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 In this paper a classification system based on a complex-valued neural network is used to 

evaluate the health state of joints in high voltage overhead transmission lines. The aim of 

this method is to prevent breakages on the joints through the frequency response 

measurements obtained at the initial point of the network. The specific advantage of this 

kind of measure is to be non-intrusive and therefore safer than other approaches, also 

considering the high voltage nature of the lines. A feedforward multi-layer neural network 

with multi-valued neurons is used to achieve the goal. The results obtained for power lines 

characterized by three and four junction regions show that the system is able to identify the 

health state of each joint, with an accuracy level greater than 90%.  
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1. Introduction   

In the management of a long electrical transmission line, fault 

location represents an important aspect, because it allows to reduce 

recovery times and increase network availability [1]. Currently, 

high voltage lines are protected by devices which allow to identify 

the fault position and put out of service the non-functioning part of 

the grid. For example, the distance protection employed on 

overhead transmission lines uses Intelligent Electronic Devices 

(IEDs) to estimate the impedance between the protection point and 

the failure point by measuring the line voltage and current [2]. In 

this way it is possible to obtain the distance from the fault, 

exploiting the correspondence between conductor impedance and 

length of the line section. In the last years new protection devices 

have been introduced, based on traveling wave detection; they 

allow to measure the impulsive signals generated by failures with 

greater precision [3]. However, these methods allow to locate the 

failure only once it has occurred [4]. 

 In this paper, an extension of a work originally presented at 

the International Conference on Soft Computing & Machine 

Intelligence (ISCMI 2019) [1], a system for monitoring the health 

status of the joints [5], [1] is presented. The system allows a 

preventive maintenance, so increasing the availability of the line. 

The joints (or junction regions) are the connection points between 

two different parts of the same phase conductor, and they represent 

one of the most stressed parts of overhead electrical lines [6], [7]. 

The proposed method exploits the equivalent lumped circuit of 

conductors and junction regions [8], [9]. In particular, the model 

of the elementary section of the network consists in the connection 

of the equivalent circuits of joint and conductor. The model of the 

whole line is obtained by the cascade connection of several 

elementary sections. The health status of the joint is obtained by 

measuring the network frequency response. To this aim it is 

necessary to establish a nominal working range for each electrical 

parameter of the line model. Any departure from this interval can 

be interpreted as a symptom of a possible fault. The deviation from 

the nominal condition is obtained through a comparison between 

the theoretical frequency response and measurements taken at 

several frequencies. The results of this comparison are traced back 

to the corresponding variation of the joint parameters. This 

operation is executed by a neural network able to classify the 

severity of the joint degradation. The selected neural network is a 

feedforward Multi-Layer network with Multi-Valued Neurons 

(MLMVN) whose training phase is carried out using the 

theoretical frequency response simulated on SapWin IV and 

MatLab®. In this way it is possible to obtain a smart monitoring 

approach capable of classifying the measurements obtained 

through the PLC (Power Line Communication) systems [10]. This 

type of equipment is usually integrated on high and medium 

voltage networks to use the phase conductor as a channel for the 
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transmission of information. Since the communication method is 

based on the modulation of the carrier wave, PLC systems can be 

used to generate signals with different frequencies obtaining 

measurements of the line transfer function [11].   

The paper is organized as follows. Section 2 describes the 

model of conductors and joints. Section 3 is focused on the 

preliminary steps of the procedure, while section 4 is dedicated to 

the simulation procedure. Finally, Sections 5 and 6 report some 

specific application cases and conclusions, respectively.  

2. Line Modelling 

The main physical components of a line are junction regions 

and conductor stretches. The derivation of the equivalent circuits 

of these components represents the starting point for the line 

modelling. It is then necessary to establish the relationships 

between fault mechanisms and variation of electrical parameters. 

Only the joint degradation is considered in this paper and two 

different failure mechanisms are introduced: oxidation process and 

partial breakage of the joint structure. In this way it is possible to 

obtain three different intervals for the values of the electrical 

parameters, corresponding to the nominal situation, to the 

oxidation condition and to the presence of partial breaking [1].  

2.1. Conductor modelling  

In this paper an ACSR (Aluminum Conductor Steel 

Reinforced) with a diameter of 22.8 mm is used (Figure 1a). The 

equivalent model of the conductor (Figure 1b) contains four 

electrical elements and is called “canonical π-model”.  

 

a) 

 

b) 

Figure 1 – a) Physical structure of the conductor; b) Lumped circuit of the 
conductor. 

It is commonly used to study wave propagation and power flow 

analysis [12], [13]. The term Δλl represents the conductor length, 

while the values of the parameters Rl’, Ll’, Gl’, Cl’ depend on the 

mechanical characteristics of the phase conductor; all these 

parameters are quantities per unit of length [14]. 

2.2 Joint modelling  

Junction regions represent the connection points between two 

different parts of the same phase conductor, and they must 

guarantee the electrical continuity along the network [15], [16]. 

Bolted joints are used close to the pylons due to their high 

mechanical strength [17]. However, no available literature exists 

that describes their electrical behaviour; an acceptable alternative 

consists in modelling them with the better-known model of the 

solder joint, for which some information is available about its 

degradation mechanisms [18], [19]. The physical structure of the 

joint is shown in Figure 2a. 

 

a) 

 

b) 
Figure 2: a) Physical structure of the junction region; b) Braking parameters. 

