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Abstract 

Introduction 

Chronic kidney disease is a major healthcare problem worldwide and its cost is 

becoming no longer affordable. Indeed, restoring damaged renal structures or 

building a new kidney represent an ambitious and ideal alternative to renal 

replacement therapy. Streams of research have explored the possible application 

of pluripotent SCs (embryonic SCs and induced pluripotent SCs) in different 

strategies aimed at regenerate functioning nephrons and at understanding the 

mechanisms of kidney regeneration. 

Areas covered 
 
In this review, we will focus on the main potential applications of human 

pluripotent SCs to kidney regeneration, including those leading to rebuilding 

new kidneys or part of them (organoids, scaffolds, biological microdevices) as 

well as those aimed at understanding the pathophysiological mechanisms of 

renal disease and regenerative processes (modeling of kidney disease, genome 

editing). Moreover, we will discuss the role of endogenous renal progenitors 

cells in order to understand and promote kidney regeneration, as an attractive 

alternative to pluripotent SCs. 

Expert opinion 
 
Opportunities and pitfalls of all these strategies will be underlined, finally 

leading to the conclusion that a deeper knowledge of the biology of 
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pluripotent SCs is mandatory, in order to allow us to hypothesize their clinical 

application. 

 

Highlight box 
 

• Human pluripotent stem cells (SCs) include embryonic stem cells (ESCs) and 

induced pluripotent stem cells (iPSCs). These cells can provide useful tools 

either to therapeutic purposes either to investigate disease pathophysiology 

and mechanisms, including renal diseases and kidney regeneration. 

• ESCs have the advantage to be relatively quick to obtain and to be not 

anymore subject to licensing/royalty to be paid. Anyway, some major 

concerns, such as ethical issues, the high risk to degenerate in neoplasms and 

immunocompatibility, still remain open 

• iPSCs have the great advantage of harboring the same genetic background 

of the individual they are derived, thus representing an ideal tool to study 

the effects of genetic variants in the pathogenesis of diseases. The main risks 

connected with the use of iPSCs are represented by tumorigenicity and 

immunogenicity, the presence of an epigenetic memory, technical and 

economical problems related to their long turnaround time and the presence 

of loyalties. 

• Human pluripotent SCs has two main fields of application in kidney 

regeneration: they can be used to build “a new kidney” or part of it by the 

mean of studies on organoids, scaffolds, organ-on-a-chip and blastocyst 
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complementation, or they can be used to investigate the mechanisms of 

kidney regeneration trough disease modeling and gene editing. 

• Renal progenitor cells represent an attractive alternative either to study or to 

modulate kidney regeneration, providing important advantages in the field. 

• A deeper knowledge of the biology of pluripotent SCs is mandatory, in order 

to allow us to hypothesize their clinical application. 
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1. Introduction 
 
 

Chronic kidney disease (CKD) is a major healthcare issue worldwide. Recent 

studies report that at least 10% of the adult population in western countries 

suffers from a variable level of CKD [1-4], probably representing only the “tip of 

the iceberg” of one of the wounds of the 21st Century. Irrespective of the nature 

of the disease that leads to the loss of kidney function, CKD can progress toward 

end-stage renal disease (ESRD), requiring dialysis or kidney transplantation to 

allow patients to survive. Considering that kidney diseases are frequently 

clinically silent and CKD is largely undiagnosed, it is easy to understand how 

this issue could potentially assume catastrophic proportions. Moreover, the 

social, economic and healthcare burden to sustain long-term renal replacement 

therapies (RRT) is tremendous and probably no longer affordable worldwide [4, 

5]. 

It is in this context that kidney regeneration has received an impressive push 

forward. Indeed, restoring damaged renal structures or building a new kidney 

represent an ambitious and ideal alternative to RRT. Adult human kidney has a 

limited number of nephrons, determined during embryonic development by a 

multitude of genetic and environmental factors, that could not be modified after 

the 36th week of gestation [6-9]. This is commonly believed to be due to  the 

exhaustion of a population of nephron progenitor cells [6, 8, 9]. This inherent 

incapability of total kidney regeneration in humans poses a detrimental limit to 

the opportunity of regenerative medicine in nephrology. Notwithstanding this, 

streams of research have tried to overcome this border 
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and some ways toward the application of strategies for kidney regeneration 

seem to be at least plausible. All of them are based on the use of pluripotent stem 

cells (SCs). 

 
 
 
 
2. Human pluripotent stem cells 

 
 
 
Irrespective of the species, pluripotent SCs are cultured cells sharing with the 

blastocyst-stage embryo the capability to generate an entire body [10]. From a 

functional point of view, they possess two principal properties: a high 

proliferative ability and a broad differentiation capacity. The first one, also 

known as self-renewal, refers to the ability to extensively replicate without 

undergoing differentiation or senescence, while the second consists in the 

property of differentiate into more than one mature somatic cell type from each 

of the three embryonic germ layers (namely, ectoderm, mesoderm and 

endoderm) [7, 11-13]. In mammals, including humans, pluripotent SCs 

progressively exhaust during embryonic development, probably giving rise to 

tissue-restricted stem/progenitor cells, usually referred to as committed 

stem/progenitors cells. The capability to persist after fetal life depends on the 

functional features of the cell population and on the regenerative potential of 

the organ they belong with, that could allow stem cell niches to build and to 

maintain their function. 
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Based on their functional properties, pluripotent SCs can be long-term cultured 

in vitro. When exposed to determined culture conditions (e.g deprivation of 

growth factors that maintain pluripotency), pluripotent SCs undergo stochastic 

differentiation. Consequently, they give rise to embryoid bodies in vitro while 

by implantation into an immunodeficient animal host, these cells generate 

teratomas [7, 11, 14]. Both embryoid bodies and teratomas contain cell types 

owing to the three embryonic germ layers, thus proving the pluripotency of the 

cell they originate from. In addition, direct differentiation by exposing 

pluripotent SCs to growth or inhibitors factors that have been demonstrated to 

specifically regulate progressive steps of embryonic development is an 

alternative option to obtain the mature cell type of interest, in particular of 

kidney cells [7, 14, 15]. 

