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CHARACTERS OF 7-DEGREE AND
SMALL CYCLOTOMIC FIELDS

EUGENIO GIANNELLI, NGUYEN NGOC HUNG, A. A. SCHAEFFER FRY,
AND CAROLINA VALLEJO

ABSTRACT. We show that every finite group of order divisible by 2 or ¢, where ¢ is a prime
number, admits a {2, ¢}’-degree nontrivial irreducible character with values in Q(e2™/9). We
further characterize when such character can be chosen with only rational values in solvable
groups. These results follow from more general considerations on groups admitting a {p, q}'-
degree nontrivial irreducible character with values in Q(e>/?) or Q(e?7%/4), for any pair of
primes p and ¢. Along the way, we completely describe simple alternating groups admitting
a {p, q}'-degree nontrivial irreducible character with rational values.

1. INTRODUCTION

One of the main problems in Finite Group Representation Theory is to understand fields
of values of characters, by which we mean the smallest field containing all values of a given
character. A classical result of Burnside states that groups of odd order do not possess
nontrivial irreducible characters with real fields of values. Actually, this property character-
izes odd-order groups in an elementary way, see Theorem below. It is also true that a
group G has even order if, and only if, G possesses a nontrivial irreducible character with
rational field of values [NTO08, Theorem 8.2]. However, unlike the real case, the proof of this
simply-stated result already requires the Classification of the Finite Simple Groups [GLS94]
(CFSG for short), evidencing the deep nature of rationality phenomena in character theory.

R. Gow conjectured that every finite group of even order has a nontrivial irreducible
character with odd degree and rational field of values. In 2008, G. Navarro and P.H. Tiep
[INTO08, Theorem B| finally confirmed this prediction. Later (but appearing first in the
literature [NT06]), they generalized their result by proving that every finite group of order
divisible by a prime ¢ admits a nontrivial irreducible character of degree coprime to ¢ with
values in the rather small cyclotomic extension Q(e?7/9). The study of fields of values
of irreducible characters of degree not divisible by a given prime is a subject interesting
in its own right [ILNT19], which is recently blooming thanks to a growing interest in the
Galois refinement of the McKay conjecture proposed by G. Navarro in [Nav04]. This refined
conjecture has been reduced to a question on simple groups in [NSV20|, which makes it
important to understand the fields of values for such groups.
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Usually, extensions of results from one prime to a set of primes 7 fail (at least without
assuming separability properties in the group), and the behavior of finite groups with respect
to properties related to 7 is no longer smooth. However, in |[GSV19] the first, third, and
fourth-named authors show that every nontrivial group possesses a nontrivial irreducible
character of degree not divisible by any prime in 7, where 7 is any set consisting of at most
two primes. In the above-mentioned context of character fields of values, it is natural to
consider further restrictions on the values of such 7’-degree characters.

In Theorem [A], we show that every finite group of order divisible by 2 or g possesses a
nontrivial irreducible character of {2, ¢}-degree with field of values contained in Q(e?™/9),
a surprising result that generalizes both [NT06] and [NT08, Theorem B] in the fashion of
[GSV19].

Theorem A. Let G be a finite group, let q be a prime and write m = {2,q}. Then G possesses
a nontrivial 7'-degree irreducible character with field of values contained in Q(e*™/7) if, and
only if, ged(|G|,2q) > 1.

The obvious problem suggested by Theorem A is to try to understand when the irreducible
character it identifies can be chosen to be rational, that is, when such character can be chosen
to have only rational values. In other words, for a group G of even order and an odd prime
q, we would like to characterize when G has a n’-degree rational character, where m = {2, ¢}.
This is not always the case, in contrast to what happens if we allow small cyclotomic field
extensions of Q as fields of values, as described by Theorem A. For example, the only rational
linear character of Ay is the trivial one. A complete answer to this problem appears difficult
to achieve and at the time of this writing, we do not know what form such a classification
would take. However, in the case where G is a solvable group (or an alternating group, see
Theorem D below), we can completely solve this problem.

Theorem B. Let G be a solvable group, q be a prime and set m = {2,q}. Then G admits
a nontrivial rational irreducible character of m'-degree if, and only if, H/H' has even order,
where H € Hall (G).

We care to remark that the statement of Theorem |B| does not hold outside solvable groups,
as shown by As; and 7 = {2, 3} (see Remark [5.11).

Our proof of Theorem [A] relies on the Classification of the Finite Simple Groups. In fact,
for alternating groups and generic groups of Lie type, the arguments naturally extend from
a pair {2,q} of primes to any pair {p,q}. Hence we obtain Theorem [A| as a corollary of
the following statement, which classifies finite groups admitting a 7’-degree character with
values in certain cyclotomic extensions of Q, for any set 7 consisting of two primes. Note
that the seemingly random exceptions in Theorem [C|below suggest that the use of the CFSG
is perhaps unavoidable in the present context. From now on, we will use Q(x) to denote the
field of values of a character .

Theorem C. Let G be a finite group and m = {p,q} be a set of primes such that either p or
q divides |G|. Assume that:

(i) m # {3,5} or G does not have a composition factor isomorphic to the Tits group
2Fy(2).

(i) m # {23,43},{29,43} or G does not have a composition factor isomorphic to the
Janko group Jy.
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Then G possesses a nontrivial irreducible character x of 7'-degree such that Q(x) < Q(e™/P)
or Q(x) € Q(e*™/9).

Theorem |C| has been used in [HMM20] to obtain a lower bound for the number of almost
p-rational irreducible characters of p’-degree in a finite group G. A character y is said to
be almost p-rational if Q(y) < Q(e?>™/") for some nonnegative integer n with p-part at most
p. The aforementioned refinement of the McKay conjecture [Nav04, Conjecture A] would
imply that the number of almost p-rational irreducible characters of p’-degree of G is at least
the number of conjugacy classes in the group N¢(P)/®(P), where P € Syl (G) and ®(P) is
its Frattini subgroup. Therefore, we expect that any finite group of order divisible by p has
many almost p-rational irreducible characters of p’-degree. Notice that Theorems [A] and
are consistent with this new consequence of the Galois refinement of the McKay conjecture,
as the 7’-degree characters identified by them are almost p-rational regardless of the prime
q.

Finally, and as briefly mentioned before stating Theorem B, we are able to completely
determine which simple alternating groups admit a nontrivial rational irreducible character
of m'-degree, for any set 7 consisting of exactly two primes. We will write Irr,/(G) to denote
the set of irreducible characters of G of n’-degree.

Theorem D. Let n > 5 be a natural number and let p,q be distinct primes. Let m = {p, q}.
The alternating group A,, admits a nontrivial rational irreducible character of n’'-degree for all
those n € N that do not satisfy any of the following conditions (up to possibly interchanging
the primes p and q).

(i) n = p™ = 2¢* + 1, for some m,k € Nx; such that m is odd.

(ii) n = 2p™ = ¢* + 1, for some m, k € Nx; such that k is odd.

