UNIVERSITA
DEGLI STUDI

FIRENZE

PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELLINFORMAZIONE (DINFO)

Co-simulation and
verification of Cyber-
Physical Systems using
logic models.

Maurizio Palmieri

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Co-simulation and verification of Cyber-
Physical Systems using logic models.

Maurizio Palmieri

Advisors:

Prof. Cinzia Bernardeschi

Prof. Giuseppe Anastasi

Head of the PhD Program:

Prof. Paolo Frasconi

Evaluation Committee:

Prof. Antonella Santone, Dipartimento di Bioscienze e Territorio dell’Universita’ degli
Studi del Molise

Prof. Stylianos Basagiannis, United Technologies Research Center, Ireland

XXXII ciclo — October 2020

To my family

Acknowledgments

Firstly, I would like to thank my advisors, professors Cinzia Bernardeschi and
Giuseppe Anastasi, for the precious help during my whole Ph.D. Their guidance has
been crucial for my research and my doctorate activities. I would also like to thank
my supervisors, professors Alessandro Fantechi and Gigliola Vaglini, for providing
suggestions to my research activities throughout all my Ph.D. I also valued the help
supplied by Andrea Domenici and Paolo Masci on the tools used during my Ph.D.

One of the most formative experiences has been the period spent at Aarhus Uni-
versity, where professor Peter Gorm Larsen mentored me by providing useful pieces
of advice. Ireally enjoyed and appreciated all the time he dedicated to my work, and
I really thank him for the opportunity. My time in Aarhus was nice also thanks to
the many friends I have met: Casper, Hugo, Federica, Camilla, Fotini, Daniel. Thank
you so much for the nice time spent together.

Iwould also like to thank all my office teammates at Pisa University because they
helped me enjoy every day of these three years: Michele, Gabriele, Alessandro B.,
Alessandro R., Carlo, Abdullah, Chiara, Marco, Luca, Antonio, Francesca. You are
the main reason why I am very happy to get to work every day. I also want to thank
all my friends in Pisa and Monopoli for supporting and encouraging me: Alessandro
I., Alessandro T., Nicole, Francesco B., Pierfrancesco, Billa, Marta, Michele, Bledar,
Francesco D., Fabio e Daniela.

At last, the biggest thanks go to my family, supporting me since forever.

Abstract

This thesis proposes a methodology to validate and formally verify Cyber-
Physical Systems (CPS) exploiting logic for formal models, emerging standard
technologies for co-simulation and theorem proving technology for verification.
Co-simulation enables the global simulation of a complex system by composing
the simulations of its parts, created with different tools without the need to
formalize the whole system with a formal language, which, if feasible, is a time-
consuming task. The same models of components can successively be used for
verifying properties of the whole system.

The proposed methodology also allows to build early prototypes of human-
machine interfaces based on formal methods, supporting the work of formal
methods experts in charge of analyzing safety-critical aspects of user interfaces
in CPS. Formal methods experts usually need to engage with domain experts
that may not fully understand the mathematical details of formal analysis. Co-
simulation with human-machine interfaces mitigates the barriers mentioned
above, providing a speed-up in the design phase of the CPS and improving
the validation of formal models.

The framework presented in this thesis extends an existing prototyping
toolkit, based on the Prototype Verification System (PVS), with novel func-
tionalities for automatic generation of interactive prototypes supporting the
Functional Mock-up Interface (FMI), a de-facto standard technology for co-
simulation. The architecture of the framework is presented, along with veri-
fication of fundamental aspects of its functionalities. The framework is the core
element for the integration of formal models, co-simulation and verification.
The PVS theorem prover can be used to verify safety properties of the system
under analysis.

Finally, this thesis provides a collection of case studies to show the possibil-
ities offered by the proposed methodology and the developed framework for
model-based design of CPS from different application domains.

Contents

Contents

1 Introduction

1.1 Model-based design and co-simulation
1.2 Model-based design and formal methods

1.3 Contribution
2 Related work

3 Background
3.1 Cyber-Physical Systems.

3.2 Co-simulation with standard interface

3.3 The PVS Environment
34 PVSio-web

4 Co-simulation and Verification with Logic-based models

41 LogicBased models
4.2 Architecture of a PVS-based FMU
4.3 Verification

4.4 Alternative modeling for simpleCPS

5 Framework for automatic integration of logic specification in FMI

5.1 Implementation of the framework

5.2 Verification of the functionalities of the framework

6 Case studies
6.1 Line Follower Robot
6.2 Cooperative UAVs
6.3 Integrated Clinical Environment

7 Conclusions

A An example of PVS Proof

N = W W

11
11
12
14
16

19
19
24
27
29

33
35

47
47
61
71

79

81

2 CONTENTS

B Publications 89

Bibliography 93

Chapter 1

Introduction

1.1 Model-based design and co-simulation

Model-based design is an approach to designing complex systems (Balasubrama-
nian et al., 2006; Jensen et al., 2011). It creates representations (models) of a system to
assess the characteristics and functionalities of the system throughout its life-cycle,
before a concrete implementation is built. Model-based simulation technologies ap-
plied at the early stages of system design allow developers to gain extra confidence
that the system behaves as expected (Franceschini and Macchietto, 2008). In order to
produce reliable simulations in the model-based analysis of CPS, developers need
to take into account the whole cyber-physical context, which means that software
sub-components should be studied together with physical sub-components of the
system. Traditionally, the integration is approached by simulating only one sub-
component in detail, with the proper language and tool, while simplifying the re-
maining parts (Palensky et al., 2017a).

The integration of different sub-components, each modeled and simulated with
the most appropriate tool, can be achieved with co-simulation (Gomes et al., 2018).
Co-simulation consists of the theory and techniques to enable global simulation of
a coupled system via the composition of different simulators that act as one. Each
simulator is considered as a black box capable of exhibiting behavior, consuming
inputs, and producing outputs. As a consequence, it is possible to simulate the com-
plete system without any simplification. The simulators are joined by dynamically
connecting different models using their inputs and outputs so that the output of one
simulator becomes the input of another one. The data exchange, uniform time ad-
vancement, and execution coordination are, in the most general case, orchestrated
by a master algorithm, which manages the entire co-simulation.

The simulators that compose a co-simulation need to exchange data with each
other during all the phases of the co-simulation. Various simulating tools offer sev-
eral interfaces based on proprietary application program interfaces (APIs), or trans-

3

4 Introduction

mission control protocol (TCP) socket interfaces. One interface type which is gain-
ing consensus as the standard for coupling physical models and simulators is the
Functional Mock-up Interface (FMI) (Blochwitz et al., 2012). FMI co-simulation en-
ables a compositional approach to system simulation, where each of the system’s
components is simulated by a Functional Mock-up Unit (FMU), and a co-simulation
orchestrator can be used to connect the FMUs and perform joint simulations.

1.2 Model-based design and formal methods

Formal methods technologies are mathematically-based techniques for systemati-
cally checking the properties of a model (Wing, 1990). Developers can rely on for-
mal methods within a model-based design approach to gain the confidence that a
system design satisfies given requirements.

Simulation and formal verification are complementary processes, both required
in the development of complex systems with safety-critical requirements. Formal
methods enable developers to deal with safety issues using well-proven tools of
logic and mathematics, providing strong assurance on compliance with require-
ments. On the other hand, there is the possibility to formalize wrong hypotheses
or to prove conclusions derived from wrong specification. It is also possible to pro-
duce merely wrong proofs, but the use of automatic model checking (Clarke, 1997)
or interactive theorem proving (Owre et al., 1992) mitigates this risk. Simulation
provides validation of the model at early stages of development, besides being a pro-
totyping tool supporting the design space exploration. Within a multi-disciplinary
team, the typical workflow followed by formal methods experts is as follows (see
Figure 1.1):

1. Formalization of critical system components. During this phase, the model
under analysis is written with a formal language exploiting information avail-
able in design documents or obtained by developer experience.

2. Validation of formal models. Formal methods experts share the formal model
with the rest of the team to check that it correctly represents the intended be-
havior of the model.

3. Verification of formal models. Natural language requirements are translated
into mathematical formulae, and formal methods tools are used to verify that
the formal model satisfies the formulae.

4. Validation of formal analysis results. Results of the formal verification are
shared with the other team members, to check whether the results of the veri-
fication point out real properties of the model or false positive due to approx-
imations introduced during the formalization process. If false positives are

1.2 Model-based design and formal methods 5

Formalisation of

. Validation Verification Validation of formal
critical system .
of formal models of formal models analysis results
components

Figure 1.1: Workflow typically followed by formal methods experts.

identified, the formalization may need to be revised, and the formal analysis
process iterated.

The current generation of formal methods tools provides little support for val-
idation activities. The typical output of formal methods tools is text-based, rich in
mathematical details that are not easy to understand: this creates substantial com-
munication barriers between formal methods experts and the rest of the team, and
ultimately introduces unnecessary delays in the development life-cycle.

Moreover, outside safety-critical domains, such as automotive or medical de-
vices, the use of formal verification tools is still somewhat limited. One of the rea-
sons is the steep learning curve of verification technologies, which creates an initial
cost that discourages the usage.

Model-based design including Graphic User Interface

Complex CPS, like medical devices and avionics systems, are typically developed
by a multi-disciplinary team. Consider a medical device such as a dialysis machine,
for example. The team would include (Harrison et al., 2019): domain experts, re-
sponsible for defining the characteristics and functionalities of the system; software
engineers, responsible for developing the software of the final system; clinicians, the
operators of the system; formal methods experts, responsible for verifying the the
safety claims about the critical component; human-factors specialists, responsible
for designing the human-machine interface.

When validating formal models created to analyze human-machine interaction,
a simulation of both the human-machine interface and other system components is
usually necessary. Interactive prototypes driven by formal models can be used by
formal methods experts as a means to discuss formal models and verification results
with the rest of the team, without the need to show any textual output produced by
the verification tools. The interactive prototypes resemble the visual appearance of
the system developed by the team. Simulation examples produced using the proto-
types can, therefore, be understood by all team members.

To date, the research community has devoted most of its effort to the improve-
ment of tools for the co-simulation of cyber and physical components of CPS. Less
attention has been dedicated to developing tool support to assess the design of the
Human-Machine Interface (HMI) using co-simulation technologies, even though
human-CPS interaction is often a relevant aspect of the system, e.g., see the acci-

6 Introduction

dents involving self-driving cars (CNNNews, 2018b,a), where the design of the car
dashboard exceeded the driver’s abilities to take over control in case of emergency.

1.3 Contribution

This thesis is concerned with the use of formal methods technologies in the model-
based design of Cyber-Physical Systems (CPS). The main contribution consists of
the development of a methodology and a framework for model-based design of CPS
that allow:

¢ the construction of executable formal models in the logic language of the Pro-
totype Verification System (PVS), exported as FMU.

¢ the use of co-simulation technologies to create an integrated simulation with
interactive prototypes based on the logical models and connected with other
components generated by other modeling tools.

¢ the application of the interactive theorem prover of PVS on the formal models
to build proofs of safety properties.

More specifically, a template for writing executable logic PVS models is described,
along with possible extensions to cope with different CPS domains.

The framework allows the automatic creation of a PVS-based FMU that can com-
municate with a graphic user interface during a co-simulation, allowing the human-
in-the-loop co-simulation. Proofs of the correctness of the generated FMUs are pro-
vided, as well.

Finally, the methodology and the framework are applied to some case studies: an
Unmanned Aerial Vehicles (UAVs) coordination protocol, a semi-autonomous vehi-
cle with a user interface for remote control and an Integrated Clinical Environment
(ICE) of medical devices simulated together with a formal model of the patient. The
framework can be download from GitHub'.

This thesis is organized as follows: Chapter 2 reports related works on CPSs, co-
simulation, formal methods and HMI; Chapter 3 reports notions on the tools and
the formalisms used in this thesis; Chapter 4 describes the proposed methodology
for producing executable PVS theories and for creating a PVS-based FMU; Chapter 5
shows details on the implementation of the proposed framework and proofs of its
behavior; Chapter 6 contains three case studies where the proposed methodology
is applied and Chapter 7 contains the conclusions. Finally, Appendix A provides an
example usage of the PVS theorem prover for one of the case studies.

Inttps://github.com/mapalmieri/pvsio-web

https://github.com/mapalmieri/pvsio-web

Chapter 2

Related work

Significant work has been done over the last decade on developing tools for co-
simulation of CPS — see (Gomes et al., 2018) for a detailed survey. Many works focus
on hardware, software, and physical aspects of the system but not much attention
has been dedicated to the analysis of aspects related to human-machine interfaces,
even though the impact of potential design issues in the user interface of a system
is a well-known problem (Leveson, 2011; Thimbleby, 2010).

Approaches like HybridSim (Wang and Baras, 2013) investigates whether a sin-
gle specification formalism could be used for modeling both continuous and dis-
crete time components of the systems. Others take the other way around and
adopt heterogeneous co-simulation with customized solutions. An example is
ForSyDe (Sander and Jantsch, 2004), a tool that is based on the concept of Model
of Computation (Goderis et al., 2007). Another example is OpenICE (Arney et al.,
2012), a publish-subscribe middleware specifically addressed for medical devices.
In (Bernardeschi et al., 2018; Masci et al., 2014b), a co-simulation framework is devel-
oped that integrates PVS (Owre et al., 1992) and Simulink. All these works provide
ad-hoc solutions for specific tools and cases.

A more general approach to co-simulation is explored in (Palensky et al., 2017b),
where the Functional Mockup Interface (FMI) standard (Blochwitz et al., 2012) is
adopted for synchronization of different subsystem models. Similarly, in (Palensky
etal., 2017a), FMI co-simulation is used for the analysis of intelligent power systems,
and in (Couto et al., 2018), for an air-conditioning system. Works on formalizing
models and proofs for FMI-based co-simulation has been carried out in (Zeyda etal.,
2018) using Isabelle /UTP in a case study from the railways’ domain. In (Chaudemar
et al., 2014), a proof-of-concept co-simulation is performed between Ptolemy II and
Rodin, using Event-B for formal verification in the aeronautic field.

Additional related work includes the usage of formal methods for the analy-
sis of CPS. In this respect, KeYmaera X (Fulton et al., 2015) is a theorem prover
for differential dynamic logic. It has been applied successfully for analyzing au-

7

8 Related work

tomotive, avionics and medical CPS. PVS (Owre et al., 1992) has been used in many
domains: (Mufioz et al., 2015) to formally specify and verify a detect-and-avoid al-
gorithm intended to support the integration of Unmanned Aircraft Systems into
civil airspace, (Bernardeschi and Domenici, 2016) to verify the property of a water
tank control system, (Bernardeschi et al., 2018) to verify the determinism of the con-
trol algorithm of a pacemaker, and (Son and Seong, 2003) to verify a safety-critical
software for a nuclear power plant protection system. A different branch of formal
analysis techniques is based on model checking (Clarke, 1997). Hybrid model check-
ing, which relies on the formalism of Hybrid Automata (Henzinger, 1996), is used
for the analysis of CPS. Many hybrid model checking tools have been developed
in the literature: HYTECH (Henzinger et al., 1997) which is used to analyze linear
hybrid automata, d/dt (Asarin et al., 2002) which is suited to analyze linear con-
tinuous dynamics with uncertainties in the inputs, HYCOMP (Cimatti et al., 2015)
which is based on Satisfiability Modulo Theories (De Moura and Bjerner, 2011), and
SPACEEX (Frehse et al., 2011) which has been used to successfully verify a helicopter
control algorithm. These are just few examples of model checking tools.

Many tools for model-based design of user interfaces have been recently devel-
oped. SCR (Heitmeyer et al., 1998), for example, supports prototyping and analysis
of interactive systems. MARIA (Paterno et al., 2009) and EOFM (Bolton et al., 2011)
are specialized for modeling user tasks, and IVY (Campos and Harrison, 2009) is
dedicated to formal verification of usability properties, but they all lack features for
developing prototypes of graphic user interfaces. Work on co-simulation applied to
human-in-the-loop experiments has been carried out in (Pedersen et al., 2017). An
example is developed that integrates an interactive simulation of a user interface
with hardware and software components. Their objective is to assess the impor-
tance of integrating human-machine interface design in the development process.
In (Nagele and Hooman, 2017), a co-simulation framework is presented that builds
on the High-Level Architecture (HLA) and the FMI interface. HLA is a standard for
distributed simulations. The main focus of their work is to explore the integration of
HLA and FMI-based simulations. Human-in-the-loop capabilities are explored to a
certain extent in the presented case study, where a simple user interface is developed
for operating and monitoring a thermostat. The automatic generation of interactive
prototypes is out of scope. Others have also used HLA as a co-simulation engine
for FMI-based co-simulations. As noted in (Garro and Falcone, 2015), however, us-
ing HLA brings several challenges, as the HLA standard uses different assumptions
on the nature of the mechanisms for time synchronization and data exchange. The
framework developed in (Masci et al., 2015a) uses a middleware (SAPERE (Zam-
bonelli et al., 2015)) as co-simulation engine for connecting many PVSio-web proto-

types.
The methodology proposed in this thesis differs from these related works in that

it aims to supports co-simulation of HMI interactive prototypes generated by logic
specifications. Moreover, formal proofs conducted by the PVS theorem prover can
be validated against the results of the co-simulation. The framework described in
this thesis allows integration of PVSio-web prototypes with other FMI-compliant
components developed with other tools. For example, as it will be shown in Chap-
ter 6, PVSio-web prototypes can be joint with OpenModelica models capturing the
physical aspects of the system.

Chapter 3

Background

This chapter provides background notions on cyber-physical systems and on how
standard co-simulation can be used to facilitate their design, as well as details on
the logic formalism used in this thesis: the formal specification language of the Pro-
totype Verification System, with the associated theorem prover and prototyping en-
vironment PVSio-web.

3.1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) are systems integrating computation with physical
processes. Embedded components handle the software part of the physical pro-
cesses, usually with feedback loops where physical variables affect software evalua-
tion and vice versa. CPSs are inherently complex due to the necessary combination
of the cyber and physical worlds, which have different time management. The engi-
neering of reliable CPSs requires compositional modeling and analysis techniques
that deal with requirements belonging to different domains (e.g., physics, software,
chemistry, biology). Within each of these domains, there are many different mod-
eling issues, some of them shared among multiple domains. For example, software
models can be synchronous or asynchronous; the physical world is composed of
co-existing physical dynamics in a time continuum; and the system may have to
conform to several different regulatory constraints. Solving these diverse concerns,
ensuring interoperability and providing reliable communication among these com-
ponents is one of the most relevant scientific problem as it involves different commu-
nities . There are considerable challenges, mainly because the physical components
of such systems introduce safety and reliability requirements qualitatively different
from those in the software ones.