Human pluripotent SCs include embryonic stem cells (ESCs) and induced 

pluripotent stem cells (iPSCs). Indeed, the properties of these two cell 

populations as pluripotent SCs have been unequivocally demonstrated. These 

cells can provide useful tools either to therapeutic purposes either to investigate 

disease pathophysiology and mechanisms. 

 
 
2.1 Embryonic stem cells 

 
ESCs represent the culprit of pluripotent SCs. They are primary cultures of 

human embryonic cells from the inner cell mass of the blastocyst, about 5 after 

fertilization [16]. They are separated and grown in culture after derivation 
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from embryos [11] and can be induced to differentiate into a broad range of cell 

types [17]. 

They surely provide a hopeful strategy for kidney regenerative therapies (Figure 

1). They are capable of differentiation into different kidney mature cell types. 

The first report of ESCs use to obtain renal cells was provided in Xaenopus leavis, 

by exposing the ectoderm to mesoderm-inducing factors (e.g. retinoic acid, 

activin A) [18-20]. This strategy allowed authors to obtain cells of the 

pronephros, including glomerular and tubular cells [18, 21, 22]. Similar studies 

were subsequently performed in mammalian metanephric kidney, including the 

human one, with success in obtaining renal progenitor cells from embryonic 

bodies [7, 23-26]. Indeed, most protocols of human ESCs differentiation to 

kidney cells have been translated from studies in mice, including strategies for 

differentiation of ESCs in nephron precursor population and even direct 

differentiation in more mature kidney cells, bypassing nephron precursors [23, 

27-33]. These studies allowed the authors to generate populations of podocyte- 

and renal tubular epithelial-like cells, whose phenotypic and functional 

properties anyway still remain to be clearly stated [7, 34, 35]. 

ESCs can be relatively quickly obtained (around 20 weeks) and are not anymore 

subject to licensing/royalty to be paid. Therefore, they represent a relatively 

easy-to-obtain cellular tools. Anyway, some major concerns still remain open 

talking about ESCs. Firstly, ESCs-based methods are inherently burden with 

ethical issues that have significantly limited their use, at least in some countries. 

Secondly, cells and tissues derived from ESCs are at high risk 
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to degenerate in neoplasms, especially teratomas [36]. Lastly, ESCs-derived 

differentiated cells are allogeneic in nature and they inevitably suffer from all 

the issues related to allografts and immunocompatibility (acute and chronic 

rejection, graft versus host disease, although the latest has been reported only in 

case of ESCs transplantation for bone marrow regeneration). 

 
 
2.2 Induced pluripotent stem cells 

 
iPSCs are somatic cells reprogrammed to acquire an ESC-like functional status 

[10]. iPSCs technology was first described in 2006 [37]. Briefly, somatic cells are 

transiently induced to overexpress embryonic transcription factors (OCT4, 

SOX2, KLF4, c-MYC in the initial work) that lead the cells to acquire a 

phenotypic and functional status similar to that of ESCs. 

iPSCs can be obtained by vector integration methods (e.g. retroviral vectors, 

lentiviral transgene integration) or integration-free methods (e.g. plasmids, 

Sendai virus, synthetized RNAs, proteins) that are less likely to persist after 

reprogramming [37-39]. iPSCs can be classified into primed and naive. Naive 

iPSCs model the inner cell mass of the pre-implantation blastocyst, whereas 

primed iPSCs resemble cells derived from post-implantation epiblasts. In 

general, naive iPSCs are easier to maintain and differentiate, but need to be 

obtained using chemically defined conditions. The difference between naïve and 

primed iPSCs, as well as their species of origin, could potentially influence the 

results of the studies performed and pose important challenge for their clinical 

use. 
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Although the efficiency of the reprogramming is low, iPSCs can be extensively 

expanded in culture, giving rise to various types of cells and tissues [40]. Like 

ESCs, iPSCs can generate derivatives of all the three germ layers after 

introduction into pre-implantation embryos. Following in vitro differentiation, 

iPSCs are able to generate cells that resemble renal progenitors and their 

progeny, such as podocytes and tubular epithelial cells (Figure 1) [34, 41-44]. 

iPSCs have the great advantage of harboring the same genetic background of 

the individual they are derived. As a natural consequence, they represent an 

ideal tool to study the effects of genetic variants in the pathogenesis of diseases 

[14] 

A major concern of iPSCs is the presence of an epigenetic memory, that is to  say 

a series of methylation/demethylation sites that are typical of the specific 

differentiated cell type and of the tissue/organ of origin. This feature could affect 

not only the ability of iPSCs-derived mature cells to reliably recapitulate the 

disease pathophysiology, but could also affect the differentiation capability, 

since it has been demonstrated that iPSCs preferentially differentiate back to the 

cell type of origin [45, 46]. This last issue may be probably at least in part 

overcome by a better knowledge of the molecular and genetic networks 

regulating the differentiation process from iPSCs and tissue specific  progenitors 

or mature cells. Moreover, it has been demonstrated that reprogrammed cells 

(iPSCs) differ from pluripotent SCs in the activation/inactivation of genetic loci 

previously thought to be highly stable. However, a great advantage in using 

iPSCs for understanding kidney regeneration could derive from generating 

them from kidney cells. Indeed, 
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iPSCs have been generated from cells of renal origin (mesangial, tubular 

epithelial cells, urine-derived renal epithelial cells) [34, 47-50], providing 

indisputable advantages for cell therapy and kidney regeneration. Indeed, 

kidney-derived iPSCs would retain not only the genetic background but also the 

renal peculiar epigenetic memory of the cell of origin. 

