Ind. nk—1n—2 _ 1kn
I_‘O - Fl - FO - F] - Fj+l

for Kk —1 > j > 0 and this proves the statement of Proposition 3.4.15.

O

At this moment we know very well the structure of the coefficients of the Cj’s in
I'#m if j is smaller than k. For the other two unknown coefficients (i.e. the k-th and the

k + 1-th one) we want give now explicit formulae.

Remark 3.4.22. By Proposition 3.4.15, the following recurrences for AZ‘k’n and AZ‘_]:’ln

hold ok _ 1
2lk,n 4 2lk—1,n—2 2|k,n—1 3n (T — -
Ay - Akfl o A2|k—1 + Iy < 1 >
2|k, 5 2lk—1n—2 2|k,n—1 3.n
Ak—',—l - Ak: - A2k -y

k.n

Now, the only contribution to the coefficient I';’/; comes from Ry and then

kn _ a2lkn
Fk‘+1 - Ak:+1

2|k—1,n—2 2|k,n—1
A | )1 _ A | ;1 o Fg)vn

k 2/k

2lk—1,n—1 2, 3,

k—1,n—2 2, 3,
oy - R R

Similarly, to evaluate FZ’" we have to describe explicitly the contribution to the

coefficient
kn _ pkmng2)kn kn yk—1n
Dym =By A + By Ay =
20k—1,n—2 2/k,n—1 3n(n—2k—1 ko [ ) 2/k—2n—2 2lk—1,n—1 3n\
Ay — A ( 1 + By (A Ay ) =

2|k—1,n—2 kn A 2|k—2n—2 2|k,n—1 kn A 2lk—1,n—1 3,n
AT B A A B AT 4

2|k—1,n—2 kn p2lk—2,n—2 Ln—1 | pk, n—2k-—1 3,
Aoy T BN T - Ry {Bkﬂ - ( 1 + 5"
k—1,n—2 2, 3,
oy (R )
k—1,n—2 2, 3,
" _<F0n+F0n)

_TL—Qk—l k |
[(n—2k—1 k 1
< 1 >_ka1

[ k, n—2k—1Y\]
Bkn1_< 1 >

[ k, n— 2k 1
Bk_"l—< ) )+1

k—1,n—2 2, 3,
A P

k-1

The two formulae just proved allow us, using an iterated process, to obtain the

following closed forms
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Lemma 3.4.23.
ke _ (t — q)(1 + q2(=20)=1y (1 — g22n=2k=1) (12K _ 1)
o=

tn—?k B n—1 (t _ 1) ’
Fk,n _ (1 . q2t2(n7k71)) (t2k+1 _ 1)
k+1 fn—1 t—1)

Proof. We proved that
kn _ pk—1n-2 2, 3,
= _[FonJFFon}

b = 1E [ R

Substituting FZ:}”F2 and Flzfl’nﬂ, the iterative expansion leads us to

k—1

kn _ 10,n—2k 2,n—2i 3,n—2i

Iy =T _Z[Fo + Fy },

=0

k—1 k—1

kn _ 0,n—2k 2,n—21 3n—21| 2n—2k 2,n—21 3,n—21
o =T SR B = R S R R
=0 =0

For ' 8’”_% we have a close formula. A simple computations shows that

D S
Fy & Fy = — =
i=H+1 i=H t
n
2 _
5 th
=
1 n—H ‘
=0
1 — g2n+H n—H 1 — g24n+H tn—H+1_1
( qn ) Z Al = ( qn ) ( )
t g t (t—1)
obtaining easily our thesis. O

We conclude this section with a very important relation between coefficients FIZ’"

and Flg’n that can now easily proved. It will simplify in a relevant way the calculations
needed to prove the Reeder’s Conjecture.

Corollary 3.4.24.
2¢2(k=1) _ 1)(42n-2k+1 _ 1)

K, ko (4

=1t —1)
Proof. This is just an explicit calculation. We verified the identity using the program
Sage. The computation is presented in the Appendix. O

Notation 3.4.25. We will call B} the polynomial FZ’" — I‘g’" as in the Corollary above.
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3.4.4 The base case k£ =1

In this section we analyze the base case of our inductive reasoning. It introduces
very well the strategy we are going to use for the general case.

Remark 3.4.26. To prove the Conjecture it is convenient to deal with the specialized
version of the polynomials Cy|;, and then work with evaluated version of the recursion.
We will use the same notation used above for the evaluated version of coefficients and
polynomials.

First of all the case n = 2k + 1, i.e. n = 3. We have shown that in this case the
recurrence has the form

Th3 2 TyiCop +T1°C1+ T Co = 0.