Moreover, in case (i), Q(¢) < Q(e*™P) for all ¢ € Irrp(A,). On the other hand, in case
(i1), Q) < Q™) for all € Trrp(A).

This paper is structured as follows: In Section 2, we prove Theorems [A] and [C] assuming
Theorem on finite simple groups. In Section 3, we prove Theorem [D] which in particular
yields the alternating group case of Theorem [2.1} In Section 4, we prove Theorem for
sporadic groups and simple groups of Lie type, thus completing the proof of Theorem [2.1]
Finally, we prove Theorem [B]in Section 5.

2. Proors oF THEOREMS A AND C

Given a character y of a finite group and a field extension F' of QQ, we say that x is F'-valued
if Q(x) < F. Recall that y is always Q(e*™/¢)-valued. In the special cases where F is
the field of rational or real numbers, we will sometimes just say that y is rational or real,
respectively. In particular, rational characters are real. Moreover, given a prime number p,
we say that  is p-rational if Q(x) < Q(e**/™) for some nonnegative integer n not divisible
by p [Isa06, Definition 6.29].

The aim of this section is to prove Theorems A and C of the introduction. In order to

do so, we assume the following result on finite simple groups. This will be shown to hold in
Sections [3] and [l

Theorem 2.1. Let S be a nonabelian simple group and m = {p, q} be a set of primes. Assume
that (S,m) is not one of (*F4(2),{3,5}), (Ju,{23,43}), or (J4,{29,43}). Then there exists
1g # x € Irr(S) of n'-degree such that Q(x) < Q(e*™/P) or Q(x) < Q(e*™/9),
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We start with a lemma.

Lemma 2.2. Let M < G such that |G : M| = r an odd prime. Let 6 € Irr(M) with
Q(0) < Q(e*™/?) for some prime p # r. Then there exists x € Irr(G) lying over 6 with

Q) < Q(e*).

Proof. 1If the stabilizer in G of 0 is Gy = M then by the Clifford correspondence [Isa06,
Theorem 6.11], we have 09 € Irr(G) with Q(0%) < Q(#) < Q(e*>™/), as required. Therefore,
we may assume that 6 is G-invariant.

Note that @ is r-rational. It follows from [[sa06, Theorem 6.30] that 6 has a unique
r-rational irreducible constituent y. Indeed, 6 is extendible to y, and hence Q(6) < Q(x).

For each o € Gal(Q(x)/Q(#)), obviously x is also an r-rational character of G lying over 6.
Therefore, by the uniqueness of y, we have x? = x. Then y is Gal(Q(x)/Q(#))-fixed, which
implies that Q(x) < Q(#). We have shown that Q(y) = Q(6) < Q(e*"/?), as desired. O

We will often use the following classic result of Burnside. We include its elementary proof
to emphasize the difference between reality and rationality of characters mentioned in the
introduction.

Theorem 2.3 (Burnside). A finite group G has even order if, and only if, some nontrivial
X € Irr(G) is real.

Proof. Let us assume that |G| is even. By [[sa06, Corollary 2.7] and [Isa06l Corollary
2.23.(b)], we can write
Gl =1G: G+ 3, x()*.

x€lrr(G)

x(1)>1
If |G : G'| is even, then G has a normal subgroup H of index 2 and the only nontrivial
irreducible character of G/H is rational. It follows that G has a nontrivial real character.
Otherwise, the sum of the squares of the degrees of nonlinear characters of G is odd. Then
the action of the complex conjugation on characters must leave some nonlinear irreducible
character y of GG invariant. Therefore x is a nontrivial real irreducible character of G.

The proof of the converse is also elementary, see [Isa06l, Problem 3.16]. 0

Theorem 2.4. Let G be a finite group and ™ = {p, q} be a set of primes. Then G possesses a
nontrivial irreducible character x of ©'-degree such that Q(x) < Q(e*™/?) or Q(x) < Q(e?7/4)
if, and only if, ged(|G|, 2pq) > 1, provided that we are not in one of the following situations:
(i) G has a composition factor isomorphic to the Tits group *Fy(2)" and m = {3, 5}.
(i) G has a composition factor isomorphic to the Janko group Jy and w is one of {23,43}
or {29,43}.

Proof. First assume that G is a finite group with ged(|G|,2pq) = 1. Let x € Irr(G) such that
Q(x) < Q(e*/P) or Q(x) < Q(e*™/7). Since Q(x) < Q(e2™/I¢!), we have  is rational-valued.
As G is of odd order, it follows from Theorem that y is trivial.

Next we assume that ged (|G, 2pg) > 1. We aim to show that G has a nontrivial irreducible
character y of 7’-degree such that Q(x) < Q(e*/?) or Q(x) < Q(e*™/9).

Let G = Gog> Gy > ---> G, =1 be a composition series of G and let 0 < k <n —1 be
the smallest such that Gy/Gj,1 is either nonabelian simple or cyclic of order 2, p, or ¢. In
particular, G;/G;,1 is cyclic of order coprime to 2pq for every i < k.
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If Gi/Gy1 is cylic of order 2, p, or ¢, then obviously Gy/Gj41 has a nontrivial irreducible
character 6 of m'-degree such that Q(f) < Q(e*™?) or Q(f) < Q(e**9). On the other
hand, when G/Gry1 =: S is nonabelian simple, Theorem implies that there exists
1g # 0 € Irr(S) of m'-degree such that Q(6) < Q(e*™/?) or Q(f) < Q(e>"4).

Viewing the above 6 as a character of GGj, we now know that G possesses a nontrivial
irreducible character 6 of 7'-degree such that Q(f;) < Q(e*™P) or Q(;) < Q(e>/9).
Using Lemma , we obtain 0_; € Irr(Gy_1) lying over 6, with Q(fr_,) < Q(e*™/?) or
Q(05_1) < Q(e*™). Moreover, following the proof of Lemma[2.2] we see that 6;_1(1) = 6;(1)
or O_1(1) = |Gg_1 : Gg|0k(1), which guarantees that 0;_; is of 7’-degree. Repeating this
process k times, we can produce a nontrivial irreducible character y := 6y of n’-degree such
that Q(x) € Q(e27”) or Q(x) < Q(e*). 0

Theorems [A] and [C] follow immediately from Theorem [2.4]

3. ALTERNATING GROUPS

The aim of this section is to prove Theorem for alternating groups. In order to do so,
we completely describe alternating groups possessing a rational-valued 7’-degree character.
This is done by proving Theorem D of the introduction, which might be of independent
interest.

We begin by recalling that irreducible characters of the symmetric group S,, are labelled
by partitions of n [JK8I, Chapter 2]. We denote by x* the irreducible character of S,
corresponding to the partition A of n. We will sometimes use the notation A - n to mean
that X is a partition of n. Similarly we will write A -,y n to say that x*(1) is coprime to p.
Given a partition A of n, we denote by )\ its conjugate. If X # X then (x*)a, € Irr(A,). On
the other hand, if A\ = X then (x*)a, = ¢ + @9 for some ¢ € Irr(A,) and g € S,, \ A,,.