The main risks connected with the use of iPSCs are represented by the 

accumulation of somatic mutations that can result in tumorigenicity and 

immunogenicity. With regard to malignant transformations, some studies 

reported critical activation of oncogenes in iPSCs [36]. However, since cellular 

reprogramming is clonal in nature, it seems plausible to attribute the events of 

malignant transformation to genetic alterations that occur at low frequency in 

the starting population and that are inherent to it [39]. On the other hand, 

patient-derived iPSCs are not immunogenic in nature, but the accumulation of 

genetic mutation must be considered as a potentially confounding event with 

regard to immune tolerance [10, 39]. 

iPSCs pose technical and economical problems, since the turnaround time to 

obtain cultures is about one year per patient and the technology is protected by 

patent and its use requires the payment of loyalties, at least for commercial 

strategy[10]. This issue could at least in part be overcome by the building of 

banks of allogenic iPSCs that can provide clinical grade iPSCs within shorter 

time. On the other hand, since iPSCs are derived from adult individuals, the 

main ethical issue related to their use is privacy. 
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3. Exploring kidney regeneration: potential applications of human 

pluripotent stem cells 

 
 
As already mentioned, the adult human kidney is not able to generate new 

nephrons. As a consequence, pluripotent SCs have long been considered as the 

only cultivable cells capable of neo-nephrogenesis. Therefore, they represent the 

most studied tool in kidney regenerative medicine (Figure 1). 

Since the first description of cellular reprogramming and iPSCs technology 

development, questions about the differences existing among iPSCs and ESCs 

arose. Indeed, these two cell types differ in gene expression profiles, DNA 

methylation and pluripotent potential (i.e. differentiation ability), as assessed by 

different groups by microarrays studies, targeted bisulfite sequencing and 

assays of differentiation efficacy, respectively [17, 39]. Notwithstanding this, it 

is plausible that these differences are shades not very easy to assess and that 

iPSCs and ESCs have at least partially overlapping phenotypes, depending on 

the source of cells, the laboratory conditions used to obtain the cultures and even 

stochastic events, including genetic imprinting. Indeed, ECSs and iPSCs show 

exceptional similarities that could maybe be explained considering that are both 

obtained by laboratory manipulation [39, 51-53]. Therefore, the selection of ESCs 

or iPSCs clones suitable for medical application appears to be critical. With 

regard to kidney regeneration, pluripotent SCs must differentiate into kidney 

rather than other mature cells, be able to reproduce the spatial and 
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anatomical complexity of the organ, and then induced to acquire functionality 

[54]. Indeed, two major obstacles reside in kidney regeneration by human 

pluripotent SCs: first, the kidney contains a multitude of different cell types that 

has to be someway reconstructed and second, the organ begin to develop late in 

embryonic development, that is to say far away from the state of pluripotency 

[54]. 

Notwithstanding this, attempts to pave the way for pluripotent SCs to regenerate 

the kidney have been made. Indeed, recent advances in the SCs field, together 

with a great push of nanotechnologies, have enabled the in vitro generation of 

complex structures resembling whole kidneys, termed organoids, or part of 

them, like scaffolds and engineered glomerular filtration barriers. Besides this, 

the identification of endogenous repair and regeneration  strategies in injured 

kidney is another option that has to be taken into consideration in order to find 

strategies to be exploited therapeutically in kidney regeneration (Figure 1). 

 
 
 
 
 
 
3.1 Building a new kidney with human pluripotent stem cells 

 
3.1.1 Organoids 

 
The term “organoids” refer to suspensions of human pluripotent SCs that self 

organize in culture to form small organs and tissue arrangements [55-57]. 

Therefore, a kidney organoid is a miniaturized and simplified version of a 
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kidney produced in vitro, that shows a realistic renal microanatomy. The 

methodological and conceptual advance concerning organoids prompted 

researchers to use them not only for classical developmental experiments but 

also for regeneration studies. 

The first attempts to create kidney organoids for studying regeneration, 

however, obtained avascular fetal-like kidney tissues [55]. This obstacle was 

successfully overcome by using a dissociation/reaggregation method of mouse 

kidney cells that showed to be able to integrate into living recipients, to generate 

vascularized glomeruli and to perform nephron-specific functions [58]. The 

same authors then used this strategy to create chimeric kidney organoids from 

mixed suspension of murine embryonic kidney cells and human amniotic fluid 

SCs [59]. The ability to generate vascularized nephrons from single-cell 

suspensions marked a step forward on the way of replacing renal function by 

tissue-engineered kidneys. 

Important advances toward the generation of patient-specific organoids as tools 

for studying human kidney development, modeling disease, developing new 

drugs and evaluating novel regenerative strategies derived from the 

development of efficient protocols for the differentiation of human pluripotent 

SCs into kidney organoids. Indeed, when induced to differentiate in renal 

epithelial cells, human pluripotent SCs spontaneously organize into structures 

resembling different segment of the nephron, from glomeruli to collecting ducts 

[6, 42, 60, 61]. In particular, the exposure of iPSCs to different levels of Wnt 

agonist allowed authors to obtain pluripotent SCs of the metanephric 

mesenchyme and of the ureteric bud, giving rise to nephron structures that 
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recapitulate the most important developmental steps of the embryonic kidney 

[60]. These structures showed functional properties such as a spatial and 

temporal pattern of expression of markers specific of different segments of the 

nephron [60]. Almost simultaneously, kidney organoids have been created from 

human ESCs [61]. Human pluripotent SCs-derived organoids contain all the 

components of the fetal human kidney (nephrons, collecting ducts, endothelial 

cells, interstitium) [60, 61]. 