Recall that there is a transition formula between C and Cp, in particular

P+t +1)
“r= (¢" +1)

We will call this coefficient TO1 3 Therefore we obtain

Co.

1,3

Ly
1,3

Ty

r;?+

1,3 _
F2|1C2|1 =-C

This leads us to a polynomial identity proved in the appendix:

1,3 1,3
Lo P13 CH(2,1) LoiiPis — 34 ry”
I+¢M)(1-q¢h) H22) (I+¢)(-1) (-1 oo

Now we are ready to prove the general case. The recursion is different from the
previous one by the presence of a contribution given by Cs.

Th" Tyl Cop + 15" Co + T C1 + 5" Co
Remark 3.4.27. There is a transition T: 2731 coefficient between Cs and C as we proved in
the previous case. This coefficient has the following explicit form
(PO (P - 1)1 - g
21 (t2(n—1) _ 1)(t4 —1)(1 - th(n—l)—l)'

This coefficient, suitably specialized, becomes
o _ @Y 1" — D¢’ +1)
ST O (g - D+ )

Remark 3.4.28. To prove the Conjecture in the case Cs we showed that the following
equality holds

AS"Cy = =A™ (Ch + Cy) .-
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Now we have just to substitute these identities in the recurrence:

Lyt Copn = — [Fé’n@ +T1"Cy+T3"Co| =
— [r;vncg + (B 4+ T +TH"Co| =

— [F;’HCQ + B1Ch1 + Fé’"(Cl + CO)_ =

. Fl,nAQ,n ]
— [(F;’ — 01,n22> Cy+ B1C1| =
AO

Fl,nAZ,n Bl
0 2 +

1,n—2 n

A 134

—CQ [Ié’n —

Recalling formula (3.1.2) and substituting it in the above equality we obtain that
in this case the Conjecture it is equivalent to prove a polynomial identity we proven in
Appendix:

Pia(l—g¢"*?)  H(n-22) _ |.a_ L"A3" B
¢ @ +1)(1-¢h) Hn—12) [ AT

3.4.5 Reeder’s Conjecture for A\ = w; + wort1

The proof of Reeeder’s Conjecture for the polynomials Cy, is the generalization of
the reasoning done for the case k = 1. Let us start with some fundamental remarks.

Remark 3.4.29. The following formula holds between the polynomials Cy(q,t):

(t2(n—2k—1) _ 1)(t2(n—k+1) _ 1)(1 _ qt2k—1)t2
(tQ(n—Qk—i—l) _ 1)(t2(k+1) _ 1)(1 _ th(n—kz)—l)

Cr+1(g,t) = Cr(g, ). (3.4.16)

The specialization s = ¢ and ¢t = ¢* lead us to the version we will use in what follows:

4( (n—k+1) )(q4(n72k71) _ 1)((]4’671 + 1)

Ca2) N
Cii1(—4,4%) = Cr(—4,4%) (@ ) (D 1y (qi- Ty 1) (3.4.17)
We will denote this coefficient with the notation 77"
Remark 3.4.30. To prove the case C), we showed the following identity
ARGy = A" (C + -+ + Co) (3.4.18)

Remark 3.4.31. In Proposition 3.4.15 we proved that Stembridge’s recurrence is equiv-
alent to

2|kC2|k+F an‘f'F (Che1+--+Co) =0
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if n=2k+1, and to

PI;[ZCZW + P’ZfleH + F'Z’”Ck + Fg’n (Ch—1+---+Cy) =0
in all the other cases.

Now we are ready to prove the general case of Reeder’s Conjecture, starting from
the recurrences I'*™ in the previous remark.
Let us start with the case n =2k + 1

FI;"ZCQ‘k = — FZ’”Ck + Fg’n (Crr+ -+ CO)] =
k7 k7
—Cy, rkn 71—‘0 nAk ’
Ny A(l)’3

Using the transition formulae, the conjecture is now equivalent to prove the identity

k,n n— n n
F2[k - Pen - (t2( 2k) _ 1) e Fla’y AZ,
(1 + st2(n=k)=1)(1 — ¢2)($2(n—=2k+1) _ 1) (¢2(k+1) — 1) o k A(1)73

We are now ready for the general case:

k,n o
F2|k02|k -

_ [Fl,i’flckﬂ TR O+ TR (Cy + -+ + Co)| =

- [szlck+1 + (FIS’” + Bk) Cipn + I‘g’" (Cher + -+ C)
_ {Fiﬁckﬂ + BCy + I"gvn (Cr+Cry+---+Co)| =

Fk,nAk+1,n
k, 0 Mgy _
(ka1 - W) Cit+1+ BpCr | =
0

Fk,nAk—l—l,n B
_Ck—i-l (Fk,n 0 k+1 + Pk

k+1 Aé,n—2 Tl?

