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CHARACTERS OF π1-DEGREE AND
SMALL CYCLOTOMIC FIELDS

EUGENIO GIANNELLI, NGUYEN NGOC HUNG, A. A. SCHAEFFER FRY,
AND CAROLINA VALLEJO

Abstract. We show that every finite group of order divisible by 2 or q, where q is a prime
number, admits a t2, qu1-degree nontrivial irreducible character with values in Qpe2πi{qq. We
further characterize when such character can be chosen with only rational values in solvable
groups. These results follow from more general considerations on groups admitting a tp, qu1-
degree nontrivial irreducible character with values in Qpe2πi{pq or Qpe2πi{qq, for any pair of
primes p and q. Along the way, we completely describe simple alternating groups admitting
a tp, qu1-degree nontrivial irreducible character with rational values.

1. Introduction

One of the main problems in Finite Group Representation Theory is to understand fields
of values of characters, by which we mean the smallest field containing all values of a given
character. A classical result of Burnside states that groups of odd order do not possess
nontrivial irreducible characters with real fields of values. Actually, this property character-
izes odd-order groups in an elementary way, see Theorem 2.3 below. It is also true that a
group G has even order if, and only if, G possesses a nontrivial irreducible character with
rational field of values [NT08, Theorem 8.2]. However, unlike the real case, the proof of this
simply-stated result already requires the Classification of the Finite Simple Groups [GLS94]
(CFSG for short), evidencing the deep nature of rationality phenomena in character theory.

R. Gow conjectured that every finite group of even order has a nontrivial irreducible
character with odd degree and rational field of values. In 2008, G. Navarro and P.H. Tiep
[NT08, Theorem B] finally confirmed this prediction. Later (but appearing first in the
literature [NT06]), they generalized their result by proving that every finite group of order
divisible by a prime q admits a nontrivial irreducible character of degree coprime to q with
values in the rather small cyclotomic extension Qpe2iπ{qq. The study of fields of values
of irreducible characters of degree not divisible by a given prime is a subject interesting
in its own right [ILNT19], which is recently blooming thanks to a growing interest in the
Galois refinement of the McKay conjecture proposed by G. Navarro in [Nav04]. This refined
conjecture has been reduced to a question on simple groups in [NSV20], which makes it
important to understand the fields of values for such groups.
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Usually, extensions of results from one prime to a set of primes π fail (at least without
assuming separability properties in the group), and the behavior of finite groups with respect
to properties related to π is no longer smooth. However, in [GSV19] the first, third, and
fourth-named authors show that every nontrivial group possesses a nontrivial irreducible
character of degree not divisible by any prime in π, where π is any set consisting of at most
two primes. In the above-mentioned context of character fields of values, it is natural to
consider further restrictions on the values of such π1-degree characters.

In Theorem A, we show that every finite group of order divisible by 2 or q possesses a
nontrivial irreducible character of t2, qu1-degree with field of values contained in Qpe2iπ{qq,
a surprising result that generalizes both [NT06] and [NT08, Theorem B] in the fashion of
[GSV19].

Theorem A. Let G be a finite group, let q be a prime and write π “ t2, qu. Then G possesses
a nontrivial π1-degree irreducible character with field of values contained in Qpe2πi{qq if, and
only if, gcdp|G|, 2qq ą 1.

The obvious problem suggested by Theorem A is to try to understand when the irreducible
character it identifies can be chosen to be rational, that is, when such character can be chosen
to have only rational values. In other words, for a group G of even order and an odd prime
q, we would like to characterize when G has a π1-degree rational character, where π “ t2, qu.
This is not always the case, in contrast to what happens if we allow small cyclotomic field
extensions of Q as fields of values, as described by Theorem A. For example, the only rational
linear character of A4 is the trivial one. A complete answer to this problem appears difficult
to achieve and at the time of this writing, we do not know what form such a classification
would take. However, in the case where G is a solvable group (or an alternating group, see
Theorem D below), we can completely solve this problem.

Theorem B. Let G be a solvable group, q be a prime and set π “ t2, qu. Then G admits
a nontrivial rational irreducible character of π1-degree if, and only if, H{H 1 has even order,
where H P HallπpGq.

We care to remark that the statement of Theorem B does not hold outside solvable groups,
as shown by A5 and π “ t2, 3u (see Remark 5.11).

Our proof of Theorem A relies on the Classification of the Finite Simple Groups. In fact,
for alternating groups and generic groups of Lie type, the arguments naturally extend from
a pair t2, qu of primes to any pair tp, qu. Hence we obtain Theorem A as a corollary of
the following statement, which classifies finite groups admitting a π1-degree character with
values in certain cyclotomic extensions of Q, for any set π consisting of two primes. Note
that the seemingly random exceptions in Theorem C below suggest that the use of the CFSG
is perhaps unavoidable in the present context. From now on, we will use Qpχq to denote the
field of values of a character χ.

Theorem C. Let G be a finite group and π “ tp, qu be a set of primes such that either p or
q divides |G|. Assume that:

(i) π ‰ t3, 5u or G does not have a composition factor isomorphic to the Tits group
2F4p2q1.

(ii) π ‰ t23, 43u, t29, 43u or G does not have a composition factor isomorphic to the
Janko group J4.
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Then G possesses a nontrivial irreducible character χ of π1-degree such that Qpχq Ď Qpe2πi{pq

or Qpχq Ď Qpe2πi{qq.
Theorem C has been used in [HMM20] to obtain a lower bound for the number of almost

p-rational irreducible characters of p1-degree in a finite group G. A character χ is said to
be almost p-rational if Qpχq Ď Qpe2πi{nq for some nonnegative integer n with p-part at most
p. The aforementioned refinement of the McKay conjecture [Nav04, Conjecture A] would
imply that the number of almost p-rational irreducible characters of p1-degree of G is at least
the number of conjugacy classes in the group NGpP q{ΦpP q, where P P SylppGq and ΦpP q is
its Frattini subgroup. Therefore, we expect that any finite group of order divisible by p has
many almost p-rational irreducible characters of p1-degree. Notice that Theorems A and C
are consistent with this new consequence of the Galois refinement of the McKay conjecture,
as the π1-degree characters identified by them are almost p-rational regardless of the prime
q.

Finally, and as briefly mentioned before stating Theorem B, we are able to completely
determine which simple alternating groups admit a nontrivial rational irreducible character
of π1-degree, for any set π consisting of exactly two primes. We will write Irrπ1pGq to denote
the set of irreducible characters of G of π1-degree.
Theorem D. Let n ě 5 be a natural number and let p, q be distinct primes. Let π “ tp, qu.
The alternating group An admits a nontrivial rational irreducible character of π1-degree for all
those n P N that do not satisfy any of the following conditions (up to possibly interchanging
the primes p and q).

(i) n “ pm “ 2qk ` 1, for some m, k P Ně1 such that m is odd.
(ii) n “ 2pm “ qk ` 1, for some m, k P Ně1 such that k is odd.

Moreover, in case (i), Qpφq Ď Qpe2πi{pq for all φ P Irrπ1pAnq. On the other hand, in case
(ii), Qpψq Ď Qpe2πi{qq for all ψ P Irrπ1pAnq.

This paper is structured as follows: In Section 2, we prove Theorems A and C assuming
Theorem 2.1 on finite simple groups. In Section 3, we prove Theorem D, which in particular
yields the alternating group case of Theorem 2.1. In Section 4, we prove Theorem 2.1 for
sporadic groups and simple groups of Lie type, thus completing the proof of Theorem 2.1.
Finally, we prove Theorem B in Section 5.