Assuming that the reader is familiar with the basic combinatorial concepts involved in the
representation theory of symmetric groups (as explained for instance in [Ol194] Chapter 1]),
we recall some important facts that will play a crucial role in our proofs. Given A - n and
i,j € N we denote by h;;(\) the length of the hook of A corresponding to node (¢, 7). For
e € N, we let H¢(\) be the set consisting of all those nodes (i,j) of A such that e divides
hij(X). Moreover, we let C.()) denote the e-core of .

For any natural number m, we denote by v,(m) the exponent of the maximal power of p
dividing m. The following lemma follows from [O194, Proposition 6.4].

Lemma 3.1. Let p be a prime and let n be a natural number with p-adic expansion n =
Z?:o a;p’. Let A be a partition of n. Then v,(x (1)) = 0 if, and only if, |H*"(\)| = a; and
Core(A) by 0 — agp”.

A consequence of Lemma [3.1] is highlighted by the following statement.

Lemma 3.2. Let p be a prime and let n = p* + ¢ for some € € {0,1}. Let X — n be such that

xM(1) > 1. Then x> is an irreducible character of p'-degree of S,, if and only if hi1()\) = p*.

A second useful consequence of [O194, Proposition 6.4] is stated in the following lemma.

Lemma 3.3. Let n = 2% + ¢ for some e € {0,1}, and let A = n. Then vo(x*(1)) = 1 if and
only if H2*(\) = & and |12 (\)| = 2.

We conclude this brief background summary by recalling a well-known fact on cyclotomic
extensions of the rational numbers [BEW9S, Lemma 1.2.1].
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Lemma 3.4. If p is an odd prime number, then Q(\/p) < Q(e*™/?) if and only if p =
1 mod 4. On the other hand, Q(y/—p) < Q(e*™/?) if and only if p = 3 mod 4.

We are now ready to prove the main result of this section, which is Theorem D in the
introduction.

Proof of Theorem D. Assume first that both primes p and ¢ divide the order of A,,. Equiv-
alently, we have p,q < n. Let n = 22:1 a;p™i = Z;:I b;q" be the p-adic and respectively
g-adic expansions of n. Here my > mo > --- > my; > 0 and k; > ky > -k, > 0. Without
loss of generality, we can assume that b1¢g" < a;p™. We consider A € P(n) to be defined by:

)\ = (n - blqkﬂ, n — alpml + 17 1b1qk1—(n—a1p"1+1)>‘

As done in the proof of [GSVI9, Theorem 2.8], we observe that x* € Irr./(S,) and that
xM1) # 1 unless n = a;p™ = bi¢™ + 1. We also claim that A\ # ). This follows by
observing that A\ = X would imply that

big" — (n—ap™) = n —big" — 1 and that n — a;p™ € {0, 1}.

Then we would have that b;¢* = n — b1¢" — 1 if n — a;p™ = 0 or that by¢"™ = n — byg™ if
n—a;p™ = 1. Both these situations can not occur. We conclude that x := (x*)a, € It (A,)
and that Q(x) = Q.

Let us now consider the case where n = ap™ = bg* + 1, for some m,k € N, some 1 < a <
p—1and some 1 <b<q—1.

If b > 3, then we consider p = ((b—1)g* +1,17"). Since hyy () = ap™, hia(p) = (b—1)¢*
and hyi (1) = ¢, we deduce that x* € Irr,(S,,) by Lemmal[3.1] Since b > 3 we also have that
w # ' and hence that x := (x*)a, € Irrv(A,,) is nontrivial and such that Q(x) = Q.

If be {1,2} and @ > 3 then we consider v = ((a — 1)p™,2,17"~2). Since hi;(v) = bq*,
hia(v) = (a—1)p™ and hoy (v) = p™, we deduce that x” € Irr(S,,) by Lemma 3.1} As above,
a = 3 implies that v # v/ and hence that x := (x")a, € Irrv(A,,) is nontrivial and such that
Q(x) = Q.

Let us now study the situation where a,b € {1,2}. Since ap™ = bg* + 1 we observe that
the only cases to consider are (a,b) € {(1,1), (1,2), (2,1)}.

e If (a,b) = (1,2) then n = p™ = 2¢* + 1 and hence p # 2. Since 2 = b < ¢ — 1 we also
have that ¢ # 2. By Lemma [3.2| we deduce that x* € Irr,(S,) if and only if A = (d,1"79)
is a hook partition. Moreover, since ¢ is odd, again from Lemma |3.1| we observe that the
only hook partitions of n that label characters of S, of degree coprime to ¢ are (n), (1")
and ¢ = (1 + ¢, lqk) = (’. We also observe that m must be odd in this situation, as
p™ = 2¢* +1 = 3 mod 4. It follows that A, admits exactly two distinct nontrivial irreducible
characters of 7’-degree: the two irreducible constituents ¢y, ¢ of (x%)a,. By [JK8I, 2.5.13]
we observe that their fields of values are equal to Q(,/—p™) and strictly contain Q. Moreover,
since m is odd then p = p™ = 2¢* + 1 = 3 mod 4. Hence using Lemma we observe that
for all i € {1,2} we have

Q(4) = Q(v=p™) = Q(v/—p) < Q(e*/P),

e If (a,b) = (2,1) then n = 2p™ = ¢* + 1 and hence g # 2. The situation is similar to the
one described above. Using Lemma |3.2| we notice that the non-linear irreducible characters
of S, of degree coprime to ¢ are labelled by all partitions A such that hi;(A\) = ¢* and
hoa(A) = 1. Since 2 = a < p — 1, we have that p # 2. Therefore, Lemma implies that
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the only partition that labels a non-linear irreducible character of S,, of degree coprime to p
and to ¢ isn = (p™,2,17"~2) = /. As before we deduce that A, admits exactly two distinct
nontrivial irreducible characters of n’-degree: the two irreducible constituents 1; and 1y of
(X")a,. By [JK81] 2.5.13] we observe that for all i € {1,2} we have that Q(;) = Q(+/q¢*). Tt
follows that for any ¢ € {1,2}, Q(¢);) strictly contains Q if and only if & is odd. In this case,
for all ¢ € {1,2} we have that Q(v);) = Q(,/q). Moreover, since p # 2 then ¢ = 1 mod 4.

Therefore Q(v;) < Q(e*™/7), by Lemma (3.4

e If (a,b) = (1,1) then exactly one of p or ¢ is equal to 2.