As an example, the autonomous vehicle shown in Figure 3.1 is a simple CPS:
a single-axle vehicle, which moves at a constant speed and whose turning speed
can be controlled. The controller must be able to steer the vehicle until it reaches

11

12 Background

Figure 3.1: Example of a simple autonomous vehicle.

its assigned target. Model-based design of CPS allows us to analyze the system
behavior before a physical prototype of the system is built. Simulation is one of the
techniques that are usually applied together with testing in the analysis of systems
behaviors: an abstract model of a CPS, expressed in some modeling language such
as Simulink or Modelica is executed. Figure 3.2 shows a Simulink blackbox model
of the vehicle’s kinematics and controller.

y.0 kinematics L

psi_c

X controller

psi omega omega psi

Scope

Figure 3.2: Example of a simple CPS.

Applications of CPS have a huge impact on the most recently developed tech-
nologies. They include integrated clinical environments, assisted living, traffic regu-
lation, autonomous automotive systems, data mining from sensor networks, avion-
ics, critical infrastructure control (nuclear plants, water resources, and communi-
cations systems for example), distributed robotics (telepresence and telemedicine),
defense systems, advanced manufacturing, and smart cities.

3.2 Co-simulation with standard interface

CPS specification and simulation must deal with the interactions among the
continuous- and discrete-time components that are better modeled with different

3.2 Co-simulation with standard interface 13

OpB4Es

FMU oo FMU

FMU FMU
CO-SIMULATION

ENGINE

Figure 3.3: FMI co-simulation structure.

mathematical formalisms, and require different simulation tools. For these reasons,
co-simulation is a promising approach, as it consists of the coordinated and dis-
tributed execution of different simulators.

Co-simulation can be used to study the behavior of the complete CPS. The Func-
tional Mockup Interface (FMI) (Blochwitz et al., 2012) is a tool-independent standard
for the co-simulation of dynamic systems. The main elements of an FMI compliant
co-simulation are the Functional Mockup Units (FMUs), each responsible for simulat-
ing a single model in the particular formalism and execution environment used to
create the model. An FMU may carry a whole simulation environment (tool wrap-
per FMU), or just information needed by an FMI-compliant host environment to
simulate the model contained in the FMU (standalone FMU). The FMUs are orches-
trated by a master algorithm, in charge of exchanging consistent data among the
FMUs. An example of FMI co-simulation is shown in Figure 3.3 where two FMUs
are designed with different tools (Simulink and PVS).

An FMI-compliant host environment provides a master algorithm that orches-
trates the execution of other FMUs acting as slaves. Figure 3.4 shows the typical exe-
cution pattern of an FMI-based co-simulation. Orchestration is obtained through a
set of standard APIs, which include: initialization functions; functions for data ex-
change, such as getters and setters; and a function fmi2DoStep that triggers the exe-
cution of one simulation step. Getters and setters are in the form fmi2Get<TYPE>
and fmi2Set<TYPE>, where <TYPE> is a concrete type name, e.g., Integer or Real.
Functions fmi2Get and fmi2Set are executed at the end of each co-simulation step,
as soon as fmi2Dostep completes.

The interest of industry in the FMI standard has increased steadily in recent
years. Many tools support FMI, including Simulink, OpenModelica, Ptolemyll,
CATIA, and IBM Rational Rhapsody. In the automotive field, MODELISAR (Abel

14 Background

SLAVE MASTER SLAVE

fmi2Instantiate() fmi2Instantiate()
i >

_ fmi2SetupExperiment() fmi2SetupExperiment()

E;-'ew = fmi2Dostep() fmi2Dostep() o

ste + >
fmi2GetXXX() fmi2GetXXX()

""" fmi2SetXxx() fmi2SetxXx) >
fmi2Terminate() fmi2Terminate()

_ fmi2Freelnstance() fmi2Freelnstance()

Figure 3.4: FMI execution pattern (master-side).

et al., 2012) uses FMI for model exchanges and supports the AUTOSAR standard;
ACOSAR (Krammer et al., 2016) (Advanced Co-simulation Open System Architec-
ture) intends to use FMI for developing Advanced Co-simulation Interface (ACI) for
RT-System integration.

INTO-CPS (Larsen et al., 2016) is an example host environment that supports
the FMI standard. Case studies in the field of railways, automotive, buildings, and
agriculture demonstrate the benefits of the integration of tools and co-simulation
technology in industrial settings. Using co-simulation, developers can create pro-
totypes suitable to validate hypotheses embedded in the models and analyze the
global behavior in the early stage of design, thus reducing development time, de-
sign errors, and costs (Thule et al., 2019).

3.3 The PVS Environment

The Prototype Verification System (PVS) (Owre et al., 1992) is an interactive theorem-
proving environment whose users can define theories in a higher-order logic lan-
guage and prove theorems with respect to them.

The PVS specification language provides basic types, such as booleans, naturals,
integers, reals, and others, and type constructors to define more complex types. The
mathematical properties of each type are defined axiomatically in a set of funda-
mental theories, called the prelude. Among the complex types, the ones used in this
thesis are record types and predicate subtypes.

A record is a tuple whose elements are referred to by their respective field name.
For example, given the declarations:

3.3 The PVS Environment 15

wheels: TYPE = [#
left: Speed,
right: Speed #]
axle: wheels =
(# left := 1.0, right := 2.0 #)

axle is an instance of type wheels and the expressions 1eft (axle) and right (axle)
denote the speeds of the left and right wheels of axle, respectively. Equivalent no-
tations are axle‘left and axle‘right.

The overriding operator :=in a WITH expression redefines record fields. With the
declarations above, the expression

axle WITH [left := -1.0]

denotes the record value (#-1.0, 2.0#).
An example of predicate subtype is the following:

LightSensorReading: TYPE =
{ x: nonneg_real | x <= 255 }

which represents the real numbers in the [0,255] interval.
Function declarations are in the form

foo(x: T1): T2

where foo is the function name, x is a function argument, of type T1, and T2 is the
function return type.

The PVS syntax includes the well-known logical connectives and quantifiers, be-
sides some constructs similar to the conditional statements of imperative languages.
These constructs are the IF ... ENDIF expression and the COND ... ENDCOND
expression. The latter is a many-way switch composed of clauses of the form
condition — expression where all conditions must be mutually exclusive and cover
all possible combinations of their truth values (an ELSE clause provides a catch-all).
The PVS type checker ensures that these constraints are satisfied.

Definitions within a given theory may refer to definitions from other theories.
This makes it possible to build complex system specifications in a modular and in-
cremental way.

The PVS environment includes the NASALIB theory libraries (Dutertre, 1996)
providing axioms and theorems addressing many topics in mathematics, includ-
ing real number analysis, and it can be applied to model both the discrete and the
continuous part of the system.

The PVS theorem prover is based on the sequent calculus (Owre et al., 1995).
The structure of a sequent is in the following form, where the turnstile symbol *| --’
separates the antecedent formulae above it from the consequents below.

16 Background

A sequent is proved if (i) any consequent B; is true, or (ii) any antecedent A;
is false, or (iii) any formula occurs both as an antecedent and as a consequent. The
proof of a sequent consists of applying various inference rules until one of the above
sequent forms is obtained. A formula to be proved is represented as a sequent with-
out antecedents.

The language of PVS is purely declarative, but its PVSio extension (Mufioz, 2003)
can translate PVS function definitions into Lisp code so that a PVS expression de-
noting a function application with fully instantiated arguments can be interpreted
as an imperative function call. The PVSio extension includes input/output func-
tions allowing the system prototype to interact with the user and the computing
environment. Moreover, MISRA C code can be automatically generated from PVS
theories for automata (Masci et al., 2014b; Mauro et al., 2017), using the PVSio-web
tool-set (Oladimeji et al., 2013).

3.4 PVSio-web

PVSio-web (Masci et al., 2015b) is a toolkit for prototyping and analysis of interactive
(human-machine) systems. Using the toolkit, developers can create interactive sim-
ulations that closely resemble the visual appearance of a real system. An example
prototype of a medical device is shown in Figure 3.5.

PVSio-web prototypes consist of two parts: a back-end that executes a formal
model defining the behavior of the prototype, a front-end that defines the visual
appearance of the prototype.

Formal back-end. The back-end of a PVSio-web prototype defines the behavior of the
system, including how the prototype reacts to user actions and other system events.
PVSio-web provides a graphical editor for defining such behavior in a user-friendly
way: the Emuchart editor. Emucharts are state-machine diagrams containing the
following elements:

¢ a collection of different operational modes in which the system operates,
* a collection of all the possible transitions among the modes,

¢ a collection of all the variables of the system.

3.4 PVSio-web 17

Figure 3.5: Example prototype created with PVSio-web.

This diagram can be automatically translated into different formalisms, including
PVS, MISRA C, Java, VDM-SL, and many more. Ultimately, the back-end uses the
PVSio (Mufioz, 2003) evaluation environment to compute the evolution of the pro-
totype, exploiting the automatic PVS generation from Emuchart.

The evolution of a PVSio-web prototype is specified using transition functions,
i.e., functions that accept one argument, representing the current state of the proto-
type, and return a new state of the prototype. The state of the prototype is modeled
as a record type, where each record represents a variable of the prototype. The state
is enriched with two new records that are used to store the current and the previous
modes of the prototype.

Graphical front-end. The front-end is responsible for rendering the visual appear-
ance of the prototype and handling events associated with user actions. If available,
a picture of the real system is typically used as a basis to create the visual appear-
ance of the prototype, and a set of widgets provided by PVSio-web allows developers
to transform the static picture into an interactive simulation. The front-end is exe-
cuted in a Web browser. Web technologies (HTML5 & JavaScript) are used to create
hot-spot areas over the picture and link these areas to functions defined in the back-
end. Input widgets are linked with functions representing user actions over user
interface elements (e.g., buttons, sliders). The state attributes that are visible on the
user interface of the system are rendered in the displays of the prototype, to repro-
duce the real system. Example prototypes developed with PVSio-web can be found
in (Masci et al., 2014a; Bernardeschi et al., 2019) and in training material developed

for end users!.

Ihttps://www.youtube . com/watch?v=TOQmUeObwL8

https://www.youtube.com/watch?v=T0QmUe0bwL8

Chapter 4

Co-simulation and Verification with
Logic-based models

This thesis proposes an approach to include a PVS executable theory into a co-
simulation. The PVS-based FMU is a relevant and characterizing aspect of the pro-
posed approach, as it makes it possible to use the same logic specification for simula-
tion and formal verification. The proposed approach is divided into two processes:
on one side, the PVS theory is used to verify properties of the modeled component,
and on the other side, co-simulation is used to validate the same theory against
other components of the system. Figure 4.1 explains the approach: if both pro-
cesses end up with success, the output is a verified and validated PVS theory. If one
of the two processes fails, then the PVS theory needs improvement, and both pro-
cesses produce materials that can be used to guide the refinement process. When
the improvement is complete, since it has modified the theory, both processes must
be executed again. Finally the theorem prover can be used to prove properties of
the whole system by building abstract models in PVS for the components described
with other languages. These abstract models must retain enough information to
guarantee the correctness of the properties under analysis.

4.1 Logic Based models

An executable PVS theory must be specified according to the schematic example
shown in Listing 4.1, where:

* robot_th is the name of the theory.

* State is a record field with all the variables (inputs, outputs, locals, and pa-
rameters) representing the state of the component.

e init_state is the initial state.

19

20 Co-simulation and Verification with Logic-based models

Use
counter-example
to improve theo:

Formal verification

Formalize Use theorem
properties prover

Proved
properties

PVS
theory

Validation through
Co-simulation

Valid theory

Use data to
improve the
theo

Run co-
simulation and
collect data

Create FMU

Figure 4.1: Proposed approach for the PVS-based process.

* tick is the transition function that takes as argument the current state and
returns a new state where the outputs and local variables are possibly changed.
In the new state the input variables are unchanged.

Input and output variables are used for communications with other components
(in our specific case other FMUs). Generally, in order to take into account the simu-
lation time, the state of the theory is enriched with a variable time thatis updated by
the tick function. The skeleton of the theory is intended to model a simple robotic
vehicle. This theory can be easily extended to include additional data and function-
alities to cope with different applications.

Extension for semi-autonomous control

If the theory above describes a vehicle with autonomous control, such theory can
be extended to model also a manual control mode of the vehicle, obtaining a mixed-
mode control. In the mixed-mode control theory, State is composed of the original
variables of the autonomous control, optional variables needed for manual control,
and a variable that stores the current control mode. A skeleton of this extension
is shown in Listing 4.2 where function tick checks control_mode to determine the
current control mode. When the current mode is MANUAL the tick function does not
modify the state, as other case-specific functions will change the state according to
the action performed by the user (e.g., a function for accelerating the robot). An
example of manual control function is shown in Section 6.1.

4.1 Logic Based models

1 robot_th: THEORY

2 BEGIN

3

4 % state of the component

5 State: TYPE [#

6 %inputs. ..

7 loutputs. ..

8 %local variables...
9 /parameters. ..

10 %time ... #]

11

12 % initial state of the compomnent

13 init_state: State = (#

14 %inputs. ..
15 %outputs. ..
16 %local variables...
17 %parameters. ..
18 %time ... #)
19

20 % transition function

21 tick(st: State): State =

22 st WITH [

23 %local variables...
24 %outputs...

25 %time...]

26 END robot_th

Listing 4.1: Schema of an executable theory.

semi_autonomous_robot_th: THEORY

1

2 BEGIN

3 ControlMode : TYPE = {AUTO, MANUAL}

4 State: TYPE [#

5 % variables of the original state

6 % optional variables for manual control
8 control_mode : ControlMode

9 #]

11 Ycase-specific functions for manual control
12 accelerate(st : State) : State = % omitted

14 tick(st: State): State =

15 IF st‘control_mode = AUTO THEN

16 % original automatic algorithm
17 ELSE

18 st WITH [

19 % only the time advancement

20]

21 END semi_autonomous_robot_th

Listing 4.2: Schema of semi-autonomous control.

22 Co-simulation and Verification with Logic-based models

I fault_analysis_th: THEORY
2 BEGIN

3 IMPORTING robot_th

4

5

% state of the component

6 ext_State: TYPE [#
7 original_state : State,
3 stepcounter : int,

9 clockS : int,
10 clockA : int #]

13 % sensor_fault and actuator_fault implement the failing behaviors
14 sensor_fault(st: ext_State): ext_State = ... % omitted
15 actuator_fault(st: ext_State): ext_State = ... % omitted

16
17 % transition function
18 ext_tick(st: ext_State): ext_State =

19 LET stl = sensor_fault(st),

20 st2 = stl WITH (

21 original_state := tick(stl‘original_state),
22 stepcounter := stepcounter+1)

23 IN actuator_fault(st2)

24 END fault_analysis_th

Listing 4.3: Schema of fault analysis extension.

Extension for fault analysis

CPSs are often safety-critical systems, and the analysis of the behavior of the system
in case of faults to sensors and actuators is of main concern. The template provided
in this thesis can be extended in a modular way by (i) defining a function that de-
scribes the effects of the fault on the component state and (ii) by adding variables
to the state for recording the number of current co-simulation step and for model-
ing the step at which the fault occurs. In particular, in case of transient faults, these
variables are similar to clocks that can be reset or increased at each co-simulation
step. Since faults to sensors affect the inputs to the controller and faults to actuators
affect its outputs, the extended version of the tick function first passes the current
state to the function modeling sensor faults, and then the resulting state is passed to
the original tick function, which computes another state that is further transformed
by the function modeling actuator faults, as shown in Listing 4.3.

In the theory shown in Listing 4.3, sensor_fault and actuator_fault functions
model the effect of faults, stepcounter stores the co-simulation step and clocks
and clockA identify the step at which the sensor or the actuator becomes perma-
nently faulty. These variables are tested in the sensor_fault and actuator_fault
functions, respectively. According to the type of analysis carried on, one of the two
functions sensor_fault and actuator_fault can be omitted. This kind of exten-
sion will be further investigated in the case study of the Line Follower Robot with
different policies of fault occurrences.

4.1 Logic Based models 23

1 coordination_th: THEORY

BEGIN

% the state of the coordination component contains timesteps and
coordination_rate

4 7% the coordination_algorithm function implements the specific algorithm

W N

6 tick(st: State): State =

7 COND

8 st ‘timesteps >= st‘coordination_rate ->

9 st WITH [

10 outputs := coordination_algorithm(st),
11 timesteps := 0

12]

13 st ‘timesteps < st‘coordination_rate ->

14 st WITH [

15 timesteps := st‘timesteps+1

16]
17 END coordination_th

Listing 4.4: Tick function for coordination algorithms.

Modeling multi-agent coordination

The same schema for the executable PVS theory in Listing 4.1 can be adapted to
model multi-agent coordination algorithms. When modeling cooperative CPS the
coordination protocol, one for each agent, can be modeled as a PVS theory that (i)
interacts with the agent component possibly modeled with another tool and (ii) in-
teracts with the coordination theory of other agent.

Figure 4.2 shows an example in which multiple agents cooperate to accomplish
their task. Generally, the exchange of information for coordination has a slower rate
than the data exchange between the coordination part and the controller part of
the single agent. To implement this different rate, a possible skeleton of the PVS
transition function tick is shown in Listing 4.4, where coordination_rate is the
number of steps between two synchronizations of coordination components and
timesteps counts the number of steps since the last synchronization.

i |Coordination >
i | Algorithm < <

A ! : X ! : A

> Coordination Coordination
| Algorithm < M Algorithm

Figure 4.2: Example of general coordination approach.

This kind of extension will be further investigated in the case study of the swarm
of UAVs.

24 Co-simulation and Verification with Logic-based models

4.2 Architecture of a PVS-based FMU

User Interface

JS JS image Js Js
output | OO0 output input [00O | input
widget widget | Of the prototype widget widget

reE xeggttlgfna Websocket Result
qu : communications u
user action
""""""""""" . PVS-based —_——
FMU Process for

execution of
user actions

\ GUI process)

Process for

execution of
FMI steps

FMI process)

Execution
FMI
request of an >~ communications Result
FMI function

Co-Simulation Master

Figure 4.3: Structure of a single FMU.

A diagram representing the structure of a single FMU is shown in Figure 4.3.
This structure also includes elements for the management of user action that will be
explained in the following. Communication between the co-simulation master and
the FMU builds on the standard APIs defined in the FMI standard. Communication
between the FMU and the PVSio process is carried out using standard Unix pipes.

The FMU performs a co-simulation step when the master algorithm invokes
fmi2DoStep. A state variable PVS state is used in the FMU to store the state of
the PVS model. This is necessary because the native PVSio environment is state-less
— it only provides an interactive command line for evaluating PVS expressions. The
state of the FMU and the PVSio execution environment represent shared resources
for FMI process and GUI process. A locking mechanism is used to guarantee mu-
tual exclusion. Exclusive locks of the pthread standard library are used. A watchdog
mechanism is implemented to guarantee that locks are released within a given time.