2. Proofs of Theorems A and C

Given a character χ of a finite group and a field extension F of Q, we say that χ is F -valued
if Qpχq Ď F . Recall that χ is always Qpe2πi{|G|q-valued. In the special cases where F is
the field of rational or real numbers, we will sometimes just say that χ is rational or real,
respectively. In particular, rational characters are real. Moreover, given a prime number p,
we say that χ is p-rational if Qpχq Ď Qpe2πi{nq for some nonnegative integer n not divisible
by p [Isa06, Definition 6.29].

The aim of this section is to prove Theorems A and C of the introduction. In order to
do so, we assume the following result on finite simple groups. This will be shown to hold in
Sections 3 and 4.
Theorem 2.1. Let S be a nonabelian simple group and π “ tp, qu be a set of primes. Assume
that pS, πq is not one of p2F4p2q1, t3, 5uq, pJ4, t23, 43uq, or pJ4, t29, 43uq. Then there exists
1S ‰ χ P IrrpSq of π1-degree such that Qpχq Ď Qpe2πi{pq or Qpχq Ď Qpe2πi{qq.
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We start with a lemma.

Lemma 2.2. Let M � G such that |G : M | “ r an odd prime. Let θ P IrrpMq with
Qpθq Ď Qpe2πi{pq for some prime p ‰ r. Then there exists χ P IrrpGq lying over θ with
Qpχq Ď Qpe2πi{pq.

Proof. If the stabilizer in G of θ is Gθ “ M then by the Clifford correspondence [Isa06,
Theorem 6.11], we have θG P IrrpGq with QpθGq Ď Qpθq Ď Qpe2πi{pq, as required. Therefore,
we may assume that θ is G-invariant.

Note that θ is r-rational. It follows from [Isa06, Theorem 6.30] that θG has a unique
r-rational irreducible constituent χ. Indeed, θ is extendible to χ, and hence Qpθq Ď Qpχq.

For each σ P GalpQpχq{Qpθqq, obviously χσ is also an r-rational character of G lying over θ.
Therefore, by the uniqueness of χ, we have χσ “ χ. Then χ is GalpQpχq{Qpθqq-fixed, which
implies that Qpχq Ď Qpθq. We have shown that Qpχq “ Qpθq Ď Qpe2πi{pq, as desired. �

We will often use the following classic result of Burnside. We include its elementary proof
to emphasize the difference between reality and rationality of characters mentioned in the
introduction.

Theorem 2.3 (Burnside). A finite group G has even order if, and only if, some nontrivial
χ P IrrpGq is real.

Proof. Let us assume that |G| is even. By [Isa06, Corollary 2.7] and [Isa06, Corollary
2.23.(b)], we can write

|G| “ |G : G1| `
ÿ

χPIrrpGq
χp1qą1

χp1q2 .

If |G : G1| is even, then G has a normal subgroup H of index 2 and the only nontrivial
irreducible character of G{H is rational. It follows that G has a nontrivial real character.
Otherwise, the sum of the squares of the degrees of nonlinear characters of G is odd. Then
the action of the complex conjugation on characters must leave some nonlinear irreducible
character χ of G invariant. Therefore χ is a nontrivial real irreducible character of G.

The proof of the converse is also elementary, see [Isa06, Problem 3.16]. �

Theorem 2.4. Let G be a finite group and π “ tp, qu be a set of primes. Then G possesses a
nontrivial irreducible character χ of π1-degree such that Qpχq Ď Qpe2πi{pq or Qpχq Ď Qpe2πi{qq

if, and only if, gcdp|G|, 2pqq ą 1, provided that we are not in one of the following situations:
(i) G has a composition factor isomorphic to the Tits group 2F4p2q1 and π “ t3, 5u.

(ii) G has a composition factor isomorphic to the Janko group J4 and π is one of t23, 43u
or t29, 43u.

Proof. First assume that G is a finite group with gcdp|G|, 2pqq “ 1. Let χ P IrrpGq such that
Qpχq Ď Qpe2πi{pq or Qpχq Ď Qpe2πi{qq. Since Qpχq Ď Qpe2πi{|G|q, we have χ is rational-valued.
As G is of odd order, it follows from Theorem 2.3 that χ is trivial.

Next we assume that gcdp|G|, 2pqq ą 1. We aim to show that G has a nontrivial irreducible
character χ of π1-degree such that Qpχq Ď Qpe2πi{pq or Qpχq Ď Qpe2πi{qq.

Let G “ G0 � G1 � ¨ ¨ ¨ � Gn “ 1 be a composition series of G and let 0 ď k ď n ´ 1 be
the smallest such that Gk{Gk`1 is either nonabelian simple or cyclic of order 2, p, or q. In
particular, Gi{Gi`1 is cyclic of order coprime to 2pq for every i ă k.
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If Gk{Gk`1 is cylic of order 2, p, or q, then obviously Gk{Gk`1 has a nontrivial irreducible
character θ of π1-degree such that Qpθq Ď Qpe2πi{pq or Qpθq Ď Qpe2πi{qq. On the other
hand, when Gk{Gk`1 “: S is nonabelian simple, Theorem 2.1 implies that there exists
1S ‰ θ P IrrpSq of π1-degree such that Qpθq Ď Qpe2πi{pq or Qpθq Ď Qpe2πi{qq.

Viewing the above θ as a character of Gk, we now know that Gk possesses a nontrivial
irreducible character θk of π1-degree such that Qpθkq Ď Qpe2πi{pq or Qpθkq Ď Qpe2πi{qq.
Using Lemma 2.2, we obtain θk´1 P IrrpGk´1q lying over θk with Qpθk´1q Ď Qpe2πi{pq or
Qpθk´1q Ď Qpe2πi{qq. Moreover, following the proof of Lemma 2.2, we see that θk´1p1q “ θkp1q
or θk´1p1q “ |Gk´1 : Gk|θkp1q, which guarantees that θk´1 is of π1-degree. Repeating this
process k times, we can produce a nontrivial irreducible character χ :“ θ0 of π1-degree such
that Qpχq Ď Qpe2πi{pq or Qpχq Ď Qpe2πi{qq. �

Theorems A and C follow immediately from Theorem 2.4.

3. Alternating groups

The aim of this section is to prove Theorem 2.1 for alternating groups. In order to do so,
we completely describe alternating groups possessing a rational-valued π1-degree character.
This is done by proving Theorem D of the introduction, which might be of independent
interest.

We begin by recalling that irreducible characters of the symmetric group Sn are labelled
by partitions of n [JK81, Chapter 2]. We denote by χλ the irreducible character of Sn
corresponding to the partition λ of n. We will sometimes use the notation λ $ n to mean
that λ is a partition of n. Similarly we will write λ $p1 n to say that χλp1q is coprime to p.
Given a partition λ of n, we denote by λ1 its conjugate. If λ ‰ λ1 then pχλqAn P IrrpAnq. On
the other hand, if λ “ λ1 then pχλqAn “ φ` φg for some φ P IrrpAnq and g P Sn r An.

Assuming that the reader is familiar with the basic combinatorial concepts involved in the
representation theory of symmetric groups (as explained for instance in [Ol94, Chapter 1]),
we recall some important facts that will play a crucial role in our proofs. Given λ $ n and
i, j P N we denote by hijpλq the length of the hook of λ corresponding to node pi, jq. For
e P N, we let Hepλq be the set consisting of all those nodes pi, jq of λ such that e divides
hijpλq. Moreover, we let Cepλq denote the e-core of λ.

