UNIVERSITA
DEGLI STUDI

FIRENZE

PhD Program in Smart Computing

University of Florence, University of Pisa, University of Siena

SEcCURITY & PRIVACY
IN SMART CITIES
AND INDUSTRIAL IOT

Marco Rasori

Supervisor: Coordinator:

Prof. Gianluca Dini Prof. Paolo Frasconi

Evaluation Committee:
Prof. Francesco Buccafurri, University of Reggio Calabria
Prof. Ming Li, University of Arizona

ING-INF/05 — Cycle XXXII — Years 2016/2019

To my grandpa

Acknowledgments

I would like to thank my supervisor, Prof. Gianluca Dini, for giving me constructive
comments and warm encouragement throughout these three years.

I am particularly grateful to Dr. Pericle Perazzo, who greatly helped me in every
phase of my Ph.D. studies.

Also, I would like to thank also the members of my supervisory committee, Prof.
Enzo Mingozzi, and Prof. Stefano Chessa, who let me improve my research through
precious comments and suggestions.

I must express my gratitude to Prof. Shucheng Yu, whose research has been
inspiring to me. I thank him for the opportunity of collaborating with him at Stevens
Institute of Technology.

I reserve special thanks for Prof. Francesco Buccafurri and Prof. Ming Li, who
reviewed my dissertation and helped to improve it through valuable observations.

The administrative staff of the University of Pisa and Florence for their courtesy
and help provided to get out of the bureaucratic jungle.

All the people I collaborated with and spent so much good time with during
these years. Antonio, Carlo, Francesca, Giovanni, Gloria, Marco, and Niccolo, with
whom I shared not only the office and useful suggestions but also thoughts, laughs,
and some great hiking adventures. The cybersecurity group and the upstairs Ph.D.
students for the many coffee breaks, which spanned from light chitchatting to shar-
ing of opinions about our research topics.

Thanks to my whole family. Thank you for your wisdom, love, and support pro-
vided throughout the duration of this experience, for all the one prior to it, and the
one that will come. Thank you, mom. Thank you, dad, Andrea, Eli, Edo, and Pa-
trizia. Thank you Giuntoli for your encouragement, for your love, and your patience.

Last but not least, I would like to express my gratitude to all my friends! It would
be hard to name some as it would result in forgetting some others; so, if you consider
yourself a friend, your acknowledgment is here!

Any omission in this brief acknowledgment does not mean lack of gratitude.

iii

Abstract

The Internet of Things (IoI') technology is now widespread and is indis-
putably changing our lives. As this technology advances, new security and pri-
vacy challenges mustbe faced. The limitations imposed by resource-constrained
devices used in Iol applications play a crucial role and often determine the re-
search directions. This dissertation addresses security problems related to the
two main branches of the Iol, namely smart cities and industrial IoT.

IoT applications usually rely on input data coming from either provider’s
smart devices or by end-user’s devices, as in mobile participatory sensing. In
the latter case, the infrastructure rests on data reported by participants. This
paradigm, however, introduces new security problems related to the trustwor-
thiness of the reported data, which might be inaccurate or even counterfeit. Dif-
ferently, if the data is sensed by trusted devices, the data trustworthiness is not a
concern as far as other security properties, e.g., authentication and integrity, are
guaranteed. Depending on the scenario, the sensed data can be directly trans-
mitted to the users or stored on cloud servers. Oftentimes, sensed data includes
sensitive or valuable information which is intended to be read only by autho-
rized users. If data is stored on the cloud, the owner loses any control on it,
and an attack that leads to data disclosure could represent an important loss of
money for the data owner or a serious privacy violation for the users.

In this dissertation we propose novel solutions to the aforementioned prob-
lems. False-measurement reports could be tackled by having a set of trusted
verifiers which checks the same measurement. If the measurement cannot be
directly checked, the verifiers could at least check the participant’s position as
an indirect proof. To this aim, we propose an effective and secure location verifi-
cation solution which uses a swarm of few drones equipped only with common
radio-frequency transceivers, e.g., WiFi.

Secondly, we propose the use of Attribute-Based Encryption (ABE) in IoT
scenarios to protect the data from unauthorized access. We propose ABE-Cities,
a secure scheme for smart cities which implements a publish/subscribe-like ap-
plication in which the data is outsourced to a semi-trusted cloud server. Since
ABE encryption might be burdensome for a range of resource-constrained de-

vices, in ABE-Cities, the sensing devices execute only symmetric-key algorithms.

Moreover, ABE-Cities leverages the peculiarities of a smart city in order to re-
duce the complexity of the key revocation operation, which is the most onerous
one in ABE systems. In addition, we extend an existing ABE revocation scheme
by providing additional security that limits the cloud server capabilities and in-
hibits it from accessing the data stored on it, when in possession of a revoked
key. Finally, we propose fABElous, an ABE scheme for low-bitrate wireless sen-
sor and actuator networks, often used in industrial IoI systems, which aims at
minimizing the communication overhead introduced by the adoption of ABE to
selectively distribute data through broadcast communications.

Contents

Contents 1
List of Figures 3
List of Tables 4
1 Introduction 5
1.1 Structure of the Dissertation 6
2 A Low-Cost UAV-Based Secure Location Verification Method 9
21 Related Work e 10
2.2 System and AdversaryModels 00 0L 11
2.3 Experimental Evaluation, 16

3 AlLightweightand Scalable Attribute-Based Encryption System for Smart

Cities 19
31 RelatedWork 21
3.2 Preliminaries 22
33 ABE-Cities 26
3.4 Universe of the Attributes and Access Policies 34
3.5 Experimental Evaluation 36
3.6 Advanced ABE-Cities oo 41
3.7 Advanced ABE-Cities Evaluation 45
4 Improving KP-ABE Revocation Mechanism 49
41 Background L 50
42 ProposedScheme 54
43 Security Analysis 59
44 Performance Evaluation 64

5 fABElous: An Attribute-Based Scheme for Industrial Internet of Things 69
51 RelatedWork 70
52 Preliminaries L 71

2 CONTENTS

5.3 Architecture e 72
5.4 Performance Evaluation 78
6 Conclusions 81
A Publications 83

Bibliography 87

List of Figures

21
2.2
2.3
24
2.5

3.1
3.2
3.3
34
3.5

3.6
3.7
3.8
39
3.10
3.11

4.1

51
52
53
54
55

Location verification protocol 12
Swarm formations Lo o 14
Critical cases for the semi-random formation 15
False negative probability wrt swarm cardinality 17
False negative probability as function of falsification distance 18
Example of KP-ABE ciphertext and decryptionkey 22
Example of asegmenttree 26
ABE-Cities architecture 27
Example of access policy for a user’s decryptionkey 28
Example of “authorized road segments” subtree in a decryption key us-

ing the segment-tree representation., 35
Key size and affected users graphs 38
Key size and affected users graphs on large cities 39
Example of Merkle tree with eight datablocks 42
Advanced ABE-Cities architecture 43
Key sealing time graphs in the WiFi scenario 46
Key sealing time graphs in the LoRa scenario 47
Re-encryption key list for the attribute: 52
tABElous architecture o Lo Lo 73
Sensorjoin procedure Lo 74
New policy installation procedure 75
Data exchange procedure. 76
tABElous communicationoverhead o 0L 79

List of Tables

3.1
3.2

4.1

51

Routelengths 39
Average road segmentlength 0000 40
Computational costs comparison, 65
Transmission size comparison 0000 78

Chapter 1

Introduction

The Internet of Things (IoT') technology is facilitating seamless advancement in any
conceivable aspect of our everyday life. From health care to gaming, from buildings
to homes, the IoI-based services and applications developed in the last years are
uncountable. As the IoT technology advances, new security and privacy challenges
must be faced. In particular, the limitations imposed by the employment of resource-
constrained devices play a crucial role and often determine the research directions.
A 2017 analysis by GrowthEnabler! shows the trend of the global IoT market share
until 2020 and reveals that it will be dominated by smart cities (26 %) and industrial
IoT (24 %) sectors. This dissertation addresses security problems related to such
domains.

The input source of Iol applications is usually data provided either by smart de-
vices deployed in the environment or by end-user’s devices, as in the novel paradigm
of mobile participatory sensing. In the latter case, the infrastructure relies on sensed
data or events reported by participants. This paradigm, however, introduces new se-
curity problems related to the trustworthiness of the reported data, which might be
inaccurate or even counterfeit. Differently, if the data is sensed by trusted devices de-
ployed in the environment, the data trustworthiness is not a concern as far as other
security properties, e.g., authentication and integrity, are guaranteed. Depending
on the scenario, the sensed data can be directly transmitted to the users for a rapid
consumption or stored on cloud servers for on-demand usage. Oftentimes, sensed
data includes sensitive or valuable information which is intended to be read only
by authorized users. Unfortunately, as soon as data lands on the cloud, the owner
loses any control on it and has to completely trust the cloud server. In particular,
cloud servers are highly exposed to a plethora of attacks, and a data breach could
either represent an important loss of money for the data owner or a serious privacy
violation for the users.

In this dissertation we propose solutions to the aforementioned problems. In

https://growthenabler.com/flipbook/pdf/I0T%20Report.pdf

5

6 Introduction

order to hinder false-measurements reports, a simple solution would employ a set of
trusted verifiers to check the same measure. Otherwise, if the measurement cannot
be checked, the verifiers could at least check the participant’s position as an indirect
proof. Lying about the measurement is still possible, but the lying participant must
be physically present and must wait for the verifiers to verify his/her position. To
this aim, we propose an effective and secure location verification solution which uses
a swarm of few drones equipped only with off-the-shelf hardware, i.e., common
radio-frequency transceivers.

When the data is stored on semi-trusted cloud servers and is selectively accessed
by authorized users, the data should be stored in encrypted form in order to prevent
data disclosure due to attacks to the cloud server. A novel public-key encryption
scheme called Attribute-Based Encryption (ABE) is tailored for these scenarios as
it enforces an access control mechanism directly on the encrypted data. Although
ABE is very attractive, it still has some open challenges to be addressed, for example
it lacks an efficient key revocation mechanism. As a contribution in this field, we
propose a secure scheme called ABE-Cities which makes use of ABE to implement a
generic publish/subscribe-like service optimized for a smart city. ABE-Cities takes
into account the peculiarities of a smart city, such as its street network, the geograph-
ical distribution of the sensor network, etc., and maps them onto the underlying ABE
scheme in order to gain efficiency in key revocation procedures, which are the most
critical ones. In addition, we extend an existing ABE revocation scheme (Yu et al.,
2010a) in order to improve its security against the cloud server, otherwise capable
of accessing the stored data under the assumption that it comes in possession of a
revoked key. ABE can also be useful in Iol applications in which data is selectively
shared through broadcast communications. To this aim, we propose fABElous, an
ABE scheme for low-bitrate wireless sensor and actuator networks, often used in in-
dustrial IoI systems, which provides integrity, authentication, confidentiality, and
access control on data. The scheme aims at minimizing the impact of the introduc-
tion of ABE technology in terms of communication overhead.

1.1 Structure of the Dissertation

This dissertation is divided in a first part about secure location verification and a
second part about Attribute-Based Encryption. It follows a brief description of each
chapter.

1.1 Structure of the Dissertation 7

Chapter 2. A Low-Cost UAV-Based Secure Location Verification
Method

In this chapter we propose a secure protocol for verifying the location of a device.
Differently from the majority of the existing works in literature, we assume the de-
vice and the verifying infrastructure (a swarm of Unmanned Aerial Vehicles) to
be equipped only with common radio-frequency transceivers, e.g., WiFi. This as-
sumption makes our location verification mechanism less precise than other solu-
tions which use special hardware, e.g., ultra-wideband transceivers. However, the
proposed scheme easily fits Iol smart city applications of participatory sensing in
which the devices used by the participants are their smartphones. By simulations,
we show our scheme’s performance in terms of success probability against different
types of adversaries. The results presented in this chapter have been published in
the 12th International Conference on Availability, Reliability and Security (Rasori
etal., 2017).

Chapter 3. A Lightweight and Scalable Attribute-Based
Encryption System for Smart Cities

In this chapter we propose ABE-Cities, a scheme for Iol smart city applications in
which the data is stored on semi-trusted storage. The scheme makes use of Attribute-
Based Encryption (ABE) to secure the data and to allow fine-grained access control
on it. ABE-Cities senses data from the city and stores it on a semi-trusted cloud
server in an encrypted form. Then, it provides users with keys able to decrypt only
data sensed from authorized paths or zones of the city. In ABE-Cities, sensors per-
form only lightweight symmetric-key encryption, thus we can employ constrained
sensor devices such as battery-powered motes. ABE-Cities allows to plan an expi-
ration date for each key, as well as to revoke a given key in an unplanned fashion.
We analyze and leverage the peculiarities of a smart city in order to lighten the key
revocation mechanism, which is the most burdensome operation in ABE systems.
Through simulations on large street networks, we prove that ABE-Cities scales well
with the number of users and the number of streets. The results presented have
been published in Computer Communication Journal (Rasori et al., 2020).

Chapter 4. Improving KP-ABE Revocation Mechanism

In this chapter we build on top of Yu et al.’s (2010a) proxy re-encryption scheme
and propose a Key-Policy Attribute-Based Encryption (KP-ABE) scheme that lim-
its the semi-trusted cloud capabilities. In Yu et al.’s scheme, the key revocation is
accomplished by the cloud server and consists of an update (re-keying) of all the
decryption keys in the system but the one to be revoked. However, if the cloud

8 Introduction

server happens to be in possession of a revoked key, it could “undo” the revocation
and access the data stored on it. In our scheme, we split the key revocation task on
both the cloud server and legitimate users, so a user’s decryption key is re-keyed
through a double update. Likewise, in our scheme the update (re-encryption) of
old ciphertexts stored on the cloud server is performed by both the cloud server
and the users. We show in our construction that this is practical for the user and
verifiable for the cloud server.

Chapter 5. fABElous: An Attribute-Based Scheme for Industrial
Internet of Things

In this chapter we use the dual scheme of KP-ABE, i.e., Ciphertext-Policy Attribute-
Based Encryption (CP-ABE), and propose fABElous, a secure scheme for industrial
IoT which provides integrity, authentication, confidentiality, and access control on
data. In these scenarios, where low-power and low-bitrate communication proto-
cols are used, the challenge is to provide all the aforementioned security properties
while keeping the communication overhead as low as possible. We describe how
our system provides them, and we show how it outperforms a system which inte-
grates CP-ABE naively. The results of this chapter have been published in the 5th
IEEE International Conference on Smart Computing (La Manna et al., 2019).

Chapter 2

A Low-Cost UAV-Based Secure
Location Verification Method

No man is wise enough by himself.

Plautus

Secure location verification is a process by which an infrastructure composed by
one or more verifiers attempts to verify that a prover is actually placed where it claims
tobe. The problem of secure location verification has been widely studied, and many
different solutions have been proposed (Zeng et al., 2013). However, existing solu-
tions make use of special hardware and/or many fixed verifiers, which entail high
deployment costs and make them scarcely attractive. A promising and low-cost ap-
proach involves the use of Unmanned Aerial Vehicles (LLAVs) as verifiers. In the last
decade, UAVs employment has known a prosperous growth, especially in commer-
cial and civil fields. UAVs have been used in swarms to accomplish disparate tasks
(Costa et al., 2012; Waharte et al., 2009). Recent studies addressed the problem of
secure location verification by means of UAVs (Perazzo et al., 2015; Yokoyama et al.,
2014). However, they use special hardware, e.g., ultra-wideband (UWB) or stereo
cameras, which makes them expensive and therefore hard to realize.

In this work, we present a novel low-cost secure location verification approach
based on a swarm of few UAVs equipped with common radio-frequency (RF) trans-
ceivers (e.g., WiFi). This perfectly fits, for instance, a crowd sensing application in
which a set of participants provided with smartphones share their positions to es-
timate the crowd density in some area. In this application, the UAVs can carry out
random spot checks on participants in order to assure that their generated positions
are genuine.

In our work, we suppose that a device claims its position and is reached by the
swarm of UAVs, which places in formation around the device. Then, through an
RF communication, a location verification protocol starts, and the device is asked

9

10 Secure Location Verification

to broadcast a message. By measuring the strengths of the received signals by the
UAVs, the system can establish if the device claimed its actual position.

The work has several contributions. We first analyze a simple attack in which a
malicious prover claims a false position. Then we introduce a stronger adversary
that is capable of tracking UAVs’ positions and adjusting its transmission power.
By experimental evaluations, we investigate the impact of swarm cardinality and
formation on the ability of detecting the presence of an adversary. The results of
these tests show that a swarm of only three UAVs detects more than 99 % of the
attacks starting from a falsification distance of 20 m against a basic adversary, and
35m against a stronger adversary.

The chapter is organized as follows: in Section 2.1 we compare our approach
with related work. In Section 2.2 we introduce system and adversary models and
describe the proposed location verification protocol. In Section 2.3 we evaluate the
success probability of the adversary.

2.1 Related Work

The use of UAVs as mobile infrastructure represents a low-cost solution to the secure
location verification problem. Yokoyama et al. (2014) use UAVs in a study related to
secure positioning. They describe a method based on image processing to estimate
the distances between the verifiers and the prover. This implies UAVs need to be
equipped with high-resolution stereo cameras. In contrast, our approach is cheaper
because it takes advantage of basic onboard components of a UAV and does not
require additional hardware. Moreover, a visual technique entails a direct line of
sight between every verifier and the prover. This constraint is not mandatory in our
model.

Perazzo et al. (2015, 2016a) approach the location verification problem using one
UAV. They base their solution on UWB transceivers. However, at the present time,
these transceivers are neither widespread nor cheap.

Baker and Martinovic (2016) describe an approach for secure location verifi-
cation that employs a mobile verifier and at least one fixed verifier to determine
prover’s position by means of time difference of arrival (TDoA). This solution ne-
cessitates strict time synchronization between the base stations to achieve accuracy,
and this requires technical effort and raises implementation costs. Our protocol is
not subject to any rigid synchronization constraints, and thus it can be realized in a
cheaper way.

Rasmussen et al. (2008) describe an approach in which the verifiers are covert
base stations, and another approach that employs a mobile base station. They both
rely on time differences between RF and ultrasonic (US) signals sent by the prover
in order to estimate the distances between verifiers and prover. Such a solution de-

2.2 System and Adversary Models 11

pends on US communication modules that are not off-the-shelf components in com-
mercial UAVs. Our solution is more general and cheaper.

Other studies (Vora and Nesterenko, 2004; Capkun and Hubaux, 2006; Perazzo
etal., 2016b) deal with secure location verification by relying on infrastructures com-
posed of many fixed verifiers whose locations are known. A fixed infrastructure is
a huge constraint in terms of deployment and maintenance costs. In contrast, UAVs
used as mobile verifiers are cheaper and more versatile since a few of them can cover
wide areas. Moreover, Capkun and Hubaux (2006) and Perazzo et al. (2016b) make
use of UWB transceivers that are currently not widespread. In contrast, our solution
presumes the use of common wireless communication hardware (e.g., WiFi), which
is often installed off the shelf on UAVs and mobile devices.

2.2 System and Adversary Models

In our system, a swarm of UAVs forms the verification infrastructure where each
UAV plays the role of verifier. UAVs are mobile stations, so they can autonomously
reach given positions to start the location verification protocol. The prover is a device,
for example a smartphone, claiming to be at a certain position (claimed position, pc)
that must be verified. We use 7 to indicate the swarm cardinality, i.e., the number of
UAVs in the swarm.

We require UAVs to be equipped with a GPS module and an RF communication
module (e.g., a WiFi transceiver). We assume that UAVs can determine their own
positions by means of GPS. The RF module is used for communication with the
prover and the other UAVs. Moreover, we suppose that one UAV, the leader, shares a
secret K (shared secret) with the prover. The secrets can be distributed to the provers
in a secure manner through a generic key distribution scheme (Du et al., 2004).
The way in which this is deployed goes beyond the scope of this work. We also
assume the UAVs can communicate securely among one another. The UAVs move
toward the claimed position and take positions within a communication range R from
it, according to a given swarm formation. Then, the following location verification
protocol, represented also in Figure 2.1, takes place:

M1: leader — prover: N

M2: prover 4 *: Signy (N)

M3: u; — leader: Signg (N), Pry,i Vi,
where the symbol /4 * represents a broadcast message.

The leader starts the protocol by transmitting a nonce N to the prover, while the
other UAVs remain passive. Then, the prover creates and broadcasts the message
M2, which includes the nonce signed with the shared secret K. This is needed to
authenticate the prover, and it is necessary to avoid that a malicious entity imper-
sonates the actual prover. Additionally, we assume that the prover transmits M2

12 Secure Location Verification

'd
N e

’ prover

pc

Figure 2.1: Location verification protocol. pc is the prover’s claimed position; solid
arrows indicate unicast messages, whereas dashed arrows indicate broadcast mes-
sage.

using a nominal transmission power Pr,, which is known by the leader. Each UAV u;
is supposed to receive M2 with power Pr, ; (received power), and send the message
M3 to the leader, including the signature and the received power. As soon as the
leader receives all the messages from the other UAVs, it verifies the signature of all
the received messages by using the shared secret K. Then, according to a path loss
model, the leader computes the power that u#; should have received (expected power,
Peyp,i)- The leader detects an attack if at least one absolute difference between the
expected and the received powers is greater than a predetermined consistency thresh-
old APRxZ

if (Vi ‘PExp,i - PRx,il < APRx)
then no attack
else attack detected.

In the following section, we will show how the system can fix a value for the consis-
tency threshold.

2.2 System and Adversary Models 13

Path Loss Model and Consistency Threshold Computation

The received power that each UAV experiences can be modeled through the stan-
dard log-distance path loss model (Andersen et al., 1995), which follows the equa-
tion:

d
Py = Pry — PLo — 107 logy, (d—0> — X, (2.1)

where Pr, is the transmission power in decibel-milliwatt, PLj is the path loss in
decibel (dB) at the reference distance dy, v is the path loss exponent, and X,, in dB,
represents the shadowing effect term and is modeled as a normal random variable
with zero mean and standard deviation ¢;. We assume to know the parameters of
the log-distance path loss model, namely the reference distance dy, the path loss at
the reference distance PLy, the path loss exponent -y, and the standard deviation oy
of the Gaussian random variable Xj.
By Eq. 2.1, the leader can estimate the expected power at u; by setting d = d¢ ;:

Peyp,i = Pry — PLo — 10 logy <%), (2.2)
where dc ; is the distance between the u;’s position (which is known by the leader)
and the prover’s claimed position. Obviously, the shadowing effect term is not in-
cluded in (2.2) because its value cannot be predicted by the system. Therefore, in
case of an honest prover, the received power and the expected power differ only in
the shadowing effect term.

