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Abstract

Fog Computing (FC) extends the Cloud towards the network edge. It pro-
vides end devices with access to resources and services that are located in topo-
logical proximity to them. This proximity enables key benefits (e.g., low laten-
cies, reduced bandwidth consumption) that are not achievable when relying on
Cloud-only solutions. FC is a horizontal paradigm in the sense that it is generic
enough to be leveraged in a number of different application domains. However,
its characteristics make it particularly suitable for the Internet of Things (IoT).
After providing a survey on FC for the IoT, this thesis focuses on a specific re-
search problem introduced with FC: the issue raised by device mobility in a
FC environment. When a (IoT) device moves, the topological distance to the
current Fog node (i.e., the Fog resource hosting the Fog service) may increase.
Therefore, device mobility may impair the FC benefits, which are a result of Fog
proximity. The objective is to support devicemobility, namely to provide the FC
benefits even in the presence of mobile devices. The most popular approach in
literature to achieve this purpose is by migrating the Fog service across the Fog
infrastructure, thus to let it be always close enough to the served mobile device.
We refer to this paradigm as Companion Fog Computing (CFC), an extension
of standard FC where the Fog service behaves as a "companion" of the mobile
application. In this thesis, we first analyse the different aspects that charac-
terise CFC, by reporting the state of the art for each aspect and highlighting the
open issues and research opportunities. Then, we propose our own solutions.
Specifically, we first consider Fog services as application containers and set up a
small-scale FC testbed to perform a quantitative evaluation and comparison of
the existing container migration techniques. The objective of this work is two-
fold: (i) clarify whether there exists a technique that performs the best under
any condition or, otherwise, understand which technique is the most appropri-
ate under which condition; (ii) better understand the inner workings of con-
tainer migration. The second contribution is the proposal and validation of a
platform, which we call Companion Fog Platform (CFP), that provides the nec-
essary mechanisms to support device mobility in the Fog. Our CFP implements
Fog services as containers and migrates them between Fog nodes according to
the state-of-the-art container migration techniques. The third work described
in this thesis is MobFogSim, a simulator that extends iFogSim to model device
mobility and servicemigration in FC. After providing its design and implemen-
tation details, we validate the simulator. This is done by reproducing in Mob-
FogSim the same conditions under which we evaluated the container migration
techniques and by comparing the simulation results against those over the real
testbed.
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Chapter 1

Introduction

The Internet of Things (IoT) conceives of a world where any object, from a “smart”
one (e.g., a smartphone, a wearable device) to a “dumb” thing (e.g., a lamp post,
a dumpster), can join the Internet (Atzori et al., 2010). Such objects may not only
exchange data but may also store and process data, use sensors to collect data from
the surrounding environment, and actively intervene on the latter through actua-
tors. Moreover, people are also a part of this ecosystem, consuming and producing
data through their smartphones and wearable devices. The number of objects con-
nected to the Internet surpassed the world human population in 2010 (Al-Fuqaha
et al., 2015) and is expected to reach between 50 and 100 billion by 2020 (Amiot,
2015). Furthermore, the McKinsey Global Institute forecasts a potential economic
impact for IoT applications of as much as $11.1 trillion per year in 2025 (Manyika
et al., 2015).

The IoT is necessary for the implementation of many innovative services, but it
is not sufficient in most cases to host such services directly. The great amount of
heterogeneous data (i.e., the Big Data (Chen et al., 2014)) collected by IoT devices
needs to be stored and processed, and the obtained insights need to be retrieved for
visualisation or actuation. However, all these tasks can rarely be performed on the
IoT devices themselves, as such devices typically have limited compute, storage, and
networking resources and can be battery-powered (Delicato et al., 2017). Therefore,
the IoT needs support from more powerful resources – the most common being the
use of Cloud Computing (CC) resources. CC is defined by the National Institute of
Standards and Technology (NIST) as “a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction” (Mell and Grance, 2011). In
other words, CC allows to transparently use almost limitless, virtualised computing
resources whenever needed and to release them when not needed anymore. IoT
devicesmay offload the collected data and complex computation onto theCloud and
retrieve the obtained insights from it, thus exploiting its many advantages (Botta
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8 Introduction

et al., 2016). Cloudsmay be public, private, or an hybrid combination of both (Suciu
et al., 2012). The distinctive feature of public Clouds is that services and resources
are made available by a third-party provider to anyone who requires them. Such
resources are off-premises and rented according to a pay-per-use pricingmodel1. On
the other hand, private Clouds are such that services and resources are accessible
only by specific users (e.g., the members of an organisation). Even though also
private Clouds can be off-premises and managed by third-party providers under
payment, they typically are on-premises, and their resources are released for free,
as in that case users and providers coincide.

Although CC can support resource-limited devices with a virtually unlimited
amount of resources, it presents a non-negligible shortcoming. CC resources are
concentrated in few Data Centres (DCs) which are considerably far away from the
vast majority of data producers and consumers. This is especially true for public
Clouds rather than private ones. Such a considerable distance from end (user) de-
vices leads to some drawbacks (first and foremost, high round-trip latencies) that
are not acceptable for several emerging applications and services. The Fog Com-
puting (FC) paradigm was therefore proposed (Bonomi et al., 2012) as a means to
extend Cloud-based capabilities towards the network edge, distributing resources
and services of computing, storage, and networking along the Cloud-to-Things con-
tinuum and in closer topological proximity2 to IoT devices. This proximity permits
a set of advantages with respect to the exclusive dependence on the distant Cloud,
such as low latencies and reduced bandwidth consumption, to name a few. Using
FC, the key characteristics of CC should be still preserved, including resource vir-
tualisation, transparency, and elasticity (Consortium, 2017). Furthermore, as for
the Cloud resources and services, also the Fog ones may be provided either for free
or under payment. For instance, a municipality can exploit part of its own Fog re-
sources for free and grant upon payment the rest to third-party developers. Since
its inception in 2012, FC has been drawing increasing interest. In a report com-
missioned by the OpenFog Consortium (OFC), which is now incorporated by the
Industrial Internet Consortium (IIC3), the global Fogmarket opportunity is forecast
to be worth $3.7 billion by 2019 and to reach $18.2 billion by 2022 (Hedge, 2017) –
with significant (and growing) academic and industry literature in this area.

Several research challenges still need to be faced to fulfil the full potential of
FC. The focus of this thesis is on the challenge raised by device mobility in a FC
environment. Mobility may indeed compromise the FC advantages, which are a

1See https://reasonstreet.co/business-model-pay-per-use/. Last accessed: 10 October
2019.

2Topological proximity means that the communication path between end devices and Fog re-
sources is short. We believe that it is worth distinguishing this concept from that of geographical
proximity, which is instead expressed in terms of physical distance. Indeed, while the topological
proximity typically entails the geographical one, the opposite is not always true.

3See https://www.iiconsortium.org/. Last accessed: 10 October 2019.
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result of the Fog proximity to the end devices. When a devicemoves, the topological
distance to the associated Fog node (i.e., the node hosting the Fog service) may
increase, possibly impairing the distinctive benefits of FC. The objective is to support
the mobility of IoT devices or, in other words, to guarantee the Fog benefits also
when such devices move from one place to another. To this purpose, a possible
approach is to migrate the Fog service from a Fog node to another, keeping it close
enough to the associated application component on the mobile IoT device. Hence,
the Fog service would behave as a "companion" of the mobile application; we refer
to this as Companion Fog Computing. In what follows, we highlight the different
contributions that we make with regard to FC and, more specifically, with respect
to the mobility challenge, also delineating the structure of this thesis.

1.1 Contributions and structure of the thesis
The first contribution (see Chapter 2) is a comprehensive survey on FC for the IoT,
which provides the general background of this thesis. Specifically, we describe the
principles and the research challenges characterising FC. The extension of Cloud
systems towards the network edge creates new challenges and can have an impact
on existing approaches employed in Cloud-based deployments. Research directions
being adopted by the community are highlighted, with an indication of which of
these are likely to have the greatest impact. An overview of existing FC software
and hardware platforms for the IoT is also provided, along with the standardisation
efforts in this area initiated by the OFC.

Next, in Chapter 3, we analyse the issue of device mobility in FC, which repre-
sents the focus of this thesis. To this purpose, we show the importance of the topic
by describing some real use cases that require mobility support in the Fog. Then, we
highlight the different aspects that need to be dealt with to achieve the objective of
Companion Fog Computing and report the state of the art for each of them. Finally,
we point out the open issues and future research directions in the field.

In Chapter 4, we deal with the first technical aspect related to mobility support
in the Fog, i.e., a study of the existing service migration techniques. This is the
most preliminary aspect to consider, since all the other aspects require a full under-
standing of the former. As we clarify in Chapter 4, we implement Fog services as
runC containers and inspect the most significant differences with respect to Docker
containers. Then, we provide a comprehensive overview of the state-of-the-art con-
tainer migration techniques. The main contribution is the extensive performance
evaluation of these techniques, which we conducted over a real FC testbed. The
obtained results shed light on container migration within FC environments by: (i)
clarifying, in general, whichmigration techniquemight be themost appropriate un-
der certain network and service conditions; (ii) allowing to better understand the
inner workings of container migration.
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In Chapter 5, we propose and validate a FC platform that leverages container
migration and provides all the basic mechanisms to support IoT device mobility.
From now onwards, we refer to this platform as Companion Fog Platform. Vali-
dation is carried out over a real FC testbed and shows a considerable performance
improvement with respect to standard FC, i.e., FC without service migration.

Simulation can be a time- and cost-effective way to evaluate service migration
solutions in FC environments with mobile users. This is especially true when deal-
ing with large-scale environments with a great number of users. To the best of
our knowledge, the state-of-the-art FC simulators do not provide this possibility.
In Chapter 6, we fill this gap by presenting MobFogSim. This is a simulator that
extends iFogSim to model all the aspects related to device mobility and service mi-
gration in FC. Specifically, container migration in MobFogSim is modelled taking
into consideration the insights obtained from the experiments in Chapter 4. Fur-
thermore, the simulator is validated by comparing its container migration results
with those produced over a real testbed and discussed in Chapter 4.

Finally, Chapter 7 draws the conclusions of this thesis and reports the lessons
learnt.



Chapter 2

Fog Computing for the Internet of
Things

The objective of this chapter is to provide a comprehensive survey on FC for the IoT
and represent the general background of this thesis. Although FC is tailored to the
IoT, we highlight that its use is applicable in a number of other contexts (e.g., content
delivery, gaming, network control functions), which are out of the scope of this the-
sis. Table 2.1 summarises the most relevant surveys carried out in FC and organises
them by contributions, also highlighting the distinctiveness of the coverage in this
survey. We do not consider common contributions across these listed papers (e.g.,
description of FC principles, discussion of use cases for FC, review of the research
challenges introduced by FC);we only highlight coverage that is unique in each case.
The main contribution of our survey is the overview of existing FC platforms for the
IoT. Several software and hardware systems are already available, but, to the best of
our knowledge, none of the existing surveys discuss them. We believe that such a
novel contribution may be of particular interest to engineers and developers. This is
a changing landscape, and we provide a representative set of examples of systems.

The rest of the chapter is organised as follows. For the sake of comprehensive-
ness, we first provide a general overview of FC. Hence, in Section 2.1, we discuss the
limitations of integrating IoT and Cloud systems which motivate the need for FC; in
Section 2.2, we highlight the principles characterising FC,whereas, in Section 2.3, we
analyse FC from a historical perspective. Section 2.4 highlights six IoT application
domains that can benefit from FC, identifying existing literature for each domain. In
Section 2.5, we analyse challenges associated with extending Cloud-based systems
towards the network edge, summarising how the research community is addressing
these challenges, and pointing out the main open issues and future research direc-
tions. Finally, Section 2.6 provides an overview of existing FC platforms for the IoT
and outlines standardisation efforts being undertaken by the OFC.

11
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Table 2.1: The main survey papers on FC classified by contributions.

Contribution Papers
Focus on the IoT Atlam et al. (2018); Perera et al. (2017); Yu et al. (2017); Ai

et al. (2018); Ni et al. (2018), this survey
Discussion of existing software
and hardware platforms

this survey

In-depth analysis of the state-of-
the-art architectures and algo-
rithms

Mouradian et al. (2018); Mach and Becvar (2017)

Focus on resource management
and offloading of user tasks

Mao et al. (2017); Mach and Becvar (2017)

Standardisation efforts from the
OFC

Ai et al. (2018), this survey

Standardisation efforts from
ETSI

Mao et al. (2017); Mach and Becvar (2017); Ai et al. (2018);
Shirazi et al. (2017)

Security and privacy issues Stojmenovic et al. (2015); Khan et al. (2017); Roman et al.
(2016); Ni et al. (2018); Mukherjee et al. (2017); Shirazi et al.
(2017)

Focus on developers and
engineers

Perera et al. (2017); Mahmud et al. (2017); Mach and Becvar
(2017); Ai et al. (2018); Ni et al. (2018); Shirazi et al. (2017),
this survey

Historical context & background
of FC

this survey

Summary of recent work (i.e.,
from 2017 onward)

Mouradian et al. (2018); Atlam et al. (2018); Mao et al. (2017);
Yu et al. (2017);Mach andBecvar (2017); Ai et al. (2018); Khan
et al. (2017); Ni et al. (2018); Mukherjee et al. (2017); Shirazi
et al. (2017), this survey

2.1 The need for Fog Computing

The integration between CC and the IoT allows resource-constrained IoT devices
to offload data and complex computation onto the Cloud, taking advantage of its
computational and storage capacity. However, the centralised nature of a Cloud DC
can lead to a considerable topological distance between CC resources/services and
the vast majority of end (user) devices. This mostly depends on where the Cloud
DC is located and/or on the area it covers. As such, private Clouds are more rarely
affected, unless they cover considerablywide areas (e.g., the privateCloudmanaged
by a municipality for Smart City services) and/or are off-premises. On the contrary,
public Clouds are aimed at providing global coverage, and it is not rare to be served
by public Clouds located in another country or even continent. In this section, we
discuss themain shortcomings of the Cloud-IoT integration, which are all due to the
great distance separating the Cloud from the IoT devices.
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Latency

Some IoT application domains fall under the Ultra-Reliable Low-Latency Commu-
nications (URLLC) category, where extremely low and predictable response times
are of utmost importance. Road safety and autonomous driving services require
latencies of less than 50 ms, while Smart Grids of up to 20 ms; Smart Factories have
themost stringent requirements, with latencies varying from 250µs to 10 ms (Schulz
et al., 2017). The distance between IoT devices and the Cloud often leads to a high
communication latency that makes it difficult to satisfy application time constraints.
For instance, the average Round Trip Time (RTT) between an Amazon Cloud server
in Virginia (USA) and a device in the US pacific coast is 66 ms; it is equal to 125 ms if
the end device is in Italy; and reaches 302 ms when the device is in Beijing (Amazon,
2017).

Bandwidth consumption

The number of “smart” objects producing and/or consuming data is projected to
exponentially increase within the next few years. ABI Research estimates that data
captured by IoT devices in 2014 surpassed 200 exabytes (i.e., 200 billion gigabytes)
and is expected to exceed 1.6 zettabytes (i.e., 1600 billion gigabytes) by 2020 (Re-
search, 2015). For example: a smart factory might produce over a thousand ter-
abytes (i.e., one million gigabytes) a day; self-driving cars may generate one giga-
byte a second; and smart meters in the United States collect energy consumption
data at 53.6 petabytes (i.e., 53.6 million gigabytes) a year (Kanellos, 2016). Deliver-
ing such a high volume of data up to the Cloudwould quickly saturate the backbone
network bandwidth.

Privacy and security

The use of IoT devices leads to the inevitable collection of sensitive data (e.g., health-
related data) which needs adequate protection. Transmitting these data over the
public Internet to a Cloud DC can incur privacy risk (Zhou et al., 2017). Due to
limited (user) control over identifying a data path from the IoT device to the Cloud
DC, and as IoT devices do not have enough resources to encrypt/decrypt data, chal-
lenges of confidentiality, integrity and availability (referred to as the C-I-A triad)
are important. Legal implications may be raised when sensitive data collected in
one country are transmitted to a Cloud DC in another country where regulations
are different – an aspect that has become more significant with the recent General
Data Protection Regulation (GDPR) legislation in Europe and the California Data
Privacy Law (in the US).
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Context awareness
Context is defined as “any information that can be used to characterise the situa-
tion of an entity” (Abowd et al., 1999). Examples of context information may be:
(i) the set of nearby nodes and/or services; and (ii) local network conditions and
traffic statistics. Context awareness enables provision of improved services and re-
sources utilisation (Perera et al., 2014). Due to a disaggregation between aCloudDC
and the sensor/actuator nodes (primarily due to geographical location and lack of
proximity), limited context is shared between them. For instance, if a Cloud-hosted
service detected a car accident at an intersection, it would not be able to inform other
vehicles in the vicinity of the accident, due to lack of local context.

Hostile environments
Some IoT devices are employed in critical domains (e.g., traffic and emergencyman-
agement) where environment and people’s safety are key concerns. In such scenar-
ios, the availability of services and data must be constantly guaranteed. However,
there exist contexts referred to as hostile environments (e.g., rural areas or devel-
oping countries with a weak networking infrastructure, military settings, areas af-
flicted by natural or man-made disasters) in which the IoT experiences intermittent
or no network connectivity towards the distant Cloud, and in which, as a result,
the service gets interrupted, has very low performance, or is simply not available
(Satyanarayanan et al., 2013).

2.2 Fog Computing principles and strengths
FC was proposed in 2012 by Cisco in order to overcome the limitations of integra-
tion between Cloud DCs and the IoT (Bonomi et al., 2012). This section examines
the principles and strengths of FC, focusing on the definition from the OFC (Con-
sortium, 2017): “Fog computing is a horizontal, system-level architecture that distributes
computing, storage, control and networking functions closer to the users along a cloud-to-
thing continuum”.

Closer to the users along a cloud-to-thing continuum
As outlined in Section 2.1, drawbacks of Cloud-IoT integration are caused due to
centralisation of a Cloud DC. When talking about FC, it is worth noting that the ex-
pression “towards the network edge” does not mean “only at the network edge”,
as Fog services may be distributed anywhere along the continuum from Cloud to
Things, hosted on nodes known as Fog Nodes (FNs) (Marìn-Tordera et al., 2017).
Any device that has enough computing, storage, and networking capabilities to
run advanced services can be a FN (Consortium, 2018b). Hence, FNs may be: (i)
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Table 2.2: FC advantages over the simple Cloud-IoT integration.

Cloud-IoT limitation How the Fog can overcome it
Latency FNs perform data analytics close to where data are collected and

actions should be performed. This enables predictable response
times, which are essential to many IoT applications.

Bandwidth consumption Since a good portion of the data is communicated to nearby FNs,
a reduced amount is exchanged with a Cloud DC. Moreover, FNs
behave as a broker between the Things and the Cloud, further re-
ducing data transmitted to a Cloud DC. Overall, FC helps to effi-
ciently manage the volume of Big Data, by significantly reducing
bandwidth consumption. (Simmhan, 2017).

Privacy and security Sensitive data can be locally stored and analysed by a FN, instead of
being sent over the Internet up to the Cloud. However, the Cloud
might need access to (part of the) sensitive data. In this case, such
data may pass through the Fog for privacy enforcements that are
not feasible for the resource-constrained IoT devices (e.g., extrac-
tion and transmission of metadata, complex encryptions). There-
fore, the Fog can considerably improve privacy and security inmod-
ern applications and services.

Context awareness FNs are located in closer proximity to IoT devices, improving con-
text awareness. Exploiting context information enables improved
services and/or optimises resource utilisation.

Hostile environments FC proves to be fundamental when a service needs to be always
available, but IoT devices experience intermittent or no connectivity
to the Cloud. Instead, such a critical service may be provided by a
nearby FN to which the IoT devices are able to connect.

resource-rich end devices (e.g., vehicles, smart traffic lights, video surveillance cam-
eras, industrial controllers); (ii) advanced edge nodes (e.g., switches, gateways, Wi-
Fi access points, cellular base stations); and (iii) specialised “core” network routers4.

Table 2.2 identifies the advantages of FC over a simple Cloud-IoT integration,
which are all consequences of the topological closeness of a Fog service to the as-
sociated IoT nodes. It is worth noting that these are all well-known strengths of
FC and that the contents in Table 2.2 are taken from (Satyanarayanan et al., 2013;
Satyanarayanan, 2017; Shi and Dustdar, 2016; Cisco, 2015).

System-level paradigm
The Fog is a system-level paradigm in the sense that it “extends from the Things, over
the network edges, through the Cloud, and across multiple protocol layers – not just radio
systems, not just a specific protocol layer, not just at one part of an end-to-end system, but a
system spanning between the Things and the Cloud” (Consortium, 2017). Hence, FC fos-
ters the development of systems where the overall service is generally not provided

4The core network, also known as backbone, connects different access networkswith one another.
Each access network comprises enddevices and edge nodes, with the latter providing the formerwith
an entry point to the core network.
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by a single resource-rich computer. Instead, the service is typically decomposed
and provided by a hierarchy of FNs such that each of them runs a specific portion
of the overall service, while cooperating with the other FNs. This pyramid-like or-
ganisation is one of the guiding principles of the OpenFog Reference Architecture
(OFRA) (Consortium, 2017), as discussed in Section 2.6. However, as stated by
the OFC (Consortium, 2017), “computational and system hierarchy is not required for all
OpenFog architectures, but it is still expressed in most deployments”.

As shown in Figure 2.1, the lowest layer in the hierarchy comprises the Things
and the end devices in general, which might themselves behave as FNs if they are
powerful enough. The higher layers lead from the network edge up to the core,
and their number and composition depends on the actual application domain and
purpose (Consortium, 2017). Finally, the topmost layer might be represented by
the Cloud. Indeed, - and this is of paramount importance - FC does not replace the
Cloud, but typically coexists and cooperates with it, as many services require the
characteristics of both the Fog and the Cloud (Bonomi et al., 2012). Interactions in
such hierarchical systemsmay be of any type, bothwithin the same layer and among
nodes belonging to different layers (Consortium, 2017). Each node makes its own
contribution to the overall service, and the nature of its role highly depends on its
position in the pyramid. This is summarised in Table 2.3, which is the result of an
integration of coverage across (Bonomi et al., 2012; Consortium, 2017; Cisco, 2015).

This hierarchical organisation, together with proximity to end devices, is the
main characteristic of FC, which makes it particularly suitable for the IoT. The IoT
domain is often identified by wide-area deployment of sensors and actuators that
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Figure 2.1: FC hierarchical organisation.
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Table 2.3: Nodes have different properties and roles according to their position in
the hierarchy.

FNs closest to the
IoT

FNs at the core
network

Cloud

Fog benefits (see Table 2.2) The FC advantages
are evident.

They become less evi-
dent.

They are null.

Geographical coverage These FNs are
widely distributed
in order to ensure
close proximity to
the Things. Hence,
each of them cov-
ers a small area,
controlling few IoT
devices.

The farther from the
true edge, the fewer
the FNs. Therefore,
each of them covers a
rather wide geograph-
ical area.

CC resources are
highly concentrated
in few DCs all over
the world. Thus,
the Cloud features
a global coverage,
as each DC has
to manage a huge
area.

Data persistence Time-sensitive
data are sent
to these FNs
for instant (i.e.,
O(milliseconds))
decision-making
and actuation.
Hence, such data
are transient.

Data which can wait
(seconds to minutes)
from the time of sens-
ing to that of actuation
are sent to these FNs.

Data persist in
the Cloud for
days, weeks, or
even months for
historical analysis.

Computing power These FNs are typi-
cally the least pow-
erful, as they have
to process transient
data from a limited
area.

The higher the level in
the pyramid, the more
powerful the nodes.
There is therefore a
need to process more
persisting data from
a wider geographical
area.

The Cloud is the
most powerful.
Furthermore, the
insights realisable
in the Cloud are
the greatest due to
the size of datasets
available.

Contribution These FNs collect
the data, process
them, and issue ac-
tuation commands.
They may also
filter the data to
be kept locally and
transmit the rest to
the higher layers.
Thus, the only type
of interaction at
this level is Ma-
chine to Machine
(M2M).

These nodes typi-
cally perform data
filtering, compression,
and transformation.
They may also is-
sue less time-sensitive
commands to the actu-
ators. Finally, they can
provide visualisation
and reporting services
to end users. Hence,
this level features both
M2M and Human
to Machine (HMI)
interactions.

The Cloud collects
data from hundreds
or thousands of
nodes. It performs
long-term storage,
historical analysis
and forecasting,
and Big Data ana-
lytics. The Cloud
typically interacts
with the final users
for insights deliv-
ery, although also
IoT nodes might di-
rectly communicate
with it.

can cover areas of hundreds or more square miles. Moreover, IoT applications and
services are always more complex, as theymay involve aspects such as: time-critical
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control, visualisation and reporting, and historical analysis of Big Data. Spanning
from the Things up to the Cloud, the Fog hierarchy enables all this. Examples of
FC hierarchies applied to transportation systems and to the food processing plant
can be found in (Consortium, 2017), while (Bonomi et al., 2012) reports an example
related to Smart Grids.

Horizontal paradigm
FC can also be viewed “horizontal” in the sense that it is generic enough to be ap-
plied in a number of different application scenarios, e.g., content delivery, gaming,
network control functions (Zhu et al., 2013; Fan et al., 2016; Lai et al., 2016). How-
ever, this survey only focuses on the contribution of FC to the IoT.

2.3 Historical background
FC is an evolution of early proposals with the objective to best answer the needs of
the IoT. This section explores the Fog and the “similar concepts” from an historical
perspective, with the purpose to clarify the reasons that led to the characteristics
of each of these concepts and focus more on their similarities rather than on their
differences.

It all began in the early 2000swith a big contradiction in one of themost emerging
trends of that period: Mobile Computing. On the one hand, mobile devices have
the potential to make emerging services in several fields (e.g., healthcare, gaming,
entertainment, social networking) always available; though, on the other hand, they
usually have limited computing capabilities, as they have to be often light and small
and require a long battery life (Dhingra, 2014). Therefore, it is difficult for them to
provide resource-intensive services by just relying on their own facilities.

Hence, how is it possible to release the full potential of Mobile Computing de-
spite its limitation? In 2001, Mahadev Satyanarayanan (professor of Computer Sci-
ence at the Carnegie Mellon University) proposed the concept of Cyber Foraging as a
possible solution to the problem (Satyanarayanan, 2001). This paradigm suggested
to offload data and intensive computation from a mobile device onto a more pow-
erful server belonging to the fixed infrastructure. Such a server was supposed to be
in close proximity to the associated mobile node, but this assumption was not made
explicit by Prof. Satyanarayanan at that time. Although Cyber Foraging is the real
ancestor of FC, other paradigms bringing content or computation closer to the end
devices, such as Content Delivery Networks (CDNs) (Pathan and Buyya, 2007) and
in-network processing (Chen et al., 2006), were being proposed in those years.

Among the many open issues raised by Cyber Foraging, one was particularly
tricky: who and why should have made those servers available? The answer to this
question was found few years later with the introduction of CC, whose characteris-
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tics have been already discussed in the Introduction of this thesis. The integration
betweenMobile Computing and CC is referred to asMobile Cloud Computing (MCC)
(Fernando et al., 2013).

Although MCC was a promising paradigm, it presented all the limitations dis-
cussed in Section 2.1. Therefore, in 2009, Satyanarayanan et al. suggested to cope
with such shortcomings (and in particular with the high and unpredictable laten-
cies) through the concept of Cloudlet (Satyanarayanan et al., 2009), which was the
de facto birth of a paradigm known as Mobile Edge Computing (MEC) (Mach and
Becvar, 2017). A Cloudlet is defined as “a trusted, resource-rich computer or cluster of
computers that is well-connected to the Internet and available for use by nearby mobile de-
vices”. A resource-constrained mobile device can behave as a thin client and, rather
than relying on the distant Cloud, can offload all the significant computation onto
a nearby Cloudlet located at the network edge. This still provides all the benefits of
CC, such as virtualisation and efficiency, thoughwithout the characteristic delays. If
no Cloudlet is present nearby, the mobile device can temporarily rely on the Cloud
as a fallback option or, in theworst case, on its own resources (Satyanarayanan et al.,
2009). More in general, the use of Cloudlets to support any type (i.e., either mobile
or fixed) of resource-limited end devices or groups of devices is simply referred to
as Edge Computing (EC) (Horwitz, 2017).

SinceMECemerged as aworthy solution to enable computation-intensivemobile
applications, the European Telecommunications Standards Institute (ETSI) created
an Industry Specification Group (ISG) in 2014 with the purpose to define and inte-
grate a standard implementation of MEC into cellular networks, which was called
ETSI Mobile Edge Computing (ETSI MEC) (Hu et al., 2015). According to the ETSI,
such a standard lets operators “open their Radio Access Network (RAN) edge to autho-
rised third-parties, allowing them to flexibly and rapidly deploy innovative applications and
services towardsmobile subscribers, enterprises and vertical segments” (ETSI, 2018). More
recently, the ETSI renamed ETSI MEC in Multi-Access Edge Computing to empha-
sise the novel intention to also address non-cellular operators’ requirements (ETSI,
2017b).

Finally, in order to clarify the last step towards FC, it is fundamental to highlight
the following aspect. At least in its infancy, MEC did not consider the overall service
to be decomposed and provided by a hierarchy of nodes including also the Cloud;
instead, the whole service is entirely provided by a nearby Cloudlet (if available), as
we have alreadymentioned. This is why the OFC states that “fog works with the cloud,
whereas edge is defined by the exclusion of cloud. Fog is hierarchical, where edge tends to
be limited to a small number of layers” (Consortium, 2017). This characteristic of MEC
is reasonable in the context of Mobile Computing, where an application typically
involves a single user. However, the IoT is often defined by sensors and actuators
covering wide areas and by the need for long-term storage and Big Data analytics
(i.e., all elements that may require the Cloud). At the same time, proximity is nec-
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Figure 2.2: A comparison among the definitions of MCC, MEC, and FC.

essary in order to enable low and predictable response times together with all the
other benefits reported in Table 2.2 (which require resources towards the network
edge). As a result, in order to best suit such requirements, Cisco advanced the FC
paradigm in 2012 (Bonomi et al., 2012) as a generalisation of EC in which it may still
happen that a single, closer resource-rich computer provides the overall service, but
most of the times any resource in the Cloud-to-Things continuum provides only a
portion of the overall service, according to the facilities and position in the pyramid
(see Section 2.2).

