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Abstract – An efficient sensor-less speed estimator, based on an adaptive non-linear high gain 

observer (HGO) which uses only the measured stator currents and control voltages in the presence of 

measurement noise, is proposed to estimate the speed of an induction motor. The proposed observer is 

an improved version of the common HGOs proposed in the literature. The observer gain, involving the 

use of a scalar time-varying design parameter governed by the Riccati differential equation, guarantees 

the best compromise between the fast convergence of the states and noise rejection with such adaptation 

of gains that the internal states of the observer exert low influence during the transient period and thus 

prevent system peaking. The design methodology of the proposed observer is given and its stability is 

studied. Results of simulation studies demonstrate that robustness and efficiency of the proposed 

observer are maintained under critical operating conditions, even where the efficiency of the fixed gain 

observer is decreased. 

Keywords: Induction motor; Adaptive non-linear high gain observer; Measurement noise; Peaking 

phenomenon; Riccati equation; Tikhonov's regularization. 
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Introduction 

High performance sensor-less speed control of induction motors (IMs) has received a lot of attention 

in recent years because speed estimation design and resultant control are challenging. Yet, eliminating the 

rotor encoder results in lower system cost, improved reliability and reduced sensitivity to electromagnetic 

noise. Ongoing research has focused on replacing the rotor encoder to produce sensor-less drives without 

altering the dynamic performance of the drive. Two methods, one based on injection of high frequency 

signal and the other on machine models [1], have been used to estimate the speed of the sensor-less 

drives. Methods based on the injection of high frequency signals are insensitive to some parameter 

variations and allow for an accurate estimation of the shaft speed at zero and low stator frequencies, but 

they generate high frequency noise degrading the system performance [1, 2]. In the high or medium speed 

range, machine model based methods allow for an accurate estimation of speed or position [1]. The 

scheme presented in this paper belongs to the methods based on machine models.  

Further research continues to improve the reliability of the drive operation based on machine model 

methods in the zero to very low speed range [3]. Luenberger method is one of the most representative 

methods in this area [4]. Several sensor-less speed estimation methods for IM drives have been proposed 

in the literature [1-3, 5-26]. 

Sliding Mode Observer (SMO) [5] based speed estimation method is motivated by finite time 

convergence and robustness considerations. However, it results in chattering problems. Moreover, this 

method is difficult to implement, because its gain comprises the sign function and other design 

parameters whose values must be updated when previously unknown singularities occur [2, 11]. It is also 

sensitive to measurement noise [8, 10]. Furthermore, it leads to lack of accuracy of speed estimation 

under unobservable conditions in the zero speed region as reported in [18].  

Extended Kalman Filter (EKF) [27] is mainly motivated by its implementation simplicity and 

robustness to noise generated in the system. However, it suffers from the lack of guaranteed stability [6, 

8, 9]. Moreover, the EKF technique is valid for a limited range around the operating point, which limits 

its dynamic performance. It also frequently requires a large amount of real-time calculations [28]. It is 
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also more sensitive to variations in IM parameters, which can significantly lead to inaccuracy of speed 

estimation under unobservable conditions at zero or low speed region. Another important challenge of 

this technique is its instability under regenerating conditions [17]. Furthermore, it fails to offer 

satisfactory compromise between the robustness to measurement noise and estimation bandwidth [20]. 

The speed estimation method based on Adaptive Full-order Observer (AFO) from the currents and/or 

voltages errors, is well recognized in many studies of the speed sensor-less IM drives [14-16]. However, 

the drawback of this technique is its instability when rotor speed is close to zero in the regenerative 

region, even when the measurement noise and parameter errors are not considered [15]. This method also 

results in an error between the actual and estimated speeds [14].  

Model Reference Adaptive System (MRAS) [21] based speed estimation method is one of many 

promising techniques used for sensor-less IM drives, due to its easy implementation, robustness and low 

computational complexity [17, 19, 21]. However, this technique has some drawbacks, such as complexity 

in the design of the adaptation mechanism block and sensitivity to uncertainty in the reference model 

[19]. Such drawbacks may lead to destabilization of the system during the regenerative mode of operation 

[22]. 

Use of interconnected form-based cascade observers to estimate the state of IM using stator currents 

and voltages is proposed in [23]. Based on that, a cascade observer interconnected to an estimator for the 

sensor-less speed estimation of an IM is proposed in [24]. In the same work, a high gain observer 

connected to an estimator is also studied to reconstruct the states of IM based on the design methodology 

proposed in [29]. Both techniques are tested and compared under the same conditions of operation in 

[24]. To remedy the problem of undesirable behavior that occurs at very low value of speed, the authors 

proposed a solution by modifying the observer gains following the observability property of IM, which 

switches the mode of the observer into an estimator. However, numerous complications related to this 

special methodology of design, such as switching the gains parameters, trigger threshold, and peaking of 

system, are the design problems that need to be avoided as stated in [30, 31]. Again, the main drawback 

of the interconnected observers lies in the difficulty of their implementation and calibration. Indeed, 
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computational complexity due to their gains which necessitates the solution of eighteen differential 

equations and its expression is mentioned in [10]. Moreover, the interconnected observer still suffers from 

the drawback that its gains are large enough when the IM is operated under unobservability conditions as 

reported in [24]. 

High Gain Observer (HGO) technique based on canonical form [32] has gained ample importance for 

sensor-less IM drives. Without measurement noise, this observer has the capability to rapidly reconstruct 

the system states and reject modeling uncertainty [33]. The HGO based on canonical form design is 

primarily motivated by its inherent simplicity. Moreover, the HGO tuning is realized via a single design 

parameter. For a survey of high gain observers, refer to [34] and the references therein. 