For any natural number m, we denote by νppmq the exponent of the maximal power of p
dividing m. The following lemma follows from [Ol94, Proposition 6.4].
Lemma 3.1. Let p be a prime and let n be a natural number with p-adic expansion n “
řk
j“0 ajp

j. Let λ be a partition of n. Then νppχ
λp1qq “ 0 if, and only if, |Hpkpλq| “ ak and

Cpkpλq $p1 n´ akp
k.

A consequence of Lemma 3.1 is highlighted by the following statement.
Lemma 3.2. Let p be a prime and let n “ pk` ε for some ε P t0, 1u. Let λ $ n be such that
χλp1q ą 1. Then χλ is an irreducible character of p1-degree of Sn if and only if h11pλq “ pk.

A second useful consequence of [Ol94, Proposition 6.4] is stated in the following lemma.
Lemma 3.3. Let n “ 2k ` ε for some ε P t0, 1u, and let λ $ n. Then ν2pχ

λp1qq “ 1 if and
only if H2kpλq “ H and |H2k´1

pλq| “ 2.
We conclude this brief background summary by recalling a well-known fact on cyclotomic

extensions of the rational numbers [BEW98, Lemma 1.2.1].
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Lemma 3.4. If p is an odd prime number, then Qp?pq Ď Qpe2πi{pq if and only if p ”
1 mod 4. On the other hand, Qp?´pq Ď Qpe2πi{pq if and only if p ” 3 mod 4.

We are now ready to prove the main result of this section, which is Theorem D in the
introduction.
Proof of Theorem D. Assume first that both primes p and q divide the order of An. Equiv-
alently, we have p, q ď n. Let n “

řt
i“1 aip

mi “
řr
j“1 bjq

kj be the p-adic and respectively
q-adic expansions of n. Here m1 ą m2 ą ¨ ¨ ¨ ą mt ě 0 and k1 ą k2 ą ¨ ¨ ¨ kr ě 0. Without
loss of generality, we can assume that b1q

k1 ă a1p
m1 . We consider λ P Ppnq to be defined by:

λ “ pn´ b1q
k1 , n´ a1p

m1 ` 1, 1b1qk1´pn´a1pn1`1q
q.

As done in the proof of [GSV19, Theorem 2.8], we observe that χλ P Irrπ1pSnq and that
χλp1q ‰ 1 unless n “ a1p

m1 “ b1q
k1 ` 1. We also claim that λ ‰ λ1. This follows by

observing that λ “ λ1 would imply that
b1q

k1 ´ pn´ a1p
m1q “ n´ b1q

k1 ´ 1 and that n´ a1p
m1 P t0, 1u.

Then we would have that b1q
k1 “ n´ b1q

k1 ´ 1 if n´ a1p
m1 “ 0 or that b1q

k1 “ n´ b1q
k1 if

n´a1p
m1 “ 1. Both these situations can not occur. We conclude that χ :“ pχλqAn P Irrπ1pAnq

and that Qpχq “ Q.
Let us now consider the case where n “ apm “ bqk ` 1, for some m, k P N, some 1 ď a ď

p´ 1 and some 1 ď b ď q ´ 1.
If b ě 3, then we consider µ “ ppb´ 1qqk ` 1, 1qkq. Since h11pµq “ apm, h12pµq “ pb´ 1qqk

and h21pµq “ qk, we deduce that χµ P Irrπ1pSnq by Lemma 3.1. Since b ě 3 we also have that
µ ‰ µ1 and hence that χ :“ pχµqAn P Irrπ1pAnq is nontrivial and such that Qpχq “ Q.

If b P t1, 2u and a ě 3 then we consider ν “ ppa ´ 1qpm, 2, 1pm´2q. Since h11pνq “ bqk,
h12pνq “ pa´1qpm and h21pνq “ pm, we deduce that χν P Irrπ1pSnq by Lemma 3.1. As above,
a ě 3 implies that ν ‰ ν 1 and hence that χ :“ pχνqAn P Irrπ1pAnq is nontrivial and such that
Qpχq “ Q.

Let us now study the situation where a, b P t1, 2u. Since apm “ bqk ` 1 we observe that
the only cases to consider are pa, bq P tp1, 1q, p1, 2q, p2, 1qu.
‚ If pa, bq “ p1, 2q then n “ pm “ 2qk ` 1 and hence p ‰ 2. Since 2 “ b ď q ´ 1 we also
have that q ‰ 2. By Lemma 3.2 we deduce that χλ P Irrp1pSnq if and only if λ “ pd, 1n´dq
is a hook partition. Moreover, since q is odd, again from Lemma 3.1 we observe that the
only hook partitions of n that label characters of Sn of degree coprime to q are pnq, p1nq
and ζ “ p1 ` qk, 1qkq “ ζ 1. We also observe that m must be odd in this situation, as
pm “ 2qk`1 ” 3 mod 4. It follows that An admits exactly two distinct nontrivial irreducible
characters of π1-degree: the two irreducible constituents φ1, φ2 of pχζqAn . By [JK81, 2.5.13]
we observe that their fields of values are equal to Qp

?
´pmq and strictly contain Q. Moreover,

since m is odd then p ” pm “ 2qk ` 1 ” 3 mod 4. Hence using Lemma 3.4 we observe that
for all i P t1, 2u we have

Qpφiq “ Qp
?
´pmq “ Qp

?
´pq Ď Qpe2πi{p

q.

‚ If pa, bq “ p2, 1q then n “ 2pm “ qk ` 1 and hence q ‰ 2. The situation is similar to the
one described above. Using Lemma 3.2 we notice that the non-linear irreducible characters
of Sn of degree coprime to q are labelled by all partitions λ such that h11pλq “ qk and
h22pλq “ 1. Since 2 “ a ď p ´ 1, we have that p ‰ 2. Therefore, Lemma 3.1 implies that
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the only partition that labels a non-linear irreducible character of Sn of degree coprime to p
and to q is η “ ppm, 2, 1pm´2q “ η1. As before we deduce that An admits exactly two distinct
nontrivial irreducible characters of π1-degree: the two irreducible constituents ψ1 and ψ2 of
pχηqAn . By [JK81, 2.5.13] we observe that for all i P t1, 2u we have that Qpψiq “ Qp

a

qkq. It
follows that for any i P t1, 2u, Qpψiq strictly contains Q if and only if k is odd. In this case,
for all i P t1, 2u we have that Qpψiq “ Qp?qq. Moreover, since p ‰ 2 then q ” 1 mod 4.
Therefore Qpψiq Ď Qpe2πi{qq, by Lemma 3.4.
‚ If pa, bq “ p1, 1q then exactly one of p or q is equal to 2.

If q “ 2 then n “ pm “ 2k ` 1. By Lemma 3.2 we deduce that χλ P Irrp1pSnq if and
only if λ “ pd, 1n´dq is a hook partition. Lemma 3.2 shows that pnq, p1nq are the only hook
partitions labelling an odd-degree character of Sn. Moreover, using Lemma 3.3 we observe
that the partition ζ “ p1 ` 2k´1, 12k´1

q “ ζ 1, is the only hook partition of n such that
ν2pχ

ζp1qq “ 1. We deduce that the two irreducible constituents φ1 and φ2 of pχζqAn are the
only nontrivial irreducible characters of π1-degree of An. By [JK81, 2.5.13] we observe that
Qpφ1q “ Qpφ2q “ Qp

?
pmq. Hence Qpφ1q (and Qpφ2q) strictly contain Q if and only if m is

odd. In this case, p ” pm ” 2k ` 1 ” 1 mod 4. Therefore Lemma 3.4 implies that for all
i P t1, 2u we have that

Qpφiq “ Qp
?
pmq “ Qp

?
pq Ď Qpe2πi{p

q.

