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Abstract

Atom interferometry is a rapidly developing field that finds applications in both applied

and fundamental physics. An atom interferometer can be configured to measure, for

example, gravity acceleration, gravity gradients or to test the Einstein Equivalence Prin-

ciple.

The operation of an atom interferometer relies on its large sensitivity to the measured

quantities and on the ability to limit systematic effects.

In this thesis, atom interferometry operating with strontium atoms is presented. The

chosen atomic species features an inherent robustness against external perturbations that

can seriously affect the measurement accuracy. Moreover, atom interferometry experi-

ments are performed through Bragg diffraction, a method that yields an additional im-

munity to external perturbations and allows to increase the interferometer area with a

corresponding increase in the instrument sensitivity.

Our implementations of atomic interferometry were based on a dipole-allowed and a

spin-forbidden atomic transition and demonstrated our ability to successfully manipulate

momentum states for inertial measurements.

Besides increasing the interferometer area and limiting systematic effects, the abil-

ity to measure the accumulated phase shift poses a fundamental limitation when such

experiments are performed with uncorrelated particles.

This barrier, the Standard Quantum Limit, can be overcome by generating entangled

atomic states with enhanced phase sensitivity. Many methods for the implementation of

such states have been successfully demonstrated. However, as they rely on the atomic

internal structure, they cannot be directly implemented for superpositions of momentum

states. In this thesis, a method that generates states with enhanced sensitivity is consid-

ered that is based on the nondestructive measurement of the Doppler effect due to the

different velocities of the momentum components. We show that when the momentum

difference is large the method performs as well as other demonstrated methods. When the

momentum difference is small, altering the atomic response to the measurement through

electromagnetically induced transparency can retrieve the phase sensitivity.

In this thesis we also discuss an experimental setup that allows for the implementation

of such squeezed momentum states that involves the enhanced interaction of the measuring
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light with the atomic ensemble and show that, with realistic parameters, a phase resolution

100 times better than the Standard Quantum Limit can be attained.
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Chapter 1

Introduction

Atom interferometers are devices that convert an accumulated phase difference between

two separate arms into a measurable population difference [1, 2]. The interferometer can

be arranged in such a way that the inferred phase difference carries valuable information

about important fundamental interactions. In this way, a large class of inertial measure-

ments can be performed, including the measurement of gravity acceleration [3, 4], gravity

gradients [5, 6], gravity curvature [7] and rotations [8, 9]. The applications of such devices

span from inertial navigation [10] to the precision measurement of fundamental constants

such as the fine structure constant [11, 12] and the Newtonian gravitational constant

[13, 14, 15]. Because of the ability to sense gravitational fields, atom interferometers are

excellent candidates for tests of General Relativity [16] and in particular of the Einstein

Equivalence Principle [17, 18, 19, 20, 21].

Valuable insight into the main features of atom interferometers can be gained by con-

sidering the Mach-Zehnder atom interferometer. In its optical counterpart, this interfer-

ometer is formed by beam splitters and mirrors that serve to split, reflect and recombine

a laser beam. In order to implement the atomic version, it is necessary to realize the

equivalent of these optical elements. This is realized by exploiting the interaction of

laser radiation with the atomic wavepackets. In particular, through photon absorption

and stimulated emission processes, it is possible to transfer momentum to an atomic

wavepacket. By tuning the strength and duration of such laser interaction, it is possible

to induce coherent superpositions of momentum states, thus building a beam splitter for

matter waves. Similarly, the interaction can induce a complete inversion between one

momentum state and the other, thus realizing a mirror [22]. The accumulated phase shift

is reflected, at the interferometer output, as an interference fringe in the population differ-

ence between momentum states. The optical elements can be combined so as to form an

atomic Mach-Zehnder interferometer. In a uniform gravitational field with acceleration

g, the accumulated phase shift is given by

Φ = keffgT
2, (1.1)
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where keff is the effective wavenumber of the laser fields that realize the beam splitters and

mirrors and is proportional to the momentum transferred to the atoms and T is the time

interval between the laser pulses. This equation shows that the accumulated phase shift is

linked to gravity’s acceleration through the factor keffT
2, which can be made considerably

large when the interaction involves optical photons and the interferometer time is on the

order of 100 ms. Equation (1.1) somehow summarizes the main efforts in the field of atom

interferometry for inertial measurements. Increasing the wavenumber keff translates to the

implementation of Large Momentum Transfer techniques [23]. Increasing the interaction

time T , on the other hand, requires that the coherence of the atomic wavepacket is

maintained over the duration of the interferometer so as to preserve the fringe contrast.

In an ideal world, the phase Φ is sensitive to gravity’s acceleration only. Unfortunately,

this is not the case in real experiments, where many perturbing sources of uncertainty are

present. Sources of systematic and poorly measurable errors are external electromagnetic

fields that couple to the atomic internal and external dynamics. For this aspect, in partic-

ular, there is substantial room for improvement. Indeed, by arranging the interferometer

in a suitable way, it is possible to largely suppress these sources of uncertainty.

In our work, we explored an atomic species that is potentially immune to these ef-

fects: atomic strontium. In its ground state, bosonic strontium lacks any form of angular

momentum, a condition that largely reduces the effects of electromagnetic perturbations

in inertial measurements. Moreover, the 88Sr isotope is highly insensitive to s-wave cold

collisions, a property that enables long coherence times in atom interferometers.

Laser cooling and manipulation of atomic strontium has become, over the years, a

technologically achievable task. Most of the interest is motivated by the availability of a

highly stable, ultra-narrow optical transition that constitutes one of the prime candidates

for neutral atom-based optical clocks [24, 25].

In this dissertation, the ability to perform atom interferometry with large momentum

transfer beam splitters based on Bragg diffraction is established for two optical transitions,

a broad dipole-allowed and a narrow intercombination transition. The development of

the necessary atom optics tools is discussed and a proof-of-principle implementation of a

gravimeter and of a gradiometer is presented.

Another aspect connected to Equation (1.1) is the ability to measure the phase shift Φ.

Because a phase shift does not correspond to a physical observable, it can only be estimated

[26]. An interferometer is the process through which this parameter is estimated by

conversion to a physically measurable quantity, in our case, the population difference. The

process that maps the relative phase into a population difference is inherently affected by

a fundamental noise source, the quantum projection noise [27]. This source of uncertainty

arises when, after the final beam splitter of the interferometer, the relative population is

measured. In general, the output of the interferometer will consist of a set of atoms

in a superposition |ψ〉 = a↓ |↓〉 + a↑ |↑〉, where |↑〉 and |↓〉 are the two states of the
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interferometer and the amplitudes a↓ and a↑ are related to the phase shift Φ1. After

performing a projective measurement of the population, the state |↓〉 is measured with

probability |a↓|2 and the state |↑〉 is measured with probability |a↑|2. Therefore, the

probabilistic nature of the measurement outcome causes noise in the phase measurement.

When the atomic states of an ensemble are uncorrelated, the phase noise variance is the

sum of the single-atom variances. Therefore, if the sample is formed by N atoms, the

noise variance is proportional to N . On the other hand, the signal is also proportional

to the number of atoms. This leads to a signal-to-noise ratio
√
N and to the Standard

Quantum Limit (SQL) in phase measurement resolution:

δΦSQL =
1√
N
. (1.2)

For the way we formulated this argument, it is clear that this limit, also known as the

(atom) shot noise limit, arises because of the absence of correlations between the atomic

states of different atoms.

The extreme case where all the particles are correlated induces a formidable improve-

ment in the scaling of the phase resolution with atom number. In such an extreme case,

one is left with the noise of a single particle while the results of measurements performed

on the remaining N − 1 particles are perfectly correlated with the first one and therefore

do not add noise. As a result, the interferometer phase resolution is given by

δΦH =
1

N
, (1.3)

known as the Heisenberg limit [28].

Our reasoning leads to connect any improvement beyond the SQL to the presence of

correlations or multiparticle entanglement in the atomic ensemble.

Research in the field of entanglement has produced various exciting results and several

methods have been studied that can generate such correlated states [26, 29]. Among these,

the methods that achieve sub-shot noise sensitivity by optical means gained considerable

interest [30, 31]. Indeed, they can generate entanglement between distant atoms and

therefore do not require high densities that may lead to systematic effects and coherence

loss in precision measurements. In the considerable variety of entangled states, criteria

that identify those that yield sub-shot noise phase sensitivity have been found. Inside

this selected class, spin squeezed states are found to be induced in a number of ways

and feature a relatively high robustness. In comparison, the maximally entangled states

that yield a phase resolution at the Heisenberg limit, are extremely fragile and their

implementation in systems with large number of particles is a long-standing goal.

Among the optical methods, spin squeezed states can be generated by effective non-

linear interactions mediated by light, by transfer of squeezing from light to the atoms or

by quantum nondemolition measurements.

1The amplitudes are assumed to fulfill the normalization condition |a↓|2 + |a↑|2 = 1.
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In this thesis we will mainly focus on measurement-induced spin squeezing. From the

above discussion, it would appear that the measurement process constitutes the problem

rather than the solution of noise reduction. However, depending on how a measurement

is performed, a wide variety of states can be generated [32, 33]. This process is ultimately

due to the fact that the measurement of an observable projects the state into an eigen-

state of that observable. Entanglement generation in this case relies on the measurement

of a collective variable. After the measurement of a collective variable, squeezing is con-

ditioned to the measurement outcome, because the particular final state is produced in

a probabilistic fashion. This means that the outcome cannot be discarded and that it

should provide as much information as possible about the induced state. In particular,

this requires a large signal-to-noise ratio and a large correlation between the outcome and

the state that is actually produced. The first requirement is satisfied when the optical

depth of the atomic ensemble is large [34]. The second requirement, on the other hand,

is fulfilled if the measurement process does not alter the state in an unpredictable way.

Both requirements are fulfilled when the measuring light is passed multiple times through

the ensemble, a situation that is achieved in an optical resonator.

Many correlated atomic states can be generated through cavity-enhanced collective

measurements [32]. However, to our knowledge, all the methods that induce spin squeezing

in atomic ensembles rely on the internal electronic structure. When implementing atom

interferometers that are robust against external perturbations, it is desirable to operate

the beam splitters and mirrors on transitions that largely suppress these effects. The states

that are coupled by atomic Bragg diffraction from a standing-wave meet this requirement

as they only differ by their external motion. As a result, the squeezing methods developed

up to date are not directly applicable to this case.

In this thesis we propose a probing scheme that is able to resolve the collective pop-

ulation difference between two momentum states through the Doppler effect. The mea-

surement is sensitive to the population difference rather than the population sum as long

as the probe operates on a transition that is narrow compared to the Doppler effect. The

strontium atom is one of the few species that enables this kind of measurement thanks

to the presence of a narrow optical transition. The proposed scheme reaches its optimum

performance for large momentum transfer beam splitters and is therefore compatible

with state-of-the-art technology. When large momentum transfer cannot be attained, the

method can be extended by adding a feature that alters the atomic response in order to

simulate the case where the momentum transfer is large. With this addition, our method

becomes applicable to a wider variety of atomic species.

This thesis is structured as follows.

In Chapter 2 we elaborate a model for the atom interferometer that describes the

dynamics and the spin squeezed states in a single representation. The Standard Quantum

Limit of phase estimation is introduced and its relation to uncorrelated states is discussed.
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States with enhanced phase sensitivity compared to the shot noise limit are introduced and

their relation to entanglement is illustrated. After identifying the squeezed states among

all others, the methods for their generation are discussed and some of the numerous

experimental achievements are reviewed.

Chapter 4 considers the first step in the implementation of a squeezed strontium atom

interferometer i.e. the realization of the beam splitters and mirrors. The theory of Bragg

diffraction as opposed to Raman transitions is reviewed and our experimental results are

reported.

In Chapter 5 our proposal for squeezing of momentum state superpositions is illus-

trated with particular reference to the strontium atom. The main theoretical tools are

derived in a way that is directly linked to the experimental situation considered where

the squeezing measurement is enhanced by an optical cavity. The attainable squeezing

is studied in relation to the fundamental limitation related to scattering of photons in

free space. A method that alters the atomic response in order to effectively enhance the

measurement signal-to-noise ratio through electromagnetically induced transparency is

illustrated.

Chapter 6 reports our first efforts in the realization of a setup that can combine Bragg

diffraction and squeezing in strontium atoms. A design of the optical resonator that meets

the requirements of this experiment is illustrated. The first experimental investigations

on the cavity mirrors are reported and the implementation of a laser system for atomic

cooling and trapping is presented.



Chapter 2

Spin squeezing in atom

interferometry

In this Chapter we will begin by defining a simple even though quite general model of

an atom interferometer [1, 2]. We will see that, when the interferometer operates with

uncorrelated states, its performance limits are set by the Standard Quantum Limit. Over-

coming this limit then requires the generation of correlated or entangled states. We will

show that these states can be implemented in a number of ways. Finally, we will discuss

the main challenges in the implementation of a matter-wave interferometer operating

beyond the Standard Quantum Limit.

2.1 A model for the atom interferometer

An interferometer is a device that converts an accumulated phase shift between two

separate arms into a measurable population difference between two states. The main

goal of an interferometric measurement is the estimation of this phase shift. This can

in turn be connected to fundamental and basic physical interactions. Interferometers

based on neutral atoms, for example, couple to inertial fields. For a suitable setup, the

interferometer phase shift can be made proportional to gravity’s acceleration [3, 35].

Every atomic sensor, being an interferometer that measures inertial or electromagnetic

fields, or a clock, takes advantage of this conversion between a phase shift and a population

difference.

The two arms of the interferometer can be associated with the states |↑〉 and |↓〉 of

a two-level system, described by a pseudo-spin operator Ŝ. The states |↑〉 and |↓〉 are

eigenstates of the operator Ŝz = (|↑〉 〈↑| − |↓〉 〈↓|)/2:

Ŝz |↓〉 = −1

2
|↓〉 , Ŝz |↑〉 = +

1

2
|↑〉 . (2.1)

13
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Figure 2.1: Representation of the atomic state of a two-level system on the Bloch sphere.

The Bloch vector (blue arrow) forms an angle θ with respect to the z-axis and there is an

angle φ between the projection of the Bloch vector on the xy plane and the x-axis. The

coordinates of the point at the tip of the vector are determined by the expectation values

of the spin operators (〈Ŝx〉 , 〈Ŝy〉 , 〈Ŝz〉).

On the basis of these eigenstates, a general single-particle state can be written as

|ψ〉 = sin
θ

2
|↓〉+ e−iϕ cos

θ

2
|↑〉 . (2.2)

Such a state can be represented as a point on the single-particle Bloch sphere as in

Fig. 2.1. We will refer to the Bloch vector as the one connecting the center of the sphere

and the point representing the state |ψ〉. This representation yields the interpretation of

the angles θ and φ that completely characterize the state |ψ〉. In particular, the angle θ is

related to the populations of the two levels, P↓ = sin2 θ/2 and P↑ = cos2 θ/2, whereas φ is

the phase of the superpositions between the states corresponding to the two levels. This

representation is useful in describing the evolution of two-level systems, which is simply

equivalent to rotations in the Bloch sphere.

We will now consider the main building blocks of an atom interferometer: the inter-

action with the laser fields that is used to manipulate the particle states and the phase

shift.

We consider the specific case of the interaction of a two-level atom with a laser field.

We write the atomic state as |ψ〉 = a↓ |↓〉 + a↑ |↑〉, where a↓,↑ are the amplitudes for the

two modes |↑〉 and |↓〉. If ~ω0 is the energy difference between the two atomic levels,
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which we label |↓〉 and |↑〉, the unperturbed Hamiltonian of the system can be written as

Ĥ0 =
1

2
~ω0σ̂z, (2.3)

where σ̂z = 2Ŝz is the Pauli spin operator with the matrix representation

σz =

(
1 0

0 −1

)
. (2.4)

We next consider an interaction term that couples the two atomic levels through an

oscillating field with frequency ω and phase φL, Ĥint = 2Ĥ(0)
int cos(ωt+ φL) and define the

corresponding Rabi frequency

Ω = 2
| 〈↑| Ĥ(0)

int |↓〉 |
~

. (2.5)

The simplest case of interaction of a laser field with the atoms is the electric dipole

interaction, where Ĥint = −d̂ · E, where d̂ is the atomic electric dipole operator and E

the laser’s electric field. For simplicity, we consider the laser’s electric field oriented along

the quantization axis z. In this case we can write the interaction term in the form

Ĥint = −~Ω cos(ωt+ φL)(|↑〉 〈↓|+ |↓〉 〈↑|). (2.6)

We then consider the transformation to a frame rotating at the laser frequency ω and

define the amplitudes b↑,↓ such that a↓ = b↓e
iωt/2 and a↑ = b↑e

−iωt/2. In this rotating

frame we can write the total Hamiltonian as

H =
~
2

(
−δ −Ωe−iφL

−ΩeiφL δ

)
, (2.7)

where we defined the detuning of the laser field from the atomic resonance δ = ω − ω0

and we neglected terms oscillating at twice the laser frequency (Rotating Wave Approxi-

mation).

As a result, the total Hamiltonian can be written as

Ĥ = −ΩR · Ŝ, (2.8)

where Ŝ = σ̂/2, ΩR = δez + Ω cosφLex + Ω sinφLey is the Rabi frequency vector and

ei is the unit vector in the direction i. The effect of the interaction with the laser field

can therefore be pictured as an equivalent rotation of the Bloch vector Ŝ about ΩR. The

Hamiltonian Ĥ is equivalent to that of the precession of a magnetic moment in a magnetic

field, where Ŝ is an effective magnetic moment and ΩR is an effective magnetic field.

By applying the commutation relations [36] for the spin operators, [Ŝi, Ŝj] = iεijkŜk,

and the Ehrenfest theorem d
dt
〈Ŝ〉 = 〈[Ŝ, Ĥ]〉 /(i~), we obtain the equation of motion for

the precession of the spin vector about the Rabi frequency vector,

d

dt
〈Ŝ〉 = −ΩR × 〈Ŝ〉 . (2.9)
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The frequency of this precession is given by the norm of ΩR, defined as the generalized

Rabi frequency ΩR =
√

Ω2 + δ2.

The unitary evolution Ûp induced by the Hamiltonian (2.8) can also be expressed by

using the properties of the Pauli matrices σ̂ as

Ûp(t− t0,nR) = e−iĤ(t−t0)/~ = Î cos

[
ΩR

2
(t− t0)

]
+ inR · σ̂ sin

[
ΩR

2
(t− t0)

]
, (2.10)

where Î is the identity operator and nR(θ, φ) = ΩR/ΩR is the unit vector corresponding

the generalized Rabi frequency.

We can now consider the cases that are relevant to atom interferometry, namely the

beam splitter and the mirror laser pulses. If the laser is on resonance with the atomic

transition, δ = 0, then ΩR = Ω. Furthermore, for φL = 0, if the initial state lies in the yz

plane, it will remain there during the interaction with the laser field. We then have the

solution

〈Ŝz(t)〉 = 〈Ŝz(0)〉 cos Ωt− 〈Ŝy(0)〉 sin Ωt. (2.11)

A mirror laser pulse is one that produces population inversion between the two states:

starting from the Bloch vector pointing at the south pole, 〈Ŝz(0)〉 = −1/2, 〈Ŝy(0)〉 = 0, a

complete inversion is attained when 〈Ŝz(0)〉 = 1/2 or Ωtπ = π. Because of this condition,

such a pulse is named a π-pulse.

Another important case is the 50-50 beam splitter pulse, which produces an equal

superposition of the two spin states. This is attained when Ωtπ/2 = π/2 and because of

this condition, such a pulse is named a π/2-pulse.

In terms of the state in eq. (2.2), the expectation value of Ŝz can be written as

〈Ŝz〉 =
1

2
〈ψ| (|↑〉 〈↑| − |↓〉 〈↓|) |ψ〉 =

1

2

(
cos2 θ

2
− sin2 θ

2

)
=

1

2
cos θ. (2.12)

Therefore, the π-pulse induces the transition θ(t = 0) = π → θ(t = tπ) = 0 and the

π/2-pulse induces the transition θ(t = 0) = π → θ(t = tπ/2) = π/2.

After describing the manipulation of the atomic states by the laser interaction, we now

turn our attention to the interactions that take place inside between the interferometer

pulses. In general, these interactions can be quantified by a parameter ∆φ, the phase shift

of the interferometer. The main goal of an interferometric measurement is to provide an

estimation of ∆φ. However, because there exists no hermitian operator corresponding to

this phase shift, in the interferometer, the measurement is attained by converting this

phase shift into a population difference.

The effect of the phase shift in the interferometer can be represented as a rotation of

the Bloch vector about the z-axis. The unitary operator that accomplishes such transfor-

mation can be written as

Ûps(∆φ) = e−i∆φσ̂z/2 = e−i∆φ/2 |↑〉 〈↑|+ ei∆φ/2 |↓〉 〈↓| . (2.13)
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To visualize the effect of this transformation we first interpret the phase ϕ in (2.2) by

computing

〈Ŝx〉 =
1

2
sin θ cosϕ (2.14)

〈Ŝy〉 =
1

2
sin θ sinϕ. (2.15)

These properties and (2.12) are related to the fact that the state (2.2) is the eigenstate

of the operator σ̂ ·n, where n = sin θ cosϕex + sin θ sinϕey + cos θez is the unit vector in

the Bloch sphere pointing in the direction defined by the angles θ and ϕ. It is then clear

that ϕ is the phase of quantum superpositions of spin states and that it can be visualized

as the angle of the Bloch vector with respect to the x-axis, in the equatorial plane.

The effect of the phase shift operator Ûps can be computed as

Ûps(∆φ) |ψ〉 = ei∆φ/2 sin
θ

2
|↓〉+ e−i(ϕ+∆φ/2) cos

θ

2
|↑〉 = sin

θ

2
|↓〉+ e−i(ϕ+∆φ) cos

θ

2
|↑〉 ,
(2.16)

where in the last equality we used the fact that states differing by an overall phase factor

coincide. The phase shift operator therefore adds the phase ∆φ to the superposition (2.2).

We now have the tools to consider the operation of the simplest interferometer, the

Ramsey interferometer [37]. In the initial state |ψin〉, the atom is pumped in the ground

|↓〉 state i.e. at the south pole of the Bloch sphere. A π/2-pulse is then applied with

a phase φL = π/2 (nR = ey) and, following the accumulation of the phase ∆φ, a final

π/2-pulse with phase φL = 0 (nR = ex) converts the accumulated phase shift into a

population difference. This final state is attained by the sequence of operations (Fig. 2.2)

|ψfin〉 = Ûp(tπ/2, ex)Ûps(∆φ)Ûp(tπ/2, ey) |ψin〉 (2.17)

=
1

2

[
(1 + ie−i∆φ) |↓〉+ (i− e−i∆φ) |↑〉

]

The probabilities for the final state of being in the two spin states are therefore given

by

P↓ = | 〈↓ |ψfin〉 |2 =
1

2
(1 + sin ∆φ), P↑ = | 〈↑ |ψfin〉 |2 =

1

2
(1− sin ∆φ), (2.18)

and the population difference therefore directly reflects the phase shift:

P↓ − P↑ = sin ∆φ. (2.19)

These results show that the phase shift manifests itself as an interference fringe or a

variation of the relative population between the two states. The most sensitive point

where to operate the interferometer corresponds to the condition ∆φ� 1 where P↓−P↑ '
∆φ. This condition can be achieved, for example, by tuning the phase of the initial

beam splitter pulse. In this case, if the corresponding phase is φ′, then the unit vector
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Figure 2.2: Representation of the Ramsey interferometer on the Bloch sphere. The π/2-

pulses are indicated as
(
π
2

)
k
, where k labels the axis of the rotation. Similarly, the

accumulated phase shift is labelled (∆φ)z thus recalling that it is represented as a rotation

about the z-axis.

corresponding to the generalized Rabi frequency is nR = cosφ′ex + sinφ′ey and the

superposition state after the pulse is

Up(tπ/2,nR) |ψin〉 =
1√
2

(|↓〉+ e−i(φ
′−π/2) |↑〉). (2.20)

The phase shift measured by the interferometer can therefore meet the condition of max-

imum sensitivity, ∆φ� 1, because changes in ∆φ are equivalent to changes in φ′.

In this Section we have described a representation that intuitively explains how the

interferometer converts the accumulated phase into a measurable population difference

between two states. There is however the essential question about how well it is possible

to measure the probabilities P↓ and P↑. With a single particle, the noise in the phase

measurement is the quantum projection noise. With more independent particles the limit

is still set by the quantum projection noise. However, if more particles are correlated, this

limit can be overcome. This will be the subject of the following sections.
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2.2 Input states in atom interferometry

When an interferometric measurement is performed with a single particle, the phase

estimation is limited by the quantum projection noise. To see how this arises, we recall

that in the interferometer one can arrange a situation where the phase shift is measured

through the relation ∆φ ' P↓ − P↑ ∝ 〈Ŝz〉. The uncertainty of this measurement is

therefore given by the variance of the operator Ŝz. This is defined as

(∆Sz)
2 = 〈ψfin| Ŝ2

z |ψfin〉 − 〈ψfin| Ŝz |ψfin〉2 (2.21)

For a generic interferometer output state |ψfin〉 = a↓ |↓〉 + a↑ |↑〉, we have (∆Sz)
2 =

|a↑|2|a↓|2. The phase resolution in the presence of quantum projection noise can be com-

puted as

δ(∆φ) =
∆Sz∣∣∣∂〈Sz〉∂∆φ

∣∣∣
. (2.22)

By using 〈Ŝz〉 = −1
2

sin ∆φ, we get |∂ 〈Sz〉 /∂∆φ| = ~|a↓||a↑| and the phase resolution

is therefore δ(∆φ) = 1, independent of the operating point ∆φ. This result can be

interpreted in terms of the fact that the phase sensitivity is proportional to the spin noise

∆Sz. This result, however, holds when the quantum projection noise is the only noise

source. In the presence of additional noise, due for example to detection noise, there

exists an optimum operating point. We therefore consider an additional noise source

(∆Sz)add which we take to be uncorrelated from the quantum projection noise and does

not introduce any bias in the phase estimation. For this noise source, therefore, the

variances are additive and the phase resolution becomes

δ(∆φ) =

√
(∆Sz)2 + (∆Sz)2

add∣∣∣∂〈Ŝz〉∂∆φ

∣∣∣
. (2.23)

It is then straightforward to see that this expression is minimized when |a↑|2|a↓|2 is max-

imized. Because |a↓|2 + |a↑|2 = 1, this condition corresponds to that of maximum phase

sensitivity |a↓|2 = |a↑|2 = 1/2 [27].

2.2.1 Repeated phase measurements with uncorrelated states

and the Standard Quantum Limit

We next consider the case where the interferometric measurement is repeated m times

with a single particle and assume that the various repetitions are uncorrelated i.e. the

outcome of one measurement does not affect the outcomes of the following measurements.

In this case we will consider the random variable Sz to be the sum of the random variables
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corresponding to each measurement trial k, (Sz)k. If the independent trials are indistigu-

ishable, then 〈(Sz)k〉 = 〈(Sz)l〉 and (∆Sz)
2
k = (∆Sz)

2
l for k 6= l. By making use of the

error propagation formula, in the previous results we therefore make the replacements

〈Sz〉 →
m∑

k=1

〈(Sz)k〉 = m 〈Sz〉 (2.24)

(∆Sz)
2 →

m∑

k=1

(∆Sz)
2
k = m(∆Sz)

2 (2.25)

and the phase resolution is given by

δ(∆φ) =
1√
m
. (2.26)

The phase measurement can also be performed with more than one atom. If the atomic

states of different atoms are uncorrelated, then this measurement is equivalent to the

repetition of a measurement with a single atom, a number of times equal to the number

of atoms. This follows from the fact that the interactions in the interferometer, namely

the interaction with the laser field and the phase shift, are local operations. This means

that the interferometer does not create correlations between particles. Therefore, with m

trials of the experiment, each with N atoms, the phase resolution is given by

δ∆φ =
1√
mN

. (2.27)

We now consider the relevant case where a single experiment run is performed with N

particles. In this case we define the spin variables corresponding to a single particle with

index i: σ̂i the Pauli spin matrices and Ŝi = 1
2
σ̂i the spin vector. The corresponding

collective spin vector is given by Ŝ =
∑N

i=1 Ŝi. The eigenvalue corresponding to the

operator Ŝ2 is S(S + 1), where S can take the values S = N/2, N/2 − 1, · · · , 1/2 or 0

depending on whether N is odd or even, respectively. For each value of S, the operator

Ŝz can take the values M = −S, · · · ,+S. These simultaneous eigenstates of S2 and Sz,

denoted |S,M〉 are known as Dicke states. The subspace S = N/2 is that of the fully

symmetric states. This condition represents the maximum length of the Bloch vector and

can also be interpreted in terms of interferometer contrast. An important property is that

S is conserved when the interactions do not distinguish between different particles. For

example, the interactions in the interferometer described above fulfill this requirement.

The state of N independent (or uncorrelated) atoms with the corresponding Bloch

vectors all pointing in the same direction (θ, φ) is known as the coherent spin state (CSS)

[38] and can be written as

|θ, φ〉 =

(
sin

θ

2
|↓〉+ e−iφ cos

θ

2
|↑〉
)⊗N

(2.28)
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This state can also be written in the Dicke basis as

|θ, φ〉 =
S∑

M=−S

|S,M〉 〈S,M |θ, φ〉 , (2.29)

where

〈S,M |θ, φ〉 =

√√√√
(

2S

M + S

)
cosS+M θ

2
sinS−M

θ

2
e−i(S+M)φ. (2.30)

The CSS is one of the most common states used in atom interferometry, mainly because

it is readily obtained by the interaction with the laser fields. Indeed, starting with all the

atoms pumped in the ground |↓〉 state, corresponding to |θ = π, φ〉, the state is rotated

into any state |θ, φ〉 by the interaction with the laser fields described above.

We can now assume that a particular CSS state |θ, 0〉 is the output of an atom inter-

ferometer. Because of the mapping of phase shift ∆φ into population difference, we have

θ = ∆φ + π/2. With this state we can now compute the interferometer phase resolution

(2.22).

In order to compute the spin mean value and variance, we note that the expansion

(2.29) corresponds to the binomial distribution with probability

| 〈S,M |θ, φ〉 |2 =

(
2S

M + S

)
cos2(S+M) θ

2
sin2(S−M) θ

2
. (2.31)

The average is therefore 〈Ŝz〉 = −1
2
N sin ∆φ and the variance (∆Sz)

2 = N cos2 θ
2

sin2 θ
2

=
1
4
N cos2 ∆φ so the phase resolution is

δ(∆φ) =
1√
N
. (2.32)

This phase resolution limit is known as the Standard Quantum Limit (SQL) and the corre-

sponding phase noise is known as the shot noise. The simpler reasoning that led to (2.27)

would of course suffice. Here we however provided a quantum mechanical description of

the state that corresponds to uncorrelated atoms.

We now compare this limit with that expected from the Heisenberg uncertainty rela-

tion. In this case, in particular, we are considering a state pointing, in the Bloch sphere,

in the positive x direction (we assume ∆φ = 0 for simplicity) so that the state is an

eigenstate of Ŝx. The uncertainty relation in this case reads

(∆Sy)
2(∆Sz)

2 ≥ 1

4
| 〈Ŝx〉 |2 =

N2

16
. (2.33)

The variance (∆Sz)
2 was calculated above. In order to compute (∆Sy)

2 one can con-

ceptually rotate the state about the x-axis through a π/2-pulse by applying the opera-

tor Ûp. In doing so we see that the CSS remains unaltered for any rotation angle. In
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other terms, the CSS is a symmetric state about the direction (θ, φ). We conclude that

(∆Sy)
2 = (∆Sz)

2 = N/4 and that the CSS is a minimum uncertainty state i.e. it saturates

the inequality in (2.33).