Figure 2.2 illustrates and compares the original definitions of MCC, MEC, and
FC. The research community often tends to look for the differences between FC and
EC. However, it might bemore fruitful to emphasise the several similarities between
these two paradigms. Indeed, on the one hand, theywere born in differentmoments
and were specifically conceived for different contexts, but, on the other hand, they
are evolving over time towards an inevitable convergence (Satyanarayanan, 2017;
Satyanarayanan et al., 2015, 2014). As a proof of this, the ETSI and the OFC recently
signed a Memorandum Of Understanding (MOU) with the intent to join forces for
the development of Fog-enabled Mobile Edge applications and technologies (ETSI,
2017a).
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2.4 IoT application domains
As detailed in Section 2.2, FC proves to be a promising paradigm to support the IoT.
Taking inspiration from the classification found in (MarketsandMarkets, 2016), this
section organises the IoT applications into six domains. Overall, we found 45 works
proposing an integration between FC and the IoT in one of those categories5. We
merely report these six domains from the most to the least investigated in terms of
number of published papers. More specifically, the most examined is the Intelli-
gent Transportation Systems (ITS) domain (12 papers, 26.7%), followed by Smart
Healthcare (11 papers, 24.4%). Next, there are the public safety sector (7 papers,
15.5%), Smart Grids (6 papers, 13.3%), and Industry 4.0 (5 papers, 11.1%). Finally,
Smart Homes and Buildings conclude the list (4 papers, 8.9%). The objective is to
highlight how each of these domains may benefit from FC and provide a compre-
hensive overview of the state of the art in the employment of the Fog within each
of them. Table 2.4 summarises the main aspects of each considered work by: (i)
outlining the major contribution with keywords; (ii) reporting which devices are
employed as FNs; and (iii) pointing out the maturity level of the proposal. The ma-
turity level may be one of the following: Theory; Simulation; Prototype; Pre-product
(i.e., already available for use but still under active development); and Product.

5We consulted themain scientific literature databases and search engines (i.e., IEEEXplore, ACM
library, ScienceDirect, and Google Scholar) from August 2017 to January 2018. Search queries were
formulated in order to be as comprehensive as possible within each considered application domain.
For example, the following is the search query defined for the ITS domain: (Fog Computing OR Edge
Computing) AND (ITS OR vehicle OR RSU OR traffic OR road OR transport OR driver OR parking).
Through thismethodology, we found contributionswhose publication years are not earlier than 2014.
Finally, with the aim to consider only the most relevant and recent works, we filtered the obtained
results as follows: (i) given two similar works from the same group of authors, of which one is a
conference paper and the other is a journal article, we selected the latter; (ii) in case these two works
are both conference papers or journal articles, we selected the most recent one.
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Table 2.4: Papers employing the Fog in one of the considered IoT application do-
mains.

Domain Paper Keywords FNs Maturity

ITS

Tanganelli
et al. (2017)

Look-up service; DHT n/a Prototype

Kim et al.
(2015)

Parking; Matching theory n/a Simulation

Liu et al.
(2017a)

Architecture for urban traffic
management; SDN; 5G

Cellular base stations Simulation

Liu et al.
(2017b)

Architecture for urban traffic
management; SDN; 5G; IEEE
802.11p

Cellular base stations Simulation

Truong
et al.
(2015)

Architecture; SDN; Data
streaming; Lane change

Cellular base stations;
RSUs; Road Side Unit
Controllers (RSUCs)

Theory

He et al.
(2016)

Architecture for load balanc-
ing; SDN

Cellular base stations;
RSUs

Simulation

Ge et al.
(2017)

Architecture; SDN; 5G Cellular base stations;
RSUs; vehicles; RSUCs

Simulation

Shin et al.
(2016)

Architecture for urban traffic
management; Pub-Sub;
Semantic Web

n/a Theory

Brennand
et al. (2016)

Urban traffic management RSUs Simulation

Bruneo
et al.
(2016)

Stack4Things;
Complex Event Processing

Single-board comput-
ers

Prototype

Hou et al.
(2016)

Vehicular Fog Computing Vehicles; cellular base
stations; RSUs

Simulation

Ye et al.
(2016)

Service offloading in bus
networks; Genetic algorithm

Vehicles (i.e., buses);
RSUs

Simulation

Smart
Healthcare

Sareen
et al.
(2017)

Zika virus; fuzzy k-nearest
neighbor

n/a Prototype

Mei et al.
(2017)

UV radiation measurement;
Android

n/a Prototype

Cao et al.
(2015)

Fall detection; Android Smartphones Prototype

Fratu et al.
(2015)

COPD patients; Mild demen-
tia

n/a Prototype

Masip-
Bruin et al.
(2016)

COPD patients; Dynamic
adjustment of the oxygen
dose

Portable oxygen
concentrators;
gateways

Prototype
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Table 2.4: Papers employing the Fog in one of the considered IoT application do-
mains.

Domain Paper Keywords FNs Maturity
Zao et al.
(2014)

Brain monitoring; Semantic
Web

Personal Computers;
home gateways

Prototype

Smart
Healthcare

Ali and
Ghazal
(2017)

Heart attack; vehicular
networks; SDN

Cellular base stations;
RSUs; RSUCs

Prototype

Monteiro
et al. (2016)

Parkinson’s disease; speech
treatments

Embedded systems Prototype

Ahmad
et al.
(2016)

Security and privacy of
health-related data; CASB

n/a Prototype

Elmisery
et al. (2016)

Security and privacy of
health-related data

Personal gateways Prototype

Rahmani
et al. (2017)

Smart e-Health Gateway Gateways in a Smart
Home or hospital

Prototype

Public safety

Sapienza
et al. (2016)

Critical events in a Smart City Cellular base stations Theory

Rauniyar
et al. (2016)

Disaster management;
crowdsourcing

n/a Theory

Mayer et al.
(2017)

Architecture for social
sensing services in hostile
environments

n/a Theory

Brzoza-
Woch et al.
(2016)

Smart levee monitoring
system

Industrial controllers;
single-board
computers

Prototype

Motlagh
et al. (2017)

Crowd surveillance; UAVs Cellular base stations Prototype

Dautov
et al.
(2017)

Intelligent surveillance sys-
tem

Smart cameras Prototype

Chen et al.
(2016)

Smart urban surveillance;
target tracking

Tablets; smartphones;
laptops

Prototype

Smart Grid

Yan and Su
(2016)

Smart metering
infrastructure; Big Data

Smart meters Prototype

Nazmudeen
et al. (2016)

Data aggregation for
bandwidth efficiency; Power
Line Communication

Routers Simulation

Beligianni
et al. (2016)

Data aggregation for
preserving privacy of
energy consumption

n/a Theory

Han and
Xiao (2016)

Algorithm to detect NTL
fraud

n/a Simulation
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Table 2.4: Papers employing the Fog in one of the considered IoT application do-
mains.

Domain Paper Keywords FNs Maturity

Smart Grid

Yaghmaee
et al. (2017)

Power consumption schedule;
Demand Side Management

n/a Simulation

Tao et al.
(2017)

V2G; EVs; 5G EVs; local aggregators;
control centres

Simulation

Industry 4.0

de Brito
et al.
(2017)

Docker-based service
orchestration; oneM2M; P2P
communications

n/a Simulation

Suto et al.
(2015)

Energy-efficient FNs for
industrial WSNs

Servers in a Wireless
Computing System

Simulation

Peralta
et al.
(2017)

Reduction of sensor
energy consumption; MQTT

IoT gateways
operating as MQTT
brokers

Simulation

Wu et al.
(2017)

Machine health and process
monitoring

Gateways in factory
floors

Prototype

Nebbiolo
(2017)

FC platform tailored to the
industrial automation sector

Modular computers Product

Smart Home
and Smart
Building

Vallati et al.
(2016)

Awareness of the home
context; Device-to-Device

Home gateways;
set-top boxes;
end user devices

Simulation

Dutta and
Roy (2017)

A single FN for the whole
building

Wi-Fi routers Prototype

Seitz et al.
(2017)

FNs in multiple rooms of a
building

n/a Theory

Liu et al.
(2016b)

FC platform tailored to the
Smart Home and Smart
Building domain

Wi-Fi access points;
set-top boxes

Pre-
product

Intelligent Transportation Systems
The world urban population is dramatically increasing. At present, the number of
megacities (i.e., cities with a population exceeding 10 million people) is 28 and is
projected to reach 41 by 2030 (United Nations, Department of Economic and Social
Affairs, Population Division, 2014). As a consequence of this, urban environments
are more and more overcrowded with vehicles, and traffic congestions, time losses,
accidents, and pollution altogether contribute to a non-negligible reduction in the
experienced safety and Quality of Life (QoL). The employment of Information and
Communication Technologies (ICT) within the transport domain gives birth to the
ITS, where a wide range of services and applications may be conceived in order to
face the aforementioned issues (Dimitrakopoulos and Demestichas, 2010). Hence,
ITS allow to considerably improve traffic efficiency, drivers’ and passengers’ safety,
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and freight transport.
FC can play a crucial role in this context (Kai et al., 2016). Indeed, as we have

already mentioned in Section 2.1, road safety and autonomous driving services re-
quire response times to be lower than 50 ms (Schulz et al., 2017), which usually is
not achievable with CC. Furthermore, as it is described in (Consortium, 2017), FC:
(i) saves bandwidth, by avoiding that all the data collected by vehicles and by the
fixed infrastructure are sent up to the Cloud; (ii) provides critical ITS services also
in the presence of intermittent network connectivity towards the Cloud; and (iii) al-
lows FNs to provide context-aware services to the vehicles in their proximity (e.g.,
alerting them of bad road conditions in that area). In (Tanganelli et al., 2017), the
authors propose a look-up service for ITS based on a Distributed Hash Table (DHT)
to be implemented by FNs. A Fog system to help drivers to find a free parking slot is
presented in (Kim et al., 2015). Such a system features a pyramid-like organisation
so that the more towards the network edge a FN, the smaller its coverage area, but
the higher its context awareness.

Several works (Liu et al., 2017a,b; Truong et al., 2015; He et al., 2016; Ge et al.,
2017; Shin et al., 2016) propose distinct Fog-based architectures for ITS. Except for
(Shin et al., 2016), they all employ FC together with Software Defined Networking
(SDN), which provides network flexibility and programmability. The resulting ar-
chitectures are thus organised into four layers: (i) CC; (ii) SDN control; (iii) FC; and
(iv) Infrastructure layer, which comprises the sensing and actuation nodes. More-
over, the architectures in (Liu et al., 2017a,b; Shin et al., 2016) are either validated
or specifically envisioned for urban traffic management and control, which is the
ITS major concern. Traffic management is the cornerstone also in (Brennand et al.,
2016) where the authors propose FOX, a Fog-based systemwhose objective is to de-
tect and minimise traffic congestions. Finally, in (Bruneo et al., 2016), the authors
propose Stack4Things as a FC platform for Smart City applications. They exploit
Cloud-based network virtualisation functionalities to implement a smart mobility
use case in which smart cars can interact with Smart City objects to implement ge-
olocalised services. For example, smart cars approaching intersections are able to
communicate with smart traffic lights in order to acquire a certain level of priority
with respect to other cars.

In (Consortium, 2017), traffic control is one of the reported use cases for FC. This
paper, unlike the others that have just been introduced, points out an interesting as-
pect: the vision of vehicles as FNs and not only as sensing and actuation devices.
This is further discussed in (Hou et al., 2016) where the authors present Vehicular
Fog Computing (VFC) to exploit and aggregate the great amount of underutilised
resources in nearby vehicles, together with those belonging to the fixed infrastruc-
ture, such as cellular base stations and Road Side Units (RSUs), to provide services
of computation, storage, and networking. As a result, parked and slow-moving ve-
hicles form a FC layer to enable several vehicular services and applications. To con-
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clude, (Ye et al., 2016) might be considered as a particular case of (Hou et al., 2016),
as the authors propose to extend the computing capability of the fixed infrastructure
at the network edge by utilising buses and bus networks. The main reason for this is
that the fixed trajectories and strong periodicity of buses are ideal in this direction.

Smart Healthcare
The healthcare domain is one of the toughest and most delicate as it deals with
people’s lives. The Internet of Healthcare Things (IoHT), together with CC, allows
to envision several services for the improvement of patients’ QoL. However, a sim-
ple sensor-to-Cloud architecture proves to be often too reductive and unsuitable for
many emerging healthcare applications with critical requirements. FC can be the
solution to the problem (Kraemer et al., 2017; Farahani et al., 2017), especially but
not only in the following three ways: (i) it enables low and predictable response
times, which can often make the difference between life and death for patients; (ii)
it ensures that at least the most critical portion of the overall service is always avail-
able to the patient, also in the presence of hostile environments with intermittent or
no network connectivity to the Cloud; and (iii) it protects the health-related sensi-
tive data by keeping them locally (e.g., in a FN located within the hospital or the
patient’s house) rather than sending them to the Cloud through the Internet.

In (Sareen et al., 2017), the authors propose a Fog-based system for predicting
and preventing the Zika virus outbreak. The Fog layer performs real-time process-
ing of environmental sensor data as well as symptoms data collected by the users’
smartphones. In (Mei et al., 2017), the authors conceive a service that takes advan-
tage of the FC context awareness due to the proximity to users’ smartphones in or-
der to provide accurate and localised measurements of Ultraviolet (UV) radiations.
Falls are among the major causes of mortality for stroke patients. Therefore, it is
of vital importance to promptly detect falls and intervene. U-Fall (Cao et al., 2015)
is a FC system to achieve this objective: the patient’s smartphone behaves as the
FN for a quick fall detection; sensor data are also transmitted to the distant Cloud
for long-term storage and analysis. Some works propose to adopt FC in order to
improve the QoL of Chronic Obstructive Pulmonary Disease (COPD) patients. In
this context, the authors in (Fratu et al., 2015) extend the eWALLCloud-IoT system6

by implementing the Fog layer. A further contribution in this direction is made in
(Masip-Bruin et al., 2016) where the authors propose to assist COPD patients also
when these are performing physical exercises. To this aim, the oxygen dose is dy-
namically adjusted also to the patient’s context and needs; hence, FC context aware-
ness is required. The Fog can be similarly applied to enable services that monitor
brain activity in, for example, stressed or Parkinson’s disease patients (Zao et al.,
2014). In (Ali and Ghazal, 2017), the authors propose a service exploiting resources

6See http://ewallproject.eu/. Last accessed: 12 October 2019.
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at the network edge and SDN for the real-time detection of heart attacks in drivers.
FIT is a FN conceived in (Monteiro et al., 2016) that preprocesses the speech data
of a patient with speech impairments and forwards speech features to the Cloud in
order to reduce the required bandwidth and computational burden on the Cloud.

Patients’ health-related sensitive data need to be preserved and protected: FNs
may behave as privacy and security enforcement points. In this direction, a Cloud
Access Security Broker (CASB)may be executed at the Fog layer as in (Ahmad et al.,
2016). Similarly, the authors in (Elmisery et al., 2016) develop an Enhanced Mid-
dleware for Collaborative Privacy (EMCP) to be hosted on FNs. More in general,
the authors in (Rahmani et al., 2017) present UT-GATE, the prototype of a FN that
provides the healthcare domain with all the benefits typical of FC.

Public safety

FC and the IoT are relevant paradigms also from the viewpoint of public safety and
well-being. For example, in (Sapienza et al., 2016) the authors present a Fog-IoT
architecture with this purpose. In order to guarantee public safety, two tasks have
to be effectively performed: disaster management and crowd surveillance.

Natural or man-made disasters usually cause significant human, economic, and
environmental damages. According to (IFRC, 2016), more than 6000 disasters hap-
pened in the last 10 years, causing almost 772,000 people killed, 1,917,557 somehow
affected, and a total estimated damage equal to $ 1,424,814 million. Therefore, prop-
erly managing these situations is of vital importance. In this direction, the authors
in (Rauniyar et al., 2016) propose a Fog-based architecture where crowd-sourced
data are communicated to the Fog for quick processing and decision-making. FNs
store emergency contact numbers and are accessible by the local public safety au-
thorities that can plan rescue actions according to the produced insights. At the
same time, affected people may contact the nearby FN in order to efficiently obtain
crowd-sourced pictures and videos, thus to have an idea of the current situation.
Both natural and man-made disasters may cause Internet connectivity to be unsta-
ble. Despite this, having uninterrupted access at least to the most critical part of
the service is a must in such delicate situations. As we reported in Section 2.2, FC
provides this important feature (Mayer et al., 2017). The authors in (Brzoza-Woch
et al., 2016) present a levee monitoring use case involving the Fog. They conceive
a three-layered architecture where edge nodes may: (i) locally make decisions; (ii)
collaborate with one another; and (iii) optionally return preprocessed (i.e., filtered
and/or compressed) results to the Cloud for further analysis and forecasting. Dif-
ferent versions of this system exist to best suit diverse environmental, infrastructure,
and economic conditions.

Crowd surveillance is essential to guarantee public safety. Indeed, it allows for
example to: (i) identify non-authorised accesses and suspicious activities; (ii) de-
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tect the fall of an elderly or infirm person; (iii) pinpoint a terrorist or criminal; and
(iv) find a missing person. The suitability of FC to crowd surveillance is evident, as
the Fog grants low and predictable response times, bandwidth efficiency, and pri-
vacy preservation (Consortium, 2017). Taking this into consideration, the authors
in (Motlagh et al., 2017) propose an Unmanned Aerial Vehicle (UAV)-based IoT
platform and present a use case where drones transmit surveillance videos to edge
nodes that locally perform face recognition tasks. Similarly, in (Dautov et al., 2017),
the authors present a case study based on a distributed intelligent surveillance sys-
tem scenario in a crowded area, implemented on clustered Fog devices that are able
to horizontally offload tasks among themselves. To conclude, (Chen et al., 2016)
discusses an urban speeding traffic monitoring system using FC. A drone monitors
moving vehicles by recording a surveillance video that is sent back to the drone con-
troller on the ground and displayed on a screen. If the police officer finds a vehicle
moving at a suspicious speed, the system forwards the next video frames to a FN in
order to track that vehicle.

Smart Grid

The traditional electrical grids distribute energy from few central power genera-
tors to a very large number of final customers. The Smart Grid is an evolution of
the traditional power grid, as it is the result of the integration between the latter
and the ICT (Fang et al., 2012). In a Smart Grid, energy is generated by several
widely-distributed stations, and smart meters and other sensor nodes are employed
to monitor and control the energy consumption. As a result, there is a continuous,
bi-directional flow of both electricity and data that allows to conceive services for a
more efficient, reliable, and secure energy management. Such services may greatly
benefit both: (i) the electricity suppliers, e.g., to efficiently deliver and manage en-
ergy; (ii) the final customers, e.g., to easily monitor and/or reduce their energy con-
sumption.

As it has been just mentioned, Smart Grids are characterised by a strong distri-
bution of power generators, energy transformers, sensors, and actuators: it is not
uncommon for a Smart Grid to cover an area of hundreds square miles. Moreover,
Smart Grid sensors produce a vast amount of data, which can easily saturate net-
work, storage, and processing resources. To further complicate matters, smart me-
ters data may be exploited to deduce personal information (e.g., the number of peo-
ple in a specific area, the habits of a family); therefore, privacy in Smart Grids is an
important issue (Okay and Ozdemir, 2016). Last but not least, many Smart Grid
services require quick and predictable response times, typically between three and
20 milliseconds (Schulz et al., 2017). All these features make Smart Grids an ideal
domain where to apply FC.

Several works employ FC in Smart Grids. The authors in (Yan and Su, 2016)



2.4 IoT application domains 29

propose a Fog-based Smart Grid solution where smart meters are grouped to form
computing and storage clusters, thus realising a Fog layer at the extreme network
edge. A hierarchy of FNs in the Smart Grid context may perform data aggregation
(i.e., data are gathered and expressed in a summary form) in order to reduce the
amount of data transmitted to the Cloud and thus save bandwidth (Nazmudeen
et al., 2016). Data aggregation carried out by FNs can also preserve the privacy
of customers’ energy-related data (Beligianni et al., 2016). The authors in (Han and
Xiao, 2016) propose a security analytic algorithm to be executed by cooperating FNs
for the detection of Non-Technical Loss (NTL) fraud in Smart Grids. An attacker
performs NTL fraud by tampering with a smart meter so that it reports fake energy
consumption values. The proposed iterative algorithm divides the overall problem
in sub-problems and assigns each of them to a FN; the solution to the overall prob-
lem is given by the local solutions of the sub-problems.

Some works are more application-oriented. The authors in (Yaghmaee et al.,
2017) present a Fog-based approach for the optimisation of the power consump-
tion schedule in Smart Grids, which results in an optimisation of both customers’
and electricity supplier’s costs. In more detail, the Smart Grid is organised in re-
gions, and each region is managed by an edge node that finds the optimal power
consumption schedule for its region, based on the collected data. The centralised
Cloud is then responsible for the optimisation of the energy consumption sched-
ule at a multi-regional level. To conclude, Vehicle to Grid (V2G) is an emerging
set of services that allows Electric Vehicles (EVs) to both consume and return back
electricity from/to the Smart Grid. Foud (Tao et al., 2017) is a computing model in-
tegrating the Cloud, the Fog, and 5G technologies in order to improve V2G services.
In Foud, EVs may be both final users and components of the Fog layer, which is said
to be temporary due to the vehicles mobility.

Industry 4.0

Since its very beginning in the late 18th century, industrial production has experi-
enced several revolutions that have deeply changed its nature. First, mechanisation
driven by steam power made its entrance. The second industrial revolution con-
sisted in electrification and mass production, while the third era of industry started
in the 1960s with the digital programming of automation systems. Nowadays, we
are undergoing the fourth industrial revolution, which is either known as Industry
4.0, Smart Factory, or Smart Manufacturing. All these terms identify the same revo-
lutionary trend: the employment of the IoT and, more generally, Cyber-Physical Sys-
tems (CPSs) in industrial automation for a smarter production (Drath and Horch,
2014).

Thanks to its advantages, FC may be the solution to several challenges raised in
this context (Breivold and Sandstrom, 2015). In particular, the Fog is very useful
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within a Smart Factory in order to satisfy the latency requirements that characterise
such a context. Typically, these requirements are the most stringent among all the
investigated domains, as they vary from from 250µs to 10 ms. An exclusive reliance
on the Cloud would not allow to respect such stringent latency requirements.

The authors in (de Brito et al., 2017) propose a solution based on the oneM2M
technical specifications7 that enhances peer-to-peer (P2P) communications between
FNs and implements a Docker-based service orchestration mechanism in the indus-
trial domain. The authors in (Suto et al., 2015) present a system for industrial Wire-
less Sensor Networks (WSNs) that minimises the power consumption, by control-
ling the FNs sleep scheduling and network connectivity, while satisfying the time
constraints imposed by SmartManufacturing applications. A Fog architecture is de-
scribed in (Peralta et al., 2017) where FNs are IoT gateways operating as Message
Queue Telemetry Transport (MQTT)8 brokers able to predict future sensor mea-
surements. As a result, sensors need to publish their data only in case of wrong pre-
dictions by the broker; this helps to reduce their power consumption while keeping
latencies low. The authors in (Wu et al., 2017) discuss a Fog-based architecture for
machine health and process monitoring in cyber-manufacturing systems. To con-
clude, Nebbiolo Technologies (Nebbiolo, 2017) launched a FC platform for the in-
dustrial automation sector; we will discuss it in Section 2.6.

Smart Home and Smart Building
FC is progressively entering the home context; in-home devices (e.g., home gate-
ways, set-top boxes, end user devices) may behave as FNs, as they are becoming
increasingly powerful, and virtualisation techniques are more and more efficient
(Vallati et al., 2016). Smart Homes will enormously benefit from this trend. Indeed,
response timeswould be further reduced, which is essential for time-sensitive Smart
Home systems such as those who deal with surveillance and access control. More-
over, the presence of a FN in the house would ensure resilience when there is no
Internet connectivity to the Cloud. Last but not least, privacy and bandwidth ef-
ficiency would be both improved, as the many (sensitive) data collected would be
mainly kept within the house.

Similarly, FNs may be also present inside buildings to enable improved Smart
Building services. Depending on the actual needs, there could be a single FN for
the whole building, or there could be an internal hierarchy with a FN for each floor
or even one for each room (Consortium, 2017). The authors in (Dutta and Roy,
2017) propose a Smart Building systemwith a single FN for thewhole building. The
FRODO architecture proposed in (Seitz et al., 2017) is more sophisticated, as FNs
may be deployed inmultiple rooms of a building for decentralised decision-making.

7See http://www.onem2m.org/. Last accessed: 12 October 2019.
8MQTT is a Publish-Subscribe lightweight messaging protocol. See http://mqtt.org/. Last

accessed: 12 October 2019.
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Each of them provides highly context-aware services to the occupants of its room,
taking into account their personal preferences together with objective, room-related
parameters (e.g., the type of sensors and actuators present). Last but not least, the
authors in (Liu et al., 2016b) present ParaDrop, a FC platform that allows tomanage
and deploy services on wireless gateways (e.g., Wi-Fi access points, set-top boxes).
This platform,which particularly suits the SmartHome and Smart Building domain,
will be further detailed in Section 2.6.

2.5 Research challenges
Newsystem, network, and environmental characteristics need to be consideredwhen
extending the Cloud towards the network edge – see Table 2.5. This section specif-
ically focuses on challenges associated with these characteristics, identifying how
the research community is addressing them. Please, note that the mobility support
challenge, which is the main focus of this thesis, is thoroughly discussed in Chapter
3.

Table 2.5: Characteristics to be considered when extending the Cloud towards the
network edge.

Characteristic Description Introduced or
influenced challenges

Geographical
distribution

FC leads from a situation in which resources
and services are all concentrated in a Cloud
DC to one in which they are distributed over
a potentially wide area.

Mobility support;
orchestration; deployment
models; security and
privacy

Higher
heterogeneity

While Cloud servers are all very alike, FNs are
usually heterogeneous, as they might feature
different hardware specifications and capa-
bilities, operating systems, or protocol suites
(Varghese et al., 2017).

Orchestration; deployment
models; security and
privacy

Computing
power

As reported in Table 2.3, FNs are in general less
powerful than Cloud servers. However, there
exists a wide range of diverse FNs with very
different hardware capabilities, as outlined in
Table 2.8.

Mobility support;
orchestration; security
and privacy

Network
performance

While a Cloud DC relies on a high-bandwidth
and low-latency LAN, FNs are typically inter-
connected with each other through a WAN
and hence experience higher latencies with re-
spect to those within a Cloud DC and an aver-
age bandwidth of 13 Mbps (Ha et al., 2017)9.

Mobility support;
orchestration

Vulnerable
environment

With the aim to be closer to IoT devices,
FNs are usually located in environments that
are more vulnerable and less protected than
Cloud DCs (Chiang and Zhang, 2016).

Deployment models;
security and privacy
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Orchestration

To orchestrate computing resources and services means to coordinate, arrange, and
jointly manage them in order to satisfy specific functional and non-functional re-
quirements. For instance, service deployment and resource allocation, service coor-
dination, and load balancing are all orchestration activities. A suitable orchestration
is essential in every complex system in order to ensure efficiency and efficacy.

Resource and service orchestration is influenced by some of the distinguishing
characteristics of FC (see Table 2.5). As a result, the orchestration techniques that
are widely adopted in a Cloud DC cannot be always applied “as is” in the Fog but
need to be customised for it (Jiang et al., 2018). Let us begin by examining the im-
pact of FC distinctive features on orchestration. Firstly, the heterogeneity of FNs
imposes non-trivial orchestration issues (Wen et al., 2017). It is fundamental to con-
sider this diversity when deploying and coordinating services, since not all FNs are
able to run all services. Two FNs that are identical in terms of hardware and soft-
ware capabilities may be very different from one another due to their geographical
distribution featured by FC and the requirement of topological proximity. For in-
stance, it may happen that only one of them is suitable to host a specific Fog service,
as the other may be not close enough to the IoT devices requiring that service. To
further complicate matters, the high distribution featured by the Fog and its hierar-
chical nature imposes other challenges, namely those regarding the management of
large data volumes. Indeed, these are not only exchanged with a centralised Cloud
DC but typically need to be orchestrated among the nodes along the continuum
fromCloud to Things according to the nature and purpose of these data, the specific
application scenario, and its requirements. Furthermore, the potentially wide-area
distribution of Fog services and resources, together with the need for scalability and
the strict requirements of the IoT, naturally arises from centralised orchestration as
in the Cloud DC to a distributed one where multiple orchestrators are arranged ac-
cording to a hierarchical or flat architecture (Jiang et al., 2018), and where each of
themdirectly controls only a subset of nodes. Such orchestrators have to strongly co-
ordinate with one another for the joint management of complex and distributed IoT
applications. Moreover, the introduction of a great number of distributed FNs com-
posing the Fog layer causes FC environments to be in general less energy-efficient
than Cloud-only environments (Dastjerdi et al., 2016). More specifically, the energy
consumed by FNs represents the 60-80% of the overall energy consumed by systems
that span from the things up to the Cloud (Nan et al., 2017). To conclude, orches-
tration should be dynamic, i.e., should perform smart re-configurations in order to
adapt to the continuous changes that occur in the system. FC environments are
highly dynamic (Wen et al., 2017) due to their intrinsic limitations in terms of com-
puting power and network performance with respect to those in the Cloud DC and
because of the strict requirements of IoT applications in terms of Quality of Service
(QoS) andQuality of Experience (QoE). In what follows, we identify Fog orchestra-
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tion architectures and policies that have been proposed in literature and conclude
with the main open issues in the field.

Architectures - The authors in (Hoque et al., 2017) first analyse how the exist-
ing container orchestration tools address the requirements of FC and the IoT. Based
on the obtained insights, they propose a container orchestration framework that
bridges the found gap. Such a framework extends Docker Swarm10, which is ex-
tremely lightweight and rather complete, with an additional component calledOpe-
nIoTFog Agent, which is part of the OpenIoTFog toolkit11. The same authors detail
an orchestration architecture for Fog environments in (Brito et al., 2017). This archi-
tecture is based on two essential components, namely the Fog Orchestrator (FO),
which runs on a central node, and the Fog Orchestration Agent (FOA), which runs
on every FN. It is worth highlighting that in those cases in which there is no con-
nectivity towards the FO, a FOA can become a FO for a subset of FNs. It will return
a simple FOA if and when the connection to the central node resumes. Moreover,
this architecture presents twomain strengths. The first is the compliancewith the re-
cently releasedOFRA,which is discussed in Section 2.6. The second is its conformity
with Topology and Orchestration Specification for Cloud Applications (TOSCA)12,
which is the de facto standard for modeling service orchestration. The authors in
(Yigitoglu et al., 2017) propose Foggy, a framework for dynamic resource provision-
ing and IoT applications deployment in FC environments. The orchestration server,
which runs on a central node and manages the whole system, obtains each appli-
cation module requirements (i.e., priority, privacy, computation, latency, output) in
JSON format and continuously monitors the system in order to capture every dy-
namic change and adapt themodule placement accordingly. On the contrary, (Jiang
et al., 2018) proposes a distributed orchestration architecture where each orchestra-
tor controls a subset of resources and services. All these orchestrators are equally
important (i.e., flat architecture) and coordinatewith one other for the orchestration
of the overall system.