We fix the consistency threshold in order to obtain a given probability of false
positives, i.e., honest provers considered adversaries. The false positive probability
(fp) coincides with the probability of warning an attack in the honest scenario:

n
fp=1=T1Pr(|Pexp; — Prxi| < APrx), (2.3)
i=1
where the product represents the probability that there are no inconsistencies be-
tween the expected and the received power at every UAV. Since the expected and
the received powers differ only in the shadowing effect term X, ; (cfr. Eqqg. 2.1 and
2.2), and since X, ; are Gaussian and identically distributed random variables with
standard deviation oy, then Eq. 2.3 becomes:

fr=1- [2<I>(APR’“) —1r, (2.4)

Ug

where @ (-) is the normal cumulative distribution function. It follows that:

APry = 7@ (H— Vzl_fp> . (2.5)

14 Secure Location Verification

- - p— -

,/ N ,/ N // N

,// X \‘\\ ,// X \\\\ /,’/ -l-\\\
/Il X \ /Il x \ / \\\
! \ ! \ 'x !
\ X PC / \ X PC / \ pC /

\ /) Y /) \ /)
\ // \ // \ //
\\\ x 7 \\\ e \\\ L7
U L e L o o+
(a) Random (b) Semi-random (c) Regular

Figure 2.2: Example of the swarm formations tested. Crosses represent the UAVs
while the black dot is the claimed position. The dashed line represent the commu-
nication range R from pc.

Adversary Model

An attack occurs when a prover lies on its position. We assume the adversary claims
to be at a distance d (falsification distance) from its actual position p 4, in a random di-
rection. In other words, the falsification distance is the distance between the claimed
position and the actual position. Such attack is known as the false reported location
attack (Zeng et al., 2013), and we will refer to this malicious prover as the blind ad-
versary.

The second kind of attack that we consider extends the first one. The observer
adversary is also able to estimate the position of every UAV. Using this information,
he can adapt the transmission power of M2 in order to cheat the verification sys-
tem. For each u;, the observer adversary computes the transmission power Pry4 ;

for which the expected and the received power at u; coincide (PEXW- = Pry), so
obtaining:
B dai .
PTxA,i = Pry 4+ 10y loglo dc , Vi, (26)
1

where d 4 ; and d ; are the distances from u; to the actual position and to the claimed
position, respectively. We assume the adversary as a single entity which transmits
from a unique position, hence no collusion attacks are considered. We further as-
sume that the adversary does not have directional antennas by which he could send
multiple copies of M2 with different transmission powers. Therefore, the adver-
sary chooses the value Pr, 4, that is the mean value of all the Pr, 4 ;, as transmission
power.

2.2 System and Adversary Models 15

R } l‘ R I x \‘
l’ } x } " l’ I x I x "
' } » X : . » '
' ° Xpc ' . ° Pc)
" Pa ; " Pa ;
(a) Cluster case (b) Alignment case

Figure 2.3: Critical cases for the semi-random formation. Crosses are the UAVs, and
bars represent the expected powers Pry ;.

Swarm Formations

The way the swarm places in the proximity of the claimed position plays an impor-
tant role for the attacks detection. Our model considers UAVs placement in the 3D
space. Initially, we assume a fixed altitude & for all the UAVs in the swarm, and
their positions within R from the claimed position, according to a uniform random
distribution. From now on, we will refer to this formation as the random formation
(Figure 2.2a). It is the simplest formation and also makes UAVs’ positions less pre-
dictable for the blind adversary. However, if all the UAVs happen to be far from both
the claimed and the actual position, a blind adversary has high success probability.
Indeed, all the expected and the received powers would be low, and thus similar. Of
course, the same problem arises with the observer adversary too.

To solve this problem, we put one UAV in plumb line above pc at altitude
lower than h, while the others are randomly disposed as in the random formation.
This change should improve system security because of the presence of a UAV near
the claimed position, whose expected power should be high. We will refer to this
formation as the semi-random formation (Figure 2.2b). However, this solution might
be still vulnerable against the observer adversary in those cases in which UAVs are
placed in a limited area near pc, forming a cluster (Figure 2.3a). Indeed, all the ex-
pected powers are similar, and therefore the observer adversary can cheat the ver-
ification system by properly increasing the transmission power. Moreover, another
critical case may happen when the UAVs are aligned and opposite to p 4 as shown in
Figure 2.3b. In this situation, a high transmission power by the observer adversary
could result in received powers comparable with the expected ones. This means that

16 Secure Location Verification

in such a scenario the observer adversary has high success probability.

To solve these problems, we then analyze a third formation: one UAV is still
placed in plumb line above the claimed position at altitude 1, and the others are
evenly distributed on a circumference centered on pc at altitude /; the radius is
computed so that the distance between pc and these UAVs is equal to the communi-
cation range R. By doing so, we avoid the weaknesses of the semi-random formation
shown in Figures 2.3a and 2.3b. From now on, we will refer to this formation as the
reqular formation (Figure 2.2¢c).

2.3 Experimental Evaluation

Our goal is to achieve a low false negative probability (fn), i.e., the percentage of ad-
versaries considered honest provers, while keeping a low false positives probabil-
ity. While fp was fixed a priori and set to 1 percent (fp = 0.01), fn was obtained
through simulations of different scenarios.

The parameters of the log-distance path loss model mainly depend both on the
environment and the obstacles that the signal encounters along its path. Yanmaz
et al. (2011) studied WiFi channel for UAV-to-ground link. Accordingly to their
work, we set the path loss exponent 7y to 2.6. The swarm cardinality was set from
a minimum of 3 to a maximum of 6 to test whether acceptable outcomes could be
obtained even with fewer UAVs. Moreover, we assumed g = 3 dB, the reference
distance dp = 1m, and a communication range R of 100m. Every formation was
basically placed according to Section 2.2. In the random formation, UAVs were dis-
posed with a fixed altitude, i.e., # = 25m. In the semi-random and regular forma-
tions, the altitude for the plumb-line UAV was set to i, = 5m.

We deployed our simulator in MarLas. In order to obtain statistically sound
results, 5000 independent trials with different seeds were run for each scenario.
Within each trial, we firstly simulated the presence of an adversary by generating
a claimed position and an actual position. Then, we placed the UAVs around pc,
according to the formation to be tested. At that point, the location verification pro-
tocol was simulated; the received powers by the various UAVs were simulated as
well following Eq. 2.1, and a random value for the shadowing effect was generated
for every value of Py, ;.

In our first set of simulations we set the falsification distance d ¢ to 30m, and
we tested swarm formations security in terms of false negative probability, varying
the swarm cardinality. Figure 2.4a shows the formations’ performances against the
blind adversary. We observe that the random formation was the weakest one in
detecting attacks. Indeed, fn was about 85 % with the highest swarm cardinality
tested. On the other hand, both semi-random and regular formations did not miss
a single detection within every scenario tested.

2.3 Experimental Evaluation 17

> 1 > o1 : :
= = —
=09 . =09+ —_— .
S 08 S sl
S07" B 07"
o | | =
.06 —t—random a.06 —trandom
Q05 semi-random| | gos semi-random | |
'-g 041 -} regular] -:_-a: 0.4 ¢ -} regular
%00.3 r 1 qOI)DO.B
c 021 c 0.2
i(,g 0.1+ i(,-g o1
© O0f T T e © O0F T T T e
<« . -«
3 4 5 6 3 4 5 .,
swarm cardinality swarm cardinality
(a) Blind adversary (b) Observer adversary

Figure 2.4: False negative probability and 95 % confidence intervals for different
number of UAVs. d = 30 m.

Figure 2.4b shows the false negative probability with regards to the observer ad-
versary. Obviously, security lowers for all the formations if compared to the case
of the blind adversary. However, semi-random and regular formations still exhibit
excellent results. Their performance is clearly much better than the one provided
by the random formation; specifically, with a swarm of 3 UAVs, the random forma-
tion did not detect 93 % of the attacks whereas the semi-random and the regular
formations did not detect 5.6 % and 3 % of the attacks, respectively. In this case, but
also with higher swarm cardinalities, the regular formation outperforms the oth-
ers and results as the best choice for the attacks detection. With the semi-random
formation, cluster and alignment cases are more likely when the swarm cardinality
is low. Therefore, as n increases, the performance of the semi-random formation
improves to the point of performing almost equivalently to the regular formation.
With a swarm of 6 UAVs, fn for the semi-random and the regular formations are
0.85 % and 0.6 %, respectively.

Figure 2.5 shows the results obtained varying dy from 0 to 50m. The swarm
cardinality was set to 3. Figure 2.5a confirms that the random formation is not suit-
able to make the system secure since fn is over 60 % when dy = 50m. The other
two formations perform equivalently against the blind adversary. Specifically, they
both achieved a false negative probability of about 1 % starting from a falsification
distance of 20 m.

Figure 2.5b shows the results obtained with an observer adversary. It is notice-
able how the regular formation outperforms the others; specifically, starting from
dy = 20m the regular formation detects more attacks than the semi-random one.
Indeed, the latter is vulnerable to the critical cases of Figures 2.3a and 2.3b, and this
leads to a performance lowering. In contrast, the regular formation is more robust
and avoids such critical cases. After the analysis varying the falsification distance,

18

Secure Location Verification

false negative probability
Scecoeoopooo
o =~ N W b Ul & N0 ®© O

10 20 3
falsification distance (m)
(a) Blind adversary

D —
~x T
L \ 1
L Regular and semi-random
| curves coincide
| Y —t random
r X semi-random |
L v -F regular]
L \ J
\.
L \ 1
\\

L \ 4

T

= e L o+

0 0 40 50

false negative probability
Sococooopoo0

O = N W ks U O N0 O
[e=] T T T T T T T T T

\

k —f—random
\ semi-random |

5 -F regular

10 20 30 7 40
falsification distance (m)
(b) Observer adversary

50

Figure 2.5: False negative probability and 95 % confidence intervals as function of
ds, ranging from 0 to 50 m. n = 3.

we can assert that the regular formation is the most secure among the ones we tested,
achieving a false negative probability lower than 1 % starting from a falsification dis-
tance of 35 m with a swarm of 3 UAVs.

Chapter 3

A Lightweight and Scalable
Attribute-Based Encryption System
for Smart Cities

Simplify, then add lightness.

Colin Chapman

A smart city is an urban environment that offers digital services to improve the
quality of life of the citizens. Such services span across all sectors of society includ-
ing health, logistics, and mobility, and they often capitalize on the Internet of Things
(IoT) as enabling technology. Smart devices underlying these services produce large
amounts of data which can be outsourced to a cloud server. This is usually preferred
to an in-house solution because it reduces costs while providing high availability.
In many cases, sensed data includes sensitive or valuable information which is in-
tended to be read only by authorized users. Unfortunately, as soon as data lands
on the cloud, we lose any control on it and we have to completely trust the cloud
server. In particular, cloud servers are highly exposed to a plethora of attacks: from
“classic” injection (Halfond et al., 2006) to recent hardware-based attacks like Spec-
tre (Kocher et al., 2018) and Meltdown (Lipp et al., 2018). A data breach on a smart
city system could either represent an important loss of money for the data owner
or a serious privacy violation for the citizens!. Moreover, cloud service providers
may have some incentive to release stored information to others (Di Vimercati et al.,
2007; Coppolino et al., 2017).

A possible solution to this problem is to store data in an encrypted form on the
cloud server. This can be done by means of Attribute-Based Encryption (ABE) (Sa-
hai and Waters, 2005; Goyal et al., 2006; Bethencourt et al., 2007; Ostrovsky et al.,

https:/ /securityintelligence.com /ponemon-cost-of-a-data-breach-2018/

19

20 ABE-Cities

2007), which also ensures a fine-grained access control on data. In ABE everyone
can encrypt because only public parameters are used for encryption. Decryption is
instead performed by means of a decryption key, which is specific to each user and
generated by a Trusted Third Party (TTP). Decryption keys and encrypted data “em-
bed” attributes and access policies, which are basically Boolean formulas defined over
the attributes. A given decryption key is able to decrypt a given piece of data only
if the embedded access policy is satisfied by means of the embedded attributes.

In this chapter we present ABE-Cities, an encryption system for smart city appli-
cations employing Attribute-Based Encryption. ABE-Cities allows fine-grained ac-
cess control on the encrypted data stored in the cloud server, and it is secure against
traffic eavesdropping, sensors compromise, and data leakage from the cloud server.
ABE-Cities senses data from the city and stores it on the cloud server in an encrypted
form. Then, it provides users with keys able to decrypt only data sensed from au-
thorized paths or zones of the city. In ABE-Cities, sensors perform only lightweight
symmetric-key encryption, thus we can employ resource constrained sensor devices
such as battery-powered motes. This makes ABE-Cities suitable for a broad set of
Iol smart city applications. ABE-Cities allows us to plan an expiration date for each
key, as well as to revoke a given key in an unplanned fashion. We prove that ABE-
Cities scales well with the number of users and the city size by simulating it with
3000 users on the Houston street network (12 000+ streets), and with 30 000 users on
the Beijing street network (30 000+ streets). In addition to the “vanilla” ABE-Cities
scheme, we propose an “advanced” one that leverages the possible presence of IoT
gateways to reduce the TTP computational load. This advanced version is based on
Merkle trees, and it takes advantage of nodes acting as sensor gateways to outsource
a significant amount of computation from the TTP. We finally validate the advan-
tages introduced by the advanced scheme by testing the encryption performance
on Houston and Beijing street networks. We remark that with respect to generic IoT
ABE systems (e.g., Yuetal. (2011)), ABE-Cities is particularly suitable for smart city
applications. This is because ABE-Cities uses a street network representation that
makes key revocations efficient, and it avoids broadcast communications which may
be infeasible in sensor networks distributed over large urban areas.

This chapter is organized as follows. Section 3.1 compares with relevant related
work. Section 3.2 introduces some background on ABE and other techniques that we
use in our system. Section 3.3 describes the vanilla ABE-Cities scheme, and the ad-
versary model. Section 3.4 introduces different attribute representations of the street
network, resulting in different system performance. Section 3.5 compares quanti-
tatively the different attribute representations by simulations, and it evaluates the
scalability of ABE-Cities on small and large street networks. Section 3.6 describes the
ABE-Cities advanced scheme. Section 3.7 validates the advanced scheme by testing
its encryption performance on simulated large street networks.

3.1 Related Work 21

3.1 Related Work

ABE has been used to protect the confidentiality in IoI' (Yao et al., 2015; Yu et al.,
2011; Odelu et al., 2017; Huang et al., 2018; Ambrosin et al., 2016; Wang et al., 2014;
Oualha and Nguyen, 2016; La Manna et al., 2019; Girgenti et al., 2019), digital health
(Lounis et al., 2012; Hu et al., 2013; Ibraimi et al., 2009; Akinyele et al., 2011), military
battlefields (Roy and Chuah, 2009), and online social networks (Baden et al., 2009).

Yu et al. (2010a) first used ABE techniques for outsourcing sensitive data to a
semi-trusted cloud storage, while enforcing fine-grained access control at the same
time. Their scheme is well applicable in digital health applications, where patients
own privacy-sensitive records and can employ full computational capabilities. How-
ever, it is less suitable for IoI applications, in which data is produced by constrained
devices, which usually lack the necessary computational power and energy to per-
form ABE encryption. In our system, IoI devices perform only lightweight symmetric-
key encryption, thus we can employ constrained sensor devices and battery-powered
motes. ABE-Cities is thus suitable for a broader set of IoI applications.

Wang et al. (2010) proposed a hierarchical ABE scheme that allows the TTP to
delegate part of the responsibility to other authorities, which can independently
make decisions on the semantics of their attributes. Hierarchical ABE allows also
for proxy re-encryption, but it forces a fixed structure for the access policies, so it
limits the flexibility of the access control system. In this work, we focused on a non-
hierarchical ABE scheme with a single TTP, leaving possible hierarchical extensions
for future work.

Yu et al. (2011) proposed an ABE scheme to encrypt data sensed by a wireless
sensor network (WSN). The authors used broadcast encryption to revoke keys in
an efficient manner. Although their system is suitable for a large set of application
scenarios involving locally distributed WSNs, it could be unpractical for geographi-
cally distributed ones, like those employed in a smart city. This is because an actual
broadcast channel could not be realizable in these scenarios. In our system, we use
a key revocation method whose efficiency does not depend on the presence of a
broadcast channel, but rather on a convenient attribute representation of the smart
city. Moreover, the authors of Yu et al. (2011) perform ABE encryption directly on
the sensors, which could not have the necessary computational power and energy
to do it. In our system the IoI devices perform only lightweight symmetric-key
encryption, thus we can employ constrained sensor devices and battery-powered
motes.

Yao et al. (2015) proposed an ABE scheme based on elliptic curves instead of
pairings. This makes ABE operations more lightweight and thus more suitable for
IoT constrained devices. In our scheme this feature is not needed since the IoT de-
vices perform only lightweight symmetric-key encryption. This permits us to use

22 ABE-Cities

the pairing-based ABE scheme of Goyal et al. (2006), which allows us to employ
advanced features unavailable in the Yao et al.’s scheme, like proxy re-encryption
(Yu et al., 2010a).

Recently, Odelu etal. (2017) proposed an ABE scheme for IoT applications, which
guarantees O(1) encryption and decryption times. Such a scheme forces the access
policies to use only AND operators, so it limits the access control flexibility. On the
contrary, our system is based on Goyal et al.’s scheme, which offers a far greater
degree of expressiveness.

3.2 Preliminaries

Key-Policy Attribute-Based Encryption

Attribute-Based Encryption comes in two flavours: Key-Policy ABE (KP-ABE) and
Ciphertext-Policy ABE (CP-ABE). In this section we describe the former scheme, while
in Section 5.2 we describe CP-ABE in detail.

The KP-ABE paradigm was first introduced by Goyal, Pandey, Sahai, and Waters
(Goyal et al., 2006). In the following, we will refer to this scheme as the GPSW
scheme. In KP-ABE an encrypting party labels each piece of encrypted data (KP-
ABE ciphertext) with a set of attributes which describes it (encryption attributes, 7y).
Decryption keys embed an access policy (7"), which is basically a Boolean formula
defined over some attributes (access policy attributes, A). An access policy can be
represented as a tree in which leaves are access policy attributes, and non-leaf nodes
are Boolean operators. A given decryption key is able to decrypt a given KP-ABE
ciphertext only if the access policy can be satisfied by using the attributes labeling
the ciphertext.

Figure 3.1 shows an example of a KP-ABE ciphertext labeled with some encryp-
tion attributes, and a decryption key embedding an access policy.

AN

v = {al,a3,a5}

A ={al,a2,a3,a4}

Figure 3.1: Example of KP-ABE ciphertext and decryption key. The access policy
can be read as “at least one attribute between a2, a3, and a4 must be present among
the attributes labeling the ciphertext, and a1 must be present as well”.

In the example, when evaluating the access policy against the given KP-ABE cipher-

3.2 Preliminaries 23

text, the decryption key uses the attributes labeling the ciphertext. In particular, the
access policy can be satisfied by using the attributes a1 and 43, so the decryption key
is capable of decrypting the KP-ABE ciphertext.

The set of all the attributes used in a given KP-ABE scheme is called universe
of the attributes (U). Without losing in generality, in the following we will indicate
an attribute in the universe either with its unique nameor with a unique natural
number, which is more convenient in formulas. Therefore, the attribute sets U/, v,
and A are subsets of IN. Who encrypts data is called a data producer, whereas who
holds a decryption key and decrypts data is called a data consumer.

In this work we build on GPSW scheme. In order to ease the reading, we abstract
away the mathematical insight of such a scheme. The interested reader can refer to
Goyal et al. (2006) for such details. We model GPSW scheme with the following
black-box primitives.

(MK, PK) = KPSetup(&/) This primitive initializes the scheme. It takes as input
the universe of the attributes ¢/ and generates a random master key MK = (y, ticy),
which must be kept secret by the TTP, and an associated set of public parameters PK =
(Y, Ticys), which must be distributed to the data producers. Each attribute i in the
universe is associated with a t; and a T;. The KP.Setup primitive is executed by the
TTP.

CT = KPEncrypt(M,7,Y, Tijc,) This primitive encrypts a message M with the
encryption attributes <. It takes as input Y and Tjc., which are public parameters,
and it produces the KP-ABE ciphertext CT' = (v, ct, ctjc,). Each encryption attribute
i € vy is associated to a KP-ABE ciphertext component ct;. The KP.Encrypt primitive is
executed by a data producer.

DK = KPKeyGen(MK,7) This primitive generates a decryption key DK = (T, A,
dkic,), which is provided to a data consumer. It takes as input the master key MK
and an access policy 7, with access policy attributes A. Each access policy attribute
i € A is associated with a decryption key component dk;. The KP.KeyGen primitive is
executed by the TTP.

M = KP.Decrypt(CT, DK) This primitive retrieves the message M from the KP-
ABE ciphertext CT if the decryption key DK is authorized to decrypt, i.e., if the access
policy 7 embedded in the decryption key is satisfied by means of the encryption at-
tributes -y labeling the KP-ABE ciphertext. It produces L otherwise. The KP.Decrypt
primitive is executed by a data consumer.

24 ABE-Cities

Proxy Re-Encryption

Proxy Re-Encryption (PRE) is a technique which allows an entity, given an en-
crypted message, to produce the same message encrypted with a different key, with-
out accessing the message itself. By using this technique, one can re-encrypt old
ciphertexts in order to prevent a revoked key to decrypt them and outsource this
burdensome operation to a cloud server without compromising data confidential-
ity.

In this work we build on Yu et al.’s PRE scheme (Yu et al., 2010a). In the fol-
lowing, we will refer to this scheme as the YWRL scheme. The YWRL scheme im-
plements the revocation of a decryption key by means of a system-wide update of
a subset u of the access policy attributes (1 C A) to a new version. The subset y is
called updatee set and contains the minimal set of attributes without which the de-
cryption key cannot ever be satisfied. In the example of Figure 3.1, the updatee set
is u = {a1}. As a consequence, after the system-wide update, the revoked decryp-
tion key will not be able to decrypt any KP-ABE ciphertext anymore. Updating an
attribute i to a new version means that all the cryptographic quantities in the sys-
tem related to that attribute are changed. Specifically, for each attribute i € p, (1)
the t; of the master key, (2) the T; of the public parameters, (3) the ct; of all the KP-
ABE ciphertexts having i as encryption attribute, and (4) the dk; of all the decryption
keys (except the revoked one) having i as access policy attribute are updated to new
quantities. We indicate such new quantities respectively with t, T/, ct/, and dk!. The
t!’s and T/’s are computed by the TTP. On the other hand, the computation of the
ct!’s and the dk/’s is outsourced to the cloud server. To do this, for each attribute
i € p the TTP computes a re-encryption key (rk;) and gives it to the cloud server,
which applies it to each ct; to obtain a ct}, and to each dk; to obtain a dk/.