Again our conjecture is equivalent again to a polynomial identity by 3.1.2

k,n
Lol Pin Hin—k—1k+1) _
AU+ ) (1 —q)  Hn—kk+1)
k,n

q4(1 + q4k+3)(1 _ q4) (1— q4(n—k+1))(1 _ q4(n—2k+1)) -

kny1n—2k
- (v T
AT Ty

k+1

We proved the identities using the program Sage (see appendix), obtaining then our
conjecture.
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3.5 Appendix to Chapter 3: SAGE Computations.

In this sections we present the codex we used to prove rational functions identities
we needed to prove the Reeder’s Conjecture.

sage: Gammak(k,n)=-(t-q)*(1+g*t~ (2*x(n-2*k)-1))/t~ (n-2*k) -

(1g72%t" (2*xn-2xk-1) ) * (£~ (2xk)-1) / (£~ (n-1) *(t-1))

sage: GammaO(k,n)=(t"2+q)*(t-q)*(t~ (2% (n-2xk))-1)/(t~ (n-2*k+1) *(t-1))
sage: Bk(k,n)=Gammak (k,n)-GammaO(k,n)

sage: Bk(k,n).factor()

-(gq*t"k + t)*x(gq*xt"k - t)*(t7(2xk) - t7(2*n + 1))*t"(-2%k - n - 1)/(t - 1)
sage: Bk(1,n).factor()

(@ + D)*(q - D*(t"(2*%n) - t)/((t - 1)*t"n)

Here we defined I'fY and T'¥" and proved the Lemma 3.4.20.

sage: Gammakk(k,n)=-(1-q 2xt~ (2*n-2*k-2))* (t~ (2*k+1)-1)/(t" (n-1) *(t-1))
sage: Gamma2k(n)=(1-q"2*t"~(2*n))/t"n
sage: T10(n)=t*(t-q@)*(t~(2*x(n-1))-1)/((1-g*t~(2*n-1))*(t"2-1))

sage: S=Gamma2k(3) (q=-q,t=q"2)*T2kk(1,3)
sage: S.factor()

(@8 + g6 - q°5 + 2xq"4 - q"3 + q"2 + 1)*
("6 + @6+ q4+q°3+Qq2+q+ D=

(@ + D*(q - 1)/((q"4 + 1)*q75)

sage: Q=Gammak(1,3)+Gamma0(1,3)/T10(3)
sage: Q(g=-q,t=q"2).factor()

(@8 + q°6 - q°5 + 2%¥q"4 - q°3 + q72 + 1)x*
(@6 + q°b + g4 + q°3 +q°2+q+ 1)

*(q + 1)x(q - 1)/((q"4 + 1)*q~5)

This is the implementation of Fifl and FIS’N and the proof of polynomial identity in
case k=1, N =3.

sage: Pkn(k,n)=(q"2+q)*(q~ (4x(n-k+1))-1)*(q~ (4*(k+1))-1)+

(q°8+q~3)*(q~ (4x(n-k))-1)*(q~ (4%k)-1)
sage: LambdaOl(n)=-(t-q)*(t"~(2%(n-1))-1)/(t" (n-1)*(t-1))
sage: Lambdak(k,n)=(t" (2%¥k-1)-g*t~ (2*n))*(t~ (2¥k)-1)/(t~ (n+2*k-1) *(t-1))
sage: T2kk(k,n)=Pkn(k,n)*(q" (4*(n-2*k))-1)/



67

((1-q"4)*(1+q~ (4% (n-k)-1) ) *x(q~ (4* (n-2xk+1) ) -1) *(q~ (4* (k+1))-1))
sage: T2kkk(k,n)=Pkn(k,n)*(q~ (4*(n-2xk))-1)/
((1-q74)*(q~4+q~ (4%k+3) ) *(q~ (4% (n-2%k-1) ) -1) *(q~ (4*(n-k+1))-1))

sage: var(’q’, domain=’positive’)

q

sage: T(n)=Gammakk(1l,n)(gq=-q,t=q"2)-GammaO(1l,n) (q=-q,t=q"2)*
Lambdak(2,n) (g=-q,t=q"2)/

Lambda01(n-2) (q=-q,t=q"2)+Bk(1,n) (q=-q,t=q"2) /Tk(1,n)

sage: S(n)=Gamma2k(n) (q=-q,t=q~2)*T2kkk(1,n)

sage: (S(n)-T(n)).factor()