HGOs also reveal that a trade-off exists between the sensitivity of measurement noise and quick 

convergence [35-37]. Based on this trade-off, the gain should be increased in a transient period to attain a 

quick reconstruction of the system states, because the effect of measurement noise is small enough. On 

the other hand, the reduction of the gains allows the internal states of observer to exert low influence 

during the transient period and thus prevent system peaking [31, 35, 38]. Indeed, as reported in [36, 39-

42], by reducing the observer gains, the so-called “peaking phenomenon” of the internal states of the 

observer, that may be exhibited during the transient period and may lead to destabilization of the system, 

will be avoided. Yet it solves the challenging problem of numerical implementation present in standard 

high gain observers because during digital implementation, signals and parameters must be represented in 

the finite word length of the digital system. To deal with this trade-off, many studies in the literature have 

sought to improve the standard version of HGOs [31, 35, 37, 38, 43, 44]. 

The effects of high-frequency measurement noise in high gain observer for sensor-less speed control 

of IMs have not been fully investigated yet. Nevertheless, noises are inevitably produced through the 

harmonics of the stator current and voltage signals, and the wide-band harmonic content coming from the 

non-sinusoidal power supplies, such as Pulse Width Modulation (PWM) converters [45].  

A high gain observer with fixed gain based on a triangular observable form that uses only the 

measured stator currents, control voltages and rotor speed for the on-line estimation of internal states 
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(load torque and rotor flux) and time varying parameters (rotor resistance and/or stator resistance) is 

proposed in [46, 47]. 

Significant effort is spent in [8, 10, 20] to approximate the standard high gain observer with fixed 

gains for sensor-less speed estimation of an IM by exploiting a suitable procedure to tackle the 

singularities occurring whenever the observability is lost at zero and very low speeds. However, as shown 

in [8, 10, 20], the approximate observer still suffers from the so-called peaking phenomenon, high-

frequency oscillation and large uncertainties especially in the unobservable regions. Indeed, as mentioned 

in [20, 36, 37, 39], such drawbacks are due to the very large value of the observer gains which remain 

unchanged even in the presence of noise. Moreover, authors in [8, 10] use a limited type of high gain 

observer which is based on the system structure assuming a complete triangular observable form in which 

the dynamics of non-linear part of the system have triangular state dependence. It means that certain non-

linear state-dependent terms are treated as external disturbances to guarantee that the dynamics of the 

system admit the triangular observable form. Indeed, such a treatment inevitably leads to a conservative 

design as reported in [48]. 

An extension to this work, in which the authors attempt to overcome some of the aforementioned 

drawbacks, is considered in [25], but it is not a complete study. The studied techniques are not deeply 

detailed, the noise measurement is not taken into account and no comparative analysis with standard 

observer is studied. Moreover, the authors do not include any detailed study of the Jacobian matrix 

inverse to tackle the singularities occurring during the operation of the IM, and the analysis of state 

estimation convergence of the proposed observer is not included. 

Motivated by the above discussion and inspired by the aforementioned works, the principal aim of this 

paper is to investigate the observation of the IM states in the presence of measurement noise by using a 

nonlinear high gain observer based on the canonical form. The gains are updated on-line governed by a 

Riccati Differential Equation (RDE) to get an acceptable compromise between the accuracy of the 

observer and its sensitivity to measurement noise, and the peaking phenomenon of the internal states of 

the observer during the transient period. The significant contributions of this work are highlighted below: 
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o the proposed adaptive nonlinear high gain observer is used for sensor-less speed estimation of IMs 

taking into account the high-frequency measurement noise. 

o to overcome the manifestation of trade-off that exists between the sensitivity of measurement noise, 

and quick convergence, and peaking phenomenon, the gains are updated on-line governed only by 

the RDE; 

o the proposed observer has a numerical implementation advantage compared to the standard high 

gain observer because the updated gains mostly have low value during the operation of the 

observer. Reduction in the size of the reversible Jacobian matrix also greatly simplifies the 

computational complexity. 

o the proposed observer is based on a large class of nonlinear and non-triangular observable forms 

that are observable for any input that allow designing nonlinear observers to estimate the unknown 

inputs as well as the state variables at the same time. 

o an approximation approach based on a suitable technique called Tikhonov's regularization [49] is 

introduced to implement the proposed observer which requires the inversion of the Jacobian matrix 

to regulate in almost any region of operation because the induction motor may operate in its 

unobservable domain; 

o in the framework of an industrial benchmark stated in [13], the trajectories have been used to test 

and evaluate the performance of the proposed observer when the IM remains in the unobservable 

conditions such as in the zero to very low speed range; 

o the validity of the proposed observer is confirmed also by its comparison with the standard high 

gain observer which has been performed by using a constant value for the gain parameter [8, 10, 

20] . 

The rest of the paper is structured as follows. The problem formulation is set in Section 2. The 

mathematical model and the IM observability analysis are provided in Section 3. Design and application 

of the nonlinear adaptive high gain observer for sensor-less speed estimation of IMs are described in 
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Section 4. The convergence analysis of the proposed observer and results of simulation studies are 

presented in Sections 5 and 6, respectively. The conclusions are given in Section 7. 

Problem formulation 

Based on their models in the fixed frame α-β axes, observers are designed to get the information of 

initial rotor position of the IM. Considering the load torque as an element of the state vector, the IM 

dynamic model is described as: 
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are the resistances,   is the mutual inductance between the stator and rotor windings,    and    are 

respectively, the stator and rotor self-inductances,   is the number of pole-pairs,   is the coefficient of 

inertia and   is the coefficient of viscous damping. 