Δλ is the length of the junction region, d is its width and H its 

height. The characteristic parameters of the breaking mechanism 

are shown in Figure 2b where x represents the crack width and h is 

its height. The physical model and the equivalent lumped circuit of 

the joint are shown in Figure 3a and Figure 3b, respectively. In the 

equivalent circuit, the value of Rsj and Lsj in nominal conditions can 

be calculated by 𝑅𝑠𝑗 =
𝜌 𝐻

𝛥𝜆 𝑑
  and  𝐿𝑠𝑗 =

µ0 µ𝑟 𝐻

2𝜋
[ln

2𝐻

𝛥𝜆+𝑑
+ 0,5] 

respectively, while the capacitance value is nominally zero. If the 

frequency value used for the measurements exceeds the network 

frequency, it is necessary to consider the skin effect. For this 

reason, the penetration depth of the current (a frequency dependent 

parameter, calculated by 𝛿 =
1

√𝜋𝜎µ0 µ𝑟𝑓
) is introduced and (1) is 

used to evaluate the resistance Rsj.  

𝑅𝑠𝑗 =
𝜌 𝐻

2𝛿 (𝛥𝜆+𝑑−2𝛿)
                                (1) 

In oxidation conditions the resistance changes its value due to 

the increase of resistivity, while the partial breakage mechanism 

induces variations on the electrical parameters of the joint. In this 

work the consequentiality between oxidation mechanism and 

partial breakage process is assumed. 

http://www.astesj.com/
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a) 

 

b) 

Figure 3 – a) Physical model of the joint; b) Lumped circuit of the joint. 

The formulas (2), (3) and (4) are obtained by introducing the 

typical breaking mechanism of solder joints and describing the 

variations of Rsj, Lsj and Csj as functions of the crack width x and 

the crack height h [18]. Actually, only the Rsj and Lsj variations are 

considered, because the sensitivity of the Csj variation is low. 

𝑅𝑠𝑗 = {
𝜌 [

𝐻−ℎ

2𝛿(𝛥𝜆+𝑑−2𝛿)
+

ℎ

2𝛿(𝛥𝜆+𝑑−𝑥−2𝛿)
]         (𝑑 − 𝑥) ≥ 2𝛿   

 𝜌 [
𝐻−ℎ

2𝛿(𝛥𝜆+𝑑−2𝛿)
+ 

ℎ

𝛥𝜆 (𝑑−𝑥)
]                   (𝑑 − 𝑥) < 2𝛿   

      

(2) 

𝐿𝑠𝑗 =
µ0 µ𝑟 𝐻

2𝜋
[ln

2(𝐻−ℎ)

(𝛥𝜆+𝑑)
+ 0,5] +

µ0 µ𝑟 𝐻

2𝜋
[ln

2𝐻

(𝛥𝜆+𝑑−𝑥)
+ 0,5]                     

(3) 

𝐶𝑠𝑗 =
𝜀0𝜀𝑟 𝑥 𝛥𝜆 

ℎ
                                   (4)   

 

Figure 4: Elementary section of the line. 

3. Problem outline 

Once the equivalent lumped circuits of joint and conductor 

have been built, it is possible to describe the whole network by 

connecting in cascade the elementary line sections shown in Figure 

4. Each line section between two pylons is represented by an 

elementary section and each joint model corresponds to the pylon 

position. A simplification is used in this case because there should 

be two joints and a short section of the conductor at the pylon. This 

is not a problem for the theoretical basis of the procedure presented 

in this paper, but it should be taken into account in practical 

applications [4, 1]. 

The next step of the procedure consists in the simulation of the 

model. This phase is needed for testability analysis, frequencies 

selection and neural network training, as shown in the following. 

3.1. Testability analysis  

It goes without saying that an a-priori knowledge of how many 

and which parameters are actually identifiable is quite useful in 

any fault diagnosis procedure, since it allows to correctly select the 

measurement test points. Testability analysis is exactly aimed at 

providing this kind of information [20, 21, 22]. It consists of two 

steps, testability evaluation and ambiguity groups identification. 

The testability gives the solvability degree of the fault diagnosis 

equations [23], i.e. it allows establishing the number of parameters 

whose value can be determined, starting from measurements taken 

on a given number of test points. The maximum possible value of 

testability is the number N of parameters present within the circuit 

under test. This maximum value is often not reached; this means 

that, in case of fault, there are parameters that are indistinguishable 

one to each other. In other words, it is possible to identify a set that 

contains the faulty component, but it is not possible to exactly 

identify the faulty one inside the group. The ambiguity groups are 

all those groups constituted by sets of indistinguishable 

parameters. The determination of the ambiguity groups gives 

information about which circuit parameters are identifiable. 

In the procedure presented in this paper, testability analysis is 

a preliminary phase, aimed at discovering which and how many 

parameters of the line model are identifiable. This operation is 

executed starting from the network function, which acts as 

reference for the measurements, taken at selected frequencies. 

Consequently, it is necessary to simulate the line model in order to 

determine its network function. 

3.2. Optimal frequency selection  

As previously stated, the fault identification is the result of a 

comparison between the measurements at the test point and the 

nominal amplitude response, evaluated at the same frequencies. As 

shown in [24], measurement errors and manufacturing tolerances, 

which affect the result in a similar manner, depend on the choice 

of the frequencies. A proper selection allows minimizing the effect 

of these errors, increasing the probability to detect the fault. A 

method for carrying out this selection is presented in [24] and, in 

this work, it is used to obtain one test frequency. However, three 

octaves of the selected frequency are also used in the simulation 

procedure in order to make the system more robust and better train 

the complex neural network. It is worth pointing out that in [24] 

the use of more than one frequency has the scope to increase the 

number of equations, so that their number is at least as high as that 

of the unknown parameters. In the procedure presented in this 

paper there is no parameter identification, so there are no fault 

diagnosis equations to solve. Nevertheless, it is necessary to 

determine the network function of the line model in order to apply 

the procedure in [24], based on the network function derivatives. 