Note that the computation of all the dk]’s cannot be completely outsourced to
the cloud server, otherwise it would know all the decryption keys, and thus a data
breach would compromise the entire system. To avoid this, the cloud server is pro-
vided with all the decryption key components except for those relative to a special
attribute (dummy attribute) which has no meaning and is never updated to a new
version. The dummy attribute is ANDed at the root of the access policy of every
decryption key, and it is included as an encryption attribute in all the KP-ABE ci-
phertexts. In this way, a decryption key cannot decrypt anything without the com-
ponent relative to the dummy attribute, which is known only by the data consumer
holding the whole decryption key. A data breach on the cloud server would leak
only incomplete decryption keys, which are useless.

Proxy re-encryption is performed in a lazy fashion (lazy re-encryption), meaning
that the cloud server does not perform any re-encryption operation at the moment
of the key revocation, but only afterwards when needed. At the time of a revoca-
tion, the TTP produces a re-encryption key for each attribute in the updatee set and

3.2 Preliminaries 25

adds it to a re-encryption key list (RKL) stored in the cloud server. RKL; is a table that
keeps track of all the re-encryption keys relative to the attribute i, one for each ver-
sion update of the attribute (rk;, rk}, 7k”,...). The cloud server updates components
only when a data consumer asks the cloud server for a KP-ABE ciphertext. If either
a KP-ABE ciphertext component or a consumer’s decryption key component is out-
dated of more than one version, then the cloud server updates it by using more than
one re-encryption key from the list. Finally, the cloud server provides the data con-
sumer with the KP-ABE ciphertext (s)he asked for and, possibly, with the updated
decryption key components.

In order to ease the reading, we abstract away the mathematical insight of the
YWRL scheme. The interested reader can refer to Yu et al. (2010a) for such details.
We model YWRL scheme with the following black-box primitives.

(t}, T;,rk;) = PRE.UpdateAtt(i, MK) This primitive updates the attribute i to anew
version. It takes as input the master key MK, and it produces the new quantities ¢/,
T/, and the re-encryption key rk;. This primitive is executed by the TTP.

ct; = PRE.UpdateCT(i, ct;,rk;) This primitive updates a KP-ABE ciphertext com-
ponent ct; to a new version ct; by means of the re-encryption key rk;. This primitive
is executed by the cloud server.

dk; = PRE.UpdateDK(i, dk;, rk;) This primitive updates a decryption key compo-
nent dk; to a new version dk; by means of the re-encryption key rk;. This primitive
is executed by the cloud server.

Segment Trees

Segment trees (De Berg et al., 2000) are data structures useful in ABE schemes to
implement efficient point-in-interval access policies (Attrapadung et al., 2016). A
segment tree represents a set of intervals in such a way that it is efficient to query
which intervals contain a given number (or point). Although segment trees can in
principle represent any point and interval in IR, in this work we focus on segment
trees capable of representing discrete points and discrete intervals included in a
limited number range [1, p], with p € IN. In the following, we will generically use
the term “segment tree” to intend such a specific type of segment tree.

A segment tree over the range [1, p] is a binary tree in which each pointin [1, o] is
relative to a leaf. For example, Figure 3.2 shows a segment tree over the range [1,7].

The leaf [; is relative to the number 1, the leaf I, to the number 2, and so on. A
generic point v in the range [1, p] is represented by a point representation set RS,,

26 ABE-Cities

) () @2 g

Figure 3.2: Example of a segment tree. Gray nodes form the point representation set
of 5, dashed-border nodes form the interval representation set of [3,7].

which is formed by the nodes on the path from the root to the leaf relative to the
point. For example, in the segment tree of Figure 3.2, the point v = 5 is represented
by the point representation set RS, = {ng, ns,n3,15}. It can be shown that every
point representation set is O(logp) nodes. On the other hand, a generic interval ¢
included in the range is represented by an interval representation set RS,, which is the
minimum set of nodes whose descendant leaves form the interval. For example, in
the segment tree of Figure 3.2, the interval 1 = [3,7] is represented by the interval
representation set RS, = {1y, n5}. It can be shown that every interval representation
set is O(log p) nodes. By construction, point v belongs to interval ¢ iff RS, and RS,
have a non-empty intersection, i.e., v € 1 & RS, N RS, # @&. For example, in the
segment tree of Figure 3.2, point v = 5 belongs to the interval 1 = [3,7] because
RS, NRS, = {1’15} 7é .

Segment trees are useful in ABE schemes to implement efficient point-in-interval
access policies (Attrapadung et al., 2016), i.e., access policies which are satisfied iff a
given point v belongs to a given interval 1. According to the terminology in the work
of Attrapadung et al. (2016), we consider only “KP-ABE Type 1 construction”, which
means that the ciphertext embeds the point, and the access policy embeds the inter-
val. The point-in-interval access policy is thus implemented in the following way.
Each node of the segment tree is represented by an attribute. The KP-ABE cipher-
text is labeled with the attributes representing the nodes of the point representation
set RS,. The access policy is an OR operator between the nodes representing the
interval representation set RS,. By construction, the access policy is satisfied iff RS,
and RS, have non-empty intersection, that is, iff v is in «.

3.3 ABE-Cities

In ABE-Cities, a city is represented by a street network, i.e., a graph in which the edges
represent road segments. Each street is composed of one or more road segments, and

3.3 ABE-Cities 27

,V] € sensors

LT

;7131; — DEK()
() TTP 'P.
ah \

.K;%/ \ 'P DEK ()

"‘ cloud server

RKL;, Vi € Up
USQI'S dk Vu 6 users SenSOI'S

ieAlu ﬁZ/{R’
sensor key material

encrypted sensed data
ABE-sealed keys

Figure 3.3: ABE-Cities architecture.

it has a unique identifier. A sensor is a constrained device placed on a road segment
that acquires data (sensed data) relative to such a road segment. The sensed data
is stored in an encrypted form in the cloud server, where it is made read-only ac-
cessible to the users. Users represent the data consumers in our system. Each user
is authorized to access data sensed from some paths or zones of the city within a
specific time period. For example, supposing the sensors to be IP cameras for traf-
fic monitoring, the user can be authorized to access videos showing the route (s)he
usually travels from home to work and back. In this way (s)he can detect traffic
congestion in advance and possibly choose different routes. To do this, IP cameras
could store in the cloud server multiple short video files in an encrypted form, in
such a way to implement an encrypted streaming. The user may also monitor mul-
tiple routes in order to identify the least congested one day by day. Moreover, some
high privileged user could monitor all the city, for example for providing a trans-
portation management service.

Figure 3.3 shows the architecture of ABE-Cities. In the following, we will give a
general and intuitive description of the system, and in Section 3.3 we will describe
the system procedures in detail. The TTP holds the master key and a public/private

pub 7 K;m}) through which it can perform digital signature algorithms.

The notation Sign(-) represents the TTP’s signature algorithm. The TTP shares with

key pair (K

each sensor j a long-term key (K(L]T)), which is a symmetric key preloaded in the sen-

28 ABE-Cities

sors. Each sensor holds also a data encryption key (DEK()), which is a symmetric key
used to encrypt the sensed data. For each piece of sensed data, the sensor computes a
new data encryption key as a one-way hash of the old one, and the old one is securely
destroyed. Each user u holds a decryption key DK(*), and a public/private key pair
(K;l;)b, K;ng) through which (s)he can receive confidential messages by asymmetric
encryption. The cloud server maintains a database of re-encryption key lists and a
database of decryption key components that allows for proxy re-encryption. In ad-
dition it stores encrypted sensed data, sensor key material, and ABE-sealed keys. The en-
crypted sensed data is the sensed data produced by the sensors and encrypted with
the data encryption key. The sensor key material is a set of cryptographic quantities
needed by the sensors to encrypt sensed data. The ABE-sealed keys are the data
encryption keys encrypted with ABE. Both the sensor key material and the ABE-
sealed keys are produced by the TTP. To decrypt a piece of encrypted sensed data,
users must first decrypt the corresponding ABE-sealed key thus retrieving the data
encryption key, and then decrypt the sensed data with it.

The universe of the attributes U/ is logically partitioned into two subsets: /g and
Uy. The Uy subset includes the attributes that represent road segments. Such at-
tributes allow us to restrict users to access data sensed only from some paths or
zones of the city, specified as a set of road segments (authorized road segments). Uy
includes the attributes that represent time. Such attributes allow us to restrict users
to access data sensed only within a specific time period (validity period). The max-
imum resolution with which ABE-Cities can represent validity periods is a system
parameter that we call time unit. Setting a too short time unit (for example, one sec-
ond) could be infeasible because the TTP should produce a large set of ABE-sealed
keys within a time unit (see Section 3.3). A reasonable choice for the time unit is
one day.

Each ABE-sealed key relative to the sensor j (ASK(/)) is labeled with the encryp-

tion attributes ¢}, which are logically partitioned into two subsets: 'y%) and 'y%).

The attributes in ’y%) identify the road segment in which the sensor is deployed,

(7)

while the attributes in vy)ﬁ identify the time unit during which data has been sensed
(data production time unit). Similarly, the access policy 7 embedded in each decryp-
tion key is logically partitioned into two subtrees: Tz and Ty (Figure 3.4).

i i RData is relative to a road segment | i X Data has been produced within
! I am authorized to access P the validity period of my key

Figure 3.4: Example of access policy for a user’s decryption key.

The two subtrees are operands of an AND operator (7 = Tg A Tx), which is the

3.3 ABE-Cities 29

root of the access policy. T identifies the authorized road segments of the decryp-
tion key, while 7y identifies its validity period. In order to decrypt an ABE-sealed
key, both the subtrees of the user’s decryption key must be satisfied. In the traffic
monitoring example, the user can be authorized to access only videos produced af-
ter his/her subscription to the service starts, and before it expires. The maximum
resolution with which the validity periods can be represented is the time unit.

To implement proxy re-encryption, we use the whole attribute set U/y in place
of the dummy attribute used in YWRL scheme. This allows us to save a component
for each decryption key and a KP-ABE ciphertext component for each ABE-sealed
key. The attribute set {/y is a good replacer for the dummy attribute because: (1)
at least one attribute in Uy is ANDed at the root of the access policy of all the de-
cryption keys; (2) at least one attribute in {/y is an encryption attribute of all the
ABE-sealed keys; and (3) the attributes in U/ are never updated to a new version
(see Section 3.3). The cloud server is provided with all the decryption key compo-
nents except those relative to the attributes in U y.

System Procedures

In the following, we will implicitly consider the KP-ABE ciphertext components ct;,
the decryption key components dk;, and the re-encryption keys rk; as always accom-
panied by the information about their version.

Setup. This procedure initializes the system. The TTP decides the universe of the
attributes U/ basing on the street network of the city and on the maximum system
lifetime (see Section 3.4). Then, it executes the KP.Setup primitive which takes the
universe of the attributes and produces the master key and the public parameters.
The TTP keeps the master key secret and initializes an empty re-encryption key list
for each attribute in Uy in the cloud server.

Key Distribution. This procedure provides a user u with a decryption key DK*).
It is executed when a new user joins the system, as well as when an old user needs to
renew his/her decryption key because it has expired or has been compromised. The
TTP first defines the access policy for the new user u. Which access policy assigning
to each user strictly depends on the application. In the traffic monitoring example,
users can be authorized to view videos from short or long paths, depending on
whether they pay low or high dues. Once the TTP has defined the user’s access
policy 7, it creates the user’s decryption key by executing:

DK(") = KPKeyGen(MK, T).

The TTP encrypts the message (DK(”), ts, Sign(DK(”), ts)), where ts is a timestamp,

(u)

with the user’s public key K;f;b and gives it to the user either directly or through

30 ABE-Cities

the cloud server. The user verifies the TTP signature to be valid and the times-
tamp to be fresh. If everything is correct, the user accepts DK(*) as his/her decryp-
tion key. In the meanwhile, the TTP sends the message (1, dk;c(wyy,, s, Sign(u,

dk; AW (L7 ts)) to the cloud server, where A(*) are the access policy attributes of the
user. The cloud server verifies the TTP signature to be valid, and the timestamp to
be fresh. If everything is correct, the cloud server stores the decryption key compo-
nents dkieM“)muR'

Seal. This procedure is executed at the beginning of every time unit. For each
sensor j, the TTP randomly generates a data encryption key DEK) and encrypts it
by executing:

ASKU) = KPEnerypt(DEKY), 2V, Y, T,),

thus obtaining the ABE-sealed key for the sensor j for the current time unit. The TTP

sends the ABE-sealed key to the cloud server, which stores it. Also, for each sensor

j the TTP encrypts the message (DEK'/), ts, MAC 0 (DEK(), ts)) with the long-term
LT

key Kgir)/ where ts is a timestamp and MAC KY) (-) denotes a message authentication

code keyed by KgT) Such an encrypted message constitutes the sensor key material
for the sensor j for the current time unit. The TTP sends the sensor key material for
each sensor to the cloud server, which stores it. Each sensor j retrieves its sensor
key material from the cloud server and verifies the message authentication code to
be valid and the timestamp to be fresh. If everything is correct, the sensor accepts
DEK)) as its current data encryption key and initializes a data encryption counter (c\/))
to zero. The sensor uses the data encryption counter to keep track of how many
times it renews the data encryption key in the current time unit.

Note that the seal procedure is potentially a long operation for the TTD, since it
requires the TTP to execute an KP.Encrypt primitive for each sensor. For this reason,
setting a too short time unit (e.g., one second) could be infeasible. A reasonable
choice for the time unit is one day.

Data Production. This procedure is executed every time a sensor j senses a new
piece of data. First, the sensor encrypts the sensed data SDU) with its current data
encryption key DEK(/). The result, together with the current data encryption counter
c(/), constitutes an encrypted sensed data FSDU). The sensor sends the encrypted
sensed data to the cloud server, which stores it. Then, the sensor computes a new
data encryption key as a one-way hash of the old one: DEK') «— H(DEK/)). Finally,
the sensor securely destroys the old data encryption key and increments its data
encryption counter. This key renewal method prevents an adversary who compro-
mises a sensor from decrypting old sensed data.

3.3 ABE-Cities 31

Note that sensors perform only lightweight symmetric-key encryption, thus we
can employ constrained sensor devices such as battery-powered motes.

Data Consumption. This procedure is executed each time a user u wants to access
a piece of data sensed by the sensor j. The user first sends a data request to the cloud
server specifying which sensed data (s)he wants to access. On receiving the data
request, the cloud server checks whether some of the stored decryption key com-
ponents are out of date by checking their versions. For each out-of-date component
dk;, the cloud server updates it by executing:

dk; = PRE.UpdateDK (i, dk;, rk;),

and it provides dk/ to the user. If the decryption key component was outdated of
more than one version, then the cloud server will execute the PRE.UpdateDK prim-
itive multiple times, each with different re-encryption keys from the re-encryption
key list RKL;. After that, the cloud server checks whether some of the KP-ABE cipher-
text components of the ABE-sealed key ASK(/) relative to the sensed data requested
by the user are out of date. For each out-of-date component ct;, the cloud server
updates it by executing:

ct! = PRE.UpdateCT(i, ct;, rk;),

and it replaces ct; with the updated version. If the KP-ABE ciphertext component
was outdated of more than one version, then the cloud server will execute the prim-
itive PRE.UpdateCT multiple times, each with different re-encryption keys from the
re-encryption key list RKL;. Finally, the cloud server provides the user with the en-
crypted sensed data ESD(), and the ABE-sealed key ASK(/) relative to the time unit
during which the requested data was sensed. On receiving this, the user retrieves
the data encryption key by executing:

DEK) = F1<" (KP.Decrypt(ASKU), DK<“>)) ,

where H"(-) denotes the one-way hash applied n times. The user finally uses the
data encryption key DEK!/) to decrypt the sensed data. Of course, if the user is not
authorized to access the data, then the KP.Decrypt primitive will return _L, so s(he)
will not able to retrieve the data encryption key.

Key Revocation. Whenever a user u’s decryption key must be revoked, for ex-
ample when his/her key is compromised, the system executes the key revocation
procedure to make the decryption key unable to decrypt any ABE-sealed key.

At first, the TTP determines the updatee set y(”) C A(”), i.e., a set of attributes
without which the access policy will never be satisfied. The TTP must update such

32 ABE-Cities

attributes in order to revoke the decryption key. In our system, the updatee set ()
is formed by the attributes A(*) N . This is because we use the whole attribute
set Uy in place of the dummy attribute used in YWRL scheme. For each attribute
i € u®), the TTP updates the related quantities by executing:

(t;, T!,rk;) = PRE.UpdateAtt(i, MK),

and it replaces t; and T; with the updated versions. Then, the TTP sends the mes-
sage (u, rki,VieyW)' ts,Sign(u, rki,Viey<“>' ts)) to the cloud server, where fs is a times-
tamp. The cloud server verifies the TTP signature to be valid and the timestamp to
be fresh. If everything is correct, the cloud server adds each re-encryption key rk;
to the proper RKL; and discards all the decryption key components dk; w)qy,,, Te-
lated to the revoked user u. Finally, the TTP executes a seal procedure restricted to
those sensors whose at least one KP-ABE ciphertext attribute is in (), i.e., for those
sensors which produce sensed data that the revoked key was authorized to decrypt.
We refer to this set of sensors as affected sensors, meaning that they are “affected” by
a key revocation. The decryption key is now revoked and is not anymore capable of
decrypting any ABE-sealed key.

Note that the revocation of a decryption key is a burdensome operation for ABE
systems, and it usually causes side effects. Indeed, the decryption keys of all the
users sharing at least one attribute in %(*) must be updated in order to decrypt new
ABE-sealed keys. We refer to this set of users as affected users, meaning that they
are “affected” by a revocation of the key of another user. A decryption key update
is carried out by the cloud server, as described in the data consumption procedure.
Another side effect of the revocation of a decryption key is the necessity of generat-
ing new ABE-sealed keys with the newest version of the attributes in order to make
the decryption key ineffective to decrypt any ABE-sealed key. The generation of the
new ABE-sealed keys is carried out by the TTP by means of a seal procedure for the
affected sensors, as described earlier.

Adversary Model(s) and Security Analysis

We distinguish three adversaries differing on their capabilities: (i) someone capable
of eavesdropping and injecting traffic between the sensors, the cloud server, and the
TTP; (ii) someone capable of compromising one or more sensors; and (iii) someone
capable of carrying out a data exfiltration by exploiting some cloud server vulnera-
bility. All these adversaries aim at accessing sensed data without authorization.
The adversary capable of eavesdropping and injecting traffic could either try to
steal decryption keys or inject malicious sensor key material to make the sensors use
a compromised data encryption key. However, none of these tactics is viable. Steal-
ing decryption keys is infeasible since the TTP sends them to new users in encrypted

3.3 ABE-Cities 33

form. Injecting malicious sensor key material to a sensor is infeasible too since it is
authenticated with the long-term key shared between the sensor and the TTP.

The adversary capable of compromising a sensor can compromise the long-term
key and the current data encryption key. However, he can only read sensed data
produced by the sensor after the compromise, but not that produced before. Indeed,
each sensor renews the data encryption key at each new piece of produced data, and
the old data encryption key is securely destroyed. The new data encryption key is
computed as a one-way hash of the old one, thus it is infeasible to recover the old
data encryption keys.

The adversary capable of performing data exfiltration can steal all the encrypted
sensed data, the ABE-sealed keys, the sensor key material, and the re-encryption
keys. Nevertheless, he cannot access sensed data because it is encrypted. If he owns
a decryption key, then he can access only the sensed data that such a decryption key
is authorized to decrypt. If the decryption key has been revoked, the adversary can
update it by means of the re-encryption keys. Then, he can use such an updated
decryption key to decrypt sensed data, even if it has been already re-encrypted by
the cloud server. In other words, he can “rollback” the key revocation. As a mit-
igation measure, the cloud server may store the re-encryption keys in a protected
memory space, accessible only by high-privileged processes. On the other hand,
sensor key material, encrypted sensed data, and ABE-sealed keys can be accessible
by low-privileged processes. As a consequence of this, the process that communi-
cates with sensors and users could run with low privileges, whereas the process
that communicates with the TTP should run with high privileges. Supposing that
the adversary exploits the former process, which is the more exposed one, he can-
not access the re-encryption keys unless he performs privilege escalation. Another
mitigation measure is to securely delete old re-encryption keys. Before deleting a re-
encryption key, the cloud server must update all the ciphertexts and the decryption
key components that use the related attribute. Of course, this can be done without
involving the users.

Note that we are interested only in adversaries that aim at illegally accessing
sensed data. Other kinds of adversaries, like someone that injects bogus sensed data
into the system or someone that performs a denial of service, fall outside the scope
of this work. In case that the system must defend also against such adversaries, ad-
ditional defense techniques must be implemented. An adversary that injects bogus
sensed data can be counteracted by data authentication mechanisms, for example by
accompanying sensed data with Message Authentication Codes (MACs). An adver-
sary that performs a denial of service can be counteracted by IDS/IPS techniques.

34 ABE-Cities

3.4 Universe of the Attributes and Access Policies

In this section we introduce different attribute representations of the street network,
resulting in different system performance especially in terms of affected users and
key size, i.e., the space needed to store a decryption key.

Road Segments Representation: Universe Subset U/z
Basic Representation

A basic and naive representation consists of mapping one road segment onto one
attribute. In this case, the 'y%) set of each ABE-sealed key is formed by just a sin-
gle attribute, whereas the T subtree of a decryption key is an OR between many
attributes, each one representing a road segment the user is authorized to monitor.

We will refer to this implementation as the basic representation.

Segment-Tree Representation

The basic representation is very simple to implement, but it has numerous draw-
backs. First of all, the number of access policy attributes of a decryption key, and
thus the key size, grows linearly with the number of authorized road segments.
Moreover, the revocation of a decryption key affects every user whose decryption
key is authorized to access any road segment that the revoked key was authorized to
access. For example, the revocation of a key authorized to access an entire street will
affect all the users authorized to access any subset of road segments of that street.
Indeed, by construction, in the basic representation, each road segment is mapped
onto one attribute. This causes many affected users for each key revocation.
Segment trees can help us to reduce the affected users. In the following, we in-
troduce a representation based on segment trees which aims at limiting the number
of users affected by a key revocation, thus making the key revocation more efficient.
Let us consider a generic street with p road segments, and let us denote the road
segments of that street with the identifiers from 1 to p. We build a segment tree in
which the leaves are the road segment identifiers. Each node of the segment tree is

represented by an attribute. The ’y%) set of each ABE-sealed key is formed by the
point representation set of the sensor j’s road segment, and it contains O(logp) at-
tributes. We use a point-in-interval access policy to authorize the user to access a
subset of consecutive road segments of the street. The complete 75 subtree of the
access policy will be an OR between multiple point-in-interval access policies, one
for each street the user is authorized to access. Figure 3.5 shows a graphic exam-
ple of this. The key is authorized to access consecutive road segments belonging
to two streets, namely STREET10 and STREET56. The subtree s10_I5 V s10_n3 is a
point-in-interval access policy which allows the user to access a set of consecutive

3.4 Universe of the Attributes and Access Policies 35

Figure 3.5: Example of T subtree of the key access policy with segment-tree repre-
sentation.

road segments of the street STREET10. We will refer to this implementation as the
segment-tree representation.

