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AN INTERPOLATING INEQUALITY FOR SOLUTIONS OF

UNIFORMLY ELLIPTIC EQUATIONS

ROLANDO MAGNANINI AND GIORGIO POGGESI

Abstract. We extend an inequality for harmonic functions, obtained in [15,
17], to the case of solutions of uniformly elliptic equations in divergence form,
with merely measurable coefficients. The inequality for harmonic functions
turned out to be a crucial ingredient in the study of the stability of the radial
symmetry for Alexandrov’s Soap Bubble Theorem and Serrin’s problem. The
proof of our inequality is based on a mean value property for elliptic operators
stated and proved in [8] and [7].

1. Introduction

Let Ω be a bounded domain in R
N , N ≥ 2, and denote its boundary by Γ. The

volume of Ω and the (N − 1)-dimensional Hausdorff measure of Γ will be denoted,
indifferently, by |Ω| and |Γ|. Let A(x) be an N × N symmetric matrix whose
entries aij(x), i, j = 1, . . . , N , are measurable functions in Ω. We assume that A(x)
satisfies the (uniform) ellipticity condition:

(1.1) λ |ξ|2 ≤ 〈A(x) ξ, ξ〉 ≤ Λ |ξ|2 for any x ∈ Ω, ξ ∈ R
N .

Here, λ and Λ are positive constants. Associated to A(x) we consider a uniformly
elliptic linear operator L in divergence form, defined formally by

(1.2) Lv = div[A(x)∇v],

for every x ∈ Ω.
In what follows, we shall use two scaling invariant quantities: for 1 ≤ p ≤ ∞ the

number ‖v‖p,Ω will denote the Lp-norm of a measurable function v : Ω → R with
respect to the normalized Lebesgue measure dx/|Ω| and, for 0 < α ≤ 1, we define
the scaling invariant Hölder seminorm

(1.3) [v]α,Ω = sup

{(

dΩ
2

)α
|v(x1)− v(x2)|

|x1 − x2|α
: x1, x2 ∈ Ω, x1 6= x2

}

,

where dΩ is the diameter of Ω. Also, the mean value of v on Ω will be indicated by
vΩ.

For 0 < α ≤ 1, we let Σα(Ω) be the set of weak solutions v of class C0,α(Ω) of
Lv = 0 in Ω. We denote by Br and Sr the ball and sphere of radius r centered at
the origin. To avoid unessential technicalities, we state here our main result in the
case in which Ω is a ball. The case of general domains will be treated later on.

Theorem 1.1. Take p ∈ [1,∞). There exists a positive constant K such that, for
any v ∈ Σα(Br), it holds that

(1.4) max
Sr

v −min
Sr

v ≤ K [v]
N

N+αp

α,Br
‖v − vBr

‖
αp

N+αp

p,Br
.
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2 ROLANDO MAGNANINI AND GIORGIO POGGESI

Moreover, (1.4) is optimal in the sense that the equality sign holds for some
v ∈ Σα(Br). Finally, we have that

(1.5) K ≤ 2
(

1 +
αp

N

)

(

N

αp

)

αp
N+αp

(

C

c

)
αN

N+αp

,

where c, C, with c ≤ C, are two constants that only depend on N, λ and Λ.

We recall that, by De Giorgi-Nash-Moser’s theorem, we have that a solution of
Lu = 0 is locally of class C0,α(Ω) for some α ∈ (0, 1] that depends on N, λ and
Λ. Moreover that regularity can be extended up to the boundary provided u is
Hölder-continuous on Γ and Γ is sufficiently smooth – e.g., Γ satisfies a uniform
exterior cone condition (see [9, Theorem 8.29]) or, more in general, condition (A)
defined in [11, pag. 6] (see [11, Theorem 1.1 of Chapter 4]).

The reader’s attention should be focused on the quantitative character of (1.4).
This says that the oscillation of a solution of an elliptic equation can be controlled,
up to the boundary, by its Lp-norm in the domain, provided some a priori infor-
mation is given on its Hölder seminorm.

The effectiveness of an inequality like (1.4) can be understood from an important
application of it, that was first given in [14], and then refined in [13, 15, 16, 17]
(see also [12] for a survey on those issues). There, rougher versions of (1.4) for har-
monic functions were used to obtain quantitative rigidity estimates for the spherical
symmetry in two celebrated problems in differential geometry and potential the-
ory: Alexandrov’s Soap Bubble Theorem and Serrin’s overdetermined problem (see
[1, 2, 3, 18] for the original rigidity results). The sharper version obtained in [15, 17]
gives nearly optimal estimates for those problems.