Remark 1:      is the state,      is the control input,      is the output, and      is the 

measurement noise,         are    vector fields, and         is a   functions vector,  (   ) 

is the field of nonlinear function,   ( ) is the output function,  ̇ is the derivative of state. 

In the sequel, the dynamic of the load torque is modeled as piecewise function: 

  ̇    (2) 
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The objective is to determine the states of the motor;                           This is derived from 

the input and output, i.e. the voltages         , and currents            , measurements. Therefore, the 

observability of system (1) is studied by considering   {       }   as an output. For further 

clarification, the following notations are used: 
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Notations    and    are used to denote, the     identity and the     null matrices, respectively, 

and the rectangular     null matrix is denoted by     . 

To make the main concept of the items developed in the following sections more understandable, a 

description of the changes in the coordinates in motor modeling and in the design of the proposed 

observer is illustrated in Fig. 1.  

 

Fig.  1. Illustration describing the proposed methodology. 

IM Observability Analysis 

As shown in Fig. 1, to design the proposed observer for sensor-less speed estimation of the IM, it is 

obligatory to analyze the observability property of the IM by using the stator currents and their Lie 

derivatives [50]. The stator currents equations also read as:  

IM 𝜶-𝜷 Model 
(Original coordinate 𝜻) 

IM abc-Model 
(Physical coordinate) 

IM d-q Model 
Non-triangular form 

(New coordinate 𝒙) 

Transformation 

(𝜻  𝒙 ) 

Elaborate the 

Observability test 

Approximate Observer 
For IM 𝜶𝜷-model 

(Original coordinate 𝜻 ) 

Observer design for 
IM Non-triangular form 

(New coordinate 𝒙 ) 

Transformation 

(𝒙  𝜻  ) 

(𝒂𝒃𝒄  𝜶𝜷 ) (𝜶𝜷  𝒂𝒃𝒄 ) 

𝑫𝒊𝒇𝒇𝒆𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎 
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where,  ( ) denotes the mapping which constitutes the space of observation [51], and    ( ) denotes 

the Lie derivative of    along the function  . 

The observability can be evaluated from the Jacobian   of  ( ) with respect to the state vector   as: 
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By calculating the determinant   of  ( ), the associated determinant becomes [12]: 
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Performing the observability analysis of an IM is a cumbersome task because the expression of 

determinant   is very complex. Other cases can be found in [12, 52]. 

Consider that the motor is operated at zero frequency i.e. the rotor flux components,     and      are 

constant. In this case, the new expression of determinant    of the matrix  ( ) is given by: 
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By considering the coefficients   ,   , and    as constant and greater than zero, the determinant     is 

equal to zero when the flux norm is zero, i.e.      or when the speed of rotor shaft is constant, i.e.,  

  ̇   ̇    (9) 
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Note that when the rotor shaft speed of IM is constant or the flux norm is zero, the local observability of 

system (1) might not hold. As shown in [12, 13, 52], the system (1) has regions of operation that are 

neither observable nor detectable. So, the nonexistence of local observability poses a fundamental 

limitation to the problem of estimating the system (1) states and that poses a problem of singularity as 

discussed in the following section. To remedy this problem, it is assumed here that the operating 

conditions are sufficient to ensure uniform observability of the system. 

Observer Design for Sensorless control of IM 

As presented in Fig. 1, system (1) is modifiable to the non-triangular observable form (10) and the 

observer design in the x-coordinates. The next goal is to overcome two challenges when implementing the 

corresponding observer: 

1. The use of the observer in the x-coordinates cannot be either designed or implemented, because 

the inverse state transformation needs further reorganization and computation;  

2. The use of the corresponding observer in the  -coordinates involves the inverse of the matrix of 

observability (6) that may be ill-conditioned and poses a problem of singularity as discussed in 

Section 3.  

4.1 Transformation to non-triangular observable form 

The state transformation that allows system (1) to be diffeomorphic to a non-triangular observable 

canonical form, (13) below, is given in this Section. The transformation of the corresponding system (1) 

to the non-triangular observable structure is done via the following modification of state coordinates. For 

the k-th subsystem: 

      ( )  0  ( )    
    

  ( )1
 

 (10) 

where    are observability indices [53]. Local observability ensures that (11) locally defines x-

coordinates, i.e.,  ( ) is a local diffeomorphism.  

    ( )  0.  ( )/
 

   (  ( ))
 
1
 

 (11) 

For more detail about the observability and observable forms, the reader is referred to [50, 53-56]. 
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For system (1) with its outputs         and         , and taking the observability indices as 

(     )  (   ), Theorem 1 below, initially proposed in [57]  and reformulated in [32], gives a simple 

proof to verify that the change of state coordinates, given by:  

    ( )  [    
 (  )   

 (  )     
 (  )   

 (  )]
 
 (12) 

transforms system (1) to the non-triangular observable form (13),  
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 (13) 

where       and  (   ) denote the states. 

One confirms that the mapping  ( ) is the same as  ( ) [50]. 

Theorem 1 [58] : If the system (1) is observable for any input, then there exists an open dense subset 

  of    s.t. for every     , and there exists a neighborhood  , such that the map   becomes a 

diffeomorphism of   in its range. Furthermore, it transforms system (1) restricted to   in canonical form 

(x-coordinates) as (13). 
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Remark 2: The variable    indicates that the state of the     subsystem is related with the     output   . 