Note that, with respect to the basic representation, the TTP is required of a lit-
tle more effort to produce the ABE-sealed keys since the number of the KP-ABE
ciphertext attributes for each street is O(log p) instead of 1, and the complexity of
the KP.Encrypt primitive depends on such a number. However, the segment-tree
representation sensibly reduces the number of affected users. Indeed, a user autho-
rized to access a road segment in common with the revoked key is not automatically
affected, as it happens in the basic representation. Moreover, the segment-tree rep-
resentation reduces the key size, because the number of access policy attributes is
always less than or equal to the number of authorized road segments.

Attribute-Pool Representation

We introduce a third representation which extends the segment-tree representation
to further lower the number of users affected by a key revocation. We replace each
attribute 7 in the universe subset Uy of the segment-tree representation with a pool
of ¢ attributes {i, },Vw € [1,¢€] (replicas). Each replica i, in the pool has the same
meaning.

The 'y%) set of an ABE-sealed key is composed of ¢ point representation sets and
includes O(¢elog p) attributes, and the size of a decryption key is the same as in the
segment-tree representation. Indeed, the structure of the 7% subtree is equivalent to
the one of the segment-tree representation, but each attribute in the subtree is one of
the e replicas. We will refer to this implementation as the attribute-pool representation.

To implement this representation, for each replica in U/z the TTP maintains the
number nk; of non-revoked keys using that replica. nk; is incremented when the
TTP issues a new decryption key having i, as access policy attribute, and it is decre-
mented when a similar key is revoked. When the TTP executes a key distribution
procedure, for each attribute which forms the 7z subtree, it chooses the least fre-
quently used replica of the attribute, i.e., i such that @ = argmin ,(nk;). This is to

36 ABE-Cities

minimize the number of affected users in case the newly generated key is revoked.

This representation further reduces the number of affected users due to a key
revocation with respect to the segment-tree representation. Indeed, two users au-
thorized to access the very same set of road segments may have no attributes in
common in their decryption keys if they have different replicas of each attribute. In
such a case, if one of them is revoked, the other will not be affected.

Time Representation: Universe Subset [/x

In ABE-Cities, users can be authorized to access only data sensed within a specific
validity period. A “not-before” and a “not-after” times are embedded in each de-
cryption key, in a similar way that X.509 certificates do. Both times are represented
with the maximum resolution of the time unit. Let the maximum system lifetime be
the maximum time of operation of the system. We represent the time units from 1 to
X, where x = [maximum system lifetime / time unit|, by means of a segment tree.
A basic representation is possible and consists in mapping each time unit onto one
attribute. However, with this representation the number of access policy attributes
of a decryption key grows linearly with the number of time units in the validity
period. This would produce possible huge-sized keys. To avoid this we adopted

a segment-tree representation also for time. The 'y()p set of each ABE-sealed key is
formed by the point representation set of the data production time unit, which is
O(log x) attributes. On the other hand, the validity period of a decryption key is
implemented through a point-in-interval access policy, which forms the 7y subtree
and is, again, O(log x) attributes. The segment-tree representation reduces the key
size, because the number of access policy attributes is always less than or equal to
the number of time units in the validity period. Note that using an attribute-pool
representation would not improve the key revocation performance in this case, since
these attributes are never updated.

3.5 Experimental Evaluation

We tested our scheme by simulations, using a street network representing the city
of Pisa? obtained from OpenStreetMap. We assumed a maximum system lifetime
of 100 years and the time unit equal to one day. Then, we considered a dataset
of 300 users with randomly chosen 365-day overlapping validity periods. In our
simulations, every user is authorized to access a route composed of consecutive road
segments. A route is characterized by a route length L, which is the line-of-sight
distance between its source point and its destination point. We chose a source point
at random within the map and a destination point at random at a distance L from the

2Lat: [43.7052, 43.7264], Lon: [10.3867, 10.4266).

3.5 Experimental Evaluation 37

source point. Within each scenario we tested, we fixed a value for the route length
which is the same for all the users. We generated a decryption key for each user,
by using an implementation of GPSW scheme written in the C language (Zheng,
2011), which realizes the four ABE primitives described in Section 3.2 with 80-bit of
security strength.

In Figure 3.6a we show a comparison between the average key sizes for the three
road segments representations, with respect to the route length. The lower part of
the bars shows the portion of the key size concerning the 7y subtree. With all the
three representations, a user’s device, e.g., a smartphone, can easily store a decryp-
tion key of a few kilobytes. The cloud server stores only the decryption key com-
ponents of the 7 for all the users, and the total size for our dataset of 300 keys is
about 1.4 MB using either the segment tree or the attribute-pool representation with
aroute length of 2000 m. The key size of the segment tree and the attribute-pool rep-
resentations are about a third compared to the basic representation. Nevertheless,
the keys are fairly small for all the three representations (< 16 kB in the worst case),
so the key size should be affordable for both the users and the cloud server.

By using the same dataset, we revoked each decryption key in turn and measured

how many users were affected. In Figure 3.6b we show the average percentage of
affected users by a single key revocation. As expected, the segment tree and the
attribute-pool representations show less affected users than the basic representa-
tion. This holds for all the route lengths tested. Figure 3.6c shows the affected users
with respect to the number of replicas in the attribute-pool representation.
It is evident from the figure that the affected users can be reduced even further by
increasing the parameter e. The segment-tree representation and the attribute-pool
representation are capable of reducing the number of affected users, and this light-
ens the load for the cloud server due to a key revocation, which is also distributed
over time thanks to the laziness of proxy re-encryption.

In our system, the load on the TTP is mainly determined by the complexity of the
KP.Encrypt primitive, which grows linearly with the KP-ABE ciphertext attributes.
The TTP executes such primitive once for each sensor at the beginning of the seal
procedure. We experimentally evaluated the computational load and the required
bandwidth on the TTP for the seal procedure. We used the same street network rep-
resenting the city of Pisa and a maximum system lifetime of 100 years. We assumed
100 sensors deployed randomly on the street network. We used the attribute-pool
representation with ¢ = 5, which represents the worst considered case in terms of
KP-ABE ciphertext attributes, and thus the worst case for the computational load
and the required bandwidth on the TTP. We define the key sealing time as the time
needed to generate all the ABE-sealed keys at the beginning of the seal procedure.
We observed a key sealing time of 5.4 seconds, and the total size of the ABE-sealed
keys was about 550 kB. Note that the seal procedure is executed within the key revo-

38 ABE-Cities
20 ‘ 30 ‘ ‘ ‘
[Basic — [Basic -
— [_ISegment-Tree e X [_ISegment-Tree
M 15 | Attribute-Pool, e = 3 ~ [0 Attribute-Pool, e = 3
4 N0 T
~ 19,
) (2]
N 10 = =)
«n o]
q>_)\' —E -:Q-a) 10
A 5 9
j—j tg::ts
0 = 0 i
500 1000 2000 500 1000 2000
route length (m) route length (m)
(a) Average key size wrt route length. (b) Average percentage of affected users due

to a single key revocation wrt route length.

N
@1

N
(=]

Segment-Tree

i

number of replicas

= —_
[} a1

affected users (%)

(==}

(c) Average percentage of affected users due
to a single key revocation wrt number of
replicas in the attribute-pool representation.
L = 2000 m.

Figure 3.6: Performance evaluation. All the plots show 95 %-confidence intervals in

error bars.

cation procedure too, so the key sealing time represents also the minimum time that

the TTP takes t

o revoke a decryption key. We evaluated the key sealing time on a

desktop computer equipped with 16 GB of RAM, an Intel® Core™ i5-6600 CPU, and
running Ubuntu 16.04.3 LTS 64-bit operating system. From our tests, the KP-ABE
ciphertext attributes <y of the average ABE-sealed key are about 39, of which about

21 those of Y.

In other words, the TTP is asked to carry out a task of a few seconds

and then send a few kilobytes of data to the cloud server every day. This load should
be affordable by the average TTP.

3.5 Experimental Evaluation 39

Pisa Houston Beijing
short route 500 m 1500m 5000 m
medium route 1000m 3000m 10000m
long route 2000m 6000m 20000m

Table 3.1: Route lengths.

[y
[}

15 ,
[pisa — % Ellsa " %
—~ [Houston 11.6 kB X 8 ouston
%2 | beijin ~ | I Beijing
~4 Jng n
) @ 8
% i 2.
= s
> s sl 3
9} = =
~ — 3 2
E R
0 0
m: 500 1500 5000 1000 3000 10000 2000 6000 20000 m: 500 1500 5000 1000 3000 10000 2000 6000 20000
short medium long short medium long
route route
(a) Average key size wrt route length. (b) Average percentage of affected users due

to a single key revocation wrt route length.

Figure 3.7: Performance evaluation on large cities.

Experimental Evaluation on Large Cities

In order to prove the scalability of our system, we performed the same simulations
on two large cities, namely Houston® and Beijing*. We illustrate the effects of re-
vocation in terms of affected users, and we report results which show the average
key size in these new scenarios as the length of the routes varies. The area of these
cities is about 10 and 100 times the area of Pisa, respectively. Accordingly, we con-
sidered proportional datasets of users for Pisa (300 users), Houston (3000 users),
and Beijing (30000 users). Moreover, we considered route lengths roughly propor-
tional to the square root of the city area. For each city, we thus defined “short route”,
“medium route”, and “long route” a route whose length is as specified by Table 3.1.
Again, we assumed a maximum system lifetime of 100 years, a time unit equal to
one day, and 365-day validity periods. As we outlined in Section 3.5, the attribute-
pool representation guarantees the best performance with regards to affected users.
Therefore, simulations in this section take into consideration only such a represen-
tation with e = 3.

In Figure 3.7a we show the average key size for the three route lengths tested on
each city. The lower part of the bars shows the portion of the key size concerning
the Ty subtree. Of course, for each city, the key size increases with the route length

3Lat: [29.7171, 29.7975], Lon: [—95.4145, —95.3208).
4Lat: [39.7705, 40.0271], Lon: [116.2251, 116.5581].

40 ABE-Cities

since the set of authorized road segments becomes larger. However, the graph in
Figure 3.7a reveals that the key size is influenced by distinctive features of each city’s
street network. In other words, street network properties, such as the average road
segment length, the average number of road segments within a street, etc., can im-
pact on the key size. Among these properties, we found the average road segment
length (Table 3.2) to be the most influential in the outcomes.

Pisa Houston Beijing
224m 346m 664m

Table 3.2: Average road segment length.

In particular, longer road segments produce smaller keys, since the same route length
is composed of fewer road segments. For example, with reference to Figure 3.7a,
the medium route in Beijing produces a key smaller than the long route in Houston,
even if the former is longer than the latter (10000m versus 6000m). The reason
is that in Beijing the average road segment is 66.4 m long, whereas in Houston it is
34.6m long. As a consequence, a route in Beijing is composed of fewer road seg-
ments than a route of the same length in Houston, thus resulting in a smaller key.
The average road segment length is an indirect measurement of the “density” of the
street network since the road segment is basically the distance between two cross-
roads, so the shorter the distance is, the higher the number of crossroads in the same
area. To sum up, small but “dense” cities like Houston results in larger keys with
respect to big but “sparse” cities like Beijing.

From Figure 3.7a it can be seen that, even in the worst case considered, i.e., Bei-
jing with routes of 20 000 m, the average key is about 11.6 kB, which should be af-
fordable for the majority of the users. Such a small average key is also advantageous
to the cloud server, which must store all the key components associated with the 7z
subtree for all the users. Considering that the average size of the 7z subtree key
components is about 10.4 kB, and that the Beijing scenario counts 30 000 users, the
cloud server must dedicate only 311 MB for the decryption key components, which
again should be affordable. This corroborates the scalability of ABE-Cities in terms
of key size.

In Figure 3.7b we show the average percentage of affected users due to a revo-
cation. As expected, this percentage grows with the route length in all the three
cities. The reason is that longer routes are more likely to go through the same roads,
which in turn makes collisions between users more probable. With many user col-
lisions, a revocation of a user causes a high number of affected users. Interestingly,
the small city of Pisa scales particularly bad in terms of affected users as the route
length increases. The reason is attributable to the medieval origins of Pisa, whose
street network tends to canalize the traffic on a few main roads, instead of spreading

3.6 Advanced ABE-Cities 41

it on the whole city. This makes collisions between users extremely probable as the
route grows in length. Nonetheless, for each city and route length tested, the aver-
age percentage of affected users never exceeds 10 %. The worst scenario in terms of
absolute number of users affected by a revocation is Beijing with long routes, which
gives 7.48 % - 30 000 = 2244 affected users. This number of affected users should be
bearable by the average cloud server, also thanks to the laziness of the mechanism.
Indeed, considering that the cloud server updates the key components only upon a
data request by the affected user, its computational load is largely spread over time.
On the contrary, the computational load of the TTP is sensibly affected by the size
of the city. We will thoroughly examine this aspect in Section 3.7.

3.6 Advanced ABE-Cities

In the ABE-Cities scheme described in Section 3.3, the key sealing time grows roughly
linearly with the sensors deployed in the city. This is because the TTP executes the
KP.Encrypt primitive once for each sensor. Depending on the city size, the num-
ber of sensors in the city can be large, and this might overload the TTP. Moreover,
the TTP may be a single point of failure of the whole system. If the TTP misses or
delays the execution of a seal procedure for some reason (e.g., a technical failure),
the sensors cannot upload data to the cloud server any longer. Indeed, they cannot
execute the data production procedure since they lack the new sensor key material.
In this section we introduce a more advanced scheme which reduces the compu-
tational load of the TTP and mitigates the effects of TTP downtime, resulting in a
briefer seal procedure.

The advanced ABE-Cities scheme leverages full-resource gateways, often deployed
in Iol systems, through which the sensors access the Internet. Gateways can execute
the KP.Encrypt primitive on behalf of the TTP and in parallel with it, thus reducing
the execution time of the seal procedure. This raises the problem of distributing
authentic copies of many public parameters to a potentially large set of gateways,
which we address by using Merkle trees.

A Merkle tree is a binary tree used to efficiently verify the integrity of large data
sets or portions of them. Assume that a large data set is partitioned into n data blocks.
Each data block corresponds to a leaf in the Merkle tree. The label of each leaf (leaf
label) is a one-way hash of the corresponding data block. The label of each non-leaf
node (non-leaf label) is a one-way hash of the concatenation of its child nodes’ labels.
The root label is called top hash (tp;). The integrity of the top hash implies, of course,
the integrity of all the data blocks. To verify the integrity of a subset of data blocks, it
is sufficient to retrieve the labels of the minimal set of nodes covering the other data
blocks (covering hash set, 17), and to have a proof of integrity of the top hash, which
can be for example a digital signature on it. In the average case, the covering hash

42 ABE-Cities

set is only O(logn), thus the amount of information required to verify the integrity
is little compared to the complete set of data blocks. Figure 3.8 shows an example
of a Merkle tree.

hoo ho1 hio h11

| oo | | oor | [Boto | [Bort | [Paeo | |Haor | |Paze| | P |
! ! ! ! ! ! ! !
Cdby | [dby | Tdby | [dby | [dbs | [dbg | [dby | [db |

Figure 3.8: Example of Merkle tree with eight data blocks.

With reference to such an example, if we want to verify the integrity of db;, db; and
dby, we just need to retrieve such data blocks, the set 7 = {hg1, 11}, and the proof
of integrity of ty.

The architecture of the advanced ABE-Cities scheme is shown in Figure 3.9. We
assume that a sensor can access the cloud server either through a gateway (net-
worked sensor), for example through a Wi-Fi connection, or directly (direct sensor),
for example through a Narrowband IoI connection. A sensor j shares a long-term

key KgT) either with its gateway, in the case is a networked sensor, or the TTP, in the
case is a direct sensor. Since gateways execute the KP.Encrypt primitive, they need
to receive authentic copies of the public parameters from the TTP. The TTP uses a
Merkle tree to transmit different subsets of public parameters to different gateways
in an authenticated manner. This permits the gateways to verify the public parame-
ters authenticity by receiving only a few data. Each gateway must receive the public

(/)

parameters corresponding to the union of the attributes v’ identifying the road

segments of its networked sensors. We call such a set 07%7) = U ’y%) for all the net-
worked sensors j connected to the gateway g. Also, each gateway must receive all
the public parameters in Uy .

System Procedures

With respect to the procedures of the vanilla ABE-Cities scheme explained in Sec-
tion 3.3, key distribution, data production, and data consumption procedures re-
main unchanged. In the following, we describe the new version of setup, seal, and
key revocation procedures, and we introduce a new one, namely the gateway join
procedure.

3.6 Advanced ABE-Cities 43

%) DEK (1)
P N K;?{iv

K£]T>,Vj € direct sensors

M :
[(— | :

TTP

Vj € g sensors: :
cloud server Emx T KY)

RKL;, Vi € Up El <V DEK()
dkieA(n)mz,{R/V” € users E sensor key material
sensor key material for direct sensors <

encrypted sensed data

users ABE-sealed keys gateways Sensors

M

(77<§), Vg € gateways

Figure 3.9: Advanced ABE-Cities architecture.

Setup. This procedure initializes the system. After having executed the setup pro-
cedure of Section 3.3, the TTP creates a Merkle tree M where data blocks are the
public parameters T;cy, and signs the top hash ty. Then, the TTP sends the mes-
sage (Ticy, ts, Sign(ty||Ticy, | |ts)) to the cloud server, where ts is a timestamp. The
cloud server re-constructs the Merkle tree with the received public parameters and
verifies the TTP signature to be valid and the timestamp to be fresh. If everything is
correct, the cloud server accepts T;c; as authentic public parameters and stores the
M data structure.

Gateway Join. This procedure is executed every time a new gateway g joins the
system. We assume the gateway knows the public key of the TTP, through which it
can verify TTP signatures. The gateway communicates to the TTP which road seg-

ments its networked sensors are placed onto. The TTP determines the attribute set
0'7(25’) and sends the message (07%7), ts, Sign(ty|| Ticysy || Ti@%) ||ts)) to the cloud server.

Then, the cloud server sends the message (07(5SI), TI_EU(g), ﬁ(g), Ticuiyr ts,
R

Sign(ty||Ticuy |]Tiea(g) ||£s)) to the gateway, where 77(8) is the covering hash set of
R
the public parameters T_. and ts is a timestamp. The gateway re-constructs the
R

Merkle tree M and verifies the TTP signature to be valid and the timestamp to be
fresh. If everything is correct, the gateway accepts T @ and Ti¢y, as authentic
R

44 ABE-Cities

public parameters and will use them to generate ABE-sealed keys during the seal
procedure.

Seal. This procedure is executed at the beginning of every time unit. First, The
TTP executes the seal procedure of Section 3.3 only for the direct sensors. As for
networked sensors, each gateway ¢ randomly generates a data encryption key DEK(/)
for each networked sensor j and encrypts it by executing;:

ASKY) = KP.Encrypt(DEK(j), ’Y(j), Y, Tiev(f))

thus obtaining the ABE-sealed key for the networked sensor j for current time unit.

Also, the gateway ¢ encrypts with the long-term key KgT) the message (DEKU), ts,
MAC k) (DEK(), t5)), where ts is a timestamp and MAC k) (-) denotes a message
authentication code keyed by KgT) . Such an encrypted message constitutes the sen-
sor key material for the networked sensor j for the current time unit. The gateway
g forwards the sensor key material to its networked sensors. Finally, the gateway
securely destroys the data encryption keys and the sensor key materials. This pre-
vents an adversary who compromises the gateway from decrypting sensed data.
Each networked sensor verifies the message authentication code to be valid and the
timestamp to be fresh. If everything is correct, the networked sensor accepts DEK(/)
as its current data encryption key and initializes the data encryption counter (c())

to zero.

Key Revocation. This procedure is executed every time a user u’s decryption key
must be revoked. First, the key revocation procedure described in Section 3.3 is exe-
cuted, except for the final seal procedure for the affected sensors. The TTP generates
then a new Merkle tree M’ where data blocks are the latest version of the public pa-
rameters Ticy,. Then, the TTP sends the message (T, () 15, Sign(t||ts)) to the

cloud server, where y(”) is the set of attributes updated during the revocation pro-
cedure of the vanilla scheme and ts is a timestamp. The cloud server re-constructs
the Merkle tree with the latest version of the public parameters and verifies the TTP
signature to be valid and the timestamp to be fresh. If everything is correct, the cloud

server stores the M’ data structure. Then, the cloud server identifies all the affected
(8)

gateways, which are those gateways whose 05" set includes at least one attribute
of the revoked key. These gateways are “affected” by the key revocation because
the public parameters they use to produce ABE-sealed keys must be updated. The
cloud server sends the message (Y"iea;é@my(u),ﬁ(g)’, ts, Sign(tly||ts)) to each affected

gateway. Each affected gateway g re-constructs the Merkle tree and verifies the TTP
signature to be valid and the timestamp to be fresh. If everything is correct, the gate-

way accepts Ti@%hﬂw as authentic public parameters. Finally, a seal procedure is

3.7 Advanced ABE-Cities Evaluation 45

executed for all the affected sensors. Note that the Merkle tree allows the cloud
server to send to each affected gateway only the public parameters it needs, and the
affected gateway to accept the parameters by verifying only one signature.

Gateway Compromise

The advanced scheme inherits the security properties of the vanilla scheme with
respect to the threats examined in Section 3.3. However, since gateways are now
part of the system, we have to take into account the possibility of their compromise.

An adversary capable of compromising a gateway can compromise the long-
term keys of all its networked sensors. However, the gateway securely destroys
the data encryption keys and the sensor key materials during the seal procedure.
Hence, the adversary will be able to decrypt only sensed data produced after the
next execution of the seal procedure.

3.7 Advanced ABE-Cities Evaluation

In the ABE-Cities scheme described in Section 3.3, the key sealing time grows roughly
linearly with the sensors deployed in the city. Depending on the city size, the num-
ber of sensors in the city can be large, and this might overload the TTP. The advanced
ABE-Cities scheme presented in Section 3.6 mitigates this problem by outsourcing
part of the computational load to the gateways. In this section we validate this by
means of experiments.

We used the same street networks representing the cities of Houston and Bei-
jing, and, for all the simulations performed, we assumed a fixed portion (10 %) of
the road segments to be covered by a sensor. The sensors were then partitioned in
networked and direct. For each simulation we changed the percentage of networked
sensors from 0 to 100 % in steps of 10 %. The road segments covered by sensors and
which of these sensors are networked were randomly selected for each simulation.
We partitioned each city in 100 x 100 m tiles, and we assumed to have a gateway at
the center of each tile which is connected to all the networked sensors of the tile, if
any. This implies gateways to have about 70 m of transmission range, which is real-
istic for the WiFi protocol. We used the attribute-pool representation with ¢ = 5 to
represent the street network, a maximum system lifetime of 100 years, and a time
unit equal to one day. This scenario fits a participatory sensing application in which
sensors are owned by different companies or even private citizens, for example a
traffic monitoring application with IP cameras.