0

In the previous excerpt of codex is verified the identity that proves the conjecture for
k =1 in the general case. For the case N = 2k + 1 the computation is the following:

sage: var(’q’, domain=’positive’)

q

sage: T(k)=Gammak(k,2xk+1) (g=-q,t=q"2)-GammaO (k,2*k+1) (q=-q,t=q"2) *
Lambdak (k,2*k+1) (q=-q,t=q"~2) /Lambda01(3) (gq=-q,t=q"2)

sage: S(k)=Gamma2k (2*k+1) (q=-q,t=q"2)*T2kk(k,2*k+1)

sage: (S(k)-T(k)).factor()

0

And finally, in the next excerpt of codex is verified the identity that proves the
general case of the Conjecture

sage: var(’q’, domain=’positive’)

q

sage: S(k,n)=Gamma2k(n) (q=-q,t=q"~2)*T2kkk (k,n)

sage: T(k,n)=Gammakk(k,n) (q=-q,t=q"~2)-GammaO (k,n) (q=-q,t=q"2) *
Lambdak (k+1,n) (q=-q,t=q"2)/

Lambda01 (n-2*k) (q=-q,t=q"2)+Bk(k,n) (q=-q,t=q"2) /Tk(k,n)

sage: (S(k,n)-T(k,n)).factor()

0
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Chapter 4

More conjectures about the
Exterior Algebra

In this chapter we analyze from a ”qualitative” point of view the irreducible compo-
nents in the exterior algebra. We recall a conjecture due to Kostant that describes in
terms of their dominant weights the set of irreducible representations appearing in Ag.
This conjecture is proved for the case A in [5] and in [24]. We propose a very partial
result in the case C'. Moreover we conjecture that something similar to what conjectured
by Kostant happens for the exterior algebra of the little adjoint representation AVjy,.

4.1 Some results on a Conjecture due to Kostant

Let g be a simple Lie Algebra over the field C. We recall that g acts on itself by the
adjoint action and, from a representation- theoretic point of view, it is the irreducible
representation of highest weight 6. In [26] Kostant proved the following isomorphism of
g representations:

Theorem 4.1.1.
rk
Ag ~ (Vp ® Vp)®2 ’

Finding the irreducible representations appearing in Ag is then equivalent to find the
isotypical components appearing in V, ® V,,. Kostant proposed the following description
of such irreducible representations:

Conjecture 4.1.2 (Kostant). The representation Vy appears in the decomposition of
V, @V, if and only if X < 2p in the dominance order.

In [4] the authors deal with the more complicated problem of finding multiplicities in
the general tensor product V, ® V,,. They prove that in the case A, such multiplicities
are given by the integral points in some special polytopes. For such polytopes they
give a complete description in terms of inequalities depending by the coordinates of u
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and v with respect to the base given by fundamental weights. In [5] they find a com-
binatorial description for the integral points in the Berestein and Zelevinsky polytopes
and as a corollary of such a construction prove, using elementary techniques of linear
programming, that Kostant Conjecture holds for Lie algebras of type A. Moreover, in
[4] they conjecture that tensor product decomposition can be described in terms of in-
tegral points of polytopes, called Berenstein and Zelevinsky polytopes, for each simple
Lie Algebra. In [6] such a conjecture is proved in an equivalent form.
We will now recall some of their results in the case of Lie algebras of type C.

Remark 4.1.3. Every weight m in the root lattice can be described by a vector of non
negative integers (mjia, me, ey My 1p, m:;_ln, mi,...,my) such that

m = Zmij(ei —ej) + Zm;;(ez +e5) + Z2mie¢

1<J 1<J %

We will say that such a sequence of integers (mq2, mE, e, M 1n, mf{_ln, My e, My)
is an spq,, C-partition for A.

Considering now mqo, mfz, ey Mp—1n, miﬁln and mq,...,m, as variables, we want
use them to describe the inequalities that defines the Berestein and Zelevinsky polytope
for a generical tensor product V) ® V,,.

We fix an index i in the ordered set {0 <1 <1< --- <n < i} and an integer ¢ €

{1,...,n}. We define the linear operators .Z(m), L} (m), Nt 0/1(m) and Jifoﬂ(m),

(2

in the variables mqs, mE, ey, My 1n, m:_ln and myq,..., My, in the following way:
t—1
13 — +
Z;(m) = Z (Mj,i+1 — M; ) — (mei — m“-) + Myit1-
Jj=1

t
L (m) = Z (Mjit1 — Mji) + myg1it.