From a conceptual point of view, kidney organoids have two main principal 

functions concerning regenerative nephrology: to establish the similarity 

between human fetal kidney cells and the corresponding cells contained  within 

the organoids by the mean of morphological analysis and gene expression 

profile assays; to detect protocols for obtaining the differentiation  of cells 

present within the organoids into the specific renal cell lineages of interest [62]. 

The development of these protocols paved the way for the possibility of patient-

specific disease modeling and drug screening, at a further level than the cellular 

one, as well as for the replacement of renal tissue by bioengineering approaches. 

However, organoids are not a kidney. The complex large-scale organization of 

the organ, that is crucial for some of its functional properties, cannot be fully 

reproduced, making these structures far away to be considered as kidney 

replacing. Anyway, these organoids can be suitable for other medical purposes, 

such as compounds and drugs screening. 
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3.1.2 Scaffolds 
 
Pluripotent SCs-derived organoids have provided interesting information about 

the capability of self-organization in similar-kidney structures. Notwithstanding 

this, this strategy could be inefficient in generating a sufficient number of cells 

for kidney regeneration purposes. Therefore, alternative solutions have been set 

up. In this view, “re-cellularization” of biologic or artificial scaffolds with 

appropriate combinations of specific renal cell types is an attractive hypothesis. 

These cells can be either isolated from pluripotent SCs-derived organoids, that 

are separated and expanded in culture, or differentiated in vitro from their 

specific tissue/cell of origin [62, 63]. Scaffolds can be made of purified silk, 3D-

printed polymer arrays, decellularized kidneys and extracellular matrix [63]. 

Independently on  the kind of scaffold, this approach requires the appropriate 

set-up of vascular structures (here including the correct development and 

localization of endothelial, smooth muscle and pericytes cells, as well as 

interstitial cells) to allow the scaffolds to be served by blood flow and the 

structures to be consequently functional [64, 65]. Finally, these newly generated 

structures should be communicate with collecting ducts to allow the urine 

stream to flow and kidney to fulfill all its functions [66]. The ultimate goal is to 

obtain synthetic kidneys that can be transplanted to a host [62]. 

 
 

3.1.3 Engineered glomerular filtration barrier and renal tubules 
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The glomerular filtration barrier (GFB) is a highly specialized structure 

interfacing with blood and responsible for its filtration. The integrity of the GFB 

is guaranteed by a correct anatomical and functional organization among its 

three principal constituents: the glomerular endothelial cell, the basement 

membrane, and the podocyte. Since many kidney disorders determine the loss 

of the GBF integrity, rebuilding a functioning GFB is a goal of regenerative 

medicine and represents another strategy for modeling kidney diseases [67]. 

The podocyte is a post-mitotic cell incapable of proliferation and cell division 

[68, 69]. It has been demonstrated that podocytes can be replaced by a progenitor 

cell, localized within the Bowman’s capsule, although this regeneration is 

limited [68-71]. The possibility to obtain a fully differentiated podocytes is 

therefore essential for modeling the GFB and studying kidney disorders and 

regeneration. In a recent study, iPSC-derived podocytes were put in the context 

of an engineered GFB that recapitulates the properties of the human glomerular 

capillary wall, to which mechanical forces resembling pulsatile blood flow were 

applied [72]. Human iPSCs-derived podocytes produced proteins of the 

glomerular basement membrane and showed foot processes that confer the 

permselectivity typical of the “native” GFB. By inducing podocytes damage, the 

authors recapitulated the morphological and phenotypic features of focal 

segmental glomerulosclerosis [72]. This strategy could be used for the modeling 

of many others kidney disorders, with particular attention to podocytopathies 

(genetic, toxic, infectious), adding to the cellular and molecular level the 

complexity of the GFB [67]. 
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In parallel to the development of artificial GFB, a significant number of studies 

reported on the generation of devices mimicking the structure of kidney tubules. 

Many studies used artificial microchip coated with primary lines of human 

tubular epithelial cells [73-78]. Upon the exposure to microfluidic shear stress, 

bioartificial renal tubules showed to recapitulate some of the main phenotypic 

and functional features of renal tubules, such as solute reabsorption and 

secretion and cellular polarization. These first studies introduced a new tool for 

exploring kidney regeneration, with particular regard to the tubular 

compartment. Indeed, it is plausible to hypothesize that artificial microdevices 

could be coated with patient-derived  human pluripotent SCs, thus allowing 

tubular diseases (like acute kidney injury, AKI) to be reliably recapitulated and 

drugs efficacy and nephrotoxicity to be tested in a personalized manner. 

 
 

3.1.4 Blastocyst complementation 
 
The generation of transplantable kidneys is among the ultimate goals of 

regenerative nephrology due to a shortage of donor organs, that represents a 

critical obstacle to the expansion of transplantation programs. Notwithstanding 

this, the complex 3D cellular and tissue interactions required for organogenesis 

are quite difficult to recapitulate in vitro. Blastocyst complementation is a 

method used to overcome these obstacles. Briefly, it consists in generating 

organs in vivo by injecting pluripotent SCs (either ESCs or iPSCs) into blastocyst-

stage embryos (mainly, but not exclusively, rodents). 
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This finally leads to the generation of chimeric embryos in which pluripotent 

SCs contribute to the generation of host tissues and organs [79]. Interspecies 

blastocyst complementation is a variation of the classical technique in which the 

recipient host is genetically manipulated to carry DNA mutations that prevent 

the development of a target organ [80]. Ideally, the injection of donor- derived 

pluripotent SCs would developmentally compensate for the defect  and form 

the missing organ. This strategy had been initially used for the reconstitution of 

bone marrow but was subsequently applied to the generation of entire organs 

(e.g. pancreas, heart, eye) [81]. The resulting organs are composed almost 

entirely of cells derived from donor, even if the blastocyst complementation 

involves different species. 