If ¢ =2 then n = p™ = 2 + 1. By Lemma we deduce that x* € Irry(S,) if and
only if A = (d,1"~%) is a hook partition. Lemma [3.2shows that (n), (1) are the only hook
partitions labelling an odd-degree character of S,,. Moreover, using Lemma [3.3| we observe
that the partition ¢ = (1 + 2¥-112°"") = (’, is the only hook partition of n such that
vo(x*(1)) = 1. We deduce that the two irreducible constituents ¢; and ¢y of (x°)a, are the
only nontrivial irreducible characters of 7'-degree of A,,. By [JK81, 2.5.13] we observe that
Q(¢1) = Q(¢2) = Q(/p™). Hence Q(¢1) (and Q(¢2)) strictly contain Q if and only if m is
odd. In this case, p = p™ = 2 + 1 = 1 mod 4. Therefore Lemma implies that for all
i € {1,2} we have that

Q(¢:) = Q(vVP™) = Qy/p) = Q(*™?).

If p=2then n = 2™ = ¢* + 1 and we notice that & is necessarily odd. Moreover, Lemma
implies that the only {2, ¢}'-degree irreducible characters of S, are the linear ones. On
the other hand, Lemma shows that n = (2771,2,12"'=2) = 5/ is the only partition
labelling a ¢’-degree irreducible character of S,, such that v5(x"(1)) = 1. Arguing as above,
we deduce that A,, admits exactly two distinct nontrivial irreducible characters of 7’-degree:
the two irreducible constituents 1, and ¢y of (x")a,. By [JK8I, 2.5.13] we observe that for
all i € {1,2}, we have Q(¢;) = Q(1/—¢*). It follows that for any i € {1,2}, Q(¢);) strictly
contains Q. Since k is odd, for all i € {1,2} we have Q(¢;) = Q(y/—¢q). Moreover, since
p=2we have ¢ = 3 mod 4. Therefore Q(¢;) < Q(e>™/4), by Lemma [3.4]

To complete the proof we need to treat the easier case where pg does not divide |A,,| = n!/2.
In this setting, we just need to show that there exists a rational-valued 7’-degree irreducible
character of A,, (as conditions (i) and (ii) of the statement of Theorem D can not be satisfied).

If p,q > n, then every irreducible character of A, has n’-degree. Since n > 5, we have
(n—1,1) # (n — 1,1)" and therefore x = (x(""1Y)a, is a nontrivial irreducible character of
n’-degree of A, such that Q(x) = Q. Otherwise, up to possibly interchanging p and ¢ we can
assume that p < n < ¢. In this case, every irreducible character of A,, has degree coprime to
q. Let n = a+pw for some 0 < a < p—1and w = 1. Consider A = (n—(a+1),a+1) € P(n).
Since n = 5 we notice that necessarily A # . Moreover, Lemma implies that p does not
divide x*(1). It follows that y = (x*)a, is a non-trivial irreducible character of n’-degree of
A,, such that Q(x) = Q. O

A straightforward consequence of Theorem [D]is that Theorem holds for alternating
groups.

Corollary 3.5. Let m = {p,q} be a set of two primes and let n = 5. Then A, possesses
a nontrivial irreducible character x of 7'-degree such that Q(x) < Q(e*™/?) or Q(x) <

Q)
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Proof. 1f n does not satisfy conditions (i) and (ii) of Theorem D, then A,, has a nontrivial
rational character. If n satisfies condition (i), then the proof of Theorem D shows that there
exists ¢ € Irrp(A,) such that ¢(1) > 1 and such that Q(¢) < Q(e**?). On the other
hand, if n satisfies condition (ii), we have shown in the proof of Theorem D that there exists
1 € Irrp(A,) such that ¥(1) > 1 and such that Q(v)) < Q(e?"/9). O

4. SIMPLE GROUPS OF LIE TYPE

In this section, we prove Theorem for simple groups of Lie type and sporadic simple
groups. The following reduces us to the case of simple groups of Lie type with non-exceptional
Schur multipliers. The list of finite simple groups with exceptional Schur multipliers is

available in [GLS98| Table 6.1.3].

Proposition 4.1. Let S be a simple group of Lie type with an exceptional Schur multiplier,
or let S be a sporadic group. Assume that S is not the Janko group Jy or the Tits group
2Fy(2)'. Then S satisfies Theorem . Further, the Tits group *Fy(2) satisfies Theorem
for m # {3,5}, and the Janko group Jy satisfies Theorem [2.1) for m ¢ {{23,43}, {29, 43}}.

Proof. This can be confirmed using GAP and the Atlas [GAP. [Atl]. In particular, the
character tables for the groups under consideration are available in the GAP Character
Table Library, and we make use of the Conductor command in GAP, which returns the
smallest natural number m for which a character in a stored character table takes its values

in Q(e2/m). O

When S is a simple group of Lie type, the required character y € Irr(S) of n'-degree
we produce will be a semisimple character. Let us recall some brief background on these
characters from [Ca85, [DM91l, (GM20]. (We refer the reader in general to these references
for more on the character theory of groups of Lie type.)

Let G be a connected reductive algebraic group in characteristic p and F' a Frobenius
endomorphism of G. For each rational maximal torus 7 of G and character 6 € Irr(T%),
Deligne-Lusztig’s twisted induction R? is used to define the Deligne-Lusztig character R?(G).
Let G* be an algebraic group with a Frobenius endomorphism F* such that (G, F') is dual
to (G*, F*). Set G := G and G* := (G*)".

Recall that if (77, 6) is G-conjugate to (77, 8"), then R%(0) = R%.,(¢'). Moreover, by [DM91]
Proposition 13.13], the G-conjugacy classes of pairs (7,6) are in one-to-one correspondence
with the G*-conjugacy classes of pairs (7%, s), where s is a semisimple element of G* and
T* is a rational maximal torus containing s. Due to this correspondence, we can use the
notation RS (s) for R$(6). For each conjugacy class (s) of semisimple elements in G* such
that Cgx(s) is connected, one can define a so-called semisimple character of G as follows:

1
. G
X(s) = Z 5g6mRm(s),
W) L&t
where W(s) is the Weyl group of Cgx«(s), 7. is a torus of G* of type w, and eg = +1,
depending on whether the relative rank of G is even or odd, see [DM91] Definition 14.40].
Moreover, x(s) is irreducible and

X(s)(1) = |G* : Cgx(8) |,

where we recall that p is the defining characteristic of G and n, denotes the p’-part of a
positive integer n.
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Lemma 4.2. With the notation as above, let s € G* be a semisimple element such that
Cg+(s) is connected. Suppose s has order k and o € Gal(Q(e?™/I¢1) /Q) satisfies o(&) = €™

for every kth root of unity &, where m is an integer relatively prime to k. Then X7y = X(sm)-
In particular, Q(x(s) < Q(e*™/F).

Proof. Let T* be a rational maximal torus of G* containing s. Let 7 be a rational maximal
torus of G and 0 € Irr(T7) such that the G-conjugacy class of (T, 60) corresponds to the
G*-conjugacy class of (7*,s) under the correspondence described above. Then (7 ,6™)
corresponds to (7*,s™), and the multiplicative order of @ in the group Irr(7F) is the same
as the order of s. Therefore, the values of § are in Q(e?"/*).