3.3. Neural network training 

The diagnosis method proposed in this paper uses neural 

networks, which do not require the derivation of fault equations. 

http://www.astesj.com/
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The analysis of the circuit model is however necessary for the 

training of the neural network, as it will be shown in the next 

section. The used intelligent classifier is a complex neural network, 

that presents excellent performances compared to other machine-

learning techniques. It is based on a feedforward multilayer neural 

network with multi-valued neurons (MLMVN), characterized by a 

derivative free learning algorithm [25], an alternative algorithm 

based on the linear least square (LLS) methods [26] to reduce the 

high computational cost of the original backpropagation 

procedure, a soft margin method [27, 28] in order to make the 

network a good classifier. Further details will be given later in the 

application description. 

4. Simulation Procedure 

All the fundamental steps in the classification of the joint 

conditions are presented in this paragraph. First it is necessary to 

define the main characteristics of the network, the type of 

conductor and the physical size of the joints. Referring to the 

technical data sheets of the ACSR shown in Table 1, it is possible 

to obtain the value of the DC electrical resistance per unit of length 

Rl’ at ambient temperature (293K) and, consequently, the value of 

the resistivity 𝜌𝑙 =
𝑅𝑙

′ 𝜋(
𝐷

2
)
2

𝛥𝜆𝑙
. The conductor characteristics are 

extracted from [17], while the capacitance Cl’ and the inductance 

Ll’ are calculated assuming the transposition of the phase 

conductors. The formulas used in this case consider the number of 

conductors, their relative position and their diameter: 

𝐿𝑙

′
= 0,46 log (

𝛥′

(𝐷 2⁄ )
) = 1.28  mH/km                 (5) 

𝐶𝑙

′
=

0,024

ln
𝛥′

(𝐷 2⁄ )

= 3.74 nF/km                              (6) 

where Δ’ is the equivalent distance between the conductors 

(  𝛥′ = √𝛥12𝛥23𝛥31
3

 ). The physical size of the joint and the 
nominal value of the DC electrical resistivity are extracted from 

[15] and shown in Table 1. The joint resistivity can be calculated 

through the equation 𝜌𝑠𝑗 =
𝑅𝑠𝑗 𝑑 𝛥𝜆

𝐻
.  In nominal conditions the 

inductance value Lsj is 1.5 µ𝐻  and the capacitance Csj is 

calculated by (4) assuming very low values for the breaking 

parameters (ℎ = 0,001𝐻  and x = 0,001𝑑 ). In this way, it is 

possible to take into account the parasitic effects and maintain the 

same circuit topology for the nominal condition and the partial 

breaking condition. Therefore, the nominal value of the joint 

capacitance is 0.01 𝑝𝐹. 

4.1. Tolerance on the conductor electrical parameters  

As previously stated, the conductors are assumed not faulty, 

hence they are set to their nominal values. Their resistance Rl’ 

depends on temperature and is subjected to the skin effect, on its 

time depending on the frequency fm used for the measurements. 

The penetration depth of the current δl is given by the standard 

relation 𝛿𝑙 =
√𝜌𝑙

√𝜋 µ𝑙 𝑓𝑚
, where ρl and µl are respectively the 

resistivity of the conductor and the relative magnetic permeability. 

In order to obtain the correct value of the resistance, a parameter 

𝐾0 =
(
𝐷

2
)

2 𝛿𝑙
 is introduced, which is calculated as the ratio between the 

radius of the conductor and the penetration depth of the current. 

The electrical resistance of the conductor at ambient temperature 

(293K) can be obtained by multiplying Rl’ for a coefficient K so 

defined: 

{
𝐾 = [1 +

𝐾0
4

3
]                                  (𝐾0 < 1)                    

 𝐾 = [0,25 + 𝐾0 +
3

𝐾0
]                 (𝐾0 > 1)                      

 (7) 

Then the final form of the electrical resistance is obtained by 

𝑅𝑙𝑓𝑚
′ = 𝐾𝑅𝑙

′ . As well known, the resistivity of a conductor 

changes its value with respect to the temperature. This means that 

there is a tolerance around the nominal resistance due to the 

conductor temperature. The definition of the resistance range is 

very important for verifying the performance of the monitoring 

system, since the neural network considers all the conductor 

components fixed at their nominal values, but the measurements 

of the frequency response change according to their real values. 

Therefore, the energy balance equation of transmission line is 

introduced [29, 30]:   

𝐶𝑚𝜈𝜋𝐴𝑡
𝑑𝑇𝑐

𝑑𝑡
= 𝑅𝑙′(1+𝛼(𝑇𝑐−293))𝐼2 + 𝛼𝑠𝑄𝑠𝐴𝑠 − 𝛼𝑐(𝑇𝑐 −

𝑇𝛼)𝐴𝑠5,67𝛼𝑟 [(
𝑇𝑐

100
)

4

− (
𝑇𝛼

100
)

4

] 𝐴𝑟     

(8) 

where: Tc is the temperature of the conductor; Tα is the air 

temperature surrounding the conductor; Cm is the specific heat of 

the conductor materials; ν is the density of the conductor materials; 

At is the conductor section; As is the surface area receiving 

illumination with unit of length; Ac is the convection surface area; 

Ar is the radiation surface area per unit of length; αc is the 

coefficient of convective heat; αr is the radiation factor of the 

conductor materials; αs is the sunshine absorption rate of the 

Table 1: Characteristic of the line conductor and bolted joint 

ASCR 

22.8 

Line 

Voltage 

[kV] 

Outer 

Diameter 

D [mm] 

Wire 

diameter 

(Al) 

[mm] 

Number 

of wires 

(Al) 

Wire 

Diameter 

(Steel) 

[mm] 

Number 

of wires 

(Steel) 

Rl’ 

[Ω/Km] 

132 22.8 3.5 26 2.8 7 0.12 

Bolted 

joint 

H [m] Δλ [m] d [m] 
Rsj 

[µΩ] 

 

0.038 

 

 

0.008 

 

0.008 

 

60 
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conductor; Qs is the radiation intensity of the sun and sky. Within 

the equation there is the term Rl’ because it produces heat due to 

the Joule effect. It is necessary to observe that this is the value of 

the DC resistance considered equal to the resistance value at 50 

Hz. The characteristics of the conductor material are extracted 

from [29] and reported in Table 2. 