The uncertainty regions of quantum states can be represented by the Husimi Q func-

tion [39]. This is essentially formed by the diagonal elements of the density operator ρ̂ in

the representation of the coherent spin states |θ, φ〉:

Q(θ, φ) =
2S + 1

4π
〈θ, φ|ρ̂|θ, φ〉 . (2.34)

For an atomic state defined by the density matrix ρ̂, we define the probability density

function P (θ, φ) for it to be in the state |θ, φ〉,

ρ̂ =

∫
sin θdθdφP (θ, φ) |θ, φ〉 〈θ, φ| . (2.35)

The Husimi Q function can then be written as

Q(θ, φ) =
2S + 1

4π

∫
sin θ′dθ′dφ′P (θ′, φ′)| 〈θ, φ|θ′, φ′〉 |2

=
2S + 1

4π

∫
sin θ′dθ′dφ′P (θ′, φ′)(cos Θ/2)4S, (2.36)

where Θ is the angle between the directions of the coherent spin states |θ, φ〉 and |θ′, φ′〉
and is given by

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (2.37)

In the limit of large atom numbers, S � 1, this expression can be approximated by

Q(θ, φ) ' S

2π

∫
sin θ′dθ′dφ′P (θ′, φ′) exp

[
−S

2
(θ − θ′)2 − S

2
(φ− φ′)2 sin2 θ′

]
. (2.38)

If we consider the CSS state ρ = |θ0, φ0〉 〈θ0, φ0|, then P (θ′, φ′) = δ(θ′−θ0)δ(sin θ′(φ′−φ0))

and the Q function is expressed by a Gaussian distribution

Q(θ, φ) =
S

2π
exp

[
−S

2
(θ − θ0)2 − S

2
(φ− φ0)2 sin2 θ0

]
. (2.39)

This function is represented in Fig. 2.3 for a CSS pointing in the direction (θ = π/2, φ = 0).

We also note that, whenever the atomic state is a pure state, ρ̂ = |ψ〉 〈ψ|, the Q

function can be expressed as

Q(θ, φ) =
2S + 1

4π
| 〈θ, φ|ψ〉 |2. (2.40)

and can therefore be interpreted as an effective probability density function.
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Figure 2.3: Husimi Q function for a coherent spin state pointing in the direction (θ =

π/2, φ = 0).

2.2.2 Entanglement and phase measurements beyond the Stan-

dard Quantum Limit

From our treatment of the coherent spin state, the one readily attained experimentally, we

conclude that it can perform at best at the shot noise limit. There are, however, states

that possess phase sensitivities beyond the Standard Quantum Limit. An important

example is the NOON state [40] which is a particular Schrödinger-cat state and, for our

system, is written as

|ψNOON〉 =
1√
2

(|↑〉⊗N + |↓〉⊗N) =
1√
2

(|S, S〉+ |S,−S〉), (2.41)

where in the second equality the state was written in the Dicke basis. The NOON state

is seen to be an equal superposition of two coherent states. This feature is also visible

from the corresponding Husimi Q function:

Q(θ, φ) =
2S + 1

8π

[
cos4S

(
θ

2

)
+ sin4S

(
θ

2

)
+ 2 sin2S

(
θ

2

)
cos2S

(
θ

2

)
cos(2Sφ)

]
. (2.42)

This function is plotted in Fig. 2.4 a) and shows two probability peaks at the north and

south poles. Additionally, for small S, there is interference between the north and the

south regions, represented by the last term proportional to cos(2Sφ).

The importance of this state stems from its large sensitivity to atomic phase variations.

This can be understood by applying the phase shift operator Ûps(∆φ),

Ûps(∆φ) |ψNOON〉 =
1√
2

(|↓〉⊗N + e−iN∆φ |↑〉⊗N). (2.43)
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a) b)

Figure 2.4: Husimi Q function representation of two entangled multiparticle states for

N = 100. a) NOON state, b) Dicke state |S, 0〉.

It is then seen that the NOON state accumulates the phase shift N times faster compared

to the coherent spin state. The phase shift of the NOON state is measured via the operator

[41]

Â = |S, S〉 〈S,−S|+ |S,−S〉 〈S, S| , (2.44)

whose expectation value is 〈ψNOON|Â|ψNOON〉 = cosN∆φ and its variance is (∆A)2 =

sin2 ∆φ. The phase resolution is therefore

δ∆φ =
(∆A)

|∂ 〈Â〉 /∂∆φ|
=

1

N
. (2.45)

Another important example is that of the Dicke state |S,M〉 with Husimi Q function

Q(θ, φ) =
2S + 1

4π

(
2S

S +M

)
cos2(S+M)

(
θ

2

)
sin2(S−M)

(
θ

2

)
. (2.46)

Because the Dicke state is a state where the population between the two spin states is

defined, the Husimi Q function is represented by a ring in the Bloch sphere (Fig. 2.4 b)).

An interferometric phase measurement with such a state would then proceed as follows.

After preparation of the state |S, 0〉, also known as the twin-Fock state [42], a π/2-pulse

rotates the state into a phase-sensitive state and after a precession, another π/2-pulse

is applied as in a standard Ramsey interferometer. The result is a state with increased

variance (∆Sz)
2 which is proportional to (∆φ)2. A measurement of the relative population

variance therefore yields the phase measurement. It can be shown that for small ∆φ the

phase resolution is [43]

δ∆φ =

√
2

N
. (2.47)
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We have therefore shown that there are states that can yield phase measurements with

a resolution better than the Standard Quantum Limit and that the ability to perform

such measurements depends on the measured observable [43]. All these states share

the common property of being entangled states. This means that the state cannot be

expressed as a direct product of single-particle states. In terms of the density matrix, we

define the density matrix for the single particle i as ρ̂i. By definition, the collective state

ρ̂ is entangled if it is not separable i.e. if

ρ̂ 6=
∑

k

pkρ̂
(k)
1 ⊗ ρ̂(k)

2 ⊗ · · · ⊗ ρ̂(k)
N , (2.48)

where pk is the probability of being in the state ρ̂
(k)
1 ⊗ ρ̂(k)

2 ⊗ · · · ⊗ ρ̂(k)
N .

2.2.3 Phase resolution limits for separable and entangled states

Among the several entangled states, only a fraction are useful for quantum metrology

and can yield measurement precisions better than the shot noise limit. Entanglement

is however a necessary condition for beating the shot noise as it was shown in [44] that

separable states can perform at most at the shot noise limit. On the other hand, entangled

states can yield a phase resolution at the Heisenberg limit δ(∆φ) = 1/N . This can be

shown by considering the phase shift operator Ûps = e−i∆φŜz , where Ŝz is the collective

spin operator. The corresponding uncertainty relation can written as [44]

δ(∆φ)∆Sz ≥
~

2
√
m
, (2.49)

where m is the number of repetitions of the measurement. We consider the case where

the input state is a separable state and note that, according to (2.49), the best phase

resolution is possible when the variance (∆Sz)
2 is maximized. This is obtained when

the input state is a product of superpositions of states corresponding to the maximum

and minimum eigenvalues of Ŝz, with equal amplitudes i.e. the single-particle state is

|ψi〉 = (|↑〉i + |↓〉i)/
√

2. The corresponding variance is (∆Sz)
2 = N/4 and the bound

(2.49) reads

(δ∆φ)separable ≥
1√
Nm

. (2.50)

This shows that interferometry with separable states can perform at best at the shot noise

limit.

We next consider an entangled input state. In this case the variance (∆Sz)
2 is maxi-

mized by the collective state |ψ〉 = (|↑〉⊗N + |↓〉⊗N)/
√

2 and (∆Sz)
2 = N2/4. The bound

(2.49) therefore reads

(δ∆φ)entangled ≥
1

N
√
m

(2.51)
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which means that the phase measurement resolution is bounded by the Heisenberg limit.

This reasoning also shows the following facts:

• That the best phase resolution is attained for equal superpositions of states cor-

responding to the maximum and minimum eigenvalues of the generator Ŝz of the

phase shift.

• That the NOON state is the only state that can reach the Heisenberg limit.

• That the prefactor in the phase resolution depends on the eigenvalues of Ŝz. If the

single-particle spin is s, then the phase resolution limits read

(δ∆φ)separable ≥
1

2s
√
Nm

and (δ∆φ)entangled ≥
1

2sN
√
m

(2.52)

which reduce to (2.50) and (2.51) in the case of the two-level system, s = 1/2.

2.2.4 Useful states for quantum metrology and spin squeezing

In the previous Subsection we concluded that entanglement is a necessary condition for

phase measurements beyond the Standard Quantum Limit. It has been shown [45] that

there exists a quantity, the quantum Fisher information, that provides a necessary condi-

tion for multiparticle entanglement and a necessary and sufficient condition for sub-shot-

noise phase measurements. Even though this is the most general criterion that identifies

states that are useful for quantum metrology, we will only consider a selected class of such

states known as spin squeezed states [46]. For these states, entanglement correlates the

noise of the single particles, resulting in reduced fluctuations for one direction in the Bloch

sphere (the squeezing direction) at the expense of enhanced fluctuations in the orthogonal

direction (the anti-squeezing direction).

Depending on the specific application, different parameters can be used to quantify

spin squeezing.

For the atom interferometer, the useful parameter was introduced by Wineland [47, 29]

and represents essentially the signal-to-noise ratio of the phase measurement that also

accounts for the fringe contrast C:

ξ2
m = C2 N

(∆N)2
, (2.53)

where the fraction is the inverse of the population difference variance (∆N)2 normalized

to the shot noise N .

The Ramsey interferometer with a squeezed state would then proceed as follows:

• After pumping all the atoms in state |↓〉, thus producing the coherent spin state

|θ = π, φ〉, a π/2-pulse is applied and rotates the state about the y-axis. The result-

ing CSS state is |θ = π/2, φ = 0〉.
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a) b)

c) d) e)

Figure 2.5: Representation of the Ramsey sequence on the Bloch sphere. a) Initial co-

herent spin state |θ = π, φ〉. b) Coherent state after the first π/2-pulse. c) Spin squeezed

state with enhanced phase sensitivity. d) Spin squeezed state after the accumulation of

the phase shift ∆φ. e) Spin squeezed state with reduced relative population uncertainty.

• A spin squeezing procedure is applied, thus producing a phase-sensitive state i.e. a

state with reduced fluctuations along the phase direction y.

• The precession accumulates the phase shift ∆φ.

• The final π/2-pulse maps the accumulated phase shift into a population difference

between the two spin states and converts the phase-sensitive state into a state with

reduced relative population uncertainty.

Such an adapted Ramsey sequence is illustrated in Fig. 2.5.

2.3 Generation of spin squeezed states

There are several methods that can generate spin squeezed states [29, 26]. A first class

of methods relies on the implementation of effective nonlinear interactions that introduce

correlations between the elementary spins. This is what was initially proposed by Kita-

gawa and Ueda [46] who studied the effect of Hamiltonians that are quadratic in the

collective spin operators. A second class of methods relies on a pre-measurement of a col-

lective variable that has the ability to project the atomic state into a state with reduced
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uncertainty for that variable. In the following we study these mechanisms and attempt

to cite the main experimental achievements.

2.3.1 Spin squeezing induced by one-axis twisting and two-axis

countertwitsting

In their proposal [46], Kitagawa and Ueda consider a class of unitary transformations in

the form

Û(t) = e−itF (Ŝz) (2.54)

which are induced by the Hamiltonian Ĥ = ~F (Ŝz) and where F (Ŝz) is a function of the

collective spin operator Ŝz. It is possible to show that the ladder operators Ŝ± = Ŝx± iŜy
evolve as

Ŝ+(t) = Û †Ŝ+(0)Û = Ŝ+(0)eitf(Ŝz) (2.55)

where f(Ŝz) = F (Ŝz + 1) − F (Ŝz) and Ŝ−(t) = [Ŝ+(t)]†. For the lowest-order nonlinear

Hamiltonian Ĥ = ~χŜ2
z we have f(Ŝz) = 2χ(Ŝz + 1/2). The evolution of the observables

Ŝx and Ŝy is then given by

Ŝx(t) =
1

2

[
Ŝ+(0)eiµ(Ŝz+1/2) + e−iµ(Ŝz+1/2)Ŝ−(0)

]
(2.56)

and

Ŝy(t) =
1

2i

[
Ŝ+(0)eiµ(Ŝz+1/2) − e−iµ(Ŝz+1/2)Ŝ−(0)

]
(2.57)

with µ = 2χt. These expressions allow us to compute the various expectation values where

it is possible to see how the fluctuations are redistributed between the different observ-

ables. Because squeezing occurs in an oblique spin component, we introduce the rotation

about the x-axis of the spin operators S = eiαŜx(t)Ŝ(t)e−iαŜx(t) and evaluate the expecta-

tion values on the state after the π/2-pulse in the Ramsey sequence, |θ = π/2, φ = 0〉,

〈Sx〉 = S cos2S−1(µ/2), 〈Sy〉 = 〈Sz〉 = 0, (2.58)

(∆Sx)
2 =

S

2

[
2S(1− cos2(2S−1)(µ/2))− (S − 1/2)A

]
, (2.59)

(∆Sy)
2 =

S

2

[
1 +

1

2
(S − 1/2)(A+

√
A2 +B2 cos(2α + 2β))

]
, (2.60)

(∆Sz)
2 =

S

2

[
1 +

1

2
(S − 1/2)(A−

√
A2 +B2 cos(2α + 2β))

]
, (2.61)

where A = 1 − cos2S−2 µ,B = 4 sin µ
2

cos2S−2 µ
2

and tan(2β) = B/A. These expres-

sions show that the uncertainty regions of the transformed state are redistributed in an

anisotropic way. We can now determine the value of α that minimizes one of the variances

in y or z and maximizes the other one. These correspond to the directions of squeezing
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a) b) c) d) e)

Figure 2.6: Husimi Q function representation on the Bloch sphere of the spin squeezed

state induced by the one-axis twisting Hamiltonian for S = 40 and a) µ = 0, b) µ = 0.02,

c) µ = 0.05, d) µ = 0.1 and e) µ = 0.15

and anti-squeezing. In particular, (∆Sy)
2 is minimized and (∆Sz)

2 is maximized when

α = π/2− β and viceversa (∆Sy)
2 is maximized and (∆Sz)

2 is minimized when α = −β.

The corresponding variances are given by

V± =
S

2

{
1 +

1

2

(
S − 1

2

)[
A±
√
A2 +B2

]}
, (2.62)

where the plus sign corresponds to the maximum variance and the minus sign corresponds

to the minimum variance. The Husimi Q function for the spin squeezed state is represented

in Fig. 2.6 for different values of the interaction strength µ. Here it is possible to see how

the one-axis twisting interaction acts to redistribute the fluctuations: the Hamiltonian

Ĥ ∝ Ŝ2
z induces a precession about the z-axis by an angle that is proportional to the

spin component Sz. As a result, the points of the Husimi function above the equator are

rotated in one direction and points below the equator are rotated in the other direction.

This process results in the shearing of the uncertainty region.

For S � 1, µ� 1, Sµ2 � 1, we have the approximate expressions

V+ ≈
S3µ2

2
, V− ≈

S

2

(
1

S2µ2
+
S2µ4

24

)
, (2.63)

where it is seen that the minimum variance decrease with µ is limited by the second

term which accounts for the effect of the curvature of the Bloch sphere. It is then seen

that the minimum variance Vmin is attained for µ = µ0 = 241/6S−2/3 and is given by

Vmin ≈ 1
2

(
S
3

)1/3
. This result can also be expressed in terms of the squeezing parameter

as ξ2
m = (3/4)1/3N2/3 or in terms of the phase resolution δ(∆φ) = 1/(24/331/6N5/6).

We also note that, as µ increases, the state deviates from a minimum uncertainty state

(i.e. one that saturates the Heisenberg uncertainty relation) as 4(∆Sy)
2(∆Sz)

2/| 〈Sx〉 |2 ≈
1 + (µ/µ0)6 or, in other terms, the anti-squeezing is larger than the squeezing.

The squeezing limits of the one-axis twisting Hamiltonian are set by the curvature

of the Bloch sphere and the fact that the squeezing direction does not follow that of a

geodesic. This limitation can be overcome by the two-axis countertwisting Hamiltonian



CHAPTER 2. SPIN SQUEEZING IN ATOM INTERFEROMETRY 30

a) b) c) d)

Figure 2.7: Bloch sphere representation of the Husimi Q function for S = 40 and for

different values of the interaction strength: a) Initial CSS |0, φ〉, µ = 0; b) Partially

squeezed, µ = 0.03; c) Optimally squeezed, µ = 0.06; d) oversqueezed µ = 0.16: after

separating in two peaks, the Husimi Q function becomes concentrated at the south pole.

which induces a twisting of the uncertainty region about two orthogonal axes and in

opposite directions. If the initial state is orthogonal to these two axes, then it has been

shown [48] that the quantum dynamics generates states with a phase resolution reaching

a Heisenberg scaling. For example, the Hamiltonian for the two-axis countertwisting

interaction can be written as

Ĥ =
~χ
2i

(Ŝ2
+ − Ŝ2

−) (2.64)

which induces twisting about the directions (π/2, π/4) and (π/2,−π/4) and the minus

sign between the two terms means that the two rotations are in opposite directions.

The initial state for spin squeezing would then be, for example |0, φ〉 and the squeezed

direction would be the y-axis. Because the dynamics of the two-axis countertwisting

interaction cannot be solved analytically, we will limit ourselves to a numerical solution

of the dynamics and show the results. Specifically, we write the Schrödinger equation

i~ d
dt
|ψ(t)〉 = Ĥ |ψ(t)〉 where we solve for the evolution of the superposition of Dicke

states |ψ(t)〉 =
∑+S

M=−S cM(t) |S,M〉. In assuming the initial state to be |0, φ〉 we take

c+S(0) = 1 and cM(0) = 0 for M 6= +S. The results can then be used to compute the

variances of the spin operators and the Husimi Q function. In Fig. 2.7 we plot the Husimi

Q function on the Bloch sphere for different values of the interaction strength µ = 2χt.

We can now compare the performance of the two squeezing Hamiltonians in terms of

metrological gain above the shot noise limit and in terms of the phase resolution. The

results are given for S = N/2� 1 in the Table 2.1 and in Fig. 2.8.

The one-axis twisting interaction has more potential than the analysis of Kitagawa

and Ueda shows. In fact, it has been shown in [49] that, through appropriate transforma-

tions, one-axis twisting can be transformed into two-axis countertwisting. Moreover, by

a combined twisting-untwisting process, it has been shown that the Heisenberg limit can

be approached, in the presence of technical detection noise, by effectively amplifying the
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State Metrological gain ξ2
m Phase resolution δ(∆φ)

Coherent spin state 1 1/
√
N

One-axis twisted (3/4)1/3N2/3 1/(24/331/6N5/6)

Two-axis countertwisted 0.54×N 1.36/N

Maximally entangled N 1/N

Table 2.1: Comparison of metrological gain and phase resolution for different dynamically

squeezed states.

Figure 2.8: Left: comparison of the maximum metrological gain ξ2
m attained by the one-

axis twisted and two-axis countertwisted states; Right: comparison of the phase resolution

attained by the different states: the coherent spin state, the one-axis twisted and the two-

axis countertwisted states.
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phase signal [50, 51].

2.3.2 Measurement-induced spin squeezing

The measurement process in quantum mechanics can be conceived as a quantum state

preparation device [52, 32, 33]. For example, if one is probing a superposition state |ψ〉 =

a↓ |↓〉+a↑ |↑〉 by measuring the variable Sz, then one would find the eigenvalue +1/2 with

probability |a↑|2 and the eigenvalue −1/2 with probability |a↓|2. The corresponding states

after the measurement would then be |↑〉 and |↓〉, respectively. It is therefore clear that the

measurement prepared a quantum state, even though the prepared state is undetermined

before the measurement i.e. the preparation is conditioned to the measurement outcome.

A measurement can prepare states that are more complex than single-particle states,

in particular, entangled states useful for quantum metrology can be prepared by appro-

priately designed measurements.

To be more practical, we consider the simplest non-trivial case of two particles with

spin 1/2 (i.e. two two-level systems). The four possible states of the ensemble can be

organized as spin singlet and spin triplet states on the basis |S,M〉 of the total angular

momentum S = S1 + S2, where S2 and Sz are simultaneously diagonalized. As already

mentioned, these are the Dicke states. By using the notation where |α〉i indicates that

particle i is in state |α〉, we have:

|0, 0〉 =
|↑〉1 |↓〉2 − |↓〉1 |↑〉2√

2
(spin singlet) (2.65)

|1,+1〉 = |↑〉1 |↑〉2 , |1, 0〉 =
|↑〉1 |↓〉2 + |↓〉1 |↑〉2√

2
, |1,−1〉 = |↓〉1 |↓〉2 (spin triplet). (2.66)

We now consider an experiment where we initially pump the two particles in the state |↓〉
so that |ψin〉 = |1,−1〉 = |↓〉1 |↓〉2. We then apply a π/2-pulse and bring the state to the

equator of the Bloch sphere, therefore generating the coherent spin state |θ = π/2, φ = 0〉.
In terms of the Dicke states, this is

|θ =
π

2
, φ = 0〉 =

1

2
|S = 1,M = −1〉+

1√
2
|S = 1,M = 0〉+

1

2
|S = 1,M = +1〉 . (2.67)

Let’s now assume that we make a measurement Sz1 ⊗ Sz2 of the relative population of

the two particles separately and that we get the results Sz1 = +1/2, Sz2 = −1/2. This

situation will occur with a probability 1/4 and will give rise to the final state |↑〉1 |↓〉2 =

(|S = 0,M = 0〉+ |S = 1,M = 0〉)/
√

2. The final state of the measurement is therefore a

separable state with reduced spin length. This last fact derives ultimately from the type of

measurement that distinguishes between the different particles. Indeed, as stated earlier,

S is a conserved quantity if the interaction does not distinguish between the particles’

labels. We next consider the relevant case where the quantity Sz = Sz1 +Sz2 is measured
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instead. Here the measurement does not distinguish between the particles because Sz is

invariant under the particle exchange 1 ↔ 2. As a result, S = 1 is a conserved quantity

so the state after the measurement has to be one of the triplet states. With the same

probability of 1/4 we will find the measurement outcomes Sz = +1 and Sz = −1 which

still correspond to separable states. However, if the measurement outcome is Sz = 0, then

we prepared the Dicke state |S = 1,M = 0〉 which is an entangled state. This reasoning

shows that our ability to generate entangled states depends on our ability to perform

collective rather than single-particle measurements.

The first proposal for the generation of entangled states useful for quantum metrology

through measurements was provided by Kuzmich, Bigelow and Mandel [53]. In their

proposal, the authors considered a system of N two-level atoms (or pseudo-spins 1/2)

with the corresponding total angular momentum operator S. This system is injected in

an interferometer that measures the phase shift ∆φ. The atomic system is probed with

the aid of a similar system, made of n two-mode particles and described by the angular

momentum J . In practice, J refers to any collection of two-mode particles, for example

photons in two polarization states. We assume that the two systems interact for a time

∆t through the Hamiltonian

Hm = ~ΩmSzJz. (2.68)

In the Heisenberg picture, on the operator S, the Hamiltonian (2.68) induces a rotation

by a Jz-dependent angle and viceversa:




Sx

Sy

Sz




∆t

=




cos(χJz) − sin(χJz) 0

sin(χJz) cos(χJz) 0

0 0 1







Sx

Sy

Sz




in

(2.69)




Jx

Jy

Jz




∆t

=




cos(χSz) − sin(χSz) 0

sin(χSz) cos(χSz) 0

0 0 1







Jx

Jy

Jz




in

, (2.70)

where the interaction strength is parameterized by χ = Ωm∆t.

At the output of the interferometer, the operator S is transformed according to

Sout = U †SinU , where U = e−i∆φSye−iχSzJz is the product of the transformations due

to the interaction Hamiltonian Hm and of the mapping of phase shift ∆φ to a population

difference in the interferometer. We assume that both the atomic and the probe systems

are initially prepared in a coherent spin state, 〈Sin〉 = Nex/2, 〈Jin〉 = nex/2. According to

the transformation (2.70), 〈Jy(∆t)〉 = n 〈sin(χSz,in)〉 /2. For χ∆Sz,in = χ
√
N/2� 1, this

expression can be approximated as 〈Jy(∆t)〉 ' χn 〈Sz,in〉 /2. The meaning of this relation

is that Sz,in can be measured through Jy(∆t). As a result, we consider the operator

S ′z ≡ Sz,out −
2

χn
Jy(∆t) (2.71)
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which is the difference between the interferometer output and the result of the pre-

measurement of Sz,in. We now show that this operator has, under certain conditions,

reduced fluctuations compared to the shot noise. To compute the phase resolution we

need the mean value 〈S ′z〉 and the variance (∆S ′z)
2. The mean value can be computed by

taking the relation 〈eiχSz,in〉 = cosN(χ/2) and recalling that 〈Jy(∆t)〉 ∝ 〈sin(χSz,in)〉 =

Im 〈eiχSz,in〉 = 0 as expected because the average of pre-measurements on a state on the

equator of the Bloch sphere vanishes. By using the transformation U defined above,

Sz,out = Sz,in cos ∆φ+ sin ∆φ[cos(χJz,in)Sx,in + sin(χJz,in)Sy,in]. As a result,

〈S ′z〉 =
N

2
sin ∆φ 〈cos(χJz,in)〉 =

N

2
sin ∆φRe 〈eiχJz,in〉 =

N

2
sin ∆φ cosn

χ

2
. (2.72)

Similarly, the variance is found to be [53]

(∆S ′z)
2 =

N

4
cos2 ∆φ+

N

8

[
N
(

1 + cosn χ− 2 cos2n χ

2

)
+ 1− cosn χ

]
sin2 ∆φ

+
1

2nχ2

[
n(1− cosN χ) + 1 + cosN χ

]
− N

χ
sin

χ

2
cosN−1 χ

2
cos ∆φ. (2.73)

With these expressions we can compute the phase resolution as

δ(∆φ) =
(∆S ′z)

|∂ 〈S ′z〉 /∂∆φ| '
eξ/2

N
√
ξ
, (2.74)

where ξ = nχ2/4 and the minimum δ(∆φ) is attained for ξ = 1. The final expression for

the phase resolution is valid when Nχ2 � n−1/3, N � 1, n� 1. Remarkably, the scheme

operates near the Heisenberg limit and exhibits a Heisenberg scaling as the minimum

phase resolution is δ(∆φ)min =
√
e/N . The noise reduction here relies on considering

the difference between the final measurement and the initial measurement. While both

these terms fluctuate at the shot noise limit, they are correlated and their difference has

a fluctuation that is close to the Heisenberg limit. In other terms, the measurement of Jy

prepares an atomic spin squeezed state whose mean Sz value fluctuates from trial to trial.

However, if the outcome of the pre-measurement is not discarded, the prepared state is

useful for the phase shift measurement.

The scheme described above is a case of a quantum nondemolition (QND) measure-

ment. In general, a QND measurement is characterized by a number of criteria that we

will briefly review here [54, 29]. As in the previous example, in a QND measurement there

are two systems A and P that are characterized by the variables Aα and Pα. A is the

signal system, the system to be measured or, in the previous case, the atomic system. P

is the probe system or the system through which A is measured. A QND Hamiltonian

can in general be cast in the following form

HQND = HA +HP +HI , (2.75)
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where HA represents the dynamics of the signal system independent of the probe, HB

represents the dynamics of the probe system independent of the signal and HI is the

hamiltonian for the interaction of the probe with the signal. Through HI , information

about the signal is gained by measuring the probe. For the case analyzed above, HI =

Hm = ~ΩmSzJz. The conditions for a QND measurement of a variable Aα through the

probe variable Pβ are the following:

• Because Aα is to be measured, the interaction term must depend on a signal operator

Aα, HI = HI(Aα).

• The measurement is of nondemolition-type (or back action-evading) if the interac-

tion term does not alter the signal, or

[HI , Aα] = 0. (2.76)

• In order to allow for information gain about the variable Aα, there has to exist a

variable Pβ, the measured variable, for which

[HI , Pβ] 6= 0. (2.77)

In other words, because the measurement relies on a change of Pβ, the time derivative
d
dt
Pβ ∝ [HI , Pβ] cannot vanish.

• In order for the successive outcomes of measurements of Aα to be predictable, the

signal Hamiltonian must not be a function of Aβ, the conjugated variable of Aα.

If this was the case, because of the uncertainty relation between Aα and Aβ, the

successive evolution of Aα would be affected as d
dt
Aα ∝ [HA(Aβ), Aα]. This is the

case, for example, in the measurement of the position of a free particle. At any given

time the position can be measured with an arbitrary precision ∆x thus implying

a momentum uncertainty ∆p ≥ ~/(2∆x). The increased momentum uncertainty

deriving from a precise position measurement therefore affects the position itself at

later times.

The simplest interaction Hamiltonian that fulfills the above requirements is of the

form HI = CPαAα. The interaction term proposed by Kuzmich, Bigelow and Mandel is

exactly of this form.

We next provide a general treatment of the squeezing limits attainable through QND

measurements [55]. We consider the measurement of the spin variable Sz through a

probe variable that provides a pre-measurement and denote by Mout the corresponding

measurement outcome. Next to this variable we consider the unconditional expectation

value 〈Sz〉 which corresponds to the previous knowledge of the atomic state i.e. before

any measurement is performed on the system. This is the case, for example, in the
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interferometer, when we produce a coherent spin state pointing on the equator of the Bloch

sphere. Here no measurement is performed but we know that 〈Sz〉 = 0 because we applied

a π/2-pulse to a state at the south pole. Based on the knowledge of the unconditional

mean and on the result of the pre-measurement, our prediction of Sz, conditioned on the

measurement outcome is the weighted average

〈Sz〉Mout
= wMout + (1− w) 〈Sz〉 . (2.78)

The value of the weight w that yields the best prediction is determined by the requirement

that the conditional variance

(∆Sz)
2
Mout
≡ Var[wMout + (1− w) 〈Sz〉 − Sz] =

= w2Var(Mout) + Var(Sz)− 2wCov2(Mout, Sz) (2.79)

is minimized. This condition is attained for w = Cov(Mout, Sz)/Var(Mout) and yields the

minimum

(∆Sz)
2
Mout

=
Var(Mout)Var(Sz)− Cov2(Mout, Sz)

Var(Mout)
. (2.80)

After exchanging Mout and Sz in the above expression, we get the relation

(∆Sz)
2
Mout

=
Var(Sz)

Var(Mout)
(∆Mout)

2
Sz (2.81)

between the conditional spin variance and the variance of the measurement outcomes

when Sz is fixed. In other words, (∆Mout)
2
Sz

represents the measurement imprecision and

its value determines the strength of the measurement.

We also note that, if the pre-measurement is unbiased, then the average of mea-

surement outcomes with Sz fixed must be equal to Sz itself, 〈Mout〉Sz = Sz. Also, if

the noise of the measurement with Sz fixed is independent on the noise of Sz, we have

Var(Mout) = (∆Mout)
2
Sz

+ Var(Sz) and (2.81) becomes

(∆Sz)
2
Mout

=
Var(Sz)(∆Mout)

2
Sz

(∆Mout)2
Sz

+ Var(Sz)
. (2.82)

The above relation can therefore be used to determine the variance of the state prepared

through the pre-measurement if the initial variance Var(Sz) and the measurement impre-

cision (∆Mout)
2
Sz

are known. In particular, we see that in the weak measurement limit,

(∆Mout)
2
Sz
� Var(Sz), the variance after the measurement is just the initial variance,

(∆Sz)
2
Mout
' Var(Sz). In the opposite and more relevant case of a strong measurement,

(∆Mout)
2
Sz
� Var(Sz), the conditional spin variance is set by the measurement impreci-

sion, (∆Sz)
2
Mout
' (∆Mout)

2
Sz

.

We conlude that squeezing by QND measurements requires to induce an interaction

Hamiltonian HI that meets the criteria listed above and, in this condition, for a strong

measurement, the amount of spin squeezing is determined by the measurement imprecision

i.e. the pre-measurement atom number resolution.
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2.3.3 Atomic spin squeezing by interaction with squeezed light

Another interesting scheme that can produce spin squeezed states in atomic ensembles

involves the interaction with squeezed light. Under certain conditions it is possible to

show that spin squeezing can be transferred from the light to the atoms. This scheme was

considered in [56, 57] and implemented in [58]. In [57], in particular, the authors consider

a V -type atom with one ground state |0〉 and two excited states |1〉 and |2〉. The 0 − 1

transition is made to interact with a coherent state of the light and the 0− 2 transition is

made to interact with a squeezed vacuum field. In their analysis, the authors consider the

case where the amplitude of the coherent field is large compared to the squeezed vacuum

fluctuations. In considering the fluctuations of the pseudo-spin system defined by the

states |1〉 and |2〉, they show that when the squeezed light is completely absorbed and the

atomic state is prepared in an eigenstate of Sz, the variance of a spin component in the

xy plane is linked to the light field phase variance X2 by

(∆Sxy)
2 =

1

4
〈Sz〉 (4X2 + 1). (2.83)

If the field driving the 0 − 2 transition is a vacuum field, then X2 = 1/4 whereas for a

squeezed vacuum X2 = 0, (∆Sxy)
2 = 〈Sz〉 /4 so it is possible to attain 50 % of squeezing.