Since the TTP and the gateways produce their ABE-sealed keys in parallel, the
key sealing time will be the maximum between the time required to the TTP (TTP
key sealing time) and that required to the gateways (gateway key sealing time). The

46 ABE-Cities

gateway key sealing time will be in turn dominated by the most loaded gateway,
which is the last one to complete the generation of the ABE-sealed keys. To measure
the key sealing time for a city, we generated the ABE-sealed keys by using an imple-
mentation of GPSW scheme written in the C language (Zheng, 2011). In particular,
we generated an ABE-sealed key for each direct sensor using a desktop computer
which emulates the TTP, and an ABE-sealed key for each networked sensor of the
most loaded gateway using a single-board computer which emulates the gateway.
The desktop computer that emulates the TTP is equipped with 16 GB of RAM, an
Intel® Core ™ i5-6600 CPU, and running Ubuntu 16.04.3 LTS 64-bit operating system.
The single-board computer that emulates the gateway is a Raspberry Pi 3 Model B+,
equipped with off-the-shelf hardware (1 GB SRAM and ARM Cortex-A53 1.4 GHz)
running Raspbian Jessie.

Figs. 3.10a and 3.10b show the TTP key sealing time and the gateway key sealing
time for Houston and Beijing, respectively.

400 \ \ \ 800 : : :
s Most loaded gateway " Most loaded gateway
N~— N—
< 300 —I-TTP Y 600 L TTP
g g
- =
20200 80400
5 5
— —
< <
& 100 & 200
> B
] v
~ ‘ ‘ : ~ ‘ ‘ ‘ ‘

0 20 40 60 80 100 0 20 40 60 80 100
networked sensors (%) networked sensors (%)
(a) Houston (b) Beijing

Figure 3.10: TTP key sealing time and gateway key sealing time wrt the percent-
age of networked sensors with 100 x 100 m-tile gateways. All the plots show 95 %-
confidence intervals in error bars.

Remember that the key sealing time of the whole system will be the maximum be-
tween the two. From the graphs we can easily notice that, as the percentage of net-
worked sensors increases, the TTP’s load decreases whereas the gateways’ load in-
creases, both in a linear fashion. With 0% of networked sensors, all the load is on
the TTP, and we obtain the same performance of the vanilla scheme described in
Section 3.3. The key sealing time of the vanilla scheme is 5 minutes and 40 seconds
in Houston, and 10 minutes and 54 seconds in Beijing. With a greater percentage of
networked sensors, the key sealing time drops noticeably. This shows that the ad-
vanced scheme mitigates the scalability issues of the non-advanced scheme in terms
of TTP computational load. The point of intersection of the two curves represents
the best case which minimizes the key sealing time. After that, the gateways are
overloaded, and they become the bottleneck of the system. The best-case key seal-

3.7 Advanced ABE-Cities Evaluation 47

ing time is about 9.9 seconds in Houston with 97 % of networked sensors, and 4.9
seconds in Beijing with 99 % of networked sensors. Beijing is larger than Houston
but reaches a better performance because it has more gateways, so the computa-
tional load is outsourced to a greater extent.

Note that the above scenario requires to have many gateways in the smart city,
namely about 8100 in Houston and about 81 000 in Beijing. This is realistic for a par-
ticipatory sensing application which involves private citizens” WiFi gateways. On
the other hand, in case that private gateways could not be involved, deploying such
a big number of gateways would be unfeasible. In this case, adopting a long-range
and low-bitrate communication technology like LoRa is a more scalable solution
in terms of deployment cost. However, fewer gateways means that the advanced
scheme unburdens the TTP to a lesser extent. To quantify the key sealing time in
such a scenario, we run again the simulations on the street networks representing
the cities of Houston and Beijing. This time, we partitioned each city in 1 x 1km
tiles, and we assumed to have a gateway at the center of each tile which is connected
to all the networked sensors of the tile, if any. This implies gateways to have about
700m of transmission range, which is realistic for the LoRa protocol. This scenario
tits applications in which the infrastructure must be cheap and the sensors produce
little traffic, for example an air-quality monitoring application in which sensors pro-
duce few bytes per hour.

Figs. 3.11a and 3.11b show the TTP key sealing time and the gateway key sealing
time for Houston and Beijing, respectively.

400 : : : 800 : : :
D Most loaded gateway D Most loaded gateway
Py I TTP o [TTIP
Y 300 Y 600
£ | g :
—-— = - —
60 ~ 60
Ee a0
S s
& 100 ; 2 200 -
> - > -
Q - Q -
~4 0 ‘ 4 0 ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
networked sensors (%) networked sensors (%)
(a) Houston (b) Beijing

Figure 3.11: TTP key sealing time and gateway key sealing time wrt the percentage
of networked sensors with 1 x 1km-tile gateways.

As it can be seen from the graphs, the gateway key sealing time is sensibly higher
than the one in the previous WiFi scenario. The reason is that each gateway han-
dles many more networked sensors. As a consequence, the best-case key sealing
times are worse too: about 109 seconds in Houston with 68 % of networked sensors,
and about 64 seconds in Beijing with 90 % of networked sensors. Nevertheless, the

48 ABE-Cities

key sealing time decreases noticeably when passing from 0 % of networked sensors
(which represents the vanilla ABE-Cities performance) to a greater percentage. This
shows that the advanced ABE-Cities scheme scales better than the vanilla one even
in the LoRa scenario, and the seal procedure is still briefer.

To sum up, the decentralized nature of the advanced ABE-Cities scheme per-
mits parallelization of the seal procedure and thus its completion in a considerably
shorter time period, as outlined by the experimental results. Moreover, it unbur-
dens the TTP of the entire effort required by the seal procedure by outsourcing a
significant amount of computation to the gateways, avoids the TTP to be a single
point of failure, and provides scalability.

Chapter 4

Improving KP-ABE Revocation
Mechanism

It doesn’t matter how long it takes if
the end result is a good theorem.

John Tate

Since the first introduction by Goyal etal. (GPSW scheme), plenty of ABE schemes
have been proposed. Such schemes mainly aim at reducing the computational cost
of the original encryption/decryption primitives either by outsourcing part of them
to trusted parties (Li et al., 2012; Touati et al., 2014; Touati and Challal, 2016; Zuo
et al., 2018), or by redefining them, e.g., by avoiding using bilinear pairings (Yao
et al., 2015; Ding et al., 2018) or by using new constructions (Waters, 2011). Other
schemes (Yu et al., 2010a,b; Hur and Noh, 2010; Jahid et al., 2011; Xu and Martin,
2012; Fischer et al., 2019) attempt to add a key revocation mechanism, which is in-
trinsically not existent in ABE.

In ABE systems, a Trusted Third Party (TTP) generates public parameters for en-
cryption and decryption keys for decryption. An encrypting entity is called (data)
producer, while a decrypting entity is named (data) consumer. In practical applica-
tions, data producers store the encrypted data on some server, while data consumers
retrieve ciphertexts from it. Often, the storage service is provided by a third party
servet, e.g., a cloud server, which is historically considered to be honest-but-curious,
meaning that it honestly carries out the storage, communication, and computational
tasks, but it is also interested in accessing the content of the encrypted data stored
on it. Some other works, consider the cloud server breachable, meaning that an
adversary can exfiltrate data stored on the cloud server.

As every public-key cryptosystem, an ABE system needs a key revocation mech-
anism for it to be used in practice. A decryption key must be revoked whenever it has
been compromised, i.e., when someone other than the original data consumer is in

49

50 KP-ABE Revocation

possession of it. Revoking a key means making it unable to decrypt new ciphertexts
anymore. In many ABE schemes, this is achieved by a system-wide update of the
attributes present in the key to revoke for every entity in the system except for the
revoked one. So, every decryption key using an attribute used also by the revoked
key must get an update. This process is called re-keying, and the cloud server can
be either partially or completely entrusted with it so that data confidentiality is still
guaranteed. In other words, the cloud server is provided with some cryptographic
quantities which let it update the decryption keys, but it does not know the decryp-
tion keys themselves, through which it could otherwise access the content of the
encrypted data stored on it. However, a compromised key could be made publicly
available by an adversary, but also, the fact that a key has been made public might
be the reason why it should be revoked. In both cases, since the cloud is able to po-
tentially update every key through re-keying, it could update the revoked key, thus
undoing the revocation, and access the content of the encrypted data. Another similar
threat comes from an adversary able to breach the cloud server and obtain the re-
keying material present on it. Also in this case the revocation can be undone. With
these types of attack, the system cannot guarantee data confidentiality any longer.

In this chapter, we propose a secure key revocation mechanism for KP-ABE sys-
tems able to ensure data confidentiality even if the cloud server comes into posses-
sion of a revoked key. In previous works (Yu et al., 2010a,b; Hur and Noh, 2010;
Jahid et al., 2011; Xu and Martin, 2012; Fischer et al., 2019), this type of adversary
is not taken into account, but the honest-but-curious paradigm should consider it
since revoked keys might be made public anytime since their compromise.

The rest of this chapter is organized as follows. Section 4.1 introduces some back-
ground on KP-ABE and other related techniques that we use in our scheme. Sec-
tion 4.2 describes our model, assumptions, and construction. Section 4.4 analyzes
the security and the performances of our scheme.

4.1 Background

KP-ABE: GPSW scheme

In section 3.2 we modeled the primitives defined in GPSW scheme as black boxes
since ABE-Cities simply uses them as a means of achieving the properties of confi-
dentiality and access control. In this section we give a mathematical description of
such primitives. Before describing them, we introduce some notation. Let G be a
group whose group operation is efficiently computable. Let p be its prime order, and
let ¢ be a generator of G;. Lete : G; X G; — Gz be a bilinear map which is efficiently
computable and has the properties of bilinearity and non-degeneracy. Let the access
policy T be defined as a tree. Each node x of the tree is described by threshold gate

4.1 Background o1

of type ky-of-ny, where k, is its threshold value, and 7, is the number of child nodes
of x. All the leaf nodes represent attributes and are described by a threshold value
kx — 1.

(MKgp, PKxp) = KPSetup(U) Defined the universe of the attributes U = {1,...,
n}, choosey, ty, ..., t, uniformly at random in Zy. Then compute T7 = gtl, e, Iy =
¢i"and Y = e(g, ¢)Y. Output the public parameters as PKgp = (Y, Ty, ..., T,) and
the master key as MKxp = (y,t1, ..., tn).

CI' = KPEncrypt(M, v, PKgp) To encrypt the message M € G, under the set of
attributes -y (encryption attributes), choose a number s uniformly at random in Z,,.
Then compute ¢t = MY?, and for each attribute i € v compute the ciphertext compo-
nent ct; = T¢. Output the KP-ABE ciphertext as CT = (ct, {ct;}ie,)-

DK = KPKeyGen(MKkp, 7) Let T be an access policy defined over a set of at-
tributes A (access policy attributes). The algorithm defines a polynomial g of degree
degy = ky — 1 for each node x, starting from the root node and proceeding in a top-
down manner. For the root node p, set q,(0) = y and other deg, random points
to define it completely. Then, associate each child node x with a unique number
index(x). Proceed for any other node x, setting 4x(0) = gparent(x)(index(x)) and
other deg, random points to define the polynomial completely. The polynomials for
the leaf nodes are defined only by 4,(0). For each leaf node, define the decryption

9x(0)

key component dk; = g 'i , where the node x identifies the attribute i. Output the
decryption key as DK = {dk;}ic,.

M = KP.Decrypt(CT,DK) The algorithm proceeds in a bottom-up manner. For
each attribute i € v N A compute e(dk;, ct;) = e(g,¢)7(?)5. Then, by polynomial
interpolation at the exponent, compute (g, ¢)%(?)5, where z is a parent node. Pro-
ceeding in a bottom-up fashion, if the polynomial interpolation is feasible at each
level of the access policy up to the root p, we obtain e(g,g)%() = e(g,g)¥* = Y.
Output the message M = ct/Y?® if the access policy is satisfied, | otherwise.

Proxy Re-Encryption for KP-ABE

In section 3.2 we modeled the primitives defined in YWRL scheme as black boxes
since ABE-Cities simply uses them as a means of enabling key revocation. In this
section we give a mathematical description of such primitives and redefine some
notation.

Yu et al. extended GPSW construction to include a key revocation mechanism
to the scheme. This is achieved by adding the features of proxy re-encryption and re-

52 KP-ABE Revocation

keying. Proxy re-encryption allows a third party to re-encrypt KP-ABE ciphertexts
without accessing the content itself, thus a honest-but-curious cloud server perfectly
tits this role. The re-encryption of KP-ABE ciphertexts stored on the cloud server
prevents a revoked key from decrypting them. However, this mechanism alone is
not sufficient: after the re-encryption, other legitimate keys might not be able to
decrypt those KP-ABE ciphertexts too. Hence, YWRL scheme implements also a re-
keying mechanism for such keys, which is operated by the cloud server. For each
decryption key, the cloud server is given all the decryption key components but one,
the one related to a special attribute (dummy attribute, Attp), which is ANDed at the
root of every access policy. The dummy attribute is also present in every KP-ABE
ciphertext. Without knowing the decryption key component dk 44, the cloud server
cannot decrypt any KP-ABE ciphertext, but it can perform re-keying.

In YWRL scheme, every attribute i, except for the dummy attribute, is identi-
tied by a version number. The version of an attribute 7 is set to zero at setup time,
and it is increased by one every time the attribute is updated. Re-encryption and
re-keying are performed by means of re-encryption keys issued by the trusted third
party. A re-encryption key rk,),. w1 is a cryptographic quantity able to update
both a ciphertext component and a decryption key component from the version v
to the version v + 1. All the re-encryption keys for the attribute i are ordered and
maintained in a dynamic structure called re-encryption key list RKL;. Fig. 4.1 shows
an example of it. When a new re-encryption key is issued, an element containing

RKL,; L STOPIEY R R T(Y

i)

0 1 e !
Figure 4.1: Re-encryption key list for the attribute i.

the latest re-encryption key is appended to the re-encryption key list. Note that
the element at index v contains the re-encryption key to update either a ciphertext
component or a decryption key component from the version v — 1 to the version v.
To create a new version of the attribute i(?), the TTP updates the component of the

l(v) to tz@ﬂ), and the component of the public parameters Tl-(v) to Tl.(UH).

Next, it issues a re-encryption key 7k, ;@+1) which can be used to transform ei-
(v) (v+1) (v)

1 1 1
de(erl). The scheme allows re-encryption and re-keying from any old version to the
latest version. To simplify the notation, we avoid to indicate the version of the at-
tributes when is not necessary. We will use i to indicate a generic version of the
attribute, and i’ to indicate the next version of it. The primitives of YWRL scheme

have the following syntax:

master key ¢

ther a ciphertext component ct; ’ to ct or a decryption key component dk. " to

4.1 Background 53

(t, T/, rkiir) = PRE.UpdateAtt(i, MKxp) Choose t; uniformly at randomin Z, and
compute T/ = gtf. Then compute the re-encryption key rk;.y = t:/t;. Update the
component of the master key #; to t/, and the component of the public parameters T;
to T/. Output the re-encryption key rk;. ;.

) = PRE.UpdateCT(i,ct;, RKL;) Obtain the current version of the attribute i

i
from ct; and locate the entry in RKL;. If the selected entry is not the last one, re-

trieve all the entries from the next one to the last one. Compute rk = rkij

i)
)) ey _ otls

rkisin ko1 0 =t /t. Next, compute ct;” = (ct;) i) = g'i *. Output the

()

i

updated ciphertext component ct

dkgl) = PRE.UpdateDK(i, dk;, RKL;) Obtain the current version of the attribute i
from dk; and locate the entry in RKL;. If the selected entry is not the last one, re-

trieve all the entries from the next one to the last one. Compute rk = 1k g -

9x(0)
-1
rki i - "rki(lfl)Hi(l) = tgl)/ti. Next, compute dkl(l) = (dki)(rkimﬂ)) =g tzw
(1)

i

isi)

. Out-

put the updated decryption key component dk

Non-Monotonic Attribute-Based Encryption

Non-Monotonic Attribute-Based Encryption (NM-ABE) is an ABE scheme intro-
duced by Ostrovsky et al. (2007) which supports non-monotonic access structures.
This scheme extends GPSW scheme as it allows to include negated attributes in both
access policies and attributes sets. In order to ease the reading, we abstract away
the mathematical insight of the Ostrovsky et al.’s NM-ABE scheme. The interested
reader can refer to Ostrovsky et al. (2007) for such details. We model the NM-ABE
scheme with the following black-box primitives.

(MKnpt, PKnyvi) = NMLSetup(d) On input a fixed number d of attributes per NM-
ABE ciphertext, this primitive initializes the scheme and outputs the public param-
eters PKny and the master key MKy

E = NM.Encrypt(M, T, PKyy) On input a message M, an encryption attribute set
I', and the public parameters PKyy, this primitive outputs the NM-ABE ciphertext
E.

NK = NM.KeyGen (A, MKnyi, PKnyt) On input an access policy A with access pol-
icy attributes A, the master key MKy, and the public parameters PKyyy, this primi-
tive outputs an NM-ABE decryption key NK.

54 KP-ABE Revocation

M = NM.Decrypt(E, NK) On input an NM-ABE ciphertext E and an NM-ABE
decryption key NK, this primitive outputs the message M if the access policy em-
bedded in the key is satisfied with the attributes on the ciphertext. Otherwise, it
outputs L.

Note that, differently from GPSW scheme, the NM-ABE one does not require
the definition of a universe of the attributes when executing the setup primitive,
but allows for the so-called “Large-Universe construction”. This means that every
string can be used as an attribute when executing encryption and key generation
primitives.

4.2 Proposed Scheme

Our main idea is to create a robust revocation mechanism by which the honest-but-
curious cloud server is not able to undo a key revocation. To this aim we use PRE
techniques and distribute the task of keys and ciphertexts update to both the cloud
server and the users. In particular, the update of either a decryption key component
or a ciphertext component to a new version is accomplished by a double update
through two different re-encryption keys, namely cloud re-encryption key and user
re-encryption key. The first update uses the cloud re-encryption key and is executed
by the cloud server. The second update uses the user re-encryption key and is exe-
cuted by a legitimate user. In the following, we describe the system model and the
assumptions, and then we present our construction.

Model and Assumptions
System Model

We assume that the system is composed of the following parties: a data owner, many
users, and a cloud server. For the sake of simplicity we assume a single entity, i.e.,
the data owner, to be responsible for system setup, key issuing and data produc-
tion. Nevertheless, the role of data owner could be played by a trusted third party
and many data producers, as in Rasori et al. (2018). In our system the data owner
produces the data, encrypts it, and stores it on the cloud server. Users are data con-
sumers, and therefore, they hold decryption keys; they retrieve the data from the
cloud server and decrypt it. The data owner can revoke a decryption key at any
time. The cloud server is a server owned by a Cloud Service Provider supplying
storage and computational capabilities. Basically, the cloud server can be seen as
a provider of a PaaS service which runs software on behalf of the data owner. We
assume the cloud server to have generous storage space capacity and computational
resources. Moreover, we assume the cloud server can ensure high availability, so it

4.2 Proposed Scheme 55

can be accessed at any time by the data owner and the users. On the contrary, we
do not make the same assumption for the other parties.

Security Model

Similarly to other works, e.g., Yu et al. (2010a); Touati and Challal (2016); Yao et al.
(2015), we assume the cloud server to be honest but curious, meaning that it hon-
estly carries out all its designated tasks, i.e., storage, communication, and computa-
tional tasks, but it is also interested in accessing the content of the encrypted data
stored on it. Also, we assume the data owner to be fully trusted. On the contrary,
we assume a user to be interested in accessing unauthorized data. To this aim, users
can collude by trying somehow to combine their decryption keys in order to access
unauthorized data which each decryption key is unable to decrypt singly. Moreover,
we assume that each party owns a traditional public/private key pair, e.g., RSA or
ECC keys, and that each public key can be easily retrieved by the other parties. We
further assume secure communication channels among all the communicating par-
ties, which can be obtained by using some secure protocol, e.g., TLS. Finally, we
assume revoked keys to be publicly available since the revocation of a key is usually
enforced when the key has been compromised, i.e., when someone other than the
original user is in possession of it.

Definitions and Notation

Every piece of encrypted data, or file, that the data owner stores on the cloud server
is composed of three parts: a file identifier FID, a KP-ABE ciphertext CT, and an en-
crypted message EM. The encrypted message EM is a piece of data M encrypted with
a random symmetric key Ks. The KP-ABE ciphertext CT is the symmetric key Kg
encrypted through KP-ABE encryption and labeled with an encryption attribute set
7. The encryption attribute set of any KP-ABE ciphertext CI" in the system includes
the dummy attribute Attp.

Every user u is provided with a KP-ABE decryption key DK(*) which embeds
an access policy 7 () defined over a set of attributes A(*). The access policy 7 *)
of every decryption key in the system includes the dummy attribute Attp, which
is ANDed at the root with the rest of the policy. Moreover, each user u is associ-
ated with a unique identifier UID™) € {0,1}* decided by the data owner, which
is basically a string. Each identifier is mapped to an NM-ABE attribute by using
a collision-resistant hash function H : {0,1}* — Zj. Hence, H(UID™) is the NM-
ABE attribute for the identity UID(*). To simplify the notation we define the attribute
ID™) = H(UID™). Every user u is also provided with an NM-ABE decryption key
NK®) that includes the attribute ID(*) in the access policy attributes. This key is
used only for revocation purposes. By using such key, the user u can decrypt all

56 KP-ABE Revocation

the NM-ABE ciphertexts not labeled with ID(*) in their encryption attributes. Each
user 1 maintains a list for each attribute i € A\ {Attp} called URKL; (user re-
encryption key list for the attribute i). Each element of this list is a user re-encryption
key. Similarly, the cloud server maintains a list for each attribute i € U \ {Attp}
called CRKL; (cloud re-encryption key list for the attribute i). Each element of this list is
a cloud re-encryption key. The cloud server maintains also a list for each attribute
i € U\ {Attp} called EURKL; (encrypted user re-encryption key list for the attribute 7).
Each element of this list is an NM-ABE ciphertext containing a user re-encryption
key which is called eurk;.,; (encrypted user re-encryption key). Moreover, the cloud
server maintains a list for each attribute i € U \ { Attp} called PKL; (public parameter
list for the attribute i). Each element of this list is a component of the public parame-
ters.

Finally, we define a new primitive called UpdateAtt which allows us to generate
cloud and user re-encryption keys.