To the aim of kidney organogenesis, this technique has been used in few works 

that arose the possibility of widening the opportunities of kidney regeneration. 

In the very first experiment, wild-type mouse pluripotent SCs were injected into 

Sall1 knockout mouse blastocysts in which kidneys did not developed because 

of the genetic defect [79]. This led to the generation of kidneys entirely formed 

by the injected mouse-derived cells, except for structures not under the influence 

of Sall1 expression (such as collecting ducts and microvasculature), thus 

rescuing bilateral renal agenesis [79]. Unfortunately, the resulting chimeric 

animals did not survive until adulthood for reasons that are not completely clear 

[79]. Following the first experiments performed in rodents, the research shifted 

to generate chimeric animals between human pluripotent SCs and larger 

animals (e.g. pigs), in order to obtain organs sized as closer as possible to that of 

humans. To this aim, the potential of human pluripotent SCs 
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to survive into the blastocyst of pigs and cattle have been tested and gave very 

preliminary but promising results [82]. Obviously, more studies are needed to 

set up the experimental conditions that are proper to the scope of generating 

xeno-kidneys suitable for kidney replacement purposes. 

Important ethical issues regarding the manipulation of blastocysts and the 

generation of viable humans-animals chimaera mark this strategy. Moreover, 

the experiments are technically difficult to perform and few laboratories have 

the resources necessary to pursue them. As a matter of fact, xeno-generated 

organs need to be extremely “pure” to avoid immune system rejection after 

transplantation, thus raising important questions about how to technically 

obtain “pure” organs of interest after generating the chimeric animals. Finally, 

blastocyst complementation in some organs could be incompatible with life. 

Therefore, besides a very theoretical interest, this strategy, although promising, 

is far to be considered for clinical application. 

 
 
 
 
3.2 Understanding kidney regeneration trough modeling of renal diseases 

 
3.2.1 Modeling of renal diseases using pluripotent stem cells 

 
One of the main opportunities of human pluripotent SCs is the development of 

“disease in a dish”, that is to say laboratory models of human kidney diseases, 

that can be used to understand the mechanisms of diseases (Figure 1). They 

represent an important complement to mouse models, which may not fully 

recapitulate human genotypes and phenotypes and are technically and 
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economically costly to generate. ESCs and iPSCs carrying mutations in genes 

responsible for inherited kidney diseases have now been generated (e.g. 

autosomal dominant and recessive polycystic kidney disease, Alport syndrome) 

[10]. 

iPSCs can be obtained from patients with kidney diseases. Harboring mutations 

clearly responsible for the disease, patients-specific iPSCs do not require genome 

editing to recapitulate the pathophysiology of the disease. To this aim, a 

multitude of iPSCs cell cultures have already been obtained and can be used to 

compare in vitro properties with clinical features of patients [10]. As an example, 

they have been extensively used in assessing the process of cystogenesis in 

autosomal dominant polycystic kidney disease (ADPKD) and the role of 

policistin-2 mistrafficking in the cilium in the pathogenesis of the disease [44]. 

These studies demonstrated that the cystic phenotype is less than 100% 

penetrant even in presence of truncating mutations [10]. 

Moreover, some of these mutations could be specie-specific and these cell 

cultures hold not only the mutation of interest but also other variants that could 

eventually act as modifiers. Therefore, the use of iPSCs permits to skip at least 

some issue related to the reproducibility of data obtained from animal models, 

including mice, making them highly indicated in genotype-phenotype 

correlation studies following whole-exome sequencing population screening 

[83]. 

In addition, human iPSCs can be used for drug discovery. Being at the same 

time specie-specific and phenotypically diverse, cell culture obtained from 



22	 

iPSCs are amenable tools to test the effects of new compounds and to evaluate 

efficacy, toxicity and pleiotropic effects [10, 83]. For all these purpose, the 

limiting step seems to be the development of reliable in vitro assays to test the 

feature of interest. 

Finally, human pluripotent SCs can serve as tools to identify new biomarkers for 

renal disorder or to validate existing ones. Their role is quite consolidated  in 

other organs and tissues (e.g. heart, central nervous system, liver) [10]. In   the 

nephrology field, this approach would be of particular interest for AKI. Indeed, 

the identification of up-/down-regulation of specific gene/molecules in 

response to AKI would be of benefit in the early identification of AKI and in the 

preclinical evaluation of drugs/molecules to treat patients, to avoid 

nephrotoxicity and to promote tubular regeneration. In addition, the assessment 

of specific phenotypic features in cell cultures obtained from pluripotent SCs 

carrying mutations in genes responsible for inherited kidney diseases could also 

be considered as biomarkers. As an example, cysts development in cell cultures 

obtained from iPSCs could predict the pathogenicity of genetic variants in 

ADPKD and the development of the phenotype before the clinical onset of the 

disease, acting as a biomarker for disease progression and, potentially, for 

disease severity and prognosis assessment [10]. This could conceptually be 

useful also for other renal disorder, such as nephrotic syndrome and focal 

segmental glomerulosclerosis [10]. 