Dimensions of the subsystems are   ,          , and have ∑   
 
    ∑     
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For the given system (1), the nonlinear function field of the new system is expressed as: 
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Given (12), the system in new coordinates considering the change of variables is as below: 
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Evidently,   
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  assure the triangular condition as: 
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The other two components   
  and   

 , still complicated, are allowed to have dependence on  . 

Therefore, it can be verified that the system in coordinates (12) is in the non-triangular form. 

Remark 3 [26, 59]: To make sure that the system (1) is transformable into (13) is challenging. To solve 

   ( ) and its inverse is a difficult task (generally impossible). 

4.2 Notations and definitions for observer design 

In the sequel, some notations and definitions shall be used in the proposed observer equations that will 

be needed in the convergence analysis of the observation error [43]. 

Let              ( ) be a real-valued function and for        , let   ( ( ))  be the 

diagonal matrix, given as: 
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Remark  4 : Due to the interconnection of the subsystems between the block nonlinearities, one has to 

consider    which are the powers of  . This idea in fact extends an earlier work where the parameter   is 

constant. This result shows a fundamental interest for the next convergence analysis of observation errors. 

For more information about the proposed high gain hierarchy, refer to [43, 48] . 

Lemma 1:  For               and                           , let 
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and where the given sequence   's by (28). Then, the terms of this sequence satisfy the following 
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Detailed proof of this Lemma is given in [48]. Yet, two properties of real σ shall be used during this 

article, namely: 

                                             
    

and 

                              

     

  (
 

 
 

 

  
*  

As for     , one has for              the diagonal matrices      as: 
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where   
    are the positive reals specified by Lemma 1 and   ( ) is defined by (27). By considering the 

structure of matrix relations (18) and (19), one can show that the next identities are: 

   ( )    
  ( )    ( )    

  ( )        (35) 
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  ( )     

       

Also, one can check the following relation: 

  ̇ ( )  
 

  
  ( )   

 ̇( )

 ( )
(  

        )  ( ) (36) 

where, 

     is the identity matrix      ; 

    is the diagonal matrix        , defined as :        (        ) 

Moreover, for            , let, 

  ̃  [ ̃     ̃      ̃    
]
 
 (37) 

where  ̃           

be the       matrix such that  ̃      ̃    is Hurwitz. Then, for a positive real number 

      and symmetric positive definite       matrices    [43, 60, 61]: 

  ̃ 
       ̃                         (38) 

Based on this relation, one defines certain matrices that shall be used during the convergence analysis of 

the observation errors, namely: 

 
            

 ̃          
   

 (39) 

with 

 

 
 ̃      ( ̃   ̃     ̃ )

      (          )   
 (40) 

and 

     
          

             
    

4.3 Observer design in  -coordinates 

In this section, the observer design is developed for the k-th subsystem and the corresponding system 

(13), respectively. As defined above, system (1) is developed in the non-triangular observable form (13) 
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that is observable for any input and the designed observer is used to estimate  . Later, Subsection 4.4, 

estimate of   , denoted by   , is reconstructed from   . 

Assumptions 1: To design the proposed observer, two assumptions are considered: 

1. The new system non-linear function,  (   ), is globally Lipschitz in nature with respect to   

uniformly in  .  

2. The persistence of input is correlated to the observability of the new system (13). 

Observer design for the k-th subsystem  

The adaptive non-linear high gain observer design in  -coordinates for k-th subsystem (13) is given 

by: 

 
  

{
  
 

  
 
  ̇ ( )      

 ( )    ( ( )   ( ))    
  ( ( )) ̃    

 ( )                  

 ̇( )   
 

 
    ( )( ( ( )   )   ( ) (  ̃( ) ))          ( )    

 ( )  
 

     (    ( ))
           ( )   

 

 
∫   ̃( )    

 

   (     )

      

 
(41) 

where       indicates the state estimates, defined by: 

   [

   

   

 
   

]                    

[
 
 
 
 
   

 

   
 

 
   

 
]
 
 
 
 

     

 ̂ 
      indicates a state estimate up to an injection of output for                     ; 

       is the error k-th subcomponent of observation, defined as          ; 

 ̃     is the error k-th subcomponent of output observation, defined as  ̃   (    ). 

Observer design for the corresponding system 

Given the observer structure (41), an observer can be easily designed for system (13), one has  

      *   +                 

and has design parameters : 

 ( )                  
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  ( ( ))      [ 
 

  
  

 

  
 
 

  
]         ( ( ))      [ 

 

 
  

 

  
 
 

  
] 

 ̃    
    

  ,     -  ̃    
    

  ,     -  

By replacing these design parameters with the k-th subsystem (41), the observer can be obtained in x- 

coordinates as below: 

 

  ,
  ̇ ( )      

 ( )    ( ( )   ( ))    
  ( ( )) ̃    

 ( )

        
 

  ,
  ̇ ( )      

 ( )    ( ( )   ( ))    
  ( ( )) ̃    

 ( )

        
 

 (42) 

The Riccati differential equation that governs the dynamics of the gain parameter  ( ) is similar to 

that given in (41). 

Remark 5 [43]: Equations of the observer are required to specify three design parameters     and ρ 

jointly with the function  (  ̃( ) ), and    
  ( )

  ( ̃)
  where   ( ) and   ( ̃) are the smallest and the 

largest eigenvalues, respectively,  ̃ and S are defined by (40) and, finally  (  ̃( ) )  
  ̃( )  

    ̃( )  
. 

Theorem  2 [43]: Under Assumption 1 and for high values of the parameter  , the trajectories of the 

proposed observer (41) converge exponentially to those of system (13). 