The limiting factor for this scheme is set by atomic spontaneous emission.

A related scheme involving the transfer of squeezing from the light to the atomic

ensemble was proposed in [59] in the framework of a Mach-Zehnder atom interferometer.

2.3.4 Experimental implementations of spin squeezed states

In this subsection we will attempt to list the main experimental achievements in the field

of spin squeezing. However, because of the variety of techniques to achieve squeezing,

the increasing interest in the field and the numerous publications, only a fraction of these

results will be illustrated here.

The main distinction between the methods that achieve spin noise reduction can be

made in terms of the kind of interaction that induces such reduction.

Spin squeezing methods based on interactions The first class of experiments that

we consider is based on atomic interactions in Bose-Einstein condensates (BECs). These

methods have become very attractive mainly because of the inherent long coherence times

that are possible in a BEC and because of the strong atom-atom interactions that induce

nonlinear interactions and therefore spin squeezing.

We start by considering a BEC that is loaded in an optical lattice and is therefore

described by the Bose-Hubbard Hamiltonian

H = γ
∑

i,j

a†iaj +
∑

i

εini +
gβ

2

∑

i

ni(ni − 1), (2.84)



CHAPTER 2. SPIN SQUEEZING IN ATOM INTERFEROMETRY 38

where ai is the annihilation operator for an atom in the lattice site i, and ni = a†iai is

the corresponding number operator. The interaction strength g is related to the s-wave

scattering length as by g = 4πas/m, β =
∫
d3r|φ(r)|4, where φ is the atomic wave function

and finally we define the tunneling amplitude γ between the lattice sites i and j as

γ =

∫
d3rφ(r − ri)

[
−~2∇2

2m
+ U(r)

]
φ(r − rj), (2.85)

where ri is the position of the i-th lattice site and U(r) is the lattice potential energy.

In other words, the Hamiltonian (2.84) describes the tunneling from site i to site j (first

term), the atomic energy in site i (second term) and the interaction energy due to collisions

(third term).

The ability of this system to reduce the quantum fluctuations in an observable is

essentially captured by the superfluid-to-Mott insulator transition [60]. The superfluid

phase corresponds to the strong tunneling regime (small lattice depth) where gβ/γ � 1.

In this case, the interaction term (proportional to gβ) is negligible and the ground state

of the superfluid system can be written as

|ψSF〉 ∝
(

M∑

i=1

a†i

)N

|0〉 (2.86)

where N is the number of atoms and M is the number of lattice sites. The superfluid

ground state wavefunction therefore describes wavepackets that are spread over the entire

lattice with a long-range phase coherence. It can be shown that the on-site atom number

fluctuations follow a Poisson distribution, as in a coherent spin state, so that the variance

is (∆ni)
2 = 〈ni〉.

As the lattice depth (or gβ/γ) is increased above a critical point, the system enters

the Mott insulator phase. In the most extreme case we would neglect the tunneling term,

γ = 0, and find the system ground state as

|ψMI〉 ∝
M∏

i=1

(a†i )
ni |0〉 . (2.87)

Because this is a product of on-site Fock states, in the Mott insulator phase, the behaviour

is opposite to that of the superfluid: exact numbers of atoms are localized at individual

lattice sites and as a result, no phase coherence exists among them. The signature of

number squeezing was observed in [61] as an increased phase variance. This was measured

by releasing the atoms from the optical lattice and by observing the resulting interference.

The essential physics of the above results is captured by a simple two-well model, in

which case the Bose-Hubbard Hamiltonian reduces to

H = γ(a†LaR + a†RaL) +
gβ

2

[
(a†LaL)2 + (a†RaR)2

]
, (2.88)
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where aL(aR) is the annihilation operator for an atom in the left (right) potential well.

This system can be viewed as a two-mode system represented by the two wells. It is

therefore possible to associate angular momentum operators to the annihilation operators,

according to the Schwinger representation [62]

Sx =
1

2
(a†LaR + a†RaL), Sy =

1

2i
(a†LaR − a†RaL), Sz =

1

2
(a†LaL − a†RaR), (2.89)

so that the two-well Hamiltonian becomes

H = 2γSx + χS2
z +

χN2

4
, (2.90)

where χ = gβ and N is the total number of atoms. The result is therefore the one-axis

twisting Hamiltonian.

Other experiments were able to prove the reduction in atom number number fluc-

tuations directly. For example, in [63], the authors used spin-changing collisions as a

nondestructive probe for the presence of atom pairs. In many cases it was observed that

number squeezing could extend the coherence times [64]. In [65] an imaging system with

a 1 µm resolution was implemented that could resolve the occupation of the sites in an

optical lattice and therefore prove atom number squeezing directly by imaging. Inter-

estingly, in this experiment, squeezing was attained between two states of the external

atomic motion through the repulsive interactions in a Bose-Einstein condensate.

The first demonstration of an atom interferometer performing beyond the Standard

Quantum Limit was reported in [66], where a complete Ramsey sequence was simultane-

ously performed on atoms trapped in six wells of a one-dimensional optical lattice and

in two internal states. In this system, squeezing occurs within the interferometer and

in particular in a nonlinear beam splitter. The Hamiltonian describing the interactions

of the interferometer can be written as H = ~∆ω0Jz + ~χJ2
z + ~ΩJφ, where the first

term is a precession term describing the atomic free evolution, the second term describes

the interaction-induced one-axis twisting and the third term accounts for the spin rota-

tions during atomic state manipulations. By controlling the interaction strength between

atoms in the two states and therefore χ through a narrow Feshbach resonance, an atom

interferometer operating beyond the Standard Quantum Limit was implemented, with a

metrological gain of 8.2 dB.

Spin squeezing in BECs was also demonstrated in an atom chip [67] as a viable option

for the implementation of atomic clocks beyond the shot noise limit. In this experiment,

an efficient technique that allows tuning of the nonlinear coefficient χ was demonstrated.

This was based on the control of the overlap between the wavefunctions of two atomic

modes in a state-dependent potential. By spatially separating the two modes in the two

internal states, a situation where χ is conveniently large can be reached.

The results reported in [65, 67] are relevant in the field of atom interferometry with

spatially separated arms in that they provide squeezing between external degrees of free-
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dom. In this thesis, however, we will mainly focus on the generation of squeezed states of

the external atomic motion of free particles via optical means. In this situation we attempt

to create entanglement useful for quantum metrology directly onto the external degrees

of freedom i.e. without intermediate steps that rely on internal degrees of freedom. It re-

mains nevertheless true that one can envisage schemes where internal-state entanglement

is mapped onto the external atomic motion. While this might extend many experimental

implementations, we will consider one such example, when the interferometer is driven on

an optical clock transition, as briefly illustrated in Subsection 5.4.2.

Spin squeezing methods based on the interaction with electromagnetic radia-

tion Another important class of experiments that can achieve spin squeezing relies on

the interaction between the atomic ensemble and laser light.

Soon after the proposal by the Polzik group [57], squeezing by transfer from light to

the atomic ensemble was demonstrated with cesium atoms [58] attaining an improvement

of 3 % beyond the Standard Quantum Limit.

One of the most successful techniques that achieve spin squeezing in atomic ensembles

is that of quantum nondemolition (QND) measurements. A remarkable implementation of

these methods was reported in [68]. In this experiment, a continuous QND measurement

was performed by monitoring the Faraday rotation of the magnetic moment of 107 cesium

atoms. Here a probe laser beam, detuned from the 6S1/2, F = 4 - 6P3/2 transition is

polarization analyzed by measuring the differential photocurrent of two detectors placed

at the output of a polarizing beam splitter. The outcome of the measurement therefore

projects the collective state into a state with reduced spin uncertainty and 70 % of noise

reduction was observed.

One of the key figures of merit in light-based QND measurements is the atomic optical

depth. This parameter can be greatly enhanced through an optical resonator [69]. Indeed,

while the above squeezing experiment was performed in free space, in [70], the authors

demonstrated a QND measurement of the relative population of the 87Rb clock states

|F = 1,mF = 0〉 , |F = 2,mF = 0〉 in a high-finesse optical cavity. As a result, a 3.8 dB

relative population variance reduction compared to the atom shot noise was observed.

Cavity-aided QND measurements were also performed in [71]. Here the measurement

of the relative population of the two rubidium clock states was attained by tuning the

probe laser field between the two optical transitions |5S1/2, F = 1,mF = 0〉 - |5P3/2〉 and

|5S1/2, F = 2,mF = 0〉 - |5P3/2〉. With the laser field also tuned to the slope of the cavity

mode, relative population variations between the two clock states are translated into

transmitted power variations through variations of the atomic index of refraction. In this

experiment, a noise reduction of 3.0 dB was observed. This same measurement scheme

also allowed to attain an effectively nonlinear atom-atom interaction mediated by light.

The essence of this method can be understood by considering the Hamiltonian for the AC
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Stark shift induced by the probe field onto the atoms. When the probe field is detuned

halfway between the two optical transitions as described above, the Stark shift is given

by H ∝ c†cSz, where c†c is the operator for the number of intracavity photons and Sz is

the collective spin operator. In the linear approximation, tuning the probe field to the

slope of the cavity mode induces intracavity power variations that are proportional to Sz,

c†c ∝ Sz. The effective interaction, H ∝ S2
z , therefore induces one-axis twisting through

atomic interactions mediated by the intracavity light [72, 73, 74]. This technique was able

to demonstrate generation of spin squeezed states of the 87Rb clock states with 5.6 dB

improvement compared to the Standard Quantum Limit. This same method was then

used to demonstrate a squeezed microwave atomic clock which, for averaging times up to

50 s achieves a given precision 2.8 times faster than a clock operating at the Standard

Quantum Limit [75].

Another application of QND-induced squeezed states was implemented in [76]. This

experiment consisted in the nondestructive measurement of photon Faraday rotation in

order to produce squeezed states. Rapid probing, realized through a series of 1 µs-long

measurement pulses, allowed the implementation of a high-bandwidth atomic magnetome-

ter.

An atomic clock beyond the Standard Quantum Limit was also reported in [77], where

cesium atoms loaded in a dipole trap were dispersively probed. This was attained by

sending two laser beams to the atoms, one off-resonant with the |6S1/2, F = 3,mF = 0〉
- |6P3/2, F

′ = 2〉 transition and the other off-resonant with the |6S1/2, F = 4,mF = 0〉
- |6P3/2, F

′ = 5〉 transition. These two frequency components are phase shifted by an

amount proportional to the number of atoms in the two clock states. The differential

phase shift is then recorded at the output of an optical Mach-Zehnder interferometer.

This technique is analogous to the measurement of the Faraday rotation in other experi-

ments. The photons in the two modes can be associated with a spin operator J whose y

component is measured via the QND method, as in (2.71).

The presence of many atomic levels in the experiments described here can be regarded

as a limit for coherence times in spin squeezed samples because of the presence of loss

channels. In this sense, in [78], 1.8 dB of spin squeezing was attained by QND measure-

ments of Faraday rotation of 171Yb atoms. The interest of this result lies in the simple

nuclear spin one-half structure in the ground state of these atoms. This results in both

reduced decoherence channels and in a highly suppressed sensitivity to external magnetic

fields. The reported QND measurements were short (100 ns) compared to the decoher-

ence time. Also, because 171Yb is a promising candidate for optical atomic clocks, after

squeezing in the ground state, mapping to the 1S0 - 3P0 clock transition would result in

a spin squeezed optical atomic clock.

Measurement-induced spin squeezing does not require the probe field to be off-resonant

with an optical transition. Indeed, as we will see in the following of this thesis, the amount
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of spin squeezing attainable by optical techniques is ultimately set by the atomic sample

optical depth. An important proof of such a resonant regime can be found in [79]. In

this work, the relative population measurement is achieved by a frequency measurement.

When the mode of an optical cavity is tuned to the resonance of an optical transition,

the interaction results in dressed cavity modes corresponding to two cavity transmission

peaks with a frequency separation, the vacuum Rabi splitting, proportional to
√
N , the

square root of the number of atoms in the ground state. The authors realized a mea-

surement of such a frequency difference in 87Rb atoms through a probe resonant with

the |5S1/2, F = 2〉 - |5P1/2〉 transition. The vacuum Rabi splitting was then measured

by simultaneously scanning two frequency components across the two transmission fea-

tures. This method measures the number of atoms in the |↑〉 = |5S1/2, F = 2〉 state.

In order to achieve a complete measurement of Sz, a microwave π-pulse is applied that

swaps |↓〉 = |5S1/2, F = 1〉 and |↑〉 so that repeating the Rabi splitting measurement

yields the number of atoms in |↓〉. As a result, a conditional spin squeezing of 3.4 dB

was attained. In [80], through a similar setup, up to 10 dB of spin squeezing were ob-

served. The main upgrade consisted in a large suppression of spin-changing (Raman)

events induced by the probe field. This was attained by considering the two-level sys-

tem |↓〉 = |5S1/2, F = 1,mF = +1〉 , |↑〉 = |5S1/2, F = 2,mF = +2〉 and by probing on the

cyclic |↑〉 = |5S1/2, F = 2,mF = +2〉 - |↑〉 = |5P3/2, F
′ = 3,mF ′ = +3〉 transition.

Finally, in the same setup it was possible to establish a record in spin squeezing of

17.7 dB by measuring the dispersive frequency shift of the cavity mode tuned to the blue

of the |↑〉 - |5P3/2, F
′ = 3,mF ′ = +3〉 transition [30]. In this work, the transformation

of conditional squeezing to deterministic squeezing was also demonstrated by real-time

feedback. This consisted in acquiring the outcome of the QND measurement and applying

a corresponding microwave rotation of the Bloch vector that produces a target state

deterministically, retaining 7.4 dB of spin squeezing. A related scheme using dispersive

detection in an optical cavity with homogeneous atom-light coupling allowed 20 dB of

spin squeezing [31]. By implementing these techniques, an important step towards the

implementation of spin squeezing techniques in separated-arm atom interferometers was

taken. In particular, because the spatial inhomogeneity of the probe standing wave in

an optical cavity leads to substantial squeezing reduction, letting the atoms fall under

gravity can average the probe field spatial dependence and produce spatially homogeneous

entanglement. As a result, 11 dB of spin squeezing were attained [81].

2.4 Conclusions and discussion

In this Chapter we established the concept of spin squeezing and its deep relation with

multi-particle entanglement. We explored many proposals and implementations of spin



CHAPTER 2. SPIN SQUEEZING IN ATOM INTERFEROMETRY 43

squeezed states in ensembles of neutral atoms and saw that, in some cases, squeezed states

can be successfully implemented in Ramsey interferometers as microwave atomic clocks.

In this community there is also some effort in order to implement squeezed states of optical

atomic clocks which could boost the performance of the world’s best clocks [82]. However,

only a few of these methods can provide squeezed states that are useful for separate-arm

atom interferometers. This will be the subject of the following part of this thesis. In par-

ticular, we will consider the atomic system that we consider to be the most promising for

atom-interferometry-based gravity measurements: the strontium atom. In the following

two Chapters we will illustrate the significant progress which was obtained in our group in

manipulating this species in atom interferometers. In particular, this atom offers a simple

system that is immune to many external perturbations that affect atom interferometers

based on alkaline atoms. Moreover, because of its small scattering cross section, strontium

atomic states can preserve their coherence for extremely long times, thereby allowing for

long interrogation times. All these properties make this atom a very promising candidate

for high-sensitivity atom interferometry. As we will see, however, taking the additional

step of implementing strontium squeezed states useful for atom interferometry presents

a number of challanges which will be addressed. In particular, because of the electronic

structure of the atom and the resulting need to operate an interferometer with momen-

tum states i.e. states differing only by their velocity, we will consider techniques that

can produce squeezing for this new class of states. In some sense, our proposed methods

inherit the progress done over the years in spin squeezing. For example, the use of the

optical cavity to enhance the signal in nondemolition measurements will be a fundamen-

tal ingredient. Among the methods available in the literature, we find that the optical

schemes are well suited for atom interferometers for precision measurements.



Chapter 3

Properties and laser cooling of

strontium atoms

3.1 The strontium atom

Strontium is an alkaline-earth atom with atomic number Z = 38 and with very special

properties that make it suitable both for experiments of metrology and of quantum sim-

ulation. Like many alkaline-earth and alkaline-earth-like atoms, strontium has a number

of optical transitions with very different properties. In this atom, nearly all optical tran-

sitions can be addressed through current laser technology. Among the optical transitions,

the 1S0-3P0 clock transition has attracted a considerable interest because of its immunity

to external perturbations and because of its ultra-narrow linewidth. It is in fact this tran-

sition that is employed in today’s best atomic clocks [25, 24, 82]. However, up to a few

years ago, this atom was never used in atom interferometers for inertial measurements.

It is a goal of our group to study the performance of this species in atom interferometers

and to develop the necessary tools of atom optics that can allow it to be implemented in

today’s best atom interferometers.

Nuclear and electronic properties There are four stable isotopes of strontium, three

are bosons and one is a fermion. The three bosons have zero nuclear spin whereas the

fermion has a relatively large nuclear spin I = 9/2. Our work was mainly concentrated on

the most abundant 88Sr isotope. Table 3.1 reports the main properties of the four stable

isotopes.

There are however more than 20 unstable isotopes of Sr. One of the most important

ones is 90Sr, which is produced in nuclear plants and nuclear bombs as a product of the

fission of uranium and is extremely dangerous.

As an alkaline-earth element, strontium has an electronic structure with two valence

electrons in the outer shell. This structure determines the main properties of the optical

44
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Isotope Abundance Mass Nuclear Scattering

spin length (a0)
84Sr 0.56(1)% 83.913425(3) 0 122.76(9)
86Sr 9.86(1)% 85.909260731(9) 0 798(12)
87Sr 7.00(1)% 86.908877497(9) 9/2 97.37(7)
88Sr 82.58(1)% 87.905612257(10) 0 −2.00(27)

Table 3.1: Main properties of the stable strontium isotopes

transitions in this atom. There are indeed many other atomic systems that share these

same properties: the alkaline-earth atoms and the alkaline-earth-like atoms. These are

Be, Mg, Ca, Ba, Ra, Zn, Cd, Cn, Yb and No.

The two-electron structure of strontium determines the presence of two nearly in-

dependent groups of levels, the singlet states with total electronic spin S = 0 and the

triplet states with electronic spin S = 1. The level diagram and the optical transitions

of strontium are shown in Fig. 3.1. Within a single group, one can find relatively broad

dipole-allowed transitions. The most important of these transitions is the blue 1S0-1P1

transition at 461 nm, with a linewidth, measured through photoassociation spectroscopy

[83], Γ = 2π × 30.5 MHz. Because of the large photon scattering rate of this transition,

it allows for fast deceleration, cooling and trapping of atoms.

There are however narrow intercombination transitions, where the total spin S changes.

The most important of these transitions connect the 1S0 state with the 3PJ manifold with

J = 0, 1, 2. Because in these transitions an electron changes spin, they are forbidden by

the dipole selection rules. The 3P1 state acquires a finite lifetime due to the spin-orbit

interaction whose strength increases for heavier atoms. In Sr it couples the 3P1 and the
1P1 state thereby allowing for a decay through the electric dipole interaction. The re-

sulting lifetime was measured through the spatial decay of the fluorescence in an atomic

beam [84] to be 21.3 µs, corresponding to a linewidth Γ = 2π × 7.5 kHz. This transition

allows for efficient optical cooling, called narrow-line cooling where temperatures of about

300 nK can be reached [85, 86]. The properties of this transition also allowed the first

demonstration of a degenerate quantum gas by laser cooling [87].

The 3P0 state, also known as the clock state because of its implementation in optical

atomic clocks, has a very long lifetime. In bosonic strontium, the main radiative decay

path is through a two-photon E1M1 (electric dipole and magnetic dipole) transition which

can mediate the parity change between the 1S0 and 3P0 states. The resulting lifetime is

5800 years. In the fermion, through hyperfine coupling, the nuclear spin couples the 3P0

state with states that have the same parity and electronic angular momentum J = 1.

The most important of these are 1P1 and 3P1 which decay through the electric dipole
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Figure 3.1: Strontium partial level diagram and optical transitions for cooling, trapping,

Bragg diffraction and spin squeezing. The transition strengths are reported in terms of

the reduced linewidth γ = Γ/(2π), where Γ is the excited state decay rate.

interaction. This results in an estimated lifetime of about 150 s or a linewidth Γ = 2π×1

mHz [88].

Finally, the dominant decay channel of the 3P2 state to the ground 1S0 state is through

an M2 (magnetic octupole) transition with a predicted lifetime of 1000 s and a measured

lifetime of 500 s. Interestingly, this is one of the longest lifetimes ever measured in a

laboratory [89]. The measurement was achieved by accumulating the metastable atoms

in a magnetic trap and by detecting the rare decay events by trapping the decayed atoms

in a magneto-optical trap.

During optical cooling of strontium on the broad 1S0-1P1 transition, a small fraction of

the atoms, 1 out of 150000, is lost, for every photon scattering event, to the metastable 3P2

state through the 1D2 state. While this process can profitably populate the metastable

state, it usually limits the lifetime of the cooled and trapped sample. As a result, it is
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Transition λ (nm) ν (THz) Γ/(2π) Isat amax/g vr

(mW/cm2) (mm/s)
1S0-1P1 460.862 650.504 30.5 MHz 40.7 9.6× 104 9.9
1S0-3P1 689.449 434.829 7.5 kHz 3.0× 10−3 16 6.6
1S0-3P0 698.446 429.228 1 mHz 4× 10−10 2× 10−6 6.5
3P0-3S1 679.289 441.333 1.4 MHz 0.58 3.0× 103 6.7
3P1-3S1 688.021 435.732 4.3 MHz 1.7 9.1 6.6
3P2-3S1 707.202 423.913 6.7 MHz 2.5 1.4× 104 6.4
3P1-3D2 487.385 615.104 8.9 MHz 10 2.7× 104 9.3
3P2-3D2 496.933 603.285 2.3 MHz 2.5 6.7× 103 9.1

Table 3.2: Properties of the main optical strontium transitions

often necessary to repump the atoms to the ground 1S0 state. This can be achieved in a

number of ways. In our experiments we employed one of two options where both make use

of dipole-allowed transitions within the triplet states. One possibility is to repump the

atoms from the 3P2 state to the 3P1 state through the 707 nm transition that connects to

the excited state 5s6s3S1. From the 3P1 state the atoms decay back to the ground state.

A fraction of the atoms excited to the 3S1 state, however decays to the 3P0 state and a

second laser is then added, at 679 nm, resonant with the 3P0 - 3S1 transition. From the
3S1 state, the atoms decay back to 3P1, through the 688 nm transition. Another option is

repumping through the 5s5d3D2 state with the 497 nm transition. Here a single laser is

sufficient and the atoms are pumped to the 3P1 state by decay on the 487 nm transition.

All these transitions are dipole-allowed with a linewidth of a few MHz.

In Table 3.2 we report some of the main properties of the strontium optical transitions,

including the wavelength λ, the frequency ν = c/λ, the linewidth Γ, the saturation

intensity Isat = 2π2~cΓ/(3λ3), the maximum acceleration arising from radiation pressure

in units of gravity acceleration amax/g = ~kΓ/(2g) and the recoil velocity vr = ~k/m,

where k = 2π/λ is the wavenumber and m is the atomic mass.

The vanishing electronic and nuclear angular momenta of the 88Sr isotope in the ground

state along with the small s-wave scattering length motivate the interest in implementing

atom interferometers with this species. The absence of angular momentum, on the one

hand, is a fundamental aspect in the implementation of atomic sensors with an inherent

robustness against external electromagnetic perturbations. The small scattering cross

section, on the other hand allows for the observation of long coherence times of quantum

superpositions [90, 91, 20].
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Figure 3.2: a) Schematic representation of the MOT setup with three orthogonal pairs of

counterpropagating laser beams with opposite polarizations and the anti-Helmholtz coils

used to generate the magnetic field gradient. b) Position-dependent Zeeman shift of the

excited state with angular momentum J = 1. This condition generates an elastic force

that concentrates the atoms at the trap center, with zero magnetic field.

3.2 Laser cooling and trapping of strontium atoms

In order to perform atom interferometry experiments with strontium atoms, it is necessary

to reduce the atomic kinetic energy to temperatures on the order of 1 µK, while working

with reasonably large atom numbers. This result is achieved in a magneto-optical trap

(MOT), through two successive cooling stages, operating on the broad 1S0-1P1 transition

and on the narrow 1S0-3P1 transition. The goal of the first stage, the so-called blue MOT,

is to collect a large number of atoms with a relatively large temperature. In the second

stage, the red MOT, atoms from the blue MOT are further cooled and large densities are

reached owing to the narrow linewidth of the red 1S0-3P1 transition.

3.2.1 Atomic beam slowing and first cooling stage

In a standard setup, the atomic source is provided by a strontium oven which, heated at

a temperature T '400 ◦C, produces a well-collimated atomic beam with most probable

velocity vmp =
√

3kBT/m ' 400 m/s.

In order to gain the ability of cooling the atoms, it is necessary to reduce the large

velocity vmp to a level where the following cooling stage can capture a sizeable number

of atoms. This can be achieved in a Zeeman slower, where combining a spatially varying

magnetic field and a laser beam at 461 nm that propagates opposite to the atomic beam

results in a substantial velocity reduction. Because of the large atomic deceleration a

due to radiation pressure on the 1S0-1P1 transition (see Table 3.2), the stopping length
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Lstop = v2
mp/(2a) is typically in the range 20-40 cm. However, as the atoms are decelerated,

the Doppler effect shifts the resonance frequency and slowing would only be effective on a

small part of the overall potential stopping length. The spatially variable magnetic field is

used to accordingly shift the atomic resonance in order to compensate the Doppler effect,

thus maintaining the atoms on resonance over the full length. As a result of this process,

the atomic beam is decelerated to a velocity that does not exceed the capture velocity of

the following cooling stage, the blue MOT.

The blue MOT operates on the dipole-allowed 1S0-1P1 transition and is realized in

a standard way [92] by three orthogonal pairs of counterpropagating laser beams, red

detuned from atomic resonance, with opposite circular polarizations (see Fig. 3.2). In the

presence of a magnetic field gradient, the atomic motion can be described as a damped

harmomic oscillator. The final temperature is limited by the rate of spontaneous emission

events and is determined by the Doppler limit TD = ~Γ/(2kB) = 730 µK [92], where kB

is Boltmann’s constant.

In our experiments, with a magnetic field gradient of about 50 G/cm, intensity on the

order of the saturation intensity and a red detuning equal to the transition linewidth, we

achieve 1× 108 atoms at a temperature of 1 mK.

As already discussed, the lifetime of the trapped atomic sample is limited by shelving

into the 3P2 metastable state. In our experiments, we recycle the lost atoms through two

repumping lasers at 679 nm and 707 nm.

3.2.2 Second cooling stage: narrow line cooling

After collecting a large number of atoms in the blue MOT, further cooling is necessary.

This is achieved through the 1S0-3P1 transition at 689 nm which has opposite properties

compared to the blue transition. Indeed, the linewidth Γ is comparable to the single-

photon recoil frequency. As a result, in the absence of power broadening, one scattering

event is sufficient to shift the transition out of resonance through the Doppler effect

induced by the photon recoil. As a result, Doppler cooling on this transition can reduce

the atomic temperature to the µK level with large atomic densities owing to the reduced

resonant photon reabsorption [85]. Moreover, this transition can exert a maximum force

that is only 16 times larger than gravity’s force (Table 3.2) and is therefore barely sufficient

to hold the atoms against gravity.

In Fig. 3.3 a) and b) the qualitative behaviour of the position-dependent force and

potential for the blue and the red transitions in a magneto-optical trap is illustrated.

In the blue MOT, the scattering rate is strong enough that gravity acceleration plays

a negligible effect (blue lines in Fig. 3.3 a) and b)). In the red MOT, the narrow linewidth

causes instead a box-shaped potential whose variation is comparable to the gravity po-

tential, which results in an additional tilt. When equilibrium is reached, the atomic cloud
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Figure 3.3: a) Position-dependent radiation pressure force in the presence of a magnetic

field gradient for the blue transition (blue line) and for the red transition (red line). b)

Corresponding potential energy for zero atomic velocity. The z axis is positively oriented

in a direction opposite to gravity acceleration. a) and b) only illustrate the qualitative

behaviour of the force and the potential and are not to scale. c) Absorption image of the

red MOT, flattened because of the gravity force.

is concentrated at the bottom of the tilted square well (red lines in Fig. 3.3 a) and b))

and is flattened due to gravity as seen in Fig. 3.3 c).

In order to effectively transfer the atoms from the blue to the red MOT, an inter-

mediate stage is introduced where the red and the blue MOT beams are simultaneously

present. Efficient transfer is obtained by broadening the red laser spectrum, in order to

capture the wide range of velocity classes of the blue MOT. In our experiments, the spec-

trum is broadened for 200 ms through a sinusoidal modulation with 8 MHz modulation

depth, resulting in 400 sidebands around the carrier frequency, with an intensity per side-

band that is larger than the saturation intensity. At this point, the blue beams are turned

off and the broadband phase in maintained for 50 ms. After turning the modulation off,

all the optical power is concentrated into the carrier, which broadens the atomic line by

power. Subsequently, the intensity is decreased to the saturation intensity and the laser

frequency approaches resonance. With a final red detuning of about 200 kHz from atomic

resonance, the final temperature can approach the recoil limit Tr = (~k)2/(2MkB) = 230

nK, where k is the wavenumber. Remarkably, on the intercombination transition the

Doppler temperature TD = 180 nK is smaller than the recoil limit. In our experiments,

we achieve a sample of about 5 × 106 atoms at a temperature of 1.2 µK. The size of

the atomic cloud (see Fig. 3.3 c)) is 50 µm in the vertical and 300 µm in the horizontal

direction full width at half maximum (FWHM).



Chapter 4

Atom interferometry with strontium

atoms

In this Chapter we will discuss our main experimental achievements in the implementation

of strontium atom interferometers. We will present atom interferometers that operate

both on a broad dipole-allowed transition and on a narrow forbidden transition and show

that measurements of gravity and of gravity gradients can be implemented. This work

contitutes the basis of our proposal for an atom interferometer operating beyond the

Standard Quantum Limit.

4.1 Matter-wave interferometry

In an atom interferometer, a wavepacket is coherently split and recombined. At the output

of the interferometer, the phase difference accumulated between the two separate arms

is transformed into a population difference between two atomic levels. The essence of an

atom interferometer is captured by the Mach-Zehnder sequence, where beam splitters are

used to split and recombine the wavepacket and mirrors are used to redirect the atomic

trajectories.

Many of the features of the Mach-Zehnder interferometer are captured by its optical

counterpart which we briefly describe here.

The optical Mach-Zehnder interferometer is represented in Fig. 4.1 a), where a light

field with electric field E(t) enters a beam splitter (BS1) and is separated in two arms

that are redirected by the mirrors (M) and recombined through the second beam splitter

(BS2). The two paths of the interferometer will generally have different lengths z1 and

z2 so that at the second beam splitter, the two fields will be delayed by a time z1/c and

z2/c, where c is the speed of light. As a result, because of the superposition principle, one

of the outputs of the second beam splitter can be written as

Eout1(t) = RT [E(t− z1/c) + E(t− z2/c)] (4.1)

51
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where R and T are the amplitude reflection and transmission coefficients of the beam

splitters, assumed to be identical for the two splitters. The output intensity is then given

by

Iout1 =
1

2
ε0c|RT |2

{
|E(t1)|2 + |E(t2)|2 + 2Re[E∗(t1)E(t2)]

}
, (4.2)

where t1,2 = t− z1,2/c. After averaging over one cycle of the field’s oscillation, we get

〈Iout1〉 =
1

2
ε0c|RT |2

{
〈|E(t1)|2〉+ 〈|E(t2)|2〉+ 2Re 〈E∗(t1)E(t2)〉

}
. (4.3)

The first two terms represent the average intensity of the two arms independently. The

third term, the interference term, yields the interference fringes as a function of the delay

difference τ = t2 − t1. As a result, the interferometer converts a phase shift between the

two arms in an intensity variation at the output of the two arms. Because the third term

represents the correlation of the field at different times, this is linked to the first-order

correlation function g(1). In particular,

g(1)(τ) ≡ 〈E
∗(t)E(t+ τ)〉
〈|E(t)|2〉 . (4.4)

The correlation function g(1) expresses the degree of coherence of the light field i.e. the

degree to which the phase of the field is defined. For example, we can consider an ensemble

of light emitters at a frequency ω0 that undergo collisions with the average time between

two successive collisions τc. For the duration of the collision, the emission frequency will be

altered so that at later times the emission frequency will still be ω0 but the phase changed

by a random amount. If we assume that these collisions are instantaneous events, they

will correspond to abrupt changes in the phase of E(t). For such emitters, the correlation

function can be written as g(1)(τ) = e−iω0τ−|τ |/τc . It is seen that on a time scale of τc, the

correlation function amplitude decays which means that the phase of the field ceases to

be predictable.