We recall the character formula for ngf,(Q) which we simplify as Ry g:

_ ¢ (t)
Rrol0) = g e 3,0 0@ )

:pegF

where t is semisimple, u is unipotent, and g = tu = ut is the Jordan decomposition of
g € G. Also, Cg(t) is the connected component of Cg(t) and Q;g-it_)l are Green functions
of CZ(t), see [Ca85, Theorem 7.2.8]. As the linear character 6 is Q(e*™/*)-valued and the
Green functions are rational-valued, we have R, = Ry gm and Q(Ry ) = Q(e*™*) for
every rational maximal torus 7’ of G. The conclusion now follows from the definition of

X(s)- [l

In particular, if Z(G) is connected, then Cgx(s) is connected for every semisimple s € G*.
(See, for example, [DM91, Remark 13.15(ii)].) If Z(G) is not connected, we may embed
G into another connected reductive group G satisfying Z(g) is connected, via a so-called
regular embedding ¢: G <— G. We record here some of the properties of regular embeddings.
For proofs and a nice detailed discussion, we refer the reader to [GM20), Section 1.7]. In this
situation, ¢ may be chosen so that, identifying G with its image ¢(G) in G, the Frobenius
endomorphism F' is naturally the restriction of a Frobenius endomorphism on QN which
we will also denote by F. Then writing G = GF , we have G' < G the quotient group
G/G is abelian of order prime to p, and the restriction ResG( ) to G of any x € Irr(G) is
multiplicity-free.

Further, the regular embedding ¢ induces a dual map ¢*: G* — G* that maps G* = (@*)F *
onto G* and whose kernel is central and F*-fixed. With this in place, following the treatment
in [GM20, Corollary 2.6.18], we may define the semisimple characters of G corresponding to
a given semisimple s € G* to be the irreducible constituents of the restriction Resg(x(g)) of

a semisimple character x(s) of G , where 5 is a semisimple element of G* such that 1*(35) = s.
Fixing x, to be one such semisimple character of G' corresponding to s, we again have

(4.1) Xs(1) = [G* : Cax(s)]p-

Further, the set Irr(G) may be partitioned into subsets known as rational Lusztig series,
denoted £(G, s), which are indexed by G*-conjugacy classes of semisimple elements s €
G* (see, e.g. [DMO9I, Proposition 14.41]). In particular, the semisimple characters of G
corresponding to s lie in the set £(G,s). When Cgx(s) is connected, x(s) is the unique
semisimple character in £(G, s). To avoid confusion, we will use the notation x(s) only in
the case Cgx(s) is connected.



10 E. GIANNELLI, N.N. HUNG, A. A. SCHAEFFER FRY, AND C. VALLEJO

In the case Cgx(s) is disconnected, and hence Lemma does not apply, the following,
extracted from [SET18|, will be useful. Here, we write £(G, s)7 for the set {x? | x € £(G, s)}.

Lemma 4.3. Let G = G be a group of Lie type defined in characteristic p as above. Let
s e G* be semisimple and let o € Gal(Q(e*™/1G1) /Q). Then

(i) If s has prime order ¢ and m is an integer coprime to q such that o(§) = ™ for each
qth root of unity &, then E(G,s)” = E(G, s™).

(i) If £(G,s)” = E(G,s) and x°(u) = x(u) for all unipotent elements w € G (that is,
elements of order a power of p) and all x € Irr(G), then every semisimple character

in E(G, s) is fived by o.

Proof. Part (i) is a direct application of [SFTI8, Lemma 3.4]. Part (ii) is an application of
[SFT18, Lemma 3.8], since the Gelfand-Graev characters of G (see [DM91, Definition 14.21])
are induced from characters on the unipotent radical, and hence take nonzero values only
on unipotent elements. 0

We remark that the same proof as [SETI18, Lemma 3.4], which is analogous to that of
Lemma [£.2] yields the corresponding statement of Lemma [4.3[(i) for arbitrary |s|, but we will
not need this here.

Now, if S'is a simple group of Lie type not isomorphic to an alternating group or one listed
in Proposition then S = G/Z(G) for G = G, where G is simple of simply connected
type. The following will be used in conjunction with Lemma [4.3] in many cases in which
Cgx(s) is not connected. Although it can be extracted from the proofs of [GSV19, Lemma
3.3 and Theorem 3.5], we rewrite the proof for the convenience of the reader.

Lemma 4.4. Let S = G/Z(G) be as in the previous paragraph, where G is defined in
characteristic p. Let q # p be another prime, let QQ be a Sylow q-subgroup of G*, and
moreover assume that |Z(G)| is either a power of q or coprime to q. Then there exists a
nontrivial semisimple character x5 in a series E(G, s) of G satisfying the following properties:

(i) s € Z(Q) and has order q;
(ii) Z(QG) is in the kernel of xs;
In particular, xs may be viewed as a nontrivial member of Irrg, 1/(5).

Proof. Let s € Z(Q) have order q. Then Cgx(s) contains a Sylow g-subgroup of G*, and
hence any semisimple character in £(G, s) is a member of Irrg, . (G), using (4.1). Now,
our exclusions imply that |Z(G)| = [G* : (G*)']. If |Z(G)| is a power of ¢, then elementary
character theory yields every member of Irry (G) is trivial on Z(G) (see, e.g., [GSV19, Lemma
3.4]). If ¢ 1 |Z(G)], the equality |Z(G)| = [G* : (G*)'] implies @ < (G*), so s € (G*)'. By
INT13| Lemma 4.4(ii)], any character of £(G, s) is then trivial on Z(G). In either case, this
yields that any semisimple character in £(G, s) satisfies the statement. 0J

Proposition 4.5. Let S be a simple group of Lie type. Then Theorem [2.1] holds for S.

Proof. We may assume S is not one of the groups listed in Proposition [4.1| nor isomorphic
to an alternating group. Further, thanks to [NT06, INT0S8], we may assume that p # gq.

Let S be of the form G/Z(G), where G = GF is the set of fixed points of a simple
connected reductive algebraic group of simply connected type defined in characteristic r,
under a Frobenius endomorphism F'. Note that the Steinberg character St of G has degree
a power of r, is rational-valued, and is trivial on Z(G). Hence, we may assume that r = p is
one of the primes in 7.
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Throughout, let @ € Syl (G*). If p is an odd prime, let € {£1} be such that p = 7
(mod 4), and note that Q(,/7p) € Q(e*™/?), using Lemma .

By [MT11, Exercise 20.16], we see that Cgx«(s) is connected whenever [s| is relatively
prime to |Z(G)|y. Then if g 1 |Z(G)|, we have ¢ { |Z(G)| (see [GLS98, Theorem 1.12.5 and
Table 6.1.2]) and the character x constructed in Lemma is actually x(s) and takes values

in Q(e?™9), using Lemma [4.2] Hence we assume q | |Z(G)].