Theorem 1.1 improves the result obtained in [17, Lemma 3.14] (and hence the
previous ones) from various points of view. As already mentioned, it extends the
analogous estimates obtained for harmonic functions to the case of a uniformly
elliptic linear operator in divergence, form with merely measurable coefficients.
Moreover, it removes the restriction of smallness of the term ‖v − vΩ‖p,B that was
present in the previous inequalities. In doing so, it clears up which are the essential
ingredients to consider to obtain a best possible bound. Finally, It also relaxes
the former Lipschitz assumption on the solutions to a weaker Hölder continuous a
priori information.

The proof of the existence of the constant K in (1.4) is obtained by a quite stan-
dard variational argument. The necessary compactness of the optimizing sequence
is derived from a rougher version of (1.4), that it is proved in Lemma 2.2. The proof
of this lemma extends the arguments, first used in [14] and refined in [13, 15, 17] for
harmonic functions, to the case of an elliptic operator. The crucial ingredient to do
so is a mean value theorem for elliptic equations in divergence form (see Theorem
2.1) the proof of which is sketched in [8, Remark at page 9] and given with full
details in [7, Theorem 6.3].

The proof of Theorem 1.1 is given in Section 2. There, we also provide a proof
for the case of smooth domains. In this case, the constant K also depends on the
ratio between the diameter and the radius of a uniform interior touching ball for the
relevant domain. In Section 3, we show that the proof’s scheme can be extended to
two instances of non-smooth domains: those satisfying either the uniform interior
cone condition or the so-called local John’s condition. The dependence of K on the
relevant parameters follows accordingly.
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2. The inequality in a ball and in smooth domains

We recall the already mentioned result introduced by L. Caffarelli [8, Remark on
page 9], the proof of which is provided in full details in [7, Theorem 6.3]. In what
follows, Br(x0) denotes the ball of radius r centered at x0.

Theorem 2.1 (Mean Value Property for Elliptic Operators). Let Ω be an open
subset of R

N . Let L be the elliptic operator defined by (1.1)-(1.2) and pick any
x0 ∈ Ω. Then, there exist two constants c, C that only depend on N, λ and Λ, and,
for 0 < r < dist(x0,Γ)/C, an increasing family of domains Dr(x0) which satisfy
the properties:

(i) Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0);
(ii) for any v satisfying Lv ≥ 0, we have that

(2.1) v(x0) ≤
1

|Dr(x0)|

∫

Dr(x0)

v(y) dy ≤
1

|Dρ(x0)|

∫

Dρ(x0)

v(y) dy,

for any 0 < r < ρ < dist(x0,Γ)/C.

Issues related to this theorem and the study of the geometric properties of the
sets Dr(x0) have been recently studied by I. Blank and his collaborators in [4, 5, 6].

2.1. The inequality for a ball. We begin our presentation by considering the
case of a ball. This will avoid extra technicalities. We will later show how to
extend our arguments to other types of domains.

The following lemma gives a rough estimate for sub-solutions of the elliptic
equation Lv = 0.

Lemma 2.2. Take p ≥ 1. Let v ∈ C0,α(Br), 0 < α ≤ 1, be a weak solution of
Lv ≥ 0 in Br. Then we have that

(2.2) max
Sr

v−min
Sr

v ≤ 2
(

1 +
αp

N

)

(

N

αp

)

αp
N+αp

(

C

c

)
αN

N+αp

[v]
N

N+αp

α,Br
‖v−vBr

‖
αp

N+αp

p,Br
.

Proof. Without loss of generality, we can assume that vBr
= 0. Let x1 and x2 be

points on Sr that respectively minimize and maximize v on Sr and, for 0 < σ < r,
define the two points yj = xj − σxj/r, j = 1, 2. Notice that xj/r is the exterior
unit normal vector to Sr at the point xj .

By (1.3) and the fact that 2r is the diameter of Br, we have that

(2.3) |v(xj)| ≤ |v(yj)|+ [v]α,Br

(σ

r

)α

, j = 1, 2.

Being 0 < σ < r, we have that Bσ(yj) ⊂ Ω. Thus, we apply Theorem 2.1 by
choosing x0 = yj , j = 1, 2, and r = σ/C. By item (i), we have that

(2.4) B c
C
σ(yj) ⊂ D σ

C
(yj) ⊂ Bσ(yj) ⊂ Br, j = 1, 2.