This simple model of the interferometer displays the main features that are required

for its atomic counterpart: 1) the interference is observed because of the superposition

principle; 2) the interferometer converts a phase shift into an intensity variation at its

output and 3) the amplitude or contrast of the interference signal can only be observed

on timescales that are short compared to the decoherence time of the system.

The atomic Mach-Zehnder interferometer shares these properties. The analogy arises

because of the validity of the superposition principle for matter waves and because of the

conversion between phase shift and population difference. Interference can therefore be

observed as long as the atomic wavefunction has a definite phase. This motivates the use

of cold atomic samples that are ideally non-interacting.

The atomic Mach-Zehnder interferometer is illustrated in Fig. 4.1 b). An atomic

wavepacket is split by a beam splitter π/2-pulse in two components that, in general, differ
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Figure 4.1: Schematic comparison between the optical a) and the atomic b) Mach-Zehnder

interferometers. In a) a laser field E(t) is split in two parts by the beam splitter BS1, the

mirrors M redirect the beams in order to spatially superimpose at the second beam splitter

BS2 where the phase accumulated in the two arms (i.e. the delay difference) is converted

into an intensity difference between the two outputs, measured by the photodetectors D1

and D2. In b) an input wavepacket in the internal state |g〉 (blue) is split at time t = 0

by a π/2 laser pulse in two parts where one component acquired a photon momentum

and is in the excited internal state |e〉 (orange). At t = T a mirror π-pulse exchanges the

internal states and the momenta so that at t = 2T the trajectories converge and the final

π/2-pulse converts the phase shift into a population difference.

by their internal state and by their momentum state, owing to the momentum recoil

arising from the absorption of a photon. After a separation time T , the wavepackets

are reflected by the mirror π-pulse that exchanges the internal and motional states. This

causes the trajectories to intersect after an additional time T , where another beam splitter

pulse maps the accumulated phase shift between the two arms in a population difference

between the two states.

In order to see how the sensitivity to gravity acceleration arises, we consider a simple

system where an ensemble of two-level atoms are in free fall and the laser pulses drive

single-photon transitions that affect the atom’s internal states and motional states. The

system Hamiltonian can be written as

H = Hat +Hcm +Hint (4.5)

where Hat = ~ωg |g〉 〈g|+~ωe |e〉 〈e| is the Hamiltonian for the internal degrees of freedom,

and |g〉 , |e〉 are the internal ground and excited states, respectively. Hcm = Hcm(r,p) is

the Hamiltonian for the atomic center-of-mass motion, where r and p are the correspond-

ing position and momentum operators. Finally, Hint represents the dipole interaction with

the laser pulses.
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We first consider the evolution of the system between the laser pulses, when Hint = 0.

In this case internal and external dynamics are decoupled and we determine the solution

for the center-of-mass component |ψcm〉. To do so we move to a reference frame that is

falling under gravity through the unitary operator [1]

Uc = e
i
~

R
Ldte−ip·rceipc·r, (4.6)

where rc and pc are the classical position and momentum, solutions of the Lagrange

equations with Lagrangian L. Equation (4.6) is the composition of a translation by rc

and a boost by pc. Through the operator Uc we can define the center-of-mass wavefunction

in the free-falling reference frame as |ψcm〉 = Uc |φcm〉. The Schrödinger equation for |φcm〉
is i~ ∂

∂t
|φcm〉 = H′ |φcm〉, where

H′ = U †cHcmUc − i~U †c
∂

∂t
Uc. (4.7)

By using the relation U †c f(r,p)Uc = f(r+rc,p+pc) which holds for an arbitrary analytic

function f , one can show that H′ = H2(r + rc,p + pc), meaning that the transformed

Hamiltonian is formed by all the contributions of Hcm that are at least quadratic in

position and momentum,

Hcm(r+rc,p+pc)−H2(r+rc,p+pc) = Hcm(rc,pc)+∇rHcm(rc,pc)·r+∇pHcm(rc,pc)·p.
(4.8)

By writing the equations of motion for the position and momentum operators it is possible

to see that if Hcm is at most quadratic in position and momentum (or H2 has only

quadratic terms), these equations are the classical equations of motion and in particular

it is possible to choose |φcm〉 such that 〈r〉 = 0 and 〈p〉 = 0. This condition corresponds

to the semi-classical approximation, where the equations of motion for the expectation

values of position and momentum are just the classical equations of motion. When instead

Hcm is formed by terms that are higher than second order, the equations of motion depend

also on the wavepacket’s width in phase space.

We now proceed with the analysis of the Mach-Zehnder interferometer by describing

it in terms of the Bloch sphere and by showing that it is conceptually equivalent to the

Ramsey interferometer.

We start by considering the two-level system formed by states that differ by their

internal atomic energy and by their motional state, which we label |α,p〉, where α = g, e

labels the internal state and the motional state is a plane wave with momentum p. In

particular, the two states, coupled by the single-photon transition, are |g, 0〉 ≡ |↓〉 and

|g, ~k〉 ≡ |↑〉, where k is the photon wavenumber and we only consider a one-dimensional

motion. We then write the equations of motion in the free-falling frame defined by the

transformation (4.6) for the superposition |ψ〉 = cg |g, 0〉+ ce |e, ~k〉, accounting for (4.7)
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and (4.8):

i~(ċg |g, 0〉+ ċe |e, ~k〉) =

~ωgcg |g, 0〉+ ~(ωe + ωr)ce |e, ~k〉+

−~Ω

2

[
ei(kzc−ωt−φ)cg |e, ~k〉+ e−i(kzc−ωt−φ)ce |g, 0〉

]
, (4.9)

where zc = zc(t) is the atomic position, ω is the laser frequency, Ω is the Rabi frequency

and ωr = ~k2/(2m) is the recoil frequency. In deriving equation (4.9) we neglected terms

in H2 that are quadratic in the position operators and only considered the kinetic energy,

H2 ' p2/(2m).

In order to provide the connection with the Bloch sphere representation, we define

ω0 = ωe + ωr − ωg as the frequency of the |g, 0〉 − |e, ~k〉 transition and shift the energy

offset such that the Hamiltonian without laser interaction becomes ~ω0σz/2 with σz =

|e, ~k〉 〈e, ~k| − |g, 0〉 〈g, 0|. Also, we neglect the velocity variation during the laser pulse

due for example to gravity acceleration and write zc(t) ' zc(0) + vzt, where vz is the

atomic velocity. As a result, it is natural to define the laser frequency as seen in the free-

falling frame i.e. corrected for the Doppler effect, as ωD = ω − kvz. Similarly, the laser

phase is redefined as φc = φ−kzc(0), which carries information about the laser phase and

about the atomic position at the time of the pulse. We proceed then as in (2.6) and (2.7)

by moving to a frame that is rotating at the laser frequency ωD by the transformations

cg = bge
iωDt/2 and ce = bee

−iωDt/2 and obtain the Hamiltonian

H = −~
2
δσz −

~
2

Ω

(
0 e−iφc

eiφc 0

)
, (4.10)

which corresponds to (2.7), where δ = ωD−ω0 is the detuning of the laser frequency in the

free falling frame from the |g, 0〉-|e, ~k〉 transition. Thus, with the appropriate definitions,

the interferometer dynamics can be visualized in the Bloch sphere.

We can now illustrate the formal equivalence between the Mach-Zehnder and the Ram-

sey interferometer and for simplicity we only account for a uniform gravity acceleration g

so that Hcm = p2/(2m) +mgz and we consider the resonant case δ = 0. After initializing

the state in |ψin〉 = |g, 0〉, a π/2-pulse with phase π
2

+φc,π/2, applied at time t = 0 induces

the superposition

|ψπ/2〉 = Up(tπ/2,nR(θ = π/2, φ = π/2 + φc,π/2)) |ψin〉 =
1√
2

(|g, 0〉+ e−iφc,π/2 |e, ~k〉).
(4.11)

The subsequent evolution between the pulses, where Ω = 0, does not change the wave-

function. At time t = T , a π-pulse is applied with phase π
2

+ φc,π and induces the state

|ψπ〉 =
1√
2

(|g, 0〉+ e−i(π+2φc,π−φc,π/2) |e, ~k〉). (4.12)
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The equivalence with the Ramsey sequence is established by observing that the effect of

the π-pulse on a state that lies on the equator of the Bloch sphere is equivalent to the

rotation Uπ = e−iασz/2 about the z-axis with rotation angle α = π + 2φc,π − 2φc,π/2. The

additional π-pulse of the Mach-Zehnder interferometer therefore only adds a phase shift

to the final measurement.

After the final π/2-pulse at time t = 2T with phase π
2

+φ′c,π/2, the accumulated phase

is mapped to a population difference,

〈ψfin|σz|ψfin〉 = − cos Φ, Φ = φ′c,π/2 − 2φc,π + φc,π/2. (4.13)

This expression for the phase shift Φ displays the main feature of the Mach-Zehnder

interferometer as it is proportional to the discretized version of the second derivative of

the phase φc. This can be seen by defining the time-dependent phase as φc = φc(t), so

that Φ = φc(2T ) − 2φc(T ) + φc(0) ' ∂2

∂t2
φcT

2, where the strict equality holds when φ(t)

is at most a second degree function of t. It is therefore clear that the Mach-Zehnder

interferometer measures phase acceleration and is therefore an accelerometer [3, 35]. If

the atoms in the interferometer are falling under a uniform acceleration field, then φc(t) =

φ(t)−kzc(t), where φ(t) is the laser phase, zc(t) = zc(0)+ żct− 1
2
gt2 is the classical solution

to the equation of motion and the interferometer phase accounts for both the laser phase

acceleration and gravity acceleration g:

Φ = kgT 2 + φ(2T )− 2φ(T ) + φ(0). (4.14)

Gravity acceleration and phase are linked by the conveniently large factor kT 2. This

potentially large sensitivity can be understood by reinterpreting the interferometer as a

device that measures the positions of the atom through the term kzc on a ruler that

has a spacing between the ticks given by the laser wavelength. For optical transitions,

where the wavelength is on the order of λ ∼ 500 nm, this translates to very precise

gravity measurements. In order to give an impression of such a sensitivity with an optical

transition, we consider a single run of a shot-noise-limited interferometer with N = 104

atoms and with an interrogation time of T = 100 ms. The phase resolution due to the

shot noise is ∆Φ = 1/
√
N = 10 mrad whereas the accumulated phase shift is Φ ' 106 rad

so that the relative uncertainty on gravity acceleration is ∆g/g = ∆Φ/Φ ' 10−8. The

level of such a sensitivity is already sufficient to resolve the lunar tides.

The accelerometer described here can be extended to various related schemes. For

example, multiple spatially separated atomic gravimeters can measure gravity gradients

[5, 6] gravity curvature [7].
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Figure 4.2: Comparison between Raman a) and Bragg b) transitions. In two-photon

Raman transitions, two atomic states differing by both the internal and the external

motion are coupled. In Bragg diffraction, only the external motion is changed.

4.2 Raman transitions and Bragg diffraction

It is often the case that using a single-photon transition for atom interferometers is incon-

venient because of the limited lifetime of the excited state. Although a counterexample for

this statement was recently proven in our group [93], many atom interferometers operate

on multi-photon transitions, where the population of the optically excited states is kept

small.

Raman transitions The first implementations of atom interferometers with separated

arms exploited two-photon Raman transitions [35]. A simplified level diagram for this

case is shown in Fig. 4.2 a).

The system that we consider is composed of two internal and stable ground states

|g1〉 and |g2〉 and an optically excited state |e〉. The atomic system is illuminated by a

couple of counterpropagating laser beams with frequencies ω1 and ω2. Because of the

photon recoil, the combined internal and external states |α, p〉, where α = g1, g2, e are

considered. Starting from a plane wave with momentum p and in the internal state g1,

|g1, p〉, the field with frequency ω1 and Rabi frequency Ω1 couples to the excited state

|e, ~k〉. Similarly, the counterpropagating field with frequency ω2 and Rabi frequency Ω2

couples the excited state to the ground |g2, p+ 2~k〉 state. Both laser fields are detuned

from the transition to the excited state and we define the detunings of the two fields

from the excited states as ∆1 = ω1 − ω31 and ∆2 = ω2 − ω32, where ω31 and ω32 are the

frequencies of the |g1, p〉-|e, p+ ~k〉 and |g2, p+ 2~k〉-|e, p+ ~k〉 transitions, respectively.
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We first consider the Hamiltonian in the absence of the laser fields

Hat = ~ω1 |g1, p〉 〈g1, p|+~ω2 |g2, p+ 2~k〉 〈g2, p+ 2~k|+~ω3 |e, p+ ~k〉 〈e, p+ ~k| (4.15)

and transform the atomic state according to |ψ〉 = e−iHatt/~ |φat〉. We then write the

time-dependent Schrödinger equation for |φat〉 = c1 |g1, p〉+ c2 |g2, p+ 2~k〉+ c3 |e, p+ ~k〉
as

i~ċ1 =
~Ω1

2
ei(∆1t+φ1)c3 (4.16)

i~ċ2 =
~Ω2

2
ei(∆2t+φ2)c3 (4.17)

i~ċ3 =
~Ω1

2
e−i(∆1t+φ1)c1 +

~Ω2

2
e−i(∆2t+φ2)c2, (4.18)

where φ1 and φ2 are the phases of the two laser fields. In the limit where the population of

the excited state is kept small, |∆1|, |∆2| � Ω1,Ω2, |∆1−∆2|, it is possible to adiabatically

eliminate the excited state amplitude by integrating (4.18) with constant c1 and c2 and

substituting the result in equations (4.16) and (4.17). Then, by neglecting terms that

oscillate at the detunings ∆i, the system reduces to a soluble two-level problem

i~ċ1 = ~
Ω2

1

4∆
c1 + ~

Ω1Ω2

4∆
ei(δt+φe)c2 (4.19)

i~ċ2 = ~
Ω2

2

4∆
c2 + ~

Ω1Ω2

4∆
e−i(δt+φe)c1, (4.20)

where in the coefficients we neglected the difference between ∆1 and ∆2 by setting ∆1 '
∆2 ≡ ∆ and in the complex exponentials we set δ ≡ ∆1 −∆2. The effective phase φe is

defined as the difference φe = φ1 − φ2.

If we only look at the second terms of the right-hand side of equations (4.19) and (4.20),

these are the same as in the actual two-level system but with an effective (two-photon)

Rabi frequency Ωeff = Ω1Ω2/(2∆) and the system is driven by an effective laser with

frequency ωeff = ω1 − ω2, effective wavevector keff = 2k and effective phase φe = φ1 − φ2.

The first two terms, on the other hand, represent the light shift of the atomic levels.

We note that when these are equal, they would merely change the energy offset and

therefore not cause an effect. On the other hand, if these terms are different, they change

the frequency difference between the two ground states. The light shift terms can cause

several difficulties in precision measurements, especially if the intensity profile of the laser

beams is considered. In this case, the resulting spatial dependence of the Rabi frequency

can cause unwanted interferometer phase shifts.

It is possible to see that by a suitable unitary transformation, this system of equations

can be mapped into the Hamiltonian (2.7) with detuning, generalized Rabi frequency and

phase given by

δe = δ +
Ω2

1

4∆
− Ω2

2

4∆
,ΩR =

√
Ωeff + δ2

e and φe = φ1 − φ2, (4.21)
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respectively. A very important feature of two-photon Raman transitions is velocity selec-

tivity [94]. This can be seen by writing the expression for δ as

δ = ∆1 −∆2 = ωeff −
(
ω21 +

~k2
eff

2m
+ keffv

)
, (4.22)

where ω21 is the transition frequency between the internal |g1〉 and |g2〉 states and v =

p/m is the atomic velocity. Because of the Doppler effect dependence through the term

keffv, for a given detuning δ, the resonance is met for a certain atomic velocity v. The

width of the selected velocity class is determined by considering the fraction of excited

atoms Pe = Ω2
eff sin2(t

√
Ω2

eff + δ2
e/2)/(Ω2

eff + δ2
e), setting the π-pulse condition tπ = π/Ωeff

and determining the frequency width of the excitation fraction. The full width at half

maximum (FWHM) is given by keff(∆v)FWHM ' 1.6π/tπ. We can give an impression

for the velocity selectivity by considering a practical example of a Raman pulse with

duration tπ = 100 µs and with laser wavelength λ = 500 nm. Then (∆v)FWHM = 2

mm/s and for an atomic mass m = 1.5 × 10−25 kg, this corresponds to a temperature

T = m(∆v)2
FWHM/[(8 ln 2)kB] ' 8 nK.

The phase shift of a Raman-based atom interferometer is written by adapting equation

(4.14) with the replacements k → keff and φ→ φe:

Φ = keffgT
2 + φe(2T )− 2φe(T ) + φe(0). (4.23)

Bragg diffraction Multi-photon transitions can be used for the implementation of

atom interferometers where the two states differ by their momentum but have no internal

excitation. These processes are generally identified as Bragg diffraction because of the

analogy with the scattering of X-rays and neutrons off crystals [95]. In atomic Bragg

diffraction, the optical lattice formed by two counterpropagating laser fields acts as the

diffracting crystal planes and the atomic matter-waves act as the beam of X-rays. In

the atom-photon interaction picture, Bragg diffraction is described in terms of combined

cycles of absorption and stimulated emission resulting in the net transfer of pairs of

photon momenta (Fig. 4.2 b)). Atomic Bragg diffraction was first studied in [96]. The

first experimental realization consisted in the diffraction of a collimated atomic beam [97]

and, in a related experiment, up to sixth-order Bragg diffraction was observed on a beam

of metastable neon atoms [98]. Later on, Bragg diffraction was implemented in laser

cooled atomic systems, transferring up to 102 photon recoils and inducing momentum

state superpositions with a half-meter scale spatial separation between the wavepackets

[23, 99, 100].

In order to describe atomic Bragg diffraction, we consider the same setup as for Raman

transitions, with two counterpropagating laser fields with frequencies ω1 and ω2 and follow

the same procedure. We write the wavefunction as a superposition of atomic states for
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the ground and excited states and with momentum differing by ~keff (Fig. 4.2 b)):

|φat〉 =
∑

n

cg,n(t) |g, p+ n~keff〉+
∑

n

ce,n(t) |e, p+ n~keff + ~k〉 . (4.24)

As for Raman transitions, we can perform adiabatic elimination of the excited state by

assuming that the detuning from the optical transitions is large compared to the single-

photon Rabi frequencies and to the frequency difference between the two fields. The result

is the system of coupled equations

i~ċg,n = ~
(

Ω2
1

4∆
+

Ω2
2

4∆

)
cg,n + ~

Ωeff

2
ei(δnt+φe)cg,n+1 + ~

Ωeff

2
e−i(δn−1t+φe)cg,n−1, (4.25)

where δn is the detuning from the transition |g, n〉-|g, n+ 1〉 which can be expressed in

terms of the difference of kinetic energy of the two states as

δn = ω1 − ω2 −
[

(2n+ 1)~k2
e

2m
+ keffv

]
. (4.26)

These results are similar to those for Raman transitions and, in particular, also Bragg

diffraction is velocity selective. There are, however, some important differences. Indeed,

because the transitions do not change the internal state, the frequency of the transition

between two internal states is absent. For this reason Bragg diffraction is more robust

against perturbations such as electromagnetic fields that can alter δn and therefore induce

an undesired phase shift. This same immunity is reflected in the light shift terms which are

the same for every state |g, p+ n~keff〉 as long as the conditions for adiabatic elimination

hold [101]. Bragg diffraction therefore appears to have a number of advantages compared

to two-photon Raman transitions:

• Immunity to internal energy shifts: This immunity is valid in the framework

of adiabatic elimination and as long as spatial internal energy gradients are small.

This means that if the internal atomic energy is position-dependent, the resulting

force acting on the atom might still cause undesired systematic effects. This is the

case, for example, when magnetic gradients or laser intensity gradients are present

during the interferometer.

• Large-momentum-transfer: The possibility in Bragg diffraction of transferring

several pairs of photon momenta in a single light pulse, generally referred to as

Large Momentum Transfer (LMT), enhances the phase sensitivity by increasing the

interferometer area. For a Mach-Zehnder interferometer, the phase shift is given by

Φn = nkeffgT
2 + n(φ(2T )− 2φ(T ) + φ(0)). (4.27)

As we will discuss below, this increased sensitivity comes at the price of severe tech-

nical requirements which can however be overcome by implementing an appropriate

pulse sequence [102].
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Regimes of Bragg diffraction Contrary to Raman transitions, in principle Bragg

diffraction can couple a large number of momentum components. There are different

regimes of Bragg diffraction processes that essentially differ by the number of states that

are populated [103]. To gain some insight into the different regimes, we consider a Bragg

laser pulse with a given duration τ and with a resulting spectral width ∆ω ∼ 1/τ . For

short enough pulses, the spectral width can be large enough for the Bragg laser to be

resonant with several transitions |g, p〉-|g, p+ n~keff〉. For example, for optical transitions,

the recoil frequency is on the order of a few 10 kHz, which is the order of magnitude for the

frequency difference of the transitions between different momentum states. As a result,

pulse durations of 1-10 µs will result in a non-negligible population of various momentum

components. Two extreme cases of short pulses with intense fields and of long pulses with

weak fields can be considered and correspond to the Raman-Nath and Bragg regimes,

respectively.

In the short interaction time limit, the laser is resonant with several transitions. In

this case, the small phase shift |δnt| � 1 in (4.25) for small t yields the Raman-Nath

equation

i~ċg,n = ~
Ωeff

2
(cg,n+1 + cg,n−1). (4.28)

We now consider the initial condition where only the zeroth order is populated, cg,0(0) =

1, cg,n(0) = 0 for n 6= 0. A function that fulfills these conditions can be written in the

form

cg,n =
1

2π

∫ 3π/2

−π/2
eiζ(α)t cos(nα)dα, (4.29)

where ζ is an unknown function.

After substituting into the Raman-Nath equation (4.28), we get ζ(α) = −Ωeff cosα

and by using the integral representation for the Bessel function of order n, Jn(x) =
1

2π

∫ π
−π exp[i(nα− x sinα)]dα, the solution is found to be

cg,n(t) = (−i)nJn(Ωefft). (4.30)

This result shows that in the Raman-Nath regime many diffraction orders are populated

as shown in Fig. 4.3.

It is in general possible to implement an atom interferometer operating in the Raman-

Nath regime and such an application is described, for example, in [104]. We will how-

ever consider an atom interferometer that rather operates in the opposite regime where

only two momentum states are populated thus forming a two-level system suitable for

the Mach-Zehnder interferometer. This condition is achieved in the Bragg regime cor-

responding to long interaction times and weak fields. In this regime we reconsider the

full equation (4.25) and treat the transition from an initial state corresponding to n = 0,

cg,0(0) = 1 to a target state with Bragg order n. By performing adiabatic elimination
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Figure 4.3: Evolution of the amplitude |cg,n(t)| in Raman-Nath diffraction for small inter-

action strength up to Ωefft = 10 (left) and for larger interaction strength up to Ωefft = 100

(right). For large Ωefft, a large number of diffraction orders are almost equally populated.

of the intermediate states with order k and 0 < k < n, the system reduces to a two-

level system where the coupling strength is quantified by the 2n-photon Rabi frequency

[103, 105]

Ω
(2n)
eff =

Ωn
eff

(8ωr)n−1[(n− 1)!]2
. (4.31)

where ωr = ~k2/(2m) is the recoil frequency. When the Bragg laser fields are tuned to

the resonance of the |g, 0〉− |g, n〉 transition, ωeff = 4nωr + kev, the transition probability

can be written

|cg,n(t)|2 = sin2

[
1

2

∫ t

−∞
Ω

(2n)
eff (t′)dt′

]
, (4.32)

where also the time dependence of the Rabi frequency is considered. The pulse area∫ +∞
−∞ Ω

(2n)
eff (t)dt determines the transfer probability between the two momentum states.

Operation in the Bragg regime requires the validity of adiabatic elimination. It can be

shown [103] that in this regime there is an upper bound to the 2n-photon Rabi frequency

given by

Ω
(2n)
eff

ωr
� (n− 1)n

2n−3[(n− 1)!]2
. (4.33)

For the two-photon Rabi frequency, this limit corresponds to Ωmax
eff = 4(n−1)ωr. For small

diffraction orders, n ≤ 5, the upper bound is on the order of the recoil frequency but it

rolls off rapidly and for n = 10 the ratio at the right-hand side of (4.33) is about 2×10−4.

This requirement sets an upper limit to the diffraction order that can be attained in a

real atom interferometer with a single pulse. For example, the interaction time could be
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Figure 4.4: Effective 2n-photon Rabi frequency Ω
(2n)
eff /(2π) as a function of the diffraction

order n for different values of the two-photon Rabi frequency Ωeff/(2π): 10 kHz (magenta),

20 kHz (blue), 50 kHz (cyan), 100 kHz (green), 200 kHz (orange), 500 kHz (red). The

gray trace indicates the upper limit (4.33) above which the two-level approximation is no

longer valid. The specific values refer to the strontium blue transition at 461 nm.

limited by the overall duration of the atom interferometer and by the finite temperature

of the atomic cloud which limits the number of atoms in the interferometer1.

A comparison of the effective 2n-photon Rabi frequency for different values of the

two-photon Rabi frequency Ωeff is plotted in Fig. 4.4, where the upper limit for operation

in the Bragg regime is also shown.

Another important consideration in limiting diffraction losses is about the pulse tem-

poral shape. Intuitively, a smooth pulse shape will have a narrower frequency width

compared to a rough one. For example, in a rectangular pulse, the laser field is abruptly

1For example, we can consider an atomic cloud with Nin = 106 atoms with mass m = 1.5 × 10−25

kg at a temperature of T = 1 µK and an effective 2n-photon Rabi frequency Ω(2n)
eff = 2π × 500 Hz. A

π-pulse, with duration τ = 1 ms would then select a velocity width ∆v ' 1/(keffτ), where keff is the
effective wavenumber and we take λ ' 500 nm. For a gaussian initial velocity distribution, the fraction
of selectes atoms is

Nsel

Nin
=

1
keffτ

√
m

2πkBT
' 1.5× 10−3,

which gives Nsel = 1.5× 103 and a substantial signal reduction.
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Figure 4.5: Comparison of the losses in Bragg transitions for square and gaussian

f(t) = exp[−(t − t0)2/(2σ2
t )] pulses through numerical integration of equation (4.25).

The frequency ωeff is tuned to the resonance of the first order |g, 0〉-|g, ~keff〉 transition

and the losses can be observed in n = −1 and n = 2. a) Evolution during a rectangular

pulse with two-photon Rabi frequency Ωeff = 2π×50 kHz; b) Evolution during a gaussian

pulse with σt = 8 µs and Ωeff = 2π×25 kHz. At the end of the pulse, the losses essentially

vanish.

switched on and off. This causes the pulse frequency spectrum to have pronounced wings

away from the carrier frequency that decay polynomially. On the other hand, in a gaussian

pulse, the intensity is gradually turned on and off. This is reflected in the pulse spectrum

where the wings decay exponentially. The components of the wings in the pulse spectrum

can excite momentum states that are not members of the target two-level system and

therefore cause losses.

A comparison between rectangular and gaussian pulses is shown in Fig. 4.5, where it

is clear that a gaussian first-order pulse with standard deviation 8 µs and Ωeff = 2π × 25

kHz is sufficient to largely suppress the losses in other orders. On the other hand, for a

rectangular pulse after 30 µs, the losses are still a significant fraction of the total atomic

population.

A detailed analysis of the losses in Bragg diffraction can be found in [103]. There it is

shown that diffraction losses induce a systematic phase shift on the atomic superposition

∆φloss and that an upper bound is given by |∆φloss| ≤
√
L, where L is the total probability

for diffraction losses, i.e. the probability for an atom not to be found in the two target

momentum states of the interferometer.

Compared to Raman transitions, where the finite momentum width only limits the

pulse efficiency, in Bragg diffraction the momentum width also induces diffraction losses.
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The enhanced losses are caused by the velocity dependence of the resonance condition

through the Doppler effect. The importance of momentum width in Bragg diffraction has

been pointed out and analyzed in [106].

Here we give a simplified result where we assume a gaussian π-pulse envelope function

f(t) = exp[−(t−t0)2/(2σ2
t )] and first-order Bragg diffraction. By numerical integration of

the equation of motion, it is possible to show that the |g, 0〉-|g, ~keff〉 transition probability

p(v), where v is the velocity, for σt ≥ 10 µs, is well represented by a gaussian function,

p(v) = exp[−v2/(2σ2
π)]. The standard deviation σπ is determined numerically to be related

to σt by σπσt = 23.9 mm
s
×µs. We also assume that the atomic velocity distribution f(v) is

also well represented by a gaussian function, with center velocity v0 and standard deviation

σv. Then we can derive a simple result that expresses the efficiency of the π-pulse as

Eπ =

∫ ∞

−∞
p(v)f(v)dv =

exp
[
− v2

0

2(σ2
v+σ2

π)

]

√
1 +

(
σv
σπ

)2
. (4.34)

For example, if the Bragg lasers frequency matches the center velocity, we can see that

a π-pulse efficiency better than 90% can be achieved if σv/σπ ≤ 0.48. For a π-pulse

with σt = 10 µs, σπ = 0.24 ~k/m and the momentum width should therefore limited to

mσv ≤ 0.12 ~k.

4.3 Bragg atom interferometer operating on the dipole-

allowed 461 nm transition

In our first implementation of the atomic Mach-Zehnder interferometer, we used the broad

dipole-allowed transition at 461 nm to induce Bragg diffraction. In this Section we will

present the setup and discuss the main results of our implementation of a strontium

gravimeter. Additional details about this experiment can be found in [107, 108]. The

results of this and the following sections of this Chapter are to be regarded as the starting

point for our proposals for spin squeezed atom interferometers based on strontium atoms.

4.3.1 Experimental setup and sequence

The main setup for laser cooling and trapping and momentum state manipulation is

illustrated in Fig. 4.6.

The atomic source is provided by a high-efficiency strontium oven which, heated at

a temperature T =430 ◦C, produces a well-collimated atomic beam with most probable

velocity vmp ' 440 m/s and a flux of 2 × 1011 atoms/s. The atomic beam is directed to

the Zeeman slower, whose operation is outlined in Subsection 3.2.1. There, a two-stage
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Figure 4.6: Schematic of the experimental setup for the production of the atomic source

and its manipulation through Bragg diffraction. Atoms from a high-efficiency oven are

decelerated in a Zeeman slower (Z.S.), cooled and trapped through a two-stage magneto-

optical trap (MOT): the magenta arrows are the cooling beams and the two rings represent

the MOT coils. Bragg diffraction is produced by the two vertical counterpropagating blue

beams with orthogonal polarization. The Bragg light is reflected by the mirror suspended

on a vibration isolation stage and its polarization is rotated by a λ/4 waveplate. The atoms

with different momentum and vertical spatial separation are depicted as red ellipsoids.

The population measurement is performed by resonant excitation through the probe beam

and fluorescence collection through a photomultiplier tube (PMT).
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Figure 4.7: Setup for the production of the 461 nm laser light for Bragg diffraction. The

blue light is generated by second harmonic generation (SHG) of an amplified 922 nm laser.

A part of the light is beated with our reference blue laser to offset lock the laser with a

given detuning by acting on the blue laser. The first-order diffracted light from AOM 1

is used for instensity stabilization by acting on the AOM itself. In the following optical

Mach-Zehnder interferometer, the light with orthogonal polarizations is amplitude and

frequency controlled by AOM 2 and AOM 3. After recombination, the light is sent to the

vacuum chamber through a polarization-maintaining optical fiber.

magneto-optical trap (MOT) is performed [85, 86]. The first stage produces a sample of

108 atoms at a temperature of 1 mK in 1 s. Further cooling is attained through the second

stage, the red MOT (see Section 3.2). Here a sample of 2× 106 atoms at a temperature

of 1.2 µK is produced with a size of 300 µm on the horizontal direction and of 50 µm on

the vertical direction full width at half maximum (FWHM).

Bragg diffraction is induced by a pair of counterpropagating laser beams at 461 nm,

with frequency close to the 1S0-1P1 resonance. The optical setup for the Bragg beams

production is shown in Fig. 4.7.