Jj=1

t
ZLp(m) = — Z Mjn +miqr.
j=1

t
LHm) == Mjn +m.
j=1

t—1
t0 =mb + + + ,
A (m) = Miipr + Z (mij+1 o mi+1j+1) + (mit+1 — Mt1¢41).-
j=i+1
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t
700, N o+ + +
A7 (m) =mj + E (mijJrl - mi+1j+1) :
j=itl

n—1
0
A (m) = myy, + Z <m;LJ'+1 - mjﬂjﬂ) +2(mi — miga).

j=i+1
t—1
t1 —mT . A A + + +
A7 (m) =my g +2(m — misa) + mi —my, + Z (mz’j—i-l - mi+1j+1> +
j=i+1
n—1
.. + . . +
+ Z [(mzHl +m ) = (M1t + mi+1j+1):|
Jj=t
t—1
i1 o+ , A + +
A (m) =myf g+ 2(m — mig) + Z <mz'j+1 - mi+1j+1> +
j=i+1
n—1
.. + . . +
+ Z [(mzﬂl +mii) — (Mig1j1 + mz‘+1j+1)]
i=t

ff(m) =mi2.

gf(m) = Mlg.

Where we denoted by M;; the difference m;; — m;; Now, if A = ajwi + -+ + anAp
and p = bjwy + - -+ + bywy, are a pair of dominant weight, then the inequalities defining
the Berestein and Zelevinsky polyotope associated to the tensor product V) ® V), are
described in the following theorem:

Theorem 4.1.4. The irreducible components of Vyx ® V), are in bijection with integral
points of the polytope defined by the inequalities

o ZP<a

o N <ty
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o AN < b,
o MM <b,

where j ranges in {1,...,n} and 0 < s < j for the D?f operators, 1 <1 <n—1andt
ranges in i <t <n and i <t < n respectively for Ji/it’o and Jl/it’l.

We are interested in study integral points contained in the Berestein and Zelevinsky
polytope in the case of Lie algebra sp,,C when a; = b; = 1 for all 4, j < n.

Theorem 4.1.5 (Berestein and Zelevinsky). Let v be a dominant weight. The (gener-
alized) Littlewood Richardson coefficient c) L 18 equal to the number of sp,,, C-partitions
of A4 p — v contained in the Berestein and Zelevinski polytope.

Kostant’s Conjecture is then equivalent to find a sp,,-partition of 2p — A in the
Berestein and Zelevinsky polytope, for each weight A < 2p. We will call such sp,,,C-
partitions ” admissible”.

We are not able to find admissible sp,,,-partitions for each weight smaller than 2p.
However we can prove the following result for the C,, type:

Theorem 4.1.6. Let p = pre1 + -+ + pnen a weight smaller than 2p. If p < 2p and
i <n—i+1 then V, appears in the irreducible decomposition of Ag.

The strategy to prove the theorem is quite simple: for each weight A\ satisfying
the hypothesis, we construct an sp,,-partition for 2p — A and we prove such a sp,,-
partition satisfies the Berestein and Zelevinsky inequalities. We have first of all recall
some combinatorics of weights for C,,.

Remark 4.1.7. In the realization of C),, described in 1.1.4, the fundamental weight w;
for the Lie algebra C), is equal to e; + --- + ¢;. In e;-notations w; is then the vector
(1,...1,0,...,0) with the first ¢ coordinates equal to 1.

Via this identification we can express a general integral weight A = ajwi + - - - + anwy
in the form A = Ae; + -+ + A€, where Ay > Ao > -+ > A\,

Each weight A can be then expressed as a partition 7y = (A1,...,A,) and the differ-
ences \; — \;q1 are exactly equal to a;. We will refer to the partition described in this
way as the shape of A and we will denote it by m\. Moreover with the symbol || we will
denote the integer > 7" | A;

Ezample 4.1.8. Consider the weight p for C,. It is equal to w; + -+ + w,. Then it
correspond to the partition (n,n —1,...,2,1). Analogously, the weights kp have shape
(kn,k(n —1),...,2k, k).

Using this description we can classify the weights smaller than a fixed weight A in
terms of their partitions:

Lemma 4.1.9. Let A and p be two dominant weights for Cp, and let be m\ = (A1,...,An)
and w, = (1, - . ., ) the associated partitions. Then X < p if and only if the following
conditions hold:
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1.5 M=) >0foralll <k<n
2. |my| = |mu| mod 2.