 
 

3.2.2 Gene editing for kidney regeneration 
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Recent years have seen a significant increase in genome editing techniques 

applied to human cells. Indeed, genome editing provides the possibility to 

efficiently introduce a variety of genetic alterations to the cell of interest, ranging 

from single-nucleotide modification to whole gene addiction or deletion, all 

with high degree of target specificity. Irrespective of the specific genome editing 

strategy used (Zinc-finger Nucleases (ZFN), Transcription activator-like effector 

nucleases (TALEN) and CRISPR-Cas9) these techniques can be applied to 

human pluripotent SCs and permit to correct the disease- causing gene 

mutations if applied to patient-derived iPSCs or to introduce specific mutations 

into non-disease affected wild-type iPSCs (Figure 1) [81]. 

Recently the CRISPR-Cas9 technology has attracted much attention and gained 

wide usage in gene editing both in ESCs and in iPSCs owing to its simplicity in 

design and ease of use. However, a major challenge in the application of this 

technology is the possibility of off-target effects [86]. For this reason, this 

technologies needs to be continuously improved. 

Gene editing of human pluripotent SCs has three principle possible applications: 

1. Elucidating gene function. The cells that have undergone genome editing 

should contain only the intended change in an otherwise isogenic background, 

thus providing the most stringent test of gene function. Freedman et al. [87] 

produced kidney organoids from human pluripotent SCs knocked out for 

podocalyxin by CRISPR-Cas9 in order to investigate its role during kidney 

organogenesis. Comparing the results obtained with wild-type organoids, the 
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authors concluded that podocalyxin is essential for organoid differentiation, 

with particular attention to podocyte junctional organization. 

2. Modeling human diseases. Patient-derived iPSCs are widely used to 

modeling monogenic disorder because they are derived from the patient, easily 

manipulated, clonally expanded and differentiated toward the cells of interest. 

The application of gene editing allows creating isogenic controls with the rescue 

of disease causative gene mutations, avoiding the confusion with genetic 

background or epiphenomena resulting from possible line-to-line variations. 

Recently, to better recapitulate disease phenotypes, human iPSC- derived 3D 

organoids have been developed to study the cell-cell interaction in a cellular 

context that mimics human physiology [88, 89]. In particular an in vitro organoid 

model for ADPKD was performed applying CRiSPR-Cas9 genome editing 

system to introduce biallelic truncating mutations in PKD1 or PKD2 in human 

pluripotent SCs, providing a good and promising approach to model 

cystogenesis [87]. Furthermore, patient-derived iPSCs in addition to enabling 

personalized diseases modeling could be used as potential high- throughput 

drug-screening platforms. 

3. Gene therapy. Ideally, gene editing would lead in the future to new cell 

therapy strategies for the treatment of renal diseases, either by promoting the 

application of non-immunogenic patient’s own iPSCs genetically corrected 

target mutations for kidney repair and regeneration, either by generating 

sources for organ replacement therapy, combining genetically corrected human 

iPSC platform with 3D organoids. In addition, gene editing could also allow 

allogenic iPSCs to be considered from cell therapy from unmatched 
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donor. Moreover, it is also possible that gene editing might also enable to 

generate a “universal donors”, that is to say human pluripotent SCs with 

increased graft immunocompatibility. 

 
 
 
 

4. Alternative options for kidney regeneration: renal progenitors cells 
 
 
 
The kidney is a complex organ. This complexity includes the existence of distinct 

functional compartments, distinct segments within each compartment and 

distinct cell types within each segment. Moreover, a well-defined three- 

dimensional structure involving the correct interaction between renal resident 

cells, vasculature and interstitium is crucial for the proper assumption of the 

functional features. As a consequence, this complexity influences the 

regenerative properties of the tissue. Indeed, in contrast to many other organs 

the diversity of cell types of the kidney requires an extensive variety of 

differentiated cells to be generated in order to ameliorate disease or injury. 

Understanding the mechanisms of endogenous kidney regeneration and repair 

represents another important goal of regenerative nephrology. In other organs, 

the discovery of endogenous stem/progenitors systems fueled identification of 

innovative treatment strategies up to regenerative medicine and tissue 

engineering [90, 91]. In the kidney, the identification of endogenous 

stem/progenitor systems remained a challenge until very recently. 
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As previously stated, mammals are not capable of neo-nephrogenesis. Anyway, 

the existence of kidney regeneration is suggested by clinical and experimental 

evidence [92]. In recent years, conclusive evidence for the existence of renal 

progenitors has been reported in lower vertebrates such as fish, insects and in 

mammals [92-94]. Because of their limited differentiation potential these cells 

have been referred to as renal progenitor cells (RPC). 

In humans, CD133+CD24+ renal epithelial cells have been demonstrated to 

represent a hierarchical population of RPC, containing parietal epithelial cells 

and a scattered population of tubular epithelial cells, that represent about 2-4% 

of total renal cells [92, 95]. They are marked by the co-expression of the cell 

surface markers CD133 and CD24 that permit to recover them from tissue and 

to be grown in culture, so that their functional properties can be assessed in vitro. 

These cells have been shown to possess self-renewal potential, resistance to 

senescence, ability to grow in culture as spheres and the capability to 

differentiate in vitro into several types of renal epithelial cell, such as podocytes 

and tubular epithelial cells, as well as into adipocytes, osteoblasts, endothelial 

cells and neuronal cells [68, 95]. These observations lead to the conclusion that 

CD133+CD24+ renal epithelial cells may represent a multipotent stem cell 

population. The recent observations that amgiomyolipomas in tuberous 

sclerosis derive from a multipotent cancer stem cell that originate from renal 

epithelium confirmed the hypothesis that the renal epithelium may have 

differentiation capacity that goes beyond the epithelial phenotype, which was 

considered to be its only possible lineage based on lineage-tracing experiments 

performed in mouse models of AKI [96-98]. Consistently, CD133+CD24+ renal 
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epithelial cells exhibit cellular plasticity and stem-like properties, such as 

multipotency [92, 95]. Their behavior, such as the differentiation toward 

epithelial cells instead of adipocytes or endothelial cells, is probably influenced 

by niche-specific factors that could profoundly differ in healthy or disease (e.g. 

tumor) microenvironment, as well as in in vitro assays or in transplantation 

experiments [96]. 