Following the FMI standard, variables of the FMUs are stored in buffers. The
FMU bulffers are accessed by the master algorithm at the end of each co-simulation

4.2 Architecture of a PVS-based FMU 25

step, using fmi2Get () and fmi2Set (). Information in the PVS state is used to up-
date the FMU buffers at each co-simulation step.

The master algorithm periodically calls functions of the FMU to advance the co-
simulation. The communication pattern for exchanging commands and data be-
tween the FMU and the master algorithm is as follows:

1. The master algorithm calls fmi2DoStep() to trigger the execution of a co-
simulation step in the FMU;

2. fmi2DoStep() waits for permission to access the shared elements of the FMU
in mutual exclusion;

3. fmi2DoStep() copies the values of the input variables from the buffers to the
PVS state;

4. Using the pipes connected to PVSio, function fmi2DoStep() evaluates the
time-advancing function defined in the PVS model. The current value of the
PVS state is passed as argument to the function. The value returned by the
PVSio process is used to update the PVS state;

5. fmi2DoStep() copies the values of the output variables from the PVS state to
the buffers;

6. fmi2DoStep() releases the permission to access shared elements of the FMU
and terminates;

7. The master algorithm calls fmi2Get () and fmi2Set () in sequence, to acquire
the new values of the output variables and update the value of input variables
in the FMUs.

Co-Simulation including Graphic User Interfaces

A diagram representing the overall co-simulation architecture is shown in Fig-
ure 4.4. The FMUs of PVSio-web prototypes encapsulate the back-end modules
defining the behavior of the prototypes. Modules responsible for the visual ap-
pearance of the prototypes are external to the FMUs; they communicate only with
the FMU and do not interact directly with the co-simulation engine. This design
choice promotes a modular architecture and enables hot-swapping of different look
and feel of the prototype without restarting the co-simulation. This is useful dur-
ing system development, e.g., when exploring different design alternatives for the
human-machine interface of the prototype.

User actions are performed when the user interacts with the front-end of the
prototype. User actions and co-simulation steps are handled with concurrent pro-

26 Co-simulation and Verification with Logic-based models

WEB
BROWSER Interface Interface
HTML and HTML and
JS module JS module
1 1
T |
1 1
!]
1 1
FMI CONTEXT : '
1
1 1
FMU FMU
FMU rer FMU from PVSio-web| """ |from PVSio-web
A A A
A 4 A 4 Y A 4
CO-SIMULATION MASTER

Figure 4.4: Co-simulation with FMUs of PVSio-web prototypes.

cesses: FMI process is for co-simulation steps, and GUI process is for user actions.
Both processes use the PVSio environment to compute a new state of the prototype.

To enhance the flexibility of the FMUs generated by the framework, the set of
input buffers of the FMU is extended with additional variables, named external vari-
ables. These variables store information exported by other FMUs that should be
rendered on the front-end of the prototype but is not necessary for the PVS model.
External variables are updated by the master algorithm with fmi2Set () when the
standard set of FMU variables is also updated. Two examples of external variables
are the x and y coordinates of the line follower robot (see Section 6.1), as they are
produced by the plant FMU but the PVSio-web prototypes needs them to render the
movement of the robot.

Communication between FMU and the user interface

Communication between the FMU and the user interface of the prototype is event-
based. When the user performs an action on an input widget of the interface of the
prototype, a JavaScript module executed on the front-end of the prototype sends
a message to the FMU with information about the action that has been performed
(e.g., button up clicked). The FMU computes the necessary state updates and sends
the new state to the front-end. When the front-end receives the new state, it updates
the output widgets so that the visual aspect of the front-end correctly mirrors the
new state of the prototype. Besides events generated by user actions, an automatic
event refresh is periodically sent by the front-end to the FMU, to ensure that feed-
back on the user interface is not stale (this may happen, e.g., when user actions are
not performed for a period of time and co-simulation events change the state of the

4.3 Verification 27

prototype during this period).
The communication pattern below is followed for handling communication be-
tween the FMU with the front-end of the prototype:

1. Upon receiving an event from the front-end, wait for permission to access the
shared elements of the FMU in mutual exclusion;

2. If the event is a user action, evaluate the function associated with the user ac-
tion (e.g., click_up). The argument of the function is the current state of the
prototype. The evaluation result is the new state of the prototype after execut-
ing the action. If the event is a simple refresh it means that there is no user
action to perform.

3. Create a message to be sent to the front-end of the prototype. The message
contains the new state of the prototype (plus external variables received from
other FMUs, if they are used in the co-simulation);

4. Release mutual exclusion;
5. Send the state update to the front-end.

It is important to note that user actions do not change the FMI buffers — these buffers
can be updated only by fmi2DoStep when the master algorithm triggers the execu-
tion of a co-simulation step.

A convention is used for advancing time in the PVS specification: time is ad-
vanced by a specific function (tick in our model) that can be invoked only by the
master algorithm. All other functions, including those representing user actions,
model instantaneous changes in the system state. This is necessary to ensure the
correct time synchronization between FMUs.

4.3 Verification

Formal proofs can be used to verify the critical properties of the model under anal-
ysis. In particular, the formalization of properties involves translating the formula-
tion of the property given in natural language text into a formula that captures the
intended meaning of the property. Once generic concepts defined in the property
and concrete behaviors of the modeled component are linked, the property can be
written into logic expressions using the PVS language. The property can then be
checked by writing a PVS theorem that represents the property.

In particular, an invariant is a property that must hold for all states of all possible
execution traces. An execution trace of the system is a sequence of states that starts
with an initial state on which the state-transition function is iteratively applied to

28 Co-simulation and Verification with Logic-based models

generate subsequent states. The following function kth_step can be used to define
all sequences of states given by all possible executions:

kth_step(K: nat): RECURSIVE State =
IF (K = 0) THEN init_state
ELSE tick(kth_step(K-1))
ENDIF
MEASURE K

Function kth_step takes parameter K and recursively applies K steps of the state-
transition function tick. In PVS, the termination of the recursion has to be demon-
strated, and the MEASURE part provides such information to the type checker and
prover. Since tick does not change the input variables, the theorem prover consid-
ers that the inputs variables can have any possible value after its invocation; there-
fore, the invariants are proved against all possible inputs. Co-simulation provides
means to choose which property is worth proving.

Function kth_step is convenient when proving invariants since it allows build-
ing the proof by induction on the length of the trace. For instance, the theorem TH1
below represents the proof of an invariant P while the theorem TH2 represents the
proof of the same invariant starting from a specific step S: The theorem prover of
PVS provides support for different induction schemes, e.g., classical induction, or
structural induction on graphs and paths.

TH1: THEOREM
FORALL(K: nat):
P((kth_step(X))

N: above(1)

TH2: THEOREM
FORALL(K: above(S+N)):
P((kth_step(X))

Another possible strategy for properties formalization is the following:

TH3: THEOREM
FORALL(st: State):
P((tick(st))

4.4 Alternative modeling for simple CPS 29

which can be used to prove a property of the state after the tick function. Us-
ing the FORALL statement implies that the property must hold for every possible
combination of outputs, inputs, and parameters. Users can add constraints to the
elements of the state; for example, an alternative to the previous theorem schema is
the following:

TH3v1: THEOREM
FORALL(st: State):
st’parameterl < 5 IMPLIES P((tick(st))

which will prove the property P only for the states with parameter1 less than 5.
The same constraint is applicable to TH1 or TH2. Co-simulation provides means to
assess the behavior of the whole system when the constraint is met.

Abstract model of the plant

Users can enable the verification of the whole system (the plant and the controller)
by expressing the plant model as another executable PVS theory, usually a high-level
representation of the plant. The high-level representation of the plant must contain
enough details to keep the difference between the original and the abstract systems
below an acceptance threshold of tolerance for the properties.

Co-simulation provides a means to assess this difference, as the high-level repre-
sentation of the plant is an executable theory and, therefore, can replace the detailed
model of the plant. The traces of the co-simulation with the original plant and the
one with the high-level representation can be compared to assess the difference in
the same environment. Further details will be provided in the Line Follower Robot
case study.

4.4 Alternative modeling for simple CPS

PVSio-web simplifies and enhances the usage of formal methods by exploiting a
graphical editor, which allows users to define models of simple reactive systems
as an Emuchart diagram and then verify the models by translating the Emuchart
model into a PVS theory on which the theorem prover of PVS can be applied. An
example of Emuchart diagram is shown in Figure 4.5 where off and on are the op-
erational modes of a medical device (off is the initial mode). Emuchart transitions
are triples:
label [condition|{action}

where 1abel is the name of the transition, condition is a boolean expression which
enables the firing of the transition, and action is the operation which is executed.

30 Co-simulation and Verification with Logic-based models

click_UP [display =10] { display := 10 }

click_UP [display < 10] { display := display + 0.1; }

~—Llmor /

click_DOWN [display = 0] { display := 0}

click_DOWN [display > 0] { display := display - 0.1; }

Figure 4.5: Example of Emuchart diagram.

Verification Use

counter-example
to improve theory

Generate
PVS
theor:

Formalize
properties

\

properties
Emuchart
Diagram
Validation through
Co-simulation
Valid theory
Generate Run co-
FMU simulation and
with C collect data

KO
Use data to

improve the
theor

Figure 4.6: Alternative approach for simple systems.

PVSio-web also provides an automatic procedure to translate the Emuchart dia-
gram into a MISRA C program (Mauro et al., 2017) that can be exploited to generate
an FMU. The automatic MISRA C generation suggested another viable approach
to integrating formal verification in co-simulation: the alternative approach is de-
scribed in Figure 4.6.

The structure of the FMU generated with MISRA C is similar to the one with
PVS; instead of calling the PVSio environment, the FMUs calls the function of the
generated MISRA C code. The automatic generation of MISRA C code only supports
simple control algorithms, because of some tools limitations, so this alternative ap-
proach is only viable for simple components. The properties verified on the PVS
model derived from an Emuchart can be assumed for free in the behavior of FMU

4.4 Alternative modeling for simple CPS 31

generated from the same Emuchart, assuming that the translations are well defined.
An example of such properties is the deterministic behavior of the system, which is
often required in many cases (e.g., critical cyber-physical systems). The type-check
of the PVS prover automatically proves that when invoking a PVS function, for any
possible state, (i) at least one execution path is executed (Coverage condition) and (ii)
no more than two execution paths are executed (Disjointness of condition) (Owre et al.,
1999). These two properties together imply the determinism of the model. As a con-
sequence, the alternative process proves the determinism of the FMU and does not
require any specific knowledge of the PVS prover.

Chapter 5

Framework for automatic integration
of logic specification in FMI

The framework presented in this thesis allows developers to extend standalone
PVSio-web prototypes with an FMI-2 compliant co-simulation interface. That is,
given a prototype created with PVSio-web, developers can use the framework to
generate an FMU that includes:

¢ The PVS model of the prototype specifying its behavior;

¢ The PVSio environment necessary for executing the PVS model;

¢ The XML description file used in the FMI-based co-simulation to specify static
information of the model (such as the list of variables);

* C code implementing the APIs of the FMU necessary for exchanging data and
commands with other FMUs;

¢ Ccode implementing a web server necessary to communicate with the graph-
ical front-end of the PVSio-web prototype (optional);

* A module defining the graphical front-end of the prototype (optional).

5.1 Implementation of the framework

The framework is implemented in JavaScript. The Handlebars! engine is used to
generate the C source code of the FMUs. The engine supports semantic templates
with parameters and helper functions. Template parameters are instantiated at run-
time, using the information contained in JSON objects. Helper functions enable
conditional compilation and iteration over arrays. The advantage of using semantic
templates is that they are human-readable. This makes it easier for developers to
check the structure of the source code by inspecting the templates — the template
looks like a source code with parameters. It makes it also easier to maintain and

Ihttps://handlebarsjs.com

33

https://handlebarsjs.com

34 Framework for automatic integration of logic specification in FMI

| fmi_module.create_FMU("alaris", {

2 fmi: [{ name : "infusionrate",

3 type : "number",

4 variability: "discrete",

5 scope:"local", value: "O" 1},
6 .1,

7 init: "init_alaris",

8 tick: "tick" });

Listing 5.1: Generation of an FMU using the APIs of the framework.

update the templates, e.g., to adapt code generation to future versions of the FMI
standard or for different platforms. The same approach has been used in (Mauro
et al., 2017) for generating MISRA C code for PVSio-web prototypes.

APIs provided by the framework

The APIs provided by the framework include functionalities for generating the XML
description file and the C code for the FMU. The principal function is create_FMU.
An example use of create_FMUis shownin Listing 5.1. The firstargument (alaris)is
a string defining the name of the FMU that will be generated. The second argument
is an object defining various FMU parameters, including the list of co-simulation
variables, the function in the PVS specification for initializing the prototype, and
the function in the PVS specification for advancing time.

Handling of co-simulation steps

The code shown in Listing 5.2 presents the logic of the FMU module that handles
the execution of a co-simulation step (FMI process in Figure 4.3). The important
aspect to note here is that the function uses a watchdog mechanism to monitor the
execution of doStep: if the watchdog is not reset by doStep, then the FMU encoun-
tered a problem (e.g., the simulation environment crashed). In this case, the FMU
reports an error to the master algorithm, so that appropriate actions can be taken
and the co-simulation can be continued or terminated gracefully.

1 fmi2Status fmi2DoStep(/*...function arguments omitted for brevity */) {
2 doStep () ;

3 if (watchdog == 0) { return fmi20K; }

4 return fmi2Error;

5}

Listing 5.2: Function fmi2DoStep.

Relevant aspects of the implementation of function doStep are shown in List-
ing 5.3. Three main operations are performed: input variables of the FMU are read,
a co-simulation step is executed, and output variables of the FMU are updated. All
these operations are guarded by a lock mechanism to guarantee mutual exclusion.

5.2 Verification of the functionalities of the framework

35

1 void doStep() {

2 // wait lock for mutual exclusion
3 pthread_mutex_lock (&mutex) ;
4
5

// read input variables
6 // ... code omitted for brevity

o

// execute a simulation step
9 watchdog = 0;
10 strcpy (previous_state, state); // save state before step

11 alarm (MAX_TIME) ; // set alarm of MAX_TIME seconds
12 PVSioAdvanceTime () ; // advance time

13 if (PVSioPrint () == true){ // wait for output ready

14 ualarm (0,0) ; // disable alarm

15 if (watchdog == 1) { // watchdog not reset indicates error
16 strcpy(state, previous_state); // restore last valid state
17 restart_PVSio () ; // restore PVSio

18 3

19 } else { strcpy(state,temp_state); }

20

21 // update output variables

22 // ... code omitted for brevity

23

24 // unlock of mutual exclusion

25 pthread_mutex_unlock (&mutex) ;

26 }

Listing 5.3: Relevant fragments of function doStep.

Handling of user actions

A service daemon (GUI process in Figure 4.3) is used in the FMU to handle commu-
nication with the front-end of the prototype. The daemon invokes a specific callback
handler every time an event is received on the WebSocket connection that links the

FMU to the front-end of the prototype.

Listing 5.4 shows the definition of the callback handler. The behavior is as fol-
lows. Upon receiving an event from the front-end, the PVSio process is invoked
to compute the new system state. If the evaluation is not completed within a given
timeout (MAX_TIME), the evaluation is aborted, i.e., the state of the FMU is restored

to the previous valid state, and the PVSio execution environment is restarted.

5.2 Verification of the functionalities of the
framework

This Section presents the analysis of two properties of the framework:

* Correct Execution: FMUs generated by the framework do not block the mas-
ter algorithm when user actions are received from the front-end, and a co-

simulation step needs to be performed.

36 Framework for automatic integration of logic specification in FMI
1 int callBack(/* ...function arguments omitted for brevity */) {
2 // wait lock for mutual exclusion
3 pthread_mutex_lock (&mutex) ;

4

5 // check if user action has been received

6 if (strcmp(in, "refresh") != 0){

7 watchdog = 0;

8 strcpy (previous_state, state);// save state

9 alarm (MAX_TIME) ; // set alarm to MAX_TIME
10 PVSioEval (in) ; // execute user action
11 if (PVSioPrint () == true){ // wait for output ready
12 ualarm (0, O0); // disable alarm

13 if (watchdog == 1){ // watchdog not reset indicates error
14 strcpy (state, previous_state); // restore state
15 restart_PVSio () ; // restore PVSio
16 }

17 } else {

18 strcpy (state, temp_state);

19

20 %}

21

22 // update external variables

23 retrieveExternalVariables (externalvariables);

24 strcpy (extendedstate , state);

25 strcat (extendedstate, extermnalVariables);

26

27 // unlock mutex

28 pthread_mutex_unlock (&mutex) ;

29

30 // send new state to the user interface

3 // ...code omitted for brevity

32

33 return O;

34 }

Listing 5.4: Callback function used by the GUI process.

Correct Communication: All state changes computed during a co-simulation
step are communicated to the front-end of the prototype.

Timed Automata (Alur and Dill, 1994) are used to prove the core functionalities
of the framework formally. The properties to be proved are expressed in tempo-
ral logic. A model checker tool is used to derive proofs automatically. The theory
of timed automata implemented in the UPPAAL model checker (Behrmann et al.,
2006) is used, and properties are expressed in timed computational temporal logic
(TCTL) (Henzinger et al., 1994).

The presentation proceeds as follows: first, background information on timed
automata is introduced; then, a timed automata model of the FMUs generated by the
framework is presented; then, in Section 5.2, the two correctness properties (Correct
Execution and Correct Communication) are verified in UPPAAL.

5.2 Verification of the functionalities of the framework 37

Background on Timed Automata

A Timed Automaton is a graph characterized by (i) a finite set of locations with one
initial location; (ii) a finite set of edges connecting locations; (iii) a finite set of actions;
(iv) a finite set of variables over the non-negative reals, called clocks; and (v) a finite
set of predicates on clock values, called constraints. Each edge can be labeled with
one action, a constraint, and the reset of zero or more clocks. A reset is a clock to be
set to zero. The state of a timed automaton is given by the location and the values of
the clocks at a given time.

A timed automaton models a system operating in a number of distinct modes.
Each mode is represented by a location. Mode changes occur as a consequence of
the execution of actions. While the system remains in a given location, the progress
of time is reflected by the values of the clocks, whose values increase all at the same
rate.

A set of timed automata can be composed to create Networks of Timed Automata.
This is useful to build complex models using simpler models as building blocks. The
synchronization between two automata is modeled by the existence in the network
of two edges, one for each of the two automata, labeled with complementary actions,
named input and output actions.

One timed automaton executing an output action synchronizes with one or more
timed automata, each executing the complementary action. Two edges labeled with
complementary actions can be taken only if the constraints on each of them, if any,
are satisfied. Actions not participating in synchronizations, i.e., internal actions, are
all equivalent with respect to the network behavior, and are represented by the
action. Graphically, an input action is denoted by a question mark (?), an output
action by an exclamation mark (/). The reader can refer to (Alur and Dill, 1994) for
additional details on timed automata.