Let G be of type A, _1. Then g = SL,, and G GL,,, and we may write n = a;q + - - - a;q"
with 0 < a; < ¢ for 1 <i < t. We write G’ = GL¢ (p*) and G = SL¢ (p?), where € € {+1} and
€ = 1 gives the untw1sted version SL,(p*), and € = —1 gives the twisted version SU,(p®).

Recall that Cg,(5) is connected for any semisimple 5 € G*. Further, note that Z(G) = G
Z(G), G* =~ G, S = PSLE (p*) = (G*), G = (G) = (G*Y, and G* =~ G/Z(G) = PGLE (p?).
Throughout we will make these identifications. Let Q € Squ(é). Then by [CF64], Web5],
we have Q = [T, Q% where the Q; € Syl,(GLg: (p?)) are embedded diagonally in G. Let
k = min{i|a; > 0}, so that n, = ¢".

First, assume that n is not a power of ¢. Let s’ € Z(Q}) have order ¢. If n # 2¢*,
define 5§ € Z(Q) to be of the form diag(s’, I,—g+). If ¢ | (p® — €), then s" may further be
chosen to be of the form ply € Z(GLg(p®)), where p € Cpa—o < F 2 has order ¢. Then
det(3) = det(s') = pu2° = 1. Otherwise, ¢ 1 |G/G|, so Q@ < G. In either case, 5 € G = (G*Y,
so the corresponding semisimple character x(z) of G is trivial on Z(G) by [NT13, Lemma
4.4). If ¢ is odd and n = 2¢*, we may instead let e Z(Q) be of the form diag(pul e, p= ' x)
if ¢ | (p* — €) and diag(s’, Ix) if ¢ { (p* — €), and we again see that 5 € G. Further, since the
conjugacy classes of semisimple elements of G are determined by their eigenvalues, we see s
is not G- conjugate to sz for any nontrivial z € Z(G’*) But the irreducible characters of G /G
are in bijection with elements of Z(G*), and x3 ® 2 = x@2) for Z e Irr(G/ G) corresponding
to z € Z(G*) (see [DM91, 13.30]). Hence x3) is also irreducible when restricted to G. By
Lemma E, X(3 has values in Q(e?™4), so this yields a member of Irr(S) with degree prime
to both p and ¢ and with values in Q(e?"9), as desired.

Now assume that n = ¢*. Then [GSV19, Lemma 3.4] yields that any irreducible character

of G with degree prime to ¢ is trivial on the center, which has size ged(n,p® — €). Hence
it suffices to show there exists a member of Irr(G) with degree prime to p and to ¢ whose

values lie in Q(e?™/?) or Q(e?™/9).

Let y, be as in Lemma , where we let Q = QZ(G)/Z(G) € Syl,(G*), and let 5 € QZ(G)
be such that SZ(G) = s. Then notice 37 € Z(G). Let ¢ = ¢*™/1¥ 5o that the semisimple
character X(3) of G corresponding to S takes its values in Q(¢), by Lemma and lies over

the {p, q¢}/-degree character x, of G. Let o € Gal(Q(¢)/Q(e*/4)). Then o maps ¢ to (™ for
some m with ged(m, |S|) = 1. Further, m = 1 (mod g), since o fixes gth roots of unity. In

particular, 3™ = 3z for some z € Z(G). Then using Lemma we have X7 = X@m) = X(32)»
and hence X7y also lies over x;. In particular, Res& (X)) = Resg(fg‘(’s ) = Resg(Xz)) =
Res& (X3 ®2) = ResG( %). So, ReSG(X(“)) is fixed by each such o, and therefore has values
in Q(e?/9).

If ¢ is odd and x € Irr(G), then [SFV19, Theorem 6.1] yields that Q(x) = Q(Res&Y) for
any Y € Irr(G) lying over y. Hence in this case, Q(x,) € Q(e*™/) as well. If ¢ = 2, then
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the above yields Q(Resg(X3))) = Q, so [SEVI9, Theorem 6.1] yields that Q(xs) < Q(,/np),
completing the proof in this case.

Hence we may assume G is not of type A,_;, and therefore |Z(G)| is a power of ¢. Let
Xs be the character constructed in Lemma [£.4] In this case, note that either ¢ = 2 or
(G,q) = (Es,3). In the latter case, G is the simply connected type group E§(p*)s., where
e € {+1}, e = 1 corresponds to the untwisted version, and e = —1 corresponds to the twisted
version. Using [TZ04, Theorem 1.8 and Lemma 2.6], we see that any irreducible character of
G takes integer values on unipotent elements, and hence Lemma [4.3] yields that x; is fixed by
any Galois automorphism o that fixes the field Q(e*™/3), and hence has values in Q(e**"3).

We may therefore take ¢ = 2, p odd, and G to be of type B, C,, D,, or E;. Here s® = 1,
and by Lemma , it suffices to show that y, takes values in Q(,/np). The data available
in CHEVIE and [Lib07] yield that the odd-degree characters of 3D4(p®) and E(p®) are all
rational-valued, and hence we assume S is B, (p*) with n > 2, C,(p*) with n > 3, D,(p")
with n > 4, or 2D,,(p*) with n > 4.

If Sis Cn(p®), then G = Sp,, (p*), and [SET20, Theorem B]| yields that y, has values in
Q(y/mp). If Sis By(p*), Dn(p®), or 2D, (p*), [TZ04, Corollary 8.3 and Lemma 2.6] yields
x(u) € Q(\/np) for every unipotent element u of G and every x € Irr(G). Then Lemma
implies that x, takes its values in Q(,/np) as well, completing the proof. (|

5. RATIONAL CHARACTERS OF 7'-DEGREE IN SOLVABLE GROUPS

In this section, we prove Theorem B. Namely, we characterize when a solvable group G has a
7’-degree rational character, where m = {2, ¢} is a pair of primes. We first note that if G has
a normal Hall {2, ¢}-subgroup, then the solution to the characterization problem is pretty
simple in Lemma below. We thank G. Navarro for pointing out a simplified version of a
previous argument.

In what follows, we assume that the reader is familiar with the theory of characters and
normal subgroups as in [[sa06l Chapter 6], for instance.

Lemma 5.1. Let G be a finite group and p < q be two primes. Set m = {p, q}. Suppose that
H < G where H € Hall,(G) and G/H has odd order. Then G has a nontrivial irreducible
character x of ©'-degree with values in Q(e*™/?) if, and only if, H/H' has order divisible by
p. Moreover, if X\ € Irr(H) lies under x, then o(\) = p.

Proof. Notice that to prove both implications, we may assume that H is abelian. If H
has order divisible by p, then let 15 # A\ € Irr(H) be linear with o(\) equal to p. By
[Isa06, Corollary 6.27], let A € Irr(G,) be the only extension of A such that o(\) = o()). In
particular, Q(A) = Q(e2™/?) and hence 1¢ # x = ()% € Irr(G) (by [[sa06, Theorem 6.11])
has values in Q(e?™/?). Since G//H is a 7'-group, it follows that x has 7’-degree, as wanted.