The expression of temperature variations as a function of time 

is obtained by solving the energy balance equation. In order to 

solve the equation, the initial conditions of the conductor, the 

radiation intensity Qs and the air temperature Tα must be fixed. 

Typical values of Qs and Tα, based on the measurements obtained 

in Italy in 2011, are used in this work. In the following, Qsmax 

represents the average of the maximum radiation levels for a 

specific month and Tαmax that of the maximum air temperatures. 

The average of the minimum temperature levels Tmin is considered 

as the mean temperature in the night period and, for this reason, it 

is associated with a zero-radiation level. For simplification, the 

average values for each season are considered in Table 3. Once 

the load current has been fixed, the incidence of the environmental 

conditions on the resistance value can be obtained. 

Table 3: Average values of solar radiation and temperature for each season 

 Winter Spring Summer Autumn 

Qsmax  

[W/m2] 
392 753 750 357 

Tαmax  [K] 281 295 301 284 

Qsmin 

[W/m2] 
0 0 0 0 

Tαmin [K] 275 286 292 279 

 

For example, if in summer the conductor temperature is 

calculated using (Qsmax;Tαmax), the maximum resistance error in 

the night period is about 16%. Considering the interval 0÷500 A 

for the load current and setting the environmental conditions, it is 

possible to obtain the incidence of the load on the resistance value. 

For example, in summer, the influence of the load current is about 

7%. The worst situation for each season is presented in Table 4 

and the errors are calculated assuming the maximum difference 

between the presumed and the real current. Similarly, the 

difference between the assumed and actual environmental 

conditions is maximized. 

Table 4: Worst error for each season 

Selected 

load 

current 

[A] 

Real 

load 

current 

[A] 

Error % 

Winter Spring Summer Autumn 

500 0 17.34 25.16 24.92 16.1 

 

In this case the maximum error is made in spring and its 

percentage value is about 25,16%. By calculating the temperature 

with intermediate starting conditions between (Qsmax;Tαmax) and 

(Qsmin;Tαmin) and fixing the current at 250 A, it is possible to 

consider a 10÷12% variation range for the conductor resistance. 

Where (Qsmax;Tαmax)  and (Qsmin;Tαmin) are selected and real 

environmental condition respectively. The same variation range is 

extended to each electrical parameter of the conductor. 

4.2. Circuit designing on SapWin IV  

The simulator SapWin IV (Symbolic Analysis Program for 

Windows) [31, 32] is used for executing the circuit analysis and 

obtaining the symbolic network function of the model. The line 

admittance calculated at the starting point of the line is the network 

function. The first step of the fault procedure is the testability 

analysis, carried out by the program LINFTA [20] exploiting the 

SapWin IV simulation. Despite the fact that only the joint 

parameters are variable, all the electrical components are taken into 

account in the testability analysis. The circuits characterized by 2, 

3, 4 and 5 elementary sections have been tested and the 

corresponding testability values are always maximum. The second 

step consists in the determination of the optimum set of 

frequencies. A program associated with the package SapWin IV 

performs this operation [24]. In this phase many circuit simulations 

are needed, at various different frequencies. The availability of the 

network function in symbolic form, as that provided by SAPWIN, 

is fundamental for keeping the processing times within reasonable 

limits. A single simulation is in fact sufficient, because, once the 

symbolic network function is available, it can be directly used to 

derive the response at all the desired frequencies. In the third step 

of the fault procedure the symbolic network function extracted 

from SapWin is processed on MatLab® to obtain the training 

samples. Through a MatLab® script, it is possible to set the 

conductor parameters at the numerical values and generate the 

training samples by varying the electrical components of each joint 

in its fault classes. Each conductor parameter is generated 

randomly in an interval of 10% around its nominal value, so taking 

into account the effects of environmental conditions and load 

current. 

4.3. Fault classes and neural network setup  

Three possible health states are considered for each junction 

region: nominal condition, structure oxidation and partial 

breakage. In order to obtain the correct classification of the 

working conditions by using the neural network, it is necessary to 

set the corresponding intervals for each electrical parameter. As 

mentioned above, the nominal value of the joint resistance is 

obtained from [17], while those of the inductance and capacitance 

have been calculated. Using the results presented in [17], it is also 

possible to define the resistance values in case of presence of the 

oxidation process (Table 5). These values represent the DC 

resistances of the joint in each operating condition and the 

Table 2: Characteristics of the conductor materials 

Cm 

[J/(kg K)] 

ν 

[kg/m3] 

At 

[m2] 

As 

[m2/m] 

Ar 

[m2/m] 

Ac 

[m2/m] 

αs 

 

αc 

[W/(kg/m3)] 

αr 

 

0.88 e-3 2.7 e3 π(D/2)2 π(D/2) πD πD 0.6 5.8 0.2 
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corresponding resistivities. The resistance values are given by (1) 

and we can note that the incidence of the skin effect decreases as 

the oxidation process increases. In fact, the oxidation process 

increases the resistivity of the material and, consequently, also 

increases the depth of the current penetration. Therefore, the skin 

effect is not relevant in the oxidation conditions, while it could 

introduce a false positive error in the nominal conditions. 