In the developed model, the following additional features of UP-
PAAL (Behrmann et al., 2006) are used: (i) integer-valued constants; (ii) bounded
integer variables; (iii) committed locations, denoted by the letter c, that can be
used to force no delay in a location; (iv) urgent edges, that use urgent channels for
synchronization— when synchronization is enabled, a delay is not allowed; urgent
edges cannot have clock guards, and are declared by prefixing the declaration with
the keyword urgent; and (v) location invariants, i.e., constraints that must hold while
an automaton is in a given location.

As an example, consider the timed automaton shown in Figure 5.1(b). The au-
tomaton operates on one clock tr and a variable n. When the clock is equal to the
constant deltaR, an out edge is executed (tr <= deltaR is the state invariant). If
variable n equals to 0, the edge that is executed sends a refresh message and resets
the clock. Otherwise (n > 0) the edge that is executed only resets the clock. Fig-
ure 5.1(c) shows an example of synchronous action (refresh) between GUIrefresh

38 Framework for automatic integration of logic specification in FMI

and Buffer. The action increments variable n if the value of n is not already the
maximum value.

Timed automata model of FMUs generated by the framework

In this Section, a network of timed automata is developed for representing relevant
structural elements of the FMUs described in Section 5.1. The developed model is
shown in Figure 5.1. It includes eight timed automata. The behavior of the front-
end of the prototype (hereafter, GUI) is modelled by User, GUIrefresh, Buffer and
WebsocketClient. The behavior of the back-end of the prototype (hereafter, FMU)
is modeled by WebsocketServer, Mutex, FMU and Master.

The set of actions is:

A= {a, refresh,doAction,actionDone, lockRequest,lockGranted,
lockRelease, fmi2DoStep, endStep}

A global variable n is defined in the model, which counts the number of messages
buffered in the communication link between GUI and FMU. This variable is initial-
ized in the Buffer automaton. The following constants and parameters are defined
in the model:

e deltal, the minimum interval between two user actions
¢ deltaC, the maximum interval spent in the critical section
* deltal, the minimum interval between two co-simulation steps (fmiDoStep)

* deltaR, the maximum interval of time between two updates of the GUI

The following clocks are specified in the model: Clk = {ta, tc,tm tr}. A global
variable ¢ is shared between WebsocketServer and FMU. The variable is initially
set to 0. When WebsocketServer exits the critical section, action lockRelease
in WebsocketServer assigns 1 to c. When FMU exits the critical section, action
lockRelease in FMU assigns 2 to c.

5.2 Verification of the functionalities of the framework 39

setUp

deltaR:=i

tr==deltaR and n==0

tr==deltaR and n>0 refresh!
tr:=0 tr:=0
start ta>=deltaA start
a!
ta:=0 tr<=deltaR
(b) GUIrefresh.

(a) User.

n<nmax

n>0
doAction!
n:=n-1
start
refresh? sent
n:=n+1 n<nmax
refresh?
n:=n+1 actionDone?
(c) Buffer. (d) WebsocketClient.
" doAction? 228° lockRelease?

lockRequest!
granted

start onereq
lockRequest? /6\ lockGranted!

actionDone!

5
lockGranted lockRelease?
lockRequest?

tc:=0

tc>0 /
done lockRelease! ~critical
c=1 tc<=deltaC tworeq
(e) WebsocketServer. (f) Mutex.
@ setUp
tm == deltaM
]
deltaM :=j m‘i%OStep
start fmi2DoStep? dostep star . step
© lockRequest!
. endStep?
wait tm<=deltaM
endStep!
tm<deltaM
lockGranted?
tc> 0 =0 tm>=deltaM
endstep lockRelease! critical fmi2DoStep!
c=2 tc<=deltaC tm:=0
(h) Master.

(g) FMU.
Figure 5.1: Timed automata model of an FMU.

40 Framework for automatic integration of logic specification in FMI

The roles played by the automata are as follows:

* User models actions performed by the user on the GUI (a! represents a generic
user action on input widgets).

* GUIrefresh models the automatic refresh actions performed by the GUI every
deltaR time unit. The initial state of this automaton is a committed state. Ini-
tially, a random value in the interval [245,255]ms is assigned to deltaR. This
value represents a refresh rate of 4 Hertz, which is a reasonable value for a
standard user interface, and a clock variability of +5/-5 milliseconds, which
takes into account possible delays/imperfections in the clock.

* Buffer models the buffering of actions at the GUIL The content of messages is
abstracted in the model — the automaton only counts the number of buffered
actions. Upon receiving a? or refresh?, the global variable n is incremented.
The initial state satisfies the invariantn ==

* WebsocketClient handles communication from GUI to FMU. If the buffer con-
tains messages (i.e., n > 0), doAction! is executed and n is decremented.
Communication is synchronous. From state sent, the automaton moves to
start upon executing the synchronisation action for WebSocket communica-
tions (actionDone?). The model assumes that messages in the buffer are pro-
cessed immediately. Both doAction! and actionDone? are urgent actions, i.e.,
when synchronization is enabled, the actions are executed immediately.

* WebsocketServer handles communication from FMU to GUI. Upon receiv-
ing an action (doAction?), a critical section is entered, PVSio is invoked for
evaluation of the action, and the result of the evaluation is sent back to
the GUI (actionDone!). A lock is requested to access the critical section
(LockRequest!). After lock is granted (lockGranted?), the automaton exits
the critical section in less than deltaC time units (invariant tc <= deltaC on
state critical) by executing lockRelease!. When WebsocketServer exits the
critical section, variable c is assigned 1.

* Mutex models the mutual exclusion mechanism for accessing the critical sec-
tion. Lock requests (LockRequest!) received when the critical section is busy
(state tworeq) are granted when the critical section is released.

* FMU models the execution of a co-simulation step. Upon receiving action
fmiDoStep?, input variables are read, PVSio is invoked for evaluation of the
step, and the result of the evaluation is used to update the output variables.
These operations are carried out in the critical section, and are protected by a

5.2 Verification of the functionalities of the framework 41

lock request (lockRequest! and lockGranted?). The lock on the critical sec-
tion is released in deltaC units (lockRelease!). Upon exiting the critical sec-
tion, the variable c is assigned 2, and the successful execution of the step is
communicated with endStep!.

Master models the master algorithm of the co-simulation. The UPPAAL
model is constructed based on the specification of the FMI protocol. The co-
simulation engine of INTO-CPS follows the standard. The developed model
includes only the details necessary to verify the considered properties. The
execution of a co-simulation step is requested every deltaM time units with
action fmiDoStep!. deltaM is a random value in the interval [245,255], so that
some properties can be proved related to the condition deltaR < deltaM. The
initial state is a committed state. When the execution of the co-simulation step
completes, action endStep? is triggered. Two cases are considered. If the exe-
cution of the co-simulation step took less than deltaM (i.e., tm < deltaM), the
automaton moves to state start, that will be exited at deltal, for a new co-
simulation step. Otherwise, a new co-simulation step is executed and the au-
tomaton moves to state step. Clock tm is reset at the beginning of each step.
Action endStep? is an urgent action.

Analysis of correctness properties of the framework

Simulation and formal verification were used to perform the analysis of correctness
properties of the framework. The analysis is performed under the following tim-
ing assignment: deltaA = 10ms, deltaR and deltaM in the interval [245, 255]ms,
deltaC = 1s. These are possible values for the co-simulation of systems with user
interfaces.

Analysis of Correct Execution. Analysis of this property is carried out using simu-
lation. The sequence diagram in Figure 5.3 illustrates part of a simulation run in
UPPAAL. The considered case is when WebsocketServer and FMU want to access
shared resources. The following steps are performed:

1.

Assignment of a random value to deltaR (transition in GUIrefresh from setUp
to start) and assignment of a random value to deltaM (transition in Master
from setUp to start);

. Execution of a refresh action, represented by a sequence of synchronizations

from refresh to actionDone;

. Execution of a user action a;
. Execution of a co-simulation step (synchronization Master - FMU);

. Lock of the critical section acquired by FMU process;

42 Framework for automatic integration of logic specification in FMI

Al] not deadlock

A=>FMU.critical

h=> websocketServer.critical

FMU.critical --> FMU.walt

FMU.walt --= FMU.critical

websocketServer.critical --> websocketServer wait
websocketServer.wait --= websocketServer.critical

Check |

Insert
Remove
Comments

4[] not (websocketServer.critical and FMU.critical)
Al]l (deltaRedeltaM and FMU.critical) imply c!=2
A[] (FMU critical imply cl=2)

Figure 5.2: Verification of Correct Communication in UPPAAL.

6. User action sent from WebsocketClient to WebsocketServer;
7. Lock request sent by WebsocketServer;

8. WebsocketServer waits lock release.

Analysis of Correct Communication. An analysis of this property is carried out using
verification. Figure 5.2 shows the formulae used to check the core properties of the
FMUs. Properties are proved under the following constraints:

¢ Co-simulation steps are executed every deltaM time units, or as soon as the
previous co-simulation step terminates;

¢ Communication between GUI and FMU is synchronous, i.e., GUI waits for a
response from FMU after sending an evaluation request;

* A new message is stored in the WebSocket buffer at most every deltaR time
unit;

¢ The WebSocket buffer has a finite length.

At the implementation level:

* The assumption of bounded time spent in the critical section is guaranteed by
the watchdog mechanism (maximum duration of the critical section equals to
the watchdog timer tc < deltaC, where deltaC = MAX_TIME)

¢ AIll PVS functions are guaranteed to terminate: this can be checked by inspect-
ing the termination conditions generated by the PVS type checker.

The first formula in Figure 5.2 (A[] not deadlock) is a particular case in UP-
PAAL for proving that for each reachable state, there exists at least one outgoing
edge. The formula is satisfied for all states; therefore, the formula above guarantees
the absence of deadlock in the system.

5.2 Verification of the functionalities of the framework

43

user GUlrefresh buffer websocketClient websocketServer mutex FMU master
L L] [1 L |] [1]
[start] [setUp] [start] start start start [start] [setUp]
(start setUp]
[startl [start] [Eart
refresh
[start] [buff] Eart Eart

Ea rt

&uff

[Fuff

start start buff

doAction

@do

lockRequest

[itart

Eait

one@

lockGranted|
[critical] [granted]
lockRelease
actionDone|

[Ea rt

Ea rt

doAction

[Eart

sent

[start] [start]
fmi2DoStep)
start] dostep] [step)
lockRequest
[onereq] [wait]
lockGranted
[start] [granted] [critical]
[todo] [granted]
lockRequest

wait [tworeq] [critical] [step]

Figure 5.3: Analysis of Correct Execution in UPPAAL.

44 Framework for automatic integration of logic specification in FMI

The following two formulae prove that for all execution paths, WebsocketServer
and FMU eventually gain access to the critical section. This is an important functional
aspect of the framework that relates to fairness of the execution of the two processes,
FMU, and WebSocketServer. This is enforced by the following fairness policy: if both
FMU and WebSocketServer requests access to the critical section and FMU was the
last process that was granted access to the section, then WebSocketServer will be
granted access to the critical section. The same also applies the other way around.

The following four formulae are liveness properties. They prove that: when
the FMU is in the critical section, it will eventually exit; when the FMU waits for the
critical section, it will eventually enter. The same properties are also proved for
WebsocketServer.

Formula A[] not (websocketServer.critical and FMU.critical) is a safety
property. It proves that, in all states of the model, it is never the case that
WebsocketServer and FMU are both in the critical section.

Formula A[] (deltaR < deltaM and FMU.critical) imply c!=2 is another
safety property. It proves that, under specific timing constraints, all FMU states are
correctly reported to the user interface. In particular, it is shown that, if deltaR <
deltaM, any two executions of FMU in the critical section are always interleaved by
at least one execution of WebSocketServer in the critical section. This guarantees
that any state change of the FMU can be displayed on the GUI. The random value
assigned to deltaR and deltaM forces the model checker to explore all the possible
combinations of values.

The last formula (A[] (FMU.critical imply c != 2)) shows that without the
condition deltaR < deltaM, the previous formula is falsified. In this case, more
than one co-simulation steps can be executed between two updates of the GUIL

Discussion

In the FMUs, time is not advanced when a user action is performed. Rather, time
is advanced by the master algorithm, when doStep is executed. This is necessary to
comply with the FMI co-simulation protocol, which requires time to be advanced
only by doStep.

User actions are asynchronous with respect to the co-simulation step. This is
necessary to produce prototypes that provide a consistent response time to user
actions during co-simulation runs. This approach does not affect the correctness of
the FMU with respect to the FMI protocol, because output buffers of the FMU are
only updated when doStep is executed.

When decomposing an FMU into smaller FMUs, co-simulation parameters need
to be chosen carefully. Different decompositions may impose different constraints
on the exchange of co-simulation events. For example, if it is essential to communi-
cate all user actions received by the FMU of the PVSio-Web prototype to the other

5.2 Verification of the functionalities of the framework 45

FMUs, the co-simulation step needs to be shorter than the minimum time between
two user actions. On the other hand, if the FMU of the PVSio-Web prototype rep-
resents a standalone system and user actions are communicated to other simulated
components only at given instants of time, this constraint between the interval of
co-simulation step and minimum time between user actions does not apply.
Finally, it is worth noting that the presented formalization of the framework fo-
cuses on functional correctness. Performance aspects of the framework, such as re-
sponsiveness of the co-simulation in the case of a rapid sequence of user inputs or
rapid co-simulation steps, are not considered here and need further investigation.

Chapter 6

Case studies

This chapter shows the application of the methodology and the framework to case
studies from different domains:

¢ asimple semi-autonomous vehicle, the Line Follower Robot (LFR), with man-
ual/automatic control mode. The controller is modeled in PVS, while the sen-
sors and the robot are modeled with other tools. The experiments are run
using the INTO-CPS application and the analysis in case of faults to the sen-
sors or to the robot is reported. Finally, a property of the complete system is
shown by defining a PVS theory of the robot.

¢ an Unmanned Aerial Vehicle (UAV) coordination protocol. A high level dis-
tributed coordination algorithm commands a lower level flight controller to
achieve a desired configuration of a drone swarm. Co-simulation is used com-
bining different simulators for the drone dynamics (OpenModelica (Fritzson
et al., 2005)), the flight control (C program), and the coordination algorithm
(PVS).

¢ an Integrated Clinical Environment (ICE) composed of an infusion pump, a
patient monitor and a remote supervisor device. All the medical devices are
modeled with PVSio-web and they are co-simulated together with a pharma-
cokinetics model of the patient modeled with OpenModelica. The introduc-
tion of the patient model and the human-in-the-loop co-simulation made it
possible to gain useful insights on the PVSio-web models. Finally the theorem
prover is used to prove safety properties of the pump component.

6.1 Line Follower Robot

The Line Follower Robot case study, provided by the INTO-CPS (Larsen et al.,
2016), consists of an autonomous robot with the task of following a line painted

47

48

Case studies

Sensor Left Sensor Right Controller Robot
(20 sim) (20 sim) (PVSio-web) (20 sim)
FMU FMU FMU FMU

Y Y Y

CO-SIMULATION MASTER

Figure 6.1: Co-simulation of line follower robot case study.

on the ground. The controller of the robot receives the readings from two light
sensors placed on the front of the robot (one slightly moved to the left and one
slightly moved to the right), and sends commands to the left and right motors
which are in charge of the rotation of the left and right wheels, respectively. The
INTO-CPS project provides the FMU of the kinematics of the robot (created with
20-sim (Broenink, 1999)), the FMU of the sensors (created with 20-sim or OpenMod-
elica), and the FMU of the controller (created with Overture (Larsen et al., 2010)).

In this thesis, the controller has been modeled as a PVS theory and a new ad-
vanced controller that allows manual override of the automatic line following behav-
ior has been developed. The robot can be controlled using a joypad (see Figure 6.1)
that provides a navigation display with the trajectory of the robot, two speedometer
gauges to monitor the velocities of the wheels, a speedometer gauge to monitor the
velocity of the robot, and various control buttons to allow a driver to accelerate (up
arrow) or brake (down arrow), change direction of the robot (left and right arrows), and
change gear (buttons A, Y and B). Pushing any button on the joypad changes the
control mode from automatic to manual. There is also a control (button X) to switch
control mode from manual back to automatic.

6.1 Line Follower Robot

49

I LFR_controller_th: THEORY BEGIN IMPORTING types_and_constants

2 %-- state attributes

3 State: TYPE = [#

4 lightSensors: [# left: real, right: real #]

5 motorSpeed : [# left: real, right: real #],

6 gear: Gear,

7 cm : ControlMode

8 #]

9 init_state: State = ... J%-- omitted for brevity

10

11 %-- transition functions

12 accelerate(st: State): State = st WITH [

13 cm := MANUAL,

14 motorSpeed := (#

15 left := COND

16 gear(st) = DRIVE ->

17 inc_CW_speed (motorSpeed(st) ‘left, ACC_STEP),
18 gear (st) = REVERSE ->

19 inc_CCW_speed (motorSpeed (st) ‘left, ACC_STEP),
20 gear (st) = NEUTRAL -> motorSpeed(st) ‘left ENDCOND,
21 right := COND

22 gear(st) = DRIVE ->

23 inc_CCW_speed (motorSpeed(st) ‘right, ACC_STEP),
24 gear (st) = REVERSE ->

25 inc_CW_speed (motorSpeed(st) ‘right, ACC_STEP),
26 gear (st) = NEUTRAL -> motorSpeed(st) ‘right ENDCOND #)
27]

28 tick(st: State): State = %-- omitted for brevity

29 %... more definitions omitted

30 END LFR_controller_th

Listing 6.1: Snippet of the PVS theory of the new controller.

The state of the model is reported in Listing 6.1. It contains the following at-

tributes:

* lightSensors stores the light sensor values;

* motorSpeed stores the control values sent to the left and right wheels motors;

cm is the current control mode (AUTO or MANUAL).

gear is the current gear (DRIVE, REVERSE or NEUTRAL) of the robot;

An example transition function, accelerate, is shown in Listing 6.1. The function
is invoked by pressing the up arrow and it sets the control to MANUAL and increases

the speed of the robot of ACC_STEP based on the current gear.

The invocation of the API of our framework for creating an FMU for this proto-

type is shown in Listing 6.2. Argument fmi includes:

* six fields necessary to store information about the attributes of the PVS state

(lightSensors and motorSpeed store two values each);

¢ four fields for the external variables provided by the other FMUs: current po-

sition of the robot, linear, and angular speed.