4.4 Observer design in  -coordinates 

Without the inverse state transformation of the closed-form      ( ), the nonlinear function of 

 ( ( )   ( )) cannot be obtained as discussed above. To implement the observer in the x-coordinates 

(41), further rearrangement such as, rewriting  (  ( )  ( )) as a function of ( ( )  ( )), is needed. In 

this case, the  -observer is adjusted as: 

     {
 ̂̇ ( )      

 ( )    . (  )  ( )/    
  ( ( )) ̃    

 ( )

        
 

 (43) 

where   . (  )  ( )/ are the rows corresponding to the k-th subsystem in  . (  )  ( )/ given 

by: 

 . (  )  ( )/  
  (  )

   
. (    )/     (  ) 
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Consequently, the observer (43) can be implemented as: 

     2
  ̇ ( )  

   (  )

   
.  (    )/

 
   

  ( ( )) ̃    
 ( )

        
 

  (44) 

where    is numerically constructed by resolving n nonlinear algebraic equations (12). 

Remark 6 : 

- If  
   (  )

    
  is singular, the x- coordinates may not be well defined and the observer is invalid. 

- Even if the x-coordinates are well-defined,   (  ) is non-convex, indicating that (12) might have 

multiple solutions. 

If the transformation of state,   (  ), is a local diffeomorphism in the neighborhood of   , its Jacobian 

   (  )

    
 in the neighborhood is non-singular. As shown in Fig. 1, the observer (42) can be implemented 

as; 

     {
 ̇  ( )   (     )  (

   (  )

    
)

  

  
  ( ( )) ̃    

 ( )

        
   (   )

  (45) 

Note that, 

(
   (  )

    
)

  

   ( )   

Observer (45) results in a lower computation cost than observer (44), although it also can suffer from 

mistaken state estimation. 

4.5  Approximate Observer Design  

Implementation of the observer (45) requires that the inverse of the observability matrix .
   (  )

    
/
  

be 

solved in real-time. However, implementation problems hinder the observer’s efficiency as it requires the 

inversion of the Jacobian matrix. Since the induction motor can operate in its unobservable region, the 

Jacobian is regular almost everywhere. To remedy this, an appropriate implementation procedure based 

on two approximations of the inverse Jacobian matrix, from (6), we have: 
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  ( )   [
      

  
      

  ] (46) 

The structure of (46), based on the first approximation is governed by the consideration of reducing 

complexity without requiring the observer convergence. The motivation for second approximation is 

safety computational considerations without requiring observer efficiency [20]. 

Decomposition of the Jacobian matrix inverse based on the simplicity oriented approximation is given as: 

  ( )          (47) 

where 

   [
      

   
        

]       [
      

      
  ] 

This leads to the low triangular matrix with zeros on the diagonal as: 

  ( )   ( )   [
      

     
        

] (48) 

Matrix    is an adequate approximation of the inverse of Jacobian matrix in the sense that it does not 

question the proposed observer accuracy as in [8, 10]. However, such an approximation remains 

questionable from the efficiency of computation perspective, because the matrix    becomes no longer 

invertible as soon as the trajectory of the state of the observer evolves in the unobservable domain of the 

IM. To avoid this problem, the observer (45) should be implemented by a judicious approach to the    

matrix.  

The approximation of    is reduced to looking for an approximation of   . To this end, consider the 

following factorization: 

        (49) 

with 

  0

    

    
         

    ⏟          
  

1        [
    

    
] 

It is clear from the structures of   and  , that matrices    and    have the same singular points. As a 

result, it is sufficient to look for an approximation for the inverse of    to approximate   . The inverse 
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of    can be approximated by using a technique called the Tikhonov regulation [49]. It introduces a 

positive constant   into the formula of     denoted by   
 , given as: 

   
  (  

       )
  

  
                        (50) 

By introducing an arbitrarily small positive number   , the Tikhonov regularization reduces the 

condition number of   
    and, therefore, results in an improvement of the resolution accuracy. By 

following the proposed approximation, the matrix   
   is expressed as: 

   
  *

  
     

      
     

     
      

 

   
     

    
 + (51) 

Following these two approximations, the inverse of the Jacobian matrix intervening in the equation of 

the observer (45), noted as   
   is computed as: 

   
  [

      

      
 ] (52) 

An observer of structure (42) is designed for the IM. Equations of the proposed observer are: 

   

{
 
 
 
 
 

 
 
 
 
 

(

 
 
 
 

  ̂  
  

  ̂  

  
  ̂  

  )

 
 
 
 

 (

    ̂       ̂         ̂ ̂  

   ̂        ̂       ̂ ̂  

    ̂      ̂ ̂        ̂  

,  (
  
  
  

+(

   

 
    

+

    
 (  ).

   ( )

   ( )

  ( )

/ ( ̂      ) 

     ̂                                                                                                         

 (53) 

 

   

{
 
 
 
 
 

 
 
 
 
 

(

 
 
 
 

  ̂  

  
  ̂ 

  
  ̂ 

  )

 
 
 
 

 .

     ̂       ̂ ̂       ̂  

  ( ̂   ̂    ̂   ̂  )      ̂     ̂

 

/  (
  
  
  

+(

   

 
    

+

         
 (  ).