With regard to Fog orchestration architectures, SDN plays a fundamental role
(Baktir et al., 2017). Indeed, by separating the control plane (i.e., where the net-
work control logic resides) from the data plane (i.e., the set of network devices for-
warding packets), this technology enables a great network programmability and
flexibility (Tomovic et al., 2017). More specifically, SDN controllers have a com-
prehensive and constantly updated view of the dynamically changing network and
computing resources and expose a northbound programming interface to network

9This does not change the fact that the topological distance between one or more IoT devices and
a FN is much shorter than the one between the same IoT devices and the Cloud.

10See https://docs.docker.com/engine/swarm/. Last accessed: 12 October 2019.
11See https://openiotfog.org/en/. Last accessed: 12 October 2019.
12See http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-

cnd01.pdf. Last accessed: 10 October 2019.
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management applications in order to adaptively orchestrate resources, services, and
network traffic according to QoS/QoE requirements and current system conditions
(Baktir et al., 2017). The communication between the SDN controller and the data
plane devices is commonly achieved through theOpenFlow13 protocol. The authors
in (Tomovic et al., 2017) propose a Fog-IoT architecturewhere SDN is exploited as an
orchestration and network control facility. This architecture conceives a cooperation
among different SDN controllers, and FNs expose Application Programming Inter-
faces (APIs) to allow the remote monitoring and management of their resources.
To conclude, both (Truong et al., 2015) and (He et al., 2016) present SDN-based ar-
chitectures for Fog orchestration in an IoV domain. In particular, (He et al., 2016)
focuses on load balancing strategies.

Policies - In (Wen et al., 2017), the authors present the preliminary results of their
genetic algorithm for Fog orchestration. Although their proposal features some scal-
ability limitations, it originally characterises security risks as a cost to be minimised
when performing orchestration. Instead, in (Taneja and Davy, 2017), the authors
focus on the efficient utilisation of computing resources as the primary concern in
the formulation of their solution of Fog orchestration. The authors in (Skarlat et al.,
2017) model Fog orchestration as an optimisation problem and propose a genetic
algorithm to solve it. This work envisions a distributed orchestration architecture
where each orchestrator controls a subset of FNs (i.e., a Fog colony) and can be in
turn controlled by another orchestrator that resides at a higher level in the hierarchy.
The top-most orchestrator is in the Cloud. Both (Mahmud et al., 2018b) and (Mah-
mud et al., 2018a) particularly focus on QoS- and QoE-aware orchestration policies.
More specifically, (Mahmud et al., 2018b) is based on Fuzzy logic, and (Mahmud
et al., 2018a) also performs energy-aware Fog orchestration. Indeed, it proposes
to re-locate application modules in order to optimise the number of active FNs and
thusminimise energy consumption. It is worth noting that (Skarlat et al., 2017;Mah-
mud et al., 2018b,a) all simulate their solutions in iFogSim, which indeed is themost
utilised tool to simulate resource management techniques in Fog-IoT environments
(Gupta et al., 2017). As (Mahmud et al., 2018a), also (Nan et al., 2017) proposes an
orchestration algorithm to find the optimal compromise betweenQoS and energy ef-
ficiency. Going into details, the authors propose to power FNs first via green energy
(e.g., produced by sun or wind) and, when this is not available due to inappropriate
weather conditions, via brown energy (e.g., produced through fossil fuels). The en-
ergy cost is represented only by brown energy consumption. To conclude, (Aazam
et al., 2018) defines a scheme that incorporates service usage patterns and the history
of service customers in order to dynamically estimate resources and adapt resource
orchestration accordingly. The dynamic deployment of multi-component IoT appli-

13See https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.
3.1.pdf. Last accessed: 12 October 2019.
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cations in Fog infrastructures is also addressed in (Brogi and Forti, 2017a), where
the authors propose a system model and present algorithms to determine eligible
deployments.

Open issues - There exist several northbound interfaces in between SDN con-
trollers, on the one hand, and networkmanagement applications, on the other hand.
Therefore, the definition of a vendor-independent northbound interface as a result
of a standardisation effort would be a significant contribution (Baktir et al., 2017).
Similarly, the research on the communication among peer SDN controllers is still
at its beginning and thus is worth of investigation (Baktir et al., 2017). Finally, an-
other research direction is the application of predictive analytics for a dynamic and
proactive orchestration.

Deployment Models & Revenue Scenarios
An important challenge that needs to be faced in order to get a wider adoption of
Fog-based systems consists in understanding the potential revenue and incentive
models that can be supported through different deployment scenarios. Suchmodels
are needed to better understand why: (i) infrastructure providers would offer their
resources to act as FNs; (ii) users would want to make use of these FC resources.
We can consider FC deployments to be somewhat similar to the deployment of other
types of edge infrastructures that currently exist, such as Wi-Fi deployments within
cities, which may be operated and managed by a variety of different organisations,
ranging from universities, coffee chains, transport operators/city councils, and so
on. It is useful to note that not all such infrastructure deployments require payment
from the end user. Understanding potential incentivemodels that encourage restau-
rant and café owners to operate Wi-Fi access points can be useful to understand this
next generation of services which are operated towards the network edge. However,
this is still an open issue and is likely to grow as the FC infrastructure becomesmore
resilient and mature (Petri et al., 2017; Weinman, 2018).

Revenuemodels can be related to the characteristics identified in Table 2.5, where
geographical distribution, node heterogeneity, and security requirements influence
how FNs can generate a potential revenue stream for providers. More importantly,
without an adequate number of FNs being available, sustaining a suitable infras-
tructure that provides suitable computing power and network performance will be
unrealistic. Providing incentive models for provision and maintenance of FNs is
essential. We consider the following four types of deployment models. The de-
scription below attempts to provide context for the deployment model based on the
particular deployment approach being used:

• Dynamic FN discovery supported revenue model: this model involves dy-
namic discovery of a FN as a user moves from one location to another. The
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user device attempts to discover a FN in its “vicinity” using the advertised
profile of the node (which can include: availability statistics, security creden-
tials, and types of available services). Using this approach, the user does not
have any guarantee that a suitable FNwill be discovered to sustain an applica-
tion session, but a negotiation can take place if multiple FNs are found. A user
device can also cache previously seen FNs. The incentive for the provider is
to gain revenue from each user session that is sustained using that FN. A user
can purchase a subscription with particular FN types a priori (i.e., before dis-
covery). A user is charged based on connection time, size of data, or range of
services utilised. The deploymentmodel in this case is the incentive for FN op-
erators/owners to make services discoverable by IoT devices (including those
that are mobile). The revenue earned by undertaking this would be the basis
for the deployment model. Conversely, users/ owners of IoT devices need to
determine whether a discovered service is suitable for their needs (taking ac-
count of a subscription cost to use the service). Discovering suitable services
is akin to finding a service description match within a registry.

• Pre-agreed contracts with Fog providers: this deployment model involves
generating pre-agreed contracts with operators of specific FNs – negotiated at
a set price. Hence, there would be a preferential selection of particular nodes
by a user if multiple choices are found. This also reduces risks for users, as se-
curity credentials would be included in these pre-agreed contracts and could
be configured (e.g., use of particular encryption keys) beforehand. These pre-
agreed contracts would need to comply with service level objectives (e.g., an
availability profile) that an operator needs to meet. It is therefore possible that
a FN operator may outsource their task to a Cloud provider. The incentive for
the provider is to increase the number of potential subscribers by developing
pre-agreed contracts. Capacity planning associatedwith such FNs is therefore
dependent on accurately predicting potential future demand. The deployment
model in this case involves agreeing a cost for entering into a contract with a
Fog provider. This contract also allows preferential access to FNs owned by
the provider.

• FNs federation: this deployment model involves multiple FN operators col-
laborating to share workload. In order to sustain potential revenue, this would
imply federation between FNs that exist within a particular geographical area.
Therewould be a preferred cost for sharingworkloadwith other providers, en-
abling revenue sharing between providers. To enable such an exchange to take
place, it is necessary to identify how workload “units” can be characterised.
This is equivalent to alliances set up between airline companies, for instance,
where specialist capability (and capacity) available along a particular route
can be shared across multiple operators. In the same way, if an operator de-
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ploys specialist GPUs or video analytics capability within a FN at a particular
location, other operators could also make use of this in a seamless way and
similarly share other capabilities in other locations. This type of geographic-
centric specialisation could enable localised investmentwithin particular areas
by operators.

• Fog-Cloud exchange: this deployment model involves a user device not be-
ing aware of the existence of any FN. Instead, the user device interacts with
a Cloud operator who then attempts to find a FN in the vicinity of the user.
Therefore, the Cloud operator needs to keep a track of the user location and
discover suitable FN operators that could be used to support the session at
a particular location. In this instance, the Cloud operator will always try to
complete the user request first; however, if a QoS target is unlikely to be met
due to latency constraints, it can outsource the user request to a regional FN.
The incentive in this instance is to enable Fog-Cloud exchange contracts to be
negotiated between providers (Eivy, 2017).

Open issues - Some of the above deployment and revenue generation scenarios
are not unique to FC and closely relate to other similar efforts in service-oriented
systems. We identify three open issues that could have an impact on realising some
of these deployment models in practice:

• The recent emergence of regulations such as the GDPR, which is being intro-
duced in Europe, could have a significant impact on these deploymentmodels.
GDPR necessitates all external service providers who hold data about users to
seek consent from users and state: (i) which data they hold; (ii) how these
data are being used by the provider. More significantly, the user has the abil-
ity to revoke access to their data at any time. With the use of FNs, user data
may be fragmented across different providers, depending on the mobility pat-
tern of the user. Understanding how a group of FNs, which may not be part
of a federated infrastructure, may seek consent of users remains a challenge.

• Vendors who own and operate an infrastructure at the network edge (e.g., cel-
lular base stations) could become potential Fog providers in the future, as they
are likely to provide the FN that a user interacts with. Deployment models
that require interaction between such network operators and Cloud providers
remain unclear at present.

• There is also potential for auction models that could operate in a FC environ-
ment when multiple FNs are available for a user to choose from. Understand-
ing the metrics (other than price) that influence such auctions remains a chal-
lenge. Additionally, such auctions should not cause detrimental overhead on
the performance of the application that makes use of the FC infrastructure.
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The definition of services that manage and operate such algorithms is also an
open issue.

Security and privacy

As reported in Table 2.2, one of the main advantages of FC over other approaches
to Cloud-IoT integration is represented by security and privacy enforcements, espe-
cially with regard to the protection of sensitive data. Nevertheless, this advantage
comes at the cost of new security and privacy challenges that are raised by some of
the intrinsic characteristics of the Fog (see Table 2.5). More specifically, distributed
systems are in general more vulnerable to attacks than centralised ones. Moreover,
with the purpose to provide a better QoS/QoE and enable the distinguishing ad-
vantages of FC, FNs are usually deployed in environments that are less protected
than Cloud DCs (Chiang and Zhang, 2016). To conclude, both the heterogeneity
among FNs and their limited computing capabilities, if compared to Cloud servers,
further complicate the situation. The security and privacy challenges afflicting FC
have been significantly drawing the attention of the research community. This is
demonstrated by the great number of works that have been proposed to face such
challenges and, as a consequence, by the considerable number of surveys focusing
on this topic (Stojmenovic et al., 2015; Khan et al., 2017; Roman et al., 2016; Ni et al.,
2018; Mukherjee et al., 2017; Shirazi et al., 2017). Among these surveys, (Ni et al.,
2018) is the only one that specifically discusses these challenges within the IoT con-
text. Given this abundance of survey papers and for space reasons, what follows is
a high-level overview of the main security and privacy concerns in a Fog-IoT envi-
ronment.

The OFC dedicated an appendix of its OFRA document (Consortium, 2017) to a
detailed discussion about several security aspects in a FC environment. According
to this appendix, security is the largest cross-cutting technical concernwithin critical
IoT systems, which necessitate common baseline and inter-operable standards to ad-
dress security challenges within both hardware and software. Particularly interest-
ing is the analysis of the hardware/firmware precautions that the Consortium sug-
gests in order to implement a full-stack secure Chain of Trust comprised of trusted
components. Among such components, IoT devices represent the most vulnerable
elements of the FC hierarchy. Securing this part of the infrastructure is a promis-
ing research direction that has been only preliminary explored up to now, mainly
relying on remote attestation techniques (Brasser et al., 2016; Celesti et al., 2017).

With regard to the possible attacks against FNs, man-in-the-middle is one of the
most important and urgently needs effective countermeasures. Being deployed in
the field, FNs are vulnerable to this type of attack that consists of compromising
a FN with malicious code (Wang et al., 2015b) or even in replacing it with a fake
FN (Marìn-Tordera et al., 2017).
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From the point of view of the end users, privacy is beyond any doubt one of the
most prominent requirements. An interesting research challenge (strictly connected
to that of mobility support) in this field is related to the design and implementation
of techniques able to guarantee the privacy of location and mobility data. As FC
enables end users to offload their tasks to the nearest FNs, their location and tra-
jectory can be retrieved by an attacker (Mukherjee et al., 2017) (e.g., a malicious
FNs administrator). This could even be the result of internal policies of Cloud/Fog
providers that might act in an “honest-but-curious” way (Ni et al., 2018).

Finally, it is worthmentioning that security and privacy solutions in FC also have
to take into consideration the complex combination of regional and governmental
requirements that must be satisfied due to the widespread distribution of the nodes
in a Fog hierarchy, as also explicitly stated in (Consortium, 2017). This, however, is
out of the scope of the present work.

2.6 Fog Computing platforms for the Internet of
Things

As a proof of the increasing maturity of the Fog paradigm, several software and
hardware systems are already available for use. In this section, we give an overview
of existing FC platforms for the IoT. To the best of our knowledge, we are the first to
make this novel contribution, which we believe may draw the attention of engineers
and developers. Specifically, we classify platforms into three categories, namely: (i)
software platforms; (ii) development frameworks; and (iii) hardware platforms.
This section concludes with a discussion of OFC efforts towards a standardisation
process that involves both FC software and hardware platforms.

Software platforms
We define a FC software platform for the IoT as “a software environment providing at
least the basic functionalities and mechanisms that are necessary for the deployment and exe-
cution of IoT applications over a Fog infrastructure”. We first discuss software platforms
started as industrial initiatives, and then focus on open-source systems. Table 2.6
summarises and compares these platforms on the basis of a set of features – we

14See https://github.com/Azure/iot-edge. Last accessed: 13 October 2019.
15See https://github.com/smartfog/fogflow. Last accessed: 13 October 2019.
16See https://github.com/ParadropLabs/Paradrop. Last accessed: 13 October 2019.
17See https://github.com/OpenEdgeComputing/elijah-openstack. Last accessed: 13 October

2019.
18See https://github.com/MDSLab/stack4things. Last accessed: 13 October 2019.
19See http://openvolcano.org/dokuwiki/doku.php?id=ov:download. Last accessed: 13 Octo-

ber 2019.
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do not include features such as orchestration, as these are common across all plat-
forms. Furthermore, we only discuss those platforms that are already available for
use, namely those whose maturity level is either Pre-product or Product (see Section
2.4). Nonetheless, there exist ongoing research activities likely to produce platforms
in the near future (Lebre et al., 2017; OpenStack, 2018a; Montero et al., 2017).

Table 2.6: Comparison among the FC software platforms for the IoT.

Platform Open-
source

Extension of a
Cloud platform

Only runs on
specific hardware

Maturity

Nebbiolo ✓ Product
FogHorn
Lightning

Product

Cisco IOx ✓ Product
Dell Edge Device Manager ✓ Product
IBMWatson IoT ✓ Product
AWS Greengrass ✓ Product
Microsoft Azure IoT Edge ✓14 ✓ Pre-product
FogFlow ✓15 Pre-product
ParaDrop ✓16 Pre-product
OpenStack++ ✓17 ✓ Pre-product
Stack4Things ✓18 ✓ Pre-product
OpenVolcano ✓19 ✓ Pre-product
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Commercial platforms - Nebbiolo Technologies was founded by Flavio Bonomi,
who first advanced the concept of FC in 2012 (when he was with Cisco). The Neb-
biolo Technologies FC platform (Nebbiolo, 2018a) is a commercial platform consist-
ing of a closed-source software stack that runs on a proprietary hardware solution
and particularly tailored to the industrial automation sector. The platform allows
a Cloud-like centralised management of distributed mini DCs deployed at the net-
work edge. Such mini DCs comprise computing, networking, and storage resources
in the form of purpose-built hardware nodes called fogNodes. This software plat-
form includes the fogOS software stack, a custom operating system providing vir-
tualisation, SDN, data analytics, and security features. Moreover, the fogSM is a
system manager, deployed in the Cloud or on-premises, that allows remote man-
agement of the fogNodes and assisted deployment of IoT applications.

FogHorn Lightning by FogHorn Systems (FogHorn, 2018) includes the FogHorn
Manager that allows remote management, monitoring, and configuration of edge
nodes, and deployment of IoT applications. Moreover, as described later, the com-
panyprovides a powerful analytics framework enabling real-time and on-site stream
processing of data coming from IoT devices. FogHorn Lightning does not exclu-
sively run on a specific hardware.

As the biggest network appliance manufacturer, Cisco proposes a wide range of
both FC software and hardware products for the IoT. The Cisco IOx (Cisco, 2018b)
ecosystem provides uniform and consistent hosting capabilities for Fog applications
across Cisco network infrastructure products. In particular, the Cisco IOx Fog Di-
rector provides users with the possibility to deploy, run, and monitor applications
across the Fog infrastructure, while theCisco IOxClient is a command-line utility for
developers to control application life-cycle tasks within typical developer systems.

Similarly, Dell Technologies entered the market by proposing Dell Edge Device
Manager (Technologies, 2018a), which enables secure registration of Dell hardware
products and their remotemanagementwith automation of upgrades, task schedul-
ing, real-time monitoring, and configuration.

Two other platforms are: (i) IBM Watson IoT (IBM, 2018), which extends IBM
Cloud; and (ii) AWS Greengrass (Amazon, 2018), which extends AWS Cloud. Both
extend pre-existing proprietary Cloud platforms towards the network edge and pro-
vide support for deploying and running application components on IoT devices,
edge nodes, and the Cloud.

Open-source platforms - Similarly to IBM and Amazon, Microsoft has recently
released its FC software platform for the IoT, namelyMicrosoft Azure IoT Edge (Mi-
crosoft, 2018), which extends Microsoft Azure Cloud. This platform is open-source
but is still in a preview phase.

FogFlow (Cheng et al., 2018) is a FC software platform that is able to automati-
cally and dynamically composemultiple tasks into high-level IoT services. Each task
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is represented by a Docker container hosting the data processing logic and needs
to be described by the software developer through NGSI, the standard exploited
within the FIWARE European project20 for context informationmanagement. Based
on such a description, FogFlow performs the orchestration in an optimised way, de-
ploying tasks anywhere along the continuum from Cloud to Things, only when ac-
tually required, and based on the locality of data producers and consumers. Avail-
ability and mobility criteria are also taken into consideration by the system for task
deployment.

Another FC software platform, which specifically targets nodes at the extreme
edge of the wireless networks (i.e., home Wi-Fi routers and wireless gateways), is
ParaDrop (Liu et al., 2016a). The attention to this specific kind of nodes is mainly
motivated by their peculiar contextual knowledge about enduser devices that are di-
rectly attached to them (e.g., proximity, characteristics of the channel). This knowl-
edge is useful for making decisions about application placement and orchestration.
Specifically, this platform can “paradrop” services from the Cloud to the network
edge in the form of self-contained units, called “chutes”, that are deployed as near as
possible to the IoT devices requiring them (e.g., sensors, actuators, end user mobile
devices). As common in many of these kinds of platforms, chutes are implemented
as Docker containers. Due to such specific design choices, ParaDrop is particularly
suitable for Smart Home and Smart Building scenarios. Although the range of cur-
rently supported nodes is still limited to a custom Wi-Fi access point based on the
PCEngines APU2 single-board computer and fewmore nodes belonging to the Intel
NUC family, there is the possibility to deploy a “ParaDrop router" as a QEMU/KVM
Virtual Machine (VM).

To conclude, three open-source platforms integrate the Fog inOpenStack21, which
is themost prominent open-source Cloud platform. TheOpenStack project initiated
in 2010 as a joint initiative of Rackspace Hosting and the NASA and is currently
managed by the OpenStack Foundation, a non-profit corporate entity established in
September 2012. More than 500 companies have joined the project since then, and
the OpenStack development community currently counts more than 82,000 mem-
bers from 187 countries around the world (OpenStack, 2018b).

The first FC software platform extending OpenStack with Cloudlets support is
OpenStack++ (Ha and Satyanarayanan, 2015). It is the output of the Open Edge
Computing (OpenEdgeComputing, 2018) initiative, launched in June 2015 byVoda-
fone, Intel, and Huawei in partnership with the Carnegie Mellon University. The
second platform extending OpenStack with FC capabilities is Stack4Things (Longo
et al., 2017), which was initially developed by the University of Messina and is now
commercialised by SmartME.io Srl. It provides functionalities for the remote man-
agement of IoT device fleets irrespective of their physical location, their network

20See https://www.fiware.org/. Last accessed: 13 October 2019.
21See https://www.openstack.org/. Last accessed: 13 October 2019.
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configuration, and their underlying technology. It is a Cloud-oriented horizontal
solution providing IoT objects virtualisation, customisation, and orchestration. Last
but not least, OpenVolcano (Bruschi et al., 2016; OpenVolcano, 2018) is an open-
source platform, conceived in the context of the Horizon 2020 INPUT project22, that
specifically aims at supporting FC services in 5G-ready infrastructures. Besides ex-
tending OpenStack, it applies Network Functions Virtualization (NFV) and SDN
through the OpenFlow protocol, thus enabling great network programmability and
flexibility.

Development frameworks
We define a FC development framework for the IoT as “a set of tools (e.g., libraries,
microservices, abstraction layers) easing the development of Fog applications for the IoT and
assisting the developer in focusing on the application logic rather than on the distributed
nature of the Fog infrastructure on top of which the application will be deployed”. Table 2.7
reports a comparison among the FC development frameworks for the IoT. Specifi-
cally, we report the information that we believe is more interesting from the point
of view of the application developer, namely if the framework is released under an
open-source license, the supported programming languages, and the deployment
model. Prior to starting, we point out that most of the development frameworks
are tightly coupled with a FC software platform discussed previously. To the best
of our knowledge, only two frameworks are completely independent of the under-

Table 2.7: Comparison among the FC development frameworks for the IoT.

Framework Open-
source

Coupled
with a
software
platform

Supported languages Deployment model

EdgeX
Foundry

✓23 Java (officially sup-
ported) + others (from
the community)

Docker containers

macchina.io ✓24 C++ CustomC-based runtime envi-
ronment

Nebbiolo SDK ✓ Python Docker containers
FogHorn
Lightning SDK

✓ C++ (micro edition) +
other not specified lan-
guages (standard edi-
tion)

n/a

Cisco IOx SDK ✓ C/C++, Python, Ruby,
Nodejs

Custom containers, Docker
containers, KVM/QEMU VMs

22See https://www.input-project.eu/. Last accessed: 13 October 2019.
23See https://github.com/edgexfoundry. Last accessed: 13 October 2019.
24See https://github.com/macchina-io/macchina.io. Last accessed: 13 October 2019.
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lying FC software platform, thus totally decoupling application development from
FN management and service deployment.

Themost important initiativewithin this second category of development frame-
works is the EdgeX Foundry project (Foundation, 2018), which is hosted by the
Linux Foundation. In April 2017, Dell Technologies, in conjunction with several
partners and customers, launched the EdgeX Foundry project with the donation of
about over 125,000 lines of code. The project is currently being actively developed by
tens of companies including Samsung, Analog Devices, Toshiba, and others. EdgeX
Foundry is a vendor-neutral open-source interoperability framework that allows de-
velopers to implement IoT applications in a hardware, Operating System (OS), and
programming language agnostic way. It is composed of an ecosystem of microser-
vices that can be combined and plugged together according to the application logic
and/or easily replaced with open-source or proprietary solutions. The reference
language is Java and at the core of the architecture lies a MongoDB database, which
is used as a persistence mechanism for both the data collected by sensors and the
metadata about the connected devices. A key aspect of the project is the certification
program that aims at guaranteeing an overall ecosystem compatibility. Indeed, in
order to be authorised to use the EdgeX trademark, vendors need the Project board
to certify any commercial value-add that they build within the core framework, so
that the core APIs are always supported (Strategy, 2017).

macchina.io (GmbH, 2018) is a toolkit that allows IoT developers to easily im-
plement embedded applications on top of the most commonly used Linux-based
single-board computers such as Raspberry Pi. It is based on a JavaScript and C++
runtime environment and provides several bundles implementing interfaces to de-
vices and sensors, network protocols such as MQTT or COAP, interfaces to Cloud
services (e.g., for sending SMS or Twitter messages), and a Web-based user inter-
face. The core of the platform is represented by the POCOC++ libraries that imple-
ment essential features, e.g., platformabstraction,multithreading, stream, datagram
andmulticast sockets, HTTP server and client, SSL/TLS. macchina.io is released un-
der the Apache 2.0 License.

What follows is the set of FC development frameworks for the IoT that are part of
a software platform discussed previously. Within its proprietary ecosystem, Nebbi-
olo Technologies provides an SDK for the development of native applications on top
of the fogOS software stack (Nebbiolo, 2018c). The reference language is Python,
and the developers are provided with a set of tools that allow an application to be
packaged within a Docker container and deployed onto the system in the form of a
fogLet. A set of libraries are available to interact with the fogOS Pub/Sub Databus
for data, events, and alarms propagation.

Similarly, the FogHorn Lightning platform provides developers with specific
SDKs. This development framework is available in two editions, namely standard
and micro, which primarily differ from one another for their footprint. In the micro
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edition, a C++ SDK allows custom applications to implement data preprocessing,
data visualisation, and machine learning features at the edge. In the standard edi-
tion, a polyglot SDK further provides support for multiple industrial protocols (e.g.,
MQTT, Modbus). No open documentation is available on the system architecture;
therefore, no details about the supported deployment methods can be provided.

Within the IOx (Cisco, 2018b) ecosystem, Cisco provides the Cisco IOx SDK
and other development tools, which help developers to correctly package their ap-
plications for execution on Cisco IOx. The SDK allows developers to use several
high-level languages, e.g., C/C++, Python, Ruby, Node.js and supports different
categories of applications. Specifically, both containerised applications and VM-
packaged applications are supported. The developer can use either an ad-hoc LXC-
compliant format or theDocker tooling to containerise applications. AKVM/QEMU
hypervisor infrastructure is available for VM-packaged applications. Finally, the
“IOxmiddleware services” provide high-level abstractions and APIs to facilitate the
development of IOx applications.

Hardware platforms

In this section, we report the hardware solutions that are provided by the most
prominent hardwaremanufacturers on themarket and that can play the role of FNs.
Table 2.8 reports a comparison among such FC hardware platforms on the basis of
those features that we believe are of particular interest in an IoT context. Specifically,
besides some information about the hardware resources and the approximate price,
we include details on: (i) the network connectivity; (ii) the additional interfaces that
can be used to connect with external sensors and actuators (which represents the
main difference between this kind of hardware products and the standard Cloud
DC solutions); and (iii) the presence of hardware-based security solutions, such as
Trusted Platform Module (TPM). By looking at Table 2.8, it is evident that FNs are
very heterogeneous, especially in terms of hardware capabilities and therefore price.

Nebbiolo Technologies offers a series of modular hardware solutions, fully com-
pliant with their FC software platform, called fogNodes (Nebbiolo, 2018b). fogN-
odes exist with a wide range of form factors and different computing capabilities,
including standard x86 CPUs, FPGAs, and GPUs. Ethernet connectivity is available
by default, whileWi-Fi and LTE interfaces comewith optionalmodules. Particularly
interesting is the presence of a TPM device onboard to provide hardware security
capabilities. TTTech produces the MFN 100 (TTTech, 2018), a device that can be
employed as FN in industrial environments within the Nerve platform, which inte-
grates the fogOS and the fogSM from Nebbiolo Technologies.

Cisco provides a series of network infrastructure products supporting the IOx
ecosystem and thus allowing seamless deployment and execution of Fog applica-
tions. Specifically, the Cisco 800 Series Industrial Integrated Services Routers (Cisco,
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Table 2.8: Comparison among the FC hardware platforms for the IoT.

Manufac-
turer

Model Hardware
resources

Network
connec-
tivity

Interfaces for
external sensors
and actuators

Hardware-
based
security

Price

Nebbiolo
Techno-
logies

fogNode 4-8 cores x86 i5/i7
CPUs, 8-16 GB
RAM

Ethernet
(Wi-Fi and
LTE are
optional)

No ✓ n/a

TTTech MFN 100 Intel Atom 4 cores
1.8 GHz CPUs, 4-8
GB RAM

Ethernet 2 USB ports n/a

Cisco 800 Series
Industrial
Integrated
Services
Routers

Intel Atom 2 cores
1250 MHz CPU, 2
GB RAM

Ethernet,
LTE
(Wi-Fi is
optional)

2 asynchronous
serial interfaces

✓ 2000$

Cisco Compute
Modules
for the
1000 Series

AMD GX-410VC
4 cores 800 MHz
CPU, 4 GB RAM

Ethernet 1 USB port 2000$

Dell Edge
Gateway
5000

Intel Atom E3825
CPU, 2 GB RAM

Ethernet,
Wi-Fi,
BLE, LTE

6 different se-
rial interfaces

✓ 1000$

Dell Embedded
Box
PCs

4 cores x86 i5/i7
CPU, 4-32 GB
RAM

Ethernet,
Wi-Fi,
BLE, LTE

5 USB ports,
3 different se-
rial interfaces,
GPIO

✓ 1000$

HPE GL20 IoT
Gateway

Intel 4300U 2
cores i5 CPU, 8
GB RAM

Ethernet,
Wi-Fi (LTE
is optional)

5 USB ports, 2
different serial
interfaces

2000$

HPE Edgeline
EL1000-
/4000

1-4 Intel Xeon D
8-16 cores each, up
to 128 GB RAM

Ethernet via PCIe
expansion slots

3800$

Raspberry
Pi Foun-
dation

Raspberry
Pi 3
Model B+

1.4GHz 4 cores
ARM Cortex-A53
CPU, 1GB RAM

Ethernet,
Wi-Fi,
BLE

4 USB ports, 40
GPIO pins,
Camera Serial
Interface

35$

Qualcomm Dragon-
Board
820c

2.35GHz 4 cores
CPU, Adreno 530
GPU, 3GB RAM

Wi-Fi,
Bluetooth

3 USB ports,
pins, Camera
Serial Interface

200$

Qualcomm Dragon-
Board
410c

1.2GHz 4 cores
ARM Cortex-A53
CPU, Adreno 306
GPU, 1GB RAM

Wi-Fi,
Bluetooth

3 USB ports,
pins, Camera
Serial Interface

75$

Intel Edison 500MHz 2 cores
CPU, 100MHz
MCU, 1GB RAM

Wi-Fi,
Bluetooth

Total of 40 GPIO
pins

50$
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2018a) are compact routers providing IoT gateway functionalities. They offer inte-
grated 4G LTE connectivity, Ethernet ports, and a couple of asynchronous serial
interfaces for sensors/actuators. The Cisco ComputeModules for the Cisco 1000 Se-
ries Connected Grid Routers (Cisco, 2018c) are field-replaceable modules that bring
FC capabilities to already operational networks. They are specifically tailored to in-
dustrial IoT markets such as utilities, manufacturing, and Smart Cities.