   

a) 

 

b) 

Figure 5:  a) Resistance of the joint with respect to the crack height and crack 
width; b) Inductance of the joint with respect to the crack height and crack width 

The skin effect can be also neglected in correspondence with 

the partial damage of the joint structure since the consequentiality 

between oxidation and breaking mechanism has been assumed. 

For this reason, only the second relation presented in (2) is used to 

describe the variation of the joint resistance with respect to the size 

of the crack (Figure 5a). In this case the resistivity 𝜌𝑠𝑗 = 3,4 ∙

10−3 𝛺𝑚 is used and 𝛿 = 𝑑/2 . The resistance of the joint 𝑅𝑠𝑗 =

2 𝛺  represents the upper limit in the oxidation conditions. The 

inductance variation with respect to the size of the crack is 

presented in Figure 5b and Figure 6a. According to the inductance 

value previously calculated, a tolerance of 0.2 µH is used to define 

the nominal conditions. 

As shown in Figure 5b the value of Lsj leaves the interval of 

nominal conditions for h and x included between 10% and 65% of 

H and 𝛥𝜆 respectively. 

  

a) 

 

b) 

Figure 6: a) Inductance of the joint with respect to the crack height and crack 
width; b) Capacitance of the joint with respect to the crack height and crack width 

Since it is reasonable to consider equal percentage variations 

of x and h, since 65% of breakage represents a very high level of 

degradation, the interval chosen for the braking conditions is 𝐿𝑠𝑗 =

1 ÷ 1.3 µ𝐻  neglecting the size of the crack for which the 

inductance returns in the nominal interval. Concerning the 

capacitance of the joint, its variation with respect to the size of the 

crack is shown in Figure 6b. Unfortunately, the sensitivity of the 

Table 5: Values of the joint resistance in the different oxidation conditions 

Nominal condition Low oxidation Medium oxidation High oxidation 

𝑅𝑠𝑗 = 60 µ𝛺 ÷ 2.5 𝑚𝛺 

𝜌𝑠𝑗 = 10−7 ÷ 4 ∙ 10−6 Ω 

m 

𝑅𝑠𝑗 = 2.5 𝑚𝛺 ÷ 5 𝑚𝛺 

𝜌𝑠𝑗 = 4 ∙ 10−6 ÷ 8.5 ∙

10−6 Ω m 

𝑅𝑠𝑗 = 5 𝑚𝛺 ÷ 100 𝑚𝛺 

𝜌𝑠𝑗 = 8.5 ∙ 10−6 ÷ 1.7 ∙

10−4 Ω m 

𝑅𝑠𝑗 = 100𝑚𝛺 ÷ 2 𝛺 

𝜌𝑠𝑗 = 1.7 ∙ 10−4 ÷

3.4 ∙ 10−3 Ω m 
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line frequency response with respect to the capacitance is low and, 

consequently, the value of Csj is fixed to the nominal value. 

Starting from these results the fault classes are defined. They 

are shown in Table 6. Once the equivalent lumped circuit has been 

obtained and the value of each electrical parameter has been 

defined, the complex neural network must be adapted in order to 

classify the health state of the joints. 

The inputs of the neural network are the complex values 

corresponding to the network function at the selected frequencies. 

The network is characterized by two layers of neurons and two 

output neurons for each junction region (Figure 7). 

 

Figure 7: Structure of the neural network 

Each output neuron divides the complex plane in two different 

sectors (Figure 8) representing the nominal conditions and the 

presence of the failure mechanism. 

 

Figure 8: Output combinations for each neuron  

The first output neuron of each joint takes into account the 

oxidation process, while the second one considers the partial 

breaking mechanism. When the output level of both neurons is low 

(sector zero), the corresponding junction region is within the 

nominal conditions. If the first output is high (sector one) and the 

second one is low (sector zero), the combination represents the 

oxidation of the joint. If each output presents a high level (sector 

one), the corresponding junction region has partial damage. The 

last combination is not taken into consideration due to the 

hypothesis of the consequentiality between oxidation and partial 

breaking mechanism. 

This paper uses a complex neural network implemented on 

MatLab® version R2019b, but the whole code can also be used in 

previous versions of this software. Once the number of joints Ng 

has been set, there are 𝑁𝑐 = 3𝑁𝑔  possible output combinations, 

since each junction region can be oxidized, broken or fully 

functional.  

4.4. Neural network training and testing  

The complex neural network used in this work, like other 

perceptron neural networks, has a good learning speed and allows 

to significantly reduce the computational cost by having a 

derivative free learning algorithm. Furthermore, the complex 

nature of this network is very suitable for dealing with electrical 

quantities and usually it is possible to obtain a better generalization 

capability in comparison with other neural networks and neuro-

fuzzy networks. The learning rule is shown in (9): 

𝒘𝑘+1 = 𝒘𝑘 +
𝛼𝑟

(𝑛+1)|𝑍𝑘|
(𝐷 − 𝑌)𝑿̅                   (9) 

where wk+1 is the vector of the corrected weights, αr is the learning 

constant, n is the number of the inputs, Zk is the weighted sum, D 

is the desired output, Y is the actual output and 𝑿̅ is the conjugate 

complex vector of the inputs.  Considering Nrs random samples for 

each combination, the matrix of the data sets presents 𝑁𝑡 = 𝑁𝑟𝑠𝑁𝑐 

rows. Each row contains Nf magnitude measurements and Nf phase 

measurements of the same network function, with Nf number of 

test frequencies.  