  ( )

   ( )

  ( )

/ ( ̂      )          

      ̂                                                                                                                    

  (54) 

                  



23 

 

  ( ) 2 ̇( )   
 

 
    ( )( ( ( )   )   ( ) (  ̃( ) ))                                                (55) 

        ( )           ( )  
 

     (    ( ))
    ( )   

 

 
∫   ̃( )    

 

   (     )
 and    

 (  ) and    
 (  ) are, 

respectively, calculated from the approximate matrix   
  taking into account the rearrangement of their 

rows and columns according to an arrangement of the states of two interconnected observers. 

Remark 7: The physical operation domain   of an IM is defined as: 

  {          ̇       
    | ̇  |      

             
    |   |     

                     
    } 

where   [ ̇      ̇                      ]
 
, and    

       
       

       
         and   

    are the actual 

maximum values for stator currents, rotor flux, rotor shaft speed and load torque, respectively. These 

maximum values are defined from the motor specification sheet. 

Remark 8: Globally exponential stability for the trajectories of system observer for high values of the 

parameter M are established by Theorem 3 (Theorem 4.1 of [43]).  

Theorem 3 [48]: Assume that the given system (1) satisfies assumption (1-a), then 

                                 s.t. for   *     + 

 ‖   ( )    ( )‖     
    ‖   ( )    ( )‖ (56) 

for admissible control   with        . Moreover,    is a polynomial in   and         . 

4.6 Observer tuning 

As mentioned previously, the standard high-gain observer design techniques based on observable 

canonical form reveal that a trade-off exists between the sensitivity of measurement noise and quick 

convergence. Moreover, such type of observer faces the so-called “peaking phenomenon” of the internal 

states of the observer exhibited during the transient period, which may lead to a destabilization of the 

system. To deal with this trade-off, the observer gain, involving the use of a scalar time-varying design 

parameter governed by the Riccati differential equation (55), guarantees the best compromise between the 

fast convergence of the states and noise rejection. With such an adaptation, the gain parameter of the 

observer assume small value during the transient period of the observer internal states and prevent system 

peaking.  
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As shown in equation (55), the latter involves three design parameters     and  . The choice of the 

parameter   is mainly introduced to saturate the integral term  
 

 
∫   ̃( )    

 

   (     )
. 

Recall that the real-valued function  ( ) is non-negative, non-decreasing and bounded with  ( )  

       ( )    for    . The function that has been used in the corresponding system in simulation is: 

  (  ̃( ) )  
  ̃( )  

    ̃( )  
 (57) 

where 

     ̃( )    
   

Furthermore, the function  ( ) can be written as: 

  ( )  
 

     (    ( ))
 (58) 

and 

  ( )   
 

 
∫   ̃( )    

 

   (     )

 

The function   ( ) represents the power of the output observation error  ̃( ) which is determined on a 

moving window with a width equal to  . It is, therefore, clear that the function  ( ) is bounded as below: 

          
 

   
  ( )     (59) 

Notice that, in the absence of noise measurements, the parameter   can be set to high values. This allows 

the gain parameter  ( ) to quickly reach high values. As a result, the observation error vanishes quickly 

and, therefore, the decrease of the values of the parameter  ( ) to the predefined value  ( )    is 

achieved. However, when the presence of noise measurements is inevitable, the adoption of high values 

of   should be avoided. Indeed, as mentioned previously, high values of   allow the gain parameter 

 ( ) to reach high values and the observer becomes very sensitive to noise. From a noise insensitivity 

point of view, the value of   is divided by the power of the output observation error that is calculated on 

a moving window with a width equal to  . It should be noted that small values of   are more advisable in 

the presence of noise measurements with a variance which continuously varies significantly and relatively 
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rapidly. On the contrary, in the case where the variance of the noise measurements is constant or varies 

slowly, the values of   should be relatively high. 

Convergence Analysis of The Proposed Observer 

In this section, convergence of the proposed observer is analyzed. For that, the boundedness of the 

design parameter   ( ) must be proven first by providing expressions of the corresponding lower and 

upper bounds. The inspiration for the proof comes from the development given in [43].  

5.1 Boundedness of  ( ) 

 or this purpose  two cases according to the sign of    ̇( ) need to be considered. Before that, one notes 

that the expression of  ̇( ) in (55) as : 

        ̇    (60) 

As a result, as soon as  ( )      one has 

          ( )     (61) 

One also notices that: 

           ( )     (62) 

 Case  ̇( )    : 

Since  ( )     and according to (55), one has  ( ( )   )   ( ) (  ̃( ) )    which implies that : 

  ( )    
 ( ) (  ̃( ) )

 
   

 

 
 (  ̃( ) )  (63) 

Thus, 

           ( )    
     

 
 (64) 

where      is the upper bound of  (  ̃( ) ). 

 Case  ̇( )   : 

Since  ( )     and from (55), one has: 

 

 ̇( )   
  

 
( ( ( )   )   ( ) (  ̃( ) ))         

  
   

 
 ( )  

   

 
(  

     

 
)   

(65) 
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Integrating (55) from some        to   yields: 

 

 ( )    
   
 

(     ) (   ) (  
     

 
) 

  (   )  (  
     

 
)            

(66) 

Now, the time     may be either  , in which case  ( )     is arbitrary, or the final time of an interval 

on which  ̇( )    and according to (64), one has  (   )    
     

 
 . As a result, for any    , one has: 

  (   )      ( (   )   
     

 
) (67) 

Using (67), inequality (66) becomes: 

  ( )      ( (   )   
     

 
) (  

     

 
) (68) 

To summarize and according to (64) and (68),  ( ) is bounded and satisfies: 

         ( )      ( (   )   
     

 
) (  

     

 
) (69) 

5.2 Convergence analysis for x-observer 

In this subsection, the convergence analysis for the  -observer is presented, and then the convergence 

analysis for  -observer is deduced. 