We generate the blue light with an output power of 230 mW by cavity-enhanced

frequency doubling of an amplified 922 nm laser. In order to induce Bragg diffraction

while suppressing scattering of photons into free space, we need to introduce a detuning

of the blue laser from atomic resonance that is large compared to the natural linewidth.

This is achieved by combining a part of the blue light with that of our reference cooling

laser. The detected beatnote frequency is compared with a stable oscillator in a phase

and frequency detector which outputs an error signal used for locking the blue laser.

By tuning the frequency of the oscillator we can set the detuning from resonance of the
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Bragg laser in the range 2-8 GHz. Most of the light is directed to the acousto-optic

modulator AOM 1 which is used for intensity stabilization by detecting the first-order

diffracted light. By acting on the AOM RF drive amplitude, we are able to stabilize the

zeroth order intensity. This stabilization stage is necessary for our frequency doubled

laser because enhancement cavity vibrations and crystal temperature variations cause

output intensity noise. The zeroth order light is then directed to an optical Mach-Zehnder

interferometer, where the two Bragg frequencies ω1 and ω2 are produced. The frequency

difference ω1 − ω2 and the phase difference between the two lasers are tuned through

the two acousto-optic modulators AOM 2 and AOM 3 in the two interferometer arms.

The two AOMs are also used for pulse shaping during the atom interferometer. The

two parts are then recombined in a polarizing beam splitter and the resulting beam

is coupled into a single-mode polarization-maintaining optical fiber. The fiber output

is directed to the atoms after being collimated to a waist (1/e2 intensity radius) w =

2.5 mm. It is then sent vertically (to within 1 mrad) into the vacuum chamber and

to the atoms. The counterpropagating Bragg beam is obtained by retroreflection on

a mirror that is supported on a vibration isolation platform from MinusK Technology

(MinusK 25BM-4). The residual mirror vibrations and tilt are monitored by a triaxial

accelerometer (Episensor ES-T) and a tiltmeter (Applied Geomechanics Tuff Tilt 420).

A double pass through a quarter waveplate is used to produce polarizations that are

orthogonal to those of the upward-propagating beam. Through this setup, we create two

couples of traveling optical lattices, one upward propagating and the other downward

propagating with velocity |ω1 − ω2|/keff .

The output of the interferometer is measured after separating the wavepackets cor-

responding to the two momentum states in time of flight by resonant excitation though

a thin sheet of blue light (the probe beam). The resulting fluorescence is collected on a

photomultiplier tube (PMT). Alternatively, although not shown in Fig. 4.6, we shine reso-

nant blue light onto the atoms and detect the resulting spatial absorption profile through

a CCD camera.

After the production of the trapped atomic sample, the atoms are released from the

MOT and a sequence of Bragg π pulses is applied that provides vertical velocity selection

and launch (left of Fig. 4.8). After the selection and launch stages, we produce a sample

with a vertical momentum spread of 0.2 ~k FWHM and a vertical average momentum of

40 ~k. The measured high-efficiency Rabi oscillations are plotted in the right of Fig. 4.8.

The preparation sequence allows for a total time of flight of 150 ms and for high-efficiency

interferometer pulses.

After the preparation of the atomic ensemble, a Mach-Zehnder π/2 − π − π/2 pulse

sequence is performed. In the following Subsection we give the main experimental results

in terms of the interferometer contrast and sensitivity.
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Figure 4.8: Left: absorption image of the diffracted atomic cloud from the falling red

MOT. Two clouds corresponding to the excited |p = 2~k〉 and |p = 4~k〉momentum states

are visible. Right: Rabi oscillation for first-order Bragg diffraction through Gaussian

pulses with standard deviation σt.

4.3.2 Experimental results

Interferometer contrast The interferometer contrast was measured by scanning the

relative phase between the two Bragg laser beams at the last π/2-pulse. The measured

contrast is plotted on the left of Fig. 4.9 for first, second and third order Bragg diffrac-

tion as a function of the interferometer time T . By performing numerical simulations

of the interferometer dynamics with the known atomic cloud and beam parameters, we

confirmed the intuitive fact that, for short interferometer times, the contrast is limited by

the finite vertical momentum width and by scattering of photons into free space. On the

other hand, for long interferometer times, the contrast is limited by the finite size of the

Bragg laser beams due to the horizontal expansion. These effects result in an inhomo-

geneous interaction of the atoms with the Bragg lasers. For increasing diffraction order,

the contrast drop with interferometer time T becomes more pronounced because of the

critical dependence of the 2n-photon Rabi frequency on the laser intensity profile. These

results can be considerably improved through technically feasibile upgrades. On the basis

of our numerical simulations, the use of laser sources with enhanced output power and an

accurate optimization of the beam intensity and phase profiles are sufficient to provide

large interferometer contrast. More work still needs to be done in the direction of fur-

ther cooling the atomic ensemble, thereby reducing the detrimental effects of horizontal

expansion.
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Figure 4.9: Left: fringe contrast of the interferometer for first (n = 1), second (n = 2)

and third (n = 3) order Bragg diffraction. Right: Sensitivity of the atomic gravimeter.

The dominant noise source is due to mirror vibrations. Smaller contributions arise from

Bragg laser phase noise and atom shot noise.

Our work however shows that the reduced temperatures and cloud size attainable with

strontium atoms lead to a large contrast with a relatively small laser beam transverse size.

Interferometer sensitivity The interferometer sensitivity was determined through re-

peated atomic phase measurements where we set the operating point at the fringe slope.

This measurement allowed the determination of the Allan deviation for different averag-

ing times (right of Fig. 4.9). By operating with an interferometer time T = 30 ms and

an experiment cycle time of 1.7 s, we found a relative sensitivity to gravity acceleration

variations δg/g = 1.5 × 10−6 at 1 s of averaging time. By averaging for τ = 2000 s, we

attained a sensitivity δg/g = 4×10−8. This result only slightly differs from the prediction

δg/g = 1.5× 10−6/
√
τ = 3.4× 10−8 based on the assumption of pure white phase noise.

The measured sensitivity limits are dominated by the residual retroreflecting mirror

vibrations. By computing the sensitivity limits based on the reading of our accelerometer,

we found the contribution 380 mrad/
√
τ due to mirror vibrations which matches the

measured sensitivity. The Bragg laser phase noise was measured to yield a contribution

of 20 mrad/
√
τ whereas the shot noise limit for 1× 105 atoms is 10 mrad/

√
τ [107].

Because our experiments were aimed at the demonstration of a large-momentum-

transfer Bragg interferometer with strontium atoms, we did not implement state-of-the-art

technology for the suppression of the residual retroreflecting mirror vibrations [3]. These

techniques will be implemented in future experiments and we foresee no complication in

accessing the atom shot noise limit at least for interferometers with short interrogation
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times. On the other hand, it is important to note that in our experiments we did not

investigate the performance for longer interferometer times because of the limited size of

the vacuum chamber.

4.4 Bragg atom gradiometer operating on the 1S0-
3P1

intercombination transition

In a later experiment, detailed in [109, 110], we explored the possibility of implementing an

atom interferometer operating on the 1S0-3P1 intercombination transition at 689 nm. This

transition is easily accessible with current laser technology, where optical amplifiers as well

as continuous-wave titanium-sapphire lasers exist. The unique feature of this transition

lies in its narrow linewidth Γ = 2π×7.5 kHz. On the one hand, the small value of Γ allows

to shift the laser frequency by many linewidths with a simple acousto-optic modulator.

Such a modulator can readily switch from atomic resonance to the dispersive regime

where the photon scattering rate is strongly suppressed. This allows the implementation

of multi-photon Bragg transitions as well as dipole traps and optical lattices with the

same laser source. For example, a 200 MHz AOM shifts the laser frequency by 2.7× 104

Γ. For the blue transition, the same shift in units of the linewidth would be obtained by a

detuning of 820 GHz, where laser locking by beatnote detection becomes challenging and

other methods need to be implemented2. Even if such methods are implemented, a fast

switching of the laser frequency by such a large amount is hardly feasibile. On the other

hand, the linewidth of the 689 nm transition is large enough that laser stabilization can

be attained by standard saturated absorption spectroscopy [108].

4.4.1 Experimental setup and sequence

The setup of the experiment is similar to that employed for Bragg diffraction on the

dipole-allowed transition in that the MOT stage and the fluorescence detection methods

are the same.

The setup for the red Bragg lasers is illustrated in Fig. 4.10 and consists of an optically-

amplified laser at 689 nm with an emission linewidth of about 100 Hz. These favorable

noise properties are attained by locking an extended-cavity diode-laser to a high-finesse

optical resonator through the Pound-Drever-Hall method. The long-term drift of the

optical cavity length is compensated by an additional locking stage performed by locking

the piezo-actuated cavity to the saturated-absorption spectroscopy signal from a strontium

heat pipe. The resulting laser light is used for the operation of the red MOT stage. A

2Stable locking with large frequency differences can be attained, for example, with a high-resolution
wavemeter, a frequency comb or a transfer cavity.
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Figure 4.10: Optical scheme for the production of the laser beams for Bragg diffraction

on the 1S0-3P1 transition. A first diode laser (DL1) is optically injected from the master

source, frequency shifted by AOM1 and injects two additional lasers (DL2 and DL3), both

frequency shifted (AOM2 and AOM3) and amplified by two tapered amplifiers (TA1 and

TA2). The final modulators AOM4 and AOM5 are used to temporally shape the Bragg

pulses.

fraction of the light is used to optically inject a set of laser diodes and tapered amplifiers

for the production of Bragg diffraction. This set consists of a first diode laser, optically

injected by the master laser. The output of this laser is passed through an AOM which sets

the general detuning from atomic resonance in the range −1.3×104 Γ < ∆ < +1.9×104 Γ.

The AOM output is then used to optically inject two laser diodes that independently seed

two tapered amplifiers. This couple forms the two Bragg laser beams. Before seeding the

tapered amplifiers, the output of the two laser diodes is frequency shifted by two AOMs

used to control the phase and frequency difference between the Bragg beams. Finally, the

temporal shape of the laser pulses is tuned by two independent AOMs. The laser light is

then coupled in two polarization-maintaining optical fibers and the output is collimated

to a 2.3 mm waist with an output power of 80 mW per beam.

After releasing the MOT, the atoms are loaded into a vertical optical lattice with a

depth U = 20Er (where Er is the recoil energy) formed by the two Bragg beams with a

95 MHz red detuning from atomic resonance. This lattice is used to launch the atoms

upwards. Because only a fraction of the atoms is captured by this first launch, there is

a residual falling cloud which is subsequently trapped in a second stage optical lattice

and launched vertically. After a set of Bragg selection and launch pulses, the atomic

sample is formed by two clouds with a momentum difference of 4~k (where k is the laser
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wavenumber) and a 0.15~k momentum width. This procedure allows to operate a second-

order Bragg interferometer. In particular, by defining p0 as the momentum of the lower

cloud, the upper cloud with a momentum p0 +4~k is coupled to the state with momentum

p0, whereas the lower cloud is coupled to the state with momentum p0 + 4~k. These two

clouds have a separation or baseline that is set by the time interval between the two

successive launch stages. The result of this preparation stage is a pair clouds with 5×105

atoms each and a separation between 2.7 cm and 3.6 cm. This sample is then injected into

a Mach-Zehnder atom interferometer and the output is used to measure the difference in

gravity acceleration between the two cloud positions.

Because of the limited size of the vacuum chamber used in our experiments, both the

gradiometer baseline and the interrogation time T are limited. Therefore, the current

setup does not allow to attain a sizeable signal for the measurement of the Earth gravity

gradients. In order to characterize the instrument sensitivity, we added a feature by

inserting a difference between the general detuning of the π/2-pulses and that of the

π-pulse of the interferometer. This method [111] induces an artificial gradient given by

Γa = 2∆keff/(keffT
2), where keff is the effective wavenumber and ∆keff is the effective

wavenumber variation resulting from the frequency jump.

4.4.2 Experimental results

Interferometer contrast Our measurements showed that the atom interferometer op-

erated on the red intercombination transition has a better performance compared to the

blue dipole-allowed transition, as shown in Fig. 4.11. The main difference is the ability

to reach an extremely large detuning from atomic resonance compared to the natural

linewidth while keeping a relatively large four-photon Rabi frequency Ω
(4)
eff = 2π×20 kHz.

In particular, we observed that, for a detuning 1.3× 104 Γ and a beam waist 2.3 mm, we

can attain a contrast C = 0.42 for a T = 80 ms atom interferometer with a decay time

constant of 130 ms. Bragg diffraction on the blue transition, in comparison, yielded a

smaller contrast and a faster decay rate with a time constant of 39 ms.

Interferometer sensitivity Also in this case, the phase sensitivity of the interferom-

eter was characterized by the Allan deviation. We found that the phase sensitivity is

210 mrad at 1 s, corresponding to a gradient sensitivity 5 × 10−4 s−2. After a τ =1000

s averaging time, we reached a sensitivity to gravity gradients of 1.5 × 10−5 s−2 which

is consistent with the prediction 5× 10−4 s−2/
√
τ and shows that the phase fluctuations

have a white noise character. The sensitivity of our interferometer is limited by the size

of the vacuum chamber and by the detection efficiency.
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461 nm, |�/�| = 100

689 nm, |�/�| = 6000

689 nm, |�/�| = 12500

Figure 4.11: Comparison of the fringe contrast as a function of the interrogation time

T and in different conditions. Blue points: second-order Bragg diffraction experiment

performed on the blue 1S0-1P1 transition with detuning |∆/Γ| = 100. The other curves

refer to the measured contrast for the interferometer operated on the intercombination

transition, for different values of the detuning |∆/Γ| = 6000 (red points) and |∆/Γ| =

12500 (magenta points). Note that the linewidths Γ refer to the specific transition used.

Sensitivity to magnetic fields Bosonic strontium in the 1S0 ground state is expected

to have a negligible sensitivity to external magnetic fields. This enhanced robustness

against electromagnetic perturbations is expected because of the vanishing electronic and

nuclear angular momenta. As a result, no linear Zeeman effect is expected for atoms in

the ground state. It is found that the dominant shift of the ground state is given by the

so-called diamagnetic term [112], proportional to the square of the vector potential. The

calculation of such an effect requires the knowledge of the spatial part of the wavefunction

of the atomic electrons. A reasonable estimate of this effect is obtained by using the

optimized Slater orbitals [113]. A full calculation using the most advanced wavefunctions

[114] for the atomic electrons yields a frequency shift ∆ν = 36e2a2
0B

2/(8meh), where e

is the electron charge, a0 is the Bohr radius, B is the magnetic field intensity, me is the

electron mass and h is Planck’s constant. This shift amounts to ∆ν = 5.4 mHz/G2. In

comparison, for Rb atoms, the shift is 288 Hz/G2 or 5× 104 times larger.

In our experiments, we verified the insensitivity to such perturbations by applying

intense magnetic field gradients.

Interestingly, we found that in our experiment configuration, we are able to apply a

gradient of 50 G/cm and a magnetic field difference between the positions of the two

atomic clouds of almost 200 G. According to our estimates, in these conditions it should
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be possible to induce a considerably large gradiometer phase shift of more than 500 mrad

which is well above our level of sensitivity. This measurement could thus determine an

experimental measurement for such a small magnetic shift through its mechanical effect

on the atomic trajectories. It should be however noted that, for precision gravity mea-

surements and in standard conditions, the effect is hardly observable and is not expected

to yield important systematic uncertainties.

4.5 Conclusions

In this Chapter, the implementation of Bragg diffraction in atom interferometers is dis-

cussed. Atom interferometers were implemented both on the dipole-allowed and on the

intercombination transition and considerable values of the interferometer contrast have

been observed.

Large values of the contrast were attained when operating on the red intercombination

line. We attribute the superior performance of this transition to the narrow linewidth

of the transition and to the availability of large amounts of laser power. The narrow

linewidth allows to detune the laser from the optical transition by many linewidths in

a straightforward manner, whereas the availability of laser power can induce reasonably

large Rabi frequencies. The laser system that is necessary to implement the interferometer

on the red transition is nevertheless rather involved as it requires a number of laser sources

to attain optical pre-amplification and final amplification. In this chain, stability of the

single units is essential and somewhat hard to maintain. For example, the injection of our

slave lasers and the noise of the master laser were critical aspects that caused a sizeable

waste of time and effort. Additionally, it is well known that tapered amplifiers suffer

from a wide and intense background of amplified spontaneous emission. This is, to our

knowledge, the main limitation to achieving long lattice lifetimes with a laser so close

to atomic resonance. While the laser spectrum can be filtered through optical cavities,

cleaner solutions exist, though more expensive, such as the Titanium-Sapphire laser or

a frequency-doubled infrared Raman laser. These solutions will be explored in the near

future. While in standard conditions the interferometer operated on the red transition, as

is the blue transition, does not sense external magnetic fields, the large first-order Zeeman

effect of the excited state can cause complications. Indeed, a magnetic field might shift

one of the Zeeman sublevels closer to the laser frequency thus changing the contrast loss

rate in a polarization-dependent manner. Even if we did not carefully explore this aspect,

the presence of a nearby photoassociation line might have caused additional complications

and enhanced sensitivity to laser polarization.

The blue transition, on the other hand, does not allow to achieve large detunings (in

units of the linewidth) while switching the frequency by large amounts. A large detuning
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can be attained, in principle, but then, if necessary, the optical lattice trap should be

implemented with a separate laser. This choice probably represents the most stable

solution if one is constrained by a low budget.

Because these experiments were mainly focused on providing a proof-of-principle of

the feasibility of atom interferometers with strontium atoms, the state-of-the-art was not

reached. However, technologically achievable improvements will boost the performance of

these interferometers. At least for atomic gradiometers, it is expected that the atom shot

noise limit is attainable. Moreover, the high level of insensitivity to external magnetic

fields has been established.

In the next Chapter, we consider a method that allows to generate squeezed momentum

states for atom interferometry that is applicable to both transitions considered in this

Chapter, even if we will make explicit reference to the dipole-allowed transition. There is

no fundamental reason to choose this transition aside from the facts that Bragg diffraction

is achievable in a quite simple way and that it provides a good momentum state separation,

owing to the small wavelength. If a better stability of the red laser system can be achieved,

this might represent a better choice.



Chapter 5

Squeezing on momentum states for

atom interferometry

In this Chapter we enter the core of this thesis. We will describe a method for the im-

plementation of squeezed momentum states of strontium atoms for Bragg interferometry

[115]. This study is motivated by the following facts:

• Strontium atoms are among the best candidates for precision metrology. This has

been demonstrated both for optical lattice clocks based on neutral atoms approach-

ing the 10−19 relative precision [82] as well as for atom interferometers in our group.

Aside from being accessible with current technology, strontium atoms have unique

features that make them insensitive to external perturbations, an essential require-

ment for precision measurements. Moreover, the strontium optical transitions span

a natural linewidth range that extends over more than eleven decades, allowing

to perform experiments in different regimes including the production of degenerate

gases by laser cooling [87].

• In our group we successfully implemented large momentum transfer beam splitters

and mirrors based on Bragg diffraction for atom interferometry. We operated atom

interferometer experiments both on a dipole-allowed transition and on a narrow

intercombination transition. We demonstrated that strontium Bragg atom interfer-

ometers are largely insensitive to external perturbations and attained large values

of fringe contrast, indicating the persistence of atomic coherence over considerably

long time scales.

• In our experiments, the limits to the atom interferometer sensitivity were purely

technical and can be overcome with current technology both for gravimeters [3]

and for gradiometers where the atom shot noise limit has been reached [13]. A

further improvement in the sensitivity can be obtained by reducing the quantum

fluctuations below the Standard Quantum Limit.

77
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• As large momentum transfer atom interferometers operate with two states that differ

by their linear momentum while having the same electronic part, overcoming the

shot noise limit requires to elaborate a set of methods which can produce squeezed

momentum states. This has remained so far a formidable task.

In this Chapter we illustrate a method to induce squeezed momentum states whose

potential is increased in the presence of a ring resonator. We begin by providing the

theoretical tools for the understanding and the derivation of the main results. We then

consider the nondestructive measurement of the population difference between two mo-

mentum states through the Doppler effect. Being a collective measurement, it projects

the ensemble state into a state that is close to an eigenstate of the measured observable

and therefore produces spin squeezing according to the treatment performed in Subsection

2.3.2. Although we mainly focus on nondestructive measurements, most of the methods

described here can produce dynamic squeezing as in [72, 73]

We show that squeezing based on the Doppler effect is limited to large Bragg diffraction

orders for optical transitions and that by appropriately modifying the atomic medium

properties, the method can reach a squeezing limit for small diffraction orders that is as

good as for large diffraction orders.

5.1 General treatment of the interaction of a system

with a heat bath

In this Section we provide the main theoretical framework that allows to analyze the prob-

lem of the interaction between an atomic system with a radiation field. This treatment

is suitable for a consistent description of an ensemble of atoms interacting with the light

circulating in an optical resonator and of the damping of both the atomic and radiation

systems. We follow the input-output theory outlined in [116, 117] and adapt the notation

to the specific problem of interest for spin squeezing experiments.

We consider a system interacting with a heat bath comprised of a large number of

harmonic oscillators. We restrict our discussion to the relevant case where the following

three assumptions are fulfilled:

1. the interaction between the system and the heat bath is linear;

2. the rotating-wave approximation is made;

3. the interaction strength of the system with the heat bath is independent of the

energy being exchanged between the two parts.

We define b̂(ω) as the annihilation operator for a quantum of the harmonic oscillator

of the bath with frequency ω and ĉ as an operator of the system through which the system
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and the bath interact. Because the bath has a large number of degress of freedom (or

modes), we employ the continuum approximation and consider the commutation relation

[b̂(ω), b̂†(ω′)] = δ(ω − ω′), where δ(x) is the Dirac delta function. The total Hamiltonian,

describing the free energies of the system, of the bath and of their interaction can be

written as Ĥ = ĤS + ĤB + ĤI. ĤS is the Hamiltonian for the system,

ĤB =

∫ ∞

−∞
~ωb̂†(ω)b̂(ω)dω (5.1)

describes the free energy of the bath and

ĤI = i

∫ ∞

−∞
~g(ω)

[
b̂†(ω)ĉ− ĉ†b̂(ω)

]
dω (5.2)

describes the linear interaction of the system with the heat bath with the frequency-

dependent interaction strength ~g(ω).

We now follow a standard procedure aimed at describing the system dynamics where

the interaction with the bath is described by effective driving and damping terms.

The Heisenberg equation of motion for the observable Â reads i~ d
dt
Â = [Â, Ĥ]. We

write this equation for the bath operator b̂(ω) and for an arbitrary system operator â,

d

dt
b̂(ω) = −iωb̂(ω) + g(ω)ĉ (5.3)

d

dt
â = − i

~
[â, ĤS] +

∫ ∞

−∞
g(ω)

{
b̂†(ω)[â, ĉ]− [â, ĉ†]b(ω)

}
dω. (5.4)

Next we formally integrate equation (5.3),

b̂(ω) = e−iω(t−t0)b̂0(ω) + g(ω)

∫ t

t0

e−iω(t−t′)ĉ(t′)dt′ (5.5)

and insert the result in (5.4) thus obtaining the Langevin equation:

d

dt
â = − i

~
[â, ĤS] +

∫ ∞

−∞
g(ω)

{
eiω(t−t0)b̂†0(ω)[â, ĉ]− e−iω(t−t0)[â, ĉ†]b0(ω)

}

+

∫ ∞

−∞
dωg2(ω)

∫ t

t0

dt′
{
eiω(t−t′)ĉ†(t′)[â, ĉ]− e−iω(t−t′)[â, ĉ†]ĉ(t′)

}
, (5.6)

where b̂0(ω) is the value of b̂(ω) at the initial instant of time t0. Up to this point, the

equations of motion describe a linear (1) interaction between the system and the bath in

the rotating wave approximation (2). We next introduce the third assumption that the

coupling strength is independent of frequency. This is known as the Markov approximation

which we express in the form g(ω) =
√
γ/(2π) and show that γ can be interpreted as a

damping rate. The equation of motion (5.6) for the operator â then takes the form

d

dt
â = − i

~
[â, ĤS]−

{
[â, ĉ†]

[γ
2
ĉ+
√
γb̂in

]
−
[γ

2
ĉ† +
√
γb̂†in

]
[â, ĉ]

}
, (5.7)
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where b̂in is the input field, defined as the Fourier transform of b̂(ω)

b̂in(t) =
1√
2π

∫ ∞

−∞
b̂0(ω)e−iω(t−t0)dω. (5.8)

The input field satisfies the commutation relation [b̂in(t), b̂†in(t′)] = δ(t− t′).
Similarly, we define the output field

b̂out(t) =
1√
2π

∫ ∞

−∞
b̂1(ω)e−iω(t−t1)dω (5.9)

where b̂1 is the bath operator evaluated at the final instant of time t1 with t1 > t > t0. By

considering the result of the formal integration (5.5), we rewrite it with the replacements

t0 → t and t→ t1 and solve for b̂(ω):

b̂(ω) = b̂1(ω)e−iω(t−t1) − g(ω)

∫ t1

t

e−iω(t−t′)ĉ(t′)dt′. (5.10)

This result, along with (5.5) allows to obtain the relation between the input and output

operators. This is achieved by integrating b̂(ω) over the frequency domain and by using

(5.5) and (5.10):
1√
2π

∫ ∞

−∞
b̂(ω) = b̂in +

√
γ

2
ĉ = b̂out −

√
γ

2
ĉ (5.11)

or

b̂out = b̂in +
√
γĉ. (5.12)

We now show that equation (5.7) gives an effective description for the interaction of

the system with the heat bath in terms of damping at a rate γ. To show this we consider

a system formed by a harmonic oscillator described by the annihilation operator â with

[â, â†] = 1 and assume that the system has been previously excited so that â(t = t0) = â0.

If â is the operator through which the system interacts with the heat bath, we also

have â = ĉ. The system Hamiltonian is just the free energy of the harmonic oscillator,

ĤS = ~ωcĉ†ĉ. The equation of motion for ĉ is

d

dt
ĉ = −iωcĉ−

γ

2
ĉ (5.13)

and has the solution â(t) = â0e
−i(ωc−iγ/2)(t−t0) that is, the amplitude of the harmonic

oscillator field decays with a rate γ/2.

Similarly, the equation of motion for the number operator n̂ = ĉ†ĉ is

d

dt
n̂ = −γn̂, (5.14)

with solution n̂(t) = n̂0e
−γ(t−t0), where n̂0 = â†0â0 is the initial number of quanta in the

harmonic oscillator. As a result, the number operator decays with a rate γ.
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The terms proportional to
√
γ represent the external driving of the system. For a

coherent drive with amplitude β and frequency ω, corresponding to b̂0(ω′) =
√

2πβδ(ω′−
ω), we have 〈b̂in〉 = βe−iω(t−t0) and the equation of motion for ĉ reads

d

dt
〈ĉ〉 = −i

(
ωc − i

γ

2

)
〈ĉ〉 − √γβe−iω(t−t0) (5.15)

The solution with the initial condition 〈c(t = t0)〉 = 0 is

〈ĉ(t)〉 = −i
√
γβ

∆ + iγ
2

e−iω(t−t0)
[
1− ei(∆+iγ/2)(t−t0)

]
, (5.16)

where we have defined the detuning ∆ = ω − ωc. This result reveals the main properties

of the driven system:

• system decay and system driving are connected in that the oscillator amplitude is

proportional to
√
γ;

• the solution reaches its steady state after a time interval ∆t� 1/γ after which the

solution no longer contains the component oscillating at the natural frequency ωc

and only oscillates at the drive frequency ω;

• the excitation profile features a resonance at the natural frequency ωc with a lorentzian

full width at half maximum γ.

The two systems considered in this Chapter, photons and atoms, can be described by

this model. For photons, the model describes the light in a single mode of an optical

resonator with resonance frequency ωc and linewidth γ. Similarly, an atomic two-level

system far from population saturation can be described as a harmonic oscillator where

the resonance frequency ωc corresponds to the energy of the transition between ground

and excited states and γ is the linewidth of the transition.

5.2 Equations of motion for photons and atoms

The tools developed in the previous Section are directly applicable to the description of

the interaction of an ensemble of atoms with the light circulating in an optical cavity in the

presence of damping. We first consider the two systems, photons and atoms separately.

5.2.1 Photons in an optical cavity

As already discussed, (5.15) can be directly adapted to describe the motion of the anni-

hilation operator ĉ for the system formed by the photons in a single mode at frequency

ωc. This model describes photons in an optical cavity. Because γ is the photon number
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(or optical power) decay rate, we set γ = κ, where κ is the cavity mode linewidth and is

related to the free spectral range ∆νFSR and the finesse F by κ = 2π∆νFSR/F . Equation

(5.15) describes a single-mode optical cavity that is coupled to the environment on one side

only, that is, only one mirror has a partial transmission and no other losses are present.

The model can be generalized to describe the real situation where multiple inputs and

outputs are present. In particular, we consider the practical case where two mirrors have

finite transmission and there are additional intracavity losses. We can then consider three

heat baths described by the operators b̂(i)(ω) with coupling strength gi(ω) =
√
κi/(2π)

for i = 1, 2, 3. The coupling strengths gi for i = 1, 2 describe the coupling through the

two partially transmitting mirrors whereas g3 describes the losses and therefore does not

contribute to the external driving of the optical cavity. The interaction Hamiltonian (5.2)

can then be rewritten in the form

ĤI = i
∑

i=1,2,3

~
√
κi
2π

∫ ∞

−∞
dω
[
b̂(i)†(ω)ĉ− ĉ†b̂(i)(ω)

]
. (5.17)

The Langevin equation then takes the form

d

dt
â = − i

~
[â, ĤS]− κ

2

(
[â, ĉ†]ĉ− ĉ†[â, ĉ]

)
−
∑

i=1,2

√
κi

(
[â, ĉ†]b̂

(i)
in − b̂(i)†

in [â, ĉ]
)
, (5.18)

where κ = κ1 + κ2 + κ3.

The input-output relation (5.12) determines the output fields. In particular, we con-

sider driving the optical cavity from side 1 so that b̂
(1)
in represents the driving field and no

field is present on the second side. The transmitted field is then expressed as

b̂
(2)
out =

√
κ2ĉ, (5.19)

whereas the reflected field is given by

b̂
(1)
out = b̂

(1)
in +

√
κ1ĉ. (5.20)

This last expression has the clear interpretation as a superposition between the light

reflected by the input mirror and the light that is coupled into the cavity and is transmitted

by the same mirror.

5.2.2 Atomic ensembles

The damping equation for an atomic ensemble can be derived through steps that are

similar to those that led to the Langevin equation (5.7). In this case the bath is formed

by the photon modes that differ by the wavevector k and the polarization ep. By defining

b̂k,p as the corresponding annihilation operator, the bath Hamiltonian is written

ĤB =
∑

k,p

~ωkb̂†k,pb̂k,p, (5.21)



CHAPTER 5. SQUEEZING ON MOMENTUM STATES 83

where ~ωk is the energy of a photon with wavenumber k. In determining the interaction

with an atomic ensemble, we consider first a single two-level atom with resonance fre-

quency ω0 and define |g〉 and |e〉 the ground and excited states, respectively. We then

consider the ladder operators σ̂− = |g〉 〈e| and σ̂+ = |e〉 〈g|. The interaction Hamiltonian

in the electric dipole and rotating-wave approximations of the atom with the bath of

modes of the electromagnetic field is given by [118]

ĤI = i~
∑

k,p

gkep · ed(b̂†k,pσ̂− − σ̂+b̂k,p), (5.22)

where gk =
√
ωkµ2/(2ε0~V ) is the single-photon Rabi frequency with ωk = ck, µ =

| 〈e|µ̂|g〉 |ed the electric dipole moment matrix element, V the quantization volume. The

polarization unit vector is denoted as ep.

We then find the equation of motion for the operator b̂k,p and integrate it formally:

b̂k,p = gkep · ed
∫ t

t0

e−iωk(t−t′)σ̂−(t′)dt′. (5.23)

Here we neglect the input field b̂k,p(0) at the initial instant of time t = t0 because for the

case considered in this Chapter, the atom is driven through the cavity field. The equation

of motion for the arbitrary system operator â then reads

d

dt
â = − i

~
[â, ĤS] +

∑

k,p

gkep · ed
(
b̂†k,p[â, σ̂−]− [â, σ̂+]b̂k,p

)
. (5.24)

By substituting (5.23) into (5.24) we get the final atomic damping equation. In order

to attain this, we follow the Wigner-Weisskopf approach [119] and make the continuum

approximation by the replacement

∑

k,p

|ep · ed|2 → 2
V

(2π)3

∫
|ep · ed|2dΩs

∫ +∞

0

ω2

c3
dω =

V

3π2

∫ +∞

0

ω2

c3
dω. (5.25)

The resulting Langevin equation of motion is

d

dt
â = − i

~
[â, ĤS] +

Γ

2
(σ̂+[â, σ̂−]− [â, σ̂+]σ̂−) , (5.26)

where

Γ =
ω3

0µ
2

3πε0~c3
(5.27)

is the decay rate of the optical transition.