Unlike iPSCs, RPC are not generated by the forced expression of SCs genes, but 

can instead be directly isolated from adult human kidneys. Therefore, they are 

frequently referred to as “endogenous SCs”, and can represent further possible 

tools or target for alternative treatment for kidney regeneration. 

 
 
4.1 Renal progenitors cells as tools for kidney regeneration 

 
 
 
The injection of RPCs into immunopermissive hosts could represent an interesting 

strategy for kidney regeneration. 

Several independent studies demonstrated that adult renal progenitors had therapeutic 

effects in immunodeficient mice with rhabdomyolysis-induced AKI [16, 95, 99-102]. In 

all these models, cell therapy improved measurable renal function and structural injury. 

Afterwards, the administration of CD133+CD24+ cells isolated from the Bowman’s 

capsule improved renal outcomes in a model of FSGS that is characterized by podocyte 

injury [68]. CD133+CD24+ cells that were isolated from urine also differentiated into 

podocytes and reduced proteinuria in mice with adriamycin-induced nephropathy [103]. 
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Multiple studies have demonstrated the therapeutic potential of RPCs isolated from fetal 

kidneys in acute and chronic renal injury. In mice with glycerol-induced AKI, injection 

of human fetal CD133+CD24+ RPCs improved renal function comparably to adult RPCs 

[104]. In the 5/6 nephrectomy model of kidney injury, human fetal nephron NCAM-1+ 

progenitors injected directly into the renal parenchyma engrafted and integrated, with 

consequent improvement of renal function and slowing of disease progression [105]. In 

one study, the therapeutic effects of NCAM-1+ nephron progenitor cells and of cultured 

human CD133+CD24+ renal progenitors in a mouse model of glycerol-induced AKI were 

comparable [106]. 

The exact mechanisms by which human RPCs exert beneficial effects when used for cell 

therapy are not completely elucidated, probably including both paracrine stimulation of 

adjacent cells and tissue integration, even with different persistence in each model [68, 

95, 102, 107]. 

Although potentially promising, the use of renal progenitors for cell therapy of kidney 

injury has also several drawbacks. Sources of RPCs are limited, and tissue from which 

autologous RPCs can be obtained is poorly accessible or insufficient for cell isolation. 

However, it is possible to retrieve autologous RPC from the patient’s urine, a technology 

potentially offering an autologous CKD therapy that should not require 

immunosuppression [103]. 

Outcomes of cell therapy might also depend on the modality of cell delivery to the 

injured compartment. Cells that are delivered intravenously or intra-arterially may 

become trapped in other organs, although this does not seem to happen for RPC [68]. 

Intraparenchymal delivery has the advantages of requiring few cells and avoiding cell 

dispersion in off-target organs, but might be associated with adverse events, such as local 

necrosis, thrombosis and a limited distribution of the cells within the kidney. 
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Finally, it is possible that either the disease process itself or external factors (e.g. drugs) 

may influence the ability of cells to regenerate injured kidneys [71, 108]. Therefore, the 

exact effects of this possibly confounding factors needs to be clearly identified, allowing 

us to enhance the therapeutic potential of these therapies. 

Although the possibility to generate new functional renal tissue by cell therapy 

represents one of the main goals of regenerative nephrology, there is a great lack of 

knowledge about the differentiation processes and how to control them in order to allow 

injected cells to be functional. Indeed, the possible application of cell therapy could not 

still be envisaged until strictly controlled differentiation protocols are developed and 

many molecular mechanisms are understood. 

 
 
4.2 Renal progenitor cells for modeling kidney regeneration 

 
 
 
The choice of a validated tool of investigation represent a major challenge to understand 

kidney regeneration and find new drugs for modulating it. RPCs can be easily amplified, 

maintained in culture and induced to differentiate into all epithelial cell subtype. 

Therefore they represent an efficient and innovative tool to this purpose (Figure 2). 

Cultures of RPCs can be obtained from human healthy tissues using immunomagnetic 

sorting for CD133 and CD24 (Figure 2) [68, 95, 104]; in addition, the expression of 

CD106 allows us to specifically separate tubular-committed or podocyte-committed 

progenitors [99]. Several studies documented the involvement of dysregulated 

proliferation and migration of RPC at different stages of their differentiation toward 

mature podocytes in the generation of glomerular hyperplastic lesions, highlighting that 

RPC regenerative capacity after injury must be strictly regulated in order to 



30	 

prevent an inefficient or excessive response that can determine a failure in replacing the 

loss podocytes [109, 110]. Therefore, RPC can be used as a useful tool to study the 

pathophysiology of kidney diseases and mechanisms of repair and regeneration. 

However, the inaccessibility of the human RPCs from the affected patients obstacles 

their application for personalized diseases modeling and drug screening in the context of 

the individual's overall genetic and epigenetic background. Recently Lazzeri et al. 

[103] developed a method to isolate and amplify RPCs from renal cells that naturally are 

loss in the urine of patient with renal disorders. In particular, urine-derived RPCs display 

an identical phenotype and functional properties to tissue-derived RPCs  (Figure 2). 

Indeed, the isolation of urine-derived RPC from patients affected by genetic kidney 

disease would be a valuable instrument to achieve a proper functional study aimed to 

clarify the role of the identified variant in the pathophysiology of the disease [103]. 

Moreover, the advent of high-throughput techniques of sequencing has amplified the 

identification of variants of unknown clinical significance and the need of appropriate 

test to establish their pathogenicity [111]. Patient-specific RPCs may be also usefully for 

testing patient-specific safety and efficacy of drugs. Moreover, RPCs can be isolated also 

from the urine of pre-term neonates [112]. These cells show high differentiation ability, 

potentially broadening the potential of RPCs for regenerative kidney repair. 