[
 
 
 
 
 |𝑀1

1|𝑓1 |𝜙1
1|𝑓1     

|𝑀2
1|𝑓1 |𝜙2

1|𝑓1     

  ⋯ |𝑀1
1|𝑓𝑁𝑓

  ⋯ |𝑀2
1|𝑓𝑁𝑓

⋯ 𝑂1
1

… 𝑂1
1 
𝑂2

1 ⋯

𝑂2
1 ⋯

⋮ ⋮    

|𝑀𝑁𝑟𝑠

𝑁𝑐 |
𝑓1

|𝜙𝑁𝑟𝑠

𝑁𝑐 |
𝑓1

    

⋮ ⋮

 ⋯ |𝑀𝑁𝑟𝑠

𝑁𝑐 |
𝑓𝑁𝑓

⋮ ⋮
… 𝑂1

1
⋮ ⋮

𝑂2
1 ⋯]

 
 
 
 
 

  (10) 

Equation (10) shows the structure of the matrix containing the 

data sets. For example, |𝑀2
1|𝑓1  represents the second measure of 

magnitude corresponding to the first combination made at the 

frequency f1, |𝜙2
1|𝑓1  represents the second measure of phase 

corresponding to the first combination made at the frequency f1 and 

𝑂2
1 is the second output of the first joint. Initially the weights of the 

neural network are randomly chosen and, subsequently, for each 

sample the error between the desired output and the actual one is 

Table 6: Fault classes 

Joint Parameters Nominal Condition Oxidation Condition Breaking Condition 

Rsj  60 µ𝛺 ÷ 2.5 𝑚𝛺 2.5 𝑚𝛺 ÷ 2 𝛺 > 2 𝛺 

Lsj  1.5 ± 0.2 µ𝐻 1.5 ± 0.2 µ𝐻 1 ÷ 1.3 µ𝐻 

Csj  0.01 𝑝𝐹 0.01 𝑝𝐹 0.01 𝑝𝐹 
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calculated. The procedure shown in [26] is used to obtain the 

correction of the weights. This method uses a part of the total 

samples Na, while the remaining part is used for the testing 

procedure. The backpropagation formulas calculate the error for 

each weight of the hidden layer and, then, the system shown in (11) 

is obtained.  

[
 
 
 
 1 𝑋1

1

1 𝑋1
2

⋯ 𝑋𝑁𝑓

1

… 𝑋𝑁𝑓

2

⋮ ⋮

1 𝑋1
𝑁𝑎

⋮ ⋮

… 𝑋𝑁𝑓

𝑁𝑎
]
 
 
 
 

 

[
 
 
 
 
𝛥𝑊0 𝛥𝑊0

𝛥𝑊1
11

⋮
𝛥𝑊1

21

⋮

… 𝛥𝑊0

…
…  𝛥𝑊1

𝑁𝐽1

⋮

𝛥𝑊𝑁𝑓

11 𝛥𝑊𝑁𝑓

21 … 𝛥𝑊𝑁𝑓

𝑁𝐽1

]
 
 
 
 

=

[
 
 
 
 𝛿11

1 𝛿21
1

𝛿11
2 𝛿21

2

⋯ 𝛿𝑁𝐽1
1

… 𝛿𝑁𝐽1
2

⋮ ⋮

𝛿11
𝑁𝑎 𝛿21

𝑁𝑎

⋮ ⋮

… 𝛿𝑁𝐽1
𝑁𝑎

]
 
 
 
 

                        (11) 

For example, 𝑋1
2 is the first line input corresponding to the 

second sample, 𝛥𝑊1
21  represents the correction for the weight 

between the first input and the second neuron of the first layer, 

𝛿21
2 is the error on the second neuron of the first layer corresponding 

to the second sample. The values of the corrections are calculated 

through the Q-R decomposition and the same procedure is used for 

the output layer on the system shown in (12). The weight 

adjustment is repeated until the error satisfies the stopping criteria 

indicated in [27]. Therefore, there are two different stopping 

criteria: the first concerns the maximum number of classification 

errors that can be committed during the test phase and this means 

that the operator can set the maximum number of outputs that can 

be outside the desired sector . The second stopping criterion is 

chosen according to the rules of the soft margin technique and 

consists of a tolerance range on the distance between the value of 

each output and the bisector of the desired sector. 

[
 
 
 
 1 𝑌11

1

1 𝑌11
2

⋯ 𝑌𝑁𝐽1
1

… 𝑌𝑁𝐽1
2

⋮ ⋮

1 𝑌11
𝑁𝑎

⋮ ⋮

… 𝑌𝑁𝐽1
𝑁𝑎

]
 
 
 
 

 

[
 
 
 
 
𝛥𝑊0 𝛥𝑊0

𝛥𝑊1
12

⋮
𝛥𝑊1

22

⋮

… 𝛥𝑊0

…
…  𝛥𝑊1

𝑁𝑚2

⋮

𝛥𝑊𝑁𝐽
12 𝛥𝑊𝑁𝐽

22 … 𝛥𝑊𝑁𝐽

𝑁𝑚2
]
 
 
 
 

=

[
 
 
 
 𝛿12

1 𝛿22
1

𝛿12
2 𝛿22

2

⋯ 𝛿𝑁𝑚2
1

… 𝛿𝑁𝑚2
2

⋮ ⋮

𝛿12
𝑁𝑎 𝛿22

𝑁𝑎

⋮ ⋮

… 𝛿𝑁𝑚2
𝑁𝑎

]
 
 
 
 

                          (12)                              