50 Case studies

1 fmi_module.create_FMU("line_following_robot",{

2 fmi: [

3 {name: "left", parent:"lightSensors", type:"real",

4 variability: "continuous", scope: "input", value: "0"},
5 {name: "right",parent:"lightSensors", type:"real",

6 variability: "continuous", scope: "input", value: "0"},
7 {name: "left", parent:"motorSpeed", type:"real",

8 variability: "discrete", scope: "output", value: "O0"},
9 {name: "right",parent:"motorSpeed", type:"real",

10 variability: "discrete", scope: "output", value: "O0"}
11 {name : "gear", type:"string",

12 variability: "discrete", scope:"local", value:"0"},

13 {name : "cm", type:"string",

14 variability: "discrete", scope:"local", value:"0"},

15 {name : "linear_speed", type: "real",

16 variability: "discrete", scope:"input", value:"0"},

17 {name : "angular_speed", type: "real",

18 variability: "discrete", scope:"input", value:"0"},

19 {name : "position_x", type: "real",

20 variability: "discrete", scope:"input", value:"0"},

21 {name : "position_y", type: "real",

22 variability: "discrete", scope:"input", value:"0"},

23 i

24 init:"init_state",

25 tick:"tick"

26 1) ;

Listing 6.2: Invocation of the API of our framework.

A snippet of the XML file generated by the invocation of the create_FMU is
shown in Listing 6.3. The first part of the file is a descriptor of the FMU (model
name, identifier, step size, etc). Field ModelVariable enumerates the variables of
the FMU (see Listing 6.2). Each variable is associated with a valueReference neces-
sary to find the value of the variable within the buffers of the FMU.

A snippet of the instantiate function generated by the invocation of the create_-
FMU is shown in Listing 6.4. Lines 7-14 show the actual code generated by the
Handlebar engine with the fmi object shown in Listing 6.2.

The create_FMU API also generates a custom makefile that can be used to build
the FMU. The new FMU was successfully used, together with the FMUS provided
by INTO-CPS, in many co-simulation scenarios orchestrated by the INTO-CPS Co-
simulation Orchestration Engine. The FMU connected with the PVSio-web naviga-
tion display has been used to analyze the robot behavior when switching control
mode from manual to automatic and to expose possible faults of the robot (see Fig-
ure 6.2).

Co-simulation run

Co-simulation runs can be used to validate the advanced controller. For example,
some experiments pointed out the need to perform a U-turn to get back on track
when switching from manual to automatic control and the robot was moving at

6.1 Line Follower Robot

51

1 <?xml version="1.0" encoding="IS0-8859-1"7>

2 <fmiModelDescription fmiVersion="2.0" modelName="line_following_robot"

3 R

4 <CoSimulation modelIdentifier="line_following_robot"

5 e >

6 </CoSimulation>

7 <LogCategories> ... </LogCategories>

8 <ModelVariables>

9 <ScalarVariable name="gear" valueReference="1"

10 causality="local" variability="discrete">
11 <String /></ScalarVariable>

12 <ScalarVariable name="cm" valueReference="2"

13 causality="local" variability="discrete" >
14 <String /></ScalarVariable>

15 <ScalarVariable name="linear_speed" valueReference="3"

16 causality="input" variability="discrete" >
17 <Real start="0" /></ScalarVariable>

18 000

19 <ScalarVariable name="motorSpeed_right" valueReference="10"
20 causality="output" variability="discrete" >
21 <Real /></ScalarVariable>

22 </ModelVariables>

23 <ModelStructure> ... </ModelStructure>

24 </fmiModelDescription>

Listing 6.3: Snippet of generated XML.

1 void instantiate(const char* location) {
2 // ... code for accessing the PVSio environment omitted for brevity
3 start_PVSio_process(pid_PVSio_process);
4 PVSioPrint ();
5
6 // update output variables
index_state = findVariable("left", state);
8 if (index_state !'= -1) {
9 writeOutputVariableDouble (index_state, 9);
10 }
11 index_state = findVariable("right", state);
12 if (index_state != -1){
13 writeOutputVariableDouble (index_state, 10);
14 }
15
16 open_websocket () ;
17 pthread_create (&childl, NULL, &GUI_process, NULL);
18 }

Listing 6.4: Snippet of the generated instantiate function.

52 Case studies

(b) Missed turn.

Figure 6.2: Unexpected paths followed by the line follower robot.

high speed (see Figure 6.2a), and some experiments ended up with the robot going
far away from the line due to the fact that it reaches perpendicularly the line, decides
not to turn and moves on (see Figure 6.2b).

Simulating faults

This section shows an example of fault analysis extension introduced in Section 4.1.
The extension is applied to the autonomous controller. A fault is injected into the
system by executing the controller together with the functions modeling the failing
behavior of the component. In order to model faults, the robot state is extended with
fields characterizing the different types of faults.

In the present example, three faults are considered: a fault to sensors that occurs
once and acts indefinitely; another fault to sensors that repeated N number of steps
every M steps (N < M); and fault to actuators that occurs sporadically with a duration
of one co-simulation step.

The following function implements the failure mode for a fault that indefinitely
forces to black the value read by the left sensor, starting from a randomly chosen
co-simulation step. Function NRANDOM in the initial state is invoked with an up-
per bound of 500. Variable 1ightSensors is modified (140 is the constant for black
color); clock start_step specifies the co-simulation step at which the faultis activated.

6.1 Line Follower Robot 53

The failure mode is defined as:

fm_faultl(st: ext_State): ext_State =) sensor fault

IF stepCounter(st) > start_step(st)
THEN st WITH [

lightSensors :=

(# left := 140,
right := st‘lightSensors‘right #)

]
ELSE st
ENDIF

The following function implements the failure mode for a fault that forces to white
the value read by the left sensor for L steps every M timesteps. This is repeated indef-
initely, starting from the first co-simulation step. Variable 1ightSensors is modified
(160 is the constant for white color); clock elapsed_steps specifies the number of steps
since the last fault has been activated. The failure mode is defined as:

fm_fault2(st: ext_State): ext_State =) sensor fault
IF elapsed_steps(st) <= L
THEN st WITH [
lightSensors :=
(# left := 160,
right := st‘lightSensors‘right #),
elapsed_steps := elapsed_steps + 1
]
ELSE IF elapsed_steps(st) < M
THEN st WITH [
elapsed_steps := elapsed_steps + 1
]
ELSE IF elapsed_steps(st) = M
THEN st WITH [
elapsed_steps := 0]
ENDIF

The following function implements the failure mode for a fault that sporadically
switches off the power of each motor for one co-simulation step. The co-simulation
step, at which the power of each motor is switched off, is chosen randomly. Func-
tion NRANDOM is invoked in the initial state and in the function with an upper
bound of 20. Clock occurrence_step specifies the co-simulation step at which the
next occurrence of the fault starts. The failure mode is defined as:

54 Case studies

fm_fault3(st: ext_State): ext_State = % actuator fault
IF stepCounter(st) = occurrence_step(st)
THEN st WITH [
motorSpeed :=
(# left := 0,
right := 0 #),
occurrence_step := NRANDOM(20) + 1
]
ELSE st
ENDIF

The full definition of ext_State, including information about the faults above, is
the following:

ext_State: TYPE =

[# original_state : State
% global clock
stepCounter:int,
% local clocks
start_step: int, % faultl
elapsed_steps: int, % fault2
occurrence_step: int ¥ fault3

#]

In the initial state, the step at which fault1 starts and the the step at which the
tirst occurrence of fault3 starts are initialized with a random value; the elapsed
steps since the last occurrence of the fault2 is initialized to 0:

init_ext_state: ext_State =
(# original_state := init_state
% global clock
stepCounter := 0;
% faultl
start_step = NRANDOM(500),
% fault?2
elapsed_steps = 0,
% fault3
occurrence_step = NRANDOM(20) + 1
#)

The following example shows the ext_tick function for the analysis of the actu-
ators fault previously described:

6.1 Line Follower Robot 55

ext_tick(st: ext_State): ext_State =
LET ext_statel = st WITH (
original_state := tick(st‘original_state),
stepCounter := stepCounter + 1)
IN fm_fault3(ext_statel)

Execution Traces

-

(a) Faultl. (b) Fault2.

Figure 6.3: Faults to sensors.

Figure 6.3a shows the sample trajectory for the faultl to sensors. The left sensor
is stuck at a fixed value, so that the robot starts turning at the onset of the fault,
ending up in a closed trajectory.

Figure 6.3b shows the effect of the fault2 to sensors, assuming L = 40 and M =
2xL. At a given point, the robot looses the line. The same fault under different values
of L has no effect. In case of L = 20, the trajectory of the robot is equivalent to the
one shown in Figure 6.4a. This example is better investigated in the next Section.

Figure 6.4b shows the sample trajectory when the fault3 to actuators occurs. The
robot follows the nominal path, but the execution traces, reporting the simulated
time at each simulation step, show that the robot is delayed with respect to the re-
sulting trace shown in Figure 6.4a. This is expected, since the fault consists in stop-
ping both motors for a short time. Since the motors stop at the same time, the robot
heading at each instant is unchanged.

Figure 6.5 shows the two outputs of the control FMU during a co-simulation run:
according to the actuator fault function the values on the graph sporadically go to
zero.

Formal verification

In this section some invariants of the autonomous controller are proved.

56 Case studies

(a) No fault. (b) Fault3.

Figure 6.4: Fault to actuators.

WTFJMH”JH
Y

uin

9 9.5 10 105 11 115 12

I

—— {controllerFMU}.controller.motorSpeed_left
~—— {controllerFMU}.controller.motorSpeed_right

Figure 6.5: INTO-CPS graph of left motor (blue line) and right motor (red line) speed
under fault3.

A property of the Controller

As an example of a possible verification on the controller’s behavior, this section
shows results concerning faults causing a sensor to be stuck at a given value.

In particular, the following theorem shows that, under a fault forcing the left
sensor to read a black value, the robot can never turn right (i.e. motorSpeed of the
right wheel will always be greater or equal than motorSpeed of the left wheel).

N: above(1)
never_right_random: THEOREM
FORALL(K: above(NRANDOM(500) + N)):
motorSpeed (kth_step(K)) ‘left
<= -motorSpeed(kth_step(K)) ‘right

6.1 Line Follower Robot 57

1
2 Rule? (induct K)

3 Inducting on K on formula 1,
4 this yields 2 subgoals:

5 never_right_random.1

{1} motorSpeed(
9 kth_step (NRANDOM (500) + N + 1)) ‘left <=
10 -motorSpeed (
11 kth_step (NRANDOM(500) + N + 1)) ‘right

15 never_right_random.2 :
16

18 {1} FORALL (ja: above (NRANDOM(500) + N)):

19 motorSpeed (kth_step(ja)) ‘left <=

20 -motorSpeed (kth_step(ja)) ‘right

21 IMPLIES

22 motorSpeed (kth_step(ja + 1)) ‘left <=
23 -motorSpeed (kth_step(ja + 1)) ‘right

Listing 6.5: Application of the induction strategy.

The proof is by induction on the number of steps K. The prover’s induct rule
generates the induction base and the inductive step shown in Listing 6.5

Both subgoals are proved with a lengthy but obvious sequence of function ex-
pansions, introduction of a small number of intermediate lemmas (not shown), and
automatic simplifications with the simplify rule, closed by invocations of the assert
and grind rules that conclude the subproofs.

A theory for the robot kinematics

In the preceding sections, the robot kinematics have been simulated by an FMU
encapsulating a 20-sim model, and formal verification has addressed only the con-
troller model. In this section, a PVS model of the robot kinematics is introduced.
This model extends the original definition of State by introducing new fields for
co-simulation: step size (stepsize), linear and angular speed (linspeed and angspeed),
position (coordinates xx and yy), and direction (angle theta).

58 Case studies

extended_robot: THEORY
BEGIN
IMPORTING LFR_controller
ext_State: TYPE =
[# state: State,
stepsize: real,
linspeed: real,
angspeed: real,
XX: real,
yy: real,
theta: real
#]

END extended_robot

The model also extends the previous definition of tick introducing two new func-
tions: update_position and update_speed.

Function update_speed invokes the tick function and then computes the linear and
angular speeds. Function update_position updates the position and the direction of
the robot based on the linear and angular speeds, see Listing 6.6.

The formulas used in these functions are a simplified version of the formu-
las used in the 20-sim models. The simplification consists of introducing instant
changes of both the linear speed of the robot and the angular one. The constant
values in function update_speed are taken from a co-simulation log and they repre-
sent: the maximum linear speed when the robot is moving forward (0.062 m/s), the
maximum linear speed when the robot is turning (0.057 m/s) and the angular speed
when the robot is turning (0.47 rad/s).

Using the maximum speed, we obtain an over-approximation of the distance
covered by the robot. This abstract model can be used to prove properties such as
the one described later in this section, where the maximum distance covered in a
co-simulation step is used in the proof; if this property is satisfied using the abstract
model, the property holds also on the real system.

The new theory has been embedded into an FMU and co-simulated for valida-
tion: the result is shown in Figure 6.6 where the temporal evolution of the y and
x coordinates generated with the 20-sim model (blue lines) are compared with the
ones of the PVS model (red lines); the behavior is the same within a tolerance of
approximately 5 centimeters.

PVS allows us to describe a system at different levels of abstractions. By adding
more details to the PVS kinematics model, finer properties could be proved and
better tolerance could be achieved.

6.1 Line Follower Robot 59

ext_tick(st: ext_State): ext_State =

1

2 update_position (update_speed(st))

3

4 update_position(st: ext_State): ext_State =

o st WITH

6 [

7 xx:= st‘xx-st‘linspeed*st ‘stepsize*SIN(st‘theta),
8 yy:= st‘yy+st‘linspeed*st‘stepsize*C0S(st‘theta),
9 theta := st‘theta+st‘angspeed*st‘stepsize

10]
11 update_speed(st: ext_State): ext_State =
12 LET stl: ext_State =

13 st WITH [state := tick(st‘state)] IN

14 stl1 WITH [

15 linspeed := COND

16 stl‘state ‘motorSpeed ‘left = 0 -> O,

17 stl‘state ‘motorSpeed ‘left = med -> 0.062,
18 stl‘state ‘motorSpeed ‘left = hi -> 0.057,

19 stl‘state ‘motorSpeed ‘left = low -> 0.057,
20 else -> stl‘linspeed

21 ENDCOND ,

22 angspeed := COND

23 stl‘state ‘motorSpeed ‘left = 0 -> O,

24 stl‘state ‘motorSpeed ‘left = med -> O,

25 stl‘state ‘motorSpeed ‘left = hi -> -0.47,

26 stl‘state ‘motorSpeed ‘left = low -> 0.47,

27 else -> stl‘angspeed

28 ENDCOND

29]

Listing 6.6: Extended tick for kinematics theory.

A property of the complete CPS

The usage of the kinematic theory enables the proof of properties related to the
physical process. Considering the following assumptions:

* L a value that represents a generic number of co-simulation steps
* Savalue for the step size (stepsize)

¢ 1.5 centimeters (0.015 meters) the width of the black line painted on the floor
of the robotic system.

the PVS theorem prover can be exploited to prove the following property:

P1: under the hypothesis that L * S <= 0.24, within L steps the y coordinate
of the robot change at most of 1.5 centimeters (0.015 meters)

The property can be expressed in PVS as follows:

60 Case studies

0.2
0.15
01

0.05
—

— XX

-0.05

b

—yY

Figure 6.6: Comparison between 20-sim model and PVS model.

P1: THEOREM
L*S <= 0.24 IMPLIES
FORALL(K:above(L)):
kth_step(K) ‘yy - kth_step(K-L) ‘yy <=0.015

The proof is inductive on the number of steps K, using the same commands used
for the theorem in the previous section

[-1] L * S <= 6/25

kth_step(K) ‘yy - kth_step(K - L) ‘yy <= 3/200

In the sequent, [-1] is the antecedent and 1 is the consequent. The property
holds independently of the initial position of the robot on the line, only the con-
straint on the duration of the fault (L * S) must be satisfied. A similar theorem can
be proved on the x coordinate.

6.2 Cooperative UAVs 61

‘ to neighbours

X1
— . W1, W2, W3, Wy
. Coordination Control Plant
: FMU Xy FMU FMU
—_—

Xy, T ¢,0,, ¢91/)

X, X

Figure 6.7: Logical connections between the FMUs of a drone.

In particular, this theorem guarantees that if a fault changes the value of the left
sensor to white for less than L * S time, then the fault will never move the robot
from one side of the line to the other. This means that if the fault is detected within
L steps, the robot is still close to the line. If the hypothesis of the theorem is not true,
we do not have information. Figure 6.3b shows a co-simulation run for the previous
faultwithL = 40andM = 80and S = 0.01. Since L xS = 0.4 > 0.24, the hypothesis
of the theorem is not met. In this case, the left sensor moves from the internal side
of the path to the external side and the robot drives away from the painted line.

6.2 Cooperative UAVs

This section proposes a co-simulation architecture with three specialized interact-
ing FMUs for each drone (Figure 6.7): a plant FMU for the drone dynamics, a control
FMU to control direction and velocity, and a coordination FMU implementing the co-
ordination protocol. The latter FMU receives information of the neighboring drones
and computes the next desired position, which is fed to the control FMU and trans-
mitted to the neighbors’ coordination FMUs. The control FMU reads the feedback
from the plant, consisting in the current position and the respective time deriva-
tives and outputs the control commands to the plant FMU. The architecture of a
co-simulation in a scenario of five drones is shown in Figure 6.8. All the FMUs are
connected through the INTO-CPS co-simulation engine.

Generally, the rate of communication in the two cases above is different, as shown
in Figure. 6.9. We distinguish between:

¢ the time discretization interval € at which the target position of each drone is
updated in the coordination algorithm, and

¢ asmaller step T that is the numeric integration step used by the drone dynam-
ics simulator for communications with the low-level controller of the drone.

From a logical point of view,

62 Case studies

Wi, W, W3, Wy

I
Wi, W2, W3, Wy 1

Figure 6.9: Data exchanges every T sec. (A) and every € sec. (B).

e 7 is the interval at which the simulator for the drone dynamics (part of the
plant FMU) and the simulator of the attitude/position controller (part of the
control FMU) exchange data.

* ¢ is the interval at which the coordination FMUs of each drone compute the
new target position and send it (i) to its immediate neighbors and (ii) to the
Control FMU of the drone.

In Figure 6.9, events A and B show synchronization at T and e intervals, respec-
tively.

As an application scenario, a variation of the classical formation control scheme,
based on the well-known consensus protocol described in (Olfati-Saber et al., 2007),

6.2 Cooperative UAVs 63

is considered. The algorithm in (Olfati-Saber et al., 2007) is distributed and allows
drones to asymptotically converge to a target point.

The proposed coordination algorithm, instead, is obtained by the original one,
simply assuming that two drones are fixed at the extreme of a line segment. This
variant allows the uniform placement of the drones along the interval and it has not
been studied in that work.