(t, T;, crkieyr, urk;,y) = UpdateAtt(i, MKxkp) Choose w;, B; uniformly at random
in Z, and compute t; = a; - B;and T; = gtg. Then compute the cloud re-encryption key
crki,i = a;/t; and set the user re-encryption key urk;.,; = B;. Update the component
of the master key f; to t/, and the component of the public parameters T; to T/. Output
the cloud re-encryption key crk;., and the user re-encryption key urk;, ;.

Procedures

In the following we describe the procedures of our scheme, namely Setup, User Join,
Data Production, Key Revocation, and Data Consumption.

Setup. This procedure initializes the scheme. The data owner chooses the uni-
verse of the attributes U/ and executes the KP.Setup (/) primitive which outputs the
master key MKyp and the public parameters PKkp. Then, the data owner chooses
a number d which specifies the number of attributes per NM-ABE ciphertext and
executes the NM.Setup(d) primitive which outputs the master key MKy, and the
public parameters PKyps. The data owner keeps the master keys MKyxp and MK se-
cret. Moreover, it authenticates the public parameters PKgp and stores them on the
cloud server. To authenticate these public parameters, the data owner might either
sign every single T; or implement a more efficient solution based on Merkle trees, as
proposed in the previous chapter (Section 3.6).

User Join. This procedure provides a new joining user u with a decryption key
DK(*) and an NM-ABE decryption key NK(*). First, the data owner defines the ac-
cess policy 7™ for the user and executes KP.KeyGen(MKyp, 7)) to generate the

4.2 Proposed Scheme 57

decryption key DK(*). Then, the data owner chooses an identifier UID*) for the
user u and an access policy A that includes the attribute D). Finally, it executes
NM.KeyGen (A, MKy, PKay) to generate the NM-ABE decryption key NK(®).

The data owner sends the keys DK(*) and NK(*) to the user through a secure
channel. Then, it stores all the decryption key components dk; on the cloud server,

except for the one relative to the dummy attribute, i.e., dk 44,

Data Production. This procedure is executed when the data owner produces a new
piece of data M and wants to make it available to the users. First, the data owner
chooses a unique file identifier FID and a random symmetric key Kg € G, and exe-
cutes Enc(M, Ks) to generate the encrypted message EM. The notation Enc(M, Kg)
refers to a symmetric key encryption algorithm, e.g., AES, executed on the message
M with the key Kg. Then, the data owner chooses a set of encryption attributes -y
and executes KP.Encrypt(Kg, v, PKxp) to generate the KP-ABE ciphertext CT. Finally,
the data owner stores the file (FID, CT, EM) on the cloud server.

Key Revocation. This procedure is started by the data owner to revoke a decryp-
tion key DK(") which has been compromised. The procedure is divided into two
phases. The first phase is called attribute update phase and prevents DK(") from de-
crypting KP-ABE ciphertexts produced after the key revocation. The second phase
is called components update phase and includes both re-encryption of old KP-ABE
ciphertexts and re-keying of legitimate users” decryption keys. While the former
phase is immediately executed after the key compromise and promptly comes into
force, the latter can be spread over time in a lazy fashion in occasion of data requests
by the legitimate users.

Attribute Update Phase. This phase is started by the data owner to revoke
a decryption key. Let DK(") be the decryption key to be revoked and A(") the
access policy attributes of such a key. The data owner selects a minimum set
of attributes ") C A\ {Attp} without which the access policy 7 (") will
never be satisfied (updatee set). For each i € u'"), the data owner executes
UpdateAtt(i, MKkp) to update the component of the master key ¢; to t! and the
component of the public parameters T; to T/. The primitive outputs the cloud
re-encryption key crk;., and the user re-encryption key urk;.,s. Then, the
data owner composes the message ({crkmi/, T},)) , signs it and sends it to
the cloud server. Upon receiving the message from the data owner, the cloud
server verifies the signature on it and stores each crk;.,; as last element of the
related CRKL;. Moreover, the cloud server stores each T/ as last element of the
related PKL;. Then, the data owner chooses d — 1 attributes at random such that
none of them is associated to a user identifier and adds the attribute ID(") to

58 KP-ABE Revocation

create the set of encryption attributes I'. Next, for each i € u("), it encrypts the
user re-encryption key through NM-ABE encryption. Specifically, it executes
NM.Encrypt(urk;..;, I, PKnp) to generate an encrypted user re-encryption key
for the attribute i, called eurk;, ., which the user r is not able to decrypt, signs
it and sends it to the cloud server. Upon receiving the message from the data
owner, the cloud server verifies the signature on it and stores eurk;,.; as last
element of the related EURKL;.

Components Update Phase. This phase is executed during each data con-
sumption procedure. Let a file requested by a legitimate user u be (FID, CT', EM),
and let his/her decryption key be DK(*). During this phase, the cloud server
selects the encrypted user re-encryption keys eurk; ., to send to the user and
updates the decryption key components of DK(*) and the ciphertext compo-
nents of CT as follows.

For eachi € AW N\ {Attp}, the cloud server obtains the current version
of the attribute i from both dk; and ct; and selects the one with the oldest ver-
sion number. Next, it locates the related entry in EURKL;. If the selected en-
try is not the last one, it retrieves all the entries from the next one to the last
one, i.e., (eurkj .y, ... eurk;q-1 . ;0). Then, the cloud server selects the cloud
re-encryption key list CRKL;, executes PRE.UpdateDK(i, dk;, CRKL;) to obtain
a partially updated decryption key component d'kl(l), and PRE.UpdateCT(i, ct;,
CRKL;) to obtain a partially updated ciphertext component c'tl(l). Moreover, for
eachi € A1) \ 7, the cloud server obtains the current version of the attribute
i from dk;. Next, it locates the related entry in EURKL;. If the selected entry is
not the last one, it retrieves all the entries from the next one to the last one, i.e.,
(eurkisyi, ... eurk;o-1y ,;0). Then, it selects the cloud re-encryption key list

CRKL; and executes PRE.UpdateDK(i, dk;, CRKL;) to obtain a partially updated
()

decryption key component dk; ’.
Data Consumption. This procedure is started by a user u who wants to access a
piece of data. First, the user requests a file to the cloud server by specifying the

identifier FID. The cloud server retrieves the file (FID,CI', EM) and executes the
1(! il](l) ‘
where i refers to outdated attributes in the decryption key, and j refers to outdated
attributes in the ciphertext and present in the decryption key (i.e.,j € ¢ C (A1) N).
Then, the cloud server signs the message and sends it to the user.

Upon receiving the message from the cloud server, the user verifies the signature
on it. Then, for each attribute 7, the user executes NM.Decrypt(eurk;..;, NK(”)) to
retrieve the user re-encryption key urk; ., and appends it to the user re-encryption
key list URKL;. When the user re-encryption key list URKL; is updated to the last

components update phase. Next, it composes the message <dk Jeurk. .., ct

4.3 Security Analysis 59

version, the user selects it together with the received partially updated decryption

key component d'kgl), and executes PRE.UpdateDK(i, d'kzgl), URKL;), thus obtaining
the updated decryption key component dkgl). Moreover, for each attribute j, the user
selects the user re-encryption key list URKL; and the received partially updated ci-

phertext component ét(l), and executes PRE.UpdateCT(j, ét](l), URKL]-), thus obtain-

i
ing the updated ciphertext component ct](l)

(dk(l), ct(1)> , signs it and sends it to the cloud server.

. Then, the user composes the message

A

Upon receiving the message from the user, the cloud server verifies the signa-
ture on it. Next, for each attribute j, the cloud server verifies that the user updated
the ciphertext component ct; correctly. In order to do that, the cloud server checks

that e (ctj, T].(l)> =e (ct]m, T]) If all the comparisons are correct, the cloud server

updates the ciphertext CT with the ciphertext components ct](l), and the decryption

key components for the user u with the received ones. Then, the cloud server com-
poses the message <5t, {eti} ke (g or EM) , signs it and sends it to the user. Note
that the cloud server sends only the ciphertext components that were already up to
date and present in the user’s decryption key. Depending on the application, this
optimization can save a lot of communication overhead.

Upon receiving the message from the cloud server, the user verifies the signature
on it. Next, it composes the ciphertext CT = (ct, {ct](l) } AW}). The user can now

decrypt the ciphertext CT by executing KP.Decrypt(CT, DK(*)), thus retrieving the
symmetric key Kg. Finally, it executes Dec(EM, Ks) and retrieves the data M.

4.3 Security Analysis

In this section, we provide security proofs for our scheme. Our aim is to show that
our scheme is not less secure than the GPSW scheme (Goyal et al., 2006), which has
been proved secure in the Selective-Set model under the Decisional Bilinear Diffie-
Hellman (DBDH) assumption. We first define a game (Game 1) which models col-
lusion among users whose keys cannot decrypt a given ciphertext and users whose
keys have been revoked. We formally prove that our scheme is resistant against such
an adversary under the DBDH assumption. Then, we define a second game (Game
2) which models a cloud server that comes into possession of revoked keys. We for-
mally prove that our scheme is resistant against such an adversary under the DBDH
assumption.

60 KP-ABE Revocation

Game 1

Init The adversary declares the universe of attributes U/, the challenge set 7, the
number of key revocations 71, and the access policies of the decryption keys to re-
voke, i.e., T;,Vj € [1,n].

Setup The challenger runs the KP.Setup primitive, thus creating the public param-
eters PKI(g;) . Next, for each key revocation j, the challenger determines the updatee
set y1; from 7; and runs the UpdateAtt primitive for each attribute i € ;, thus cre-
ating the user re-encryption keys {urk,; 1), ;5 }- Then, it creates the public param-

eters PKI%Z. Finally, the challenger gives the n + 1 sets of the public parameters, i.e.,
{PK%}, e, PK%)) }, and the user re-encryption keys to the adversary.

Phase 1 The adversary is allowed to issue queries for: (i) decryption keys of any
version whose access policy 7 is not satisfied with the challenge set; and (ii) de-
cryption keys with access policy equal to any 7;, but version less than j. The version
v € [0,n] specifies which master key the challenger uses to create the decryption
key requested.

Challenge The adversary submits two distinct messages mg and m; of equal length.
The challenger sets b <— {0, 1} uniformly at random, runs the KP.Encrypt primitive
on m; with the challenge set, and sends the ciphertext CI'™* to the adversary.

Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b™ of b.
The advantage of an adversary A in this game is defined as Pr[b* = b] — 1.

Proof of Security

We prove that no Probabilistic Polynomial-Time (PPT) adversary can play Game
1 against our scheme with a non-negligible advantage under the DBDH assump-
tion. To do this, we prove that breaking our scheme reduces to breaking the GPSW
scheme, which in turn is proved to be infeasible for a PPT adversary (see Goyal et al.
(2006)). More formally, we state the following:

Theorem 1. If a PPT adversary can play Game 1 against our scheme with a non-negligible
advantage, then a simulator can be built to play the Selective-Set game (Game 0) against the
GPSW scheme with the same advantage.

4.3 Security Analysis 61

Proof. Suppose there exists a PPT adversary .4 able to win Game 1 against our scheme
with advantage €. We build a simulator B that can play Game 0 against the GPSW
scheme with the same advantage €.

Init The simulator B starts Game 1 against the adversary A. A chooses the uni-
verse of attributes U, the challenge set 7y, the number of key revocations 1, and the
access policies of the decryption keys to revoke, i.e., 7;,Vj € [1,n].

Setup In this phase, the simulator B builds an alternative universe of attributes
U’ and an alternative challenge set 7/, which will be used in Game 0 against the
GPSW scheme. The alternative universe will be composed of an attribute i_0 for
each attribute i in the original universe, plus an attribute i_j for each attribute i in
the updatee set of each key revocation j. In formulas:

U ={io0licUpulijliep;,jec1,n]}
For convenience, we define the following function:

i_x < FindCurrVer(i,U’, v) This function takes as input an attribute named
i € U, the universe of attributes I/, and a version number v. The function
outputs the attribute i_x, where x = maxy<,{x | i_x € U'}.

The alternative challenge set will be composed of the outputs of FindCurrVer(i,U’, n)
for each attribute i in the original challenge set. In formulas:

9" = {FindCurrVer (i, ', n) | i € v}.

The simulator B, which acts as adversary in Game 0, selects the universe of at-
tributes U’ and the challenge set 7/, and runs Game 0 Init phase. The challenger
replies with the public parameters PK}, = {T; , | i_x € U’}. The simulator creates
n + 1 sets of public parameters for .A. Specifically, it defines each set as

PKI(SJ) = {T; » € PKip | i_x = FindCurrVer(i,U’,v),Vi € U},

and calls each T; , as Ti(v). Then, the simulator chooses }; | y; | random numbers
in Z, to create all the user re-encryption keys and gives them and the sets of public

parameters {PKI(gJ), ., PKI%)} to the adversary A.

Phase1 For each decryption key with policy 7 and version v that the adversary A
requests, the simulator B computes the corresponding policy 7" in the alternative
universe by replacing each attribute i € 7 with the attribute FindCurrVer(i,U’, v).
Then, the simulator makes a decryption key request to the GPSW scheme and for-
wards the obtained decryption key to the adversary A.

62 KP-ABE Revocation

Challenge The simulator B receives the messages mg and m; from the adversary
A, selects them as its own challenge messages with respect to the GPSW scheme, and
runs Game 0 Challenge phase. The simulator propagates the obtained ciphertext
CT™ to the adversary A.

Phase 2 The simulator acts as it did in Phase 1.

Guess The simulator B receives the guess b* from the adversary .4 and selects it
as its own guess with respect to the GPSW scheme.

As shown, the simulator can map any attribute of any version of our scheme onto
an attribute of the GPSW scheme, and therefore it can simulate the versioning of
the attributes (with the adversary .A). The simulator translates the attributes from
the universe U to Y’ and maps each decryption key request from A to an equivalent
request compliant with the GPSW scheme. Hence, the advantage of the simulator
B in Game 0, i.e., in the Selective-Set game, against the GSPW scheme is the same
as the one of the adversary A in Game 1 against our scheme. u

Game 2

Init The adversary declares the universe of attributes U/, the challenge set 7, the
number of key revocations 7, and the access policies of the decryption keys to re-
voke, i.e., 7}, Vj € [1,n]. Note that the universe of attribute, the challenge set, and
the access policies include the dummy attribute Attp.

Setup The challenger runs the KP.Setup primitive, thus creating the public param-
eters PKI%)D). Next, for each key revocation j, the challenger determines the updatee
set 11 from 7; and runs the UpdateAtt primitive for each attribute i € Wi, thus cre-
ating the cloud re-encryption keys {crk;; 1., }- Then, it creates the public param-

eters PK%. Finally, the challenger gives the n + 1 sets of the public parameters, i.e.,
{PKg), e, PK%D) }, and the cloud re-encryption keys to the adversary.

Phase1 The adversary is allowed to issue queries for: (i) incomplete decryption keys,
i.e., decryption keys which do not include the decryption key component relative to
the dummy attribute (dk 44,); and (ii) decryption keys with access policy equal to
any 7;, but version less than ;.

Challenge The adversary submits two distinct messages mg and m; of equal length.
The challenger sets b <— {0, 1} uniformly at random, runs the KP.Encrypt primitive
on my, with the challenge set, and sends the ciphertext CT* to the adversary.

4.3 Security Analysis 63

Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b* of b.
The advantage of an adversary .A in this game is defined as Pr[b* = b] — 1.

Proof of Security

We prove that no PPT adversary can play Game 2 against our scheme with a non-
negligible advantage under the DBDH assumption. To do this, we prove that break-
ing our scheme with Game 2 rules reduces to breaking our scheme with Game 1
rules, which we just proved to be infeasible for a PPT adversary (see Theorem 1).
More formally, we state the following:

Theorem 2. If a PPT adversary can play Game 2 against our scheme with a non-negligible
advantage, then a simulator can be built to play Game 1 against our scheme with the same
advantage.

Proof. Suppose there exists a PPT adversary A able to win Game 2 against our scheme
with advantage €. We build a simulator B that can play Game 1 against our scheme
with the same advantage €.

Init The simulator B starts Game 2 against the adversary A. A chooses the uni-
verse of attributes U/, the dummy attribute Attp, the challenge set 7, the number
of key revocations 1, and the access policies of the decryption keys to revoke, i.e.,

T, Vj € [1,n].

Setup In this phase, the simulator B adds another dummy attribute Att], to the
universe of attributes, selects < as its challenge set, selects 7}, Vj € [1,n] as the ac-
cess policies of the decryption keys to revoke, and runs Game 1 Init phase. The
challenger replies with the sets of public parameters { PK (O), ey PKI(QZ,)} and the user
re-encryption keys. The simulator removes the component of the public parameters
relative to the dummy attribute Att}, in every set of public parameters. Then, it se-
lects the received user re-encryption keys as its cloud re-encryption keys. Finally,
the simulator gives the sets of public parameters and the cloud re-encryption keys
to the adversary.

Phase 1 For each revoked decryption key with policy 7; and version v < j that the
adversary A requests, the simulator B makes a decryption key request to the Game
1 challenger and forwards the obtained decryption key to the adversary.

64 KP-ABE Revocation

For each incomplete decryption key with policy 7 and version v that the adver-
sary A requests, the simulator substitutes the dummy attribute Attp with the new
dummy attribute Att/, and makes a decryption key request to the Game 1 challenger.
Then, the simulator removes the component dk 4, from the obtained decryption
key and sends such an incomplete decryption key to the adversary.

Challenge The simulator B receives the messages mg and m; from the adversary
A, selects them as its own challenge messages and runs Game 1 Challenge phase.
The simulator propagates the obtained ciphertext CI™* to the adversary A.

Phase 2 Phase 1 is repeated.

Guess The simulator B receives the guess b* from the adversary .4, selects it as its
own guess, and runs Game 1 Guess phase.

As shown, the simulator can accommodate every decryption key request from
the adversary. Notably, the simulator is able to provide the adversary with any in-
complete decryption key. Indeed, during Phase 1, it may happen that the adversary
requests incomplete decryption keys relative to decryption keys whose access policy
7T is satisfied with the challenge set. In such a case, the simulator cannot propagate
the request to the Game 1 challenger. However, by substituting Attp with Att], in
T, the simulator ensures that the access policy is not satisfied with the challenge
set and that the request will be compliant with those accepted by the Game 1 chal-
lenger. Therefore, the advantage of the simulator B in Game 1 against our scheme
is the same as the one of the adversary .4 in Game 2 against our scheme. u

4.4 Performance Evaluation

In this section we analyze the computational cost of the various operations in our
system. Such costs are mainly determined by the ABE operations as they are the
most complex and onerous. Table 4.1 shows the complexity of ABE operations ex-
ecuted by each entity during the various procedures, and it shows a comparison
between our scheme and the YWRL one. Note that in order to implement the key
revocation mechanism, our scheme requires access policies with only one negated
attribute embedded in the NM-ABE decryption keys, and only one attribute labeling
the NM-ABE ciphertexts. For this reason we setd = |A| = 1.

The data owner initializes the scheme through the setup procedure. Differently
from YWRL scheme which initializes only the KP-ABE scheme, our scheme initial-
izes also the NM-ABE scheme. This cost is only 1 pairing operation and 3 opera-
tions (point-scalar multiplications) in G; to create the public parameters. Also in

4.4 Performance Evaluation

65

Data owner

Procedure Scheme B1¥1r.1ear Op.eratlons Op‘eratlons
Pairings in Gq in Gp
Setu Our 2 U] +3 —
P YWRL 1] -
. Our — Al +3 —
8]
ser Join YWRL — 7] —
Data Production ngL : :zl 1
Key Revocation ngL : 4i|;| | K |
Cloud server
Procedure Scheme Bqn.lear Opfaratlons Op.eratlons
Pairings in Gy in Gr
- Our 2(|vl=1) A+ =2 -
Data C t
(ina cgse (())frsl:?)&g:)l?lelnotgupdate) YWRL — A+ |y] —2 —
User
Procedure Scheme B1¥1r.1ear Op-eratlons Op.eratlons
Pairings in G in Gr
Data Consumption S;l\;RL R: : :
. Our Al +3(JA —1)R |A]+]y]—2 —
Data C t
(ina cgse (())frl?)gg:)%elt?tgupdate) YWRL |/\| - —

Table 4.1: Computational costs comparison.

the user join procedure, our scheme adds a constant and moderate cost due to the
employment of the NM-ABE scheme. In particular, the data owner executes the
NM.KeyGen primitive which requires 3 operations in G1. The data production pro-
cedure is the procedure that is executed most frequently by the data owner. The
cost of this procedure for both our and YWRL scheme is determined only by the ex-
ecution of the KP.Encrypt, whose complexity depends on the number of encryption
attributes. Specifically, it requires |y| operations in G1 and 1 operation (modular ex-
ponentiation) in Gr to blind the message, i.e., MY?®. The key revocation procedure
is composed of two phases. The data owner is involved only in the first one, i.e., the
attribute update phase. Both in our scheme and YWRL one, during this phase, the
data owner first determines the updatee set y, and then it generates a new version
of the quantities related to the attributes i € u. The main cost for these operations
is determined by the computation of a new version of the public parameters T; to
T/, Vi € p. Each of these updates requires one operation in G;. In addition to this
cost, our scheme also requires the execution of the NM.Encrypt primitive for each

66 KP-ABE Revocation

attribute in the updatee set in order to secure the user re-encryption keys. The cost
of each NM.Encrypt is 3 operations in G; and 1 operation in Gr.

The cloud server performs ABE operations only during the data consumption
procedure, both in our and in YWRL scheme. If both the user’s decryption key and
the requested ciphertext are up to date, the data consumption procedure has no
ABE-related costs for the cloud server. On the other hand, when ciphertext and/or
decryption key components need to be updated (components update phase), the
cloud server executes the PRE.UpdateCT and PRE.UpdateDK primitives. In the
worst case, these primitives are executed for each attribute labeling the ciphertext
and for each attribute embedded in the user’s decryption key, except for the dummy
attribute. Hence, the total cost is |A| — 1 + |y| — 1 operations in G1, both in our and
in YWRL scheme. Note that, even in the case an attribute has to be updated of more
than one version, the cost is still one operation in G; per component since these prim-
itives first use the re-encryption key list to compute an equivalent re-encryption key
able to update the attribute from any old version to the latest version. Then, such re-
encryption key is used as argument of the operation in G;. In addition to this cost,
our scheme also includes 2(|y| — 1) pairings. This cost is related to the verifiability
property, which lets the cloud server check that the user updated all the ciphertext
components correctly.