Beingprimarily a hardwaremanufacturer, Dell Technologies provides enterprises
with a portfolio of IoT-focused infrastructure products that allow them to build and
deploy complete, secure, and scalable solutions from end IoT devices, to the net-
work edge, and up to the Cloud (Dell Technologies, 2018). In this regards, Dell
Technologies portfolio includes the following products. On the one hand, the Dell
Edge Gateway 5000 (Technologies, 2018b) is the flagship product of a family of IoT
gateways that is equippedwith awide range of I/O connectors to bridge both legacy
systems andmodern sensors to the Internet but also provides enough computing/s-
torage power to aggregate data and perform local analytics. On the other side, the
Dell Embedded Box PCs (Technologies, 2018c) seem to prioritise performance and
adaptability to different use cases, rather than I/O connectivity. They are highly
reliable devices for a variety of use cases, including process and discrete manufac-
turing, fleetmanagement, kiosks, digital signage, surveillance, and automated retail
solutions. Dell also provides Cloud DC solutions for advanced analytics, data man-
agement, storage, and computation, but these are out of the scope of this survey.

Among the main hardware manufacturers, also HPE provides customers with
a set of products that are specifically designed with the FC use case in mind. The
HPE GL20 IoT Gateway (LP, 2018b) is a compact solution targeting verticals such
as manufacturing, Smart Cities, oil and gas. Similarly to other manufacturers’ IoT
gateways, it comeswith a set of I/O interfaces for connecting to IoT devices andwith
enough power to quickly elaborate data and react to critical situations. Products
belonging to the HPE Edgeline family (LP, 2018a), such as the EL1000 and EL4000,
instead, feature a reduced set of I/O interfaces but possess an expansible amount of
hardware resources, which makes them similar to standard DC solutions.

There exists also a considerable number of less powerful FNs, which can be there-
fore employed in a more limited range of scenarios but are much cheaper than the
previously discussed solutions. For instance, in Table 2.8, we report information on
the Raspberry Pi 3 Model B+ single-board computer (Pi, 2018), which is power-
ful enough to behave as a FN. Indeed, the authors in (Bellavista and Zanni, 2017)
demonstrate the feasibility of deploying Fog-IoT services as Docker containers on a
Raspberry Pi. Other single-board computers that are worth mentioning as poten-
tial FNs are the Qualcomm DragonBoard 820c (Qualcomm, 2018b), the Qualcomm
DragonBoard 410c (Qualcomm, 2018a), and the Intel Edison board (Intel, 2018).
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Towards a standardisation
The proliferation of proprietary solutions in ICT inevitably leads to delays in inno-
vation and development and to strong limitations to the potential economic impact
that ICT might have. Looking at the IoT, the McKinsey Global Institute states that
interoperability is required on average for 40% of the total potential economic value
that the IoT enables (Manyika et al., 2015). Therefore, it is time for technology sup-
pliers to give birth to interoperable ecosystems by cooperating on the definition of
standard technologies, protocols, and architectures.

Following this direction within the FC field, the OFC was founded in 2015 by
ARM, Cisco, Dell, Intel, Microsoft, and the Princeton University and currently has
62 members throughout the world (Consortium, 2018a). The stated objectives of
the Consortium are: (i) to create an open, comprehensive reference architecture for
the Fog; (ii) to promote the adoption of the Fog in the several application domains
that may benefit from it; and (iii) to influence Fog standards development through
liaisons with standardisation bodies. In February 2017, the Consortium released
theOFRA, thus paving theway to amulti-vendor interoperable FC ecosystem. More
recently, in June 2018, the IEEE StandardsAssociation (IEEE-SA) adopted theOFRA
as an official standard (Association, 2018), namely the IEEE 1934TM.

We now provide a high-level overview of the salient characteristics of the above-
mentioned architecture; further details may be found in (Consortium, 2017). Eight
core principles, known as pillars, guided the definition of the entire OFRA; they are:
(i) security; (ii) scalability; (iii) openness; (iv) autonomy; (v) reliability, availability,
and serviceability (RAS); (vi) agility; (vii) hierarchy; and (viii) programmability.
Basically, the OFRA consists of five vertical perspectives and three horizontal views.
Each perspective represents a cross-cutting concern that involves all the layers of
the architecture. In other words, perspectives are the OpenFog pillars made inte-
gral part of the architecture itself. On the other hand, each of the three views is a
set of layers that represents one or more specific aspects of the architecture. To be
more precise, theNode View includes all the aspects of interest to the chip designers
and the silicon manufacturers, as it clarifies the generic characteristics (e.g., compu-
tation, storage, networking) that a chip in a FN should possess. The actual FN is a
composition of one ormore chips (i.e., Node Views)with some additional elements.
The higher the number of chips in a FN, the higher its expected positioning within
the Fog hierarchy due to its greater capabilities. The OpenFog view that represents
a FN is called System View, and typically the stakeholders interested in it are the
system architects and the hardware Original Equipment Manufacturers (OEM). To
conclude, the Software View characterises the software running on a FN. It includes
the software for the management of the node and its communications, the applica-
tion services, and the software required to support them (e.g., VMs and containers,
software libraries, databases, message brokers). As such, this view is of interest to
the software architects and the application developers.



Chapter 3

Mobility support in Fog Computing

This chapter provides the background on mobility support and service migration
in FC, which represent the focus of this thesis. Section 3.1 describes the research
problem and introduces the concept of Companion Fog Computing. Section 3.2
reports five FCuse caseswheremobility support proves necessary. Then, in Sections
3.3, 3.4, 3.5, and 3.6, we discuss the different aspects that characterise the issue of
mobility support, provide an overview of the state of the art for each of them, and
point out the open issues and future research directions.

3.1 Companion Fog Computing
As outlined in Section 2.5, extending the Cloud paradigm towards the network edge
introduces novel aspects that may either lead to new research challenges or change
the way existing challenges are to be dealt with. A new research problem that arises
with the introduction of FC is that of mobility support. As already discussed, Cloud
services are in general distant from the served users, irrespective of the position of
the latter. Hence, end (user) mobility is not an issue in Cloud-only environments.
On the contrary, the distinguishing feature of FC, which brings all the benefits de-
scribed in Table 2.2, is its proximity to the end devices. Therefore, device mobility
plays a fundamental role in the Fog because it may compromise the above benefits.
When a device moves, indeed, the topological distance to the serving FN may in-
crease, possibly impairing the distinctive benefits of FC and thus the QoS provided
to the user.

The objective is to support device mobility in a Fog environment or, in other
words, to guarantee the FC benefits also when devices move from one place to an-
other. The most investigated approach in literature to achieve this purpose is by
migrating the Fog service across the FC infrastructure, thus to let it follow the ap-
plication component running on the mobile device (Rejiba et al., 2019; Wang et al.,
2018). As a result, the Fog servicewould be a "companion" of themobile application;
we refer to this as Companion Fog Computing (CFC).

49
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The problem of mobility support and service migration in Fog environments has
attracted great attention in recent years. This is proved by the significant number of
publishedworks in the field. In the next sections, we discuss theseworks, organising
them in the following four categories/aspects that characterise research on mobility
support and service migration in the Fog:

• hosting and migration techniques - this research direction consists in investi-
gating which is the most appropriate way (considering the Fog, with its char-
acteristics, as the underlying system) to implement a Fog service as well as
which are the best techniques to migrate services across FNs. This category is
further discussed in Section 3.3;

• migration policies - this group of works focuses on the definition of policies
that, considering information on the infrastructure and onmobile devices, de-
cide when and where to migrate Fog services. Section 3.4 focuses on this as-
pect;

• migration platforms - this category gathers all those aspects related to the
design and implementation of software platforms that provide mechanisms
to support mobility through service migration. Further details can be found
in Section 3.5;

• simulation of mobility and migration - Section 3.6 reviews the state-of-the-
art simulators for FC environments, with a focus on the modelling of device
mobility and service migration.

For each of the above categories, we overview the state of the art and outline the
open issues and future research directions. This helps us to provide a clear picture
of the research gaps in the field, some of which we try to fill through the works that
are discussed in the following chapters.

3.2 Use cases
Mobility support is essential to enable several Fog-based IoT applications where de-
vices are mobile. In what follows, we describe five example use cases with the ob-
jective to show the importance of this research topic in real-life scenarios. The first
use case that we report is the more detailed, since it is considered as the reference
use case in Chapter 5.

Smart assistant
This use case is adapted from (Huawei, 2017) and depicted in Figure 3.1. A vi-
sually impaired person wears a smart helmet embedding a smart camera. Due to
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its resource limitations, the camera continuously streams the captured video to a
resource-richer node. Here, Artificial Intelligence (AI) techniques are applied to
the video in order to characterise the current context of the user (e.g., which objects
or events surround him/her). Based on the obtained insights, the remote service
returns voice guidance feedback to the visually impaired person. As reported in
(Huawei, 2017), this application requires the RTT between the smart helmet and
the serving node to be lower than 20 ms. This cannot be achieved by relying on the
distant Cloud, and FC may be a solution. At the beginning of the considered sce-
nario, the user is in the hospital for a check-up. The hospital network, to which the
smart helmet connects through Wi-Fi, hosts two FNs. The service that executes the
AI logic runs on Fog node 0. Once the medical check-up is over, the user takes a bus
to go home. The bus network comprises only one FN (i.e., Fog node 2), which also
behaves asWi-Fi access point and connects to the Internet though 4G/LTE. The han-
dover from the hospital network to the bus network causes a considerable increase
in the topological distance to Fog node 0 and hence makes Fog service migration to
Fog node 2 necessary. Similarly, when the user reaches home, another migration is
needed. Therefore, at the end of the reported scenario, the Fog service runs on Fog
node 4, which is one of the two FNs present in the residential network of the user.

Smart tourism
Augmented Reality (AR) and Virtual Reality (VR) services that perform video an-
alytics in the Fog need to followmobile users (ETSI, 2016). This is necessary mainly
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Figure 3.1: Mobility support in the smart assistant use case.
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to guarantee low latencies and avoid saturating the backbone bandwidth with the
video streams from mobile devices. An example of AR use case requiring mobility
support is that of a tourist in a Smart City who points at streets and buildings with
his/her smartphone or smart glasses and receives useful information in real-time
about the points of interest in the view of the camera (e.g., historical background of
monuments, shop special sales).

Smart healthcare
Smart healthcare is another application domain where mobility support is needed.
In the near future, biomedical parameters (e.g., blood pressure, blood sugar level,
body temperature, stress) will be measured by means of medical-grade wearables
directly connected to themobile network infrastructure (Ericsson, 2017), where time-
critical analysis can be carried out for real-time actuation. Guaranteeing low and
predictable latencies as the person moves is of paramount importance for his/her
safety.

Smart factory
In an industrial environment, portableARdevices (e.g., smart glasses, tablets) could
be used by operators to obtain real-time information on aspects such as: products,
production procedures, instructions. Real-time AR systems exploit FC services to
analyse and augment images with bounded low latency and without the need to of-
fload them to the Cloud (Fernández-Caramés et al., 2018). In this case, for instance,
migration could be exploited to support AR functionalities even when mobility is
involved. Let us consider an operator moving through the production plant for in-
spection, equipped with smart glasses that show status information on the various
equipment. In this case, migration of the AR service is mandatory to ensure that
images are always collected and analysed in due time.

Smart vehicles
In the vehicular domain, applications implementing real-time situation awareness
or cooperative functionalities will require FC and storage capabilities to implement
time-critical and data-intensive tasks (Zhu et al., 2018). For instance, let us consider
an autonomous driving vehicle and a supporting service that collects context data
from the environment (e.g., from roadside sensors) and other vehicles to notify pos-
sible hazardous situations by applying mining techniques on the collected data. In
this case, service migration is of paramount importance to keep the communication
latency between the vehicle and the supporting service as low as possible and allow
the vehicle to react promptly.
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3.3 Hosting and migration techniques
As discussed in Section 2.5, new system, network, and environmental characteristics
must be examined when extending the Cloud towards the network edge. Among
the other aspects, these characteristics influence service hosting and migration in
the following ways:

• differently from Cloud DCs, Fog environments are characterised by a high
heterogeneity of nodes in terms of hardware capabilities, architectures, and
operating systems. Hence, there is the need for a hosting technology for Fog
services that is generic and lightweight enough to run on as many different
types of FNs as possible;

• FNs are interconnected through a WAN and therefore experience higher la-
tencies and lower throughputs than those present within a Cloud DC. Based
on this, it is beneficial duringmigration to transmit the lowest possible amount
of data;

• in the Cloud, the total migration time (i.e., the overall time required to com-
plete the migration) is only a secondary consideration, whereas downtime
(i.e., the time interval within migration during which the service is not up and
running) is the primary concern. In the Fog, instead, limiting the total migra-
tion time may be of paramount importance, as there are situations in which
protracted total migration times may lead to overall degraded performances
(Ha et al., 2017). For instance, if migration took too long, another migration
would be required immediately afterwards because, by that time, the mobile
user has moved away;

• most Fog services, especially those deployed and running at the network edge,
typically perform transient data analysis and time-critical control (see Table
2.3). Thus, they are not supposed to write to any persistent memory (e.g.,
the disk), unlike Cloud services (Cisco, 2015). Requests demanding semi-
permanent or permanent storage are usually directed to a Cloud-hosted ser-
vice (Sarkar et al., 2018), instead. As a result, what typically happens in Fog
environments is that only the runtime (i.e., volatile) state ismigrated and used
at destination, togetherwith a base service image representing the default disk
state, to restore the service.

The above points are such that a hosting or migration technique that is well es-
tablished in the Cloud might not be equally suitable for FC contexts. Hence, there
is the need to identify hosting andmigration techniques that are appropriate for the
Fog. Then, such techniques may be taken into consideration by migration policies,
implemented within migration platforms, and modelled in FC simulators.
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One of the most popular hosting techniques in Cloud DCs is hardware-level vir-
tualisation (also known as platform virtualisation – see Figure 3.2(a)), which allows
the creation of Virtual Machines (VMs) (Habib, 2008). A VM acts like a real com-
puter able to run an OS. More in general, software, when executed on VMs, does
not have any access to (or visibility into) the underlying hardware resources of the
host machine (Asvija et al., 2019). In platform virtualisation, guest is another name
for VM, whereas the software in charge of VM instantiation on the host is called
hypervisor, or Virtual Machine Monitor (VMM) (Desai et al., 2013).

OS-level virtualisation (Soltesz et al., 2007), better known as containerisation
(see Figure 3.2(b)), is an approach enabled by a set of OS features where the ker-
nel itself allows the coexistence of multiple and isolated instances of user-space en-
vironments, leaving the hardware abstraction layer as well as the enforcement for
process sandboxing to the shared kernel co-hosting them. Virtualisation instances
of this kind, the so-called containers, still look like real computers from the point of
viewof programs running in them, as the latter can see select resources (file systems,
networks, hardware devices and capabilities), i.e., those exposed by an ordinaryOS.
However, software running inside a container can only see a subset of the resources
made available by the kernel and specifically those assigned to the container.

The main difference between platform virtualisation and containerisation thus
lies in the level at which abstraction and resource partitioning occur: at the kernel
level for containers, at the hardware level for VMs. In other words, each VM has its
own kernel, while containers all share the host kernel. This aspect leads to the fol-
lowing considerations. With their characteristics, VMs provide a better multi-tenant
isolation than containers. Besides, VMs ensure better software compatibility than
containers, meaning that, e.g., the same Ubuntu VM can run on both a Linux or
a Windows host machine (Ha et al., 2017). Instead, Ubuntu containers can exclu-
sively run on Linux machines, as they need to access the host kernel. Yet, containers
are more lightweight and in general perform better (e.g., faster boot time, better
execution speed, less data to store and transmit) (Karim et al., 2016; Ramalho and
Neto, 2016). In light of this, even though the choice between VMs and containers
may depend on the actual circumstances and needs, containers are in general pre-
ferred as hosting technology for FC (Morabito et al., 2018; Tang et al., 2018; Wang
et al., 2018; Morabito, 2017; Bellavista and Zanni, 2017; Ismail et al., 2015). With
their lightweight nature, indeed, containers better suit the Fog, where computing
resources of nodes and network performance are in general lower than in the Cloud.

Another hosting technique that is worthy of notice is that of mobile agents. A
mobile agent is a program able to autonomously migrate from amachine to another
machine. Migration can be based either on a predetermined path or on one that
agents themselves dynamically decide based on collected information. For mobile
agent migration, most systems allow to capture the state of an agent only in the form
of application-level data. As such, this mechanism does not allow the destination
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Figure 3.2: Platform virtualisation (a) vs. containerisation (b).

node to restore the state of threads as it was before migration (i.e., weak mobility).
On the contrary, migration of VMs and containers transfers the execution state at
a fine granularity, namely at instruction-level, and therefore allows to restore the
thread context at the exact point before migration (i.e., strong mobility) (Poggi and
Tomaiuolo, 2011). This is the main disadvantage of migrating mobile agents. An-
other issue with mobile agents is that their employment in FC and MEC environ-
ments is still in its infancy, with no available framework at the moment of writing
(Wang et al., 2018). On the other hand, live migration of VMs is a well-established
technology. Besides, containermigration, although at a preliminary stage, ismoving
its first steps through the usage ofCheckpoint/Restore InUserspace (CRIU) (see Chap-
ter 4 for more details). Nonetheless, mobile agents present important advantages,
being very lightweight and rapid to boot/run as well as able to migrate across the
most diverse platforms and architectures (Wang et al., 2018). This latter character-
istic is particularly interesting in FC environments, which are highly heterogeneous.

For the sake of clarity, Table 3.1 summarises the main advantages and disadvan-
tages of working with the above mentioned hosting techniques. By looking at this
table, containerisation may represent the hosting technology that suits the require-
ments in most of the FC scenarios. For this reason, in the next chapters, we focus on
container migration.

Open issues - Being platform virtualisation the oldest among the hosting tech-
niques, VM migration is the most consolidated. On the other hand, migrations of
containers and mobile agents are currently more preliminary. An open issue is the
implementation of a framework for agent technology in FC, which would ease the
development of mobile agent-based IoT applications for FC scenarios. With respect
to container migration, fewworks in literature provide knowledge in the field (Tang
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Table 3.1: Advantages and disadvantages of the hosting techniques.

Hosting technique Advantages Disadvantages
VMs High multi-tenant isolation and

software compatibility; strong
mobility

High quantity of data to store and
transfer; slow at booting and execut-
ing

Containers Low quantity of data to store and
transfer; fast at booting and execut-
ing; strong mobility

Low software compatibility

Mobile agents Low quantity of data to store and
transfer; fast at booting and execut-
ing; high software compatibility

Weakmobility; no framework avail-
able

et al., 2018;Ma et al., 2018;Nadgowda et al., 2017; Govindaraj andArtemenko, 2018).
Moreover, none of them evaluates and compares the existing container migration
techniques, i.e., cold, pre-copy, post-copy, and hybrid migrations (see Chapter 4),
not in the Cloud, nor in the Fog. To the best of our knowledge, there is only one
work in literature that makes such a contribution, focusing on FC environments
(Kakakhel et al., 2018). Nonetheless, it only assesses a subset (i.e., cold and pre-
copymigration) of the available techniques and concludes that, being at a first stage,
container migration results in unexpected errors. Therefore, in Chapter 4, we pro-
pose a work to fill this gap in literature. Finally, another research direction may be
the definition of novel migration techniques or enhancements to the existing ones
to better suit the distinguishing characteristics of FC environments.

3.4 Migration policies
An essential element within any mobility support solution is the execution of a mi-
gration policy. Migration policies decide: (i) when is themoment tomigrate the Fog
service (i.e.,When-to-Migrate decision); (ii) to which FN the Fog service should be
migrated (i.e., Where-to-Migrate decision). Such decisions can be made based on
aspects such as: (i) users’ mobility; (ii) requirements of the applications; (iii) status
of computing and network resources; (iv) operational costs; (v) energy consump-
tion considerations; and (vi) security and privacy concerns. When making migra-
tion decisions, a trade-off between the potential benefits of migrating the service, on
the one hand, and the potential costs determined by such a migration, on the other
hand, must be always made. For example, migration might reduce the RTT towards
the service, but, at the same time, it consumes network bandwidth and leads to ser-
vice downtime. Tomodel such trade-offs and find optimal solutions to the problem,
a number of works have been proposed, as we detail in what follows.

MarkovDecision Process (MDP) is a commonly used framework in literature for
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the definition of migration policies. In (Ksentini et al., 2014), the authors model the
service migration problem as a distance-based MDP. In this first proposal, user’s
mobility, which is not deterministic, is modelled and predicted through a one di-
mension (1D) mobility pattern. On the other hand, both (Taleb et al., 2016) and
(Wang et al., 2015a) formulate the service migration problem as a distance-based
MDP where 2D mobility scenarios are captured. The same authors of (Wang et al.,
2015a) advance an alternative solution method in (Urgaonkar et al., 2015). They
establish a decoupling property of their initial MDP which transforms it into two
independent MDPs on disjoint state spaces. Lyapunov optimisation can then be ap-
plied so that what is obtained is a simple deterministic (rather than stochastic) op-
timisation problem. Another work from the same authors (Ciftcioglu et al., 2015)
contextualises the mobility support issue in military environments rather than in
commercial ones. Since military environments demand stronger security guaran-
tees, a new parameter (i.e., security cost) is considered to make MDP-based migra-
tion decisions, together with the usual parameters (i.e., transmission and migration
costs). The security cost of amigration increases when services of different users are
hosted on the same physical node. In (Zhang et al., 2016), the authors employ an
MDP to decide where (and not when) to migrate the Fog service; this work is worth
mentioning because, unlike the aforesaid contributions, it also considers the net-
work and FN states as parameters on which to base migration decisions. In (Plachy
et al., 2016), which also usesMDPs, the authors propose to handle user’smobility by
either migrating the Fog service or by finding a new, more suitable communication
path between it and the mobile node. Although MDPs are by far the most common
way to define a migration policy, they are not the only one. For example, in (Yao
et al., 2015), the authors suggest making migration decisions in order to minimise
the overall bandwidth consumption in a Fog-enabled Vehicular Cloud Computing
(VCC) context; the problem is herein formulated as a Mixed-Integer Quadratic Pro-
gramming (MIQP) problem.

Open issues - Even though there are several contributions in terms of migration
policies in FC, there are still unexplored possibilities and room for further improve-
ments. Firstly, it is worth highlighting that most of the discussedworks do not make
clear assumptions on (nor evaluate the impact of) the placement of the decision-
making logic. However, aspects such as the timeliness of migration-related actions
and the availability of insights from the decision-making logic could be much in-
fluenced by the placement of the logic (i.e., in the Cloud, in the Fog, on mobile
devices). Another open issue that is worthy of investigation is the definition of mi-
gration policies that consider both end (user) devices and FNs as mobile devices.
Although this is less common, also FNs may indeed be mobile, as it is proposed for
example in (Hou et al., 2016) and in (Ye et al., 2016). Finally, another research direc-
tion pertains theWhen-to-Migrate decision. Such a decision should always consider



58 Mobility support in Fog Computing

thewireless connection handoff (i.e., the change of the access point, due tomobility)
as the cornerstone. This is because handoff is that mechanism that may consider-
ably change the topological distance between the mobile device and the current FN.
Based on the works in literature, a Fog service could be migrated either proactively
or reactively with respect to the wireless handoff (as also described in Section 6.1).
Proactively means that service migration occurs before the handoff, based on user’s
mobility prediction. If prediction is correct, proactive migration improves overall
performances, as the service would be immediately available to the mobile device
once this is connected to the new access point. However, performance might de-
grade if mobility prediction is erroneous. On the other hand, reactive migration
consists in migrating the service only after the handoff has started. This approach
has in general worse performance than the former (the mobile device connected to
the new access point still has to access the Fog service on the old FN) but proves
more beneficial when user’s mobility is highly unpredictable. An interesting re-
search direction would be the definition of an hybrid approach that combines the
benefits of the two. In Chapter 5, we propose an example of reactive migration pol-
icy. However, we highlight that the main contribution of that chapter is not the
policy but rather the migration platform.

3.5 Migration platforms
Migration platforms can be defined as software environments that provide all the
functionalities required to support device mobility through service migration. Mi-
gration platforms are deployed over the distributed Fog infrastructure and usually
includemechanisms tomeasure or predict aspects such as the status of network and
computing resources as well as application-related metrics, on which migration de-
cisions are based. Each migration platform implements one or more of the hosting
andmigration techniques from Section 3.3 and executes one ormoremigration poli-
cies. In what follows, we review the state-of-the-art migration platforms and point
out the open issues and future research directions in the field.

In (Bao et al., 2017), the authors present Follow Me Fog (FMF), a FC platform
in which a Software as a Service (SaaS) Server is hosted on each access point and
provides resource-intensive services to mobile IoT devices. What is migrated here
is not the actual service but the pending jobs offloaded by the mobile device. This
platform migrates the jobs any time that a handoff occurs, which is not always nec-
essary, and does not handle common scenarios in which there are two or more po-
tential FNs given a specific access point. sFog (Bao et al., 2018) enhances FMF by
introducing congestion control mechanisms. Follow Me Cloud (FMC) (Taleb and
Ksentini, 2013) mainly focuses on content and session migration across FNs and
heavily exploits elements and functionalities available in cellular networks.

In (Saurez et al., 2016), the authors propose Foglets. This platform uses an ap-
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proach similar to mobile agents in order to implement service migrations: the exe-
cution state of a service is captured at a coarse granularity by the application itself
and then migrated to a new node. On the contrary, (Bellavista et al., 2017) presents
a platform capable of migrating the execution state of a service at a fine granularity,
by proactively migrating VMs. More specifically, this proposal extends the Open-
stack++ Edge Computing platform (see Section 2.6) in order to enable mobility
support. As in (Bao et al., 2017), the authors of this work only consider situations
where for each access point there is only one FN, which is co-located with the access
point. Furthermore, they do not contemplate parameters such as the state of FN
hardware resources in their migration decision-making.

As we better detail at the beginning of Chapter 4, VMs and containers can be mi-
grated either in a stateless or in a stateful way. The former approach is so called
because it causes the loss of the whole VM/container state. Therefore, once on
the destination FN, the service restarts from scratch. Stateful migration, instead,
is such that the whole state of the VM/container is made available at destination
once migration is completed. Some migration platforms use stateless container mi-
gration as service migration technique (Farris et al., 2017; Dupont et al., 2017; Zanni
et al., 2018). Specifically, the first proposes a stateless replication of containers across
FNs, while the other two destroy a container on the source node and statelessly re-
instantiate it on the destination node. In particular, (Zanni et al., 2018) is worthy
of notice, as it makes two novel contributions. Firstly, it implements a module on
each FN that is not only able to monitor resource consumption but also to predict
whether a FN is likely to become congested soon. Secondly, it conceives of Fog ser-
vices as multi-container applications managed through Docker Compose25. Table
3.2 summarises the main aspects of the analysed platforms.

Open issues - By looking at Table 3.2, it is possible to note how the existing works
do not implement stateful container migration in their platforms. As detailed in
Section 3.3, containerisation in FC environments is drawing much interest, and con-
tainermigration represents a lightweight approach to achieve strongmobility. There-
fore, in Chapter 5, we propose and validate a migration platform that leverages con-
tainerisation as hosting technique and implements both stateful and stateless con-
tainer migrations as migration approach. To conclude, another research opportu-
nity is the definition, within migration platforms, of federation mechanisms among
different Fog providers. Such mechanisms should allow mobile users that are as-
sociated to a Fog provider to utilise computing resources of other providers on the
basis of pre-established Service Level Agreements (SLA). Federation may indeed
prove beneficial, e.g., by granting access to a federated FN in an area where there
are not available FNs of the original provider.

25See https://docs.docker.com/compose/. Last accessed: 28 October 2019.
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Table 3.2: Comparison among the migration platforms.

Reference Migrates Policy Evaluation
FMF/sFog (Bao et al., 2017,
2018)

Pending jobs (weak mobility) Proactive Testbed

FMC (Taleb and Ksentini,
2013)

Content and session (weak mobility) Reactive Simulator
(ns-3)

Foglets (Saurez et al., 2016) Execution state at a coarse granularity
(weak mobility)

Proactive;
Reactive

Testbed

(Bellavista et al., 2017) VMs (strong mobility) Proactive Testbed
(Farris et al., 2017) Containers (stateless replication) Proactive Testbed
Cloud4IoT (Dupont et al.,
2017)

Containers (stateless destruction and
re-instantiation)

Reactive ✗

(Zanni et al., 2018) Containers (stateless destruction and
re-instantiation)

Reactive Testbed

3.6 Simulation of mobility and migration
Simulation can be a time- and cost-effective way to evaluate service migration solu-
tions in FC environments (especially the large-scale ones) with mobile users. How-
ever, to the best of our knowledge and how we detail in what follows, the state-of-
the-art Fog simulators do not provide this possibility.

VirtFogSim (Scarpiniti et al., 2019) does not model aspects such as service migra-
tion, energy consumption, or pricing. However, it dynamically tracks the energy-
delay application performance against abrupt changes due to failures or device mo-
bility, e.g., mobility-induced changes of the available uplink/downlink bandwidth.
The most distinctive functionality of VirtFogSim is that it allows to model cellular
networks, which is useful when simulating 4G/5G scenarios. VirtFogSim is cur-
rently the only simulator that explicitly provides such a feature. Besides, this sim-
ulator includes a Graphical User Interface (GUI) that shows the simulation results
in tabular, bar-chart, and coloured map graph formats.