The formalism described in this Subsection also allows to establish the formal equiv-

alence of the atomic system with that of harmonic oscillators when the population is far

from saturation. We first note that [σ̂−, σ̂+] = −σ̂z, where σ̂z = |e〉 〈e| − |g〉 〈g| is the op-

erator corresponding to the population difference. If the atom is weakly driven by a light

field, the population of the excited state is negligible and we can make the replacement

σ̂z → −1. As a result, [σ̂−, σ̂+] = 1 and σ− behaves the same way as the annihilation

operator for the light field.
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Figure 5.1: Schematic representation of the coupled atoms-cavity system S and of its

environment. The bath is formed by four parts. B1 is the bath of the modes on the

input side with b̂
(1)
in the incident field, b̂

(1)
out the reflected field and the coupling strength is

given by κ1. Similarly, the bath on the output side is denoted by B2, is coupled to S with

a strength κ2 and contains the transmitted field b̂
(2)
out. The undetected intracavity losses

form the bath B3. The atomic ensemble, on the other hand emits photons in the bath BΓ

at a rate Γ.

5.2.3 Atom-cavity system

A schematic representation of the coupled atoms-cavity system S embedded in the envi-

ronment formed by the modes of the free electromagnetic field is shown in Figure 5.1. In

building up the complete picture for the interaction of the system with the environment,

we decompose the bath into four parts:

• B1 is the bath formed by the modes of the incident field b̂
(1)
in and of the reflected

field b̂
(1)
out. The rate of photons transmitted from the input mirror is κ1

• B2 is the bath formed by the modes of the transmitted field b̂
(2)
out.

• B3 is the bath formed by the modes of the light that is lost because of intracavity

losses. These include losses from scattering and absorption from the cavity mirrors.

The rate of such losses is κ3.

• BΓ is the bath formed by the modes of the light that is scattered from the atoms

into free space at a rate Γ.

By combining the results of the previous sections, we can write the Langevin equation

of motion for the system formed by a two-level atom and the light circulating in the
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optical cavity:

d

dt
â = − i

~
[â, ĤS] +

κ

2

(
ĉ†[â, ĉ]− [â, ĉ†]ĉ

)
+

Γ

2
(σ̂+[â, σ̂−]− [â, σ̂+]σ̂−)

−√κ1

(
[â, ĉ†]b̂

(1)
in − b̂(1)†

in [â, ĉ]
)
, (5.28)

where κ = κ1 + κ2 + κ3 and we give the physical significance to the operator ĉ as the

annihilation operator for the intracavity light field, with [ĉ, ĉ†] = 1.

The generalization of this equation to the case of an ensemble of N two-level atoms

is straightforward. We assume that photon scattering into free space from the different

atoms populates different modes of the free electromagnetic field in BΓ. This assumption

is correct in the continuum limit where BΓ is formed by an infinite amount of modes. As

a result, an atom scatters photons independently of all the others and we need to make

the replacement

Γ

2
(σ̂+[â, σ̂−]− [â, σ̂+]σ̂−)→ Γ

2

N∑

i=1

(σ̂i+[â, σ̂i−]− [â, σ̂i+]σ̂i−) , (5.29)

where σ̂i− and σ̂i+ are the ladder operators for the i-th atom.

We are now in a position to write the equations of motion for the system variables

ĉ and σ̂− =
∑N

i=1 σ̂i− with the cavity incident coherent field amplitude at frequency ω

〈b̂(1)
in 〉 = βe−iωt. We consider the system Hamiltonian formed by the free atomic energy,

by the free energy of the intracavity electromagnetic field and by their interaction in a

Jaynes-Cummings form:

ĤS =
~ω0

2
σ̂z + ~ωcĉ†ĉ+ ~g(ĉ†σ̂− + σ̂+ĉ), (5.30)

where ω0 is the atomic resonance frequency, ωc is the cavity resonance frequency, 2g is the

single-photon Rabi frequency, g =
√
ω0µ2/(2ε0~V ), µ is the electric dipole matrix element

and V is the cavity mode volume. The cavity mode volume is V = Vsw = πw2L/4 for a

linear (standing-wave) cavity with length L and mode waist w and V = Vrw = πw2Lrt/2

for a ring (running-wave) cavity with round-trip length Lrt
1. Using the expression for ĤS,

1For a TEM00 Gaussian profile, the mode volume is defined as the volume integral with cross-sectional
(xy) area weighted by the Gaussian intensity factor and with the axial (z) part weighted by the longitu-
dinal intensity factor. For a linear (standing-wave) cavity with length L we account for the longitudinal
intensity variation due to the standing-wave pattern and write, for L � λ0, where λ0 is the light wave-
length,

Vsw =
∫ ∞

−∞
dx

∫ ∞

−∞
dye−2 x2+y2

w2

∫ L

0

sin2

(
2π
λ0
z

)
dz =

1
4
πw2L

For a ring (running-wave) cavity, on the other hand, the intensity is uniform along the cavity axis,
therefore

Vrw =
∫ ∞

−∞
dx

∫ ∞

−∞
dye−2 x2+y2

w2

∫ Lrt

0

dz =
1
2
πw2Lrt.
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the equations of motion are

d

dt
ĉ = −i

(
ωc − i

κ

2

)
ĉ− igσ̂− −

√
κ1b̂

(1)
in (5.31)

d

dt
σ̂− = −iω0σ̂− +

Γ

2

N∑

i=1

σ̂izσ̂i− + igσ̂z ĉ (5.32)

where σ̂iz = |e〉i 〈e|i−|g〉i 〈g|i and σ̂z =
∑N

i=1 σ̂iz. As we already discussed in the previous

Subsection, we express the equations of motion in the weak driving (low saturation) limit,

where the population difference operators are replaced as σ̂iz → −1 and σ̂z → −N . We

take the expectation values of the operators in the rotating frame at the frequency ω of the

driving field: ĉ = ˆ̃ce−iωt, σ̂− = ˆ̃σ−e
−iωt. The incident field is expressed by 〈b̂(1)

in 〉 = βe−iωt,

where β is the field amplitude with units of
√

photons/s. Finally, the equations of motion

for the expectation values in the rotating frame are

d

dt
c̃ = i

(
δ + i

κ

2

)
c̃− igσ̃− −

√
κ1β (5.33)

d

dt
σ̃− = i

(
∆ + i

Γ

2

)
σ̃− − iNgc̃, (5.34)

where c̃ = 〈ˆ̃c〉 , σ̃− = 〈ˆ̃σ−〉, δ = ω−ωc is the detuning from cavity resonance and ∆ = ω−ω0

is the detuning from atomic resonance.

The homogeneous part of equations (5.33) and (5.34) has the normal mode frequencies

given by

ω± =
∆ + δ ±

√
(∆ + δ)2 + 4Ng2

2
. (5.35)

In the limit |∆ + δ| � 2g
√
N with ∆ + δ positive, ω+ → (∆ + δ), ω− → 0 whereas for

∆ + δ negative, ω+ → 0, ω− → (∆ + δ). When the condition ∆ + δ = 0 is satisfied the

degeneracy is lifted by the vacuum Rabi splitting [79, 120, 121] ω+ − ω− = 2g
√
N .

Another important feature of equations (5.33) and (5.34) is their steady-state solution

which is found when the time derivatives vanish:

σ̃− =
Ngc̃

∆ + iΓ
2

(5.36)

and

c̃ = −i 2
√
κ1

κ
β

2δ
κ

+NηLd(∆) + i[1 +NηLa(∆)]
(5.37)

where we defined the absorption La and dispersion Ld profiles as [34]

La(∆) =
Γ2

Γ2 + 4∆2
Ld(∆) = − 2∆Γ

Γ2 + 4∆2
(5.38)

and the single-atom cooperativity η = 4g2/(κΓ). It is important to notice that, despite its

appearance, the single-atom cooperativity is an essentially geometric parameter. This can
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be seen by recalling the expressions of the single-photon Rabi frequency 2g from (5.30)

and of Γ (5.27). The cavity mode linewidth is given by κ = 2π∆νFSR/F , where ∆νFSR is

the free spectral range of the optical cavity and F is the cavity finesse. The free spectral

range is given by ∆νFSR = c/(2L) for a linear cavity and ∆νFSR = c/Lrt for a ring cavity.

By also accounting for the expression for the cavity mode volume, it is found that the

single-atom cooperativity is the same for the linear and the ring cavities:

η =
4g2

κΓ
=

24F
πk2w2

, (5.39)

where k = 2π/λ0. The geometric nature of this expression can be understood by recalling

that the solid angle ∆Ω subtended by a Gaussian beam in the far field is proportional to

(k2w2)−1. Therefore, the single-atom cooperativity η is proportional to the effective solid

angle. The cavity finesse F then has the effect of enhancing the effective solid angle [34]

despite the fact that the real solid angle is usually rather small [122].

With the result (5.37), the output fields b̂
(1)
out and b̂

(2)
out can be expressed. The transmitted

field is given by (5.19) as

〈b̂(2)
out〉 =

√
κ2 〈ĉ〉 = −i 2

√
κ1κ2

κ
βe−iωt

2δ
κ

+NηLd(∆) + i[1 +NηLa(∆)]
. (5.40)

The output transmitted power is maximized, for negligible intracavity losses (κ3 = 0),

when the transmission from the input and output mirrors is equal, κ1 = κ2 = κ/2. Then

the ratio of transmitted to incident photon flux is

Ptr

Pin

=
| 〈b̂(2)

out〉 |2
|β|2 =

1
[

2δ
κ

+NηLd(∆)
]2

+ [1 +NηLa(∆)]2
. (5.41)

This function is plotted in Fig. 5.2 a) for the empty cavity and, in the presence of

atoms, for different values of the collective cooperativity Nη. The single cavity resonance

transmission peak is split, in the presence of the atoms, by the vacuum Rabi splitting

ω+ − ω− = 2g
√
N =

√
NηκΓ. This feature is also shown in Fig. 5.2 c) which plots the

transmitted power fraction as a function of the detuning of the laser from the bare cavity

resonance δ = ω− ωc and as a function of the detuning of the laser from the bare atomic

resonance ∆ = ω−ω0. The figure shows the characteristic avoided crossing resulting from

the atom-cavity coupling.

When the laser is far detuned from atomic resonance, such that NηLa(∆) � 1, the

dominant effect is a dispersive shift of the cavity resonance frequency δωc which, in units

of half the cavity linewidth, is given by δωc
κ/2

= −NηLd(∆).

Similar properties are shared by the reflected field, whose expression is derived from

equation (5.20) as

〈b̂(1)
out〉 =

{
1− 2i

κ1

κ

1
2δ
κ

+NηLd(∆) + i[1 +NηLa(∆)]

}
βe−iωt (5.42)
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a) b)

c)

Figure 5.2: Cavity response spectra in the presence and in the absence of coupling with

an atomic ansemble. a) cavity transmission spectrum with δ = ∆ for the empty cavity

and for two values of the collective cooperativity, Nη = 102 and Nη = 104. The plots

correspond to the case κ1 = κ2 = κ/2 = 2π × 50 kHz. b) Transmitted photon phase

shift compared to the phase on resonance with the bare cavity resonance. c) Transmitted

intensity density plot for varying cavity detuning δ and probe detuning ∆.

We note that the reflected power vanishes on resonance for the symmetric case κ1 = κ2 =

κ/2 and is independent of frequency for κ1 = κ, κ2 = 0, when both the intracavity losses

and the transmission from the mirrors other than the input are negligible.

5.2.4 Scattering of photons into free space and decoherence

Following the notation adopted in Subsection 5.2.2, the total number of photons scat-

tered into free space per atom is the number operator b̂†k,pb̂k,p summed over all possible

wavevectors k and polarizations p or

n̂sc =
∑

k,p

b̂†k,pb̂k,p. (5.43)
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By considering the bath Hamiltonian (5.22), one can write the Langevin equation for d
dt
n̂sc

and, by applying the Wigner-Weisskopf procedure, one can find the photon scattering rate

per atom
d

dt
〈n̂sc〉 = Γ| 〈σ̂i−〉 |2. (5.44)

This formula expresses the known fact that the scattering rate is the product of the atomic

linewidth and of the excited state population. This result can be explicited, in steady

state, by using the results (5.36) for N = 1 and (5.37) as

d

dt
〈n̂sc〉 =

4η κ1

κ
La(∆)

[
2δ
κ

+NηLd(∆)
]2

+ [1 +NηLa(∆)]2
Pin, (5.45)

where Pin is the incident photon flux.

For many experiments where the preservation of the atomic coherence is of paramount

importance, it is essential to quantify the effect of scattering of photons into free space.

Here we show that, if nothing else, free space scattering reduces the coherence of atomic

superpositions. To show this we consider a slightly different system and accordingly adapt

the notation. We consider a two-level system formed by the two stable levels |↑〉 and |↓〉
in the atomic ground state with energy difference ~δω. These could be, for example, two

states of the ground hyperfine structure of alkali atoms. We next consider the case where

one atom is illuminated by a laser beam in free space that is resonant with the transition,

at frequency ωe, from |↓〉 to an optically excited state |e〉. We further assume that the

atom is initially prepared in an equal superposition of the two ground states and that the

transition |↓〉 − |e〉 is closed. In order to quantify the loss of coherence, we use the ladder

operator σ̂g− = |↓〉 〈↑|. The optical transition from |↓〉 to |e〉 is described by the ladder

operators σ̂− = |↓〉 〈e| and σ̂+ = |e〉 〈↓|. For a laser field with frequency ω and amplitude

β, we can write the system Hamiltonian as

ĤS =
~δω

2
σ̂gz + ~βg(σ̂−e

iωt + σ̂+e
−iωt). (5.46)

For notational convenience we also define the operators for the transition |↑〉 − |e〉 as

σ̂′− = |↑〉 〈e| and σ̂′+ = |e〉 〈↑| and write the operators in a rotating frame as σ̂g− = ˆ̃σg−e
−iδωt

and σ̂′+ = ˆ̃σ′+e
i(ω−δω)t. We obtain the closed system of equations

d

dt
ˆ̃σg− = igβ ˆ̃σ′+ (5.47)

d

dt
ˆ̃σ′+ = −i

(
∆− iΓ

2

)
ˆ̃σ′+ + igβ ˆ̃σg−, (5.48)

where ∆ = ω − ωe is the detuning from the optical |↓〉 − |e〉 transition. The solution for

the coherence σ̃g− = 〈ˆ̃σg−〉 is found to be

σ̃g−(t) = σ̃g−(0) exp

(
− 2g2β2

Γ + 2i∆
t

)
. (5.49)
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The expression in the argument of the exponential function can be divided in two terms

corresponding to the real and imaginary parts:

2g2β2

Γ + 2i∆
=

2g2β2

Γ
[La(∆) + iLd(∆)] (5.50)

The imaginary part in (5.50) accounts for the light shift of the level |↓〉 by the light field.

The real part accounts for the coherence loss as it reduces the magnitude of the coherence

between the two levels of the ground state |σ̃g−|. The corresponding expression is seen to

be equal to the total number of photons scattered into free space per atom nsc:

|σg−(t)| = |σg−(0)|e−nsc . (5.51)

The scaling e−nsc is then also valid for the interferometer contrast, C = e−nsc if no other

sources of decoherence are present.

Contrast loss is the only effect on a superposition of atomic states when the transition

is closed. In this case, after scattering a photon, an atom ends up in the ground state

superposition with a phase that varies randomly between scattering events. Contrast loss

in this picture is therefore caused by dephasing. There are, however, other detrimental

effects of free space scattering. For example, scattering can cause atom loss because of

the imparted photon recoil. Another situation arises when the transition is not closed.

In this case, if the final atomic state is not one of the two spin states |↓〉 or |↑〉, the atom

is lost. If, on the other hand, the atom is not lost, Raman scattering can occur, where

the processes |↓〉 → |e〉 → |↑〉 and |↑〉 → |e〉 → |↓〉 are possible. Here Raman scattering

has the effect of randomizing the population between the two spin states and is clearly a

limitation for optically-induced spin squeezing.

5.3 A method for the implementation of squeezed

momentum states with strontium atoms

In the previous Chapter we discussed our results concerning the implementation of atom

interferometers based on Bragg diffraction. We saw that large momentum transfer can

be attained both on a broad dipole-allowed transition and on a narrow intercombination

transition. Bragg atom interferometry has an inherent robustness against external per-

turbations because the two spin states only differ by the center-of-mass momentum. This

immunity is even more pronounced in 88Sr atoms, where the ground state is essentially

a pure scalar with a formidable immunity to external magnetic fields and cold collisions.

The performance of these two interferometers is currently limited by technical aspects

that do not represent a limit in principle. For this kind of interferometer, the tools to

overcome the atom shot noise limit are however missing. In this and in the following
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sections, we will present a method that can extend the current spin squeezing technology

to a new class of states i.e. momentum superpositions. We will show that the narrow

intercombination 1S0-3P1 transition allows to perform nondestructive measurements of

the atomic population in two momentum states and compute the attainable metrological

gain.

5.3.1 Basic scheme for momentum state collective measurements

in the atom interferometer

|1S0, 0i

|1P1i
Bragg

Probe

B1
B2

|1S0, 2n~kbi

|3P1, ~kri
|3P1, 2n~kb + ~kri

Figure 5.3: Level diagram and relevant transitions for a collective measurement of the

population difference between the two momentum states coupled by the Bragg diffraction

process. Bragg diffraction is induced by the Bragg beams B1 and B2 that operate on the
1S0-1P1 transition (blue arrows). The population difference is probed by operating on the
1S0-3P1 intercombination transition (red arrow).

The proposed scheme is illustrated in Fig. 5.3, where we consider the collective mea-

surement of the population difference between the two momentum states coupled by Bragg

diffraction. We label the atomic states with the notation |χ, p〉 where χ labels the internal

electronic state and p labels the center-of-mass momentum in the reference frame mov-

ing with the free-falling non-diffracted wavepacket. We consider the momentum states

|1S0, 0〉 and |1S0, 2n~kb〉 coupled by n-th order Bragg diffraction on the dipole-allowed
1S0-1P1 transition at λb =461 nm, where kb = 2π/λb is the wavenumber of the Bragg

lasers. In our discussion we will assume that diffraction losses are negligible, a condi-

tion that, as seen in the previous Chapter, can be attained with gaussian pulses with a

duration larger than about 10 µs.

The squeezing method relies on resolving the Doppler effect due to the different speed

of the two momentum components. For dipole-allowed transitions, however, the Doppler
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Sr

B1

B2

↵

D
b̂
(1)
in

b̂
(1)
out

⇡

2 ✓
⇡

t

z

M1 M2

T T

⇡

2

|2n~kbi

|2n~kbi|0i

|0i

Tm

a) b)

Figure 5.4: Schematic of the setup with the cavity-enhanced collective measurement in-

tegrated in the interferometer in free space. a) Optical ring cavity, where the momentum

state superposition is probed by the red beams, with angle α with respect to gravity, as

the atoms cross the cavity mode volume. The probe field b̂
(1)
in is incident on one side of the

cavity and the reflected field b̂
(1)
out is measured by the photodetector D. The momentum

states are manipulated through the counterpropagating blue Bragg beams B1 and B2. b)

Interrogation sequence and atomic trajectories in a π/2 − π − π/2 Mach-Zehnder inter-

ferometer. The blue gaussian curves indicate Bragg pulses. The pulse labelled θ rotates

the state into a phase-sensitive state. The squeezing pre-measurement is performed in M1

with duration Tm and the final measurement is performed in M2.
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splitting, of the order of 10-100 kHz, is hidden by the large linewidth on the order of

10 MHz. Probing on a dipole-allowed transition therefore can only provide information

about the total atom number rather than about the population difference. The linewidth

Γ = 2π× 7.5 kHz of the 1S0-3P1 intercombination transition at λr = 689 nm of strontium

is however small enough to perform as a probe that can resolve the Doppler splitting

[123]. For the scheme illustrated in Fig. 5.3, the splitting between the optical transitions

|1S0, 0〉− |3P1, ~kr〉 and |1S0, 2n~kb〉− |3P1, 2n~kb + ~kr〉, where kr = 2π/λr, is considered

and amounts to 2δωr = kr
2n~kb
M

= 2πn× 28.6 kHz, where M is the atomic mass.

The collective measurement of the population difference between the two momentum

states can be enhanced through an optical cavity. A setup that is compatible with an atom

interferometer in free fall is illustrated in Fig. 5.4 a). When, during the atomic trajectories,

the ensemble crosses the cavity mode volume, probing is performed through the red beam

at λr = 689 nm circulating in the ring resonator2. The probe light is coupled from one

side of the cavity and the reflected field is measured by a photodetector. The atomic

trajectories and interrogation sequence, with the integrated squeezing pre-measurement,

are illustrated in Fig. 5.4 b). The basic sequence is formed by a π/2 − π − π/2 Mach-

Zehnder interferometer. After the first π/2-pulse, which prepares the coherent momentum

superposition, the squeezing measurement M1 is performed and the state is subsequently

rotated into a phase-sensitive state. The final measurement is performed in M2 and can,

in principle, be performed by fluorescence collection as we already demonstrated (see

Chapter 4 and [107]).

5.3.2 Measurement resolution

In the following, measurements of the cavity reflected field b̂
(1)
out (Fig. 5.4 a)) are considered

and the sensitivity to atom number fluctuations between momentum states is computed.

As such measurements provide collective information without distinguishing between in-

dividual atoms, they project the ensemble into a collective state which corresponds to

the measurement outcome, as discussed in 2.3.2. This process can produce conditionally

squeezed atomic momentum states.

We treat the two momentum states as a spin-1/2 system and describe the ensemble by

a total spin S = N/2, where N is the atom number. The population difference between

the two momentum states is then 2Sz.

According to (2.53), we quantify the attainable metrological gain ξm by the ratio

between the contrast squared C2 and the relative population variance (2∆Sz)
2 normalized

2In principle, in computing the Doppler splitting 2δωr, we should take into account the finite angle α
between the oblique cavity beam and gravity acceleration. We will assume that the corresponding factor
cosα introduces a negligible reduction of 2δωr
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to the atom shot noise variance 2S:

ξm =
S

2(∆Sz)2
C2. (5.52)

The squeezing pre-measurement of Sz can be achieved by arranging a situation where

the atom-light interaction is dispersive and the two momentum states are associated with

opposite variations of the index of refraction and shift the cavity resonance frequency in

opposite directions. When the cavity resonance frequency ωc is tuned halfway between

the two optical transitions, atoms in the two momentum states produce opposite shifts of

the cavity resonance frequency that can be detected via the phase shift ∆φph of the light

reflected from the cavity.

By using the tools developed in the previous sections of this Chapter, we now compute

the photon phase shift induced in the presence of the momentum state superposition.

We start by considering a single atomic transition at frequency ω0, a single cavity

resonance at frequency ωc and a driving laser field with frequency ωr and amplitude

〈b̂(1)
in 〉 = βe−iωrt. The linewidths of the cavity mode and of the atomic transition are given

by κ and Γ, respectively. We recall the definitions of the detuning from cavity resonance

δ = ωr − ωc and of the detuning from atomic resonance ∆ = ωr − ω0. We denote by 2g

the single-photon Rabi frequency and by Nη = 4g2N/(κΓ) the collective cooperativity.

By applying the result (5.42),

〈b̂(1)
out〉 =

{
1− 2i

κ1

κ

1
2δ
κ

+NηLd(∆) + i[1 +NηLa(∆)]

}
βe−iωrt. (5.53)

We note that in the ideal case of a lossless cavity, κ1/κ = 1, and in the absence

of atomic absorption, the reflected optical power is independent of frequency and every

photon is collected by the photodetector. This is clearly the most desirable situation

as it provides the maximum signal. The reflected light undergoes a phase shift that is

determined by the presence of the atomic ensemble. This phase shift can be measured for

example through a variant of the Pound-Drever-Hall method [124]. This relies on forming

a spectrum composed of a strong carrier out of cavity resonance and of a weak sideband

at the frequency of the probe laser ωr. The phase measurement is achieved by detecting

the interference between the sideband and the carrier.

From this point on we consider the actual level scheme for squeezing of momentum

states and extend the simple two-level scheme to the two transitions |1S0, 0〉 − |3P1, ~kr〉
and |1S0, 2n~kb〉−|3P1, 2n~kb + ~kr〉. As the polarizabilities for the two optical transitions

are additive [34], we make the replacements3

NLa(∆)→
(
N

2
− Sz

)
La(δωr) +

(
N

2
+ Sz

)
La(−δωr) = NLa(δωr) (5.54)

3Even though this is a fact that ultimately derives from the linear atomic response, it can be derived
in a straightforward and consistent manner by generalizing the Langevin equations of motion (5.33) and
(5.34) to the case of multiple atomic transitions.
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NLd(∆)→
(
N

2
− Sz

)
Ld(δωr) +

(
N

2
+ Sz

)
Ld(−δωr) = −2SzLd(δωr), (5.55)

where we used the fact that La and Ld are even and odd functions, respectively. With this

result, we compute the interference signal that arises from the superposition of the local

oscillator carrier with amplitude βLOe
−i[(ωr−ωLO)t+φLO] and of the sideband with amplitude

〈b̂(1)
out〉. Having defined the local oscillator phase φLO, we take β and βLO to be real numbers.

The flux of reflected photons can be written, when the probe laser is on resonance with

the bare cavity resonance, δ = 0, as

β2
det = 〈b̂(1)

out〉
2

+ β2
LO +

{
ββLOe

i(ωLOt+φLO)

[
1− 2iκ1

κ

i[1 +NηLa(δωr)]− 2SzηLd(δωr)

]
+ c.c.

}

(5.56)

The two terms in curly brackets account for the interference between the two fields, which

we denote as the signal S and can be written as

S
Tm

= 2ββLO

2κin

κ
− 1−NηLa(δωr)

1 +NηLa(δωr)
cos(ωLOt+ φLO + π −∆φph), (5.57)

where Tm is the measurement time duration and S has units of number of photons. The

signal phase shift ∆φph is given by

∆φph = 4
κin

κ

SzηLd(δωr)
[2κin

κ
− 1−NηLa(δωr)][1 +NηLa(δωr)]

, (5.58)

where this expression is valid for δωr � |Sz|Γ. For an initial coherent state that is an

equal superposition of the two momentum states, a limit on Sz can be estimated by the

shot noise fluctuations, so that δωr � Γ
√
N/2.

By mixing the detected electronic signal with the local oscillator source and by appro-

priately tuning the local oscillator phase, the last term in eq. (5.57) equals ∆φph. As a

result, the population difference can be detected via the phase shift of the light emerging

from the cavity.

In order to determine the photon shot noise limited atom number resolution 2∆Sz, we

first note that for an initial coherent state with the same population in the two momentum

states, Sz = 0 for an average over different experiment runs. Therefore, we can compute

the photon shot noise variance as N 2 = (〈b̂(1)
out〉

2
+ β2

LO)Tm ' β2
LOTm. The condition that

the phase shift measurement is at the photon shot noise is expressed as (S/N )2 = 1.

Since the main, and fundamental, limitation on attainable squeezing is set by scat-

tering into free space, we convert the number of incident photons in the probe field

nin = β2Tm into the number of photons scattered into free space per atom nsc. This conver-

sion can be achieved by using the result in equation (5.45), and by setting nsc = d
dt
〈n̂sc〉Tm:

nsc

nin

=
4η κ1

κ
La(δωr)

[1 +NηLa(δωr)]2
. (5.59)
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The squared atom number resolution (2∆Sz)
2, normalized to the atom shot noise variance

2S is then set by the condition (S/N )2 = 1 and reads

2(∆Sz)
2

S
=

[1 +NηLa(δωr)]2La(δωr)
4Nη κ1

κ
nsc[Ld(δωr)]2

. (5.60)

The term κin/κ can be seen as the fraction of detected-to-incident photons and is therefore

interpreted as the detection efficiency εd. In the definition of the detection efficiency, we

include the effect of cavity losses, of detector quantum efficiency and of any additional

loss in the path from the cavity input mirror to the photodetector.

5.3.3 Squeezing limits from photon scattering into free space

After the scattering of a photon by one atom, the momentum superposition is destroyed

and the associated recoil causes the trajectory to deviate from the vertical direction.

The resulting losses cause a random imbalance 2(∆Sz)sc of the populations in the two

momentum states.

We compute the resulting population imbalance arising from scattering psc = Nnsc

photons into free space in the regime where psc � N . According to the binomial distri-

bution, the probability for scattering k photons from |1S0, 0〉 and psc − k photons from

|1S0, 2n~kb〉 is given by

Pk =
1

2psc

(
psc

k

)
, (5.61)

where the probability for scattering from one of the two momentum states is set to 1/2.

The mean and variance are given by 〈k〉 = psc/2 and Var(k) = psc/4, respectively.

The atom number variance increase due to free space scattering can then be written

as (2∆Sz)
2
sc = Var(psc − 2k) or

(2∆Sz)
2
sc = p2

sc + 4Var(k) + 4 〈k〉2 − 4psc 〈k〉 = psc. (5.62)

The squeezing limit can then be determined by summing the atom number resolution of

the measurement given by eq. (5.60) and the variance increase 2(∆Sz)
2
sc/S. This gives

the total atom number variance normalized to the atom shot noise as[
2(∆Sz)

2

S

]

tot

=
[1 +NηLa(δωr)]2La(δωr)

4Nηεdnsc[Ld(δωr)]2
+ nsc. (5.63)

The above expression reaches a minimum at the optimum value of nsc given by

nopt
sc =

√
[1 +NηLa(δωr)]2La(δωr)

4Nηεd[Ld(δωr)]2
. (5.64)

The squeezing limit is then derived by setting nsc = nopt
sc in (5.63):

[
2(∆Sz)

2

S

]

opt

=

√
[1 +NηLa(δωr)]2La(δωr)

Nηεd[Ld(δωr)]2
. (5.65)
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Figure 5.5: Dependence of the metrological gain on the main parameters. a) Metrological

gain as a function of the number of photons scattered into free space per atom nsc for

different values of the collective cooperativityNη and for different Bragg diffraction orders.

b) Metrological gain as a function of the Bragg diffraction order for Nη = 103 (blue

squares) and Nη = 104 (red circles).

and in the dispersive limit NηLa(δωr) � 1, the metrological gain saturates at the value

ξm =
√
Nηεd.

The effect of dephasing discussed in subsection 5.2.4 in this case where losses dominate

is not the main limitation to the attainable squeezing. This statement remains valid

when nopt
sc � 1, a condition that is fulfilled in the dispersive regime when the collective

cooperativity Nη is large. In this case, the contrast C = e−nsc ' 1. In general, additional

limitations to the attainable squeezing level arise because of the curved nature of the

Bloch sphere. However, for the squeezing levels and atom numbers considered in this

thesis and for many experimental realizations, such effects yield negligible gain loss [125]

and, as such, their discussion is deferred to Appendix A.

The metrological gain, as computed from (5.65), is plotted in Fig. 5.5 as a function of

nsc and of the diffraction order n. When Nη lies in the range 103−104, there is significant

gain if n > 5, a condition typically met by large-momentum-transfer atom interferometers

[100]. Indeed, for small n, the optical transitions are not sufficiently resolved in frequency

space compared to the atomic linewidth, which prevents operating in the dispersive regime

of atom-light interaction and leads to substantial absorption and squeezing reduction.

Mathematically, this fact is expressed by the term [1 + NηLa(δωr)]2La(δωr) in equation

(5.65) which represents the effect of cavity-enhanced atomic absorption. In general, the

condition for operating in the dispersive regime can be written as n� 0.3×√Nη, which

shows that, in order to avoid absorption, a larger Doppler splitting is required. This

aspect is clear from Fig. 5.5, where it is shown that the gain for small diffraction orders

is larger when Nη is smaller.
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As discussed in Section 4.2, achieving large diffraction orders in a single pulse can be

challenging in real atom interferometers because of the long interaction times required

to operate in the Bragg regime. The Bragg pulse shape and frequency can however be

optimized in a way that produces highly efficient Bragg diffraction also for large diffraction

orders [102]. This result however comes at the cost of pulse durations that lie in the range

100 µs - 1 ms. The delay between the initial π/2-pulse and the squeezing pre-measurement

can then increase the spatial separation between the wavepackets corresponding to the two

momentum states. For a finite cavity mode volume, this might cause the two wavepackets

to be probed with different efficiencies, which is fundamentally undesirable as the process

would distinguish between different atoms and reduce squeezing [126].