The user performs ABE operations only during the data consumption procedure,
both in our and in YWRL scheme. If both the user’s decryption key and the re-
quested ciphertext are up to date, the data consumption procedure’s cost includes
|A| pairings operations in the worst case, both in our scheme and in YWRL one.
On the other hand, when ciphertext and/or decryption key components need to be
updated (components update phase), the cost of our scheme is higher than YWRL
scheme since the user participates in re-encryption and re-keying. However, this
adds security to our scheme and allows us to prevent the cloud server from undo-
ing key revocations. In our scheme, the user executes the NM.Decrypt primitive to
retrieve the user re-encryption keys. This primitive is executed for each attribute in A
(except for the dummy attribute) and for the number of key revocations R occurred
since his/her last execution of the data consumption procedure. The cost of a single
NM.Decrypt primitive is 3 pairings, so the total cost in the worst case is 3(|]A| — 1)R
pairings. Also, the user executes the PRE.UpdateCT and PRE.UpdateDK primitives.
In the worst case, these primitives are executed for each attribute labeling the ci-
phertext and for each attribute embedded in the user’s decryption key, except for
the dummy attribute. Hence, the total costis |A| — 1 4 |y| — 1 operations in G;.

The setup, user join, data production, and data consumption procedures have
a small additional cost compared to YWRL scheme. On the contrary, the key revo-
cation procedure and data consumption in case of components update have a non-
negligible additional cost, which depends on the average complexity of the access

4.4 Performance Evaluation 67

policies. Indeed, the more the access policies are complex, the more the cardinality
of the sets A, y, and 7y will grow. However, such an additional cost is present only
when key revocations occur and lasts for few data consumption procedures follow-
ing the key revocations. Considering that a key revocation is a rare event compared
to data consumption and data production, the additional cost introduced by our
scheme should be acceptable in order to provide additional security that limits the
cloud server capabilities and inhibits it from accessing the data stored on it when in
possession of a revoked key.

Chapter 5

fABElous: An Attribute-Based
Scheme for Industrial Internet of
Things

Do not say a little in many words
but a great deal in a few.

Pythagoras

Internet of Things (IoI') technologies (Mainetti et al., 2011; Ashton et al., 2009;
Atzorietal., 2010) allow us to connect constrained or embedded devices through the
Internet. This has a deep impact on our everyday life, as common objects can be em-
powered with communication and cooperation capabilities. However, also the in-
dustrial sector can take enormous advantage of IoI. For example, a smart factory can
be monitored and controlled through the Internet, thus optimizing the industrial
processes (Gilchrist, 2016). Furthermore, in a smart warehouse, connected sensors
can help automated guided vehicles to find particular goods which have to be loaded
on a given truck. In all these systems, security is a key requirement, especially for
integrity, confidentiality, and access control on data. Again, in these scenarios, ABE
is a valid cryptographic scheme to obtain the aforementioned requirements. Nev-
ertheless, though ABE techniques can offer a high level of security and an intrinsic
fine-grained access control, they do not fit easily in the IoI world, especially for real-
time applications. Here, despite one may think, the computation power required
to execute ABE operations might not be the major concern, as ABE was shown to
be suitable for IoI' devices (Ambrosin et al., 2016; Girgenti et al., 2019). Instead,
the most challenging aspect here is the communication overhead generated by the
ABE encryption (over 1kB overhead per message), which may be quite burdensome
for wireless networks with limited bitrate like those employed in IoT (Farrell, 2018;

69

70 fABElous

Montenegro et al., 2007). Indeed, modern Iol networks use low-power communi-
cation protocols like Bluetooth Low Energy (BLE), IEEE 802.15.4, and LoRa, which
provide for low bitrates (230 kbps for BLE (Tosi et al., 2017), 163 kbps for 802.15.4
(Latré et al., 2005), 50 kbps for LoRa (Georgiou and Raza, 2017)).

In this chapter, we propose fABElous, an ABE scheme suitable for industrial IoT
applications which aims at minimizing the communication overhead introduced by
ABE encryption. The fABElous scheme ensures data integrity, confidentiality, and
access control, and reduces the communication overhead up to 52.5 % compared to
a scheme which uses ABE techniques naively.

This chapter is organized as follows. Section 5.1 compares with relevant re-
lated work. Section 5.2 introduces some background on Ciphertext-Policy Attribute-
Based Encryption. Section 5.3 describes fABElous in detail: its architecture, a ref-
erence use case, system procedures, and the reference threat model. Section 5.4
analyzes the performances of fABElous in terms of communication overhead.

5.1 Related Work

Attribute-Based Encryption has been applied to protect confidentiality and ensure
fine-grained access control in many different application scenarios like cloud com-
puting (Ming et al., 2011; Yu et al., 2010a; Xu and Martin, 2012; Hur, 2013), e-health
(Picazo-Sanchez et al., 2014), wireless sensor networks (Yu et al., 2011), Internet of
Things (Touati and Challal, 2015; Singh et al., 2015), smart cities (Rasori et al., 2018),
online social networks (Jahid et al., 2011). In this section we will call users humans
that take part in the services/systems described. We will also call nodes the indepen-
dent devices (mainly sensors and actuators) that take part in the services/systems
described.

Yu et al. (2011) realized the first distributed fine-grained data access control for
Wireless Sensor Networks (WSNs) using ABE. In their work, the system is com-
posed of one controller, many users and many nodes. The network controller as-
signs a secret key to each user, according to a policy that describes the type of data
such user should decrypt. Every node possesses a set of attributes, which are gen-
erated from the controller and loaded on the node before its installation. Their sys-
tem is able to revoke a key with a single broadcast message. However, their system
does not take into account the possibility of actuators which receive and use ABE-
encrypted data. This precludes the possibility of having actuators which receive and
use ABE-encrypted data in complex IoI scenarios like a smart factory.

Picazo-Sanchez et al. (2014) proposed a secure publish-subscribe protocol for
medical Wireless Body Area Networks (WBANSs) using ABE. In their work, the sys-
tem is composed of a star-topology network where a smartphone (or a similar de-
vice) communicates with various nodes placed over the user’s body area, monitor-

5.2 Preliminaries 71

ing the user’s health conditions. The system allows any node to publish data and to
subscribe to data generated from other nodes.

Singh etal. (2015) proposed a secure MQTT for IoT, allowing the usage of ABE. In
their work, the architecture is composed of one Key Authority, one broker, and sev-
eral nodes. Every node can be a subscriber, a publisher or both. Every node knows
the public key, and a secret key associated with some attributes which describe its
characteristics. Every node subscribes to the data it needs for its proper functioning.
Both Picazo-Sanchez et al.’s and Singh et al.’s schemes follow the CP-ABE paradigm
like ours, but they use a publish-subscribe method, which is unsuitable for our ob-
jectives since it introduces too much latency.

5.2 Preliminaries

Ciphertext-Policy Attribute-Based Encryption

The CP-ABE paradigm was first introduced by Bethencourt, Sahai, and Waters (Be-
thencourt et al., 2007) as the dual scheme of KP-ABE. In the following, we will refer
to this scheme as the BSW scheme. In CP-ABE an encrypting party labels each piece
of encrypted data (CP-ABE ciphertext) with an access policy (T") defined over some
attributes (access policy attributes, A). On the contrary, decryption keys embed a set
of attributes (decryption attributes, y).

While the KP-ABE paradigm provides a content-based access control as the ci-
phertext is associated with a set of attributes which describes its content, the CP-ABE
paradigm provides a role-based access control as the decryption key is associated
with a set of attributes which describes the characteristics—or better yet, the role—of
the key owner.

We recall that an encrypting party is called data producer, whereas who holds a
decryption key and decrypts data is called a data consumer. The entity which deploys
and manages the system is called trusted party.

In this work we build on BSW scheme. In order to ease the reading, we abstract
away the mathematical insight of such a scheme. The interested reader can refer to
Bethencourt et al. (2007) for such details. We model BSW scheme with the following
black-box primitives.

(MK, PK) = CPSetup() This primitive initializes the scheme. It outputs a master
key MK, which must be kept secret, and an associated set of public parameters PK. The
CP.Setup primitive is executed by the trusted party.

CT' = CPEncrypt(M, T, PK) This primitive encrypts a message M under the access
policy 7. It takes as input the message M, the policy 7, and the public parameters

72 fABElous

PK. It outputs the CP-ABE ciphertext CI'. The CP.Encrypt primitive is executed by a
data producer.

DK = CPKeyGen(MK,y) This primitive generates a decryption key DK, which
is provided to a data consumer. It takes as input the master key MK and a set of
attributes oy which describes the data consumer. It outputs a decryption key DK.
The CP.KeyGen primitive is executed by the trusted party.

M = CPDecrypt(CT,DK) This primitive retrieves the message M from the CP-
ABE ciphertext CT if the access policy 7 in the CP-ABE ciphertext is satisfied by
means of the decryption attributes v embedded in the decryption key. It produces
1 otherwise. The CP.Decrypt primitive is executed by a data consumer.

5.3 Architecture

We assume a low-bitrate Wireless Sensor and Actuator Network (WSAN) in which the
nodes exchange encrypted data with each other. As use-case example, consider a
smart factory that implements a real-time application (Chen et al., 2009). Because of
the strict requirements on the communication delay, we consider a direct communi-
cation between the nodes. Moreover, we assume that the WSAN uses a low-energy
and low-bitrate link-layer protocol, e.g., IEEE 802.15.4. As a consequence, communi-
cations and encryption/decryption operations should be as lightweight as possible.

We consider the WSAN to be composed of sensors, actuators, and a controller
(Figure 5.1). A sensor is a data producer that measures some quantity, encrypts
it, and sends it to a set of actuators. An actuator is a data consumer that receives
encrypted data from a set of sensors and uses it to control some mechanism. The
received data can be, for example, a command to be executed, or a sensor measure-
ment the actuator uses to take a decision. For the sake of simplicity, we keep sensor
and actuator roles separated; however, a single device may act as both. Sensors
and actuators are regulated by a special node called controller, or C, and they are
characterized by a unique identifier called Sensor ID (Spp) and Actuator ID (Ap),
respectively. These identifiers are chosen and assigned by the controller. Every

party p in the system holds a public/private key pair (K;Z)b, K;il?v) through which
it can perform digital signature algorithms. The notation Sign(p, (m)) represents
the signature algorithm of the party p on the message m. Controller and actuators
maintain a local sensor table; every tuple of the table identifies a sensor through its
sensor ID and the related public key. Moreover, the controller maintains an actuator
table; every tuple of the table identifies an actuator through its actuator ID and the

related public key.

5.3 Architecture 73

sensor table actuator table

S Ap)

controller
policy list policy list
Policy ID | Policy | Sym.Key Policy ID | Policy | Sym.Key
AN
5 '=‘ sensor table
H ° E (Sp)
sensors actuators

Figure 5.1: An overview of fABElous architecture.

Key Distribution Mechanism

In order to satisfy the strict requirements of our model regarding security and mes-
sages size, fABElous diminishes the use of CP-ABE heavier ciphertext and primi-
tives. Indeed, in our scheme each sensor executes the CP.Encrypt primitive only
once for securing multiple data described by the same access policy. Similarly, each
actuator executes the CP.Decrypt primitive only once for extracting data generated
by the same sensor and described by the same access policy. The basic idea is to
distribute symmetric keys using the BSW scheme as a reliable tool for achieving
fine-grained multicast. To this aim, a sensor encrypts a symmetric key with the
CP.Encrypt primitive under a certain policy and broadcasts it. All the actuators
will receive the ciphertext, but only some of them will be able to retrieve and store
the symmetric key by successfully executing the CP.Decrypt primitive. Henceforth,
when the sensor needs to transmit a new piece of data which has to be encrypted
under the same access policy, it simply encrypts the data with the symmetric key.
In the following, we describe the procedures of our system in detail.

System Procedures

Setup. This procedure initializes the system. The controller executes the CP.Setup
primitive, thus producing the master key, which is kept secret, and the public pa-
rameters.

74 fABElous

Sensor Join. The sensor join procedure is executed whenever a new sensor joins
the WSAN. Figure 5.2 shows the various steps of this procedure.

sensor table
(Sp)
Sip Kpub
(Smp1)
S Kpub
@ 3) insert tuple sensor table
Sp)
SID K(ID
(Sip1) pub
' _______ .:' o KpulbDl - m
@ ! 4) broadcast e ce
KS}?) S Sign(C, (SmllK;if]))) Sy K(s,lm)
pub
1) generate and ' / : 1
load K(Slul) K(Su_n) 5) insert tuple
Oad Bpup 7 Rpriv 2) send

Sign(C, (S]D1, PK))

-

41411111
TITTITTTY

Figure 5.2: Sensor join procedure. Dashed lines represent human-device communi-
cation.

In step 1, a human operator physically deploys the sensor and generates a pub-
lic/private key pair (K;if), K;‘jfj)). The operator loads the private key on the sensor
and the public key on the controller. In step 2, the controller chooses a unique iden-

tifier Spp for the sensor and sends the message Sign(C, (S, PK)) to the sensor. In

(S)

step 3, the controller adds the tuple (Spp, K pub

) to its sensor table. In step 4, the
(Sp)

controller signs and broadcasts the message Sign(C, (Spp, K puub)). Upon receiving
the message, each actuator verifies the signature to be valid and adds the tuple to
its sensor table (step 5).

Actuator Join. This procedure is executed whenever a new actuator joins the WSAN.
In step 1, a human operator physically deploys the actuator and generates a pub-

lic/private key pair (K;ﬁé’)), K (fh’?)). The operator loads the private key on the actu-
ator and the public key on the controller. The controller chooses a unique identifier
A and an attribute set 7y for the actuator; next, it executes the CP.KeyGen primi-
tive, thus obtaining the decryption key DK. Then, the controller signs the message

(Ap, DK), encrypts it with the actuator’s public key, and sends it to the actuator.

5.3 Architecture 75

The controller adds the tuple (App, K;ﬁ;}’)> to its actuator table and, finally, sends a
copy of its sensor table to the actuator through a signed message.

New Policy Installation. This procedure is executed by a sensor to share a sym-
metric key with some actuators. When a sensor performs this procedure for the first

11111111
TTITITTITY

1) choose (Pip, T, Ks) and insert tuple

policy list

3) broadcast

Policy ID | Policy | Sym.Key Sign (Sp, (E,Pp)), S

4) verify Sign (Sp, (E, Pp)) with K;i’bD)

5) execute Kg = CP.Decrypt(E, DK)

Pp T KS

2) execute E = CP.Encrypt(Kg, T, PK) 6) insert tuple

policy list

Policy ID | Policy | Sym.Key

Pp T Ks

Figure 5.3: New policy installation procedure.

time, it creates a policy list. This list links an access policy 7 to a symmetric key Kg
through a policy identifier (Ppp). Each tuple of the list is in the form (P)p, T, Ks). Each
sensor creates and maintains its policy list, therefore different sensors have differ-
ent policy lists. Similarly, each actuator maintains its own policy list which contains
tuples that sensors shared by means of this procedure.

The following steps, shown also in Figure 5.3, allow a sensor to create a tuple for
its policy list and share such tuple with some actuators over the WSAN. In step 1, the
sensor chooses an access policy 7, a random symmetric key Kg, and a new policy
identifier Ppp; next, the sensor composes the tuple and adds it to its policy list. In
step 2, the sensor encrypts the symmetric key Ks under the access policy 7 by exe-
cuting the CP.Encrypt primitive, thus obtaining the CP-ABE ciphertext CT. In step
3, the sensor creates a new policy message, which is a signed message that includes
the ciphertext CT, the policy identifier Pp, and the sensor ID Spp, and broadcasts
the new policy message. Upon receiving the message, each actuator verifies the sig-
nature to be valid and checks whether its attribute set -y satisfies the access policy

76 fABElous

T (step 4). If not, the message is discarded. Otherwise, the actuator decrypts the
ciphertext CT by executing the CP.Decrypt primitive, thus obtaining the symmetric
key Kg (step 5). Finally, the actuator adds the tuple to its policy list (step 6).

Data Exchange. This procedure (Figure 5.4) is executed by a sensor to transmit
sensed data to one or more actuators in a low-latency fashion within the WSAN.

[TYYRYYY)
TTITTTTTY

1) choose 7 and retrieve matching tuple

policy list 3) broadcast
Sign (Sip, (Enc(data, Kg), Pip)), Sip

Policy ID | Policy | Sym.Key

5) verify
Pp T Ks Sign (Spp, (Enc(data, Kg), Pip))

2) encrypt data with Kg 6) retrieve tuple with matching Ppp

policy list

Policy ID | Policy | Sym.Key

4) delete Enc(data, Ks), data

Pp T Ksg

7) decrypt Enc(data, Ks)
and obtain data

Figure 5.4: Data exchange procedure.

In step 1, the sensor chooses an access policy 7 for the sensed data, and checks in
the policy list if such access policy is present. If not, the sensor performs a new
policy installation procedure. Otherwise, the sensor retrieves the matching tuple.
In step 2, the sensor encrypts the data with the symmetric key Kg and creates a data
message, which is a signed message that includes the sensor ID Spp, the encrypted
data Ks(data), and the policy identifier Pjp. In step 3, the sensor broadcasts the data
message, and then, in step 4, it securely deletes the sensed data. Upon receiving the
message, each actuator verifies the signature to be valid and checks in the policy list
if the received policy identifier is present (step 5). If not, the message is discarded.
Otherwise, the actuator retrieves the matching tuple and decrypts the ciphertext
with the symmetric key Kg, thus obtaining the sensed data (step 6).

5.3 Architecture 77

Threat Model

The fABElous scheme provides data integrity, confidentiality, and access control.
In the following we analyze possible threats and explain how fABElous addresses
them.

Eavesdropper. Eavesdroppers are surely a threat to confidentiality. An eavesdrop-
per can try to gain information by examining the traffic between sensors, actuators
and the controller. However, every exchange of information is protected. If an eaves-
dropper is able to obtain a data message, he cannot access the data since he does not
have the symmetric key. Even if he obtains the CP-ABE ciphertext containing that
symmetric key, he cannot decrypt it either, because he lacks an ABE decryption key.
Even more so, if the eavesdropper intercepts the message exchange between an ac-
tuator and the controller during the actuator join procedure, he cannot retrieve the
decryption key since it is safely encrypted with the actuator’s public key.

Compromised Sensor. Suppose that an adversary gains complete access to a sen-
sor. Such adversary would obtain: (i) the data generated by the sensor from the
moment of compromise on; (ii) the sensor’s private key; and (iii) its policy list,
which contains the symmetric keys used for data encryption. Note that this adver-
sary cannot, in any way, obtain data generated by other sensors. Moreover, since
each sensor securely deletes past data, the adversary cannot retrieve it from the
compromised sensor. However, if an adversary intercepted and stored past trans-
missions, he would be able to retrieve past data by using the stolen symmetric keys.
In order to mitigate this, sensors could periodically refresh the symmetric keys by
deleting some tuples from their policy list and executing again the new policy in-
stallation procedure on the same policies. In this way, the adversary cannot retrieve
data produced before the last refresh of the symmetric key.

Note that the adversary could also disseminate malicious data authenticated
with the compromised sensor’s private key. In this way, malicious data is accepted
by the actuators that receive it. This attack can be thwarted by revoking the sensor’s
public key. We plan to add this functionality to a future version of fABElous.

Compromised Actuator. Suppose that an adversary gains complete access to an
actuator. Such adversary would obtain: (i) the actuator’s ABE decryption key; (ii)
its private key; and (iii) its policy list, which contains the symmetric keys used for
data decryption. Each actuator may delete past data securely after consumption, so
the adversary would not be able to retrieve it from the actuator. However, if an ad-
versary intercepted and stored past transmissions, he would be able to retrieve past
data by using the stolen symmetric keys. With this set of information, the adversary
can decrypt every past and future data message that the compromised actuator has

78 fABElous

access to. Note that this does not imply that the adversary has access to all the data
generated by the sensors. Indeed, his decryption capabilities are limited by the ac-
cess privileges of the compromised actuator. If the compromised actuator cannot
decrypt some data because its attribute set does not satisfy the access policy for
such data, then the adversary will not be able to decrypt it as well. This is achieved
thanks to ABE technology, which enforces a fine-grained access control even in case
of device compromise. The actuator compromise can be completely worked out by
revoking its decryption key. We plan to add this functionality to a future version of
tABElous.

5.4 Performance Evaluation

In this section we evaluate the communication overhead introduced by our scheme,
and we compare it to other schemes. We assume the data, i.e., the message to be en-
crypted through symmetric cryptography, being composed of 120 bytes of raw data,
4 bytes of Pp, and 4 bytes of timestamp (to avoid replay attacks). The symmetric key
encryption scheme used was AES with 128-bit keys in CBC mode. The digital sig-
nature algorithm used was ECDSA, which has the benefit of adding a constant size
signature of 40 byte (considering 80-bit security). As for CP-ABE, we used the tool
developed by Bethencourt et al. (2007), which implements the CP-ABE primitives
with 80-bit security. The access policy used for the evaluation was a simple, yet ef-
fective 71 = (A AND B AND C). We used AND operators without loss of generality
since the specific Boolean operator does not affect the communication overhead.

Table 5.1 shows the communication overhead of fABElous compared to other
schemes. The No security scheme refers to sensors transmitting raw data without any

Scheme Size (bytes) Overhead
No security 120 0%
Authentication only 160 25%
“Naive” CP-ABE 1250 90 %
fABElous 192(41122") 100% — 37.5%

fonce per policy installation

Table 5.1: Transmission size comparison.

kind of protection. The Authentication only scheme refers to sensors transmitting data
authenticated by means of ECDSA. The “Naive” CP-ABE scheme refers to sensors
constantly transmitting data encrypted with CP-ABE. The fABElous communication
overhead varies with the number of executions of the data exchange procedure, and

5.4 Performance Evaluation 79

it can be expressed as:

1122+ N - 72
Overhead (%) = 11 -:—N T - 100,

where N is the number of data messages sent, 192 is the total size in bytes of each
data message, 72 is the amount of overhead in bytes of each data message, and 1122 is
the size in bytes of the CP-ABE ciphertext containing an AES key. As shown in Table
5.1, the overhead introduced by fABElous varies from 100 % to 37.5 %. The overhead
is at its maximum when N = 0, that is when no data exchange procedure has been
executed after a new policy installation procedure execution, and this means that
we exchanged only a new policy message, which is pure overhead. However, as
the number of execution of data exchange procedure grows, the communication
overhead considerably decreases down to 37.5 %.

Compared to the No security scheme, fABElous introduces an incredible amount
of communication overhead, even in its best-case scenario. However, f{ABElous grants
data integrity, data confidentiality, and fine-grained access control, which are three
features required by our use case. Compared to the Authentication only scheme, fA-
BElous introduces more than twice the amount of communication overhead, even in
its best-case scenario. However, in addition to data integrity, fABElous also grants
data confidentiality and fine-grained access control, which are two features required
by our use case. Compared to the “Naive” CP-ABE scheme, fABElous introduces
less communication overhead since the second data exchange execution (N > 2).
However, in addition to data confidentiality and fine-grained access control, fABE-
lous also grants data integrity, which is a feature required by our use case.