If p “ 2 then n “ 2m “ qk ` 1 and we notice that k is necessarily odd. Moreover, Lemma
3.2 implies that the only t2, qu1-degree irreducible characters of Sn are the linear ones. On
the other hand, Lemma 3.3 shows that η “ p2m´1, 2, 12m´1´2q “ η1 is the only partition
labelling a q1-degree irreducible character of Sn such that ν2pχ

ηp1qq “ 1. Arguing as above,
we deduce that An admits exactly two distinct nontrivial irreducible characters of π1-degree:
the two irreducible constituents ψ1 and ψ2 of pχηqAn . By [JK81, 2.5.13] we observe that for
all i P t1, 2u, we have Qpψiq “ Qp

a

´qkq. It follows that for any i P t1, 2u, Qpψiq strictly
contains Q. Since k is odd, for all i P t1, 2u we have Qpψiq “ Qp

?
´qq. Moreover, since

p “ 2 we have q ” 3 mod 4. Therefore Qpψiq Ď Qpe2πi{qq, by Lemma 3.4.
To complete the proof we need to treat the easier case where pq does not divide |An| “ n!{2.

In this setting, we just need to show that there exists a rational-valued π1-degree irreducible
character of An (as conditions (i) and (ii) of the statement of Theorem D can not be satisfied).

If p, q ą n, then every irreducible character of An has π1-degree. Since n ě 5, we have
pn´ 1, 1q ‰ pn´ 1, 1q1 and therefore χ “ pχpn´1,1qqAn is a nontrivial irreducible character of
π1-degree of An such that Qpχq “ Q. Otherwise, up to possibly interchanging p and q we can
assume that p ď n ă q. In this case, every irreducible character of An has degree coprime to
q. Let n “ a`pw for some 0 ď a ď p´1 and w ě 1. Consider λ “ pn´pa`1q, a`1q P Ppnq.
Since n ě 5 we notice that necessarily λ ‰ λ1. Moreover, Lemma 3.1 implies that p does not
divide χλp1q. It follows that χ “ pχλqAn is a non-trivial irreducible character of π1-degree of
An such that Qpχq “ Q. �

A straightforward consequence of Theorem D is that Theorem 2.1 holds for alternating
groups.

Corollary 3.5. Let π “ tp, qu be a set of two primes and let n ě 5. Then An possesses
a nontrivial irreducible character χ of π1-degree such that Qpχq Ď Qpe2πi{pq or Qpχq Ď
Qpe2πi{qq.
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Proof. If n does not satisfy conditions (i) and (ii) of Theorem D, then An has a nontrivial
rational character. If n satisfies condition (i), then the proof of Theorem D shows that there
exists φ P Irrπ1pAnq such that φp1q ą 1 and such that Qpφq Ď Qpe2πi{pq. On the other
hand, if n satisfies condition (ii), we have shown in the proof of Theorem D that there exists
ψ P Irrπ1pAnq such that ψp1q ą 1 and such that Qpψq Ď Qpe2πi{qq. �

4. Simple groups of Lie type

In this section, we prove Theorem 2.1 for simple groups of Lie type and sporadic simple
groups. The following reduces us to the case of simple groups of Lie type with non-exceptional
Schur multipliers. The list of finite simple groups with exceptional Schur multipliers is
available in [GLS98, Table 6.1.3].

Proposition 4.1. Let S be a simple group of Lie type with an exceptional Schur multiplier,
or let S be a sporadic group. Assume that S is not the Janko group J4 or the Tits group
2F4p2q1. Then S satisfies Theorem 2.1. Further, the Tits group 2F4p2q1 satisfies Theorem 2.1
for π ‰ t3, 5u, and the Janko group J4 satisfies Theorem 2.1 for π R tt23, 43u, t29, 43uu.

Proof. This can be confirmed using GAP and the Atlas [GAP, Atl]. In particular, the
character tables for the groups under consideration are available in the GAP Character
Table Library, and we make use of the Conductor command in GAP, which returns the
smallest natural number m for which a character in a stored character table takes its values
in Qpe2πi{mq. �

When S is a simple group of Lie type, the required character χ P IrrpSq of π1-degree
we produce will be a semisimple character. Let us recall some brief background on these
characters from [Ca85, DM91, GM20]. (We refer the reader in general to these references
for more on the character theory of groups of Lie type.)

Let G be a connected reductive algebraic group in characteristic p and F a Frobenius
endomorphism of G. For each rational maximal torus T of G and character θ P IrrpT F q,
Deligne–Lusztig’s twisted induction RG

T is used to define the Deligne-Lusztig character RG
T pθq.

Let G˚ be an algebraic group with a Frobenius endomorphism F ˚ such that pG, F q is dual
to pG˚, F ˚q. Set G :“ GF and G˚ :“ pG˚qF˚ .

Recall that if pT , θq is G-conjugate to pT 1, θ1q, then RG
T pθq “ RG

T 1pθ
1q. Moreover, by [DM91,

Proposition 13.13], the G-conjugacy classes of pairs pT , θq are in one-to-one correspondence
with the G˚-conjugacy classes of pairs pT ˚, sq, where s is a semisimple element of G˚ and
T ˚ is a rational maximal torus containing s. Due to this correspondence, we can use the
notation RG

T ˚psq for RG
T pθq. For each conjugacy class psq of semisimple elements in G˚ such

that CG˚psq is connected, one can define a so-called semisimple character of G as follows:

χpsq :“ 1
|W psq|

ÿ

wPW psq

εGεT ˚wR
G
T ˚w psq,

where W psq is the Weyl group of CG˚psq, T ˚
w is a torus of G˚ of type w, and εG “ ˘1,

depending on whether the relative rank of G is even or odd, see [DM91, Definition 14.40].
Moreover, χpsq is irreducible and

χpsqp1q “ |G˚ : CG˚psq|p1 ,

where we recall that p is the defining characteristic of G and np1 denotes the p1-part of a
positive integer n.
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Lemma 4.2. With the notation as above, let s P G˚ be a semisimple element such that
CG˚psq is connected. Suppose s has order k and σ P GalpQpe2πi{|G|q{Qq satisfies σpξq “ ξm

for every kth root of unity ξ, where m is an integer relatively prime to k. Then χσpsq “ χpsmq.
In particular, Qpχpsqq Ď Qpe2πi{kq.

Proof. Let T ˚ be a rational maximal torus of G˚ containing s. Let T be a rational maximal
torus of G and θ P IrrpT F q such that the G-conjugacy class of pT , θq corresponds to the
G˚-conjugacy class of pT ˚, sq under the correspondence described above. Then pT , θmq
corresponds to pT ˚, smq, and the multiplicative order of θ in the group IrrpT F q is the same
as the order of s. Therefore, the values of θ are in Qpe2πi{kq.