It would, on the other hand, be desirable to extend the range of validity of our method

to small diffraction orders and large atom numbers. If it were possible to provide such an

extension, the scheme would still not be limited to small diffraction orders. Indeed, the

squeezing measurement could be performed, for example, after a first-order π/2-pulse and

the momentum splitting could be further increased by successive Bragg pulses. Clearly, a

possibility is to probe on transitions that are narrower than the strontium intercombina-

tion line. Even though such an approach is possible at least in principle, the measurement

time Tm would increase. This fact arises because reaching nopt
sc in equation (5.64) with

negligible population in the optically excited state requires a longer measurement.

In the following Subsection we propose and analyze a method that can modify the

atomic response to the probe field in such a way that the squeezing measurement operates

in the dispersive regime.

5.3.4 Squeezing enhancement by electromagnetically induced

transparency

In this Section we propose a scheme that enhances the signal-to-noise ratio of momen-

tum state collective measurements also at small Bragg diffraction orders n, with a large

collective cooperativity Nη. As the main limitation in this regime is the spoiling of

the cavity finesse by atomic absorption, we consider a scheme where coupling of the

decaying 3P1 state to the metastable 3P0 state with a much longer lifetime results in elec-

tromagnetically induced transparency (EIT) at the original cavity resonance frequency

[127, 128, 129, 130, 131, 132]. The 3P1-3P0 coupling can be attained through two-photon

Raman coupling via the 3S1 intermediate state with the two copropagating Raman lasers

R1 and R2 at 679 nm (3P0−3S1 transition) and 688 nm (3P1−3S1 transition), respectively,

as illustrated in Fig. 5.7.

In order to capture the essence of EIT in this condition, the center-of-mass motion

can be neglected, we adopt a density matrix approach and assume that the probe field

is a classical coherent field. After deriving the modified atomic response features, the
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Figure 5.6: Relevant level diagram for probing on the 1S0-3P1 intercombination transition

with EIT coupling through the two-photon 3P1-3P0 transition. The two-photon Raman

transition is induced by a couple of copropagating laser beams at 679 nm and 688 nm

that are detuned from the transition to the 3S1 state.

generalization to momentum states and to the cavity field is straightforward.

In practice, we consider a linear probe polarization that couples the |1S0〉 and |3P1,mJ = 0〉
states and two Raman beams R1 and R2 with Rabi frequencies ΩR1 and ΩR2, respectively.

The field R1, with frequency ω1, couples the states |3P1,mJ = 0〉 and |3S1,mJ = +1〉,
whereas the field R2, with frequency ω2, couples the states |3P0〉 and |3S1,mJ = +1〉.
For notational convenience, we make the replacements |1S0〉 → |a〉, |3P1,mJ = 0〉 → |b〉,
|3P0〉 → |c〉, |3S1,mJ = +1〉 → |d〉 and write the Hamiltonian as

H = ~ωa |a〉 〈a|+ ~ωb |b〉 〈b|+ ~ωc |c〉 〈c|+ ~ωd |d〉 〈d|+
~Ωp

2
(|b〉 〈a| e−iωrt + |a〉 〈b| eiωrt)

+
~ΩR1

2
(|d〉 〈b| e−iω1t + |b〉 〈d| eiω1t) +

~ΩR2

2
(|d〉 〈c| e−iω2t + |c〉 〈d| eiω2t), (5.66)

where ~ωi is the unperturbed atomic energy of state |i〉, ωr is the probe frequency and Ωp

the corresponding Rabi frequency.

Using first-order perturbation theory4 for the weak probe field, Ωp � Γ, we can write

4In perturbation theory, we define the Hamiltonian H = H0 + H1, where H0 is the unperturbed
Hamiltonian and H1 is the perturbation. The solution for the density operator is expressed as the series

ρ̂ =
∞∑

n=0

ρ̂(n)

where ρ̂(n) is the n-th order solution given by

d

dt
ρ̂(n) = − i

~
[H0, ρ̂

(n)]− i

~
[H1, ρ̂

(n−1)].
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the closed set of equations of motion for the matrix elements of the density operator ρ̂ as

ρ̇ab = iωbaρab −
Γ

2
ρab + i

ΩR1

2
ρade

−iω1t + i
Ωp

2
eiωrt (5.67)

ρ̇ac = iωcaρac + i
ΩR2

2
ρade

−iω2t (5.68)

ρ̇ad = iωdaρad + i
ΩR1

2
ρabe

iω1t + i
ΩR2

2
ρace

iω2t, (5.69)

where ωij = ωi − ωj is the frequency of the transition |j〉 → |i〉. We now consider the

relevant case where the detuning of the Raman fields from resonance is large compared to

the excited 3S1 state decay rate and compared to the the single-photon Rabi frequencies

ΩR1 and ΩR2. In this regime it is possible to adiabatically eliminate the excited 3S1 state,

in a way that is similar to that adopted in Section 4.2. This is performed by defining

in (5.69) the new variables σab = ρabe
−iωbat, σac = ρace

−iωcat, σad = ρade
−iωdat and by

observing that σab and σac are slowly varying compared to σad. The resulting equation

can be directly integrated:

σad =
ΩR1

2∆R

ei∆1tσab +
ΩR2

2∆R

ei∆2tσac, (5.70)

where ∆1 = ω1 − ωdb, ∆2 = ω2 − ωdc and in the denominators we set ∆1 ' ∆2 ≡ ∆R

by neglecting the difference between the detunings of the two lasers. Substitution into

equations (5.67) and (5.68) yields the effective three-level equations of motion

ρ̇ab = iω′baρab −
Γ

2
ρab + i

Ωp

2
eiωrt + i

Ωeff

2
ρace

iδt (5.71)

ρ̇ac = iω′caρac + i
Ωeff

2
ρabe

−iδt. (5.72)

Here Ωeff = ΩR1ΩR2/(2∆R) is the effective two-photon Rabi frequency, δ = ω2 − ω1 is

the frequency difference of the two Raman lasers and ω′ba = ωba + Ω2
R1/(4∆R), ω′ca =

ωca + Ω2
R2/(4∆R) are the transition frequencies corrected for the AC Stark shift of the

Raman fields.

In order to show the presence of electromagnetically induced transparency, we solve

(5.71) and (5.72) for the steady state solution. This is achieved by defining ρab = σ̃abe
iωrt

and ρac = σ̃ace
i(ωr−δ)t and by setting ˙̃σab = ˙̃σac = 0. The coherence between states |a〉 and

|b〉 is then found to be

ρab = i
Ωp/2

Γ
2

+ i
(

∆− Ω2
eff

4(∆−δ′)

)eiωrt, (5.73)

where ∆ = ωr − ω′ba and δ′ is the two-photon Raman detuning given by

δ′ = δ −
(
ωbc +

Ω2
R1

4∆R

− Ω2
R2

4∆R

)
. (5.74)
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Figure 5.7: Atomic absorption (La, solid line) and dispersion (Ld dashed line) profiles with

and without EIT coupling for first-order Bragg diffraction. The light phase measurement

is performed with the probe laser tuned halfway between the two bare resonances. a)

Absorption and dispersion from the two optical transitions between momentum states

without EIT coupling. The level diagram identifies the optical transitions by their color.

b) Absorption and dispersion with EIT coupling. The coupling to the 3P0 state is illus-

trated by the orange arrows and the coupling strength is Ωeff = 2π × 100 kHz.

The coherence between the states |a〉 and |b〉, expressed by equation (5.73), can be

directly connected to the expectation value of the ladder operator given in equation (5.36).

The comparison is made by recalling that both results hold for the steady-state response

of a two-level system and by observing that, for a single atom N = 1, 〈σ̂−〉 = ρba = (ρab)
∗.

Moreover, the probe Rabi frequency is expressed as Ωp = 2gc̃. In the presence of EIT

coupling, equation (5.36) can be rewritten in the form

σ̃− =
gc̃(

∆− Ω2
eff

4(∆−δ′)

)
+ iΓ

2

. (5.75)

Therefore, in the presence of EIT, the results given in the previous sections are obtained

formally by replacing the detuning from atomic resonance ∆ with the effective detuning

∆E:

∆→ ∆E = ∆− Ω2
eff

4(∆− δ′) . (5.76)

The increased effective detuning can allow to operate a collective measurement in the

dispersive regime thus reaching the optimum squeezing level.

The modified atomic response in the presence of electromagnetically induced trans-

parency with two momentum states can be understood from Fig. 5.7. Without EIT and

for small Bragg diffraction orders, atomic absorption halfway between the two resonances
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Figure 5.8: Cavity transmission spectrum with (red solid line) and without (blue dashed

line) Raman coupling to the 3P0 state for Ωeff = 2π × 400 kHz, Nη = 3× 103 and n = 1.

The two lateral peaks correspond to the vacuum Rabi splitting for κ = 2π× 50 kHz. The

population measurement is performed at the frequency of the transparency region which

corresponds to a linewidth of κEIT = 2π × 6 kHz.

limits the number of transmitted photons and thus the signal to noise ratio of the squeez-

ing measurement. As already discussed, in the optical cavity, absorption is enhanced by

the factor [1+NηLa(δωr)]2La(δωr) in (5.65). This would then mean that substantial gain

would be observed for a small optical depth Nη and one is left with little interferometer

phase resolution. In the presence of EIT on Raman resonance δ′ = 0, the single atomic

resonance is split by the coupling with the metastable 3P0 state. This effect opens a

transparency window, shown in Fig. 5.7 b), for both optical transitions connecting the
1S0 and 3P1 states. With the probe field tuned between the two bare resonances, the

intersection between the two transparency windows can lead to a substantial increase in

the measurement signal to noise ratio. The increased transmission of the optical cavity

at the frequency of the probe laser is shown in Fig. 5.8 for the effective Rabi frequency

Ωeff = 2π × 400 kHz. Mathematically, following (5.76), this situation translates into the

definition of the effective Doppler splitting δωE = δωr−Ω2
eff/(4δωr). When the two-photon

Rabi frequency Ωeff is large, Ω2
eff � Γδωr

√
Nη, EIT allows to operate in the dispersive

regime where, in (5.65), [1 +NηLa(δωE)]2La(δωE)/[Ld(δωE)]2 → 1.

As a result, the optimum number of photons scattered into free space (5.64) and the

optimum metrological gain (5.65) are obtained, in the presence of EIT, by the replacement

δωr → δωE.

The attainable metrological gain with Raman coupling to the 3P0 state is plotted in



CHAPTER 5. SQUEEZING ON MOMENTUM STATES 103

Bragg order n

⌦e↵ =1
⌦e↵ = 0

⌦e↵ = 2⇡ ⇥ 400 kHz

M
et

ro
lo

gi
ca

l
ga

in
⇠ m

[d
B

]

Ê

Ê
Ê
Ê
Ê
Ê Ê

Ê Ê
Ê Ê Ê

Ê Ê Ê Ê
Ê Ê Ê Ê Ê

Ê Ê Ê Ê Ê Ê Ê Ê Ê
‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

‡
‡
‡

‡

‡

‡

‡

‡
‡
‡
‡ ‡

‡ ‡
‡ ‡ ‡

‡ ‡ ‡ ‡ ‡

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï

5 10 15 20 25 30
-30

-20

-10

0

10

20

Free-space-scattered photons per atom nsc

M
et

ro
lo

gi
ca

l
ga

in
⇠ m

[d
B

]

0.001 0.002 0.005 0.010 0.020 0.050 0.100 0.200
-10

-5

0

5

10

15

20

n = 5

n = 20

n = 1, ⌦e↵ = 2⇡ ⇥ 400 kHza) b)

Figure 5.9: Metrological gain as a function of the number of photons scattered into free

space per atom nsc (a)) and as a function of the Bragg diffraction order (b)) with and with-

out EIT coupling. The figures show that electromagnetically induced transparency allows

to attain the optimum squeezing for small diffraction orders and large atom numbers.

Values are plotted for Nη = 104 and for a perfect detection efficiency εd = 1.

Fig. 5.9 and should be compared to Fig. 5.5 where the coupling is absent. The comparison

shows that with EIT and for small diffraction orders, the attainable squeezing is as good

as for the large diffraction order limit.

We conclude this subsection with a few remarks:

• Velocity selectivity of Raman transitions

In deriving the atomic response to the Raman coupling, we neglected the velocity

selectivity of Raman transitions as discussed in Section 4.2. This effect could, at

least in principle, cause a different coupling in the |3P1, ~kr〉 − |3P0, ~kr〉 and the

|3P1, 2n~kb + ~kr〉 − |3P0, 2n~kb + ~kr〉 transitions. However, if the Raman beams

are copropagating in the direction of the Bragg beams, the frequency difference

between these two transitions is ∆ω = ∆kR
2n~kb
M

, where ∆kR is the difference in

the wavenumbers of the Raman lasers. For the transitions considered here we have

∆ω = 2πn × 380 Hz. For small diffraction orders and large Ωeff , this splitting

cannot be resolved if the measurement time duration is on the order of 100 µs. In

the following we will show that this duration is sufficient to reach the optimum

gain. Moreover, if large diffraction orders are used, this splitting can be suppressed

or even eliminated by illuminating the atomic sample orthogonally to the Bragg

beams.

• Requirements on the effective two-photon Rabi frequency

The condition Ω2
eff � Γδωr

√
Nη that allows to operate in the dispersive regime

is more readily met when the population is probed on a narrow transition rather
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than on a broad transition. Moreover, a larger Doppler splitting δωr also sets

more stringent requirements on Ωeff . As a result, it is expected that the proposed

EIT scheme becomes more accessible experimentally when both Γ and n are small.

In this case, achieving large Ωeff is less demanding in terms of laser power. A

remarkable feature is that the conditions on Ωeff are less severe in terms of collective

cooperativity because the minimum required Rabi frequency scales as (Nη)1/4.

• Photon scattering into free space induced by the Raman lasers

Because the detuning of the Raman lasers from the single-photon transitions is finite,

it is important to ensure that the EIT coupling does not add noise or decoherence

through scattering into free space. We therefore provide a criterion for the choice

of the Raman laser configuration that avoids additional scattering into free space

from the excited 3S1 state. We start by computing the average 3S1 population in

the limit ΩR1,ΩR2 � |∆R| as

P (3S1) =
Ω2

R1 + Ω2
R2

4∆2
R

Pexc, (5.77)

where Pexc is the average population of the 3P1 state and we accounted for the fact

that, in the presence of Raman coupling, Pexc is also the average population of the
3P0 state. We then assume that ΩR1 = ΩR2 ≡ ΩR and that nLsc is the upper limit

for the number of photons per atom scattered into free space by decay from the 3S1

state. The corresponding limit on the ratio ΩR/∆R between the single-photon Rabi

frequency and the Raman detuning is then estimated as

(
ΩR

∆R

)

L

=

√
2nLsc

ΓTPexcTm
, (5.78)

where ΓT = 2π× 12.4 MHz is the total decay rate from the 3S1 state and Tm is the

squeezing measurement time duration.

Because we assumed, throughout our discussion, that the probe field is weak enough

that the population Pexc of the 3P1 state is not saturated, the EIT coupling can

be attained with smaller detuning ∆R compared to standard implementations of

Raman transitions, where the population of the coupled states is of the order of

unity. This means that large two-photon Rabi frequencies can be reached, as long

as the conditions for adiabatic elimination of the 3S1 state hold.

• Implementation to atoms with different electronic structure

As long as the excited state of the probing transition is coupled to a long-lived state,

our EIT method is expected to work, at least in principle. It can, for example, be

implemented on alkali atoms. In this case, the hyperfine structure in the ground
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Figure 5.10: Scheme for the implementation of a synthetic narrow absorption line in Rb

atoms. a) Level diagram, orange arrow: pump field, red arrow: probe field, δ′: detuning

of the pump field from the bare atomic resonance, δω: detuning from the two-photon

Raman transition. b) Absorption profile with (red line) and without (blue line) EIT

coupling with Ωeff = 2π × 100 MHz and δ′ = 2π × 1 GHz. The effective linewidth of the

synthetic resonance is Γeff = ΓRb(Ωeff/2δ
′) = 2π×15 kHz for a bare linewidth ΓRb ' 2π×6

MHz.

state offers the possibility to perform the EIT coupling with a single laser. In 87Rb

atoms, for example, probing of the momentum state superposition can be imple-

mented on the |52S1/2, F = 2〉 − |52P3/2, F
′ = 2〉 transition whereas EIT coupling

can be implemented on the |52S1/2, F = 1〉 − |52P3/2, F
′ = 2〉 transition (Fig. 5.10).

The notation used to describe EIT can be adapted to describe this case. Here, the

detuning of the coupling laser from atomic resonance is δ′ and the corresponding

single-photon Rabi frequency is Ωeff . The probe detuning from the bare atomic

resonance is ∆. By substituting in the absorption profile La the expression for the

effective detuning (5.76) it is possible to see that, in the limit Ωeff � δ′, the single

atomic line is split in two resonances at the probe detunings ∆− = −Ω2
eff/(4δ

′) and

∆+ = δ′ + Ω2
eff/(4δ

′). The first resonance, at ∆ = ∆−, describes the AC Stark shift

of the atomic transition whereas the second resonance, at ∆ = ∆+, occurs near

the two-photon Raman resonance as shown in Fig. 5.10 b). By considering small

frequency deviations (δω in Fig. 5.10 a)) about ∆+, it is seen that this describes a

synthetic atomic transition with a reduced linewidth Γeff = Γ[Ωeff/(2δ
′)]2, where Γ

is the bare atomic linewdith. EIT thus creates a resonance with a tunable linewidth

that can be used to probe the population of momentum state superpositions [133].
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5.3.5 Estimation of attainable squeezing with realistic experi-

mental parameters

With realistic values for the various parameters, our method is applicable to strontium

atoms with the current technology. Specifically, we consider an optical cavity where one

of the foci has a waist w0 = 150 µm, at the position where the atoms cross the cavity

mode volume. With a cavity finesse F = 2.5 × 104 and at the wavelength λr = 689

nm, we get a single-atom cooperativity η = 6Fλ2
r/(π

3w2
0) ≈ 0.1 [34]. We then consider

N ≈ 105 atoms occupying a volume with a linear size of about 30 µm. With these

parameters, the collective cooperativity is Nη ≈ 104. The maximum possible Bragg

diffraction order with our method is set by the condition that the transit time of the

wavepackets corresponding to the two momentum states through the cavity beam waist is

larger than the time duration of the collective measurement. We estimate the useful transit

time as the one taken by a wavepacket with speed n~k/M to cross one tenth of the effective

mode waist. Because the atoms are crossing the cavity beam vertically, the effective

mode waist is w0/ sinα. We therefore estimate the maximum Bragg diffraction order as

nmax = Mw0/(10~kTm sinα), where Tm is the measurement time duration. With α ≈ 0.4

rad and Tm ≈ 200 µs we get nmax = 10. However, the maximum Bragg order can be made

considerably larger by a suitable design of the cavity geometry, where w0 is made larger

and α is made smaller. The measurement time is set by the requirement that the number

of photons scattered into free space is sufficient to provide the optimum metrological

gain. By considering a collective cooperativity Nη = 104, first-order diffraction n = 1, a

Raman coupling strength Ωeff = 2π × 400 kHz, a measurement time Tm = 200 µs and a

detection efficiency εd = 1, we conclude that the optimum number of photons scattered

into free space per atom is nopt
sc = 5× 10−3, corresponding to the excited state population

Pexc = nsc/(ΓTm) = 5× 10−4. In this case it is possible to achieve a metrological gain of

20 dB.

5.4 Other methods for squeezing in atom interferom-

eters

In this Section we attempt to propose alternative methods that can produce squeezed

states for atom interferometers. We state the possible procedures through which a col-

lective population measurement can be realized but we do not perform a quantitative

analysis. A deeper treatment is left for future theoretical and experimental investigation.



CHAPTER 5. SQUEEZING ON MOMENTUM STATES 107

Probe

p = 2n~kb

p = 0

Probe

p = 2n~kb

p = 0

!

2g
p

N0

!

2g
p

N2n~kb

Measure N2n~kb
Measure N0

Figure 5.11: Procedure for the measurement of the population of two momentum states

as the corresponding wavepackets separately travel through the cavity mode volume. The

collective population is measured by the vacuum Rabi splitting.

5.4.1 Momentum state population measurements for spatially

separated wavepackets

When the velocity difference between the momentum states of the atom interferometer is

large enough, after a certain time-of-flight, the corresponding wavepackets can be spatially

separated. In this case, one can arrange a situation where the two wavepackets are probed

separately by the measuring light as they cross the cavity mode volume at different times.

As in Fig. 5.11, when the first wavepacket with momentum p = 2n~kb5 crosses the

probe beam, the corresponding number of atoms N2n~kb is measured through the vacuum

Rabi splitting 2g
√
N2n~kb . After this, an additional measurement N0 on the non-diffracted

cloud can be performed. This procedure allows to measure the difference in the popula-

tions of the two momentum states. Although this result can in principle be obtained by

a single measurement, in practice one needs the double measurement in order to account

for atom number fluctuations between different experiment runs. If spatial effects are not

5We recall that momenta are written in the reference frame that is falling with the non-diffracted
atomic cloud and not in the laboratory reference frame.
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an issue, the precision of the nondestructive measurement is that of the vacuum Rabi

splitting [79].

5.4.2 Collective population measurements in an atom interfer-

ometer based on the optical clock transition
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Figure 5.12: Collective measurement of the population of the states connected by the
1S0-3P0 clock transition. After the generation of a coherent superposition, the number N↓

of atoms in 1S0 is measured by the Rabi splitting. The populations are then flipped by a

π-pulse and the measurement is repeated thus giving the number N↑ of atoms in the 3P0

state.

In a recent work, our group demonstrated the first atom interferometer operating

on the single-photon optical clock transition [93] with very promising applications to

fundamental measurements [134]. An atom interferometer such as this one, where, like

in Raman transitions, the internal and external degrees of freedom are entangled, can

be equipped with the tools for squeezing. The simplest scheme resembles that of the

previous Subsection. Here, after the preparation of the coherent superposition between

the 1S0 and 3P0 states, a nondestructive probe can be performed on the 1S0-3P1 transition

where the vacuum Rabi splitting is measured. The number of atoms in the 3P0 state is

then measured by applying a π-pulse on the clock transition that flips the populations.

After an additional Rabi splitting measurement, the atom number difference is computed

in such a way that the influence of total atom number fluctuation is suppressed.
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5.5 Conclusions

In this Chapter, a method for squeezing of momentum state superpositions has been

presented. The method can yield the best performance when the momentum difference is

large enough that the squeezing measurement has a large signal to noise ratio. By adding

the feature of electromagnetically induced transparency, squeezing is retrieved also for

small momentum separations and large atom numbers. We have shown that this scheme

can reasonably and realistically be implemented in real experiments. In this Chapter,

moreover, we cited a few alternative options that can be realized in atom interferometers

and that can allow for phase resolutions beyond the Standard Quantum Limit.

If these methods were implemented in a real system, they would lead to many attrac-

tive experiments, where it is possible to study the features of atom interferometry with

correlated atomic sources.

For this reason, in the next Chapter the design of a setup that is suitable for squeezing

experiments is discussed.



Chapter 6

Experiment design for squeezing on

momentum states

The proposed methods for squeezing in atom interferometers rely on collective measure-

ments of the atomic populations. The attainable metrological gain depends on the optical

depth of the atomic ensemble which we quantify through a key parameter: the collective

cooperativity Nη. Maximizing this parameter requires, on the one hand, large atomic

densities and on the other hand a large single-atom cooperativity η. As seen from equa-

tion (5.39), the single-atom cooperativity η depends on the probe mode waist and on

the cavity finesse. As a result, a great improvement in the attainable squeezing can be

attained in an optical resonator with a large finesse. However, for experiments involving

atoms in free flight, it is essential to find a compromise between a mode waist that is

small enough to provide a large η but that is also large enough to yield a homogeneous

interaction between the probe field and the atomic ensemble.

In this Chapter we discuss a possible experimental realization that can face the de-

manding even though achievable requirements of our proposed squeezing methods.

In the first part of the Chapter, the main requirements for the cavity geometry and

a realistic solution are discussed. An auxiliary optical cavity design used for testing the

final geometry is also considered and the present stage of our work is discussed.

In the second part of this Chapter, we will report on the realization of a laser system

that will be used for laser cooling and trapping of strontium atoms. The other laser

systems for cooling, trapping and probing in the optical cavity will be discussed and a

suitable laser scheme for EIT coupling is illustrated.

110
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6.1 Optical cavity and vacuum system

6.1.1 Requirements on the optical cavity and determination of

the optimum geometry

On the basis of the discussion that was carried out in the previous Chapter, we can list

the main requirements that the optical resonator should satisfy.

1 Ring resonator

Because the atoms are in free flight during the squeezing measurement, it is im-

portant to ensure that the coupling of the probe field with the atomic ensemble is

uniform and constant throughout the duration of the squeezing measurement. The

simplest optical resonator that can be conceived is a linear cavity. Despite its sim-

plicity, a two-mirror cavity has a mode profile that is formed by a standing wave.

If implemented in an experiment in free flight conditions, it would cause spatially

inhomogeneous entanglement which could be totally washed out at the detection of

the final interferometer output [126]. Time averaging of the standing wave profile

can result in a homogeneous entanglement [81]. However, this result required a

dipole trap to limit the transverse atomic expansion while averaging is performed.

For the proposed methods, it would be preferable to avoid additional complications

and work intead with an inherently homogeneous mode profile. Such a requirement

is satisfied by the ring resonators, where the light travels in one direction only and

does not exhibit spatial intensity profiles on the scale of an optical wavelength. For

such ring resonators, the length scale of the inhomogeneity is set by the much wider

transverse mode profile.

2 Bow-tie ring cavity

The squeezing measurement proposed in the previous Chapter is based on resolving

the Doppler splitting due to the different momentum states. The splitting signal is

maximized when the cavity probe has a large component along the vertical direction.

By adding to this the requirement that the reflection on the cavity mirrors is close

to normal incidence, as is typical, a three-mirror ring cavity does not appear to be

the best choice. The four-mirror bow-tie cavity illustrated in Fig. 5.4 a), on the

other hand, seems to satisfy our needs: the atomic cloud can exit the cavity volume

and the reflection on the mirrors is close to normal incidence.

3 Mode waist size

A small mode waist w allows to attain a large single-atom cooperativity because

η ∝ 1/w2. However, if the atomic cloud has a linear size that is larger than w, there

is no advantage in choosing a small waist because the collective cooperativity would
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be rougly invariant. This is easily understood for a uniform atomic cloud, where the

effective number of atoms that interact with the probe beam scales as w2. Then Nη

is independent of w. A large mode waist on the other hand ensures a homogeneous

interaction throughout the measurement time duration. It is therefore clear that

the best procedure is to implement a cavity with a mode waist that is comparable

with the linear size of the atomic cloud. Given the size of our cooled strontium

cloud after the red MOT stage, we estimate that the mode waist should lie in the

range w = 100− 200 µm.

4 Mode waist position

As in Fig. 5.4 a), the most convenient position to probe the atomic ensemble is near

the crossing of the two beams. The exact crossing should be avoided because there,

the interference of the crossing beams causes a standing wave pattern.

5 Sensitivity to misalignment

Given the number of optical components and the somewhat complex geometry of the

bow-tie resonator, the cavity setup should be chosen with a pronounced robustness

against misalignment.

6 Cavity finesse

After taking care of the geometric constraints that ensure a large collective coop-

erativity, its overall value is set by the cavity finesse. This forces us to work with

high-reflectivity mirrors which in turn means that the mirrors should be protected

from any source of contamination.

7 Mechanical stability

Because, in our proposals, the absolute probe frequency is important, the length of

the cavity has to be stabilized to an external reference and a good passive stability

is desirable. This implies using piezo actuators for fast and fine control of the length

as well as a temperature control stage that improves the long term stability. The

design of the cavity should minimize the effect of environmental vibration noise.

If vibration damping materials are used, they should be elastic enough to provide

sufficient damping but also stiff enough such that the alignment of the probe beam

incident onto the cavity is maintained. These aspects are also connected to the

cavity finesse and to the cavity length. We recall that the cavity linewidth κ is the

ratio of the free spectral range ∆ωFSR = 2πc/Lrt to the finesse F , where Lrt is the

round-trip length. Locking the frequency of the cavity to better than κ with a given

vibration noise then requires that the finesse is not too large nor the cavity too long.

8 Mirror transmission
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Squeezing induced by measurement requires the photon detection efficiency to be

as large as possible. The photodetector efficiency is certainly a factor but it is not

the only one. An important contribution comes from the intracavity losses. For

the scheme detailed in the previous Chapter, the probe light is detected from the

reflection of the input mirror. Here the contribution to the detection efficiency

is expressed by the factor κ1/κ contained in equation (5.60) which expresses the

ratio of detected to incident photons. In other terms, for the input mirror, the

transmission has to be much larger than the total photon loss. The extreme case

where κ1 = κ is that of a one-sided cavity, where all the light enters and exits from

a single mirror.

9 Optical and atomic access

During the interferometer, the atomic wavepackets should have the possibility of

entering and exiting the cavity volume without encountering physical obstacles.

Moreover, the cavity structure should allow to have enough optical access for the

laser beams required for cooling, trapping, Bragg diffraction and EIT coupling. As

a result, the cavity structure should be designed in such a way that it poses no

physical obstacle for all these tasks.

10 Sensitivity to magnetic fields

The cavity structure should be engineered so that strong forces due to the MOT

magnetic fields are avoided.

The cavity geometry was studied by means of the ABCD matrices for Gaussian beams

[135, 136]. In our calculations, we separate the treatment between the sagittal plane

(orthogonal to the cavity plane) and the tangential plane (parallel to the cavity plane).

For a given plane and at each point, the Gaussian beam is completely determined by the

complex parameter q which is related to the local wavefront curvature radius R and to

the local waist w by
1

q
=

1

R
− i λ

πw2
, (6.1)

where λ is the wavelength of the light. The transformation rule for a gaussian beam from

qin to qout when passing through an optical element with a 2×2 ABCD matrix is given by

qout = (Aqin +B)/(Cqin +D). When an optical cavity is described by an ABCD round-trip

matrix, the self-consistency condition for the field to reproduce itself after one round-trip

is q = (Aq + B)/(Cq + D). According to the definition (6.1), a self-consistent field only

exists when the imaginary part of 1/q is negative or (D − A)2 + 4BC < 0. Because the

ABCD matrices have unity determinant, this condition can be rewritten as

|A+D| < 2, (6.2)
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which determines the subset of the stable cavities i.e. those where a Gaussian beam

reproduces itself. As expected, the cavity needed for our experiment will be determined

in this class.

The calculation of the round-trip ABCD matrix in the bow-tie cavity uses the following

three matrices:

Mf (d) =

(
1 d

0 1

)
,Mt(Rm, θ) =

(
1 0

− 2
Rm cos θ

1

)
,Ms(Rm, θ) =

(
1 0

−2 cos θ
Rm

1

)
,

(6.3)

which describe free propagation through a distance d (Mf ), reflection through a mirror

with radius of curvature Rm with incidence angle θ in the tangential (Mt) and in the

sagittal (Ms) planes, respectively. The product of these matrices is used to compute

the round-trip matrices in the tangential and in the sagittal planes in order to establish

whether the cavity is stable according to (6.2).