The time derivative of   ( )     ( )    ( ) is : 

  ̇     
    (    )    (   )    

  ( ) ̃    
  (70) 

where   is an allowable control such that        , where   is a positive scalar. 

For k-th subsystem,          let, 

  
 
   ( )   (71) 

where   ( ) is given by (34). From (70) and using (35) and (36), one gets the following: 

  ̇
 
   ( ) ̇   ̇ ( )  

  ( ) 
 
 (72) 

After some calculations, equation (72) is reduced to: 

  ̇
 
     ̃  

 
   ( ) .  (    )    (   )/  

 ̇

 
(  

        ) 
 
 (73) 

Let the candidate Lyapunov be: 
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  ( ̅)  ∑   ( 
 
( )*

 

   
  

 
    (74) 

with 

   . 
 
/   

  
    ̅

  (75) 

where S is given by (39-40). According to (71) and (75) and from the fact   
   , for  ( )   : 

             ‖  ( )‖
 
 ‖ ̅ ( )‖

 
 

 

  (  )
  ( 

 
( )* (76) 

which gives: 

             ‖ ( )‖  ‖ ̅( )‖  
 

√  ( )
√ ( ( )) (77) 

After some calculations,  ̇  is derived as:  

  ̇    ̅  
    ̅

       
  

   ̃  
 
   

  

    ( ) .  (    )    (   )/  
 ̇

 
 
  

 ̃  
 
 (78) 

where the SPD matrix  ̃  is given by (39), and   
        

   are given in (32). Using (38), and after 

some calculation one obtains: 

  ̇                ( ) 
 

 
  √      ∑∑√     

  

   

 

   

 
 ̇

 
 
  

 ̃  
 
 (79) 

where 

      ,‖
   

 

   
 
(   )‖                  -    

with     
      defined in (30), and   

     
    

  
  
 

 
  
   

 
 
   (80) 

Now, setting 

  . 
 
/   

  

 ̃  
 
      ( )   

 
 ̃  ∑   . 

 
/

 
   , one gets: 

              (81) 
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where, 

   
  ( )

  ( ̃)
      

  ( )

  ( ̃)
           

  

  
  ( ) ( ̃) 

Now, for        , set   
         and let    ∑   

  
   . Since    , according to (29): 

                    (82) 

Then, the inequality (79) becomes: 

  ̇         
 

 
 ( ) 

 
 
     

 ̇

 
  (83) 

where, 

    ∑   
 

 

   
    

    
   

and      *        +. Substituting 
 ̇

 
 by its expression, one has: 

  ̇         
 

 
 ( ) 

 
 
      

  

 
( (   )   ( ) (  ̃( ) ))  (84) 

For any    , one has: 

 
 ̇( )   

 

 
 (   ) ( )  

   

   
 
  

 
 ( )  

  

   
 ( ) (  ̃( ) ) ( )  

(85) 

with 

   .   
 

 
 ( )/

  

 

The remainder of the proof of the boundedness of  ( ), the boundedness of the output observation 

error  ( ) and the boundedness of the observation error  ( ) are successively proven in [35]. 

5.3  Convergence analysis for  -observer 

On condition that  ( ) is a local diffeomorphism on an open domain,    has a compact domain   

and     , so is its inverse [20]. The convergence of the zero solution for  ̃ also implies the 

convergence of  ̃    ̂–   as: 
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‖  ̂    ‖  ‖  (  )     ( )  ‖                                                

 |
   ( )  

   
|
 

‖      ‖                         

   |
   ( )  

   
|
 

   
    ‖   ( )    ( )‖

 (86) 

  : is some value between    and    . It is from mean-value theorem or Taylor series first order 

expansion. 

|
   ( )  

   
|
 

 is calculated over all      . 

Simulation Results 

To better appreciate the effectiveness of the proposed observer, simulations studies have been carried 

out according to the observer–controller scheme presented in Fig. 2. 

 

Fig.  2 Basic scheme of observer-controller. 

Controller topology shown in Fig. 2 is based on the strategy of Field Oriented Control in order to 

obtain the same decoupling between flux and torque naturally existing in the DC machines [62]. In this 

control strategy, the reference rotor angular speed is compared with the feedback signal and the result 

(error) drives a standard PI controller to determine the quadrature component of the stator current 

reference to control the electromagnetic torque, while the direct component of the stator current reference 
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is in charge of controlling the magnetic state of the IM. The voltage controls in the d-q reference frame 

are generated by the two stator current control loop PI controllers. 

The proposed observer is tested according to industrial test conditions shown in Fig. 3 [13]. This 

benchmark is used to validate the proposed observer for sensor-less speed estimation of IM by specifying 

the operating conditions for the duration of simulation which started at 0 s and ended at 12 s. 

 

Fig.  3. Industrial benchmark trajectories [13] .  

It is proposed to use the industrial benchmark trajectories to verify the IM under an unobservability 

condition. The rotor shaft speed and the load torque are both zero at initial time. The rotor speed is then 

increased to 25 rad/s, and a 9 Nm load torque is applied from 1.5 s to 2.5 s. This first step permits the 

robustness and the performance of the proposed observer to be tested at low rotor speed. The rotor speed, 

then is increased to 100 rad/s from 3 s to 4 s and remains constant until 6 s with a constant load torque 

applied from 5 s to 12 s. This second step allows the proposed observer to be tested during a large 

transient rotor speed and its robustness to be checked at a high speed. Then, the IM is driven at negative 

speed from 7 s to 9 s at a working torque which keeps the same value.  