5. Results 

All the fundamental steps in the classification of the joint 

conditions are presented in this paragraph to evaluate the 

performances of the proposed diagnostic method. The main 

objective of these simulations is to show that the system is able to 

identify the fault classes presented in Table 6, so confirming the 

validity of the presented prognostic approach for the predictive 

maintenance of high voltage electrical lines. A branch of electrical 

network containing three junction regions is the first 

configuration considered for the simulations. In this case, since 

the conductor length between two consecutive joints is 300 meters, 

the diagnostic system analyses approximately 900 meters of 

network. The analytical procedure shown in the paragraph 3.2 is 

used to obtain the optimal test frequency (fm) and, starting from 

this value, also the next three octaves are considered to realize the 

dataset. This means that four signals are used to measure the line 

frequency response and, consequently, the network function 

magnitude and phase are calculated for each test frequency. The 

equivalent line admittance is used in this work. It corresponds to 

the ratio between the output current and the input voltage 

measured at the starting point of the network. From the theoretical 

point of view, the main steps to obtain the measurements are the 

equivalent circuit simulation on SapWin IV and the dataset 

generation on MatLab®. The first step is the equivalent circuit 

simulation, which allows to obtain the symbolic formula of the 

line network function. For this reason, a cascade of three 

elementary sections (Figure 4) is realized on SapWin IV. The joint 

electrical parameters are kept symbolic, while the conductor 

components are set to their nominal values (as already said, taking 

into account the tolerances). Once the equivalent line admittance 

has been obtained, a specific MatLab® code is used to generate the 

dataset. The main task of this code is to calculate the analytical 

formulas of magnitude and phase for each test frequency; 

subsequently the neural network inputs are calculated for each 

health state of the line by replacing the symbolic parameters with 

their numerical values. Since there are 3 junction regions in the 

first simulation (Ng = 3), 27 different combinations of the health 

state of the joints are obtained (𝑁𝑐 = 3𝑁𝑔  = 27) and, for each of 

them, 100 random samples (Nrs =100) are generated to complete 

the dataset. This means that each electrical parameter of the joints 

is randomly selected within one of the intervals shown in Table 6. 

The choice of 100 random samples is the result of some tests made 

to obtain a good compromise between the speed of processing and 

the representativeness of the dataset; it is not an optimized choice 

but it could, using specific techniques. Finally, the MatLab® script 

uses the organization of the outputs shown in section 4 to 

associate the exact health state of the joints with each sample. 

Table 7 summarizes the situation for the first simulation. Finally, 

it is necessary to select the characteristics of the neural network, 

i.e. number of hidden neurons, initial values of the weights, 

learning rate, backpropagation procedure, computational method 

used for the weight adjustment. The last two are described in 

paragraph 4, while the fixed parameters of the neural network are 

selected through a heuristic approach. In particular, the number of 

hidden neurons is chosen through some tests to obtain good 

performances and a good generalization capability. A specific 

MatLab® application is used to facilitate the selection, because it 

Table 7: Dataset parameters for the simulation with three junction regions 

Ng 
Hidden 

Neurons 

Output 

Neurons 

Initial 

values of 

the weights 

Training 

samples 

Test 

samples 

Learning 

rate 

Classification 

rate 

3 70 6 5 80% 20% 1 0.84074 
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allows to obtain a very fast evaluation of the neural network 

performances by modifying the most important parameters. 

The index used to evaluate neural network performances is 

called classification rate, and it is defined as the ratio between the 

number of correctly classified samples and the total number of 

samples used in the test phase. Indeed, only a percentage of the 

dataset is used for training the neural network, while the other 

samples are used to verify the correct functioning of the system. 

Table 8 presents the best neural network configuration for the first 

simulation and the corresponding value of the classification rate. 

The classification rate shown in Table 8 represents the global index 

to evaluate the performance of the diagnostic system and it is 

obtained by considering the classification errors made on 540 

samples. This means that 2160 samples are used to modify the 

weight values during the training phase, while the remaining 540 

samples are used to verify the results during the test phase. 

Table 8: Complex neural network configuration for the simulation with three 

junction regions 

Ng Nrs Nc Nt 
Dataset 

Input 

Dataset 

Output 

fm 

[kHz] 

3 100 27 2700 8 6 35 

It must be observed that each neuron has a specific 

classification rate greater than 0.84074 and this means that the 

performance of the system on a single junction region is much 

better than the global one. Table 9 shows the results obtained for 

each neuron and each junction region in the first configuration. 

Therefore, considering each joint separately, there is a probability 

range of 91÷95 % that the health state is correctly classified. It is 

not possible to establish a standard relationship between the 

classification rate for each pair of neurons and for the 

corresponding joint, because the number of errors for each junction 

region depends on the oxidation neuron, the rupture neuron or 

both. 

Table 9: Results obtained for each joint and each neuron in the simulation with 

three junction regions 

Fault 

class 
Neuron 

Classification 

Rate for each 

neuron 

Joint 

Classification 

Rate for each 

joint 

Oxidation 1 0.9741 

1 0.9470 Partial 

Breakage 
2 0.9796 

Oxidation 1 0.9685 

2 0.9430 Partial 

Breakage 
2 0.9977 

Oxidation 1 0.9444 

3 0.9130 Partial 

Breakage 
2 0.9778 

To get a more accurate evaluation of the system performance 

it is necessary to introduce the cross-validation method. In this 

case, the previously described training phase is repeated 5 times 

changing the learning data and the testing data. Therefore, the 

global classification rate is calculated on 2700 samples and 

represents the most reliable index. Cross-validation method is 

presented in Table 10 where the maximum and minimum 

classification rates represent the best and the worst result obtained 

at the end of each learning phase. 