Suppose now that 1 # x € Irr(G) has 7'-degree, Q(x) < Q(e*™/P), and p does not divide
|H|. If p = 2, then y is a nontrivial rational irreducible character of an odd-order group.
This would contradict Theorem 2.3 If p > 2, then |H| = ¢® and since G/H is a 7'-group,
then G is a p'-group. In particular Q(x) < Q(e*™/?) n Q(e*™/I¢) = Q. Since G/H is an
odd-order group by hypothesis, and ¢ > p > 2 also by hypothesis, then we get again a
contradiction with Theorem 2.3

Finally, let A € Irr(H) be a constituent of yg. Then A is linear and nontrivial. Indeed,
if A = 1y, then y would be a rational irreducible character of G/H of odd order, hence
X = 1lg by Burnide’s theorem, contradicting one of the assumptions on y. We consider
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Gy = {g € G |N = )\ for some 0 € Gal(Q(\)/Q)} < G, sometimes known as the semi-
inertia group of A in G. By [NT10, Lemma 2.3] the map given by g — o, whenever g € G%
and A9 = )7, defines a monomorphism G%/G, — Gal(Q(\)/Q). Write E = Q(\). Since
A is a linear character of a m-group, then E is obtained by adjoining a root of unity of
order o(\) = p%¢® to Q, where a,b = 0 are not both zero. Write ¢ = ¢?™/?. We claim that
Q(¢) < E. Otherwise, o(\) = ¢® with b > 1, and F n Q(§) = Q. Take any o € Gal(E/Q)
and extend it to & € Gal(E(£)/Q(§)) by elementary Galois theory. Since x? = Y, then
A7 = \7 = )\ for some g € G. Note that g € G%. In particular,

GY/GAl = [Gal(E(§)/Q(€))| = |Gal(E/Q)| = (¢ — 1)¢""

contradicts the oddness hypothesis on |G/H| as 2 < p < ¢. Now we know that Q(§) € FE.
The above argument actually proves that Gal(E/Q()) injects into G}/G,, since

|Gal(E/QJ) P! if b =0,
Gal(E = —
CUEI TGa@e/@] ~ g~ 1t otherise
The fact that |G/H|, hence |G%/G,|, is odd and coprime to p forces a = 1 and b = 0, that
is, o(A) = p. O

We are working in slightly more generality than needed in this section. We note that if
p = 2, then the condition on the order of G/H is trivially satisfied in Lemma However,
it is a necessary condition in general: if p is an odd prime, then the group G = C, x C,_4
where the action is faithful has a 7’-degree rational irreducible character for every = = {p, ¢}
with ¢ a divisor of p — 1.

For an arbitrary group G and a set of primes 7, we will denote by Xy ,(G) the set of
m'-degree irreducible characters of G with values in Q(e*™/?). If G is m-separable, then
the set X ,(G) consists entirely of monomial characters, given that |Ng(H)/H| is odd for
H e Hall(G). In [NV12] this fact is proven in the case where 7 consists of a single prime,
but it generalizes to arbitrary 7, see Theorem below. Recall that by work of P. Hall and
S. A. éunhihin, Hall m-subgroups in m-separable groups behave like Sylow subgroups.

Lemma 5.2. Let G be w-separable, H € Hall(G), and x € Irr(G). If M < G, then xu
contains some H-invariant irreducible constituent and any two of them are N (H )-conjugate.

Proof. Let 6 € Irr(M) be a constituent of x,,. By the Clifford correspondence [[sa06, The-
orem 6.11], |G : Gy| is a 7’-number. Since G is m-separable, then H € G} = Gy« for some
x € GG, and #” is an H-invariant constituent of y,;. Write ¢ = 6*. Suppose that ¢? is also
H-invariant. Then H and HY ' are Hall 7-subgroups of G,. In particular, H v = HY for
some g € G,,. Note that gy € Ng(H) and ¢V = p%. O

The following is a nice application of Theorem in the context of coprime group actions.

Lemma 5.3. Let a solvable group H act coprimely on a group M with Cyr(H) of odd order.
Then Irr(M) contains no nontrivial real H-invariant character.

Proof. Assume first that H is solvable. By the Glauberman correspondence [[sa06, Theo-
rem 13.1], there is natural bijection between H-invariant characters in Irr(M) and the set
Irr(Cy(H)). In particular, the number of real H-invariant characters in Irr(A/) is the same
as the number of real characters in Irr(Cy,(H)) by [Isa06l Problem 13.1]. In this case, the
result follows from Theorem and the hypothesis on the order of Cy/(H).
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If H is nonsolvable then, by Feit-Thompson’s odd order theorem [ET63], the group M has
odd order, and the result follows from Theorem [2.3] O

Theorem 5.4. Let 7 be a set of primes. Let G be mw-separable and H € Hall (G). Suppose
that N¢(H)/H has odd order. For every x € Xy ,(G), there is a pair (U,\) with H <U <G
and \ € Trr(U) linear such that Q(\) € Q(e*™/?) and x = \¢. Moreover, any other such pair
is G-conjugate to (U, \).

Proof. We first prove the existence of a pair by induction on |G|. We may assume that
H < G and G’ > 1 since otherwise y would be linear and there is nothing to prove. We may
assume that ker(x) = 1 by working in G/ ker(x).

Let M < G. We claim that if for some H-invariant irreducible constituent 6 of y,;, 8 also
lies under y, then 6 = . Indeed, if # and 0 are H-invariant irreducible constituents of s,
then 6 = 6% with 2z € Ng(H) by Lemma . Write N = Ng(H). Note that z? € N,. Since
|N : H| is odd, then {(zH) = (z>H ), so x € Ny and the claim follows.

We may assume that O (G) = 1. Otherwise, write K = O,/(G) > 1. Let 6 € Irr(K) be
H-invariant lying under x by Lemma . Note that Q(xx) = Q because Q(xx) < Q(e>™/?)
and K is a 7'-group. Hence 0 lies under x and by the paragraph above §# = . Note that
Ck(H) = Ngy(H)/H can be seen as a subgroup of Ng(H)/H, and hence Ck(H) has odd
order. By Lemma [5.3] we obtain that 6 = 1k, contradicting the fact that y is faithful.

Let M = O,(G). We show that M > 1 is abelian. By [Isa08, Theorem 3.21] we have that
M > 1. Let p € Trr(M) be under x. Since x has n’-degree, we have that u is linear. Then
M’ is contained in the kernel of every G-conjugate of p. Since y is faithful, we conclude that
M =1.

Let L be a minimal normal subgroup of G contained in G'. Since G is w-separable and
0..(G) =1, then L < M is g-elementary abelian for some ¢ € 7.

Let v € Irr(L) be H-invariant lying under y. Note that v is linear. We show that
Q(v) < Q(e*™/P). 1f q # p, then Q(x1) = Q(e*™P) n Q(e*™/I'l) = Q. Hence 7 and v lie
under Y, and by the second paragraph of this proof 7 = v. In particular Q(v) = Q < Q(e?"/?)
(in this case ¢ = 2 necessarily). If L is p-elementary abelian, then Q(v) = Q(e?/?).