100 ‘
—fABElous

37.5 % reference

X 80 .
e}
48]
[«F]

f‘j 60 - |
3

40+ .

0 50 100 150 200

data message

Figure 5.5: {ABElous communication overhead.

Figure 5.5 shows how fABElous communication overhead drops with each execu-
tion of the data exchange procedure. The communication overhead asymptotically

80 fABElous

reaches 37.5 % and noticeably drops below 41 % after only 100 executions of the data
exchange procedure.

Chapter 6

Conclusions

In this Ph.D. dissertation we approached some security and privacy problems re-
lated to IoT applications.

First, we addressed the problem of data and position trustworthiness in partic-
ipatory sensing, and we proposed a low-cost approach that uses a swarm of UAVs
to securely verify devices” positions by means of received power outdoor environ-
ments. We modeled the system and ran a set of experimental evaluations. The
choice of the formation was a crucial point to make the system secure. We faced
adversaries reporting false locations, and adversaries trying to deceive the location
verification process through transmission power adaptation. Compared to state-
of-the-art solutions, which either make use of special hardware or require strict
clocks synchronization to detect attacks with high precision (false reported posi-
tions within one meter), our location verification approach achieves good results in
term of attack detection in the order of meters. By using common hardware, our
solution is intended to be easily integrated in participatory sensing applications,
where users are equipped with their smartphones.

Secondly, we proposed the use of Attribute-Based Encryption in IoI scenarios to
protect the data from unauthorized access. We proposed a secure scheme for smart
city applications in which the data is outsourced to a semi-trusted cloud server. We
addressed open challenges related to the employment of ABE in IoT, namely the high
cost of KP-ABE encryption on resource-constrained devices and the computational
burden caused by key revocation operations. In ABE-Cities, the sensing devices ex-
ecute only lightweight symmetric-key encryption, thus we can employ constrained
sensing devices such as battery-powered motes. This makes ABE-Cities suitable for
a broader set of smart city applications. Moreover, ABE-Cities takes into account the
peculiarities of a smart city, such as its street network, the geographical distribution
of the sensor network, etc., and maps them onto the underlying KP-ABE scheme in
order to gain efficiency in key revocation procedures. We proved that ABE-Cities
scales well with the number of users and the number of streets by simulating it on

81

82 Conclusions

large cities, i.e., Houston and Beijing.

Next, we extended YWRL scheme (Yuetal., 2010a) to improve its security against
the cloud server, otherwise capable of accessing the stored data under the assump-
tion that it comes in possession of a revoked key. In order to do that, the proposed
scheme splits the key revocation task on both the cloud server and the users. We
compared our scheme with the original YWRL, and we showed that the additional
costs required to protect against such threat mainly weigh on the user.

Finally, we showed how ABE can be integrated in industrial IoI systems, specifi-
cally in low-bitrate wireless sensor and actuator networks. We proposed fABElous, a
CP-ABE scheme which provides integrity, authentication, confidentiality, and access
control on data. We addressed the challenge of providing all the aforementioned
security properties while keeping the communication overhead as low as possible,
and we showed how it outperforms a system which integrates CP-ABE naively.

Appendix A

Publications

This appendix contains a list of publications in which the candidate contributed
as an author. The contribution given for each article is specified according to the
Contributor Role Taxonomy (CRediT!) taxonomy, which is reported in Table A.1
for convenience.

Journal papers

1. M. Rasori, P. Perazzo, G. Dini, “A Lightweight and Scalable Attribute-Based
Encryption System for Smart Cities”, Journal of Computer Communications, vol-
ume: 149, pages: 78-89, 2020. Candidate’s contributions: Conceptualization,
data curation, formal analysis, investigation, methodology, software, valida-
tion, visualization, writing - original draft, writing - review & editing.

Peer reviewed conference papers

2. M. Rasori, P. Perazzo, G. Dini, “A Low-Cost UAV-Based Secure Location Ver-
ification Method”, Proceedings of the 12th International Conference on Availabil-
ity, Reliability and Security, pages: 30:1-30:6, 2017. Candidate’s contributions:
Conceptualization, data curation, formal analysis, investigation, methodology,
software, validation, visualization, writing - original draft, writing - review &
editing.

3. S. Chessa, M. Girolami, F. Mavilia, G. Dini, P. Perazzo, M. Rasori, “Sensing the
Cities with Social-Aware Unmanned Aerial Vehicles”, 2017 IEEE Symposium

on Computers and Communications (ISCC), pages: 278-283, 2017. Candidate’s
contributions: Software.

4. M. Rasori, P. Perazzo, G. Dini, “ABE-Cities: An Attribute-Based Encryption
System for Smart Cities”, 2018 IEEE International Conference on Smart Computing

lht‘fps: / /www.casrai.org/credit.html

83

84 Publications

(SMARTCOMP), pages: 65-72, 2018. Candidate’s contributions: Conceptu-
alization, data curation, formal analysis, investigation, methodology, software,
validation, visualization, writing - original draft, writing - review & editing.

Workshop papers

5. M. La Manna, P. Perazzo, M. Rasori, G. Dini, “fABElous: An Attribute-Based
Scheme for Industrial Internet of Things”, 2019 IEEE International Conference
on Smart Computing (SMARTCOMP), pages: 33-38, 2019. Candidate’s contri-
butions: Visualization, writing - review & editing.

Other

6. M. Rasori, P. Perazzo, G. Dini, “Attribute-Based Encryption for Smart Cities”,
4th Italian Conference on ICT for Smart Cities And Communities (I-CiTies 2018).
Candidate’s contributions: Conceptualization, data curation, formal analy-
sis, investigation, methodology, software, validation, visualization, writing -
original draft, writing - review & editing.

85

Role

Definition

Conceptualization

Ideas; formulation or evolution of overarching research
goals and aims.

Data curation

Management activities to annotate (produce metadata),
scrub data and maintain research data (including software
code, where it is necessary for interpreting the data itself)
for initial use and later re-use.

Formal analysis

Application of statistical, mathematical, computational, or
other formal techniques to analyse or synthesize study
data.

Funding acquisition

Acquisition of the financial support for the project leading
to this publication.

Investigation Conducting a research and investigation process, specifi-
cally performing the experiments, or data/evidence collec-
tion.

Methodology Development or design of methodology; creation of mod-

els.

Project administration

Management and coordination responsibility for the re-
search activity planning and execution.

Resources

Provision of study materials, reagents, materials, patients,
laboratory samples, animals, instrumentation, computing
resources, or other analysis tools.

Software

Programming, software development; designing computer
programs; implementation of the computer code and sup-
porting algorithms; testing of existing code components.

Supervision

Oversight and leadership responsibility for the research ac-
tivity planning and execution, including mentorship exter-
nal to the core team.

Validation

Verification, whether as a part of the activity or separate,
of the overall replication/reproducibility of results/experi-
ments and other research outputs.

Visualization

Preparation, creation and/or presentation of the published
work, specifically visualization/data presentation.

Writing — original draft

Preparation, creation and/or presentation of the published
work, specifically writing the initial draft (including sub-
stantive translation).

Writing - review & editing

Preparation, creation and/or presentation of the published
work by those from the original research group, specifically
critical review, commentary or revision — including pre- or
post-publication stages.

Table A.1: Contributor Roles Taxonomy (CRediT) table.

Bibliography

Akinyele, J. A., Pagano, M. W., Green, M. D., Lehmann, C. U., Peterson, Z. N., and
Rubin, A. D. (2011). Securing electronic medical records using attribute-based
encryption on mobile devices. In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices, pages 75-86. ACM.

Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T., Moosavi, S. R., Rahmani,
A. M., and Liljeberg, P. (2016). On the feasibility of attribute-based encryption
on internet of things devices. IEEE Micro, 36(6):25-35.

Andersen,]J. B., Rappaport, T. S., and Yoshida, S. (1995). Propagation measure-
ments and models for wireless communications channels. IEEE Communications
Magazine, 33(1):42-49.

Ashton, K. et al. (2009). That ‘internet of things’ thing. RFID journal, 22(7):97-114.

Attrapadung, N., Hanaoka, G., Ogawa, K., Ohtake, G., Watanabe, H., and Yamada,
S. (2016). Attribute-based encryption for range attributes. In International Confer-
ence on Security and Cryptography for Networks, pages 42—-61. Springer.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Com-
puter networks, 54(15):2787-2805.

Baden, R., Bender, A., Spring, N., Bhattacharjee, B., and Starin, D. (2009). Persona:
an online social network with user-defined privacy. SIGCOMM Comput. Commun.
Rev., 39.

Baker, R. and Martinovic, I. (2016). Secure location verification with a mobile re-
ceiver. In Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security
and Privacy, pages 35-46. ACM.

Bethencourt, J., Sahai, A., and Waters, B. (2007). Ciphertext-policy attribute-based
encryption. In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages 321-
334. IEEE.

87

88 BIBLIOGRAPHY

Chen, F., Talanis, T., German, R., and Dressler, F. (2009). Real-time enabled IEEE
802.15. 4 sensor networks in industrial automation. In Industrial Embedded Systems,
2009. SIES’09. IEEE International Symposium on, pages 136-139. IEEE.

Coppolino, L., D’Antonio, S., Mazzeo, G., and Romano, L. (2017). Cloud secu-
rity: Emerging threats and current solutions. Computers & Electrical Engineering,
59:126-140.

Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osério, F. S., and Vargas, P. A. (2012).
The use of unmanned aerial vehicles and wireless sensor network in agricultural

applications. In 2012 IEEE International Geoscience and Remote Sensing Symposium,
pages 5045-5048. IEEE.

De Berg, M., Van Kreveld, M., Overmars, M., and Schwarzkopf, O. C. (2000). Seg-
ment trees. In Computational geometry, pages 231-237. Springer.

Di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S., and Samarati, P. (2007).
Over-encryption: management of access control evolution on outsourced data. In
Proceedings of the 33rd international conference on Very large data bases, pages 123-134.
VLDB endowment.

Ding, S., Li, C., and Li, H. (2018). A novel efficient pairing-free CP-ABE based on
elliptic curve cryptography for IoI. IEEE Access, 6:27336-27345.

Du, W., Deng, J., Han, Y. S, Chen, S., and Varshney, P. K. (2004). A key management
scheme for wireless sensor networks using deployment knowledge. In INFOCOM
2004. Twenty-third Annualjoint conference of the IEEE computer and communications
societies, volume 1. IEEE.

Farrell, S. (2018). Low-power wide area network (LPWAN) overview.

Fischer, M., Scheerhorn, A., and Tonjes, R. (2019). Using attribute-based encryption
on IoTl devices with instant key revocation. In 2019 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom Workshops), pages
126-131. IEEE.

Georgiou, O. and Raza, U. (2017). Low power wide area network analysis: Can
LoRa scale? IEEE Wireless Communications Letters, 6(2):162-165.

Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.

Girgenti, B., Perazzo, P, Vallati, C., Righetti, F., Dini, G., and Anastasi, G. (2019).
On the feasibility of attribute-based encryption on constrained IoI' devices for

smart systems. In 2019 IEEE International Conference on Smart Computing (SMART-
COMP), pages 225-232. IEEE.

BIBLIOGRAPHY 89

Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006). Attribute-based encryption
for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 89-98. ACM.

Halfond, W. G., Viegas, J., Orso, A,, et al. (2006). A classification of SQL-injection
attacks and countermeasures. In Proceedings of the IEEE International Symposium
on Secure Software Engineering, volume 1, pages 13-15. IEEE.

Hu, C,, Zhang, N., Li, H., Cheng, X., and Liao, X. (2013). Body area network secu-
rity: a fuzzy attribute-based signcryption scheme. IEEE journal on selected areas in
communications, 31(9):37-46.

Huang, Q., Wang, L., and Yang, Y. (2018). DECENT: Secure and fine-grained data
access control with policy updating for constrained IoI devices. World Wide Web,
21(1):151-167.

Hur, J. (2013). Improving security and efficiency in attribute-based data sharing.
IEEE transactions on knowledge and data engineering, 25(10):2271-2282.

Hur, J. and Noh, D. K. (2010). Attribute-based access control with efficient revo-
cation in data outsourcing systems. IEEE Transactions on Parallel and Distributed
Systems, 22(7):1214-1221.

Ibraimi, L., Asim, M., and Petkovi¢, M. (2009). Secure management of personal
health records by applying attribute-based encryption. In Wearable Micro and Nano
Technologies for Personalized Health (pHealth), 2009 6th International Workshop on,
pages 71-74. IEEE.

Jahid, S., Mittal, P., and Borisov, N. (2011). EASiER: Encryption-based access control
in social networks with efficient revocation. In Proceedings of the 6th ACM Sympo-
sium on Information, Computer and Communications Security, pages 411-415. ACM.

Kocher, P, Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S.,
Prescher, T., Schwarz, M., and Yarom, Y. (2018). Spectre attacks: Exploiting spec-
ulative execution. arXiv preprint arXiv:1801.01203.

La Manna, M., Perazzo, P., Rasori, M., and Dini, G. (2019). fABElous: An attribute-
based scheme for industrial internet of things. In 2019 IEEE International Conference
on Smart Computing (SMARTCOMP), pages 33-38. IEEE.

Latré, B., De Mil, P,, Moerman, 1., Van Dierdonck, N., Dhoedt, B., and Demeester, P.
(2005). Maximum throughput and minimum delay in IEEE 802.15.4. In Interna-
tional Conference on Mobile Ad-Hoc and Sensor Networks, pages 866-876. Springer.

90 BIBLIOGRAPHY

Li, J., Jia, C, Li, J., and Chen, X. (2012). Outsourcing encryption of attribute-based
encryption with mapreduce. In International Conference on Information and Commu-
nications Security, pages 191-201. Springer.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn,]., Mangard,
S., Kocher, P.,, Genkin, D., et al. (2018). Meltdown: Reading kernel memory from
user space. In 27th USENIX Security Symposium (USENIX Security 18), pages 973—
990.

Lounis, A., Hadjidj, A., Bouabdallah, A., and Challal, Y. (2012). Secure and scalable
cloud-based architecture for e-health wireless sensor networks. In Computer com-

munications and networks (ICCCN), 2012 21st international conference on, pages 1-7.
IEEE.

Mainetti, L., Patrono, L., and Vilei, A. (2011). Evolution of wireless sensor networks
towards the internet of things: A survey. In Software, Telecommunications and Com-
puter Networks (SoftCOM), 2011 19th International Conference on, pages 1-6. IEEE.

Ming, Y., Fan, L., Jing-Li, H., and Zhao-Li, W. (2011). An efficient attribute based
encryption scheme with revocation for outsourced data sharing control. In In-
strumentation, Measurement, Computer, Communication and Control, 2011 First Inter-
national Conference on, pages 516-520. IEEE.

Montenegro, G., Kushalnagar, N., Hui, J., and Culler, D. (2007). RFC 4944. Trans-
mission of IPv6 packets over IEEE, 802(4).

Odeluy, V., Das, A. K., Khan, M. K., Choo, K.-K. R, and Jo, M. (2017). Expressive
CP-ABE scheme for mobile devices in IoI satisfying constant-size keys and ci-
phertexts. IEEE Access, 5:3273-3283.

Ostrovsky, R., Sahai, A., and Waters, B. (2007). Attribute-based encryption with
non-monotonic access structures. In Proceedings of the 14th ACM conference on Com-
puter and communications security, pages 195-203. ACM.

Oualha, N. and Nguyen, K. T. (2016). Lightweight attribute-based encryption for
the internet of things. In Computer Communication and Networks (ICCCN), 2016
25th International Conference on, pages 1-6. IEEE.

Perazzo, P., Ariyapala, K., Conti, M., and Dini, G. (2015). The verifier bee: A path
planner for drone-based secure location verification. In World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2015 IEEE 16th International Symposium on
a, pages 1-9. IEEE.

BIBLIOGRAPHY 91

Perazzo, P, Sorbelli, F. B., Conti, M., Dini, G., and Pinotti, C. M. (2016a). Drone path
planning for secure positioning and secure position verification. IEEE Transactions
on Mobile Computing.

Perazzo, P., Taponecco, L., D’amico, A. A., and Dini, G. (2016b). Secure position-
ing in wireless sensor networks through enlargement miscontrol detection. ACM
Transactions on Sensor Networks (TOSN), 12(4):27.

Picazo-Sanchez, P.,, Tapiador, J. E., Peris-Lopez, P., and Suarez-Tangil, G. (2014). Se-
cure publish-subscribe protocols for heterogeneous medical wireless body area
networks. Sensors, 14(12):22619-22642.

Rasmussen, K., Srivastava, M., et al. (2008). Secure location verification with hidden
and mobile base stations. IEEE Transactions on Mobile Computing, 7(4):470-483.

Rasori, M., Perazzo, P., and Dini, G. (2017). A low-cost UAV-based secure location
verification method. In Proceedings of the 12th International Conference on Availabil-
ity, Reliability and Security, pages 30:1-30:6. ACM.

Rasori, M., Perazzo, P., and Dini, G. (2018). ABE-cities: An attribute-based encryp-
tion system for smart cities. In 2018 IEEE International Conference on Smart Com-
puting (SMARTCOMP), pages 65-72. IEEE.

Rasori, M., Perazzo, P, and Dini, G. (2020). A lightweight and scalable attribute-
based encryption system for smart cities. Computer Communications, 149:78-89.

Roy, S. and Chuah, M. (2009). Secure data retrieval based on ciphertext policy
attribute-based encryption (CP-ABE) system for the DTNs. Lehigh CSE Tech. Rep.

Sahai, A. and Waters, B. (2005). Fuzzy identity-based encryption. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages
457-473. Springer.

Singh, M., Rajan, M., Shivraj, V., and Balamuralidhar, P. (2015). Secure MQTT for In-
ternet of Things (IoT'). In Communication Systems and Network Technologies (CSNT),
2015 Fifth International Conference on, pages 746—751. IEEE.

Tosi, J., Taffoni, F., Santacatterina, M., Sannino, R., and Formica, D. (2017). Per-
formance evaluation of bluetooth low energy: a systematic review. Sensors,
17(12):2898.

Touati, L. and Challal, Y. (2015). Batch-based CP-ABE with attribute revocation
mechanism for the internet of things. In Computing, Networking and Communica-
tions (ICNC), 2015 International Conference on, pages 1044-1049. IEEE.

92 BIBLIOGRAPHY

Touati, L. and Challal, Y. (2016). Collaborative KP-ABE for cloud-based internet of
things applications. In Communications (ICC), 2016 IEEE International Conference
on, pages 1-7. IEEE.

Touati, L., Challal, Y., and Bouabdallah, A. (2014). C-CP-ABE: Cooperative cipher-
text policy attribute-based encryption for the internet of things. In Advanced Net-
working Distributed Systems and Applications (INDS), 2014 International Conference
on, pages 64-69. IEEE.

Capkun, S. and Hubaux, J.-P. (2006). Secure positioning in wireless networks. IEEE
Journal on Selected Areas in Communications, 24(2):221-232.

Vora, A. and Nesterenko, M. (2004). Secure location verification using radio broad-
cast. In International Conference on Principles of Distributed Systems, pages 369-383.
Springer.

Wabharte, S., Trigoni, N., and Julier, S. (2009). Coordinated search with a swarm of
UAVs. In 2009 6th IEEE Annual Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks Workshops, pages 1-3. IEEE.

Wang, G., Liu, Q., and Wu, J. (2010). Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services. In Proceedings of the 17th
ACM conference on Computer and communications security, pages 735-737. ACM.

Wang, X., Zhang, J., Schooler, E. M., and Ion, M. (2014). Performance evaluation
of attribute-based encryption: Toward data privacy in the IoT. In Communications
(ICC), 2014 IEEE International Conference on, pages 725-730. IEEE.

Waters, B. (2011). Ciphertext-policy attribute-based encryption: An expressive, ef-
ficient, and provably secure realization. In International Workshop on Public Key
Cryptography, pages 53-70. Springer.

Xu, Z. and Martin, K. M. (2012). Dynamic user revocation and key refreshing for
attribute-based encryption in cloud storage. In Trust, Security and Privacy in Com-
puting and Communications (TrustCom), 2012 IEEE 11th International Conference on,
pages 844-849. IEEE.

Yanmaz, E., Kuschnig, R., and Bettstetter, C. (2011). Channel measurements over
802.11a-based UAV-to-ground links. In GLOBECOM Workshops (GC Wkshps), 2011
IEEE, pages 1280-1284. IEEE.

Yao, X., Chen, Z., and Tian, Y. (2015). A lightweight attribute-based encryption
scheme for the internet of things. Future Generation Computer Systems, 49:104-112.

BIBLIOGRAPHY 93

Yokoyama, R. S., Kimura, B. Y. L., and dos Santos Moreira, E. (2014). Secure posi-
tioning in a UAV swarm using on-board stereo cameras. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing, pages 769-774. ACM.

Yu, S., Ren, K., and Lou, W. (2011). FDAC: Toward fine-grained distributed data
access control in wireless sensor networks. IEEE Transactions on Parallel and Dis-
tributed Systems, 22(4):673-686.

Yu, S., Wang, C., Ren, K., and Lou, W. (2010a). Achieving secure, scalable, and fine-
grained data access control in cloud computing. In Infocom, 2010 proceedings IEEE,
pages 1-9. IEEE.

Yu, S., Wang, C., Ren, K., and Lou, W. (2010b). Attribute based data sharing with
attribute revocation. In Proceedings of the 5th ACM Symposium on Information, Com-
puter and Communications Security, pages 261-270. ACM.

Zeng, Y., Cao, J., Hong, J., Zhang, S., and Xie, L. (2013). Secure localization and
location verification in wireless sensor networks: a survey. the Journal of Supercom-
puting, pages 1-17.

Zheng, Y. (2011). kpabe. https://github.com/altu341com/kpabe. (Last accessed:
1 April 2019).

Zuo, C., Shao, J., Wei, G., Xie, M., and Ji, M. (2018). CCA-secure ABE with
outsourced decryption for fog computing. Future Generation Computer Systems,
78:730-738.

https://github.com/altu341com/kpabe

	Contents
	List of Figures
	List of Tables
	Introduction
	Structure of the Dissertation

	A Low-Cost UAV-Based Secure Location Verification Method
	Related Work
	System and Adversary Models
	Experimental Evaluation

	A Lightweight and Scalable Attribute-Based Encryption System for Smart Cities
	Related Work
	Preliminaries
	ABE-Cities
	Universe of the Attributes and Access Policies
	Experimental Evaluation
	Advanced ABE-Cities
	Advanced ABE-Cities Evaluation

	Improving KP-ABE Revocation Mechanism
	Background
	Proposed Scheme
	Security Analysis
	Performance Evaluation

	fABElous: An Attribute-Based Scheme for Industrial Internet of Things
	Related Work
	Preliminaries
	Architecture
	Performance Evaluation

	Conclusions
	Publications
	Bibliography