Yet Another Fog Simulator (YAFS) (Lera et al., 2019) is a Python simulator for
FC environments. It is particularly good atmodelling network failures and therefore
allows to evaluate service placement solutions in failure cases or to design robust
networks. Network failures may be modelled in two possible ways: (i) through the
runtime creation/deletion of FNs and network links; (ii) through custom processes,
namely functions invoked at runtime for the implementation of real events. YAFS
models mobility, sensors, and actuators but does not model aspects such as energy
consumption or servicemigration. Finally, although it does not include aGUI for the
description of Fog network topology, YAFS allows to import a simulation scenario
as a JSON file.

The main objective of FogNetSim++ (Qayyum et al., 2018) is to overcome the
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limitations of the other simulators in network modelling. They do not (or only par-
tially) take into account real-network properties and therefore simulate idealistic
networks where no packet loss, congestion, or channel collision happen. Instead,
FogNetSim++ extends OMNeT++26, which is a well known framework for build-
ing network simulators, to model all these aspects. Moreover, it includes popular
communication protocols for simulation, such as TCP, UDP, MQTT, and CoAP. Fur-
thermore, FogNetSim++models several other aspects, such as energy consumption,
pricing, mobility, and handoff mechanisms.

FogTorch (Brogi and Forti, 2017b) is a Java tool that outputs all the possible de-
ployments of application modules over a FC infrastructure, provided: (i) the speci-
fication of the application requirements; (ii) the description of the infrastructure, in
terms of devices and network links; and (iii) the definition of a deployment policy.
The FogTorch user then selects the best deployment out of the proposed alterna-
tives. FogTorchΠ (Brogi et al., 2017) is an extension of FogTorch that uses Monte
Carlo simulations to model variations over time of the QoS of network links, which
is expressed in terms of latency and bandwidth.

Table 3.3: Overview of the FC simulators.

FogNet-
Sim++

27 FogTorch/
FogTorchΠ

28 VirtFog-
Sim

29 YAFS30 EdgeCloud-
Sim

31 iFogSim32

Mobility/
Handoff

✓ ✓ ✓ ✓

Service
migration

Cellular
network

✓

Energy
consump-
tion

✓ ✓ ✓

Security
Failures ✓ ✓

Operatio-
nal costs

✓ ✓

Pricing ✓ ✓

IoT ✓ ✓ ✓ ✓

GUI ✓ ✓ ✓

Extends OMNeT++ CloudSim CloudSim
Language C++ Java MATLAB Python Java Java
Released 2018 2017 2019 2018 2017 2016

26See https://omnetpp.org/. Last accessed: 25 October 2019.
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iFogSim (Gupta et al., 2017) was the first FC simulator. It is implemented in Java
as an extension of the most popular CC simulator, CloudSim33. iFogSim allows to
test resource management and service placement strategies in terms of: (i) service
latency; (ii) service throughput; (iii) network usage; (iv) energy consumption; (v)
operational costs; and (vi) pricing. iFogSim provides a GUI to describe Fog network
topologies (i.e., sensors, actuators, FNs, Cloud DC, and interconnections among
them). Topologies can then be exported as a JSON file and imported again in a
later moment. iFogSim presents several strengths. Firstly, iFogSim provides the
widest range of functionalities, which span fromnetwork and resourcemanagement
modelling to energy consumption and operational costs modelling. Secondly, it is
by far the most used FC simulator in literature, which makes it the best candidate to
compare own solutions with the related work. Thirdly, iFogSim extends CloudSim,
which is the most popular CC simulator. Therefore, it is relatively easy to use for all
those who have already had experience with CloudSim. However, iFogSim also has
some limitations. The most evident is probably the lack of a detailed and consistent
documentation, which might make iFogSim hard to use for those who have never
worked with CloudSim before. Besides, network modelling in iFogSim is rather
simplistic, as this simulator does not deal with real-networks aspects such as packet
loss, network congestion, and channel collisions. Furthermore, iFogSim does not
model mobility scenarios and service migration among FNs.

EdgeCloudSim (Sonmez et al., 2018) is another prominent simulator for FC envi-
ronments. Also EdgeCloudSim is an extension of CloudSim. EdgeCloudSim mod-
els network delaysmore accurately than iFogSim,which considers network delays to
be always fixed. EdgeCloudSim, instead, includes a networking module that calcu-
lates network delays, based on the current network load, when data need to be sent
over the network. Even thoughEdgeCloudSimprovides a better networkmodelling,
it does not provide the same range of functionalities that are available in iFogSim.
For example, energy consumption, operational costs, and pricing modellings are all
missing in EdgeCloudSim. Device mobility is modelled, but service migration is
not. Hence, EdgeCloudSimmay be useful to those who work in Java and are mostly
focused on evaluating network metrics (e.g., service latency, network usage).

Open issues - Table 3.3 summarises themain characteristics of the discussed simu-
lators. As shown, most of the simulators model device mobility and handoff mech-

33See https://github.com/Cloudslab/cloudsim. Last accessed: 25 October 2019.
28See https://github.com/rtqayyum/fognetsimpp. Last accessed: 26 October 2019.
29See https://github.com/di-unipi-socc/FogTorch and https://github.com/di-unipi-

socc/FogTorchPI/tree/multithreaded. Last accessed: 26 October 2019.
30See https://github.com/mscarpiniti/VirtFogSim. Last accessed: 26 October 2019.
31See https://github.com/acsicuib/YAFS. Last accessed: 26 October 2019.
32See https://github.com/CagataySonmez/EdgeCloudSim. Last accessed: 26 October 2019.
33See https://github.com/Cloudslab/iFogSim. Last accessed: 26 October 2019.
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anisms, but none of them models service migration in FC environments. This is
an open issue for which we propose a solution in Chapter 6. Moreover, we high-
light that security modelling is still missing in the state-of-the-art FC simulators and
therefore represents another research direction.





Chapter 4

Performance evaluation of container
migration in Fog Computing

Containers and container migration are promising technologies for FC contexts. As
discussed in Section 3.3, containers are a lightweight and performing hosting envi-
ronment, and container migration may represent an efficient way to achieve strong
mobility. However, container migration is at a preliminary stage, and quantita-
tive comparisons among the state-of-the-art container migration techniques are still
missing in literature. In this chapter, we investigate and quantitatively evaluate con-
tainer migration, with a focus on FC environments. The objective is to determine
whether there exists a technique that always performs the best or, otherwise, to de-
lineate which container migration technique might be the most appropriate under
certain network and service conditions.

Note that, in this chapter, we only consider techniques of stateful container mi-
gration, namely approaches that allow the whole state of the container to be avail-
able on the destination FN once migration is finished. Hence, in what follows, we
do not deal with stateless container migration, which instead causes the loss of the
whole container state34. Moreover, we consider only the runtime (i.e., volatile) state,
and not the persistent one, of the container to be migrated between FNs. While it
is not possible to make this assumption in Cloud DCs, Fog environments are char-
acterised by services that typically perform transient data analysis and time-critical
control and are thus not supposed to write to any persistent memory (see Table 2.3
and Section 3.3). As a result, we transfer only the runtime state and use this, to-
gether with a base service image representing the default disk state, to restore the
container at destination.

The rest of the chapter is organised as follows. Section 4.1 provides a descriptive
overview of the existing stateful container migration techniques, highlighting their
characteristics and the differences among them. Then, Section 4.2 discusses the rela-

34Stateless migration simply consists in the following two steps: (i) the start of a new container
on the destination FN; (ii) the deletion of the old container on the source FN.
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tionship and the differences between runC and Docker containers with the purpose
to clarify why we chose to implement the former type of containers. Next, Section
4.3 reports the experiment setup and presents the real testbed that we used to evalu-
ate containermigration techniques. Finally, Section 4.4 analyses the obtained results
and elaborates on the lessons learnt.

4.1 Stateful container migration techniques
As we detail in this section, stateful container migration techniques can be distin-
guished in cold and live techniques. The former is so called because it stops the execu-
tion of the container during the entiremigration process. On the contrary, limitation
of service downtime is the primary concern of live migration techniques (i.e., pre-
copy, post-copy, and hybrid migrations). With live techniques, the container keeps
on running while most of its state is being transferred to the destination FN. The
container is typically suspended only for the transmission of a minimal amount of
the overall state, after which the container runs at destination. When the downtime
is not noticeable by the end user, livemigration is said to be “seamless”. For the sake
of clarity, Table 4.1 at the end of this section compares the discussed techniques in
terms of what is transmitted in each migration phase.

Cold migration

The steps for cold migration are depicted in Figure 4.1, where the source FN per-
forms the blue steps, the destination FN performs the green one, and the grey step
involves both nodes. This migration technique is said to be “cold” because it: (i)
first freezes/stops the container to ensure that it no longer modifies the state; (ii)
then dumps the state and transfers it while the container is stopped; and (iii) fi-
nally resumes the container at destination only when all the state is available. As
such, cold migration features a very long downtime. As shown in Figure 4.1, down-
time even coincides with the total migration time. This aspect of cold migration
goes against one of the main objectives of service migration in both the Cloud and
the Fog, i.e., the limitation of downtime. However, we highlight that this technique
transfers eachmemory page only once, and this should significantly reduce both the
total migration time and the overall amount of data transferred during migration.

Cold migration of containers, like all the other container migration techniques,
is strongly based on CRIU35. This started as a project of Virtuozzo36 for its OpenVZ
containers but has been getting so much popularity over time that now it is used
by all the most prominent container runtimes, such as runC. In detail, CRIU is a
software tool for Linux that is written in C andmainly allows to: (i) freeze a running

35See https://criu.org/Main_Page. Last accessed: 14 January 2019.
36See https://virtuozzo.com/. Last accessed: 14 January 2019.
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Stop container Dump state Transfer dump Resume container

Total migration time

Downtime

Figure 4.1: Cold migration.

container; (ii) checkpoint/dump its runtime state as a collection of files on disk;
and (iii) use those files to restore the container and run it exactly as it was before
being stopped. With respect to Figure 4.1, CRIU misses the third step, namely the
state transfer to the destination node. Indeed, CRIU by itself only allows to restore
a checkpointed container on the same host node; therefore, the actual state transfer
has to be performed by exploiting tools such as rsync or Secure Copy Protocol (SCP).

Pre-copy migration

Pre-copymigration is so called because it transfersmost of the state prior (i.e., pre) to
freezing the container for a final dump and state transfer, after which the container
runs on the destination node. It is also known as iterative migration, since it may per-
form the pre-copy phase through multiple iterations such that each iteration only
dumps and retransmits those memory pages that were modified during the previ-
ous iteration (the first iteration dumps and transfers the whole container state as in
cold migration. The modified memory pages are called dirty pages. Typically, iter-
ations in the pre-copy phase are convergent, i.e., of shorter and shorter duration. If
iterative, the pre-copy phase generally concludes when a predetermined number of
iterations is reached. The container is then suspended on the source node in order
to capture the last dirty pages along with the modifications in the execution state
(e.g., changes in the CPU state, changes in the registers) and copy them at destina-
tion without the container modifying the state again. Finally, the container resumes
on the destination node with its up-to-date state. Figure 4.2 shows the steps of pre-
copy migration with a one-iteration pre-copy phase. The reason for this is that our
current implementation of pre-copy migration, which is then evaluated in Section
4.4, presents only one pre-copy iteration. This implementation is based on CRIU,
which provides all the basic mechanisms (e.g., the --pre-dump option) that are nec-
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Figure 4.2: Pre-copy migration.

essary to pre-dump the runtime state of a container and restore it afterwards37. All
the following considerations on pre-copy migration and hybrid migration assume a
one-iteration pre-copy phase.

The main difference between cold and pre-copy migrations lies in the nature
of their dumps. The dump in cold migration represents the whole container state
(as the pre-dump in pre-copy migration) and thus always includes all the mem-
ory pages and the execution state. The dump in pre-copy migration, instead, only
includes those memory pages that were modified during the pre-copy phase, to-
gether with the changes in the execution state. As such, downtime for pre-copy mi-
gration should be in general shorter than that for cold migration because less data
are transferred while the container is stopped. However, downtime for pre-copy
migration is not deterministic, as it significantly depends on the number of dirty
pages. Therefore, we expect pre-copy migration to be afflicted by the two factors
that may increase the number of dirty pages: (i) the page dirtying rate featured by
the container-hosted service, namely the speed at which the service modifies mem-
ory pages; (ii) the amount of data that are transferred during the pre-copy phase,
since the more data are transferred in that phase, the more time the service has to
modify pages. It is worth noting that both these factors should be always consid-
ered against the available throughput between the source and the destination node.
Specifically, this is more obvious for the second factor, since this needs to be consid-
ered against the available throughput in order to estimate the time that the service
has to modify pages during the pre-copy phase. With regard to the first factor, we
expect that pre-copy migration performances are impaired by a page dirtying rate

37See https://criu.org/Iterative_migration. Last accessed: 15 January 2019.
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that starts approaching the available throughput (i.e., same order of magnitude),
as in that case memory pages are modified at a rate which is comparable to that of
page transfer. This would result in a state dump that is in general comparable to the
state pre-dump or, in other words, to a downtime which is comparable to that for
coldmigration. As a final remark, we highlight that, unlike coldmigration, pre-copy
migration might transfer each memory page several times, with possible negative
consequences on the overall amount of data transferred during migration and thus
on the total migration time.

Post-copy migration

Post-copy migration is the exact opposite of pre-copy migration. Indeed, it first sus-
pends the container on the source node and copies the execution state (i.e., CPU
state, registers) to the destination so that the container can resume its execution
there. Only after that (i.e., post), it copies all the remaining state, namely all the
memory pages. Actually, there exist three variants of post-copy migration, which
differ from one another on how they perform this second step. In this thesis, we only
describe the post-copy migration with demand paging variant, better known as lazymi-
gration (see Figure 4.3), which is the only one that may be currently implemented
using the functionalities provided by CRIU38, e.g., the --lazy-pages and --page-server
options. With lazy migration, the resumed container tries to access memory pages
at destination, but, since it does not find them, it generates page faults. The outcome
is that the lazy pages daemon at destination contacts the page server on the source node.
This server then “lazily” (i.e., only upon request) forwards the faulted pages to the
destination.

Post-copy migration copies each memory page only once. Therefore, it should
transfer a data volume that is comparable with that of cold migration and with that
of the pre-copy phase of pre-copy migration. Besides, similarly to cold migration,
downtime for post-copy migration is irrespective of the page dirtying rate featured
by the container-hosted service and of the overall amount of data that need to be
transferred. This is due to the fact that the dump in post-copymigration is simply the
execution state and does not contain any dirty memory pages. However, post-copy
migration is afflicted by two drawbacks that are worthy of consideration. Firstly,
page faults degrade service performances, as memory pages are not immediately
available at destination once the container resumes. This could be unacceptable to
the many latency-sensitive services present in FC environments. Secondly, during
migration, this technique distributes the overall up-to-date state of the container
between both the source and the destination node (before completion of post-copy
migration, the source node retains all the memory pages, but some of them may be
out-of-date because they have already been copied at destination and modified by

38See https://criu.org/Lazy_migration. Last accessed: 15 January 2019.
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Figure 4.3: Post-copy migration.

the resumed container), whereas approaches like cold or pre-copymigrations retain
the whole up-to-date state on the source node until the termination of the migration
process. Therefore, if the destination node fails duringmigration, it may be nomore
possible to recover the up-to-date state of a post-copied container.

Hybrid migration

As discussed, both pre-copy and post-copy migrations present some shortcomings:
(i) pre-copymigration has a non-deterministic downtime; (ii) faulted pages in post-
copy migration degrade service performances. Hybrid migration, which is illus-
trated in Figure 4.4, combines pre-copy and post-copy with the objective to subdue
their limitations and sharpen their strengths. Going into detail, the first two steps
of hybrid migration coincide with those of pre-copy migration, namely a pre-dump
of the whole state and its transmission at destination while the container is still run-
ning on the source node. Then, the container is stopped, and its state is dumped in
a way that combines the dumps of pre-copy and post-copy migrations. Indeed, the
dump in hybrid migration is represented by the modifications in the execution state
that occurred during the pre-copy phase. Once the dump is transferred to the desti-
nation node, the container can be restored. At this step, the destination node has the
up-to-date container execution state along with all the memory pages. Nonetheless,
some of them were dirtied during the pre-copy phase. As a result, the last step in
hybrid migration consists in the page server at source lazily transmitting the dirty
pages to the lazy pages daemon on the destination node. It is worth noting that the
number of memory pages that are lazily transmitted in hybrid migration is gener-
ally less than that of post-copy migration since only the dirty pages are transferred.
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Figure 4.4: Hybrid migration.

From now on, we will refer to these dirty pages as faulted pages, in line with the
name used in post-copy migration to indicate the data transferred in this last phase.
As pre-copy migration, we expect also hybrid migration to be affected by the page
dirtying rate and the amount of data that are transmitted during the pre-copy phase.
However, these factors should influence the total migration time for hybrid migra-
tion but not the downtime, as they alter the number of faulted pages. Moreover,
hybrid migration is affected by the same two drawbacks of post-copy migration. To
conclude, hybrid migration can be implemented by merging the CRIU options for
pre-copy and post-copy migrations.

Table 4.1: What is transferred in each phase of the migration techniques.

Technique Pre-Dump Dump Faulted Pages
Cold Memory pages and execution

state
Pre-copy Memory pages and execution

state
Dirty pages and changes in exe-
cution state

Post-copy Execution state Memory pages
Hybrid Memory pages and execution

state
Changes in execution state Dirty pages
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4.2 runC and Docker containers
To manage containers, there exist several platforms and runtimes. Docker39 is cur-
rently the most popular of such platforms and is used in both industrial and aca-
demic works. However, in this thesis, we run containers by leveraging the runC40

container runtime rather than Docker. In this section, we discuss runC and its rela-
tionship with Docker, illustrating the advantages and disadvantages of using runC
as a standalone tool. The goal of this section is to present runC and explain our
implementation choice.

Docker is an open platform that manages the life cycle of containers (i.e., cre-
ation, run, deletion). In its infancy, Docker was a monolithic platform. However, in
2016 (starting fromDocker v1.11), it was split into several components (A. Varkock-
ova, 2018). Figure 4.5 depicts the resulting Docker architecture. In what follows, we
only focus on the relationship between Docker and runC, without providing the de-
tails of each layer of the architecture. The core of Docker, known as Docker Engine,
is based on a client-server architecture where the Docker CLI (i.e., the client) uses
the REST API exposed by the Docker daemon (i.e., the server) to instruct it on what
to do (Docker, 2017b). Upon request of the client, the Docker daemon (through
containerd and containerd-shim) interacts with a container runtime. The latter lever-
ages all the Linux kernel facilities (e.g., cgroups, namespaces) that are necessary to
manage the life cycle of containers. In the very beginning, Docker exploited LinuX
Containers (LXC) as container runtime. However, LXC was later replaced by lib-
container. In June 2015, the Open Container Initiative (OCI41) was established as a
Linux Foundation project to promote open standards around containerisation tech-
nology. Docker donated the libcontainer project, as well as all the modifications
needed to run it independently of Docker, to the OCI (Open Container Initiative,
2017). The result of this collaboration was runC, a command-line tool that includes
and directly interacts with libcontainer to spawn and run containers according to
the OCI specifications. Since then, runC has become the most popular container
runtime (D. J. Walsh, 2018).

runC may be used as part of the Docker platform or as a standalone tool to di-
rectly manage containers. The second alternative has some advantages. Firstly, it
allows to run containers without the overhead of the whole Docker platform and,
being runC a lower-level implementation, represents a better choice for debugging
purposes. Secondly, runC should be preferred to Docker when trying to use new
tools and features for containers. This is because such tools are first tested on runC
and, only in a latermoment, are ported to Docker. One of these tools is CRIU, which,
as described in Section 4.1, is essential to perform stateful container migrations. Af-
ter several attempts, we were able to use CRIU within Docker only to perform cold

39See https://docs.docker.com/. Last accessed: 06 March 2019.
40See https://github.com/opencontainers/runc. Last accessed: 06 March 2019.
41See https://www.opencontainers.org/. Last accessed: 06 March 2019.
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Figure 4.5: Docker layered architecture.

migrations but failed with live migration techniques. On the other hand, we suc-
cessfully leveraged CRIU within runC to migrate containers according to both cold
and live migration techniques. This is the main reason why we work with runC
containers rather than Docker.

However, using runC as a standalone tool has also some disadvantages. Being
built on top of runC, Docker hides lower-level details, thus allowing to configure
containers in an easier way. Furthermore, it leverages all the functionalities of runC
and enriches them with additional features. For example, Docker introduces the
concept of layered storage (Docker, 2017a), which organises the storage of a container
base image in read-only layers such that each layer is the set of differences from the
layer underneath. When a Docker container is started from a base image, a new
writable layer called container layer is created for that container. Any changes (i.e.,
creation, modification, deletion of files) made by the container are written to its
container layer. Once the container is deleted, also its container layer is deleted, and
the underlying base image remains unchanged. This allows multiple containers to
share the same base image, hence guaranteeing resource efficiency. On the contrary,
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runC does not have the layered storage functionality. As such, any changes made by
a runC container to the filesystem persist after the container deletion and would be
visible to other containers that are instance of the same image. To runmultiple runC
containers from the same OCI image (i.e., the base image in runC), it is therefore
necessary to first unpack the image to a separate filesystem (i.e., OCI bundle) for
each container; then, each container is run from its own OCI bundle. This solution
causes a significant storage overhead.

4.3 Experiment setup
This section discusses the experiment setup and illustrates the real testbed that we
used to evaluate the existing container migration techniques in the Fog.

The overall testbed, which is depicted in Figure 4.6, comprises two FNs and one
end device. The former are two Raspberries Pi 3 Model B (i.e., ARMv8-A archi-
tecture) with Debian 9.5 and Linux kernel 4.14.73-v8+. They both run: (i) CRIU
3.10 for the checkpointing and restore functionalities; (ii) rsync 3.1.2 as file trans-
fer mechanism; and (iii) runC 1.0.1 as container runtime. Besides, they are both
deployed within an office in the Department of Information Engineering of the Uni-
versity of Pisa. On the other hand, an Asus ZenBook notebook with Windows 10
emulates an IoT device that forwards data to a container-hosted Fog service and

Figure 4.6: Overview of the real testbed.
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receives actuation commands from it.
The core part of the experiment setup consisted in the appropriate tuning of the

throughput between the FNs as well as in: (i) the choice of the runtime state size
of the container42; (ii) the selection of the values for the page dirtying rate of the
container-hosted service. Indeed, as explained in Section 4.1, we expect pre-copy
and hybrid migrations to be afflicted by these two factors, both to be considered
against the available throughput. Instead, we do not expect these or any other spe-
cific factor to affect cold or post-copy migrations. By calibrating and combining the
aforementioned factors, we implemented the following four configurations, which
allow to carry out a comprehensive performance evaluation:

• A - this configuration presents a page dirtying rate and a throughput of differ-
ent orders of magnitude, with the throughput higher than the page dirtying
rate. However, given the throughput, the size of the runtime state leads to a
prolonged pre-copy phase and thus gives the service plenty of time to modify
memory pages. Therefore, this configuration is mainly aimed at evaluating
the effects of a considerable runtime state size on the migration techniques;

• B - this configuration resembles configuration A in terms of runtime state size
but features a page dirtying rate of the same order of magnitude of the avail-
able throughput. As such, this configuration is mainly aimed at investigating
the effects of a high page dirtying rate on the migration techniques;

• C - this configuration shows a runtime state size that, considering the through-
put, causes a shortened pre-copy phase and hence gives the service little time
to modify memory pages. Besides, the page dirtying rate and the through-
put are of different orders of magnitude, with the throughput higher than the
page dirtying rate. Thus, the main objective of this configuration is to assess
the migration techniques when both the factors are low, given the available
throughput;

• D - this configuration resembles configuration C. The only difference is that
the page dirtying rate in C and in D are of different orders of magnitude, with
the former lower than the latter. However, the page dirtying rate in D is still
lower than the throughput and of a different order of magnitude. The main
purpose of this configuration is to estimate whether there are evident effects
on themigration techniqueswhen the page dirtying rate increases, though still
being considerably lower than the throughput.

Going into detail, we achieved the previous four configurations by choosing and
combining values as follows. Firstly, we selected two different throughput values

42We highlight that, given the rsync settings described at the end of this section, the runtime
state size represents the actual amount of data transferred during the pre-copy phase. Therefore,
throughout this chapter, we use these two terms interchangeably.
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that may both occur in real-life use cases within a Fog environment. One through-
put value may be present in a use case where the destination FN connects to the
Internet through 4G/LTE (e.g., a FN within a public bus) - we refer to this use case
as LTE use case. The other throughput value, instead, may exist in another use case
where both FNs connect to the Internet through Ethernet (i.e., Ethernet use case). Ta-
ble 4.2 reports these values, together with the RTT values associated to them in the
aforementioned use cases. Indeed, we also considered RTT values among the FNs
in order tomore accurately replicate the use cases network conditions in our testbed.
To obtain the values presented in Table 4.2, we proceeded as follows. For the LTE
use case, we considered a computer connected through Ethernet to the University
of Pisa network as source FN and a smartphone connected to the Internet through
4G/LTE as destination. For the Ethernet use case, instead, we employed two fixed
computers belonging to a bridged LAN of the University of Pisa and installed in
two different buildings placed about 1 km far apart. Throughput values were then
obtained by performing 10 runs with the iperf343 tool, sending 50 MB each time.
Similarly, RTT values were calculated over 10 runs, with 20 measurements per run.
Since, in our testbed, the two Raspberries behaving as FNs are located in the same
office, we had to emulate the values described in Table 4.2. Therefore, we exploited
Linux Traffic Control Hierarchy Token Bucket (tc-htb)44 to limit the throughput and
Linux Traffic Control Network Emulator (tc-netem)45 to artificially set RTT values
between the Raspberries.

Table 4.2: Considered throughput and RTT values (95% confidence intervals).

Use Case Throughput (Mbps) RTT (ms)
LTE 11.34 ± 2.31 122.95 ± 5.57
Ethernet 72.41 ± 3.87 6.94 ± 0.61

We then chose the other values based on the identified throughput values. Specif-
ically, we implemented a distributed applicationwhere both the client and the server
arewritten in Java using theCalifornium46 CoAP framework. This required the instal-
lation of openjdk8 on all the devices of the testbed. CoAP is a specialised Web trans-
fer protocol for use with constrained devices and constrained networks in the IoT.
CoAP is inspired by HyperText Transfer Protocol (HTTP) and is therefore based on
the Representational State Transfer (REST) paradigm. According to this paradigm,
servers expose resources under a Uniform Resource Locator (URL), and clients ac-
cess these resources using one of the following methods: GET, PUT, POST, and

43See https://iperf.fr/. Last accessed: 30 December 2018.
44See https://linux.die.net/man/8/tc-htb. Last accessed: 30 December 2018.
45See https://www.systutorials.com/docs/linux/man/8-tc-netem/. Last accessed: 30 De-

cember 2018.
46See https://www.eclipse.org/californium/. Last accessed: 15 January 2019.
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DELETE (Bormann, 2014). Let us now describe the considered client-server ap-
plication in more detail. The server runs within a runC container in the Fog and,
once started, allocates 75 MB of RAM for random data. For our purpose, 75 MB is a
suitable runtime state size; indeed, it determines a pre-copy phase that lasts tens of
secondswith the lowest throughput and only few secondswith the highest one. The
client, instead, runs on the Asus notebook and sends a POST request to the server
every second to represent sensor data. Every time the server receives a request from
the client, it modifies some of the memory pages with new random values. The
servermay perform this taskwith the following two page dirtying rates, whichwere
identified by taking the throughputs into consideration. The lowest page dirtying
rate is 10 KBps, which is about two orders of magnitude lower than the LTE use
case throughput and about three orders of magnitude lower than the Ethernet use
case throughput. The highest page dirtying rate, instead, is 500 KBps, which is of the
same order of magnitude of the throughput in the LTE use case and about one order
of magnitude lower than the throughput in the Ethernet use case. By combining the
aforementioned values as reported in Table 4.3, we obtained the four configurations
that were previously described. We highlight that all the implemented configura-
tions share the same value of the runtime state size.

During the experiments, we evaluated all the migration techniques that are dis-
cussed in Section 4.1. In particular, we tested each technique five times for each of
the four configurations. For each migration technique, we observed all the metrics
that characterise it. As a result, the metrics that were overall observed are the fol-
lowing:

• Pre-dump time - taken in the pre-copy phase to dump the whole state on the
source node while the service is still running;

• Pre-dump transfer time - needed in the pre-copy phase to transfer the gener-
ated pre-dump from the source to the destination node. It is not to be confused
with the pre-dump time;

• Dump time - necessary in the dump phase to stop the container and dump its
(modified) state on the source node. As described in Table 4.1, eachmigration

Table 4.3: How values were combined to obtain the four configurations.

Throughput and RTT Page Dirtying Rate Configuration
LTE Low A
LTE High B
Ethernet Low C
Ethernet High D
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technique presents a different concept of state dump;

• Dump transfer time - needed in the dump phase to transfer the generated
dump from the source to the destination node. It is not to be confused with
the dump time;

• Resume time - taken to restore the container at destination based on the state
that was transferred up to that moment;

• Faulted pages transfer time - required in the last phase to transfer the faulted
pages from the source to the destination node. Table 4.1 presents the differ-
ent meanings that the term “faulted pages” assumes for post-copy and hybrid
migrations;

• Pre-dump size - transferred during the pre-dump transfer time;

• Dump size - sent from the source to the destination node during the dump
transfer time;

• Faulted pages size - transferred during the faulted pages transfer time.

We exploited the Linux time command to measure the times (i.e., the first six
metrics) and the rsync --stats option to collect statistics regarding the amount of
data transferred through rsync (i.e., the last three metrics). It is worth noting that
we disabled the rsync data compression functionality during all the experiments.
This was done because compressibility depends on data, and we did not want the
experiment results to be influenced by this aspect. Similarly, we deleted the dump
and the eventual pre-dump from the destination FN after every experiment run.
This was done to avoid that, by finding any of them at destination the next time, the
incremental data transfer performed by rsync could transmit less data, thus influ-
encing the experiment results. To conclude, we stored raw data in .csv files for the
next phase of results analysis and plotting, whichwas performed in Python through
Plotly, an open-source graphing library for Python.