 
 
 
 
 
 
 
 
 
4.3 Renal progenitors as targets for kidney regeneration 
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At different with other pluripotent stem cell populations, RPC have the advantage to 

represent also possible targets to boost kidney regeneration (Figure 2). Indeed, recent 

studies demonstrated that the RPC-mediated kidney regeneration can be modulated 

through many molecules, such as the chemokine SDF-1 blockers [113], Notch signaling 

inhibitors [70], the glycogen synthase kinases 3-α and -β (GSK3s) inhibitor BIO [69], 

retinoic acid [71], as well through several drugs as Interferon [114], Steroids [115], 

renin-angiotensin-aldosterone system inhibitors [116] and Leptin [117]. All these 

pharmacological agents can enhance renal progenitor differentiation into podocytes 

favoring glomerular regeneration or block RPC hyperactivation. 

In particular the beneficial effects of SDF-1blockers, Notch signaling inhibitors and 

renin-angiotensin-aldosterone system inhibitors are attributable to the reduction of 

abnormal RPC proliferation [70, 112, 116], whereas the beneficial effects of the 

glycogen synthase kinases 3-α and -β (GSK3s) inhibitor BIO, retinoic acid, Interferon, 

Steroids and Leptin are attributable to the enhance RPC differentiation into podocytes 

[69, 71, 114-116]. Finally, very recently Lazzeri et al. [118] demonstrated that the 

treatment of mice with HDAC (Histone deacetylases) inhibitors following AKI stimulate 

the proliferation of RPC enhancing the recovery of renal function and a better 

reconstitution of tubular integrity. 

 
 
 
 
 
 
 

5. Conclusions 
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Understanding the molecular and cellular mechanisms of kidney regeneration is 

important for the development of new therapeutic strategies aimed at reversal and/or 

attenuation of kidney damage. Ideally, this should support attempts to therapeutically 

enhance kidney regeneration in order to prevent irreversible nephron loss and CKD. The 

realization of miniaturized organ-on-chip devices, which combine biological and 

engineering approaches represent another possibility to restore kidney function. 

 
 
 
 
 

6. Expert Opinion 
 
Human pluripotent SCs represent indisputable tools to improve our knowledge. 

Nevertheless, the use of these cells still presents some issues and limitations: 

1. Efficiency: efficient protocols for renal lineage-specific differentiation of 

pluripotent SCs and progenitors usually recapitulate embryonic development 

stages by a step-wise generation of progenitors (from intermediate mesoderm to 

metanephric mesenchyme). It is possible that one of the main limitations in the 

generation of functional kidneys from pluripotent SCs is an incomplete 

definition of the kidney cell lineage specification programs, both in vivo and in 

vitro. This can only be overcome by the definition of robust protocols to generate 

nephrogenic cells. 

2. Similarly, the lack of clearly defined indicators of success in obtaining 

pluripotent stem cell and in their differentiation is troubling. Moreover, 

molecular and morphological phenotyping has not been exhaustive and 

functionality has rarely been analyzed. 
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3. Safety: oncogenic transformation risk must be clearly assessed. Indeed, patient- 

derived iPSCs are expected to be fully immunocompatible with the patient they 

have been obtained from. Therefore, every cells derived from iPSCs is invisible 

to the host immune system and this could theoretically rise questions about the 

potential neoplastic risk evolution; negative effects on nephrogenesis and renal 

growth or kidney injury (by the release of unidentified molecules) should also be 

assessed. 

4. Comparisons: Many studies performed on human pluripotent SCs demonstrated 

that ESCs and iPSCs while essentially similar, exhibit significant variability in 

terms of gene expression profiles and epigenetic factors. These differences can 

be attributed either to the cell lines them-selves, either to laboratory and 

cultures condition. Either way, they influence the differentiation ability of the 

cells and make comparisons between cells in disease modeling not fully reliable. 

5. Reliability in disease modeling: kidney diseases are complex and the 

pathophysiology of the progression is probably influenced by multiple factor 

related not only to kidney but also to other organs and functions. In vitro cell 

cultures have the intrinsic limit of not reproducing this complexity and can 

probably provide information only at a cellular and molecular level. 

 
 

All these issues underline the need of a deeper knowledge of the biology of 

pluripotent SCs, in order to shorten the distance that separate their use from 

clinical application, that must remain the main goal of regenerative nephrology. 
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Figure legend 
 
 
 
Figure 1. Schematic representation of the possible applications of human 

pluripotent stem cells to kidney regeneration. 

Once human pluripotent stem cells have been obtained from patients (iPSCs) or from 

blastocyst (ESCs), they can be cultured in vitro and induced to differentiation into the 

cell type of interest. Afterwards, these cells can be used to generate organoids, to 

repopulate scaffolds or to generate biological microdevices or for blastocyst 
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complementation. In addition, cell cultures derived from human pluripotent stem cells 

can be used for kidney diseases modeling (e.g. drug screening, gene editing). 

 
 
iPSCs, induced pluripotent stem cells; ESCs, embryonic stem cells. 

 
 
 
 
Figure 2. Schematic representation of the possible applications of  renal progenitor 

cells cells to kidney regeneration. 

Renal progenitor cells can be obtained from kidney tissue or from fresh urine samples. 

Renal progenitor cells can be cultured in vitro and induced to differentiate into the cell 

type of interest. Afterwards, these cell cultures can be used for understanding the 

pathophysiology of kidney regeneration and to unravel potential mechanisms to enhance 

it (e.g. drug screening, gene editing). 
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