Table 10: Results obtained through the cross-validation method in the simulation 

with three junction regions 

Fault class Neuron Joint 

Maximum 

Classification 

Rate 

Classification 

Rate 

Oxidation 1 

1 

0.97037 0.9648 

Partial 

Breakage 
2 0.98889 0.9793 

Oxidation 1 

2 

0.96481 0.9533 

Partial 

Breakage 
2 0.98333 0.9778 

Oxidation 1 

3 

0.95000 0.9411 

Partial 

Breakage 
2 0.99259 0.9837 

Global Classification Rate 0.8167 

 

The same simulation procedure is used to evaluate the health 

state of a line with four junction regions. In this case 6480 samples 

are used to modify the weight values during the training phase, 

while the remaining 1620 samples are used to verify the results 

during the test phase. Table 11 summarizes the situation and shows 

the classification rate used to choose the neural network set up. 

Table 11: Dataset and complex neural network set up for the simulation with 

four junction regions 

Ng Nrs Nc Nt 

4 100 81 8100 

Hidden 

Neurons 

Output 

Neurons 

Initial values 

of the 

weights 

Training 

samples 

190 8 5 80% 

Dataset Input 
Dataset 

Output 
fm [kHz] Test samples 

8 8 80 20% 

Classification rate 

0.70247 

Table 12: Results obtained through the cross-validation method in the simulation 

with four junction regions 

Fault 

class 
Neuron Joint 

Maximum 

Classification 

Rate 

Classification 

Rate 

Oxidation 1 

1 

0.97716 0.9700 

Partial 

Breakage 
2 0.98889 0.9830 

Oxidation 1 

2 

0.93025 0.9188 

Partial 

Breakage 
2 0.98333 0.9757 

Oxidation 1 

3 

0.94383 0.9367 

Partial 

Breakage 
2 0.98210 0.9781 

Oxidation 1 

4 

0.91667 0.9046 

Partial 

breakage 
2 0.98333 0.9793 

Global Classification Rate 0.6899 
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Also, in this case the cross-validation method is used to carry 

out the correct evaluation of the diagnostic system (Table 12). As 

mentioned above, by repeating the training phase 5 times, it is 

possible to evaluate all 8100 samples during the test phase. As 

shown in Table 12, the results obtained for each neuron are still 

excellent, while the global classification rate is lower than the first 

configuration. Obviously, increasing the number of the joints 

reduces the reliability of the complete system, which must be 

considered as a connection of four classifiers (one for each junction 

region). Therefore, if the main objective of the diagnostic system 

was to classify the exact combination of the health state of the 

joints, the system reliability is about 70%. 

On the other hand, the working condition of each junction 

region can be classified with an accuracy level higher than 90%. 

This result is obtained considering each pair of output neurons 

separately (Table 13). 

Table 13: Results obtained for each joint in the simulation with four junction 

regions 

Joint 
Classification Rate for each 

joint 

1 0.9538 

2 0.9006 

3 0.9157 

4 0.8854 

The results presented in Table 13 can be used to compare the 

performance of the complex neural network with that of the other 

classifiers. Table 14 shows the comparison with one of the most 

used classifiers based on quadratic SVM (Support Vector 

Machine).  

Table 14: Comparison between complex neural network and SVM classifier in 

the simulation with four junction regions 

Joint 

Classification for each 

joint with complex 

neural network 

Classification rate for 

each joint with 

quadratic SVM 

1 0.9538 0.9670 

2 0.9006 0.8500 

3 0.9157 0.8530 

4 0.8854 0.8480 

6. Conclusion 

A diagnostic system based on a complex neural network has 

been presented and the procedure to obtain the state classification 

of the electrical joints has been verified through some different 

simulations. The results obtained for power lines characterized by 

three and four junction regions show that the system is able to 

identify the health state of each joint, with an accuracy level greater 

than 90%. The actual limit for the diagnostic method is represented 

by the line length, because the global classification rate obtained 

for a line with five joints is lower than the previous ones (Tables 

15-16). Since the results obtained for the fifth junction region are 

not good, the system can be only used in a real application for small 

branches of the network. For this reason, future developments will 

concern the creation of a macroscopic method of locating failure 

mechanisms: the section of the non-functioning line could be 

localized through classification methods based on load flow 

measurements and after, the system presented in this work could 

be integrated to identify the junction region in the worst condition. 

In this way it would be possible to analyze a great variety of 

networks. Finally, a further development of the prognostic method 

could concern the analysis of the errors. The division between false 

positive and false negative errors is currently calculated, but no 

operation results from this. In the future, the method could be 

modified to minimize false negatives, which are the most 

dangerous errors for a diagnostic system  

Table 15: Dataset and complex neural network configuration for the simulation 

with five junction regions 

Ng Nrs Nc Nt 

5 100 243 24300 

Hidden 

Neurons 

Output 

Neurons 

Initial values 

of the 

weights 

Training 

samples 

280 10 5 80% 

Dataset Input 
Dataset 

Output 
fm [kHz] Test samples 

8 10 80 20% 

Classification rate 

0.098971 

Table 15: Results obtained for each neuron in the case of five junction regions 

Fault class Neuron Joint 

Specific 

Classification 

Rate 

Oxidation 1 

1 

0.9383 

Partial 

Breakage 
2 0.9885 

Oxidation 1 

2 

0.7043 

Partial 

Breakage 
2 0.7648 

Oxidation 1 

3 

0.7342 

Partial 

Breakage 
2 0.8438 

Oxidation 1 

4 

0.7792 

Partial 

breakage 
2 0.9023 

Oxidation 1 

5 

0.6780 

Partial 

Breakage 
2 0.6926 
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