We recall the character formula for RG
T 1pθq, which we simplify as RT 1,θ:

RT 1,θpgq “
1

|C0
Gptq

F |

ÿ

xPGF
θpx´1txqQ

C0
Gptq

xT 1x´1puq,

where t is semisimple, u is unipotent, and g “ tu “ ut is the Jordan decomposition of
g P G. Also, C0

Gptq is the connected component of CGptq and Q
C0

Gptq

xT x´1 are Green functions
of C0

Gptq, see [Ca85, Theorem 7.2.8]. As the linear character θ is Qpe2πi{kq-valued and the
Green functions are rational-valued, we have Rσ

T 1,θ “ RT 1,θm and QpRT 1,θq Ď Qpe2πi{kq for
every rational maximal torus T 1 of G. The conclusion now follows from the definition of
χpsq. �

In particular, if ZpGq is connected, then CG˚psq is connected for every semisimple s P G˚.
(See, for example, [DM91, Remark 13.15(ii)].) If ZpGq is not connected, we may embed
G into another connected reductive group rG satisfying ZprGq is connected, via a so-called
regular embedding ι : G ãÑ rG. We record here some of the properties of regular embeddings.
For proofs and a nice detailed discussion, we refer the reader to [GM20, Section 1.7]. In this
situation, ι may be chosen so that, identifying G with its image ιpGq in rG, the Frobenius
endomorphism F is naturally the restriction of a Frobenius endomorphism on rG, which
we will also denote by F . Then writing rG :“ rGF , we have G � rG, the quotient group
rG{G is abelian of order prime to p, and the restriction Res rG

Gpχq to G of any χ P Irrp rGq is
multiplicity-free.

Further, the regular embedding ι induces a dual map ι˚ : rG˚ Ñ G˚ that maps rG˚ :“ prG˚qF˚

onto G˚ and whose kernel is central and F ˚-fixed. With this in place, following the treatment
in [GM20, Corollary 2.6.18], we may define the semisimple characters of G corresponding to
a given semisimple s P G˚ to be the irreducible constituents of the restriction Res rG

Gpχprsqq of
a semisimple character χprsq of rG, where rs is a semisimple element of rG˚ such that ι˚prsq “ s.
Fixing χs to be one such semisimple character of G corresponding to s, we again have

(4.1) χsp1q “ |G˚ : CG˚psq|p1 .

Further, the set IrrpGq may be partitioned into subsets known as rational Lusztig series,
denoted EpG, sq, which are indexed by G˚-conjugacy classes of semisimple elements s P
G˚ (see, e.g. [DM91, Proposition 14.41]). In particular, the semisimple characters of G
corresponding to s lie in the set EpG, sq. When CG˚psq is connected, χpsq is the unique
semisimple character in EpG, sq. To avoid confusion, we will use the notation χpsq only in
the case CG˚psq is connected.
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In the case CG˚psq is disconnected, and hence Lemma 4.2 does not apply, the following,
extracted from [SFT18], will be useful. Here, we write EpG, sqσ for the set tχσ | χ P EpG, squ.
Lemma 4.3. Let G “ GF be a group of Lie type defined in characteristic p as above. Let
s P G˚ be semisimple and let σ P GalpQpe2πi{|G|q{Qq. Then

(i) If s has prime order q and m is an integer coprime to q such that σpξq “ ξm for each
qth root of unity ξ, then EpG, sqσ “ EpG, smq.

(ii) If EpG, sqσ “ EpG, sq and χσpuq “ χpuq for all unipotent elements u P G (that is,
elements of order a power of p) and all χ P IrrpGq, then every semisimple character
in EpG, sq is fixed by σ.

Proof. Part (i) is a direct application of [SFT18, Lemma 3.4]. Part (ii) is an application of
[SFT18, Lemma 3.8], since the Gelfand-Graev characters of G (see [DM91, Definition 14.21])
are induced from characters on the unipotent radical, and hence take nonzero values only
on unipotent elements. �

We remark that the same proof as [SFT18, Lemma 3.4], which is analogous to that of
Lemma 4.2, yields the corresponding statement of Lemma 4.3(i) for arbitrary |s|, but we will
not need this here.

Now, if S is a simple group of Lie type not isomorphic to an alternating group or one listed
in Proposition 4.1, then S “ G{ZpGq for G “ GF , where G is simple of simply connected
type. The following will be used in conjunction with Lemma 4.3 in many cases in which
CG˚psq is not connected. Although it can be extracted from the proofs of [GSV19, Lemma
3.3 and Theorem 3.5], we rewrite the proof for the convenience of the reader.
Lemma 4.4. Let S “ G{ZpGq be as in the previous paragraph, where G is defined in
characteristic p. Let q ‰ p be another prime, let Q be a Sylow q-subgroup of G˚, and
moreover assume that |ZpGq| is either a power of q or coprime to q. Then there exists a
nontrivial semisimple character χs in a series EpG, sq of G satisfying the following properties:

(i) s P ZpQq and has order q;
(ii) ZpGq is in the kernel of χs;

In particular, χs may be viewed as a nontrivial member of Irrtp,qu1pSq.
Proof. Let s P ZpQq have order q. Then CG˚psq contains a Sylow q-subgroup of G˚, and
hence any semisimple character in EpG, sq is a member of Irrtp,qu1pGq, using (4.1). Now,
our exclusions imply that |ZpGq| “ rG˚ : pG˚q1s. If |ZpGq| is a power of q, then elementary
character theory yields every member of Irrq1pGq is trivial on ZpGq (see, e.g., [GSV19, Lemma
3.4]). If q - |ZpGq|, the equality |ZpGq| “ rG˚ : pG˚q1s implies Q ď pG˚q1, so s P pG˚q1. By
[NT13, Lemma 4.4(ii)], any character of EpG, sq is then trivial on ZpGq. In either case, this
yields that any semisimple character in EpG, sq satisfies the statement. �

Proposition 4.5. Let S be a simple group of Lie type. Then Theorem 2.1 holds for S.
Proof. We may assume S is not one of the groups listed in Proposition 4.1 nor isomorphic
to an alternating group. Further, thanks to [NT06, NT08], we may assume that p ‰ q.

Let S be of the form G{ZpGq, where G “ GF is the set of fixed points of a simple
connected reductive algebraic group of simply connected type defined in characteristic r,
under a Frobenius endomorphism F . Note that the Steinberg character StG of G has degree
a power of r, is rational-valued, and is trivial on ZpGq. Hence, we may assume that r “ p is
one of the primes in π.
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Throughout, let Q P SylqpG˚q. If p is an odd prime, let η P t˘1u be such that p ” η

pmod 4q, and note that Qp?ηpq Ď Qpe2πi{pq, using Lemma 3.4.
By [MT11, Exercise 20.16], we see that CG˚psq is connected whenever |s| is relatively

prime to |ZpGq|p1 . Then if q - |ZpGq|, we have q - |ZpGq| (see [GLS98, Theorem 1.12.5 and
Table 6.1.2]) and the character χs constructed in Lemma 4.4 is actually χpsq and takes values
in Qpe2πi{qq, using Lemma 4.2. Hence we assume q | |ZpGq|.