Also, item (ii) gives that

(2.5) |v(yj)| ≤
1

|D σ
C
(yj)|

∫

D σ
C

(yj)

|v| dy ≤

1

|D σ
C
(yj)|1/p

[

∫

D σ
C

(yj)

|v|p dy

]1/p

≤ |B|−
1
p

(

C

cσ

)N/p (
∫

Br

|v|p dy

)1/p

.

The second inequality is a straightforward application of Hölder’s inequality and,
in the last inequality, we used (2.4), that also gives that

|D σ
C
(yj)| ≥ |B|

( c

C

)N

σN .
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Putting together (2.3) and (2.5) yields that

(2.6) max
Sr

v −min
Sr

v ≤ 2

[

(

C

c

)N/p

‖v‖p,Br

(σ

r

)

−N/p

+ [v]α,Br

(σ

r

)α
]

,

for every 0 < σ < r.
Therefore, by minimizing the right-hand side of the last inequality, we can con-

veniently choose

(2.7)
σ∗

r
=

[

N

αp

(

C

c

)N/p
‖v‖p,Br

[v]α,Br

]p/(N+αp)

and obtain (2.2) if σ∗ < r.
On the other hand, if σ∗ ≥ r, by (1.3) we can write:

max
Sr

v −min
Sr

v ≤ 2α [v]α,Br
≤ 2α [v]α,Br

(

σ∗

r

)α

.

Thus, (2.7) gives

max
Sr

v −min
Sr

v ≤ 2α
(

N

αp

)

αp
N+αp

(

C

c

)
αN

N+αp

[v]
N

N+αp

α,Br
‖v‖

αp
N+αp

p,Br
.

Therefore, (2.2) always holds true, being 2α ≤ 2(1 + αp/N). �

Proof of Theorem 1.1. Lemma 2.2 tells us that (1.4) and (1.5) hold with

K = sup
{

max
Sr

v −min
Sr

v : v ∈ Σα(Br) with [v]
N

N+αp

α,Br
‖v − vBr

‖
αp

N+αp

p,Br
≤ 1

}

.

We are thus left to prove the existence of a v ∈ Σα(Br) that attains the supre-
mum. Again, we assume that vBr

= 0 in the supremum and take a maximizing
sequence of functions vn, that is

[vn]
N

N+αp

α,Br
‖vn‖

αp
N+αp

p,Br
≤ 1 and max

Sr

vn −min
Sr

vn → K as n → ∞.

Observe that
‖vn‖p,Br

≤ 2
αN

N+αp , n ∈ N,

since
‖v‖p,Br

= ‖v − vBr
‖p,Br

≤ 2α[v]α,Br
, v ∈ Σα(Br).

We can then extract a subsequence of functions, that we will still denote by vn,
that weakly converge in Lp(Br) to a function v ∈ Lp(Br). By the mean value
property of Theorem 2.1, the sequence converges uniformly to v on the compact
subsets of Br, and hence v satisfies the mean value property of Theorem 2.1 in Br.
The same theorem then gives that Lv = 0 in Br.

Next, we fix x1, x2 ∈ Br with x1 6= x2. Since

rα
|vn(x1)− vn(x2)|

|x1 − x2|α
≤ [vn]α,Br

≤ ‖vn‖
−

αp
N

p,Br
,

the local uniform convergence and the semicontinuity of the Lp-norm with respect
to weak convergence give that

rα
|v(x1)− v(x2)|

|x1 − x2|α
≤ ‖v‖

−
αp
N

p,Br
.

Since x1 and x2 are arbitrary, we infer that [v]α,Br
‖v‖

αp
N

p,Br
≤ 1. This means that v

extends to a function of class C0,α(Br).
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If we now prove that vn → v uniformly on Sr, we will have that

K = lim
n→∞

(

max
Sr

vn −min
Sr

vn

)

= max
Sr

v −min
Sr

v,

and the proof would be complete. For any x ∈ Sr and y ∈ Br, we can easily show
that

lim sup
n→∞

|vn(x) − v(x)| ≤ r−α |x− y|α lim sup
n→∞

[vn]α,Br
+ |v(y)− v(x)| ≤

r−α |x− y|α‖v‖
−

αp
N

p,Br
+ |v(y)− v(x)|.