4.4 Results
Wenowanalyse anddiscuss the results obtained from the experiments. More specif-
ically, we compare the containermigration techniques in terms of: (i) totalmigration
times; (ii) downtimes; and (iii) volumes of transferred data. As we clarify in what
follows, each of these three metrics is the result of adding up some of the metrics
from Section 4.3. All the following results are presentedwith a 95% confidence level.
At the end of this section, we summarise the main lessons learnt.
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Total migration times

Figure 4.7 depicts the total migration times, highlighting their components for each
migration technique. It is evident how the times to perform local computations (i.e.,
pre-dump and dump the state, resume the container) are negligible with respect
to those needed to transfer the state at destination (i.e., pre-dump transfer, dump
transfer, and faulted pages transfer times). This is clearly more visible under con-
figurations A and B, where the available throughput is significantly lower than that
of configurations C and D.

Let us now compare the migration techniques. Cold migration presents the low-
est total migration times, irrespective of the specific configuration. We were expect-
ing this result, as cold migration transmits each memory page only once unlike pre-
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Figure 4.7: Total migration times (s) with their components in evidence under: (a)
configuration A; (b) configuration B; (c) configuration C; and (d) configuration D.
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copy and hybrid techniques, which insteadmay transmit a memory pagemore than
once (i.e., if it is dirtied). Less pages transferred result in a shorter total migration
time, indeed. However, this is not always true. In Figure 4.7a, post-copy migration
presents a longer total migration time than pre-copy, even though it transmits less
data (as described later in this section). Similarly, total migration times for post-
copy migration are always longer than those for cold migration, even though these
two techniques overall transmit similar amounts of data, as shown later. This un-
expected result can be explained as follows. Post-copy migration is currently im-
plemented according to the "lazy migration" variant, and hence faulted pages are
transferred by the page server on the source node only upon request of the lazy
pages daemon running at destination (see Section 4.1). Thus, the time to perform
such requests, which are not present in cold and pre-copy migrations, increases
the overall total migration time. This is particularly noticeable under configura-
tions A and B, where RTT between the FNs is considerably higher than that of C
and D.

Total migration times for cold and post-copy migrations are never influenced by
an increase in the page dirtying rate. We expected this result as neither of these two
techniques transfers dirty pages in any of its phases (see Table 4.1). Also pre-copy
and hybrid migrations are not affected in terms of total migration time when page
dirtying rate raises from configuration C to D. This important result shows how
there are no evident effects on the total migration times for pre-copy and hybrid
migrations when the page dirtying rate increases, though still being lower and of
a different order of magnitude from the throughput. Besides, under these condi-
tions, pre-copymigration performs similarly to post-copy in terms of total migration
time. Nonetheless, the increment in the page dirtying rate from configuration A to B
significantly prolongs the total migration times for pre-copy and hybrid migrations.
Therefore, these two techniques are strongly affected in terms of totalmigration time
by a page dirtying rate that, as for example under configuration B, reaches the same
order of magnitude of the available throughput. The reason for this is that, under
these conditions, the amount of pages dirtied during the pre-copy phase is com-
parable to that of pages transferred in that phase, namely to the whole state. This
results in a state dump of considerable size for pre-copy migration and in a signifi-
cant number of faulted pages for hybrid migration (see Table 4.1) and therefore in
a substantial protraction of the total migration times.

Finally, we remark that hybrid migration always has the longest total migration
times. This is because this technique inherits both the drawbacks of pre-copy and
post-copy migrations in terms of total migration time, namely: (i) the fact that a
memory page may be transferred more than once, as in pre-copy migration; (ii) the
fact that also the time needed to request faulted pages needs to be considered, as in
post-copy migration.
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Figure 4.8: Downtimes (s) with their components in evidence under: (a) configu-
ration A; (b) configuration B; (c) configuration C; and (d) configuration D.

Downtimes
Figure 4.8 depicts the downtimes for the migration techniques under the four con-
sidered configurations. As shown, the downtime for any technique is given by the
sequence of the following times: (i) dump time; (ii) dump transfer time; and (iii)
resume time. Cold migration always presents the highest downtime. This even
coincides with the total migration time and proves to be unacceptable for most ap-
plications, especially for the critical ones that may exist in a Fog environment.

Under configurationsC andD, the other threemigration techniques show similar
performances in terms of downtime. This is because, under these conditions, few
memory pages are modified during the pre-copy phase; therefore, the dump size
(and hence the dump transfer time) in pre-copy migration is comparable to those
in post-copy and hybrid migrations. Besides, none of the four techniques seems
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to be affected in terms of downtime by an increase in the page dirtying rate from
configuration C to D, as already noticed and commented with regard to the total
migration times. However, under configurations A and B, pre-copy presents sig-
nificantly higher downtimes than post-copy and hybrid migrations. More specifi-
cally, under A, the downtime for pre-copy migration is longer because, considering
the lower throughput, the size of the runtime state prolongs the pre-dump transfer
time, giving the service more time to modify pages than under C or D. Therefore,
the dump size in pre-copy migration grows as it strongly depends on the number
of dirty pages, and the downtime does the same. A higher page dirtying rate un-
der configuration B further increases the number of dirty pages and thus lengthens
the pre-copy migration downtime. This even tends to that of cold migration, with
the total migration time that, in addition, noticeably exceeds that of cold migration.
It is evident, instead, how downtimes for post-copy and hybrid migrations are not
influenced by the conditions characterising configurations A and B. This result was
expected since neither of these two techniques includes dirty pages in its dumps, as
reported in Table 4.1.

We now analyse dump times and resume times in more depth. Both these times
are not clear by looking at Figure 4.8; therefore, we illustrate them in Figures 4.9
and 4.10, respectively. In general, dump times only depend on the amount of data
that need to be dumped, while resume times depend on the amount of data from
which the containermust be restored. By looking at Figure 4.9, it is possible to notice
how average dump times are always equal or less than 1 s except from those of cold
migration (under all configurations) and that of pre-copy migration under config-
uration B. In these situations, indeed, the amount of data to be dumped (i.e., the
dump size) is significantly higher than in all the others: the dump in cold migration
is the whole container state, while that in pre-copy migration is of considerable size
because of the conditions characterising configuration B. The condition on the run-
time state size under configuration A, instead, is not sufficient on its own to cause
an increase in the dump time for pre-copy migration. We also highlight that, with
the only exception of pre-copymigration from configuration A to B, dump times are
not affected by an increase in the page dirtying rate. This is due to the fact that, as
reported in Table 4.1 and discussed in the previous sections, only the state dump in
pre-copy migration includes dirty pages, and the increase in the page dirtying rate
from configuration C to D does not determine an increase in the dump size that is
significant enough to prolong the dump time.

Post-copy migration presents the shortest resume times (see Figure 4.10), as it
restores the container at destination by only applying a very limited dump size to
the base container image. All the other techniques have longer resume times. Going
into detail, the cold and pre-copy techniques show similar values except from that
of pre-copy migration under configuration B, which is caused by a higher amount
of data to be applied to the base service image. We would have expected similar
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Figure 4.9: Dump times (s) under: (a) configuration A; (b) configuration B; (c)
configuration C; and (d) configuration D.

values also for hybrid migration; however, results show that, in general, resume
times for this technique are greater. A possible explanation of this outcome is that
jointly applying the pre-dump and the dump to the base image in hybrid migration
is computationally more intensive.

Transferred Data
In Figure 4.11, we illustrate the amounts of data transferred during the experiments.
Firstly, it is easy to notice how most of the transferred state is: (i) the pre-dump
for pre-copy and hybrid migrations; (ii) the dump for cold migration; and (iii) the
faulted pages for post-copymigration. This is in linewithwhat reported in Table 4.1.
Secondly, the thinness of the dump layer, which is almost invisible, in the bar charts
of post-copy migration shows another detail: the execution state of a container is
markedly negligiblewith respect to the size ofmemory pages. The execution state
size of the considered container is only 1.2 MB, indeed. Another consideration that
can be made by looking at Figure 4.11 is that a container is an environment that
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Figure 4.10: Resume times (s) under: (a) configuration A; (b) configuration B; (c)
configuration C; and (d) configuration D.

occupies and updates more memory than that of the application running inside
it. Indeed, as discussed in Section 4.3, the server running in the container allocates
75 MB of RAM, but more than 110 MB are transferred on average during container
migration. Similarly, the dump size for pre-copy migration and the faulted pages
size for hybrid migration are greater than what we were expecting, given the two
considered page dirtying rates.

Let us now compare the migration techniques. Cold and post-copy migrations
transfer the lowest amounts of data, irrespective of the specific configuration. This
is due to the fact that they both transfer each memory page only once. Under con-
figurations A, C, and D, pre-copy and hybrid migrations generate volumes of data
that are comparable to those of cold and post-copy migrations, even though slightly
higher. Going into detail, pre-copy and hybrid migrations perform at their best un-
der configuration C, where there is the maximum difference between the through-
put and the page dirtying rate (i.e., about three orders of magnitude) and, consid-
ering the available throughput, the runtime state size leads to a limited pre-copy
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Figure 4.11: Amounts of transferred data (MB) with their components in evidence
under: (a) configuration A; (b) configuration B; (c) configuration C; and (d) con-
figuration D.

phase. An increase in the page dirtying rate from configuration C to D augments
the amounts of transferred data only for pre-copy and hybrid migrations, but these
increases are limited because the page dirtying rate is still of a different order ofmag-
nitude from the throughput. Instead, under B, a page dirtying rate of the same order
of magnitude of the throughput causes these two migration techniques to modify a
quantity of memory pages that is comparable to the whole state and thus transfer
significantly greater volumes of data than those of cold and post-copy migrations.
In particular, the dump size is what grows in pre-copy migration and the faulted
pages size is what increases in hybrid migration, as these are the parts of the state
containing dirty pages (see Table 4.1).
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Lessons Learnt
For convenience, in Table 4.4 we summarise the most salient results relative to the
totalmigration time, the downtime, and the amount of transferred data. As a closing
remark, this work shows that no migration technique is the very best under all
network and service conditions. However, based on the discussed results, we can
conclude by stating that in general:

• Coldmigration is to be avoided under all conditions because it always causes
downtimes that are considerably higher than those of the other techniques;

• In situations where the throughput between nodes and the page dirtying rate
are of different orders ofmagnitude, with the former higher than the latter, and
the pre-copy phase does not have a prolonged duration (e.g., under configu-
rations C and D), pre-copy migration may be the best option. Indeed, it has
similar performances to those of post-copy and hybrid migrations, but it is not
afflicted by the issues characterising these other two techniques (see Section
4.1);

• In situations where the page dirtying rate is of the same order of magnitude
of the throughput and/or the pre-copy phase has a prolonged duration (e.g.,
under configurations A and B), pre-copy is to be avoided mainly because of
rather long downtimes. Post-copy could be the best alternative, considering
that it provides downtimes comparable to those of hybrid migration but per-
forms better in terms of total migration time and amount of transferred data.
It is worth noting, though, that post-copy presents a couple of non-negligible
issues, which are explained in Section 4.1.
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Table 4.4: Summary of the evaluated migration techniques.

Technique Total migration time Downtime Transferred data

Cold Always the lowest. Always the highest.

Coincides with the total
migration time.

Always the least.

Comparable to
those of post-
copy.

Pre-copy Comparable or lower than that of
post-copy when page dirtying rate
and throughput are of different
orders of magnitude, with page
dirtying rate lower than throughput.

Higher than that of post-copy when
page dirtying rate is of the same
order of magnitude of throughput.

Higher than those of post-
copy and hybrid when
page dirtying rate is of the
same order of magnitude
of throughput and/or pre-
copy phase has a pro-
longed duration.

Much more than
cold or post-copy
when page dirty-
ing rate is of the
same order of
magnitude of
throughput.

Post-copy Higher than that of cold, especially
with a very high RTT between nodes.

Comparable or higher than that of
pre-copy when page dirtying rate
and throughput are of different or-
ders of magnitude, with page dirty-
ing rate lower than throughput.

Lower than that of pre-copy when
page dirtying rate is of the same or-
der of magnitude of throughput.

Always low and compara-
ble to that of hybrid.

Always the least.

Comparable to
those of cold.

Hybrid Always the highest. Always low and compara-
ble to that of post-copy.

Much more than
cold or post-copy
when page dirty-
ing rate is of the
same order of
magnitude of
throughput.





Chapter 5

Design and evaluation of a
Companion Fog Platform

In this chapter, we propose a platform that provides the necessary functionalities to
support device mobility in FC environments. This platform leverages containers as
hosting environment and implements both stateless and stateful container migra-
tions as mechanisms to let the Fog service follow a mobile (user) device. Note that
our platform is generic enough to implement stateful container migration accord-
ing to all the four techniques that are discussed in Chapter 4. We refer to such a
platform as Companion Fog Platform (CFP), in line with the concept of CFC (see
Section 3.1).

The rest of the chapter is organised as follows. Section 5.1 presents a model for
CFC, from which we derive the insights that are necessary for platform design (see
Section 5.2). Then, Section 5.3 reports the current platform implementation as well
as a work-in-progress implementation based on OpenStack. Finally, Section 5.4 dis-
cusses the experiments that we carried out to validate the platform. The obtained
results are promising, as our CFP significantly improves performances of standard
FC (i.e., FC without service migration) in the presence of mobile devices.

5.1 Companion Fog Computing model
We now provide a semi-formal model for CFC, describing it as the combination of
a distributed application and a CFP executing it. Modelling CFC helps us in the
next design phase of our CFP. For convenience, Table 5.1 alphabetically reports the
notation used in the model.

Application
For the sake of simplicity andwithout loss of generality, we assume a single instance
of distributed application to be executed by the platform. In this paper, wemodel the

89
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Table 5.1: Notation used in the CFC model.

Symbol Description Symbol Description
AP The set of the access points hi The hardware requirement i of f s
apk Access point k Hj(t) The set of availability status at instant

t of the hardware resources on f nj

AP(t) The set of access points through
which m can connect to the network
at instant t

hjz(t) The availability status at instant t of
the hardware resource z on f nj

ap(t) The actual apk through which m con-
nects to the network at instant t

Hm(t) The set of availability status at instant
t of the hardware resources on m

Dk The set of distances dkj between apk
and each of the f nj ∈ FNk

hmz(t) The availability status at instant t of
the hardware resource z on m

dkj The average distance between apk
and an f nj ∈ FNk calculated over N
samples

idj The unique identifier of f nj

dmax The upper limit on the average dis-
tance between f s and ma calculated
over the whole application execution
time

idk The unique identifier of apk

dmn The average distance between m and
n(t) calculated over N samples

m The mobile IoT device

δmk The estimated distance between m
and apk

ma The mobile application component,
which is lightweight and always runs
on m

f a The Fog application component,
which is executed within a container

n(t) The node hosting f s at instant t

FN The set of the Fog Nodes ξ Indicateswhether or not m can run f s
when no other solution is possible

FNk The set of FogNodes that are in topo-
logical proximity to apk

omax The maximum percentage of the
whole application execution time in
which the distance between f s and
ma may exceed dmax

f nj Fog Node j π The data protection level required by
f s

f s The Fog service, which consists in a
container with f a inside. f s is the
companion of ma

πj The data protection level provided by
f nj

H The set of f s hardware requirements sj(t) The status of f nj at instant t
σ The nature of f s, whether stateful or

stateless

application as a couple <ma, f a>: the application component ma always runs on the
mobile IoT device m; on the other hand, f a is deployed in the Fog within a container
according to the Infrastructure as a Service (IaaS) model. Hereafter, this container
hosting f a will be referred to as f s, representing the actual Fog service behaving as
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the companion of ma. It is worth noting that a third application component might
reside at a higher layer of the Fog hierarchy (e.g., in the Cloud), but this is out of
the scope of this thesis.

The Fog service f s is modelled as a 6-tuple <H, dmax, omax, n(t), π, σ> where:

• H = {hi | hi is the hardware requirement i of f s}. hi may be for instance the
minimum amount of RAM or the number of virtual CPUs required;

• dmax is the upper limit on the average distance between f s and ma calculated
over the whole application execution time. This parameter can be expressed
for example as a RTT or a one-way latency;

• omax represents the maximum percentage of the whole application execution
time in which the distance between f s and ma may exceed dmax;

• n(t) is the node that hosts f s at instant t. It is worth noting that n(t) may
be also m itself, when feasible (see flag ξ). n(t) and m may coincide in those
cases (e.g., m is moving to a dead zone) in which no other solution is possible.
However, f s should run on m only for short periods of time in order not to
drain the battery of m and impair user experience;

• π is a natural number representing the data protection level required by f s.
The higher π, the greater the data sensitivity and criticality, as in (UCBerkeley,
2012);

• σ indicates the nature of f s, namely whether it is a stateful or stateless service.

Companion Fog Platform
The CFP is modelled as a 3-tuple <FN, AP, m>.

FN = { f nj} is the set of Fog Nodes. Each f nj is a 4-tuple <idj, Hj(t), sj(t), πj>
where:

• idj is the unique identifier of f nj;

• Hj(t) = {hjz(t) | hjz(t) is the availability status at instant t of the hardware
resource z on f nj}. hjz(t) may be for example the left amount of RAM or the
number of unallocated virtual CPUs at instant t;

• sj(t) is the status of f nj at instant t. It may be 1 to represent the “up” state or
0 to represent the “down" state;

• πj is a natural number representing the data protection level provided by f nj.
The higher the provided data protection level, the bigger the minimum set of
implemented security and privacy measures, as in (UC Berkeley, 2013).



92 Design and evaluation of a Companion Fog Platform

AP = {apk} is the set of access points, namely those nodes through which m can
connect to the network. More precisely, an access point might be defined as the first
node encountered along the communication path from m to n(t), i.e., a cellular base
station or a Wi-Fi access point. Each apk is a 4-tuple <idk, FNk, Dk, δmk> where:

• idk is the unique identifier of apk;

• FNk = { f nj | f nj is a Fog Node in topological proximity to apk}. It is worth
noting that a specific f nj may belong to the FNk of one or more apk;

• Dk = {dkj | dkj is the average distance between apk and an f nj ∈ FNk calculated
over N samples}. A dkj may be expressed for example as a RTT or a one-way
latency. Let us suppose that m connects to the network through apk. Then,
since the path from m to apk is always the same, dkj is the only difference in
the distances between m and each of the f nj ∈ FNk;

• δmk is the estimated distance between m and apk. This distance exclusively
depends on the type of apk (i.e., cellular base station, Wi-Fi access point).

m is the mobile IoT device. It is a 5-tuple <AP(t), ap(t), dmn, Hm(t), ξ> where:

• AP(t) = {apk | m may connect to the network through apk at instant t};

• ap(t) ∈ AP(t) is the actual apk through which m connects to the network at
instant t;

• dmn is the average distance between m and n(t) calculated over N samples.
This information is not relevant when n(t) = m;

• Hm(t) = {hmz(t) | hmz(t) is the availability status at instant t of the hardware
resource z on m}. hmz(t)may be for example the number of unallocated virtual
CPUs, the left amount of RAM, or the battery level at instant t;

• ξ is a Boolean that indicates whether (i.e., 1) or not (i.e., 0) m may run f s when
no other solution is possible. m may be unable to do this due to hardware
limitations (expressed by Hm(t)) or software incompatibility. For instance,
Android kernel does not have namespaces support (LLC, 2018), which is an
indispensable feature to run containers.

For the sake of readability, Figure 5.1 summarises the CFPmodel by showing the
association of each parameter with the entities in the Fog hierarchy.
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Figure 5.1: Graphical representation of the CFP model.

5.2 Platform design
Based on the CFC model, in what follows we discuss the design of our platform.
Specifically, we present the derived reference architecture, then we propose a mi-
gration policy, and finally we describe the migration procedure (i.e., the execution
of the migration policy by the reference architecture).

Reference architecture
Figure 5.2 depicts the reference architecture of the proposed CFP, while Table 5.2
alphabetically reports the acronyms for the architecture components. The Cloud
is part of it and plays the role of an orchestrator. Nevertheless, it is not present in
Section 5.1 since we do not need to further specify the Cloud in the CFC model.

For the sake of readability, modules are coloured differently based on their de-
ployment: green modules are deployed on the mobile IoT device; blue components
reside on the FNs, while azure modules are in the Cloud. Brown modules, instead,
are the only ones that do not belong to the proposed platform, as they are provided
by the application developer. Going into more detail, the Mobile Application is
executed directly on the mobile IoT device, while the Fog Application runs within
a container according to the IaaS model. In Figure 5.2, we want to highlight the fact
that a FNmay potentially host more than one container. However, as we mentioned
in Section 5.1, in this work we focus on a single container/Fog service.

All the FNs and (potentially) the mobile IoT device embed a Containerisation
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Figure 5.2: The proposed CFP reference architecture.

Platform (CP) for managing containers. Another fundamental module within each
FN is the Fog Manager (FM), which comprises two submodules. The first is the
Distance Monitor (DM), which interacts with the DM on the IoT device for the
measurement of the topological distance between the IoT device and the FN. Fur-
thermore, the DM in f nj periodically calculates the distance dkj (e.g., as an arith-
metic mean) to each of the access points apk such that f nj ∈ FNk of apk and reports

Table 5.2: Acronyms for the architecture components.

Acronym Full Name
CP Containerisation Platform
DM Distance Monitor
FM Fog Manager
HM Hardware Monitor
MIoTM Mobile IoT Manager
MM Migration Manager
MR Migration Requester
RS Registry Server
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the obtained values to the Registry Server (RS) in the Cloud. The period T2 of such
measurements is rather long: being in general both the FNs and the access points
fixed, these distances rarely change over time. The second submodule in the FM is
the Hardware Monitor (HM), which periodically monitors the availability status
of the hardware resources (e.g., CPU, RAM) in the FN and reports them to the RS.
As this period T3 is shorter than T2, each update from the HM is also considered by
the RS as an “alive” message for the estimation of sj(t). An HM is also present on
the mobile IoT device. However, this module does not periodically report its mea-
surements to the RS; instead, it communicates with the Migration Manager (MM)
in the Cloud upon request of the latter. The reason for this is that an estimation
of the available hardware resources (e.g., CPU, RAM, battery level) on the mobile
IoT device is rarely needed and required only in the very last steps of the proposed
migration policy (which is presented later in this section).

The RS manages the data from each FM and updates a repository accordingly.
TheMM is themodule in theCloud that receives and satisfies themigration requests
coming from the Migration Requester (MR). The latter is deployed on the mobile
IoT device and, together with the DM and the HM, constitutes theMobile IoTMan-
ager (MIoTM). In order to satisfy a migration request, the MM interacts with the RS
to retrieve the necessary information and executes the migration policy. Moreover,
it interacts with the CPs (through the FM or the MIoTM) in order to perform the
actual container migration, and, once the migration ends, it returns the identifier of
the new n(t) back to the MR.

We clarify that, for the sake of readability, Figure 5.2 depicts in f n′′
j only the

modules that differ from those in f n′
j. Specifically, as detailed later in this section

(i.e., migration procedure), the DM on f n′
j is contacted by the DM on the mobile

IoT device to decide when to migrate, while the DM on f n′′
j is interrogated to decide

where to migrate. Besides, the CPs on f n′
j and f n′′

j behave differently as the former
is the source of the migration, while the latter is the destination.

Migration policy
In what follows, taking into consideration the model from Section 5.1, we propose
a reactive migration policy for our CFP. As discussed in Section 3.4, a migration
policy is a set of steps that allow to make the When-to-Migrate and the Where-to-
Migrate decisions. We highlight that the proposed model and reference architecture
are generic enough to allow the definition and employment of any other migration
policy. To begin with, we provide the following definition, which is then recalled
within the migration policy.

Definition of compatibility between f s and f nj - let us set dmj as the average dis-
tance between m and f nj calculated over N samples. The Fog service f s and f nj are
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compatible with one another if and only if all the following conditions are met:

• H ⊆ Hj(t);

• π ≤ πj;

• dmax ≥ dmj.

A clarification is due. If f nj ∈ FNk of ap(t), then dmj is the actual average distance.
On the other hand, if f nj ∈ FNk of an apk ̸= ap(t), then dmj is estimated as dmj = δmk
+ dkj. It is useless, indeed, to actually measure dmj in the second case, as m accesses
the network through ap(t), while f nj is a potential FN for m onlywhen this connects
to the network through apk ̸= ap(t).

Algorithm 1 reports the pseudo-code for the migration policy. Let us assume
that n(t) = f n′

j. Every T seconds, the policy monitors dmn(t), namely the current
distance between m and n(t). The value of dmn is then updated over the N most
recent values of dmn(t). When dmn > dmax, it is time to migrate f s, since the third
condition of compatibility is no more respected. As a first step, the migration target
f n′′

j is searched within the FNk of ap(t) (i.e., line 6 in Algorithm 1), as this FNk
contains the FNs that are currently the topologically closest to m. As described in
Algorithm 2, such f n′′

j must be compatible with f s and have sj(t) = 1. If there exist
more than one f nj with such characteristics, that with the minimum dkj is chosen.
f s is migrated to that FN, and n(t) is updated accordingly.

If there is not an f nj that satisfies the requirements in the previous step, the
second step of the migration policy starts. The migration target f n′′

j is looked for
within each FNk of all the other apk ∈ AP(t)with apk ̸= ap(t) (i.e., lines 11 and 12 in
Algorithm 1). The conditions that such f n′′

j mustmeet are the same as in step 1with
the only difference that the f nj with the minimum dmj = δmk + dkj is chosen among
many compatible nodes. This is due to the fact that, since the scope in this step is
AP(t), two different f nj may belong to the FNk of two different apk. Therefore, δmk is
necessary in order to distinguish among the possibly different types of apk involved
(i.e., cellular base station, Wi-Fi access point). It is worth noting that if f n′′

j is found
in this step, two are the possible results, but both of them cause a forced handoff
(i.e., line 16 in Algorithm 1) since f n′′

j is topologically close to an apk ̸= ap(t). If f n′′
j

= f n′
j, the instruction at line 15 in Algorithm 1 does not cause any migration, nor

any update of the value of n(t). Otherwise, f s is migrated from f n′
j to f n′′

j , and the
value of n(t) is updated accordingly.

If both the first and the second steps of the policy fail to identify f n′′
j and ξ =

1, f s is migrated to m as an extreme fallback solution. Running f s on m may spoil
user experience and heavily consumes the battery of m. Therefore, f s migration
is attempted every T1 seconds (with T1 < T) by starting from the first step of the
migration policy (i.e., line 6 in Algorithm 1). Instruction at line 20 would result in
no action carried out.
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Algorithm 1:Migration policy.
1 while True do
2 shortPeriod = False;
3 calculate dmn(t);
4 update dmn over the last N samples;
5 if dmn > dmax then
6 ListpotentialTargets = FindPotentialTargets(ap(t));
7 shortPeriod = False;
8 if ListpotentialTargets not empty then
9 n(t) = argmin f nj∈ListpotentialTargets

dkj;
10 else
11 foreach apk ∈ AP(t) & apk != ap(t) do
12 ListpotentialTargets = FindPotentialTargets(apk);
13 end
14 if ListpotentialTargets not empty then
15 n(t) = argmin f nj∈ListpotentialTargets

dmj;
16 perform handoff to the new apk != ap(t);
17 else
18 shortPeriod = True;
19 if ξ = 1 then
20 n(t) = m;
21 if shortPeriod = False then
22 wait T seconds;
23 else
24 wait T1 seconds;
25 go to 6;
26 end

Instead, if the first and the second steps of the policy are not successful and ξ

= 0, f s keeps on running on f n′
j. Also in this case, f s migration is attempted with

period T1 by starting from line 6.

Migration procedure

We now provide a step-by-step description of the migration procedure, which is
the execution of the migration policy by the reference architecture. For the sake of
conciseness, we assume that the migration target is found at the end of the first step
of the migration policy (i.e., line 9 in Algorithm 1). Therefore, we report only the
set of actions up to that point (see Figure 5.3). Colours in Figure 5.3 match those
in Figure 5.2. Hence, green components are present on the mobile IoT device; blue
ones run on the FNs, while azure modules are deployed in the Cloud.
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Algorithm 2: Find potential targets.
Input: apk
Output: Inserts the potential migration targets, given apk, in

ListpotentialTargets
1 Function FindPotentialTargets(apk):
2 foreach f nj ∈ FNk of apk do
3 if f nj is compatible with f s & sj(t) = 1 then
4 insert f nj in ListpotentialTargets;
5 else
6 discard f nj;
7 end
8 End Function
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Figure 5.3: The procedure relative to the first step of the migration policy.

The procedure begins with the expiration of period T: it is time to measure
dmn(t). Therefore, in step 2, the MR asks the DM on the mobile IoT device for this
value. The DM on the mobile IoT device interacts with the DM on n(t) = f n′

j in
order to satisfy the request. There exist several ways to implement step 2.1. For ex-
ample, if dmn(t) is expressed as a RTT, then it might be measured through a ping.
Once the MR obtains dmn(t), in step 3, it updates dmn over the N most recent values
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(with dmn(t) being themost recent of all). TheMR then compares dmn with dmax and
finds out that the third condition of compatibility (refer to the migration policy) is
no more respected. Step 3 is highlighted because it is the actual moment in which
the MR decides that it is time to migrate f s (i.e., the When-to-Migrate decision). As
a result, in step 4, the MR contacts the MM with a request whose argument is the
unique identifier of ap(t). In step 5, the MM provides this identifier to the RS in
order to retrieve the up-to-date FNk and Dk of ap(t). Step 6 is the cornerstone of the
presented procedure. In this step, indeed, theMM scans the FNk of ap(t) in order to
identify themigration target. To beginwith, any f nj that does not satisfy the first two
compatibility conditions in themigration policy or that has sj(t)= “down” is imme-
diately discarded. The MM: (i) compares the remaining FNs exclusively according
to the distances dkj in Dk; (ii) selects f n′′

j , which is the node with the minimum dkj
(i.e., the topologically closest); and (iii) discards all the others.

This decision solely based on dkj presents two strengths. Firstly, the mobile IoT
device does not have to calculate the distances dmj to all the FNs in the FNk of ap(t),
thus saving its resources. Secondly andmost importantly, the distances dkj are ready
to use when needed as they are periodically provided by the DMs in the FNs, and
this reduces the overall duration of the migration procedure.