Proof. The weight p is smaller than A if and only if there exists a sequence {aq,...,ap}
of positive roots such that A — > a; = p. Subtracting a root of the form e; — e; to
A corresponds to remove a box from the i-th row of 7, and add it to the j-th one.
Conversely subtracting a root of the form e; + e; corresponds to remove a box from
the i-th and from j-th row. In both cases the parity remains the same. The sum of
differences increase for each i if we subtract e; + e, otherwise if we subtract e; — e; the
value Zle()\i — p;) increase if k < j and remains the same if £ > j, obtaining one
implication. Suppose now that the two conditions are satisfied. Let j be the minimum
index such that A\; — pu; is positive. Let us define s as the shape in wich we have moved
boxes from lower rows of 7, to the j-th row until \; — ,u;- =0or A\s—pus >0 forall s > j.
Iterating the process we find the shape of a weight u* greater than y in the dominance
order that differs from A only by roots of the form e; +e;, because of condition 2) and by
the fact that "exchange ” a box between two rows does not change the parity of |u|. By
transitivity of the order and inductive reasoning on the quantity D = (i<} Hi — Ais
we obtain the claim.

An order on partitions induces an order on the weights, requiring the additional
condition the parity of |7)| and |7,| must be the same if A and x are in a same chain. The
dominance ordering of partitions then corresponds to the classical dominance ordering
of weights. We are interested in a different ordering.

Definition 4.1.10 (Inclusion order of partitions). Let m and o be two partitions of
lenght n. We say that w > o if and only if m; > o; for alli < n.

Definition 4.1.11 (Inclusion order on weights). Let A and p be weights for C,,. We say
that A > p if and only if

e |\ = || mod?2
o 7y > m, in the inclusion order of partition.

FEzample 4.1.12. Let us consider the weight 2p, the weights smaller than 2p in the
inclusion order are those with |7,| = |7\| mod 2 and such that p; < 2(n —i+1).

Observe that the latter condition is equivalent to say that ¢; = (2p — p); is non
negative for each ¢ < n.

Proof of Theorem 4.1.6. We have two main cases, depending on the parity of the {¢; }i<p.
First of all let’s suppose that all the ¢; are all even. This can happen because,

by Lemma 4.1.9 we have |A| = [2p| mod2. We will construct a sp,,-partition m =

(mi2,...,my) in an iterative way. We start setting m to be the null vector.

Step 1 If ¢, = 0 we set m,, = 0, otherwise m,, = 1.
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Steph+1=n—(i—1)+1 Let (m;t1, m;:_H? R min,mjn, m;) be the integers con-
structed at the h = n — ¢ + 1-th step, we set:
- M1 = mZtLj =m;_1 =0 for all jif ¢;_ 1 =0;

— Mj—1 = My, Mj—1n—j = Min—j and mltmfj = 'mj'nfj if ¢; > ¢;—1 > 0, with j
that ranges between 0 and ¢;—1/2 — 1 if m; = 0 and between 0 and ¢;—1/2 — 2
if m; = 1;

—If i1 = ¢; +2 we set mi—1 = m; and m;—1; = myj e mf_lj = m;L] for all

=1.

j > 1. Finally we set m;_1; = m;r_li

Observe now that the string of integers constructed above is a sp,,-partition for
2p — X because, for each i, the following equality holds:

n i—1
}:(ww~+m;)+2m¢+§:(—nwr+m;>:ci
Jj=1 Jj=1

We have just to prove that such sp,,,-partition is admissible.

Observe that, by construction, we have M;j(m) = 0 for all the pairs (i, j) with i < j
and that each element of m is smaller or equal to 1. It is then obvious that .ff <1 for
all j <mnandallte{1,1,...,n,n}.

For what concerns the operators %t,o/ 1, observe that by our construction, if j >
i + 1, we have that m;; = m;; # 0 implies m;;1; < mthlj # 0 and then the quantity
m;; —m;CH ;= mjj —m, 15 is non positive. The same remark holds for the {m;}: m; # 0
implies m;y1 # 0 and then m; — m;y1 is non positive.

This implies immediately that m is an admissible partition.

Otherwise, it can happen that there exists some odd ¢;. If we set I = {i|¢; odd}, by
reasons of parity, we have that the cardinality of I is even.

We can construct an sp,,, C partition using the following iterative process:

Step 1 Let {71 < --- < 7y2x} be the set of indices such that ¢; is odd. We pair together
the j-th and the k + j-th index obtaining the set P = {(7v1, Vk+1), -+, (Y&, Y2k) }-

Step 2 We construct the weight X’ starting from A uging the pairs in P: if (v}, vj4x) € P,
set Xy, = Ay +Lland A=A — 1, otherwise | = A,

Yi+k Vi+k

Step 3 Observe that A’ is again smaller than 2p and it sets of differences {c}} is composed
by non negative even integers. Using the previous case we can then construct an

admissible sp,,-partition m/ = (m.., mif, m').