Since y ∈ Br is arbitrary and v is continuous up to Sr, the right-hand side can
be made arbitrarily small, and hence we infer that vn converges to v pointwise on
Sr. The convergence turns out to be uniform on Sr. In fact, if xn ∈ Sr maximizes
|vn − v| on Sr then by compactness xn → x as n → ∞ for some x ∈ Sr, modulo a
subsequence. Thus,

max
Sr

|vn − v| = |vn(xn)− v(xn)| ≤

r−α |xn − x|α[vn]α,Br
+ |vn(x) − v(x)|+ |v(x) − v(xn)|,

and the right-hand side vanishes as n → ∞, by the continuity of v and the pointwise
convergence of vn. The proof is complete. �

2.2. The inequality for smooth domains. The extension of Theorem 1.1 to the
case of bounded domains with boundary Γ of class C2 is not difficult. We recall
that such domains satisfy a uniform interior sphere condition. In other words, there
exists ri > 0 such that for each z ∈ Γ there is a ball of radius ri contained in Ω the
closure of which intersects Γ only at z.

Theorem 2.3. Take p ∈ [1,∞). Let Ω ⊂ R
N be a bounded domain with boundary

Γ of class C2 and let L be the elliptic operator defined by (1.1)-(1.2).
If v ∈ Σα(Ω), then

(2.8) max
Γ

v −min
Γ

v ≤ K [v]
N

N+αp

α,Ω ‖v − vΩ‖
αp

N+αp

p,Ω

for some optimal constant K. Moreover, it holds that

(2.9) K ≤ max

[

2
(

1 +
αp

N

)

,

(

dΩ
ri

)α](
N

αp

)

αp
N+αp

(

C

c

)
αN

N+αp

.

Proof. The proof runs similarly to that of Theorem 1.1. We just have to make some
necessary changes to the proof of Lemma 2.2,

We take x1 and x2 in Γ that respectively minimize and maximize v on Γ and
define the corresponding y1, y2 by yj = xj − σν(xj), j = 1, 2, where ν(xj) is the
exterior unit normal vector to Ω at the point xj . This time we use the restriction
0 < σ < ri, so that Bσ(yj) ⊂ Ω, j = 1, 2.

Next, we must replace (2.3) by

(2.10) |v(xj)| ≤ |v(yj)|+ [v]α,Ω

(

2σ

dΩ

)α

, j = 1, 2,

and (2.5) by

|v(yj)| ≤ |B|−
1
p

(

C

cσ

)N/p (
∫

Ω

|v|p dy

)1/p

, j = 1, 2.

Thus, we arrive at

(2.11) max
Γ

v −min
Γ

v ≤ 2

[

(

C

c

)N/p

‖v‖p,Ω

(

2σ

dΩ

)

−N/p

+ [v]α,Ω

(

2σ

dΩ

)α
]
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for 0 < σ < ri, in place of (2.6). Here, we used that |Ω| ≤ |B| (dΩ/2)
N .

By minimizing the right-hand side of (2.11), this time we can choose

2σ∗

dΩ
=

[

N

αp

(

C

c

)N/p
‖v‖p,Ω
[v]α,Ω

]p/(N+αp)

,

and obtain (2.8) and (2.9) if σ∗ < ri.
On the other hand, if σ∗ ≥ ri, (1.3) gives:

max
Γ

v −min
Γ

v ≤ 2α [v]α,Ω ≤

(

2σ∗

ri

)α

[v]α,Ω =

(

N

αp

)

αp
N+αp

(

C

c

)
αN

N+αp
(

dΩ
ri

)α

[v]
N

N+αp

α,Ω ‖v‖
αp

N+αp

p,Ω .

Again, (2.8) and (2.9) hold true. �

Remark 2.4. Theorem 2.3 can be compared with [17, Lemma 3.14], that was
proved for the Laplace operator. In that case, we have that c = C = 1 and the
seminorm in (1.3) can be replaced by the maximum of (dΩ/2) |∇v| on Γ, provided
Γ is sufficiently smooth.

3. The inequality for two classes of non-smooth domains

In this section, for future reference, we consider and carry out some details for
two cases of domains with non-smooth boundary.

3.1. Domains with corners. Given θ ∈ [0, π/2] and h > 0, we say that Ω satisfies
the (θ, h)-uniform interior cone condition, if for every x ∈ Γ there exists a finite
right spherical cone Cx (with vertex at x and axis in some direction ex), having
opening width θ and height h, such that

Cx ⊂ Ω and Cx ∩ Γ = {x} .

Theorem 3.1. Take p ∈ [1,∞). Let Ω ⊂ R
N be a bounded domain satisfying the

(θ, h)-uniform interior cone condition and let L be the elliptic operator defined by
(1.1)-(1.2).