At the end of step 6, a potential migration target is found in f n′′
j . It is only a

potential target because the MM still needs to be sure that f n′′
j satisfies the third

condition of compatibility from the migration policy. To this purpose, the MM first
checks whether f n′′

j = n(t), in step 7. If this happens, the MM can start performing
the second step of the migration policy, since it already knows that n(t) does not
respect the third condition of compatibility. However, in the considered scenario,
f n′′

j ̸= n(t). Therefore, in step 8, the MM proceeds with the first step of the migra-
tion policy and asks the MR on the mobile IoT device to verify the aforementioned
condition. In the steps from 9 to 10, the current distance dmj(t) from m to f n′′

j is
measured N times with period T. Next, in step 11, the MR calculates dmj (e.g., as an
arithmetic mean) from the N samples of dmj(t) and finds out that dmj is not greater
than dmax. Therefore, the MM is notified by the MR that f n′′

j satisfies the third con-
dition of compatibility. As a result, in step 12, the MM chooses f n′′

j as the migration
target (i.e., the Where-to-Migrate decision) and interacts with the CPs on f n′

j and
f n′′

j in order to perform the actual migration of f s. For simplicity, Figure 5.3 depicts
direct communications between the MM and the CPs; however, such interactions
actually happen through the FMs in f n′

j and f n′′
j . Besides, it is worth highlighting

the fact that step 12 may result either in a stateful or stateless migration, depend-
ing on the value of parameter σ (see Section 5.1). Finally, once the migration ends,
the procedure concludes in step 13, in which the MM locally sets n(t) to f n′′

j and
communicates this information to the MR on the mobile IoT device.
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5.3 Platform implementation
This section describes the CFP implementation. Specifically, there exist two imple-
mentations of our platform: one is a standalone prototypical implementation; the
other is integrated in OpenStack and is currently a work in progress.

The first implementation, which is the one employed for platform validation in
Section 5.4, is written in Python 2.7 and leverages RPyC47 for the communication
among architecture components. RPyC is a Python library that allows to implement
client-server applications according to the Remote Procedure Call (RPC) protocol.
With RPC, a program can require the execution of a procedure to a program run-
ning on another machine. Besides, RPyC allows symmetrical calls, which means
that both client and server can serve requests. This enables the server to invoke call-
back procedures on the client side. With regard to containerisation, we use runC as
container runtime (see Section 4.2). To statefully migrate runC containers, we use:
(i) CRIU as the tool for checkpointing the container on the source node and restor-
ing it on the destination one; (ii) rsync as state transfer mechanism (see Chapter 4).
Our platform implementation allows containers to be migrated both statelessly and
statefully (according to all the cold and live techniques described in Chapter 4).

The second work-in-progress implementation is based on OpenStack48, which is
one of the most prominent open-source Cloud platforms. The OpenStack project
initiated in 2010 as a joint initiative of Rackspace Hosting and the NASA and is
currently managed by the OpenStack Foundation, a non-profit corporate entity es-
tablished in September 2012. More than 500 companies have joined the project
since then, and the OpenStack development community currently counts more than
82,000members from 187 countries around the world (OpenStack, 2013). As shown
in Section 2.6, several initiatives exist that integrate FC capabilities in OpenStack.
Among these stands IoTronic (Longo et al., 2017), an open-source service that ex-
tends OpenStack for the remote management of IoT devices (whether embedded
systems, single-board computers, or evenmobiles). IoTronic has been recently recog-
nised by the OpenStack community at large and more specifically promoted to the
shortlist49 of projects that the OpenStack Edge Computing Group is agreeing upon
to let the OpenStack ecosystem fully support FC/EC use cases in the near future.
As such, IoTronic, albeit currently an unofficial project, is expected to be gradually
included in OpenStack. With regard to its architecture, the IoTronic service inter-
acts with Lightning-rod, its counterpart that resides on each IoT device. Lightning-
rod runs under the device-native (typically SDK-enabled) environment available
to developers and interacts with the (subset of) OS tools and services present on
the device as well as with the sensing and actuation resources. A WebSocket-based

47See https://rpyc.readthedocs.io/en/latest/. Last accessed: 30 October 2019.
48See https://www.openstack.org/. Last accessed: 22 February 2019.
49See https://wiki.openstack.org/wiki/Edge_Computing_Group#Related_OSF_Projects.

Last accessed: 22 February 2019.
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Figure 5.4: Architecture of the CFP OpenStack-based implementation.

tunnelling andWebApplicationMessaging Protocol (WAMP)-basedmessaging be-
tweenLightning-rod and IoTronic allow themanagement of IoT resources evenwhen
these are behind a NAT or a strict firewall. Specifically, WAMP is a sub-protocol of
WebSocket that specifies a communication semantic for messages sent over Web-
Socket and provides both Publish/Subscribe and (simple or routed) RPC mecha-
nisms. In IoTronic, WebSocket is also exploited to implement tunnelling for virtual
networking overlays among IoT nodes.

In Figure 5.4, we show the architecture of the CFP OpenStack-based implemen-
tation, highlighting how its components map to those of the reference architecture.
Going into detail, the Cloud components of the reference architecture (i.e., the RS
and the MM) are being implemented as agents in the IoTronic service. The RS can
exploit the IoTronic internal database to store metadata associated to the FNs, such
as the status of hardware resources. On the mobile IoT device, the MIoTM is being
implemented as a module within Lightning-Rod. It is worth noting that in order
to match up with the reference architecture, this implementation needs to extend
IoTronic with two novelties. Firstly, it has to introduce an intermediate layer com-
posed of FNs in between the (mobile) IoT devices and the Cloud. More specifically,
the FM in the reference architecture is being implemented as a specialised instance
of Lightning-Rod, thus giving birth to a version of Lightning-Rod that is aimed at the
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Fog layer. Secondly, this CFP implementation is going to enhance IoTronic by em-
bedding a containerisation platform in each FN and, when feasible, in mobile IoT
devices. This is necessary to manage containers, from their deployment to their in-
stantiation and migration. Specifically, the containerisation platform will comprise
two modules: (i) runC, as lightweight container runtime; (ii) Zun Compute, which
is part of Zun50, namely the OpenStack container service that allows to manage the
placement and life cycle of containers. The features of Zun are exposed through the
Zun (REST) API that resides in the Cloud.

5.4 Platform validation
This section reports the set of experiments that we carried out in order to validate
the proposed CFP. Specifically, we first detail the experiments setup and the tools
employed; then, we analyse the obtained results.

Experiments setup
Figure 5.5 depicts the system that we configured for the experiments, in accordance
with that described in Section 3.2 for the smart assistant use case. An Asus ZenBook
notebook with Ubuntu 18.04 and Linux kernel 4.15.0-36 represents the mobile IoT
device. The five FNs are Raspberries Pi 3 Model B with Debian 9.5 and Linux kernel

50See https://wiki.openstack.org/wiki/Zun. Last accessed: 30 October 2019.
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4.14.73-v8+. As shown, four of the five FNs (i.e., those whose name starts with AF)
also behave as Wi-Fi access points. To this purpose, we installed and configured
hostapd and dnsmasq on each of them. We deployed all the Raspberries and the Asus
notebook in an office within the Department of Information Engineering at the Uni-
versity of Pisa. The Cloud server, instead, is an Amazon Web Services (AWS) Virtual
Machine (VM)with Amazon Linux and Linux kernel 4.14.62-65 that we deployed in
Ireland (eu-west-1c).

As discussed, the FNs are all physically present in the same room and intercon-
nected with one another through Ethernet. Therefore, in order to match upwith the
system reported in Figure 5.5, we had to emulate some of the RTTs (i.e., those for the
MAN 1, MAN 2, and WAN 2 categories in figure) thus to logically arrange the FNs
in three different LANs. LAN A comprises two FNs. LAN B contains only AF2 as
FN, which, in the considered use case, connects to the Internet through 4G/LTE. Fi-
nally, LAN C includes two FNs of which only one (i.e., AF3) is also an access point.
In order to artificially set RTTs where needed, we exploited Linux Traffic Control
Network Emulator (tc-netem). We imposed these RTTs to real values that are re-
ported in Table 5.3 together with those values that were not imposed, as already
present in the system (i.e., those for the Wi-Fi, LAN, and WAN 1 categories). We
obtained all these values as follows. For each RTT category reported in Figure 5.5,
we considered two nodes in a real-world deployment51 andmeasuredRTTs between
those two nodes over 10 runs, with 20 measurements per run. We then considered
the average RTT per run to obtain the presented values.

In this context, the Fog service is a runC container that hosts a server written in C
and listening to client requests on UDP. As in the smart assistant use case, dmax (see
Section 5.1) is set to 20 ms. Besides, omax is set to 5% of the overall experiment run
time, which is 20 min as described below. Given the above Fog service, we carried
out experiments considering four different patterns: (i) Fixed Cloud, where the

Table 5.3: Measured RTTs (95% Confidence Intervals).

RTT category
(See Figure 5.5)

Values (ms) Set through tc-netem

Wi-Fi 7.902 ± 1.489
LAN 0.745 ± 0.027
MAN 1 122.952 ± 5.566 ✓

MAN 2 18.843 ± 4.952 ✓

WAN 1 43.448 ± 2.846
WAN 2 152.398 ± 8.706 ✓

51For instance, for MAN 1, we took into account a fixed device connected to the network of the
University of Pisa through Ethernet and a smartphone connected to the Internet through 4G/LTE.
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container runs in the Cloud throughout the experiment; (ii) Fixed Fog, where the
container runs on AF0 throughout the experiment; (iii) Stateful Migration, where
the container is statefully migrated, when necessary, from a FN to another; and (iv)
Stateless Migration, where the container is statelessly migrated, when necessary,
from a FN to another.

We emulated the IoT device mobility through automatic Wi-Fi handoffs. To this
purpose, we employed the os Python module and the Linux command-line tool for
controlling NetworkManager (i.e., nmcli). More specifically, handoffs occur at spe-
cific instants of time so that themobile device is associated to each of the three LANs
for 6min 40 sec52. As a result, each experiment run is 20min overall. With respect to
patterns 3 and 4 (i.e., Stateful Migration and Stateless Migration), the handoff from
AF0 to AF1 does not cause any container migration. On the contrary, migration to
AF2 is necessary after the second handoff (i.e., that from AF1 to AF2). Finally, the
third and last handoff (i.e., that from AF2 to AF3) determines a migration to FN1.

We exploited Linux Traffic Control Hierarchy Token Bucket (tc-htb) to limit the
throughput from AF0 to AF2 and that from AF2 to FN1. This is necessary only
for pattern 3, as the other patterns do not require any data transfer between FNs.
Specifically, in order to choose the most appropriate value for the throughput, we
considered AF0 and a smartphone connected to the 4G/LTE network, and we per-
formed 10 throughputmeasurements using the iperf3 tool, sending 50 MB each time.
The final result is a 11.342 ± 2.306 Mbps throughput, with a 95% confidence level.
This is in line with (Akamai, 2016) that estimates the average speeds for mobile
connections in Italy to be 11 Mbps.

As described in Section 5.3, our CFP implementation allows to statefully migrate
containers according to both cold and live migration techniques. In Chapter 4, we
explained how the choice of which technique to use mainly depends on the follow-
ing factors: (i) available throughput between the source and the destination FNs;
(ii) service page dirtying rate; and (iii) amount of data transmitted during the pre-
copy phase. We have already detailed how we set the throughput between FNs
in the validation system. Instead, to calculate the second and third of the above
factors, we proceeded as follows. By instantiating the Fog service on AF0 and mi-
grating it 10 times to AF2 according to the pre-copy technique with one pre-copy
iteration, we first found that the pre-dump size (i.e., the checkpoint size during
the pre-copy phase of the migration) is 36.70 ± 0.02 MB, with a 95% confidence
level. With the purpose to reduce the volume of data transferred during the pre-
copy phase, we made the following improvements, which were then replicated also
for the actual platform validation. Firstly, prior to transmitting data, we deployed
and checkpointed the Fog service on AF2. This strategy is realistic in a FC environ-
ment provided that the user’s mobility pattern or at least the geographic area where

52While in LAN A, the mobile device is connected to access points AF0 and AF1 for the same time
interval, i.e., 3 min 20 sec.
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he/she moves are known to a certain extent. By doing this, it is possible to leverage
the incremental data transfer performed by rsync so that, thanks to the presence of
a checkpoint on the destination FN, only 7.254 ± 0.005 MB out of the total pre-dump
size need to be copied. Secondly, we employed the rsync compression functionality
in order to further reduce the amount of transferred data during the pre-copy phase
to 1.017 ± 0.003 MB. We also calculated the Fog service page dirtying rate as the
relationship between the dump size and the pre-dump transfer time (see Chapter 4),
obtaining 0.517 ± 0.026 Mbps. As concluded in Chapter 4, pre-copy migration rep-
resents the best option under these conditions. Therefore, we exploited this stateful
migration technique in our experiments for platform validation.

As a final remark, we performed five experiment runs for each of the four pat-
terns. In each run, we monitored the RTT between the mobile IoT device and the
current FN every 5 sec and stored the couples <instant t, RTT value> in .csv files
for the next phase of results analysis and plotting. This was performed in Python
through Plotly, an open-source graphing library for Python.

Results

We now examine the obtained results by first discussing how the RTT between the
mobile device and the serving node varies over time in each of the four patterns.
Then, we make further remarks to show how our CFP improves the overall perfor-
mance with respect to both the Fixed Cloud and the Fixed Fog cases.

RTTs over time are reported in Figures 5.6 and 5.7. More specifically, Figure
5.6(a) reports RTT over the experiment run time in the Fixed Cloud pattern. In this
case, RTT is always greater than dmax. Specifically, it reaches its peak (i.e., about
400 ms) when the mobile device is connected to LAN B through AF2, as Internet ac-
cess occurs through 4G/LTE. Instead, when the mobile device is connected to LAN
A or LAN C, RTT is lower but is still significantly above dmax.

FC may reduce RTT with respect to that towards the Cloud. As reported in Fig-
ure 5.6(b), when the mobile device is connected to LAN A, the RTT towards the
serving FN (i.e., AF0) is much lower than dmax. However, standard FC does not per-
form appropriately in the presence of mobile devices. As shown, when the mobile
device is connected to LAN B, RTT towards AF0 considerably increases, going be-
yond 300 ms at its peak. After the handoff to LAN C, RTT decreases but not enough
to go below the required 20 ms.

Our CFP significantly improves FC performance by supporting device mobility.
Figure 5.7(a) depicts how RTT varies over time when the Fog service is statefully
migrated to follow the served mobile device. Given that the Fog service initially
runs on AF0 and that the mobile device is connected to LAN A, the RTT towards
AF0 is the same as that in the Fixed Fog pattern. When after 400 seconds a handoff
to LAN B happens, RTT suddenly increases reaching 250 ms. However, differently
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Figure 5.6: RTTs over time in the: (a) Fixed Cloud pattern; (b) Fixed Fog pattern.

from the Fixed Fog case, our CFP statefully migrates the Fog service from AF0 to
AF2. Once migration is completed, the RTT towards the current FN (i.e., AF2) is
again below dmax. A similar outcome also occurs when the mobile device moves
from LAN B to LAN C and the Fog service is consequently migrated to FN1.

Performance further improves if the Fog service is statelessly migrated rather
than statefully (see Figure 5.7(b)). Firstly, RTTvalues immediately afterWi-Fi hand-
offs are lower (i.e., around 150 ms) than those in the Stateful pattern. This is be-
cause, as discussed in Chapter 4, stateful container migration copies the runtime
service state to the new node and as such causes a greater network overhead than
that determined by a stateless migration, which instead is a restart from scratch of
the container on the new node. For the same reason, the curves that follow handoff
times are less wide in the Stateless pattern rather than in the Stateful one. This is
due to the fact that copying the runtime state to the new node requires more time
than simply re-instantiating the container statelessly.

Tables 5.4 and 5.5 summarise the most noteworthy aspects of the obtained re-
sults. In particular, Table 5.4 reports the averageRTT in eachpattern and also presents
these values as a percentage of dmax. Table 5.5 instead lists the average outage times
and shows them as a percentage of the experiment run time. We define outage time
as the overall period of time inwhich the application experiences a RTT greater than
dmax.

Performances in the Fixed Cloud and Fixed Fog patterns are far from acceptable.
As shown, average RTTs in these two cases are respectively about six and four times
dmax. Moreover, the percentage of the overall experiment run time in which the
system is in outage considerably exceeds omax (i.e., 5%) in both cases. In particular,
in the Fixed Cloud pattern, outage time coincides with the experiment run time; for
Fixed Fog, instead, outage time is lower but still more than 60% of the experiment
run time.
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Figure 5.7: RTTs over time in the: (a) Stateful Migration pattern; and (b) Stateless
Migration pattern.

On the contrary, our CFP leads to average RTTs that are below dmax. In particular,
they are around 16 and 10 ms in the Stateful and Stateless patterns, respectively.
Furthermore, outage times are limited to less than 5% of the experiment run time in
the Stateful case and around 1.5% of the time in the Stateless one.

Table 5.4: Average RTTs (95% Confidence Intervals).

Pattern Values (ms) % of dmax (20 ms)
Fixed Cloud 119.135 595.675
Fixed Fog 82.801 ± 5.119 414.006 ± 25.593
Stateful Migration 16.240 ± 1.821 81.199 ± 9.106
Stateless Migration 10.037 ± 0.775 50.186 ± 3.877

Table 5.5: Average outage times (95% Confidence Intervals).

Pattern Values (s) % of experiment run time (1200 s)
Fixed Cloud 1200 100
Fixed Fog 765 ± 18.1 63.75 ± 1.508
Stateful Migration 53 ± 5.553 4.417 ± 0.463
Stateless Migration 18 ± 5.553 1.5 ± 0.463





Chapter 6

Simulation of device mobility and
service migration in Fog Computing

Simulation may represent a time- and cost-effective way to evaluate service migra-
tion strategies in FC environments with mobile users. Several Fog simulators exist
in literature (see Section 3.6), but, to the best of our knowledge, none of them mod-
els service migration. In this chapter, we propose MobFogSim, a simulator that
extends iFogSim to model all the aspects related to device mobility and service mi-
gration in FC. Besides, we validate our simulator by replicating in it the testbed
setup from Chapter 4 and by comparing simulation results of container migration
with the results discussed in Chapter 4. MobFogSim is open source and available at
https://github.com/diogomg/MobFogSim.

The chapter is structured as follows. Section 6.1 presents the model used in the
simulator for connection handoff and service migration. Then, Sections 6.2 and 6.3
report the design and implementation details of MobFogSim, respectively. Next,
Section 6.4 describes the experiments that we carried out to calibrate MobFogSim,
namely to appropriately configure its input values for the replication in the simu-
lator of the testbed conditions. Finally, in Section 6.5, we validate MobFogSim by
analysing the simulation results against the testbed ones.

6.1 Migration and handoff model in MobFogSim

In this section, wepresent themodel considered inMobFogSim for connection hand-
off and service migration in FC environments. Specifically, we identify eight events
related to handoff andmigration. We highlight that such events may occur in the or-
der that is described next but also in other orders. Moreover, note that the following
is a high-level description of these events; in Section 6.3, we describe the sequence
of events occurring in a migration and handoff scenario, as per the implementation
in MobFogSim. The eight events are as follows:

109



110 Simulation of device mobility and service migration in Fog Computing

• Event 1 (E1) is when the Fog system decides that it is time to perform amigra-
tion (i.e., the When-to-Migrate decision). Many different approaches exist to
make this decision, depending on the strategies being adopted. For instance,
service migration may be triggered before the connection handoff starts (i.e.,
before E4), based on known information on user’s current mobility (e.g., posi-
tion, direction, speed) and/or based on knownmobility patterns for categories
of users (e.g., public transport buses) (Gonçalves et al., 2018). This is called
proactivemigration. Alternatively, migration can be triggered once connection
handoff has already started, and the new access point of the user is known in
a deterministic way. This is instead called reactive migration. Details on the
When-to-Migrate approach that is currently implemented in MobFogSim can
be found in Section 6.2. However, we highlight that developers can implement
their own migration decisions in the simulator;

• Event 2 (E2) is the set of necessary procedures associated with preparing the
service formigration (e.g., checking its size andpage dirtying rate, checkpoint-
ing its state, monitoring network speed to estimate the migration time, etc.)
and establishing a network connection between the source and the destina-
tion FN for migration. The way data are prepared for migration depends on
the actual migration technique being used. Please, refer to the end of Section
6.2 (i.e., Before migration) for the details on the migration techniques that are
currently implemented in the simulator;

• Event 3 (E3) refers to the beginning of the process of sending data from the
source to the destination FN, i.e., the service migration process actually starts
here;

• Event 4 (E4) is when the connection handoff starts. Handoff decision-making
is defined by parameters of the network and/or the device being utilised. In
our ideal case, this event occurs after the migration starts (i.e., after E3), so
that it can be contained within the service migration phase. The duration of
the connection handoff is very likely to be lower than that of servicemigration,
indeed. However, it is worth noting that somemigration policiesmay consider
also a reactive migration, i.e., one where service migration starts after the be-
ginning of connection handoff;

• Event 5 (E5) is the end of the connection handoff process. Now, the user’s
device is connected to the new access point. Meanwhile, ideally, service mi-
gration is still occurring;

• Event 6 (E6) is the end of the service migration process. The data transfer is
completed and the service is now running on the destination FN;
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• Event 7 (E7) represents the first access from the user to the service running
on the new FN, which means that at this point networking connections must
be re-established to reflect the new location;

• Event 8 (E8) represents the point in time where the whole process is com-
plete. We highlight that E7 and E8 coincide if service migration finishes after
the connection handoff (i.e., E6 occurs after E5). However, if service migra-
tion finishes before the connection handoff (i.e., E6 occurs before E5), E7 takes
place before E8.

Based on the above events, we discuss different scenarios that can take place
when users move, illustrating: (i) the source FN, which is hosting and running the
service before migration; (ii) a wireless link that connects the mobile device to the
access point where the source FN is connected; and (iii) the destination FN con-
nected to the destination access point (i.e., that after the wireless handoff). The
two FNs are connected through a cabled network (WAN or LAN), which is used to
transfer the service. The connection between FNs can present different topologies
depending on how they are deployed.

Scenario 1 (Proactive migration) - Figure 6.1 considers that the migration pro-
cess starts (i.e., E1) before the user reaches the point of performing the wireless
connection handoff. This way, when E1 occurs, the service is migrated without an
abrupt connection interruption from the wireless handoff. Ideally, the migration
and the handoff should end at the same time to reduce the delay to the user: note
that the longer the migration takes to finish after the handoff, the longer the user
will have to access the source FN through the new access point (which means more
than one network hop). On the one hand, proactive migration may improve overall
performance, since the user’s service is ideally available at the destination FN once
the wireless connection handoff is finished. On the other hand, though, it might
worsen performance if user’s mobility prediction is erroneous.

Scenario 2 (Reactive migration) - As the migration and handoff decision-making
are assumed to be independent from one another, these can occur at any time along
the user’s path. Therefore, the events timeline can change, for example, with the
migration process starting (i.e., E3) after the handoff process has begun (i.e., E4).
Figure 6.2 shows the case in which the whole migration process takes place once
the handoff process is finished. However, the two processes can partially overlap;
this depends on the actual policies and algorithms adopted for migration. Reactive
migration may lead to increased delays and potential drops in the QoE observed
by the user. This is because, when the handoff process is finished, the user is still
accessing the source FN resources through the new access point: the application
goes throughmore than one hop to access the source FN. Service migration towards
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Figure 6.1: Proactive migration scenario - migration starts before the handoff.

the destination FN terminates after a while. Nevertheless, reactive migration may
prove beneficial in situations where user’s mobility pattern is highly unpredictable,
and it is therefore better to know the user’s new position prior to migrating the
service.

Figure 6.2: Reactive migration scenario - migration starts after the handoff.
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Figure 6.3: Concurrent migration scenario - handoff and migration start and end
simultaneously.

Scenario 3 (Concurrent migration) - A third possible scenario is such that both
handoff and migration start and end simultaneously (see Figure 6.3). Although
this is feasible, it is unlikely, since service migration takes longer than a handoff
process. We consider this scenario as a complement to Scenario 1: the shorter the
time difference between migration and handoff, the better, as the application would
always have access to the service on the closest FN during the migration process.
In this scenario, differently from Scenarios 1 and 2, the service does not need to be
accessed through another access point. In this case, the downtimes of the handoff
and of service migration coincide, minimising the delays experienced by the user.

6.2 MobFogSim design
MobFogSim is a simulator that extends iFogSim to model device mobility and ser-
vicemigration in FC. In this section, we first provide a brief overview of iFogSim and
then present the design of MobFogSim with respect to device mobility and service
migration.

Overview of iFogSim

iFogSim (Gupta et al., 2017) is an extension of CloudSim (Calheiros et al., 2011)
that allows the simulation of FC environments. It supports the configuration of a
Fog/Cloud hierarchy by defining the connections among end devices, FNs, and a
Cloud DC. The main classes of iFogSim, which are implemented in Java, are briefly
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described below in order to introduce the simulator and present the necessary back-
ground to describe the modifications of MobFogSim later in this section.

iFogSim has kept the CloudSim core implementation to realise the processing
of events among Fog components. Besides, iFogSim has created new classes and
methods to run a FC simulation. Its main components are:

• FogDevice - it presents the hardware features of a FN or IoT device. It extends
PowerDatacenter from CloudSim. RAM, MIPS, storage size, and bandwidth
(uplink and downlink) are themain class attributes. Themethods of this class
perform specific tasks of a FN or IoT device to process the received tuples;

• Tuple - it extends Cloudlet53 of CloudSim. This represents a task created by an
IoT device that is sent to an AppModule to be processed;

• Application - it is designed according to a Directed Acyclic Graph (DAG). The
vertices are the execution components (i.e., AppModules) that execute tuples.
The edges are data dependencies between the vertices. The following classes
are used to instantiate applications:

– AppModule - it is a vertex that processes tuples. This class extends Pow-
erVm from CloudSim;

– AppEdge - it is an edge to link a couple of vertices (AppModules), thus to
create a dependency between these entities;

– AppLoop - it is a DAG flow that can be configured by users of iFogSim for
monitoring latencies in that part of the DAG. For instance, the AppLoop
may be set to start at the initial vertex of the DAG (entry node) and end
at the last vertex (exit node).

• Sensor - objects of this class are responsible for creating the application tuples;

• Actuator - objects of this class receive the tuples processed by an AppModule.

iFogSim already implements important components for simulating FC environ-
ments. However, this simulator does not model: (i) mobile devices; (ii) geograph-
ical position; (iii) wireless access points; and (iv) service migration. Motivated by
these lacks, in this chapter we propose MobFogSim, which builds upon iFogSim to
support device mobility and service migration in FC simulations.

53In CloudSim, a Cloudlet is an application running in the Cloud.
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Design considerations

An architecture for service migration in the Fog has been presented in (Bittencourt
et al., 2015) and is composed of three main layers: (i) Cloud DC; (ii) FNs; and (iii)
Fog-enabled IoT devices. Based on that, we devised the necessary steps for design-
ing service migration between two FNs in this Fog architecture. We first provide a
general overview of migration design inMobFogSim (see Algorithm 3) and then go
into more details.

When the user gets close to crossing the wireless network boundary and, conse-
quently, is close to a possible handoff process from the current access point to the
next one, the Fog infrastructure should start the migration process. The Migration
Decision process (i.e., line 2 in Algorithm 3) makes the migration decision based
on policies and strategies that are established by the migration system. Migrations
occur when the system identifies a better FN to place the user’s service (it is based
on a metric like lowest latency, lowest distance, or another metric, as we discuss in
Migration strategy later in this section). In scenarioswhere there are no FNs available
offering better conditions to the user, the current FN remains the only alternative to
run the user’s service (i.e., line 13 in Algorithm 3). If the policy/strategy judges that
it is necessary to perform a migration process, the migration point, which defines
how close the user is to the wireless network boundary (see Migration policy later
in this section), determines when the migration starts. When the user crosses the
migration point, the system is allowed to start the migration. Once these conditions
(i.e., where andwhen tomigrate) are satisfied, the systemmust prepare the data for
migration. This process happens in the BeforeMigration phase, which is discussed
in more details in Before migration at the end of this section. When the Before Mi-
gration phase finishes, the migration system has the necessary information to start
the migration. In the During Migration phase, the system must monitor, manage,

Algorithm 3:Migration overview.
1 while User u is within the migration zone do
2 if MigrationDecision() is TRUE then
3 if User u is at the migration point established by the Migration Policy then
4 Before Migration: prepare_migration();
5 while Migration is being performed do
6 if Cannot migrate then
7 Fail and leave the service at the source FN;
8 end
9 After migration: reconfigure_network();

10 else
11 Leave the service at the source FN;
12 end
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and synchronise the process, depending on the type of migration being used (e.g.,
cold or live). If anything impairs service migration, either the management system
tries to solve the problem at runtime, or themigrationmight be aborted, and themi-
gration process terminates leaving the service on the source FN. On the other hand,
if everything runs as expected, the migration process goes to the After Migration
phase and informs the user’s mobile device to close the connection with the old FN
and access the new one. Let us now go into more depth by analysing Migration
Policy, Migration Strategy, and Before Migration in MobFogSim.

Migration policy

Migration Policy in MobFogSim determines the timings of service migration by
defining the concepts of migration zone and migration point in the map. The cur-
rent model implemented in MobFogSim is based on the migration policy discussed
in (Lopes et al., 2017). An illustration of that model can be seen in Figure 6.4, which
shows some of the parameters to be monitored.

Users 1 and 2 have different speeds, directions, and geographical positions in
the map. These attributes are verified during the Migration Decision process. The
system monitors the users and decides whether their services should be migrated
or not. The migration zone is an area where migration decisions are constantly
computed. Looking at Figure 6.4, this is the area limited within the migration point
(which is any point along the dashed red line in figure). Once a Migration Decision

Figure 6.4: Migration model and parameters.
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returns TRUE, service migration is actually started only when the user reaches the
migration point. The potential destination FNs considered in a migration decision
are limited by the migration cone (i.e., the yellow area in Figure 6.4). This cone is
extended to the next access points in the map, thus limiting the amount of possible
destination FNs for the user’s service and also contributing to a speedup in the un-
derlying optimisation process performed by Migration Strategy, which is described
next. This cone is defined by:

• the two directions adjacent to the current direction of the user (e.g., the direc-
tion of user 1 is East, then the adjacent edges are Northeast and Southeast).

• an angle θ that defines the relative region between the access point and the
user (e.g., 135◦ in Figure 6.4).

This cone is always constructed on the same side and direction of the moving
user. Note that user 2 does not have a cone because she/he is already connected to
the access point and is moving towards this access point, i.e., her/his direction is
Southeast, but her/his position relative to the access point is Northwest. On the
other hand, the cone for user 1 is shown because her/his direction is East, and
her/his position relative to the access point is also East.

As already outlined, themigration point is a point on themapwhere servicemi-
gration should be started before the handoff mechanism occurs (i.e., proactive mi-
gration). The migration point can be set depending on characteristics of the infras-
tructure and the wireless connection, e.g., taking into account howwireless handoff
policies behave. A migration point can be either static or dynamic. A static migra-
tion point is fixed on the map regardless of other parameters. For example, Figure
6.5 shows an example of a static migration point that is defined as when the user has

Figure 6.5: Static Migration point.
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Figure 6.6: Dynamic Migration point.

already travelled 70% of the radius of the coverage area, thus still remaining 30% of
the distance to travel before the expected handoff occurrence point (boundary). In-
stead, a dynamic migration point can take into consideration other parameters, as
for example the size of the data being migrated as well as the user’s speed. Figure
6.6 shows a scenario with two examples that combine data size and user’s speed.
User 1 has a larger volume of data to migrate and has a higher speed; user 2 has a
smaller volume of data and a slower speed. Hence, with a dynamicmigration point,
service migration for user 2 starts later than that for user 1.