170 %50

o . .. oy . _

Step 4 If (v, vj+k) is a pair in P, we set Moy = Mo T 1, otherwise m.,, , =
/

ViVi+k®

From the fact that for each pair of indexes (7;, vx+i;) we have

N—1=\

(2
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;chi +1= A

we obtain immediately that m is a sp,, C-partition for A. We have to show that m
is admissible. We will use inductive reasoning and the following remark:

Remark 4.1.13. Given an sp,, C-partition m for 2p — A, if we "forgive” about the roots
e1 + ej we obtain an sp,,,_,C-partition m’ for 2pc, , — X for some weight A < 2p¢;, .
We call this operation the "restriction” of m to C,_1. Consequently it make sense use
the notation .Z7[n](m), A;* O[n](m) and A;* t[n](m) for the operators of Theorem 4.1.4
to underline that Z7[h](m) is the value of £ (m) when m is restricted to C. Then the
following recursive relations holds

L (m) = (Myj — Mij) + 257 n — 1) (m) (4.1.1)
LE(m) = —My, + L5 {[n—1](1m) (4.1.2)
M (m) = A I = 1)(m) (4.1.3)

where we adopted the convention that s — 1 = s — 1. Moreover here m is the restriction
of m to spy(,,_1)-partition via the inclusion Cy—1 — Cy.

It can be verified by easy computations that the construction produces an admissible
partition for n = 2. By induction we can suppose

M= 4 -1 <1

Now remark that:

1.

2.

the construction produces m;; > 1 only if (7,7) is in P.

In the partition m we have that m;’; is different from O only if m;; # 0 for all ¢, j.
Then we have m;; < 2 and m;; < 1. In particular m;; > mfjif and only if i = 3 e
J = Yh4k- Furthermore M;; = 0 except in the case i # vy, and j # yn4x. In such
evenience we have M;; = 1.

. In m it holds m:; £ 0 only if m} . # 0, except if j = i + 1. The quantities

i+17
+ +

M — M and m;; — mj41; are then smaller or equal to zero if j > 7 + 1.

Finally m; # 0 only if m;y; # 0. This implies m; — m;41 < 0 for all ¢. By our
construction m; is always smaller or equal to 1.

These considerations lead us to the conclusion that .4;**(m), A4;%%(m) and .4, °(m)
are all smaller or equal to 1. Differently to find an upper bound to ;! 1(m) and A7t 1 (m)
we have to evaluate m; + mfj — (mo; + mzj) Such expression is always smaller or equal

+

to zero except if (1,j) € P, ie. ¢ is odd and j = 7,41. In such a case my; + my; —
(ngj + m;']) =1.
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Now, if ¢ and ca are both odd, for j = 7,42 we have my; + mf] — (mg; + m;]) <0
and if follows that

n—1
+ +
2 |:m1j+1 +myig — (majt1 + m2j+1)} <0

=s

<

obtaining c/Vlzl(m) < 1. We remark that if s > ;41 the above inequality is strict
and recalling that M;s; < 1 we obtain consequently that, if ¢; and co are odd, then
Mt m) < 1.

If ¢1 is even and cy is odd similar considerations hold: the quantities mq;41 —I—mfj 1
(maj+1 + m;J 4+1) are always non positive and My; = 0 for all j. Again this implies
A (m) <Te MM (m) < 1.

Conversely, if ¢; 4s odd and cy is even, we observe that:

e miy = mj, = 0 because ¢ < ¢z + 2
4 Zn_l [m1j+1 + mTjH — (majt1 + m;jﬂ)] is smaller than 1 by previous observa-

j=s

tions on the values that my; + mfj — (mag; + m;’]) can assume.
o if Z?;sl [m1j+1 + mi_j—i—l — (m2j+1 + m;jﬂ)} =1 then M7, =0
o if M;, =1 it follows that Z;”:_sl [m1j+1 + mfjH — (majq1 + m;ﬂ_l) <0

By these inequalities and using the inductive hypothesis the remaining inequalities
for the Jiff(m) are proved. It remains to prove that the conditions of 4.1.4 holds for
the operators £’ (m).

Some of these inequalities are trivial by the construction of m:

t
Zy(m) = — ZMM +mip <1
i=1
It follows from the fact that M;, > 0 for all 7 and from the fact that the m; is smaller
or equal to 1 for all ¢ by construction.