The proposed coordination algorithm is summarized with the following equa-
tions:

X1 = min
xi(k+1) = exj_1(k)+ (1 —2¢e)x;(k) +exjiq(k),i€2..N—1] (6.1)
XN = max.

where min and max are the extreme of the line segment, x; is the position of
the i-th drone along the line segment, k is the co-simulation step, and € is the time
discretization interval.

The framework has been applied in a scenario where a small number of quad-
copters (5) are supposed to coordinate on the interval [0,100]. The first and fifth
drones are supposed to be stationary at the outer position of the interval, while the
other three must recursively adjust their positions according to the shared coordi-
nation policy.

The rest of this section shows how the protocol can be specified in a PVS theory,
validated through co-simulation, and convergence of the protocol can be analyzed
by theorem proving.

PVS theory of the coordination protocol

Theory coverage_state (Listing 6.7) contains the type location which is defined
as a single x coordinate, since the drones are assumed to be aligned. Fields prec
and foll hold the location of the preceding and following drone, respectively. Field
timestep is a counter thatis reset every € seconds, and counts the current number of
co-simulation steps after the last reset. Its value ranges on the interval [0..1] (upto(n)),
where 1, a parameter of the theory, equals €/ 7.

Theory exec_coverage (Listing 6.8) contains the function exec_cvg which is the
PVS form of Equation. 6.1, where 4, b, and c are the coordinates of the preceding,
current, and following drone, respectively. Function X accesses the x-coordinate of
the i-th drone in the system state. Function exec_coverage models the coverage
protocol, updating the system map drones.

The drones field is an anonymous function (a A-expression) of a drone identifier.
This function extracts the coordinates of drone i and of its neighbors from the swarm
state (using function X), and computes the new state of drone i according to the
protocol.

64 Case studies

coverage_state [N, n: posnat]: THEORY
BEGIN

drone_id: TYPE below (N)

6 location: TYPE [# x: real #]

8 state: TYPE+ = [#

9 prec: location,
10 self: location,
11 foll: location,
12 id: drone_id

13 #]

15 dmap: TYPE = [drone_id -> state]
16

17 %-- definition of system state

18 systemState: TYPE = [#

19 drones: dmap,

20 timesteps: upto(n)
21 #]

23 END coverage_state

Listing 6.7: Basics types of the protocol in PVS.

Function tick is needed to synchronize the different Coordination FMUs, as ex-
plained in Figure 6.9. In the initial theory (not shown), constant n is defined as
the ratio eps/stepsize, i.e., € /T. Every n timesteps, the new desired position of the
drone is computed by a step of the algorithm (exec_coverge).

Definitions for global parameters and for the initial swarm state are contained in
the theory initial.

Co-simulation

The following subsections describe the different FMUs for the specific case study.
The plant FMU is exported from OpenModelica, the controller FMU is a C program,
and the coordination FMU is a PVS theory.

The plant FMU

The quadcopter’s behavior as a function of the rotor speeds can be described by two
linearized models, one for position:

X g sinpy + g6 cos Py
¥yl = —g¢cosipy + g siny (6.2)
Z Cz(w1 + wy + w3 + wy)

6.2 Cooperative UAVs 65
1 exec_coverage: THEORY
2 BEGIN
3 IMPORTING initial, coverage_state[N]
4
5 exec_cvg(a,b,c: real, i: dromne_id): real =
6 IF (1 = 0)
7 THEN min_x
8 ELSE
9 IF (i = N - 1)
10 THEN max_x
11 ELSE eps*a + (1 - 2xeps)*b + eps*c
12 ENDIF
13 ENDIF
14
15 X(s: systemState, i: drome_id): real =
16 s‘drones (i) ‘self ‘x
17
18 exec_coverage(s: systemState) : systemState =
19 s WITH
20 [“drones :=
21 LAMBDA (i: drone_id):
22 LET xp = if i > O then X(s, i - 1)
23 else 0 endif,
24 x = X(s, i),
25 xf = if i < N - 1 then X(s, i + 1)
26 else max_x endif
27 IN
28 s ‘drones (i) WITH [‘self‘x := exec_cvg(xp, x, xf, i)
29 :]
30
31 tick(s: systemState) : systemState =
32 IF (s‘timesteps = n)
33 THEN
34 exec_coverage(s) WITH [timesteps := 0]
35 ELSE
36 s WITH [timesteps := s‘timesteps + 1]
3 ENDIF
38
39 kth_step(k: nat): RECURSIVE systemState =
40 IF (k = 0) THEN
41 initial
42 ELSE
43 tick (kth_step(k - 1))
44 ENDIF
45 MEASURE k
46
47 END exec_coverage

Listing 6.8: coordination algorithm in PVS.

66 Case studies

and one for attitude:

¢ Cop(wr — wy)
0 = Cg ((Ug - (Ul) . (63)
¥ Cy(wr —wr + w3 — wy)

In the above models, Cy, Cy, Cy, and C; are physical constants of the quadcopter
related to mass, rotational inertia, geometry, and rotor characteristics, g is the gravity
acceleration, and 1, is the desired yaw angle.

The FMU is automatically generated from OpenModelica and allows the values
of the parameters to be set before the beginning of the simulation.

The control FMU

For reasons of computational efficiency, control equations have been implemented
in a C function wrapped in a ‘hand-written” FMU. The position controller is defined
by the following equation, where ey = x — x; and s; = (sin¢;)/g etc. :

P —84(2Apx + A3ex) + ca(2ApY + Adey)
9(: — —Cd(Z)pr -+ /\%Jex) - S§(2)\P]/ +)L%Jey) ’ (64)
w: izt e

and the attitude controller is defined by

YL
Wy _C_;‘P_C_A(‘P_ch))
— _ 20 Mg (6.5)
w 40 AL
¥ i ort Al o Ul)
w1 %—j?e‘F%
pell I I S (6.6)
@ || gl |
s w, w-
w4 G- -7

where A, and A, are design parameters of the controller.

The coordination FMU

The coordination FMU is generated using the framework proposed in this thesis; it
embeds the PVS theory in Listing 6.10.

Theories fmu_coverage_state (Listing 6.9 and theory fmu_exec_coverage (List-
ing 6.10) are a simplification of coverage_state and exec_coverage. Equation 6.1
is expressed by function fmu_exec_cvg with the same algorithm as function exec_-
cvg above, whereas fmu_tick merges functions exec_coverage and tick above. It

6.2 Cooperative UAVs 67

fmu_coverage_state[N: posnat]: THEORY
BEGIN

drone_id: TYPE = below(N)

location: TYPE = real

@O Ul W=

state: TYPE+ = [#
prec: location,
self: location,
foll: location,
id: drone_id
#1]

= e e
TGk WO = OO

simstate: TYPE = [#

—_
o)

timesteps: integer,
st: state
#]

N = = =
S O

END fmu_coverage_state

Listing 6.9: State for the coordination algorithm.

can be easily proved that fmu_exec_cvg is equivalent to exec_coverage. There-
fore the properties that will be verified on exec_coverage also apply to fmu_exec_-
coverage and the validation performed using fmu_exec_coverage also applies to
exec_coverage.

A co-simulation run

Co-simulation is executed in the scenario reported in Figure 6.10a. The graphic ren-
dering of the co-simulation created with PVSio-web.

(a) Begin of a co-simulation run. (b) End of a co-simulation run.

Figure 6.10: Graphic rendering of the co-simulation.

Assuming as a reference the leftmost UAV in position 0, in the initial deployment
the second, third and fourth drones, are, respectively, placed 10, 20, and 50 meters
after the first one. The last UAV is placed at the last extreme of the line segment, i.e.
100 meters after the first drone.

68 Case studies

I fmu_exec_coverage: THEORY

2 BEGIN

3 IMPORTING fmu_initial,fmu_coverage_state [N]
4

5

fmu_exec_cvg(a, b, c: real, i: drone_id): real =

6 IF (i = 0)

7 THEN min

8 ELSE

9 IF (i = N - 1)

10 THEN max

11 ELSE eps*a + (1 - 2xeps)*b + eps*c
12 ENDIF

13 ENDIF

14

15 fmu_tick(s: simstate) : simstate =

16 LET xp = if (s‘st‘id > 0) then s‘st‘prec
else min endif,

18 x = s‘st‘self,

19 xf = if (s®stfid < N - 1) then s‘st‘foll
20 else max endif

21 IN

22 COND

23 s‘timesteps >= eps/stepsize ->

24 s WITH [‘st‘self := fmu_exec_cvg(xp, x, xf, s‘st‘id),
25 ‘timesteps := 0],

26 s‘timesteps < eps/stepsize ->

27 s WITH [‘timesteps := s‘timesteps + 1]
28 ENDCOND

29

30

31
32 END fmu_x_coverage

Listing 6.10: Executable theory for the coordination algorithm.

The co-simulation is run with a fixed stepsize of 0.05, assuming € = 1/4. Each
mobile drone will start to communicate with the adjacent UAV and to make some
position change, according to the formula shown above. After 10 simulated seconds
the coordination algorithm has reached the reference points (25,50, 75 for the mov-
ing drones with ID 2,3,4 respectively). Figure 6.10a shows the position of the drones
at the beginning of the simulation while Figure 6.10b shows the final positions.

Figure 6.11 shows in details the evolution of the x coordinate for each drone over
time. Co-simulation is used to validate the protocol. For example, the same co-
simulation shown above with € = 3/4 has a different result, shown in Figure 6.12,
because the drones oscillate and the algorithm does not converge.

Formal Verification

This section presents results on the formal verification using the abstract theory
exec_coverage. Various properties are proved, the main one being the convergence
of the drones to their target positions. Fundamental in the proof of convergence, are
properties of the sum of positions of the drones at each step and the constraint on €.

6.2 Cooperative UAVs 69

Relative position
3

0 5 10 15 20 25
Time (s)

Figure 6.11: Plot of the desired x of the drones applying the algorithm with e = 1/4

200 |—
150 |—

§ 100

1 |

8 of

2 50 —

2 — —_J ‘

R — |

& —
-50 L

Time (s)

Figure 6.12: Plot of the desired x of the drones applying the algorithm with e = 3/4.

Definitions and assumptions
For simplicity, it is assumed that the segment to be spanned by the drones starts at
the origin of the x axis, i.e., min = 0 and max = d, where d the length of the segment.
In the following, 4, i, j, and k denote natural numbers.

The following definitions will be used:

1. N > 3 is the total number of drones, numbered starting from 0;
2. L =d/(N —1) is the desired distance between adjacent drones;
3. X; = iL is the target position of drone i;

4. Xf‘ is the position of drone i at step k;

5. Xk = (X’é, cee, X’Z‘\]_l) is the placement of the drones at step k;
6. the initial placement is X;

7. € €]0,1] is the step size;

70 Case studies

N-1
8. k= Z X¥ is the sum of the drone coordinates at step k.
i=0

With the above definitions, we assume that:

1. the drones are numbered in order of increasing distance from X9, ie,
Vien—1X) < X?H; the drones with index i € [1 .. N — 2] will be called in-
ternal;

2. The first and last drones are initially positioned at X] = 0 and X%, ; = d,
respectively;

3. initially, each internal drone is placed before its target position:
Vien . n—21 X} < Xi;

With all the above assumptions it can be proved that:
Theorem 1 (no_cross). If € < 1/3, then Vi>oVicjo . n—2] Xf‘ < Xf.‘H.

the drones maintain their relative spatial ordering, i.e., their trajectories do not cross, with
the above assumptions and a constraint on e.

The Theorem can be expressed in PVS as follows (the assumption becomes an
AXIOM):

init_ax: AXIOM
FORALL (i:subrange(N-1)): initial(i) < initial(i+1) ;

no_cross: THEOREM
eps <= 1/3 IMPLIES
FORALL (k: nat):
FORALL (i:{ n:nat | n < N-1}):
kth_step(k) (i) < kth_step(k) (i+1)

Appendix A shows details on the proof strategy used for the Theorem.

Theorem 2 (reference position upper bound). If € < 1/2, then VeV . n—2] Xf‘ <
iL.

the target position of each drone is an upper bound for the position at each step.

Theorem 3 (non decreasing). (a) If € < 1/2, then Vit > ¢k () viXF = il =
k+1 _ ok
c

= c~.
the sums of the drone coordinates at each step are a non-decreasing sequence, and if all drones

are at their target position, then c**1 = ck,

6.3 Integrated Clinical Environment 71

Theorem 4 (convergence). Let € < 1/3and Vicjy n_g XY < L. We have that:
(@) Vi(ViXE = il) = Vo1 = cb), and (b) Yy (V)5 = oK) = v, Xk =
iL).

there is a relationship between the sequence in time (i.e., with respect to simulation steps) of
the sums of drone coordinates and the drone positions at each step. This relationship is used
in further theorems.

Theorem 5 (globally increasing). If there is a step k such that <1 = c* and one or more
drones are not at the target position, then there is a number h > 1 such that cKth+1 > ck+h,

[Elk(ck+1 = Ck A\ 3]23(X;< < iL /\Vi<]‘Xf~< = ZL))] - 3h21Ck+h+1 > Ck+h

the sum of the drone coordinates may remain constant for some number of steps, but will
eventually increase unless all drones have reached their target position.

Theorem 6 (limit). V(o . N—1],kelNklim Xf‘ =iL.
—00

the position of each drone approaches monotonically the drone’s target position as k increases.

The convergence of the algorithm cannot be proved with the same approach used
in (Olfati-Saber et al., 2007), because the required assumptions on the eigenvalues
of the Jacobian do not apply on the modified version of the algorithm used in this
case study.

6.3 Integrated Clinical Environment

The considered system is an Integrated Clinical Environment (ICE) system for in-
tensive care of patients (Goldman, 2008). It includes three medical devices:

* an infusion pump injecting a pain remedy drug in the bloodstream of the pa-
tient;

¢ a monitor for checking the vital signs of the patient;

* a supervisor device running a safety interlock application that automatically
stops the pump when the monitor detected parameters are out of range.

Clinicians can set up therapy parameters and monitor the patient’s condition by
interacting with the user interfaces of the devices. The visual appearance of the
medical devices is shown in Figure 6.13. A description of the user interface and
functionalities of the three devices is now provided.

72

Case studies

Monitor Supervisor Pump
(PVSio-web) (PVSio-web) (PVSio-web)

L [[

CO-SIMULATION ORCHESTRATION ENGINE

-
Patient
(OpenModelica)

Figure 6.13: Co-Simulation architecture of ICE case study.

¢ The front panel of the patient monitor shows two vital signs: oxygen saturation

level (SpOy) in the upper half of the monitor display, and heart rate (HR) in the
lower half of the monitor display. The current value of a vital sign is reported
using a numeric display. A trace display shows the temporal evolution for the
last 25 seconds of the monitored vital signs. Each monitored parameter has
safe range limits. The monitor triggers an alarm if these limits are exceeded.

The front panel of the pump provides a display and a number of buttons that
can be used to enter the Volume To Be Infused (VTBI) and the infusion rate, as
well as to start/stop the infusion. When the infusion is running, the display of
the pump shows the infusion rate, the VIBI, the volume already infused, and
the time to complete the infusion.

The supervisor device provides a front-panel that can be used for remote mon-
itoring of the pump and patient monitor. It is a portable device with a display
divided into two sections. The upper section mirrors the pump display, and
the lower section mirrors the monitor display.

6.3 Integrated Clinical Environment 73

const2

Input_rate gain3 add1 stateSpace gains
g AB| |~
MO >
f§ cCD
k=1 : k=k

gain2

I — {’>§E>>L4:::i702

k=188

Figure 6.14: Patient model in OpenModelica (block diagram).

|'I' AE0 | Writable | Model |Text View ‘ patient ‘/home/maurizio/WorkingAU/OM/patient.mo

1 model patient
Modelica.Blocks.Interfaces.RealInput rate(start = @) annotation(| ...); |
Modelica.Blocks.Interfaces.RealOutput hr annotation(| ...);
Modelica.Blocks.Interfaces.RealOutput sp02 annotation(

M

Real Cl(start = 0);
Real C2(start = 0);
Real C3(start = 0);

parameter Real k10 = 0.152/60;
parameter Real kl2 = 0.207/60;
parameter Real k13 = 0.040/60;
parameter Real k21 = 0.092/60;
parameter Real k31 = 0.048/60;
parameter Real V1 = 12;
equation
der(Cl) = -(k12+k13+k10)*C1 + k21*C2 + k31*C3 + 1/V1*rate;
der(C2) = k12*Cl - k12*C2;
der(C3) = k13*C1l - k31*C3;

sp02 = -C1*0.35 + 100;
hr = -C1*0.8 + 80;
annotation(
uses(Modelica(version = "3.2.2")));end patient;

Figure 6.15: Differential equations used in the OpenModelica model.

The devices are modeled in PVS. The models were developed in previous
work (Masci et al., 2015c; Harrison et al., 2017) by reverse engineering real medi-
cal devices.

The patient model is developed in this thesis in OpenModelica. It is based on a
pharmacokinetic model (Bequette, 2003) describing how the human body absorbs
anaesthetic drugs injected intravenously. The model uses 3-compartments to repre-
sent the changes of drug concentration in plasma (first compartment), highly per-

74 Case studies

1 fmi_module.create_FMU("Monitor",{

2 fmi: [{ name:"sp02", type:"Real", variability:"discrete",

3 scope:"input", wvalue:"O0" 1},

4 { name:"HR", type:"Real", variability:"discrete",

5 scope:"input", value:"O0" 1},

6 { name:"spO02_output", type:"Real", variability:"discrete",
7 scope:"output", value:"O" 1},

8 { name:"HR_output", type:"Real", variability:"discrete",
9 scope:"output", value:"O" 1},

10 { name:"isOn", type:"Boolean", variability:"discrete",

11 scope:"output", value:"0" }],

12 init: "init",

13 tick: "tick" });

Listing 6.11: Generation of the FMU of the patient monitor.

fused tissues (second compartment) and scarcely perfused tissues (third compart-
ment).

The structure of the developed OpenModelica model is shown in Figure 6.14.
The equations of the 3-compartment model are embedded in the stateSpace
block. Figure 6.15 shows the differential equations of the kinetic behavior of the
3-compartment scheme in OpenModelica textual language. The values of the pa-
rameters are taken from (Bequette, 2003). The structure of the model was inspired
by the Simulink model developed in (Pajic et al., 2014).

The FMUs for the device models are automatically generated using the devel-
oped framework. Listing 6.11 shows the specific invocation of the framework’s APIs
for generating the FMU for the patient monitor. The FMU of the patient model is
generated using OpenModelica.

Co-simulation run

Co-simulation runs can be executed to validate the behavior of the supervisor, e.g.,
to check that, during an infusion, the supervisor device automatically stops the in-
fusion if the patient monitor signals that both monitored vital signs have abnormal
values.

Figure 6.16 shows a diagram of the monitored vital signs for a co-simulation run,
as well as the value of the infusion rate at the bottom of the graph. When the infusion
is started, the values of HR and SpO, start to decrease.