MATLAB was used to implement the proposed observer for sensor-less speed estimation of the IM. 

The parameters of the motor are listed in Table I.  
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TABLE I.  INDUCTION MOTOR PARAMETERS 

Parameters Symbols Value Unit 

Power P 1500 W 

Rated speed Ω 1445 tr/mn 

Load torque Tem 9 N.m 

Power supply voltage U 380 V 

Number of Pole Pairs p 2 / 

Stator resistance    5.05 Ω 

Rotor resistance    4.06 Ω 

Stator inductance    0.336 H 

Rotor inductance    0.336 H 

Mutual M 0.322 H 

Inertia moment J 0.032 Kg.   

Viscous friction f 0.0059 N.m.s/rad 

 

To test the behavior of the proposed observer with respect to noise measurements, two scenarios are 

simulated: first the measurements of motor states are considered free of noise; then the operating 

conditions are corrupted by noise produced by a PWM converter which is assumed driving the motor.  

The parameters values of             used in the simulation studies are, respectively, 95000, 0.008, 

380 and 15. The parameter value of   shall be fixed to     . 

The evolution of  ( ) with a dynamic design parameter for two scenarios is given in Fig. 4. 

 

Fig.  4 Evolution of  ( ) with a dynamic design parameter for two cases 

  ( ) : without noise,     ( ) : with noise 

Scenario I: Speed estimation with noise free measurements 

𝜽
(𝒕

) 
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As illustrated in Fig. 4, one notices that the value of gain parameter   ( ) increases when the 

observation errors increase. At these events, decrease of the observation errors induces a decrease of the 

gain parameter   ( ).  

The simulated and estimated rotor shaft speeds are illustrated in Fig. 5. The rotor speed error due to 

disturbance is very low and rapidly converges to zero after the disturbance induced by the application of 

load torque as shown in Fig. 6. The estimated torque is shown in Fig. 6. 

 

Fig.  5. Simulated and estimated speeds free of noise. 

 

Fig.  6. Estimated total torque free of noise. 

Scenario II: Speed estimation in the presence of measurement noise  

In this scenario, the results derived from the simulations clearly show that the observer results in a 

good tradeoff between the sensitivity of measurement noise, and both fast convergence and performance 

recovery. The time evolution of   ( ) is given in Fig. 4. The graph showing the evolution of the gain 
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parameter   ( ) has the same shape as the gain parameter   ( ) where the observer works free of noise. 

However, one notices that the gain parameter   ( ) decreases very quickly, see at time 3 s, compared to 

the case when the noise is neglected. 

The simulated and estimated rotor shaft speeds in the presence of measurement noise are shown in Fig. 

7. The rotor speed error due to disturbance is very small and rapidly converges to zero after the load 

torque variations as shown in Fig. 8. The proposed observer has good performance for the scenario of the 

presence of measurement noise. As previously mentioned, the proposed observer provides good 

compromise between the fast convergence of the states, noise rejection and the attenuation of the peaking 

phenomenon (overshoot problem) as will be seen in the following scenario. 

 

Fig.  7 Simulated and estimated speeds in the presence of the measurement noise. 

 

Fig.  8 Estimated total torque in the presence of the measurement noise. 
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Scenario III Speed estimation considering two constant values for the design parameter   *       

         + 

In this scenario, for comparison the observer is simulated by using tow different values of   as follows : 

    and       . This observer is a standard high gain one [63]. The obtained estimated errors in 

the presence of the noisy measurements are shown in Figs. 9 and 10. Note that the value of     is too 

low to guarantee an accurate estimate, while,         provides good estimates in cases where no 

noise is considered, as shown in Figs. 11 and 12. In the case the output is corrupted by measurement 

noise, the obtained estimates are too noisy and peaking phenomenon is exhibited at 8.5 s as shown in 

Figs. 9 and 10. This clearly outlines the utility of the dynamic gain observer as shown in Figs. 7 and 8. 

 

Fig.  9 Simulated and estimated speeds in the presence of the measurement noise. Estimation1 for 

       and Estimation2 for     
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Fig.  10 Estimated total torque in presence of the measurement noise. Estimation1 for        and 

Estimation2 for     

 

Fig.  11 Simulated and estimated speeds for noise free. Estimation1 for        and Estimation2 for 

    

 

Fig.  12 Estimation error of load torque for noise free. Estimation1 for        and Estimation2 for 

    

conclusions and future work 

An efficient nonlinear high gain observer with on-line updating of gain for sensorless speed control of 

IMs, using only the measured currents and control voltages in the presence of noise during 

measurement, is proposed in this paper. The main idea exploits the proprieties of Riccati differential 

equation to find the time-varying parameters that guaranty the best compromise between fast 
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convergence of the states, noise rejection and attenuation of the peaking phenomenon. Therefore, 

robustness is also guaranteed under critical working condition, where the standard fixed-gain observer 

performance deteriorates.  

The system mathematical model is presented first and, then, the observability analysis is derived. After 

that, the design methodology of the proposed observer with updated gain is detailed and its stability 

verified under large disturbances. 

The simulation verification tests are conducted under critical industrial test trajectories and the obtained 

results demonstrate the effectiveness and robustness of the proposed observer. To further improve the 

performance and robustness of the proposed observer, future research will involve the generalization of 

the proposed algorithm to make it suitable to cope with large parameters uncertainties of the induction 

motors under critical working conditions due to heating, saturation and other physical  effects. 

Moreover, further developments of the proposed algorithm would make it suitable also for applications 

where an adaptive strategy is needed to overcome system observation uncertainty. 
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