Moreover £ (m) = ,,iﬂjs_l (m)—M,; by the same considerations about the expressions

M;; (they are always non negative) we can reduce to prove that iﬂjﬁ(m) <1
We recall that

t
Zhm) = (Mije1 = Miz) + merjir.
=1

(2

Denote with P,y the set of indices v, with A > k.
We have four cases:
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1. If j and j + 1 are not in Py by above remarks we have Mp; = Mjyj 1 = 0 for
all h and for all j. Moreover my 1,41 is smaller than 1 (j +1 ¢ Pyj). Then the
inequalities are verified in this case.

2. If j€ Pipand j+ 1 ¢& Py, suppose j = Y4k, we have My = 0 for all

h and My; = 0 if and only if h # ~,. Otherwise we have M,_, ., = 1. This
implies i, (M; j41 — M;j) = —1 if t > v,. Otherwise >.i_; (M; j+1 — M;j;) = 0.
Actually the fact that, because j + 1 ¢ P.; we have myy1;41 < 1, implies the
inequalities.

3. If j & Pry and j+1 € Py Set j+1 = ~y,4. We remark that in this case, supposing
j # 7z, we obtain mj;i1 = 0 because ¢; < ¢}, + 2. Moreover if j = v, we have
again ¢ < ¢;,; +2 and then mj;1 = 1. We then obtain my141 = 1if t =7, — 1,
otherwise m41;4+1 = 0 holds. Now consider the quantity 22:1 (M; j41 — M;j). By
our remarks about the M;; it is equal to 0 if ¢ < v, and equal to 1 if ¢ > ~.. The
inequalities in this case then follows immediately.

4. If 5 € Py and j +1 € Py we can suppose j = Y,y and the j +1 = v, 14%.
We consequently have M;; # 0 if and only if ¢ = v, and that M;;.1 # 0 if and
only if i = 7,145 We then obtain that Y>'_, (M; 41 — M;;) is equal to —1 if
V. <t < Y41 and O otherwise. We remark finally that msi1;41 = 2 only if
t+1="7.41,1eif v, <t < ,41. This complete the proof of inequalities in this
last case.

It remains to show that my; <1 and mz 41 < lforalliand j. The second inequality
is obvious by construction and the first is a consequence of the fat that, if ¢; is odd, we
have ¢} < ¢} ; + 2 and then by construction m/; ; = 0.

4.2 Little Adjoint Representation

Theorem 4.1.1 is generalized by Panyushev in [28] for isotropy representations of
symmetric spaces. More precisely, given a Zg-graduation on a simple Lie algebra g (over
C), it induces a decomposition

g =90 D g1.

Clearly go has a structure of Lie algebra and g; is a gg-module called the isotropy
representation of go.
Panyushev proves that, for exterior algebras of g; an analog of 4.1.1 holds:

Theorem 4.2.1. In the previous setting, there exists a go-representation Vg, and a non
negative integer k such that

Agr = 2 (Vg, ® Vy,)
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Panyushev give a classification of the representations V;, and examine very closely
the case when the Z/2Z-grading is induced by involutions of Dynkin diagrams in simply
laced types Asgn+1, Dy and Fg. In this framework gg is of type Cp41, Br—1 and Fy and
g1 is their little adjoint representations Vp,, where 65 denotes the unique short dominant
root. In this setting he proves the following structure theorem:

Theorem 4.2.2.
A‘/Os = 2‘AS| (Vps & Vs)

where Ay is the set of short simple roots.

The analogy with the case of the exterior algebra of g lead us to formulate the
following conjecture:

Conjecture 4.2.3. V) is an irreducible component of AVy, if and only if X < 2p;.
Or in other terms
Conjecture 4.2.4. V) is an irreducible component of V, @ V,,_ if and only if X < 2p,.

The Conjecture 4.2.3 can be easily proved for case B, in different ways. We propose
a very natural proof based on elementary facts about representations of B,.

Proof of Conjecture 4.2.4 in the case By,. First of all we remark that in the realization
of root system of type B,, (see Remark 1.1.3) the highest short root is e; and it follows
immediately that Vj, is the defining representation.

It is a well known fact that A*Vp_, for i < n, have weights equal respectively to w; if
1 < n and to 2wy, if i = n. An immediate computation can shown that p; = w, and that
the weights smaller to 2w, are exactly 0 and the w;. This proves the conjecture for the
odd orthogonal groups. O

Moreover, we will remark that the same result can be obtained finding explicit inte-
gral points in the Berestein and Zelevinsky polytope associated to V,, ® V,,.

Finally, we underline that we proved the conjecture for exceptional cases Fy and G»
by direct computations. There seems not to be an easy way to prove our conjecture for
the case C), because of the great number of weights smaller than 2p;.
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