The threshold for triggering an alarm for HR is 60 beats per minute, while the
threshold for Sp0, is 88%. In the simulated scenario, both vital signs exceed the
respective thresholds after 25 minutes (1,500 seconds in Figure 6.16).

At this point, the supervisor stops the infusion — the value of the infusion rate
in the graph becomes 0. When the infusion is paused, the values of HR and Sp0,
start to get back to a normal range.

6.3 Integrated Clinical Environment 75

Manual start of infusion Automatic stop Manual resume End of infusion

100

80—

60

40

20

0— s F—
0 500 1000 1500 2000
(seconds)
—— {patient}.patientInstance.hr
{patient}.patientInstance.sp02
= {pump}.pumplnstance.outputrate

Figure 6.16: Vital signs and infusion rate in a co-simulation run.

97 96

75 74

73 72

Figure 6.17: Monitor display provides little insight if trace duration is 25 seconds.

The introduction of the patient model in the co-simulation made it possible to
gain useful insights on the device models. For example, it is interesting to note that
the setup of the display of the patient monitor, including range and temporal dura-
tion of the trace, needs to be carefully evaluated, otherwise the temporal evolution
of the vital signs on the display provides little information about what is happening.

The initial setup used in the co-simulation adopted a temporal duration of 25
seconds for the trace. As a result, the trace was always showing a flat line with few
variations (see Figure 6.17) rather than the diagram shown in Figure 6.16.

These information can be fed in the model, e.g., by adding constraints on the pa-
rameters that can be used to setup the device. This will help formal methods expert
make sure that requirements of the device are verified under correct hypotheses

76 Case studies

Figure 6.18: Displays shown by the pump when clearing settings. Buttons pressed
necessary to perform the clear settings sequence are highlighted in the pictures.

about the device setup.

Formal verification

In this section it is shown that PVS allows to check a use-related safety requirements.

The considered requirement is taken from a set of generic safety requirements
identified by the Food and Drug Administration (FDA) for infusion pumps (Arney
etal., 2012). This requirement is specific of the infusion pump. It aims to mitigate the
risk of inadvertently changing the settings of the infusion pump as a consequence of
accidental button presses performed on the front-panel of the pump. The require-
ment reads as follows:

R1: Clearing the pump settings shall require confirmation.

The considered requirement contains two main concepts: clearing settings and
require confirmation. In the pump under analysis, clearing settings can be performed
by turning the pump off and then on. After this action, settings are not cleared
yet — the pump shows a confirmation screen where the user needs to confirm the
operation. The confirmation screen is characterized by a top line display showing
a query to the user (clear setup?). In this screen, two actions are provided, one to
confirm the operation, the other to abort.

Figure 6.18 shows the confirmation screen presented by the pump after turning
the pump off and on. The string CLEAR SETUP shown at the top of the screen is the

6.3 Integrated Clinical Environment 77

query. The labels on the buttons at the bottom of the screen indicate the functional-
ities of the buttons. Pump settings are cleared if the the button of the left (clear) is
pressed. Settings are not cleared if the other button (keep) is pressed.

These functionalities are captured in the PVS model of the pump. Formal meth-
ods experts can use the PVSio-web prototype to demonstrate these functionalities
of the PVS model to other team members.

Demonstrations performed with the PVSio-web prototype allows to check the
key sequence for specific scenarios. The PVS theorem prover can be used to ex-
tend these scenario-based analyses to all possible scenarios. That is, the theorem
prover can be used to check that, in all pump states, if the clear settings sequence is
performed, the pump will always ask confirmation to the user before clearing the
settings.

Two expressions are created to specify the identified concepts in terms of actions
and states of the pump specification:

clear_settings(st: alaris): alaris = power_on(power_off(st))

require_confirmation(st: alaris): bool = st‘topline = clearsetup

The first expression (clear_settings) is a transition function that takes the cur-
rent device state as argument and returns a new devices state. It uses the composi-
tion of two actions, power_on and power_off defined in the PVS specification of the
pump, to turn off and then on the pump.

The second expression (require_confirmation) is a function that returns a
boolean type. The function checks whether the state attribute representing the top
line display of the pump is presenting a query to the user. In the developed model,
this is indicated by an enumerated constant clearsetup.

The following theorem uses the expressions defined above to check whether the
pump requires confirmation whenever the user tries to clear settings:

R1: THEOREM
FORALL (st: alaris):
require_confirmation(clear_settings(st))

In the formalization, the universal quantifier FORALL is used to indicate that the re-
quirement should hold in all possible states.

For the analysis of theorem R1, the grind rule can be conveniently used to com-
plete the proof. It performs automatic expansion of terms and heuristic instantiation
of definitions. Using this rule on the initial formulation of R1, the theorem prover
finds a counter-example.

The counter-example indicates that the pump does not require confirmation
when the current value of VTBI, infusion rate, and time are already 0.

78 Case studies

Formal methods experts can use the PVSio-web prototype to demonstrate this
counter-example to other team members. A discussion with domain specialists is
in fact usually necessary at this point to understand whether this is a concern, or
whether this case can be safely discarded. In this case, it can be argued that this is
not a concern — it is not necessary to ask confirmation to reset a value when the
value is already 0.

The initial formulation of the theorem is therefore refined to exclude the identi-
tied case:

Rivl: THEOREM
FORALL (st: (powered_on?)):
(device(st) ‘vtbi /= 0 OR
device(st) ‘infusionrate /= 0 OR
device(st) ‘time /= 0)
IMPLIES
require_confirmation(clear_settings(st))

clear_settings(st: alaris): alaris =
power_on(power_off (st))

require_confirmation(st: alaris): bool =
st‘topline = clearsetup

In the new formulation, predicate subtyping is used to narrow down the set of states to
those where the pump is powered on — the counter-example returned by the theo-
rem prover indicates also that the sequence for clearing settings can be initiated only
when the device is powered on. A predicate subtype is used to add this condition in
the theorem. This is indicated by adorning the predicate name with round brackets.
The conditions for VIBI, infusion rate and time are introduced in the theorem using
disjunction and implication (in the PVS syntax, the symbol for inequality is /=).

Re-running the proof on theorem Riv1 succeeds, indicating that the pump de-
sign complies with this formulation of the requirement.

Chapter 7

Conclusions

This thesis proposes an approach and a framework for model-based design of
Cyber-Physical Systems (CPS) based on co-simulation and formal verification. A
template is shown for developing logic theories in the formal language of the Pro-
totype Verification System (PVS) that can be integrated as a standard element in
a co-simulation framework and formally analyzed by the theorem prover of PVS.
Co-simulation allows validation of the system behavior, theorem prover technology
allows the generalization of properties to all the states of the system.

The developed framework has been applied to some case studies from differ-
ent application domains. The case studies demonstrate how the co-simulation may
provide useful information for the verification process. One of the advantages of
using PVS as modeling tool, is the possibility of generating interactive prototypes:
the developed framework supports the automatic creation of PVS-based FMU with
a Graphical User Interface.

These integrated simulations provide formal methods experts with a convenient
means to explain formal models and formal analysis results to a multi-disciplinary
team of developers that may not be familiar with formal methods. This engagement
supports validation activities necessary to check whether formal models correctly
capture the intended behavior of the system, and to discuss formal analysis results.
This has been demonstrated using a realistic case study in the medical domain.

79

Appendix A

An example of PVS Proof

Excerpts from the proof trace of Theorem 1 (see Section 6.2) are shown in this section.
The first step is a simple rearrangement (flattening) of the goal:

no_cCcross :

{1} eps <=1 / 3 IMPLIES
(FORALL (k: nat):
FORALL (i: {n: nat | n < N - 1}):
X(kth_step(k), i) < X(kth_step(k), i + 1))

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,
this simplifies to:

no_cross :

{-1} eps <=1/ 3

{1} FORALL (k: nat):
FORALL (i: {n: nat | n < N - 1}):
X(kth_step(k), i) < X(kth_step(k), i + 1)

Then, the induct command causes the theorem prover to start a proof by induc-
tion on k, generating the base case no_cross.1 and the induction step no_cross.2:

81

82 An example of PVS Proof

Rule? (induct k)

Inducting on k on formula 1,
this yields 2 subgoals:
no_cross.1 :

[-1] eps<=1/3

{1} FORALL (i: {n: nat | n < N - 1}):
X(kth_step(0), i) < X(kth_step(0), i + 1)

The base case is proved in few steps (not shown) using two axioms (not shown)
corresponding to Definition 6 and Assumption 1, added to the antecedents with the
lemma.

The induction step is:

no_cross.2 :
[-1] eps<=1/3

{1} FORALL j:
(FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), i + 1))
IMPLIES
(FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j + 1), i) < X(kth_step(j + 1), i + 1))

The outermost quantifier is eliminated by the skolem command, which replaces
the occurrences of the induction variable j in formula {1} with the new constant j,
which “happens” to have the same name of the variable it replaces (another name
could have been chosen, or generated by the theorem prover):

Rule? (skolem 1 j)

For the top quantifier in 1, we introduce Skolem constants: j,
this simplifies to:

no_cross.2 :

[-1] eps <=1/ 3

{1} (FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), 1) < X(kth_step(j), i + 1))
IMPLIES
(FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j + 1), i) < X(kth_step(j + 1), i + 1))

After flattening and skolemizing again, we obtain:

83

no_cross.2 :

[-1] FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), i + 1)

[-2] eps <=1/ 3

{1} X(kth_step(j + 1), i) < X(kth_step(j + 1), i + 1)

where jisa constant in formulas [-1] and {1}, while i is a variable in [-1] and a constant
in {1}. The definition of kth_step is expanded in {1}, and then the one of tick:

then the

Rule? (rewrite kth_step 1)

Rule? (expand tick 1 1)

Expanding the definition of tick,

this simplifies to:

no_cross.2 :

[-1] FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), i + 1)

[-2] eps <=1/ 3

{1} X(IF (kth_step(j) ‘timesteps = n)
THEN exec_coverage(kth_step(j)) WITH [timesteps := 0]
ELSE kth_step(j) WITH [timesteps := 1 + kth_step(j) ‘timesteps]
ENDIF,
i)
< X(tick(kth_step(j)), 1 + i)

The first argument of X is a conditional expression. The lift-if command pushes
the conditional to the outermost level:

84 An example of PVS Proof

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

no_cross.2 :

[-1] FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), i + 1)

[-2] eps <=1/ 3

{1} IF (kth_step(j) ‘timesteps = n)
THEN X(exec_coverage(kth_step(j)) WITH [timesteps := 0], i) <
X(tick(kth_step(j)), 1 + i)
ELSE X(kth_step(j) WITH [timesteps := 1 + kth_step(j) ‘timesteps],
i)
< X(tick(kth_step(j)), 1 + i)
ENDIF

The split command expands the conditional in two complementary implications,
ie.,

(kth_step(j) ‘timesteps = n) IMPLIES
X(exec_coverage(kth_step(j)) WITH [timesteps := 0], i) <
X(tick(kth_step(j)), 1 + i)

and

NOT (kth_step(j) ‘timesteps = n) IMPLIES
X(kth_step(j) WITH [timesteps := 1 + kth_step(j) ‘timesteps], i) <
X(tick(kth_step(j)), 1 + i)

thus yielding two subgoals. The first one has the more complex subproof, since
it represents the case when the system state is updated:
assert

no_cross.2.1 :

[-1] FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), i + 1)

[-2] eps <=1/ 3

{1} (kth_step(j) ‘timesteps = n) IMPLIES
X(exec_coverage(kth_step(j)) WITH [timesteps := 0], i) <
X(tick(kth_step(j)), 1 + i)

85

The complexity of the proof is mainly due to the structure of the functions in-
volved, but the proof strategy is quite simple. First, the sequent is reduced to the

form

no_cross.2.1

[-1]
[-2]

(kth_step(j) ‘timesteps = n)

FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), i + 1)

eps <=1/ 3

X(exec_coverage (kth_step(j)), i) < X(tick(kth_step(j)), 1 + i)

Then, the inequality in {1} is transformed by repeated expansions of x_coverage
and tick. This produces many branches due to the conditional expressions in the
functions. In each branch, the resulting inequalities are solved by instantiating the
induction hypothesis [1] and doing algebraic manipulations. For example, the fol-
lowing sequent:

no_cross.2.1.1.1.1.1.1 :

{-1}
[-2]
[-3]
[-4]

[-5]

{1}

1+i<N-1
i>0
(kth_step(j) ‘timesteps = n)
FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), i + 1)
eps <=1/ 3
exec_cvg(X(kth_step(j), i - 1), X(kth_step(j), 1),
X(kth_step(j), 1 + i), 1)
<
exec_cvg(X(kth_step(j), i), X(kth_step(j), 1 + 1),
X(kth_step(j), 2 + i), 1 + i)

is on the branch corresponding to the conditions kth_step(j)'timesteps = n, i > 0,
and i < N — 2. Expanding exec_cvg yields, with a couple of transformations,

86

An example of PVS Proof

no_cross.2.1.1.1.1.1.1 :

[-1]
[-2]
[-3]
[-4]

[-5]

1+i<N-1
i>0
(kth_step(j) ‘timesteps = n)
FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), 1 + i)
eps <= 1/3
X(kth_step(j), i) - 2 x (X(kth_step(j), i) * eps) +
eps * X(kth_step(j), i - 1)
+ eps * X(kth_step(j), 1 + i)
<
X(kth_step(j), 1 + i) - 2 * (X(kth_step(j), 1 + i) * eps) +
eps * X(kth_step(j), 2 + i)
+ eps * X(kth_step(j), i)

The induction hypothesis {4} is then instantiated successively withi — 1,7, and i +
1, obtaining a sequent with the three inequalities [-5], [-6], and [-7] in the antecedent:

no_cross.2.1.1.1.1.1.1 :

[-1]
[-2]
[-3]
[-4]

{-5}
[-6]
[-7]
[-8]

1+1i<N-1

i>0

(kth_step(j) ‘timesteps = n)
FORALL (i: {n: nat | n < N - 1}):

X(kth_step(j), i) < X(kth_step(j), 1 + i)
X(kth_step(j), i + 1) < X(kth_step(j), 1 + (1 + 1))
X(kth_step(j), i) < X(kth_step(j), 1 + i)
X(kth_step(j), i - 1) < X(kth_step(j), 1 + (i - 1))
eps <= 1/3

X(kth_step(j), 1) - 2 * (X(kth_step(j), i) * eps) +

eps * X(kth_step(j), i - 1)

+ eps * X(kth_step(j), 1 + i)

<

X(kth_step(j), 1 + i) - 2 * (X(kth_step(j), 1 + i) * eps) +
eps * X(kth_step(j), 2 + i)

+ eps * X(kth_step(j), i)

Further manipulations and some utility lemmas (not shown) make it possible to
assemble an antecedent formula matching the consequent, thus solving the subgoal:

87

no_cross.2.1.1.1.1.1.1.1.1.1.1 :
[-1] X(kth_step(j), i) - 3 * eps * X(kth_step(j), i) <
X(kth_step(j), 1 + i) - 3 * eps * X(kth_step(j), 1 + i)
[-2] X(kth_step(j), i - 1) * eps < X(kth_step(j), 2 + i) * eps
[-3] 1 +i<N-1
[-4] i>0
[-56] (kth_step(j)‘timesteps = n)
[-6] FORALL (i: {n: nat | n < N - 1}):
X(kth_step(j), i) < X(kth_step(j), 1 + i)
[-7] X(kth_step(j), 1 + i) < X(kth_step(j), 2 + i)
[-8] X(kth_step(j), i) < X(kth_step(j), 1 + i)
[-9] X(kth_step(j), i - 1) < X(kth_step(j), i)
[-10] eps <= 1/3

{1} ((X(kth_step(j), i - 1)) * eps) + (X(kth_step(j), i)) -
3 * ((X(kth_step(j), 1)) * eps)
<
((X(kth_step(j), 2 + 1)) * eps) + (X(kth_step(j), 1 + 1)) -
3 x ((X(kth_step(j), 1 + 1)) * eps)

Rule? (add-formulas -1 -2)
Adding formulas -1 and -2,

This completes the proof of no_cross.2.1.1.1.1.1.1.1.1.1.1.

Appendix B

Publications

Peer reviewed workshop papers

1. M. Palmieri, C. Bernardeschi, P. Masci, “Co-simulation of semi-autonomous
systems: the line follower robot case study”, International Conference on Soft-
ware Engineering and Formal Methods, pages:423-437, 2017. Candidate’s con-
tributions: Designed and implemented the co-simulation interface, inspected
the case study, run co-simulation experiments.

2. M. Palmieri, C. Bernardeschi, A. Domenici, A. Fagiolini, “Co-simulation of
UAVs with INTO-CPS and PVSio-web”, Federation of International Conferences
on Software Technologies: Applications and Foundations, pages:52-57, 2018. Can-
didate’s contributions: Implemented the model of the UAV, created the graphic
interface and run co-simulation experiments.

3. M. Palmieri, C. Bernardeschi, P. Masci, “A Flexible Framework for FMI-Based
Co-Simulation of Human-Centred Cyber-Physical Systems”, Federation of In-
ternational Conferences on Software Technologies: Applications and Foundations,
pages:21-33, 2018. Candidate’s contributions: Designed and implemented
the framework, used the framework to create the case study, run co-simulations
experiments and analyzed the outputs.

4. A. Domenici, A. Fagiolini, M. Palmieri, “Integrated simulation and formal
verification of a simple autonomous vehicle”, International Conference on Soft-
ware Engineering and Formal Methods, pages:300-314, 2017. Candidate’s contri-
butions: Modelled the plant in Simulink, created the ad-hoc communication
pattern, wrote the executable theory of the control, run co-simulation experi-
ments.

5. C. Bernardeschi, M.Di Natale, G. Dini, M. Palmieri, “Verifying Data Secure
Flow in AUTOSAR Models by Static Analysis”, ICISSP, pages:704-713, 2017.

89

90 Publications

Candidate’s contributions: Modelled the case study, investigated the formal
notation.

6. C. Bernardeschi, A. Domenici, M. Palmieri, “Towards Stochastic FMI Co -
Simulations: Implementation of an FMU for a Stochastic Activity Networks
Simulator”, Federation of International Conferences on Software Technologies: Ap-
plications and Foundations, pages:34-44, 2018. Candidate’s contributions: Cre-
ated the FMI interface for Mobius, implemented the watertank model on Mo-
bius, run co-simulation experiments.