Next we show that v extends to its stabilizer G, and consequently G, < G. In order to
show that v extends to G,, it is enough to show it extends to every Sylow subgroup of G, /L
by [[sa06, Theorem 6.26]. Let R/L € Syl,(G,/L). If r # q, then v extends to R because L
is a g-group and [Isa06, Corollary 6.27]. If r = ¢, then R is a g-group. Since x has ¢’-degree,
then y g has some linear constituent and hence v extends to R. Note that if G, = G, and
7 € Irr(G) is an extension of v then L € G’ < ker(7). Then v = 1, a contradiction with
ker(x) = 1.

Let ¢ € Irr(G,) lying over v be the Clifford correspondent of x as in [[sa06, Theorem
6.11]. Since both x and v have values in Q(e?*™?), so does ¢». We have H < G, < G, and
by induction there exists a pair (U, A) of the desired kind inducing 1, hence also inducing .

For the uniqueness up to G-conjugacy, see the second part of the proof of [Vall6, Theorem
2.6]. 0

The fact that under the hypothesis of Theorem the set X, ,(G) consists entirely of
monomial characters allows us to construct a map between X ,(G) and X ,(Ng(H)) as in
[[sa90, Theorem C]. In order to prove that such map is bijective, we will need a m-version
of [INO8, Theorem 3.3], which relies on m-versions of [INO8, Theorem 2.1 and Corollary 2.2].
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All these versions hold without restrictions on the set . Their proofs can be obtained by
just mimicking the proofs in [IN0O8] and using the following easy observation.

Lemma 5.5. Let H < G with (|G : H|,|H|) = 1. Suppose that a linear character p € Irr(H)
extends to G. Then there is an extension A € Irr(G) of p with o(A) = o(u).

Proof. Since p extends to G, note that H' € H n G’ < ker(u). In particular, p seen as a
character of H/H n G' = HG'/G' < G/G" extends to G/G'. By [I[sa06], Corollary 6.27], u
extends to some A € Irr(G/G") with o(\) = o(p) and the statement follows. O

Theorem 5.6. Let G be a w-separable group and H € Hall(G). If K < H, then there is a
unique subgroup V < G maximal with the property that H < Ng(V) and V n H = K.

Proof. Mimic the proof of [INO8, Theorem 2.1] using the corresponding properties of Hall
m-subgroups in m-separable groups. 0

Corollary 5.7. Let G be a w-separable group and H € Hall (G). If p € Irr(H) is linear,
then there exists a unique subgroup U < G containing H and mazimal such that p extends
to U.

Proof. Mimic the proof of [INO8| Corollary 2.2] using Lemma [5.5] to guarantee the existence
of an extension of A with suitable order. 0

Theorem 5.8. Let G be w-separable and U < G be a subgroup of ©'-index. Let X € Irr(U)
be linear and such that o(\) is a m-number, Assume that A does not extend to any subgroup
of G containing U. Then ¢ € Irr(G).

Proof. Mimic the proof of [INOS, Theorem 3.3] using Corollary O

Theorem 5.9. Let p < q be two primes and set 1 = {p,q}. Let G be a mw-separable group
and H € Hall.(G). Write N = Ng(H) and suppose that N/H has odd order. Define a map

Q: X p(G) = X p(N)

in the following way: If x € X ,(G), choose a pair (U, \) where H < U < G and X € Irr(U)
is linear such that Q(\) < Q(e*™/P) and \¢ = y, then set Qx) = (A\van)™. Then Q is a
well-defined bijection.

Proof. We are basically going to follow the proof of [Vall6l, Theorem 2.13]. Given x €
X (@), the existence of the a pair (U, ) as in the statement is guaranteed by Theorem
B.4 Set Q(x) = (\van)Y. By [[5a90, Lemma 2.3.(a)] we have that Q(x) € Irr(N), so in
particular Q(x) € X ,(N). Since any other inducing pair for x is G-conjugate to (U, \) and

Qoew)™ = (\srn)™
for every g € G, we see that 2 is a well-defined map Xy ,(G) — X (V). Now [[sa90, Lemma
2.3.(b)] guarantees (2 is injective. It remains to prove that 2 is surjective. Let § € X ,(N)
and p € Irr(H) lie under 6. Note that p is linear. By Lemma [5.1] we have that o(u) = p. Let
@ € Irr(N,) be the Clifford correspondent of 6 lying over p as in [Isa06, Theorem 6.11]. Since
both # and p have values in Q(e?™/P) so does . In particular, Q(¢) = Q(e*™/?). Let fi €
Irr(V,,) be the canonical extension given by [Isa06, Corollary 6.27], so that o(jt) = o(u) = p.
By Gallagher’s theorem [Isa06, Corollary 6.17], we have ¢ = i, with 8 € Irr(N,/H). Note
that Q(8) < Q(e?™P) must be rational as N,/H is a ’-group. Since |N, : H| is odd by
hypothesis, we get 3 = 1y, by Theorem . Hence (2)Y = 6. By Corollary and Lemma
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, there exists a subgroup U < G maximal with the property that p extends to A € Irr(U)
and o(A) = p. Note that U/ker(\) = ker(\)N,/ker(A) = N,/ker(f1) and Ay, = fi. By
Theorem [5.8] we have y = A% € X ,(G). Hence Q(x) = (A\van)Y = ()N = 0. O

As an immediate consequence of Lemma [5.1]and Theorem [5.9] we can derive the following
result.

Corollary 5.10. Let p < q be two primes and set @ = {p,q}. Let G be a m-separable
group and H € Hall,(G). Assume that Ng(H)/H has odd order. Then G has a nontrivial
irreducible character of n'-degree with values in Q(e*™/?) if, and only if, H/H' has order
divisible by p.

We can finally proof Theorem [B] of the Introduction.

Proof of Theorem[B. If 2 < ¢, then the statement of Theorem [B|is equivalent to the p = 2
case in Corollary since the condition on the order of N (H)/H becomes superfluos and
m-separability of G is equivalent to solvability of G' by Burnside’s p?¢® and Feit-Thompson’s
odd order theorems ([Isa06, Theorem 3.10] and [F'T63], respectively).

We are left to deal with the much easier case where 2 = ¢. In this case, H € Syl,(G) and
the condition H/H' has even order is equivalent to G having even order. Then one of the
implication follows from Theorem , while the other is [NTO8, Lemma 3.1]. 0

Remark 5.11. We observe that the statement of Theorem B does not hold outside the realm
of solvable groups. For example, let 7 = {2,3} and consider the alternating group As. By
Theorem D], we know that As has a rational m'-degree irreducible character (take for instance
(x*#)a,). On the other hand H/H' has order 3 for every H e Hall,(As). This follows by
observing that all Hall m-subgroups of Ag are isomorphic to Ay.
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