The ABDC round-trip matrices can also be used to quantify the sensitivity to mis-

alignment [137, 138]. In order to do so, the ABCD matrix is replaced with the generalized

3× 3 matrix

M =




A B ∆x

C D ∆α

0 0 1


 , (6.4)

where ∆x and ∆α represent an effective offset and an effective tilt of the optical axis

resulting from the misalignment of the optical element. The error vector (∆x,∆α) is the

null vector when the system is aligned. If one mirror is tilted by a small angle δ with

respect to the aligned configuration, the optical axis deviates from the original angle by

2δ, therefore the error vector reads (0, 2δ). If, on the other hand, the mirror is offset by

an amount b that is small compared to the mirror radius of curvature Rm, the optical

axis is tilted and the error vector is (0, 2b/Rm). For a ring cavity, one has to distinguish

between the tangential and the sagittal planes. If the mirror offset occurs in the tangential

plane, then one should use for Rm the effective radius of curvature Rm cos θ whereas in the

sagittal plane the effective radius of curvature is Rm/ cos θ. The mirror offsets considered

here are in the direction that is transverse compared to the optical axis. To first order in

the mirror offsets, longitudinal displacements only affect the cavity mode structure and

not the optical axis. In order to establish the sensitivity to misalignment, the round-trip

matrix is computed as products of matrices of the form (6.4) and the round-trip values

of ∆x and ∆α are computed. With this information, the resulting offset x0 and tilt V0 of

the cavity optical axis can be determined as

x0 =
(1−D)∆x+B∆α

2− A−D , V0 =
(1− A)∆α + C∆x

2− A−D . (6.5)

This result shows that a diverging sensitivity to misalignment is attained when (A+D)→
+2. On the opposite stability edge, (A + D) → −2, the cavity reaches its minimum
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Figure 6.1: a) Schematic of the optical ring cavity represented as a trapezoid where two

opposite mirrors have radius of curvature R and the remaining two mirrors are flat. The

length of the first arm is L1 and the other parallel arm has length L2. The angle of

incidence on the mirrors is θ. b) Stability parameter A + D for the tangential plane as

a function of L1. The curves refer to different values of L2 expressed by the numbers on

the plot in mm. Values are plotted for R = 50 mm and θ = 0.2 rad. The orange circle

identifies our chosen geometry.

sensitivity to misalignment. The interpretation of this criterion in terms of the Gouy

phase shift yields a useful rule of thumb for the design of robust optical resonators. The

round-trip Gouy phase can be written as

φG = arccos

(
A+D

2

)
. (6.6)

At the robust edge (A + D) → −2, the Gouy phase shift is φG = π. For simplicity, we

divide the ring cavity into tightly focused arms and into collimated arms. In a collimated

arm, the accumulated Gouy phase is negligible whereas, in a tightly focused arm, the

accumulated Gouy phase is π. As a result, if the cavity is formed by an odd number of

tightly focused arms, the accumulated Gouy phase is approximately π (modulo 2π) and

the resonator is robust against misalignment. If, on the other hand, the number of tightly

focused arms is even, the accumulated Gouy phase is 2π, corresponding to (A+D)→ +2

i.e. the sensitivity to misalignment diverges.

In our cavity design, we will consider a setup with two curved and two flat mirrors

that produce a mode with two foci, one with a large waist and the other with a smaller

waist. This results essentially in a single tightly focused arm.

After exploring the parameter space, we determined a suitable geometry that fulfills

most of our requirements. With reference to Fig. 6.1 a), we considered a geometry where
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Figure 6.2: Mode waist as a function of the length of the first arm L1 and for different

values of the length of the parallel arm L2. The orange circles identify our chosen geometry.

a) Waist in the second (oblique) arm b) Waist in the fourth (oblique) arm.

the two curved mirrors have a radius of curvature of R =50 mm, the length of the first

vertical arm is L1 = 55 mm and the second is L2 =44 mm long. The angle of incidence

on the cavity mirrors is set to θ =0.2 rad (11.5◦). In Fig. 6.1 b), the stability parameter

A+D is plotted for the tangential plane. The behaviour in the sagittal plane has only a

slight difference. The plot shows that for the chosen geometry (orange circle), the stability

parameter is smaller than -1, indicating a cavity that is robust against misalignment.

In Fig. 6.2 the mode waist for the two oblique arms is plotted. The chosen cavity

geometry exhibits one large waist of about 150 µm and a second smaller waist of about

30 µm. As anticipated, this situation corresponds to a single tightly focused arm, which

guarantees robustness against misalignment. The large waist lies in a range that is com-

parable with the size of our laser cooled atomic cloud after the red MOT stage.

Fig. 6.3 shows the spatial mode structure. The two foci are located near the crossing

points of the two beams and are almost aligned at the vertical midpoint as required.

In going back to the list of ten requirements for the cavity design, the chosen geometry

is seen to fulfill requirements 1 through 5.

6.1.2 Design of the optical ring cavity and of the vacuum system

Having determined a suitable geometry for the optical resonator, the next step is to

provide a design which satisfies the requirements 6 through 10 of the previous Subsection.

Cavity mirrors As already discussed, our geometric requirements can be satisfied by

a ring cavity with two curved and two flat mirrors. The curved mirrors should have a

radius of curvature of 50 mm. Moreover, all the mirrors need to be quite small in order

to guarantee sufficient optical and atomic access.
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Figure 6.3: a) Computed cavity geometry. The numbers on the plot label the arms of the

ring cavity and the green cricles identify the waist positions. The upper waist (in arm 2)

is the largest whereas the lower (arm 4) is the smallest. The dashed line indicates the

midpoint, where the atomic trajectories are likely to be. b) Evolution of the cavity waist

along the optical axis. Red line: waist on the tangential plane. Green line: waist on the

sagittal plane. Blue vertical lines: mirror positions.

Thanks to our interaction with the National Physical Laboratory (NPL in the UK),

where a strontium experiment is being built, we were able to make a single coating run

for the high-reflectivity (HR) mirrors. The mirror substrates have been manufactured by

Reasearch Electro-Optics while the coating run was performed by Fivenine optics (both

in Boulder, Colorado). The manufactured mirror substrates have a cylindrical shape with

a 7.75 mm diameter and a 4 mm thickness and are therefore small enough to yield enough

optical and atomic access. The diameter, on the other hand, is large enough to ensure

that a beam with at most a 200 µm waist (see Fig. 6.3) does not suffer from significant

diffraction losses, at least when the cavity is close to the optimum alignment. For the

relevant wavelengths, the substrates are antireflection (AR) coated on the transmissive

side in order to avoid etalon effects inside the substrates. The spectrometer data of

transmission (HR coated side) for our high-reflectivity mirrors, as measured by Fivenine

optics, are given in Fig. 6.4. At the wavelength of the 1S0-3P1 intercombination transition,

the transmission is 33 ppm. According to measurements performed at NPL, the loss per

mirror amounts to 26 ppm. This should yield a cavity finesse of 50000 for the two-mirror

linear cavity and a finesse of 25000 for the four-mirror bow-tie cavity.

Cavity structure and parts Our current design of the optical cavity support structure

is illustratred in Fig. 6.5. The optical cavity is held on a ring spacer, made in 316L
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Figure 6.4: Spectrometer data of our high-reflectivity mirrors. %T indicates the mir-

ror transmission. Particular values of T at certain wavelengths λ that are relevant for

strontium experiments are indicated in the form λ[nm],T[%].

stainless steel, that is connected to a ultra-high vacuum (UHV) CF100 flange through

four plastic pillars. The pillars are made of PEEK plastic, a high-performance polymer

[139] that features good mechanical properties, relatively high temperature operation

and compatibility with UHV. This material has a Young modulus of 3.6 GPa which is

conveniently smaller compared to 193 GPa for 316L stainless steel. This holding structure

can therefore provide an effective vibration damping system and prevent transmission of

deformations from the CF100 flange.

The steel spacer is ring-shaped, a choice that roughly reproduces the symmetry of the

optical cavity. Finite-element computations showed that under the effect of vibrations,

the structure with the holders undergoes a mostly common-mode motion which has little

effect on the overall cavity length. From the numerical computations, the sensitivity of

the cavity resonance frequency to vertical accelerations is computed to be 4 MHz/g, where

g is gravity’s acceleration.

With our triaxial accelerometer (Episensor ES-T), we measured the acceleration noise

of the optical table on the ground. The corresponding power spectral density is plotted

in Fig. 6.6. By integrating the noise density over the bandwidth of the accelerometer

(200 Hz), we obtain an rms noise value of 2.5 × 10−4 g which corresponds to a 1 kHz
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D-sub feedthrough

Figure 6.5: Cavity structure design. The circular cavity spacer is supported onto a CF100

ultra-high vacuum flange by four pillars made of PEEK plastic. The optical cavity is

formed by the four mirrors close to the central hole. The additional external mirrors

redirect the light in order to collect it from the vacuum viewports. All the mirrors are

glued onto a V-shaped support. Two of the cavity mirrors are mounted on piezo actuators.

Temperature control is provided by four heaters formed as sheets that are glued on the

back of the spacer. The D-sub feedthrough provides the necessary electrical connections

for the piezos and the heaters. The macor spacer interrupts most of the Eddy currents

from varying magnetic fields.
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Figure 6.6: Power spectral density measurement of acceleration noise in our optical table

performed through the Episensor tri-axial accelerometer.

rms fluctuation of the cavity resonance frequency. This value is tolerable for moderate

cavity finesse. It is also expected that by floating the table, the acceleration noise will

be substantially reduced. The estimated cavity frequency noise suggests that locking the

cavity should not be a formidable task.

In Fig. 6.5, the four internal mirrors form the optical cavity. The mirrors will be

glued to four V-shaped supports. Two of these supports are rigidly connected to the

ring spacer and the remaining two are connected to piezoelectric actuators. The two

piezos (Noliac NAC2402-H2.3) are formed by a square-shaped stack that has a 5 mm

side length, a dimension that is perfectly compatible with that of the mirrors. When

a voltage is applied to the electrodes, the piezos undergo a shear motion. In order to

avoid large dc electric fields in the vacuum chamber, the piezos were ordered without the

top and bottom insulating plates that were originally present. In this way it is possible

to electrically ground the two plates, while the high-voltage electrode remains between

them and electric fields are mainly confined to this region. An important feature of these

actuators is their large (unloaded) resonance frequency of 725 kHz. In the presence of the

light mass formed by the mirrors and the V-supports, it is expected that these piezos can

be driven at relatively large frequencies, thus attaining large vibration and acoustic noise

suppression.

The ring spacer is interrupted for a length of a few mm by inserting a piece of elec-

trically insulating material named Macor. The interruption is made in order to suppress

strong Eddy currents that could be induced during the experiment runs, when the MOT

quadrupole fields are varied. This material is a glass-ceramic whose coefficient of thermal
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Figure 6.7: a) Front view of the vacuum system with the chamber containing the optical

cavity and the pumping section with a titanium-sublimation pump, an ion pump and a

vacuum gauge. The atomic source and the Zemman slower coils are not represented. b)

Back view of the CF100 flange, where the two D-sub feethroughs are visible.

expansion matches well that of the 316L steel, even though the thermal conductivity is

smaller by one order of magnitude.

In order to perform a coarse cavity length tuning and to provide long-term stability,

we plan to implement a temperature control through four kapton-foil heaters that are

glued on the back of the cavity spacer. The temperature is then measured by two probes.

The various electrical wires connecting the piezo actuators, the heaters and the tem-

perature sensors, along with the common cavity ground, are brought out of the chamber

through two D-sub vacuum feedthroughs.

The complete setup with the surrounding vacuum system and the important laser

beams is represented in Fig. 6.7. The optical cavity is enclosed in a spherical octagon

vacuum chamber. On one side, the chamber is connected to a pumping section, where an

ion pump and a titanium-sublimation pump maintain the vacuum.

6.1.3 Tests of the cavity geometry with high-reflectivity mirrors

In order to verify the mirror properties and the cavity geometry, a series of low-cost

experimental investigations are being performed.

The first test was performed by manufacturing an aluminum block with holes for the

screws of standard mirror mounts. With a suitable adaptor, we were able to perform a

first test of the mirrors through a linear near-confocal 5 cm cavity. The mirrors used for

this experiment were two curved mirrors with 50 mm radius of curvature. The aluminum
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Figure 6.8: Typical cavity ring-down transmission signal after rapidly switching off the

incident light. By averaging over signals of this form, the photon lifetime was measured

to be τp = 2.6 µs corresponding to a cavity finesse F ' 45000 and a linewidth κ = 1/τp =

2π × 61 kHz.

block can be covered by walls in order to suppress air flow and a thermistor can be added

that is centered with respect to the cavity structure. With two peltier cells between the

aluminum block and the optical table, we were able to obtain a sufficient cavity resonance

frequency stability. This allowed to measure the cavity finesse at the wavelength of the 1S0-
3P1 intercombination transition through the ring-down method. The measurement was

realized by rapidly turning off the light that is incident onto the cavity and by observing

the decay of the light transmission with a rate κ equal to the cavity linewidth, as seen

in Fig. 6.8. The fast switching was obtained by a double-pass through an acousto-optic

modulator. The resulting rise and fall time of the incident optical power were measured to

be smaller than 50 ns. After averaging over 110 repetitions of the ring-down measurement,

we found a cavity mode linewidth κ ' 2π × 61 kHz and a finesse F ' 45000, in good

agreement with that expected from the transmission and loss measurements performed by

Fivenine optics and NPL. The setup used to measure the mirror reflectivity is illustrated

in Fig. 6.9 a), where the mirrors are supported on standard mounts that are fixed to a

temperature stabilized aluminum block.

The next step of our tests is the implementation of a complete ring cavity prototype

as shown in Fig. 6.9 b). The cavity will be supported on the same aluminum block as

the linear cavity already tested. In this setup we will add two piezo actuators in order to

rapidly tune the cavity length. These investigations will allow to verify the main features

of the cavity such as the stability, the transverse mode structure and the beam waist of
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a) b)

Figure 6.9: a) Setup for the measurement of the reflectivity of the cavity mirrors on a

temperature stabilized aluminum block. This same support structure can be used as in b)

to test the final ring cavity geometry. Here the green cylinders are piezo actuators used

for fine length tuning.

the transmitted light. This work will allow, in particular, to verify that the cavity foci are

at the expected positions. Moreover, the ability to lock the cavity length to an external

reference will be investigated by implementing a Pound-Drever-Hall locking scheme [124].

From the point of view of our calculations, the cavity geometry and its properties

seem to fulfill all the requirements for the proposed squeezing experiment. After our test

measurements, the final cavity design will be finalized and the first tests in vacuum will

be performed.

There are still two requirements that need to be satisfied for the final design which

are under investigation. The first is the ability to glue the mirrors on their supports while

avoiding contamination, maintaining alignment and avoiding to overheat the structure.

Many vacuum epoxies only cure at high temperature. This restricts our choice to a smaller

class of epoxies, namely Torrseal and VacSeal.

The second aspect that will be considered is increasing the transmission of one of the

mirrors in order to maximize the ratio κ1/κ, as is necessary to reach a high detection

efficiency.

6.2 Laser systems

6.2.1 Laser system at 461 nm for laser cooling and trapping

An important part of our experiment is the production of the cooled and trapped stron-

tium atomic cloud. We therefore started to build a laser for the first cooling stage on the

dipole-allowed 1S0-1P1 transition. In this experiment, we chose to implement the recently
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developed blue laser diodes [140]. In particular, quite recently, blue diode lasers with AR

coating on the front facet have been developed. This allows to build an external-cavity

diode laser (ECDL) system that performs as the master reference source for all our 461

nm lasers.

If properly implemented, this system would represent a great simplification compared

to the more common frequency-doubled laser sources. These frequency-doubled lasers

usually have a high quality and large output power. They however suffer from being

bulky systems that are often expensive and painful to align.

The ECDL system is formed by an AR-coated diode laser (Nichia, NDBA116T) a 4.5

mm aspheric collimation lens and a 1800 grooves/mm diffraction grating in the Littrow

configuration. The grating is glued onto a support that is bent by the force exerted by

a piezo actuator used for fine frequency tuning. The baseplate supporting the grating

and the diode is thermally stabilized by a peltier cell and the temperature is sensed by

a thermistor located right below the diode. The laser does not exhibit single-frequency

continuous-wave emission without the external cavity. In assembling this laser it was

noted that the laser threshold is critically dependent on the alignment of the collimation

lens and of the diffraction grating. This criticality appears more pronounced for this laser

than, for example, for our red 689 nm lasers. As a result, the mechanical design of the

assembly might need to be reviewed in future work. Nevertheless, exept for the usual

mode hopping behaviour, the laser operates in a single mode with the external cavity.

In normal operation, the output power is about 20 mW at 120 mA supply current and

at the wavelength of the atomic transition. After an optical isolator, about 15 mW are

available for the atomic spectroscopy and stabilization and for injection locking of other

diode lasers.

The optical setup for atomic spectroscopy, atomic state probing, slowing in the Zeeman

Slower and MOT beams is depicted in Fig. 6.10 along with the frequency scheme used to

perform the various tasks. This setup essentially reproduces the optimized one that was

already implemented in our strontium experiments [108].

About 1 mW of laser light is used for frequency stabilization on the saturated ab-

sorption signal of a Sr heat pipe, after a double pass through an acousto-optic modulator

(AOM 1). About 5 mW of optical power are directed to AOM 2 and are used for probing

of the atomic states. The remaining light is used to optically inject two additional diode

lasers that amplify the laser light. The output power of these lasers (Nichia, NDB4216)

can reach up to 100 mW. One of the injected lasers is used for the Zeeman slower beam

and the other for the MOT beams.

The atomic spectroscopy is performed by modulating the master laser current at 10

MHz and by sending the modulated light to the spectroscopy cell where a pump-probe

configuration is realized. After a double-pass through the cell, the light is detected by

a fast photodiode. The corresponding signal is mixed with a phase shifted replica of
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Figure 6.10: Schematic of the optical setup for the production of the blue laser light. The

master laser ECDL is locked to a saturated-absorption signal on a Sr heat pipe. The

same light is used for probing the atomic states after the interferometer and to optically

inject two additional lasers (DL). This amplified light is used for slowing of the atomic

beam and for the MOT. At the bottom right, the frequency scheme is illustrated. νZS:

Slowing beam frequency, νMOT: MOT beams frequency, νp: Probe beam frequency, νsp:

Spectroscopy beam frequency.
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Figure 6.11: Atomic spectroscopy on the 461 nm transition while scanning the laser piezo.

Left: saturated absorption dip as measured through the dc channel of the photodiode.

Right: error signal for laser locking. The small contribution from 86Sr is visible in the

error signal.

the 10 MHz source in a phase detector. The output signal provides a wide dispersive

profile that is centered at the resonance frequency of the 88Sr 1S0-1P1 transition. The

saturated absorption and dispersive error signal are shown in Fig. 6.11 for an average

over 32 measurements obtained by scanning the master piezo. The error signal also shows

the presence of the 86Sr transition which is shifted by 126 MHz due to the isotope shift.

This knowledge allows to estimate a spectroscopy linewidth FWHM of 80 MHz.

The error signal is fed to a PI controller that acts on the master piezo in order to

lock the laser. Additionally, having a direct way to tune the laser frequency through the

supply current, a fast feedback is implemented. This is obtained by combining, in a bias-

tee, the 10 MHz modulation and the error signal. Here, the error signal is filtered by a

low-pass filter at 150 kHz corner frequency. The fast feedback substantially increases the

locking bandwidth and allows to accordingly boost the PI integral gain, thus achieving

an enhanced robustness against vibrations and acoustic noise. In these conditions, the

laser linewidth can be estimated by the residual rms noise of the error signal and from

the knowledge of the spectroscopic linewidth. The locked laser linewidth is about 1 MHz,

mainly limited by a white noise pedestal from an internal photodiode amplifier.

6.2.2 Other laser systems

In this Subsection, a brief description of other standard laser systems for the experiment

is provided.

Red laser system for cooling, trapping and probing As already discussed, a laser

system for interacting with the intercombination transition is important for three reasons:



CHAPTER 6. EXPERIMENT DESIGN 127

ECDL!
689 nm AOM1 EOM

SERVO

PZT

AOM2

Sr

SERVO

Probe Pump

To injection !
locking

�/2

�/2

�/2

�/4

�/4

Figure 6.12: Schematic of the master source at 689 nm. The extended-cavity diode-

laser (ECDL) is locked to the high finesse cavity and the cavity length is stabilized on

the atomic spectroscopy. AOM: acousto-optic modulator, EOM: electro-optic (phase)

modulator, λ/2: half-wave plate, λ/4: quarter-wave plate.

the implementation of the second cooling stage (the red MOT), probing on momentum

states and, eventually, for Bragg diffraction. Here a system that performs the first two

tasks is illustrated. For Bragg diffraction, a system similar to that described in Section 4.4

can be implemented. In our experiment, we will use the laser source already developed

for the Bragg diffraction experiments.

A schematic representation of this laser source is given in Fig. 6.12. As we already

mentioned, the master laser source is provided by an extended-cavity diode laser at 689

nm in the Littrow configuration. Like the blue laser diode, the diffraction grating is

glued on a support that can be bent by the pressure of a piezoelectric transducer. In

the presence of optical feedback from the diffraction grating, the linewidth is about 200

kHz. In order to interact with the intercombination transition, the linewidth needs to

be further reduced. This is achieved by locking the laser to a high-finesse optical cavity

through the Pound-Drever-Hall (PDH) method [124]. The optical cavity has a finesse

F = 7800 and a free spectral range 1.5 GHz, corresponding to a mode linewidth of 190

kHz. The cavity is formed by two mirrors glued on a quartz support with low thermal

expansion coefficient. Moreover, it is contained in a cylindrical-shaped metal enclosure

kept under vacuum and sustained on a rubber support for vibration isolation [141]. The

PDH locking is implemented by modulating the laser phase through an electro-optic

modulator (EOM) at 10 MHz. The error signal for locking is obtained by demodulating
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the detected cavity reflected light. Under locking conditions, the locked laser linewidth is

estimated to be on the order of 100 Hz. Because the optical cavity is not stable on the

long term, additional stabilization is provided by direct saturated absorption spectroscopy

on the intercombination line. This is attained in a strontium heat pipe heated at a

temperature of 430◦C. The spectroscopy pump beam comes from an 80 MHz AOM whose

frequency is modulated at 100 kHz. The counterpropagating probe beam is detected on

a low-noise amplified photodiode and the error signal is obtained by demodulation with

the 100 kHz reference. The spectroscopy error signal is then used to feed back on the

length of the high-finesse cavity through a piezo transducer. A fraction of the stabilized

light of this source is then used to optically inject other laser diodes in order to provide

power amplification.

The amplified light can then be used to perform the various tasks. For the imple-

mentation of the red MOT, the light from an injected laser diode is frequency controlled

through an AOM and split into three parts to form the MOT beams.

The light can also be used to probe the momentum state population difference through

the optical cavity. Although the optimum scheme will be determined experimentally, the

laser spectrum will be manipulated through a phase modulator in order to perform the

task of locking the science cavity length and to probe the atomic ensemble.

For how the squeezing experiment was conceived, it is clear that, in the ideal case,

no light other than the probe light should be present in the cavity. This might add

difficulties if it is necessary to keep the cavity locking during the probing procedure as

additional locking light might introduce important light shifts that alter the interferometer

performance. However, in typical conditions, we expect that the cavity locking light

should be turned off for 1 ms only, where cavity vibrations should not be an important

issue. If cavity vibrations limit the attainable squeezing through the added photon phase

shift, locking could be performed through off-resonant light perhaps locked on a high-

order spatial mode of the optical cavity, where the intensity at the center of the beam is

negligible.

Green repuming laser For the operation of the blue MOT, it is necessary to recycle

the atoms shelved in the 3P2 metastable state. In this experiment, repumping will be

achieved through a single laser at 497 nm (see Section 3.1). Because, for our knowledge,

no laser diode emits directly at this wavelength, frequency doubling from a 994 nm laser

is necessary.

The laser system is formed by an extended-cavity diode laser emitting about 20 mW at

994 nm. The laser is used to inject a tapered amplifier yielding more than 200 mW output

power. After coupling into an optical fiber, the infrared light is passed through a fiber-

coupled wavelength conversion module from NTT electronics, which can provide up to 20

mW of light at 497 nm. Even for a beam waist of 1 cm, this power yields a saturation
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parameter s = I/Isat ' 5, more than sufficient to saturate the 3P2-3D2 transition and

provide efficient repumping. In our experiment we will also attempt to lock the laser to the

atomic spectroscopy performed on a hollow cathode lamp (Laser Galvatron, Hamamatsu)

through the DAVLL (Dichroic Atomic Vapor Laser Lock) locking method [142], which is

expected to yield a large signal-to-noise ratio and a sizeable capture range.

6.2.3 EIT laser system

ECDL 1!
688 nm Spectroscopy

ECDL 2!
688 nm

To ECDL 1

To ECDL 2

TA

Transfer cavity

ECDL 3!
679 nm TA

To atoms

To atoms

LD

LD

EOM

Figure 6.13: Simplified scheme of the EIT laser system. Light at 688 nm is indicated

as orange and the light at 679 nm is indicated as green. ECDL 1 at 688 nm is locked

to the atomic spectroscopy and optically beated with ECDL 2, to provide the necessary

detuning from resonance. The light of ECDL 2 is preamplified by injection locking on

a laser diode (LD) and amplified by a tampered amplifier (TA). ECDL 2 is also used to

reference the transfer cavity. ECDL 3 at 679 nm is passed through a phase modulator

(EOM) and locking is performed on a sideband. Its light is amplified as for ECDL 2.

Squeezing on momentum states on the intercombination transition is limited by atomic

absorption. As discussed in Chapter 5, the signal-to-noise ratio can be substantially

recovered through electromagnetically induced transparency (EIT). In order to obtain

a stable signal from the probe laser, with strontium atoms, two lasers with different

wavelength (679 nm and 688 nm) need to be phase locked. This can be achieved through

the simplified scheme represented in Fig. 6.13. The setup is formed by an extended-cavity

diode laser (ECDL) at 688 nm whose frequency is referenced to the atomic spectroscopy on

a hollow cathode lamp, for example through the DAVLL method. A second ECDL at 688

nm is locked to the first through an optical beatnote. This second ECDL is then detuned

from atomic resonance as required to drive the Raman transitions (see Section 4.2). This
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light is used to reference an optical cavity which transfers the stability to the 679 nm

laser by bridging the large frequency gap between the two lasers. The light at 679 nm

is also generated by an ECDL. In this case, a part is passed through a phase modulator

which generates sidebands in the laser spectrum. The frequency component of one of the

sidebands can be stabilized to the transfer cavity. With this scheme, both detunings of

the 688 nm laser and of the 679 nm laser can be tuned at will and their difference can be

set in order to reach two-photon Raman resonance, a necessary condition for EIT.

Subsequently, the lights at the two wavelengths are preamplified by optical injection

on two laser diodes and power amplified through two tapered amplifiers. Because a

similar setup with tapered amplifiers at similar wavelengths was implemented for Bragg

diffraction on the intercombination line (see Section 4.4), we expect rather large output

power levels of about 100 mW per beam. This setup should therefore allow to attain

considerably large coupling Rabi frequencies of Ωeff ∼ 2π × 100 kHz.

An important technical issue in implementing this laser system lies in quantifying

the required phase and frequency stability of the lasers. In particular, for a 200 µs

interrogation time, such requirements should not be severe. If necessary, however, an

alternative scheme can be implemented where the laser system is referenced to the 689

nm laser through an additional transfer cavity.
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Conclusions and perspectives

In this thesis, squeezing of momentum state superpositions induced by Bragg diffraction

in strontium atoms is studied and a suitable scheme is proposed.

In this work, we demonstrated that Bragg diffraction with strontium atoms is now

a reality and that, with additional technical efforts, the shot noise limit, at least for

atomic gradiometers, can be reached. Given the inherent robustness of 88Sr atoms against

external perturbations and their low collisional rates, this atom appears to be a prime

candidate in atom interferometry for inertial measurements. From this starting point,

an additional tool that allows to surpass the Standard Quantum Limit is studied. This

method relies on resolving the Doppler effect due to the momentum state superposition

induced by Bragg diffraction. A narrow-linewidth transition can resolve the Doppler

effect and provide a collective nondestructive measurement of the population difference

between momentum states. A setup involving an optical ring resonator is considered that

can boost the signal-to-noise ratio of collective measurements by a factor of the order

of the cavity finesse. However, the collective measurement can produce sufficient signal

only for large momentum transfer beam splitters. This requirement is consistent with

state-of-the-art technology but might be a complication in certain situations. Moreover,

large diffraction orders require a resonator geometry that might be challenging to realize.

A feature that can extend the validity of our method to small diffraction orders and

large atom numbers is considered. This relies in altering the atomic response to the probe

field through electromagnetically induced transparency obtained by coupling the optically

excited state to a state with much longer lifetime. Remarkably, with this addition, our

method is extendable to atoms where narrow transitions are not naturally available. With

this method, a scaling of the phase resolution δφ ∝ N−3/4 is predicted and is limited by

atom loss due to photon scattering into free space.

After identifying the requirements for the experimental implementation of our method,

a suitable design of the optical resonator has been discussed and the first tests of its

geometry are being performed.

131
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If realized, this experiment could boost the capability of atom interferometers to mea-

sure inertial interactions.

Another source of interest lies in exploring the properties of squeezed momentum

states and, for example, whether other nonclassical states such as Schrödinger cat states

or Dicke states can be induced in real systems.
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Appendix A

Estimation of the curvature effects of

the Bloch sphere

For a spin squeezed state prepared along the x direction, when the uncertainty in the Sz

component of the collective atomic pseudospin is reduced as a result of squeezing, the

orthogonal component Sy features an enhanced uncertainty due to the Heisenberg uncer-

tainty principle, an effect known as antisqueezing. As long as the atomic interferometer

is operated in such a way that the relevant phase information can be extracted from Sz

alone, antisqueezing does not degrade the phase sensitivity.

There are however two effects that can degrade the sensitivity, both related to the

curvature of the Bloch sphere. From an intellectual point of view, one of these effects can

be compared to the measurement of the position of a free particle already discussed in

Subsection 2.3.2. There we argued that, after a precise position measurement, because of

the subsequent momentum spread, the position itself becomes uncertain at later times.

In the case of the atomic pseudospin, antisqueezing can reduce the effective Bloch

vector length (i.e. the contrast) and, after phase accumulation in the interferometer, the

enhanced uncertainty in Sy will contribute to the final uncertainty in Sz. In the following

we will attempt to provide an estimation of these effects through a geometrical approach

which is sufficient to yield an order of magnitude of such effects.

Contrast reduction

For a minimum uncertainty atomic state oriented along the x direction of the Bloch

sphere, the Heisenberg uncertainty relation between the variances (∆Sy)
2 and (∆Sz)

2 can

be written as

(∆Sy)
2(∆Sz)

2 =
S2

4
. (A.1)

As a result, the phase uncertainty δ(∆φ)A corresponding to the antisqueezed component

is the angle subtended at the origin of the Bloch sphere by a segment of length ∆Sy, given

134
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by

δ(∆φ)A =
∆Sy
S

=
1

2∆Sz
, (A.2)

an expression that is valid for ∆Sy � S.

The corresponding reduction of the mean spin length, S−〈Sx〉, can then be estimated

as

S − 〈Sx〉 = S[1− cos δ(∆φ)A] ' S
δ(∆φ)2

A

2
=

S

8(∆Sz)2
. (A.3)

The fractional length reduction yields the contrast reduction

1− C =
S − 〈Sx〉

S
=

1

8(∆Sz)2
. (A.4)

This expression shows that contrast reduction is a small effect for large atom numbers

even when the squeezing is rather pronounced. For example, we may consider a realistic

atom number N = 2S = 104 and a squeezing factor (S/2)/(∆Sz)
2 = 100 (or 20 dB of

spin squeezing), which corresponds to a contrast reduction of 0.5 %. According to the

definition of the metrological gain ξm given in (5.52), this amounts to a negligible loss of

0.04 dB.

Uncertainty after phase accumulation

In a similarly geometric fashion, the enhanced phase uncertainty at the output of

the interferometer can be derived. The added uncertainty is the projection, along the

z direction, of the segment of length S − 〈Sx〉 as given in (A.3). After accumulation of

the interferometer phase ∆φ, for ∆φ � 1, the final uncertainty in Sz is given by the

quadrature sum

∆Sfz =

√
(∆Sz)2 +

(
S

8(∆Sz)2
∆φ

)2

. (A.5)

This expression gives rise to a loss factor 1−S2(∆φ)2/[64(∆Sz)
6] for the gain ξm. If one is

aiming at the achievement of spin squeezing at the level of 20 dB with 104 atoms, then the

contribution of technical noise sources should be reduced below the level δ(∆φ)tech = 1

mrad. In this condition, the average shift ∆φ can be made to vanish in a stable way, for

example, by adjusting the relative phase of the Bragg pulses. In this case, the squeezing

reduction is at the level of 0.0001 dB. With a modest squeezing reduction of 1.25 dB and

the same number of atoms, phase excursions of up to ∆φ = 100 mrad can be measured

with the same number of atoms. With a realistic number of atoms N = 105, this reduction

is suppressed to the level of 0.11 dB.

We finally wish to add that these geometric considerations were confirmed through

numerical computations involving squeezed states formed by superpositions of Dicke states

weighted by a gaussian amplitude function of M , the eigenvalue of Sz. This form for the

amplitude function is justified in general for large atom numbers, N � 1, a condition

that is the most relevant in this thesis.



Bibliography

[1] Atom Interferometry. edited by G. M. Tino and M. A. Kasevich (Società Italiana
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