7. C. Bernardeschi, A. Fagiolini, M. Palmieri, G. Scrima, F. Sofia, “ROS/Gazebo
Based Simulation of Co-operative UAVs”, International Conference on Modelling
and Simulation for Autonomous Systems, pages:321-334, 2018. Candidate’s con-
tributions: Conceptualized the communication pattern, supervised the im-
plementation of the communication pattern

8. M. Palmieri, H. D. Macedo, “Automatic Generation of Functional Mock-up
Units from Formal Specifications”, Co-sim CPS 2019,2019. Candidate’s contri-
butions: (Conceptualization of the methodology proposed, implementation
of the templates for FMU generation, informal verification of the proposed
methodology)

9. C.T. Hansen, M. Palmieri, C. Gomes, K. Lausdahl, H. D. Macedo, N. Battle, I
G. Larsen, “Towards Reuse of Synchronization Algorithms in Co-simulation
Frameworks ”, Co-sim CPS 2019, 2019. Candidate’s contributions: Implemen-
tation of initial features of the new master algorithm, discussed the features of
the proposed architecture

10. C. Bernardeschi, A. Domenici, M. Palmieri, “Modeling and Simulation of At-
tacks on Cyber-physical Systems”, ICISSP, 2019. Candidate’s contributions:
Conceptualization of the formalization of the attacks, modeling the attacks in
the case study, creation of the case study, analysis of the case study:.

Journal papers

1. M. Palmieri, C. Bernardeschi, P. Masci , “A Framework for FMI-based Co-
Simulation of Human-Machine Interfaces”, International Journal on Software and
Systems Modeling, 2019. Candidate’s contributions: Designed, implemented
and extended the framework, formally verified the framework, used the frame-
work to create the case study, extended the case study with a new model, run
co-simulations experiments and analyzed the outputs.

91

2. C. Vallati, S. Brienza, M. Palmieri, G. Anastasi, “Improving network forma-
tion in IEEE 802.15. 4e DSME”, Computer Communications, pages:01-09, 2017.
Candidate’s contributions: Implemented the protocol, designed the experi-
ments, investigated the proposed improvements, run simulations, performed
statistical analysis on data collected by experiments.

3. C. Bernardeschi, M. Di Natale, G. Dini, M. Palmieri, “Verifying data secure
flow in AUTOSAR models”, Journal of Computer Virology and Hacking Techniques,
pages:269-289, 2018. Candidate’s contributions: Modeled the case study, in-
vestigated the formal notation, extended the formal notation, supervised the
implementation of the tool.

Papers under review

1. C.Bernardeschi, A. Domenici, M. Palmieri, “Formalization and Co-simulation
of Attacks on Cyber-physical Systems”, Journal of Computer Virology and Hack-
ing Techniques. Candidate’s contributions: Conceptualization of the formal-
ization of attacks, extended the formalization to include interactive attacks,
modeling the attacks in the case study, analysis of the case study, formal ver-
ification of the case study, formal specification of the plant used in the case
study.

Bibliography

Abel, A., Blochwitz, T., Eichberger, A., Hamann, P, and Rein, U. (2012). Func-
tional mock-up interface in mechatronic gearshift simulation for commercial ve-
hicles. In Proceedings of the 9th International MODELICA Conference, pages 775-780.
Linkdping University Electronic Press.

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer
Science, 126(2):183-235.

Arney, D., Goldman, J. M., Bhargav-Spantzel, A., Basu, A., Taborn, M., Pappas, G.,
and Robkin, M. (2012). Simulation of medical device network performance and

requirements for an integrated clinical environment. Biomedical Instrumentation &
Technology, 46(4):308-315.

Asarin, E., Dang, T., and Maler, O. (2002). The d/dt tool for verification of hybrid
systems. In Brinksma, E. and Larsen, K. G., editors, Computer Aided Verification,
pages 365-370, Berlin, Heidelberg. Springer Berlin Heidelberg.

Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., and Neema, S. (2006).
Developing applications using model-driven design environments. Computer,
39(2):33—40.

Behrmann, G., David, A., and Larsen, K. G. (2006). A Tutorial on UPPAAL 4.0. http:

//www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf.

Bequette, B. W. (2003). Process control: modeling, design, and simulation. Prentice Hall
Professional.

Bernardeschi, C. and Domenici, A. (2016). Verifying safety properties of a nonlinear
control by interactive theorem proving with the Prototype Verification System.
Inf. Process. Lett., 116(6):409—415.

Bernardeschi, C., Domenici, A., and Masci, P. (2018). A PVS-Simulink Integrated
Environment for Model-Based Analysis of Cyber-Physical Systems. IEEE Trans.
Software Eng., 44(6):512-533.

93

http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

94 BIBLIOGRAPHY

Bernardeschi, C., Masci, P., Caramella, D., and Dell’Osso, R. (2019). The benefits of
using interactive device simulations as training material for clinicians: an experi-
ence report with a contrast media injector used in CT. SIGBED Rev., Special Issue
on Medical Cyber-Physical Systems Workshop 2018 (MCPS’18), 16(2):41-45.

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Claufs, C., Elmqvist, H., Friedrich,
M., Junghanns, A., Maus£, J., Neumerkel, D., Olsson, H., and Viel, A. (2012). Func-
tional Mockup Interface 2.0: The Standard for Tool independent Exchange of Sim-
ulation Models. In Proc. of the 9th Intl. Modelica Conference, pages 173-184. The
Modelica Association.

Bolton, M. L., Siminiceanu, R. I., and Bass, E. J. (2011). A systematic approach
to model checking human-automation interaction using task analytic models.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
41(5):961-976.

Broenink, J. F. (1999). 20-sim software for hierarchical bond-graph/block-diagram
models. Simulation Practice and Theory, 7(5-6):481-492.

Campos, J. C. and Harrison, M. D. (2009). Interaction engineering using the IVY
tool. In Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive
computing systems, pages 35—44. ACM.

Chaudemar, J.-C., Savicks, V., Butler, M., and Colley, J. (2014). Co-simulation of
Event-B and Ptolemy Il Models via FMI. In ERTS 2014 “Embedded real time software
and systems”, Toulouse, FR.

Cimatti, A., Griggio, A., Mover, S., and Tonetta, S. (2015). Hycomp: An smt-based
model checker for hybrid systems. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 52—-67. Springer.

Clarke, E. M. (1997). Model checking. In Ramesh, S. and Sivakumar, G., editors,
Foundations of Software Technology and Theoretical Computer Science, pages 54-56,
Berlin, Heidelberg. Springer Berlin Heidelberg.

CNNNews (2018a). Tesla in autopilot mode crashes into fire truck. http://money.
cnn.com/2018/01/23/technology/tesla-fire-truck-crash/index.html.

CNNNews (2018Db). Uber self-driving car kills pedestrian in first fatal
autonomous crash. http://money.cnn.com/2018/03/19/technology/
uber-autonomous-car-fatal-crash/index.html.

Couto, L. D., Basagiannis, S., Ridouane, E. H., Mady, A. E.-D., Hasanagic, M., and
Larsen, P. G. (2018). Injecting Formal Verification in FMI-Based Co-simulations of

http://money.cnn.com/2018/01/23/technology/tesla-fire-truck-crash/index.html
http://money.cnn.com/2018/01/23/technology/tesla-fire-truck-crash/index.html
http://money.cnn.com/2018/03/19/technology/uber-autonomous-car-fatal-crash/index.html
http://money.cnn.com/2018/03/19/technology/uber-autonomous-car-fatal-crash/index.html

BIBLIOGRAPHY 95

Cyber-Physical Systems. In Cerone, A. and Roveri, M., editors, Software Engineer-
ing and Formal Methods, pages 284-299, Cham. Springer International Publishing.

De Moura, L. and Bjerner, N. (2011). Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9):69-77.

Dutertre, B. (1996). Elements of mathematical analysis in pvs. In Proceedings of the
9th International Conference on Theorem Proving in Higher Order Logics, TPHOLSs "96,
pages 141-156, Berlin, Heidelberg. Springer-Verlag.

Franceschini, G. and Macchietto, S. (2008). Model-based design of experiments for
parameter precision: State of the art. Chemical Engineering Science, 63(19):4846 —
4872. Model-Based Experimental Analysis.

Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., and Maler, O. (2011). Spaceex: Scalable verification of hybrid
systems. In Ganesh Gopalakrishnan, S. Q., editor, Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV), LNCS. Springer.

Fritzson, P., Aronsson, P., Lundvall, H., Nystrom, K., Pop, A., Saldamli, L., and Bro-
man, D. (2005). The Open Modelica Modeling, Simulation, and Development
Environment. In In Proceedings of the 46th Conference on Simulation and Modeling of
the Scandinavian Simulation Society (SIMS2005), pages 83-90.

Fulton, N., Mitsch, S., Quesel, J.-D., V6lp, M., and Platzer, A. (2015). Keymaer-
aAdx: An axiomatic tactical theorem prover for hybrid systems. In Felty, A. P. and
Middeldorp, A., editors, Automated Deduction - CADE-25, pages 527-538, Cham.
Springer International Publishing.

Garro, A. and Falcone, A. (2015). On the Integration of HLA and FMI for Supporting
Interoperability and Reusability in Distributed Simulation. In Proceedings of the
Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,
DEVS’15, pages 9-16. Society for Computer Simulation International.

Goderis, A., Brooks, C., Altintas, L., Lee, E. A., and Goble, C. (2007). Composing dif-
ferent models of computation in Kepler and Ptolemy II. In International Conference
on Computational Science, pages 182-190. Springer.

Goldman, J. M. (2008). Medical devices and medical systems-Essential safety re-
quirements for equipment comprising the patient-centric integrated clinical envi-
ronment (ICE)-Part 1: General requirements and conceptual model. ASTM Inter-
national.

Gomes, C., Thule, C., Broman, D., Larsen, P. G., and Vangheluwe, H. (2018). Co-
simulation: A survey. ACM Comput. Surv., 51(3):49:1-49:33.

96 BIBLIOGRAPHY

Harrison, M. D., Freitas, L., Drinnan, M., Campos, J. C., Masci, P, di Maria, C.,
and Whitaker, M. (2019). Formal techniques in the safety analysis of software

components of a new dialysis machine. Science of Computer Programming, 175:17—
34.

Harrison, M. D., Masci, P.,, Campos, J. C., and Curzon, P. (2017). Verification of
User Interface Software: the Example of Use-Related Safety Requirements and
Programmable Medical Devices. IEEE Transactions on Human-Machine Systems, to

appear.

Heitmeyer, C., Kirby, J., Labaw, B., and Bharadwaj, R. (1998). SCR: A toolset for
specifying and analyzing software requirements. In International Conference on
Computer Aided Verification, pages 526-531. Springer.

Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings of the 11th An-
nual IEEE Symposium on Logic in Computer Science, LICS "96, pages 278-292, Wash-
ington, DC, USA. IEEE Computer Society.

Henzinger, T. A., Ho, P-H., and Wong-Toi, H. (1997). Hytech: A model checker
for hybrid systems. In Grumberg, O., editor, Computer Aided Verification, pages
460463, Berlin, Heidelberg. Springer Berlin Heidelberg.

Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994). Symbolic model
checking for real-time systems. Information and computation, 111(2):193-244.

Jensen, J. C., Chang, D. H., and Lee, E. A. (2011). A model-based design methodol-
ogy for cyber-physical systems. In 2011 7th International Wireless Communications
and Mobile Computing Conference, pages 1666-1671.

Krammer, M., Marko, N., and Benedikt, M. (2016). Interfacing Real-Time Systems
for Advanced Co-Simulation-The ACOSAR Approach. In Software Technologies:
Applications and Foundations (STAF) Doctoral Symposium/Showcase, pages 32—-39.

Larsen, P. G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., and Verhoef, M.
(2010). The overture initiative integrating tools for vdm. ACM SIGSOFT Software
Engineering Notes, 35(1):1-6.

Larsen, P. G., Fitzgerald, J., Woodcock, J., Fritzson, P, Brauer, J., Kleijn, C., Lecomte,
T., Pfeil, M., Green, O., Basagiannis, S., et al. (2016). Integrated tool chain for
model-based design of Cy-Physical Systems: The INTO-CPS project. In Modelling,
Analysis, and Control of Complex CPS (CPS Data), 2016 2nd International Workshop on,
pages 1-6. IEEE.

Leveson, N. (2011). Engineering a safer world. MIT Press.

BIBLIOGRAPHY 97

Masci, P, Mallozzi, P., DeAngelis, E., Serugendo, G., and Curzon, P. (2015a). Us-
ing PVSio-web and SAPERE for rapid prototyping of user interfaces in Integrated
Clinical Environments. In Proceedings of the Workshop on Verification and Assurance
(Verisure2015), co-located with CAV2015.

Masci, P, Oladimeji, P.,, Zhang, Y., Jones, P., Curzon, P., and Thimbleby, H. (2015b).
PVSio-web 2.0: Joining PVS to HCI, pages 470-478. Springer International Publish-
ing.

Masci, P., RukSenas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon, P,
and Thimbleby, H. (2015c). The benefits of formalising design guidelines: A case
study on the predictability of drug infusion pumps. Innovations in Systems and
Software Engineering, 11(2):73-93.

Masci, P.,, Zhang, Y., Jones, P., Curzon, P., and Thimbleby, H. (2014a). Formal ver-
ification of medical device user interfaces using PVS. In ETAPS/FASE2014, 17th

International Conference on Fundamental Approaches to Software Engineering. Springer
Berlin Heidelberg.

Masci, P., Zhang, Y., Jones, P. L., Oladimeji, P., D’Urso, E., Bernardeschi, C., Curzon,
P., and Thimbleby, H. (2014b). Combining PVSio with Stateflow. In NASA Formal
Methods - 6th International Symposium, NFM 2014, Houston, TX, USA, April 29 - May
1, 2014. Proceedings, pages 209-214.

Mauro, G., Thimbleby, H., Domenici, A., and Bernardeschi, C. (2017). Extending
a user interface prototyping tool with automatic MISRA C code generation. In
Dubois, C., Masci, P, and Méry, D., editors, Proceedings of the Third Workshop on
Formal Integrated Development Environment, Limassol, Cyprus, November 8, 2016,
volume 240 of Electronic Proceedings in Theoretical Computer Science, pages 53—66.
Open Publishing Association.

Mufioz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A., Consiglio, M., and
Chamberlain, J. (2015). Daidalus: Detect and avoid alerting logic for unmanned
systems. In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pages
5A1-1-5A1-12.

Mufioz, C. (2003). Rapid prototyping in PVS. Technical Report NIA 2003-03,
NASA /CR-2003-212418, National Institute of Aerospace, Hampton, VA, USA.

Nagele, T. and Hooman, J. (2017). Co-simulation of cyber-physical systems using
HLA. In Proceedings of the IEEE Computing and Communication Workshop and Con-
ference, CCWC’17, pages 1-6.

98 BIBLIOGRAPHY

Oladimeji, P., Masci, P, Curzon, P, and Thimbleby, H. (2013). PVSio-web: a tool
for rapid prototyping device user interfaces in PVS. In FMIS2013, 5th International
Workshop on Formal Methods for Interactive Systems, London, UK, June 24, 2013.

Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215-233.

Owre, S., Rushby, J., and Shankar, N. (1992). PVS: A prototype verification system.
In Kapur, D., editor, Automated Deduction — CADE-11, volume 607 of Lecture Notes
in Computer Science, pages 748-752. Springer Berlin Heidelberg.

Owre, S., Rushby, J., Shankar, N., and Von Henke, F. (1995). Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions
on Software Engineering, 21(2):107-125.

Owre, S., Shankar, N., Rushby, J. M., and Stringer-Calvert, D. W. (1999). PVS lan-
guage reference. Computer Science Lab., SRI International, Menlo Park, CA, 1(2):21.

Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., and Lee, I. (2014).
Model-driven safety analysis of closed-loop medical systems. IEEE Transactions
on Industrial Informatics, 10(1):3-16.

Palensky, P., Meer, A. A. V. D., Lopez, C. D., Joseph, A., and Pan, K. (2017a). Cosimu-
lation of intelligent power systems: Fundamentals, software architecture, numer-
ics, and coupling. IEEE Industrial Electronics Magazine, 11(1):34-50.

Palensky, P., van der Meer, A., Lopez, C., Joseph, A., and Pan, K. (2017b). Applied
cosimulation of intelligent power systems: Implementing hybrid simulators for
complex power systems. IEEE Industrial Electronics Magazine, 11(2):6-21.

Paterno, E., Santoro, C., and Spano, L. D. (2009). MARIA: A universal, declarative,
multiple abstraction-level language for service-oriented applications in ubiqui-

tous environments. ACM Transactions on Computer-Human Interaction (TOCHI),
16(4).

Pedersen, N., Bojsen, T., and Madsen, J. (2017). Co-simulation of Cyber Physical
Systems with HMI for Human in the Loop Investigations. In Proceedings of the
Symposium on Theory of Modeling & Simulation, TMS/DEVS 17, pages 1:1-1:12,
San Diego, CA, USA. Society for Computer Simulation International.

Sander, I. and Jantsch, A. (2004). System modeling and transformational design
refinement in ForSyDe [formal system design]. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(1):17-32.

BIBLIOGRAPHY 99

Son, H. S. and Seong, P. H. (2003). Development of a safety critical software require-
ments verification method with combined CPN and PVS: a nuclear power plant
protection system application. Reliability Engineering & System Safety, 80(1):19 —
32.

Thimbleby, H. (2010). Press on: principles of interaction programming. The MIT Press.

Thule, C., Lausdahl, K., Gomes, C., Meisl, G., and Larsen, P. G. (2019). Maestro:
The INTO-CPS co-simulation framework. Simulation Modelling Practice and Theory,
92:45 - 61.

Wang, B. and Baras, J. S. (2013). HybridSim: A Modeling and Co-simulation
Toolchain for Cyber-physical Systems. In 2013 IEEE/ACM 17th International Sym-
posium on Distributed Simulation and Real Time Applications, pages 33—40.

Wing, J. M. (1990). A specifier’s introduction to formal methods. Computer, 23(9):8—-
22.

Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F. L., Seru-
gendo, G. D. M., Dobson, S., Fernandez-Marquez, J. L., Ferscha, A., Mamei, M.,
et al. (2015). Developing pervasive multi-agent systems with nature-inspired co-
ordination. Pervasive and Mobile Computing, 17:236-252.

Zeyda, F., Ouy, J., Foster, S., and Cavalcanti, A. (2018). Formalising cosimulation
models. In Cerone, A. and Roveri, M., editors, Software Engineering and Formal
Methods, pages 453-468, Cham. Springer International Publishing.

	Contents
	Introduction
	Model-based design and co-simulation
	Model-based design and formal methods
	Contribution

	Related work
	Background
	Cyber-Physical Systems
	Co-simulation with standard interface
	The PVS Environment
	PVSio-web

	Co-simulation and Verification with Logic-based models
	Logic Based models
	Architecture of a PVS-based FMU
	Verification
	Alternative modeling for simple CPS

	Framework for automatic integration of logic specification in FMI
	Implementation of the framework
	Verification of the functionalities of the framework

	Case studies
	Line Follower Robot
	Cooperative UAVs
	Integrated Clinical Environment

	Conclusions
	An example of PVS Proof
	Publications
	Bibliography