Let G be of type An´1. Then G “ SLn and rG “ GLn, and we may write n “ a1q ` ¨ ¨ ¨ atq
t

with 0 ď ai ă q for 1 ď i ď t. We write rG “ GLεnppaq and G “ SLεnppaq, where ε P t˘1u and
ε “ 1 gives the untwisted version SLnppaq, and ε “ ´1 gives the twisted version SUnpp

aq.
Recall that C

rG˚prsq is connected for any semisimple rs P rG˚. Further, note that ZpGq “ GX

Zp rGq, rG˚ – rG, S “ PSLεnppaq – pG˚q1, G “ p rGq1 – p rG˚q1, and G˚ – rG{Zp rGq “ PGLεnppaq.
Throughout, we will make these identifications. Let rQ P Sylqp rGq. Then by [CF64, We55],
we have rQ “

śt
i“1 Q

ai
i , where the Qi P SylqpGLεqippaqq are embedded diagonally in rG. Let

k “ minti|ai ą 0u, so that nq “ qk.
First, assume that n is not a power of q. Let s1 P ZpQkq have order q. If n ‰ 2qk,

define rs P Zp rQq to be of the form diagps1, In´qkq. If q | ppa ´ εq, then s1 may further be
chosen to be of the form µIqk P ZpGLεqkppaqq, where µ P Cpa´ε ď Fˆp2a has order q. Then
detprsq “ detps1q “ µq

k
“ 1. Otherwise, q - | rG{G|, so rQ ď G. In either case, rs P G “ p rG˚q1,

so the corresponding semisimple character χprsq of rG is trivial on Zp rGq, by [NT13, Lemma
4.4]. If q is odd and n “ 2qk, we may instead let rs P Zp rQq be of the form diagpµIqk , µ´1Iqkq
if q | ppa ´ εq and diagps1, Iqkq if q - ppa ´ εq, and we again see that rs P G. Further, since the
conjugacy classes of semisimple elements of rG are determined by their eigenvalues, we see rs

is not rG-conjugate to rsz for any nontrivial z P Zp rG˚q. But the irreducible characters of rG{G

are in bijection with elements of Zp rG˚q, and χprsq b pz “ χprszq for pz P Irrp rG{Gq corresponding
to z P Zp rG˚q (see [DM91, 13.30]). Hence χprsq is also irreducible when restricted to G. By
Lemma 4.2, χprsq has values in Qpe2πi{qq, so this yields a member of IrrpSq with degree prime
to both p and q and with values in Qpe2πi{qq, as desired.

Now assume that n “ qk. Then [GSV19, Lemma 3.4] yields that any irreducible character
of G with degree prime to q is trivial on the center, which has size gcdpn, pa ´ εq. Hence
it suffices to show there exists a member of IrrpGq with degree prime to p and to q whose
values lie in Qpe2πi{pq or Qpe2πi{qq.

Let χs be as in Lemma 4.4, where we let Q “ rQZp rGq{Zp rGq P SylqpG˚q, and let rs P rQZp rGq

be such that rsZp rGq “ s. Then notice rsq P Zp rGq. Let ζ “ e2πi{|rs|, so that the semisimple
character rχprsq of rG corresponding to rs takes its values in Qpζq, by Lemma 4.2, and lies over
the tp, qu1-degree character χs of G. Let σ P GalpQpζq{Qpe2πi{qqq. Then σ maps ζ to ζm for
some m with gcdpm, |rs|q “ 1. Further, m ” 1 pmod qq, since σ fixes qth roots of unity. In
particular, rsm “ rsz for some z P Zp rGq. Then using Lemma 4.2, we have rχσprsq “ rχprsmq “ rχprszq,
and hence rχσprsq also lies over χs. In particular, Res rG

Gprχprsqq
σ “ Res rG

Gprχ
σ
prsqq “ Res rG

Gprχprszqq “

Res rG
Gprχprsqb pzq “ Res rG

Gprχprsqq. So, Res rG
Gprχprsqq is fixed by each such σ, and therefore has values

in Qpe2πi{qq.
If q is odd and χ P IrrpGq, then [SFV19, Theorem 6.1] yields that Qpχq “ QpRes rG

Grχq for
any rχ P Irrp rGq lying over χ. Hence in this case, Qpχsq Ď Qpe2πi{qq as well. If q “ 2, then



12 E. GIANNELLI, N. N. HUNG, A. A. SCHAEFFER FRY, AND C. VALLEJO

the above yields QpRes rG
Gprχprsqqq “ Q, so [SFV19, Theorem 6.1] yields that Qpχsq Ď Qp?ηpq,

completing the proof in this case.
Hence we may assume G is not of type An´1, and therefore |ZpGq| is a power of q. Let

χs be the character constructed in Lemma 4.4. In this case, note that either q “ 2 or
pG, qq “ pE6, 3q. In the latter case, G is the simply connected type group Eε

6pp
aqsc, where

ε P t˘1u, ε “ 1 corresponds to the untwisted version, and ε “ ´1 corresponds to the twisted
version. Using [TZ04, Theorem 1.8 and Lemma 2.6], we see that any irreducible character of
G takes integer values on unipotent elements, and hence Lemma 4.3 yields that χs is fixed by
any Galois automorphism σ that fixes the field Qpe2πi{3q, and hence has values in Qpe2πi{3q.

We may therefore take q “ 2, p odd, and G to be of type Bn, Cn, Dn, or E7. Here s2 “ 1,
and by Lemma 3.4, it suffices to show that χs takes values in Qp?ηpq. The data available
in CHEVIE and [Lüb07] yield that the odd-degree characters of 3D4pp

aq and E7pp
aq are all

rational-valued, and hence we assume S is Bnpp
aq with n ě 2, Cnppaq with n ě 3, Dnpp

aq

with n ě 4, or 2Dnpp
aq with n ě 4.

If S is Cnppaq, then G “ Sp2npp
aq, and [SFT20, Theorem B] yields that χs has values in

Qp?ηpq. If S is Bnpp
aq, Dnpp

aq, or 2Dnpp
aq, [TZ04, Corollary 8.3 and Lemma 2.6] yields

χpuq P Qp?ηpq for every unipotent element u of G and every χ P IrrpGq. Then Lemma 4.3
implies that χs takes its values in Qp?ηpq as well, completing the proof. �

5. Rational characters of π1-degree in solvable groups

In this section, we prove Theorem B. Namely, we characterize when a solvable group G has a
π1-degree rational character, where π “ t2, qu is a pair of primes. We first note that if G has
a normal Hall t2, qu-subgroup, then the solution to the characterization problem is pretty
simple in Lemma 5.1 below. We thank G. Navarro for pointing out a simplified version of a
previous argument.

In what follows, we assume that the reader is familiar with the theory of characters and
normal subgroups as in [Isa06, Chapter 6], for instance.
Lemma 5.1. Let G be a finite group and p ă q be two primes. Set π “ tp, qu. Suppose that
H Ÿ G where H P HallπpGq and G{H has odd order. Then G has a nontrivial irreducible
character χ of π1-degree with values in Qpe2πi{pq if, and only if, H{H 1 has order divisible by
p. Moreover, if λ P IrrpHq lies under χ, then opλq “ p.
Proof. Notice that to prove both implications, we may assume that H is abelian. If H
has order divisible by p, then let 1H ‰ λ P IrrpHq be linear with opλq equal to p. By
[Isa06, Corollary 6.27], let λ̂ P IrrpGλq be the only extension of λ such that opλ̂q “ opλq. In
particular, Qpλ̂q “ Qpe2πi{pq and hence 1G ‰ χ “ pλ̂qG P IrrpGq (by [Isa06, Theorem 6.11])
has values in Qpe2πi{pq. Since G{H is a π1-group, it follows that χ has π1-degree, as wanted.

Suppose now that 1G ‰ χ P IrrpGq has π1-degree, Qpχq Ď Qpe2πi{pq, and p does not divide
|H|. If p “ 2, then χ is a nontrivial rational irreducible character of an odd-order group.
This would contradict Theorem 2.3. If p ą 2, then |H| “ qb and since G{H is a π1-group,
then G is a p1-group. In particular Qpχq Ď Qpe2πi{pq X Qpe2πi{|G|q “ Q. Since G{H is an
odd-order group by hypothesis, and q ą p ą 2 also by hypothesis, then we get again a
contradiction with Theorem 2.3.