Migration strategy

In the first part of Algorithm 3, Migration Decision decides whether the user’s ser-
vice should be migrated or not. The Migration Decision flow is illustrated in Figure
6.7. First, the algorithm verifies if the user is moving, and if so, the migration de-
cision process will start by discovering the relative user’s location in relation to the
access point, aiming at verifying if the user is in the migration zone. If the user is
in the migration zone, the algorithm chooses a new FN to receive the user’s service.
This choice depends on Migration Strategy.

Three different strategies are currently available in MobFogSim:

• the lowest distance between the user and the access point - this strategy
chooses the FN connected to the access point that is geographically closest to
the user;

• the lowest distance between the user and the FN - this strategy chooses the
FN that is geographically closest to the user;

• the lowest latency - this strategy chooses the FNwith the lowest latency to the
user (i.e., the topologically closest).
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The first two strategies are calculated based on the geographical distance be-
tween the user and the access point/FN. We highlight that the FC paradigm sug-
gests to provide computing and network resources as close as possible to the users.
However, many aspects may impact the quality of the connection between the users
and their applications placed in the Fog. The geographically closest FN or access
point may not necessarily offer the lowest latency to the user. By implementing
these strategies, MobFogSim allows to study this correlation between geographical
and topological distance. The third strategy, instead, takes into consideration the
end-to-end latency between the user and the destination FN. This value is calcu-
lated as the sum between the latency from the user to the access point and that from
the access point to the destination FN.We highlight that researchers/developers can
extend these strategies and implement their own algorithms, for instance by choos-
ing the destination FN that offers the lowest migration time or energy consumption,
or by including load balancing mechanisms.

Figure 6.7: Migration Decision component.
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Before migration

Once the Migration Decision component has decided that it is time to migrate the
service, the Before Migration component intervenes. Figure 6.8 illustrates the steps
performed by this component. The first two steps of BeforeMigration are dataPrepare
and replicaVM. They are respectively used to define the way through which data are
prepared for migration and the way used to actually migrate them. After this, the
third step opens the connection between the source and the destination FN. Once
the connection is established, data transfer starts through the network. Note that
data preparation and transmission are performed according to a certain migration
technique. As discussed in Chapter 4, there exist four migration techniques at the
moment of writing, i.e., cold, pre-copy, post-copy, and hybrid migrations. As of
now, MobFogSim models two of these techniques: cold and post-copy migrations.
However, we highlight that developers are welcome to implement the remaining
techniques and include them in the simulator.

Figure 6.8: Before Migration component.



6.3 MobFogSim implementation 121

6.3 MobFogSim implementation
In this section, we discuss the most noteworthy aspects relative to the implementa-
tion of MobFogSim. Firstly, we report the main Java classes that make MobFogSim
an extension of iFogSim with support to device mobility and service migration.
Then, we focus on the simulation events and their flow within the migration and
handoff procedure. Finally, we illustrate how MobFogSim supports realistic user’s
mobility patterns.

MobFogSim as an extension of iFogSim
Figure 6.9 shows the main Java classes present in the simulator. The leftmost part
includes PowerDatacenter, which is the class from CloudSim that is important for
the creation of the relevant entities in iFogSim and MobFogSim. The classes from
iFogSim reside in the middle of the picture. The rightmost part, instead, shows the
main classes introduced with MobFogSim. These allow to model device mobility,
network handoff, and service migration according to the description from the pre-
vious section. In what follows, we describe such classes:

• Coordinate - this class acts as a Cartesian Plan map (X, Y) to have all entities

Figure 6.9: Overview of MobFogSim as an extension of iFogSim and CloudSim.
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position during the simulation. These entities can be the FNs, the wireless
access points, and the users’ (IoT) devices. The developer can configure the
map boundaries;

• ApDevice - this class extends FogDevice and has the access point responsi-
bility in a wireless network. This class manages the handoff mechanisms and
connections/disconnections of end devices;

• MobileDevice - this class also extends FogDevice. Its main goal is to allow a
separation between FNs and IoT devices, since iFogSim implements any de-
vice (FNs and IoT devices) with the same features. With this separation, it is
possible to have specific features for different devices;

• MobileSensor - this class extends the Sensor class. In iFogSim, to build a sce-
nario with multiple sensors, the developer needs to instantiate several Sensor
objects. In MobFogSim, MobileSensor already has a set of sensors, and the de-
veloper can instantiate only one object and add, when necessary, more sensors
into the same hardware. A MobileSensor is associated to a MobileDevice;

• MobileActuator - this class is at the same level of abstraction of MobileSensor
and extends the Actuator class from iFogSim;

• MigrationStrategy - this class implements themigration strategy to be applied
in the simulation;

• MigrationPolicy - this class implements the migration policy to be applied in
the simulation.

These classes implement the migration model presented in Section 6.1, thus cre-
ating a mobile simulation environment in MobFogSim that includes the decision-
making algorithms described earlier in this chapter, the events related to the migra-
tion, and the localisation system.

Implementation of events in MobFogSim
To summarise the core of MobFogSim, Figure 6.10 shows part of the main events
generated in a simulation. On the left-hand side, AppExample is a class where a re-
searcher/developer builds all the configurations for the simulation. In this class, one
can perform steps to, for example: (i) create all the FogDevices and their features;
(ii) create all the MobileDevices, MobileSensors, and MobileActuators; (iii) create
the broker configuration; (iv) create the application; (v) create the network; and
(vi) schedule all the initial simulation events. After all the settings are in place, the
MobileController class controls and schedules all the events in the simulator that are
run by the different types of devices (i.e., FogDevice, ApDevice, andMobileDevice).
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Figure 6.10: The main events generated in a simulation.

FogDevice is responsible for executing all the events related to migration (e.g., ver-
ify if the Fog service shouldmigrate according to somemigration policy). ApDevice
is responsible for executing all the events associated with the handoff mechanism
(e.g., make the disconnection from the source access point andmake the connection
to the destination one). MobileDevice is responsible for executing the user’s end ap-
plication and for implementing mobility (e.g., start processing tuples provided by
the sensors; move the user’s device according to the new geographical position). An
essential aspect of the simulation events is that each device can schedule events at
the same simulation time, since those devices are independent entities.

For the sake of comprehensiveness, in Figure 6.11, we illustrate the flow of events
that occur inMobFogSim during amigration and handoff procedure, alongwith the
classes involved. The purpose is to showhow the sequence of events E1-E8 fromSec-
tion 6.1 is implemented in the simulator. The scenario considered in Figure 6.11 is
such that: (i) service migration is proactive; (ii) it is based on the post-copy migra-
tion technique; and (iii) uses "lowest latency” as migration strategy. However, we
highlight that the events would be the same also under different scenarios, though
with a different flow and/or different classes involved. Note that elements in the
sequence diagram are coloured differently according to their nature. Specifically,
purple boxes represent Java classes. Blue and green arrows represent events rela-
tive to migration and handoff, respectively. The brown arrow represents an event
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Figure 6.11: Migration and handoff process as implemented in MobFogSim.

inMobFogSim that is neither explicitly associated to migration nor handoff. Finally,
black arrows are invocation of methods (and their eventual return values).

By looking at Figure 6.11, it is possible to note that the first event is (periodi-
cally) scheduled by MobileController to the source FogDevice. This event is called
MAKE_DECISION_MIGRATION, and it corresponds to E1 from Section 6.1 if the
decision is tomigrate the service. In order tomake this decision, FogDevice executes
the invokeDecisionMigration() method, which in turn invokes the shouldMigrate()
method of the LowestLatency class. The latter triggers the verifyPoints() method
of LiveMigration, which inspects the relative position of the mobile device with re-
spect to the current access point to find out if the user is in the migration zone and
in the migration point. Moreover, verifyPoints() calculates the migration time of
the service. With the information set by verifyPoints(), shouldMigrate() is able to
decide that it is time to migrate the service (i.e., it returns true to invokeDecisionMi-
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gration()) and also selects the destination FN based on themigration strategy. Once
the decision tomigrate is made, the source FogDevice sends a TO_MIGRATE event
(i.e., E2 from Section 6.1) to itself, which results in the invocation of invokeBeforeMi-
gration(). This method triggers the dataPrepare() method of the PrepareLiveMigra-
tion class, which calculates the time required to checkpoint the state of the service as
well as that to open the connection towards the destination FN. Both these times are
returned, as delayProcess, to the source FogDevice class. Service migration is then
started by the source FogDevice by issuing the START_MIGRATION event (i.e.,
E3 from Section 6.1), with the consequent invocation of invokeStartMigration. This
method disassociates the service from the source FN and associates it to the desti-
nation one. Then (and while the service is being migrated), the handoff part of the
procedure is carried out. Going into detail, MobileController (periodically) issues
the CHECK_NEW_STEP event to itself and executes the checkNewStep() method.
This method verifies that the mobile device is in the handoff occurrence point (i.e.,
at the boundary between the coverage areas of two access points) and hence cal-
culates the destination access point and the handoff time. Next, MobileController
sends the START_HANDOFF event (i.e., E4 from Section 6.1) to the source access
point, which invokes the handoff()method to disconnect the mobile device from the
source access point and associate it to the destination one. Then, MobileController
sends the UNLOCKED_HANDOFF event (i.e., E5 from Section 6.1) to the desti-
nation access point, which triggers the unLockedHandoff() method to set the end of
the connection handoffprocess. Finally, themigration process concludes similarly to
the handoff one, namely through the invocation of theUNLOCKED_MIGRATION
event (i.e., E6 from Section 6.1) and of the unLockedMigration() method. Thus, the
whole process is finished, and the user, who is now connected to the destination
access point, can access the service on the destination FN (i.e., E7/E8 from Section
6.1).

Support to realistic user’s mobility

Themodificationsmade to iFogSim, which resulted inMobFogSim, introduced sup-
port to mobile devices. It is worth noting that our simulator supports realistic users’
mobility patterns. This is made possible thanks to the integration of MobFogSim
with the mobility tool Simulation of Urban Mobility (SUMO) (Behrisch et al.,
2011). Figure 6.12 presents an example of the data flow used in a simulation. In this
example, SUMO (b) interprets a source mobility database saved in, for example,
.XML format (a). Many realistic mobility databases are available in .XML format,
such as that from the project Luxembourg SUMO Traffic (LuST), which presents re-
alistic data from vehicles in Luxembourg (Codeca et al., 2015). The result of SUMO
is then saved in .csv format (c).

Each .csv file represents the mobility of a vehicle in the simulation. Each line in
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Figure 6.12: Example of the data flow in a simulation.

this file contains data from the vehicle at one point in the simulation. The data are:
(i) position x and y on the map; (ii) speed in metres per second; (iii) the direction
in radiants; and (iv) the simulation time in which these data were collected. This
new database is hence used as a basis to define the users’ mobility in MobFogSim.
The simulator interprets this database andmakes somemodifications to adapt these
data to its mobility model. Among these changes, there are, for example, the con-
version of the vehicle speed from metres per second to kilometres per hour as well
as the conversion of the direction from radiants to the eight main cardinal points,
which are the basis of the mobility model in MobFogSim. After the simulation in
MobFogSim (d), a new database is built (e), which presents the results of user’s
behaviour for local resource management. Among these results, there are: (i) the
average and the maximum latency presented by the application along the user’s
path; (ii) the migrations performed; (iii) the packages requested and attended; and
(iv) the number of handoffs.

6.4 MobFogSim calibration
We now report the experiments that we carried out over the real testbed fromChap-
ter 4 in order to calibrateMobFogSim, i.e., to appropriately configure its input values
for simulation. The objective is to replicate in the simulator the same conditions of
the testbed. Once the testbed setup is reproduced in MobFogSim, indeed, we can
validate the latter by comparing its simulation results of container migration with
the results presented in Chapter 4. The actual validation of the simulator is reported
in the next section.

Calibration of maximumMIPS rating
There exist multiple ways to estimate a computer speed; one of these is to measure
speed in Million Instructions Per Second (MIPS). MobFogSim, as iFogSim, takes
MIPS ratings as inputs to indicate the maximum computation speed of devices in
an IoT-Fog environment and to define the execution speed of tasks. The purpose of
this first group of calibration experiments is to obtain the maximum MIPS ratings
of the devices in the real testbed.
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As reported in Section 4.3, the end device in the testbed is an ASUS Zenbook
UX331UN notebook whose specifications are reported in Table 6.1. To calculate
the maximumMIPS rating of this device, we leveraged the cpumaxmp64 executable,
which is one of the Roy Longbottom’s Linux MultiThreading benchmarks (Long-
bottom, 2010). This benchmark performs 64bit integer add instructions over 64bit
registers via assembly language. It is possible to specify the number of threads,
between 1 and 64, as a command-line parameter. Each thread executes indepen-
dent code. The assembly code loops execute two billion add instructions each. We
carried out experiments with 1, 2, 4, 8, and 16 threads, running the benchmark
five times for each number of threads. The blue bar charts in Figure 6.13 repre-
sent the obtained results for the notebook, with a 95% confidence level. As shown,
MIPS rating increases with the number of threads, reaching an average value of
46 533.80 MIPS with 8 threads. With 16 threads, however, MIPS rating slightly de-
creases to 45 441.20 MIPS. We were expecting this outcome, as the considered note-
book features an Intel i7-8550U CPU, which is a Quad-Core processor with Hyper-
Threading technology54. Hyper-Threading is the Intel implementation of Simulta-
neousMultiThreading (SMT), which makes a physical core appear to the OS as two
logical processors (Marr et al., 2002). Therefore, this notebook has eight logical pro-
cessors, which explains why performance with 8 threads is the highest.

We then calculated the maximum MIPS rating of a Raspberry Pi 3 Model B,
whose specifications are detailed in Table 6.1. As described in Section 4.3, in the
real testbed, both the source and the destination FNs are Raspberry Pis. This time,
we exploited the MP-DHRYPi64 executable, which belongs to the Roy Longbot-
tom’s Raspberry Pi benchmark collection (Longbottom, 2013b). Each run of MP-
DHRYPi64 executes 1, 2, 4, and 8 threads, with each thread executing a copy of the
Dhrystone benchmark. Dedicated data arrays are used for each thread, but there
are numerous other variables that are shared. The Dhrystone benchmark provides
a measure of integer performance and has been the key standard benchmark since

Table 6.1: Device specifications.

Device CPU RAM Storage Architecture OS Kernel Technology
ASUS
Zenbook
UX331UN

Quad-Core 1.8 GHz
(Turbo at 4.0 GHz)

16 GB 512 GB x86_64 Ubuntu
18.04.1

Linux
4.15.0

SMT

Raspberry
Pi 3 Model
B

Quad-Core
1.2 GHz

1 GB 16 GB aarch64 Debian
9.5

Linux
4.14.73

SMP

54See https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-
threading/hyper-threading-technology.html. Last accessed: 5 April 2019.
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Figure 6.13: MaximumMIPS ratings.

1984. Its code, which is written in C, includes simple integer arithmetic, string oper-
ations, logic decisions, and memory accesses. Between 21% and 65% of the overall
execution time is spent on string operations (i.e., string assignments and compar-
isons) (York, 2002). Speed was originally measured in Dhrystones per second. This
was later changed to VAX MIPS by dividing Dhrystones per second by 1757, which
is the number of Dhrystones per second of the first 1 MIPS minicomputer, namely
the DEC VAX 11/780 (Longbottom, 2013a). We run MP-DHRYPi64 five times. Re-
sults for the Raspberry Pi are the orange bar charts in Figure 6.13 and are shown
with a 95% confidence level. As for the notebook, MIPS rating increases with the
number of threads. However, differently from the notebook, the maximum MIPS
rating of the Raspberry Pi is reached with 4 threads rather than 8. Average com-
putation speed is 2873.50 MIPS with two threads, 3234.33 MIPS with 4 threads, and
3231.95 MIPS with 8 threads. This is because the Raspberry Pi 3 Model B has a
Broadcom BCM2837 CPU, which is a Quad-Core processor with Symmetric Multi-
Processing (SMP) technology rather than SMT. As a result, the OS in a Raspberry Pi
sees only four logical/physical processors, and this is why the highest performance
is reached with 4 threads.

Calibration of latency and throughput
The objective of this second set of calibration experiments is to characterise the RTTs
and the throughputs among the devices in the testbed. As described in Section 4.3,
container migration experiments over the testbed were performed with two differ-
ent couples of RTT and throughput values between the FNs. The first couple was
defined as LTE use case and consisted of a RTT of 122.95 ± 5.57 ms and a throughput
of 11.34 ± 2.31 Mbps. The second couple was named Ethernet use case and was char-
acterised by a RTT of 6.94 ± 0.61 ms and a throughput of 72.41 ± 3.87 Mbps. Each
couple hence identifies a specific network condition between the FNs. For simplic-
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ity, in this chapter, we refer to the LTE and Ethernet use case couples as network
condition A and network condition B, respectively. Besides, note that legend en-
tries in all the following figures with results report the one-way latency rather than
the RTT between FNs. This is becauseMobFogSim takes one-way latencies as input.

As shown in Figure 4.6 from Section 4.3, the notebook in the testbed is connected
through Wi-Fi to the source FN, which hence also behaves as a Wi-Fi access point.
RTTs and throughputs over Wi-Fi were measured using the same methodology ex-
ploited to calculate values for network configuration between FNs. Namely, RTTs
were measured through the ping command in Linux over 10 runs, with 20 measure-
ments per run. We then considered the average RTT per run to obtain 9.55 ± 0.88 ms
at a 95% confidence level. In order to get the throughput from the notebook to the
Raspberry Pi, we performed 10 measurements using the iperf3 tool, sending 50 MB
each time. The resulting throughput value is 13.32 ± 0.97 Mbps, with a 95% confi-
dence level. In a similar way, we calculated the throughput from the Raspberry Pi
to the notebook, obtaining 13.05 ± 1.40 Mbps.

Calibration of the application parameters
The purpose of this final set of calibration experiments is to characterise the appli-
cation that was used in Chapter 4 to evaluate container migration techniques. By
characterisation of the application, we mean the measurement of all those values
that MobFogSim requires as inputs to detail the application. We highlight that, in
Chapter 4, the server could modify memory pages either at 10 kBps or at 500 kBps.
The purpose for thiswas to evaluate the effect of different page dirtying rates on con-
tainermigration techniques. However,MobFogSim currently implementsmigration
according to the cold and post-copy techniques. As shown in Chapter 4, both these
techniques are not influenced by the page dirtying rate of the service. Therefore,
in this chapter, we consider 500 kBps as the only page dirtying rate featured by the
CoAP server.

The first parameter that we measured to characterise the application were the
MIPS ratings with which both the client and the server execute. To this purpose, we
run both the client and the server specifying the stat command of the Linux perf 55
utility (version 4.14.87 on the Raspberry Pi and 4.15.18 on the notebook). Linux perf
is a user-space application that, making use of the perf_events interface of the Linux
kernel, accesses all the CPU internal counters for performance monitoring. We run
the application five times and, based on the performance metrics from Linux perf,
we calculated MIPS ratings as follows:

MIPS =
f · ipc
106 (6.1)

55See http://www.brendangregg.com/perf.html. Last accessed: 10 April 2019.
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where f is the CPU frequency (Hz) with which the task is executed, while ipc
(i.e., Instructions Per Cycle) is the average number of instructions that are executed
per clock cycle. The resulting task execution speeds are 2901.00 ± 119.26 MIPS and
281 MIPS for the client and the server, respectively. Results are shown with a 95%
confidence level. With Linux perf, we also obtained the number of instructions
that were executed each time by both the client and the server. The client executes
966.01± 13.32 million of instructions, while the server executes 2438.62± 22.72 mil-
lion of instructions, with a 95% confidence level.

We also measured the RAM requirements of both the client and the server. We
consider RAM requirements in MobFogSim to be expressed as the maximum Res-
ident Set Size (RSS) of a process during its lifetime, namely the maximum portion
of RAM memory occupied by that process. To measure it, we specified the com-
mand56 /usr/bin/time -f "RSS=%M" when starting both the client and the server
from terminal. After five runs, we obtained 49.05 ± 0.14 MB and 128.09 ± 0.16 MB
as RAM requirements of the client and the server respectively, with a 95% confi-
dence level. Besides, we leveraged the du command in Linux to measure the disk
usage of both the client (i.e., the JAR file) and the server (i.e., the OCI bundle for
the runC container). Results are of 4 MB for the client and 412 MB for the server.

Finally, we also measured the size of each CoAP request (i.e., from the client to
the server) and each CoAP response (i.e., from the server to the client). To do so,
we launched Wireshark (version 2.6.6) on the notebook and found that the CoAP
request was 87 B while the CoAP response was 54 B.

6.5 MobFogSim validation
In this section, we validate our simulator by comparing its results of container mi-
grationwith those discussed in Section 4.4. SinceMobFogSim currentlymodels cold
and post-copymigrations, we consider only results of these migration techniques in
this section. The calibration experiments described in the previous section allowed
us to select realistic values for the input parameters in MobFogSim, thus to replicate
the network and service conditions of the real testbed during simulation. For con-
venience, Table 6.2 reports these parameters in alphabetical order along with their
values. Names in brackets are the actual variable names used in MobFogSim to in-
dicate those parameters. We run 30 simulations for each combination of migration
technique (i.e., cold, post-copy) with network condition (i.e., A, B). Simulation re-
sults are analysed and compared with those from the real testbed in terms of: (i)
total migration time; (ii) downtime; and (iii) volume of transferred data. Results
are presented with a 95% confidence interval.

In addition to the input parameters provided by the experiments on the testbed,
some complementary input values were assumed as part of the simulated environ-

56See http://man7.org/linux/man-pages/man1/time.1.html. Last accessed: 10 April 2019.
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Table 6.2: Input parameters and their values in MobFogSim based on the testbed
experiments.

Parameter Value
Client execution speed (mips) 2901 MIPS
CoAP request size (tupleNwLength) 87 B
CoAP response size (tupleNwLength) 54 B
Disk usage of client (size) 4 MB
Disk usage of server (size) 412 MB
Maximum speed of notebook (mips) 46 534 MIPS
Maximum speed of Raspberry Pi (mips) 3234 MIPS
Number of instructions executed by client (tupleCpuLength) 966 million
Number of instructions executed by server (tupleCpuLength) 2439 million
One-way latency between notebook and Raspberry Pi (UplinkLatency) 4.78 ms
One-way latency under condition A between Raspberry Pis (lat) 61.48 ms
One-way latency under condition B between Raspberry Pis (lat) 3.47 ms
RAM requirement of client (ram) 49 MB
RAM requirement of server (ram) 128 MB
Server execution speed (mips) 281 MIPS
Throughput from notebook to Raspberry Pi (upBw) 13 640 kbps
Throughput from Raspberry Pi to notebook (downBw) 13 363 kbps
Throughput under condition A between Raspberry Pis (bw) 11 612 kbps
Throughput under condition B between Raspberry Pis (bw) 74 148 kbps

ment. These simulation settings are described as follows. In the simulated scenario,
we assumed a square 10 x 10 kmmap with 144 uniformly distributed FNs. Each FN
is connected to one access point which reaches up to 500 m of signal coverage. Each
simulation assumes a uniformly distributed random direction for user’s mobility.
The user is supposed to cross the map at a constant speed (20 kmph) until she/he
reaches the opposite map edge. However, simulations end once the user finishes
her/his first container migration process. The migration point policy was defined
as a static point. The migration process starts once the user reaches the migration
point, which is defined at 40 m from the access point coverage boundary. The des-
tination of the container in the migration process is chosen based on a greedy ap-
proach. The migration strategy assumed in this evaluation selects the FN with the
Lowest Latency among a set of 10 candidate FNs that are present in the user’s path.
Aiming to evaluate a more flexible environment, we assumed three different execu-
tion state sizes transmitted during migration: 1.2 (which is the actual size from the
testbed results), 6.0, and 12.8 MB. Table 6.3 summarises the above settings of the
simulated environment.

Figure 6.14 presents the total migration times in MobFogSim (a) against those
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Table 6.3: Additional input parameters and their values in MobFogSim.

Parameter Value
Execution state size 1.2 MB, 6.0 MB, and 12.8 MB
Access point coverage (radius) 500 m
Number of FNs 144
Density of FNs per access points 1:1
Migration strategy Lowest latency
Migration point policy Static (40 m)
User’s speed Constant (20 kmph)

from the real testbed (b). Similarly to the testbed results, post-copy migration, in
all its variants, presents higher values than cold migration under the correspondent
network conditions. As already explained in Chapter 4, this result is due to the fact
that post-copy migration transfers memory pages only upon request, and the time
for such requests increases the total migration time. Going into detail, under condi-
tion A, both the simulated and the testbed post-copy scenarios present a migration
time about 30% longer than that of coldmigration. However, the simulated environ-
ment presents average values that are 25% higher than those in the correspondent
testbed scenario. Under condition B, both the simulated cold and post-copy migra-
tions present results that are close to the values from the testbed. In the particular
case of post-copy migration, the size of the execution state transmitted in that pro-
cess does not present a significant impact on the migration time. Increasing the
execution state size from 1.2 to 12.8 MB resulted in an increment of about 6% in the
migration time under both network conditions A and B. Based on these simulations,
in general, the total migration time presented by MobFogSim tends to be consistent
with the testbed results for both cold and post-copy migrations.

Another relevant metric for the evaluation of the migration techniques is the

(a) (b)

Figure 6.14: Total migration times - MobFogSim (a) vs. real testbed (b).
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(a) (b)

Figure 6.15: Downtimes - MobFogSim (a) vs. real testbed (b).

downtime. Downtimes in MobFogSim and in the real testbed are shown in Figures
6.15(a) and 6.15(b), respectively. Similarly to the testbed results, the downtime of
cold migration is higher than that of post-copy and even coincides with the total mi-
gration time, under both conditions A and B. Even though the execution state size
does not have a significant impact on the migration time, this parameter strongly
influences post-copy migration in terms of downtime. Assuming an execution state
size of 12.8 MB, simulations suggest a downtime about 420%higher under condition
A and 66% higher under condition B, if compared to migrations with an execution
state size of 1.2 MB.

We also present performances in terms of volumes of data transmitted between
FNs during migration. Figures 6.16(a) and 6.16(b) respectively show the amounts
of sent data in MobFogSim and in the real testbed. Simulation presents a volume
close to 150 MB, which is about 20 MB higher than that in the testbed environment.
The volume of data sent both within simulations and over the testbed is stable un-
der both the network conditions. Besides, like in the testbed, both the migration
techniques transfer a similar volume of data (nonetheless, total migration time for
post-copy is higher due to the time necessary to request memory pages).

(a) (b)

Figure 6.16: Volumes - MobFogSim (a) vs. real testbed (b).





Chapter 7

Conclusions

The Fog is a Cloud closer to the ground. As such, FC extends the Cloud towards the
network edge, distributing resources and services of computing, storage, and net-
working anywhere along the Cloud-to-Things continuum. The resulting topolog-
ical proximity to the end devices is the enabler of key benefits (e.g., low latencies,
reduced bandwidth consumption) that are not achievablewith Cloud-only environ-
ments. Although it is generic enough to satisfy the requirements of themost diverse
domains, FC is particularly tailored to the IoT. At the beginning of this thesis, we
have provided a survey on the employment of FC for the IoT. This study shows how
significant steps forward have been made in the field. For instance, several software
and hardware platforms are available for use. Moreover, FC is experiencing signif-
icant standardisation efforts and promising collaborations, which are fundamental
for a wider and quicker adoption of this paradigm. In June 2018, the IEEE-SA of-
ficially adopted the OFRA as the new IEEE 1934TM standard, while ETSI MEC will
be a key feature of the next 5G networks. In addition, the recently signed MOU be-
tween the ETSI and the OFC is a first step towards further advancements in the field.
Yet, as pointed out in this thesis, several open issues and research opportunities still
exist to fulfil the full potential of the integration between FC and the IoT.

The focus of this thesis has been on a specific research problem, i.e., that raised by
(IoT) devicemobility in FC. Bymoving across the environment, amobile devicemay
get topologically far from its Fog service. This may have a negative impact on the FC
benefits, which are a result of Fog proximity to the enddevice. To solve this issue and
achieve what we refer to as CFC, we have considered Fog service migration across
the Fog infrastructure, thus to let the Fog service be always close enough to the
served mobile device. In this thesis, we have first analysed the different aspects that
characterise this research problem, reporting the efforts from literature to address
each of them and outlining the open issues and research directions. We have then
proposed the following solutions and achieved the following results.
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Firstly, under the assumption of Fog services implemented as application con-
tainers, we have set up a small-scale FC testbed and performed experiments over
it with the purpose to evaluate and compare the state-of-the-art stateful container
migration techniques. Through these experiments, we have achieved a better un-
derstanding on how container migration techniques work and differ. Besides, we
have shown how no technique performs the best under any condition in a FC envi-
ronment. We have therefore provided a general insight on which technique might
be themost appropriate under which service and network conditions. Pre-copy and
post-copy migrations appear to be the most suitable for most scenarios.

As a second contribution, we have proposed a migration platform named CFP
that provides themechanisms required to support devicemobility in the Fog. Such a
platform leverages containerisation and containermigration to this purpose. Specif-
ically, it implements both stateful and stateless container migrations. We have val-
idated our CFP by running experiments over a real FC testbed and by compar-
ing stateful and stateless migration scenarios with scenarios where the service was
hosted either in the Cloud or in the Fog and was never migrated. Results have
demonstrated how the proposed platform improves performances, in terms of RTTs
and outage times, with respect to the Cloud and to standard FC (i.e., FC with no
service migration). Furthermore, we have shown how stateless migration presents
better performances than stateful migration (even though it does not transfer any
state at destination).

Finally, we have presentedMobFogSim, an extension of iFogSim that models de-
vice mobility and service migration in FC. We have first provided details on the mi-
gration and handoff model considered in MobFogSim as well as on the design and
implementation of the simulator. The results obtained from container migration ex-
periments over the real testbed have allowed a better modelling of service migration
in MobFogSim. Moreover, we have first calibrated the simulator with input values
that replicated in it the same network and service conditions of the testbed. Then,
we have run simulations of container migration and compared simulation results
with those obtained over the real testbed in the first of the three main contributions
of this thesis. Through such a comparison, which has shown similar trends in the
two types of results, we have checked the validity of MobFogSim.
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