Finally, let λ P IrrpHq be a constituent of χH . Then λ is linear and nontrivial. Indeed,
if λ “ 1H , then χ would be a rational irreducible character of G{H of odd order, hence
χ “ 1G by Burnide’s theorem, contradicting one of the assumptions on χ. We consider
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G˚λ “ tg P G |λg “ λσ for some σ P GalpQpλq{Qqu ď G, sometimes known as the semi-
inertia group of λ in G. By [NT10, Lemma 2.3] the map given by g ÞÑ σ, whenever g P G˚λ
and λg “ λσ, defines a monomorphism G˚λ{Gλ Ñ GalpQpλq{Qq. Write E “ Qpλq. Since
λ is a linear character of a π-group, then E is obtained by adjoining a root of unity of
order opλq “ paqb to Q, where a, b ě 0 are not both zero. Write ξ “ e2πi{p. We claim that
Qpξq Ď E. Otherwise, opλq “ qb with b ě 1, and E X Qpξq “ Q. Take any σ P GalpE{Qq
and extend it to σ P GalpEpξq{Qpξqq by elementary Galois theory. Since χσ “ χ, then
λσ “ λσ “ λg for some g P G. Note that g P G˚λ. In particular,

|G˚λ{Gλ| “ |GalpEpξq{Qpξqq| “ |GalpE{Qq| “ pq ´ 1qqb´1

contradicts the oddness hypothesis on |G{H| as 2 ď p ă q. Now we know that Qpξq Ď E.
The above argument actually proves that GalpE{Qpξqq injects into G˚λ{Gλ, since

|GalpE{Qpξqq| “ |GalpE{Q|q
|GalpQpξq{Qq| “

#

pa´1 if b “ 0,
pa´1pq ´ 1qqb´1 otherwise.

The fact that |G{H|, hence |G˚λ{Gλ|, is odd and coprime to p forces a “ 1 and b “ 0, that
is, opλq “ p. �

We are working in slightly more generality than needed in this section. We note that if
p “ 2, then the condition on the order of G{H is trivially satisfied in Lemma 5.1. However,
it is a necessary condition in general: if p is an odd prime, then the group G “ Cp ¸ Cp´1
where the action is faithful has a π1-degree rational irreducible character for every π “ tp, qu
with q a divisor of p´ 1.

For an arbitrary group G and a set of primes π, we will denote by Xπ1, ppGq the set of
π1-degree irreducible characters of G with values in Qpe2πi{pq. If G is π-separable, then
the set Xπ1, ppGq consists entirely of monomial characters, given that |NGpHq{H| is odd for
H P HallπpGq. In [NV12] this fact is proven in the case where π consists of a single prime,
but it generalizes to arbitrary π, see Theorem 5.4 below. Recall that by work of P. Hall and
S. A. Čunhihin, Hall π-subgroups in π-separable groups behave like Sylow subgroups.

Lemma 5.2. Let G be π-separable, H P HallπpGq, and χ P Irrπ1pGq. If M Ÿ G, then χM
contains some H-invariant irreducible constituent and any two of them are NGpHq-conjugate.

Proof. Let θ P IrrpMq be a constituent of χM . By the Clifford correspondence [Isa06, The-
orem 6.11], |G : Gθ| is a π1-number. Since G is π-separable, then H Ď Gx

θ “ Gθx for some
x P G, and θx is an H-invariant constituent of χM . Write ϕ “ θx. Suppose that ϕy is also
H-invariant. Then H and Hy´1 are Hall π-subgroups of Gϕ. In particular, Hy´1

“ Hg for
some g P Gϕ. Note that gy P NGpHq and ϕy “ ϕgy. �

The following is a nice application of Theorem 2.3 in the context of coprime group actions.

Lemma 5.3. Let a solvable group H act coprimely on a group M with CMpHq of odd order.
Then IrrpMq contains no nontrivial real H-invariant character.

Proof. Assume first that H is solvable. By the Glauberman correspondence [Isa06, Theo-
rem 13.1], there is natural bijection between H-invariant characters in IrrpMq and the set
IrrpCMpHqq. In particular, the number of real H-invariant characters in IrrpMq is the same
as the number of real characters in IrrpCMpHqq by [Isa06, Problem 13.1]. In this case, the
result follows from Theorem 2.3 and the hypothesis on the order of CMpHq.
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If H is nonsolvable then, by Feit-Thompson’s odd order theorem [FT63], the group M has
odd order, and the result follows from Theorem 2.3. �

Theorem 5.4. Let π be a set of primes. Let G be π-separable and H P HallπpGq. Suppose
that NGpHq{H has odd order. For every χ P Xπ1, ppGq, there is a pair pU, λq with H ď U ď G
and λ P IrrpUq linear such that Qpλq P Qpe2πi{pq and χ “ λG. Moreover, any other such pair
is G-conjugate to pU, λq.

Proof. We first prove the existence of a pair by induction on |G|. We may assume that
H ă G and G1 ą 1 since otherwise χ would be linear and there is nothing to prove. We may
assume that kerpχq “ 1 by working in G{ kerpχq.

Let M Ÿ G. We claim that if for some H-invariant irreducible constituent θ of χM , θ also
lies under χ, then θ “ θ. Indeed, if θ and θ are H-invariant irreducible constituents of χM ,
then θ “ θx with x P NGpHq by Lemma 5.2. Write N “ NGpHq. Note that x2 P Nθ. Since
|N : H| is odd, then xxHy “ xx2Hy, so x P Nθ and the claim follows.

We may assume that Oπ1pGq “ 1. Otherwise, write K “ Oπ1pGq ą 1. Let θ P IrrpKq be
H-invariant lying under χ by Lemma 5.2. Note that QpχKq “ Q because QpχKq Ď Qpe2πi{pq

and K is a π1-group. Hence θ lies under χ and by the paragraph above θ “ θ. Note that
CKpHq – NKHpHq{H can be seen as a subgroup of NGpHq{H, and hence CKpHq has odd
order. By Lemma 5.3, we obtain that θ “ 1K , contradicting the fact that χ is faithful.

Let M “ OπpGq. We show that M ą 1 is abelian. By [Isa08, Theorem 3.21] we have that
M ą 1. Let µ P IrrpMq be under χ. Since χ has π1-degree, we have that µ is linear. Then
M 1 is contained in the kernel of every G-conjugate of µ. Since χ is faithful, we conclude that
M 1 “ 1.

Let L be a minimal normal subgroup of G contained in G1. Since G is π-separable and
Oπ1pGq “ 1, then L ĎM is q-elementary abelian for some q P π.

Let ν P IrrpLq be H-invariant lying under χ. Note that ν is linear. We show that
Qpνq Ď Qpe2πi{pq. If q ‰ p, then QpχLq “ Qpe2πi{pq X Qpe2πi{|L|q “ Q. Hence ν and ν lie
under χ, and by the second paragraph of this proof ν “ ν. In particular Qpνq “ Q Ď Qpe2πi{pq

(in this case q “ 2 necessarily). If L is p-elementary abelian, then Qpνq “ Qpe2πi{pq.
Next we show that ν extends to its stabilizer Gν and consequently Gν ă G. In order to

show that ν extends to Gν , it is enough to show it extends to every Sylow subgroup of Gν{L
by [Isa06, Theorem 6.26]. Let R{L P SylrpGλ{Lq. If r ‰ q, then ν extends to R because L
is a q-group and [Isa06, Corollary 6.27]. If r “ q, then R is a q-group. Since χ has q1-degree,
then χR has some linear constituent and hence ν extends to R. Note that if Gν “ G, and
τ P IrrpGq is an extension of ν then L Ď G1 Ď kerpτq. Then ν “ 1L, a contradiction with
kerpχq “ 1.

Let ψ P IrrpGνq lying over ν be the Clifford correspondent of χ as in [Isa06, Theorem
6.11]. Since both χ and ν have values in Qpe2πi{pq, so does ψ. We have H Ď Gν ă G, and
by induction there exists a pair pU, λq of the desired kind inducing ψ, hence also inducing χ.

For the uniqueness up to G-conjugacy, see the second part of the proof of [Val16, Theorem
2.6]. �

The fact that under the hypothesis of Theorem 5.4, the set Xπ1,ppGq consists entirely of
monomial characters allows us to construct a map between Xπ1,ppGq and Xπ1,ppNGpHqq as in
[Isa90, Theorem C]. In order to prove that such map is bijective, we will need a π-version
of [IN08, Theorem 3.3], which relies on π-versions of [IN08, Theorem 2.1 and Corollary 2.2].
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All these versions hold without restrictions on the set π. Their proofs can be obtained by
just mimicking the proofs in [IN08] and using the following easy observation.

Lemma 5.5. Let H ď G with p|G : H|, |H|q “ 1. Suppose that a linear character µ P IrrpHq
extends to G. Then there is an extension λ P IrrpGq of µ with opλq “ opµq.

Proof. Since µ extends to G, note that H 1 Ď H X G1 Ď kerpµq. In particular, µ seen as a
character of H{H X G1 – HG1{G1 Ÿ G{G1 extends to G{G1. By [Isa06, Corollary 6.27], µ
extends to some λ P IrrpG{G1q with opλq “ opµq and the statement follows. �

Theorem 5.6. Let G be a π-separable group and H P HallπpGq. If K Ÿ H, then there is a
unique subgroup V ď G maximal with the property that H Ď NGpV q and V XH “ K.

Proof. Mimic the proof of [IN08, Theorem 2.1] using the corresponding properties of Hall
π-subgroups in π-separable groups. �

Corollary 5.7. Let G be a π-separable group and H P HallπpGq. If µ P IrrpHq is linear,
then there exists a unique subgroup U ď G containing H and maximal such that µ extends
to U .

Proof. Mimic the proof of [IN08, Corollary 2.2] using Lemma 5.5 to guarantee the existence
of an extension of λ with suitable order. �

Theorem 5.8. Let G be π-separable and U ď G be a subgroup of π1-index. Let λ P IrrpUq
be linear and such that opλq is a π-number, Assume that λ does not extend to any subgroup
of G containing U . Then λG P IrrpGq.

Proof. Mimic the proof of [IN08, Theorem 3.3] using Corollary 5.7. �

Theorem 5.9. Let p ă q be two primes and set π “ tp, qu. Let G be a π-separable group
and H P HallπpGq. Write N “ NGpHq and suppose that N{H has odd order. Define a map

Ω: Xπ1,ppGq Ñ Xπ1,ppNq

in the following way: If χ P Xπ1,ppGq, choose a pair pU, λq where H ď U ď G and λ P IrrpUq
is linear such that Qpλq Ď Qpe2πi{pq and λG “ χ, then set Ωpχq “ pλUXNqN . Then Ω is a
well-defined bijection.

Proof. We are basically going to follow the proof of [Val16, Theorem 2.13]. Given χ P

Xπ1,ppGq, the existence of the a pair pU, λq as in the statement is guaranteed by Theorem
5.4. Set Ωpχq “ pλUXNq

N . By [Isa90, Lemma 2.3.(a)] we have that Ωpχq P IrrpNq, so in
particular Ωpχq P Xπ1,ppNq. Since any other inducing pair for χ is G-conjugate to pU, λq and

pλUXNq
N
“ pλgUgXNq

N

for every g P G, we see that Ω is a well-defined map Xπ1,ppGq Ñ Xπ1,ppNq. Now [Isa90, Lemma
2.3.(b)] guarantees Ω is injective. It remains to prove that Ω is surjective. Let θ P Xπ1,ppNq
and µ P IrrpHq lie under θ. Note that µ is linear. By Lemma 5.1, we have that opµq “ p. Let
ϕ P IrrpNµq be the Clifford correspondent of θ lying over µ as in [Isa06, Theorem 6.11]. Since
both θ and µ have values in Qpe2πi{pq so does ϕ. In particular, Qpϕq “ Qpe2πi{pq. Let µ̂ P
IrrpNµq be the canonical extension given by [Isa06, Corollary 6.27], so that opµ̂q “ opµq “ p.
By Gallagher’s theorem [Isa06, Corollary 6.17], we have ϕ “ βµ̂, with β P IrrpNµ{Hq. Note
that Qpβq Ď Qpe2πi{pq must be rational as Nµ{H is a π1-group. Since |Nµ : H| is odd by
hypothesis, we get β “ 1Nµ by Theorem 2.3. Hence pµ̂qN “ θ. By Corollary 5.7 and Lemma
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5.5, there exists a subgroup U ď G maximal with the property that µ extends to λ P IrrpUq
and opλq “ p. Note that U{ kerpλq “ kerpλqNµ{ kerpλq – Nµ{ kerpµ̂q and λNµ “ µ̂. By
Theorem 5.8, we have χ “ λG P Xπ1,ppGq. Hence Ωpχq “ pλUXNqN “ pµ̂qN “ θ. �

As an immediate consequence of Lemma 5.1 and Theorem 5.9, we can derive the following
result.

Corollary 5.10. Let p ă q be two primes and set π “ tp, qu. Let G be a π-separable
group and H P HallπpGq. Assume that NGpHq{H has odd order. Then G has a nontrivial
irreducible character of π1-degree with values in Qpe2πi{pq if, and only if, H{H 1 has order
divisible by p.

We can finally proof Theorem B of the Introduction.

Proof of Theorem B. If 2 ă q, then the statement of Theorem B is equivalent to the p “ 2
case in Corollary 5.10, since the condition on the order of NGpHq{H becomes superfluos and
π-separability of G is equivalent to solvability of G by Burnside’s paqb and Feit-Thompson’s
odd order theorems ([Isa06, Theorem 3.10] and [FT63], respectively).

We are left to deal with the much easier case where 2 “ q. In this case, H P Syl2pGq and
the condition H{H 1 has even order is equivalent to G having even order. Then one of the
implication follows from Theorem 2.3, while the other is [NT08, Lemma 3.1]. �

Remark 5.11. We observe that the statement of Theorem B does not hold outside the realm
of solvable groups. For example, let π “ t2, 3u and consider the alternating group A5. By
Theorem D, we know that A5 has a rational π1-degree irreducible character (take for instance
pχp3,2qqA5). On the other hand H{H 1 has order 3 for every H P HallπpA5q. This follows by
observing that all Hall π-subgroups of A5 are isomorphic to A4.
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Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid,
Campus de Cantoblanco, 28049 Madrid, Spain

Email address: carolina.vallejo@uam.es


	1. Introduction
	2. Proofs of Theorems A and C
	3. Alternating groups
	4. Simple groups of Lie type
	5. Rational characters of '-degree in solvable groups
	References