If v ∈ Σα(Ω), then (2.8) holds true for some optimal constant K. Moreover, we
have that

(3.1) K ≤ max

[

2
(

1 +
αp

N

)

,

(

dΩ
h

)α

(1 + sin θ)α
](

N

αp

)

αp
N+αp

(

C

c sin θ

)
αN

N+αp

.

Proof. The proof runs similarly to that of Theorem 2.3. We just have to take care
of the bound for K.

Let x1 and x2 be the usual extremum points for v on Γ. This time, instead, we
define the two points yj = xj − σexj

, j = 1, 2, for

0 < σ <
h

1 + sin θ
.

Notice that, in view of the (θ, h)-uniform interior cone condition, the ball Bσ sin θ(yj)
is contained in Ω. Thus, by proceeding as in the proof of Theorem 2.3 (this time
applying Theorem 2.1 with r = sin θ

C σ and x0 = yj, j = 1, 2), we arrive at the
inequality

max
Γ

v −min
Γ

v ≤ 2

[

(

C

c sin θ

)N/p

‖v‖p,Ω

(

2σ

dΩ

)

−N/p

+ [v]α,Ω

(

2σ

dΩ

)α
]

,
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for every 0 < σ < h/(1 + sin θ). Hence, this time we can choose

2σ∗

dΩ
=

[

N

αp

(

C

c sin θ

)N/p
‖v‖p,Ω
[v]α,Ω

]p/(N+αp)

,

and obtain (2.8) and (3.1) if σ∗ < h/(1 + sin θ).
On the other hand, if σ∗ ≥ h/(1 + sin θ), by (1.3) we have that

max
Γ

v −min
Γ

v ≤ 2α [v]α,Ω ≤

(

2σ∗

h

)α

(1 + sin θ)
α
[v]α,Ω =

(

N

αp

)

αp
N+αp

(

C

c sin θ

)
αN

N+αp
(

dΩ
h

)α

(1 + sin θ)
α
[v]

N
N+αp

α,Ω ‖v‖
αp

N+αp

p,Ω .

Again, (2.8) and (3.1) hold true. �

3.2. Locally John’s domains. Following [10, Definition 3.1.12], we say that a
bounded domain Ω ⊂ R

N satisfies the (b0, R)-local John condition if there exist two
constants, b0 > 1 and R > 0, with the following properties. For every x ∈ Γ and
r ∈ (0, R] we can find xr ∈ Br(x) ∩ Ω such that Br/b0(xr) ⊂ Ω. Also, for each z in

the set ∆r(x) defined by Br(x) ∩ Γ, we can find a rectifiable path γz : [0, 1] → Ω,
with length ≤ b0r, such that γz(0) = z, γz(1) = xr, and

(3.2) dist(γz(t),Γ) >
|γz(t)− z|

b0
for any t > 0.

The constants b0, R, the point xr, and the curve γz are respectively called John’s
constants, John’s center (of ∆r(x)), and John’s path. The class of domains satis-
fying the local John condition is huge and contains, among others, the so-called
non-tangentially accessible domains (see [10, Lemma 3.1.13]).

Theorem 3.2. Take p ∈ [1,∞). Let Ω ⊂ R
N be a bounded domain satisfying the

(b0, R)-local John condition and let L be the elliptic operator defined by (1.1)-(1.2).
If v ∈ Σα(Ω), then (2.8) holds true for some optimal constant K. Moreover, we

have that

(3.3) K ≤ max

[

2
(

1 +
αp

N

)

,

(

dΩb0
R

)α](
N

αp

)

αp
N+αp

(

Cb0
c

)
αN

N+αp

.

Proof. Let x one of the usual extremum points for v on Γ. Let γx be a John’s path
from x to the John’s center xR of ∆R(x). Since Br/b0(xR) ⊂ Ω we have that

|x− xR| ≥ dist(xR,Γ) >
R

b0
.

Thus, for 0 < σ < R/b0, we can find a point y on the John’s curve γx such that
|x− y| = σ. Hence, by (1.3) we have that (2.10) still holds true.

In view of (3.2) we have that Bσ/b0(y) ⊂ Ω. Thus, as done to obtain (2.5) (this
time applying Theorem 2.1 with r = σ/(Cb0) and x0 = y), we get that

|v(y)| ≤

(

|Ω|

|B|

)
1
p
[

C b0
c σ

]N/p

‖v‖p,Ω.

This, (2.10), and the inequality |Ω| ≤ |B| (dΩ/2)
N then yield that

max
Γ

v −min
Γ

v ≤ 2

[

(

C b0
c

)N/p(
2 σ

dΩ

)

−N/p

‖v‖p,Ω + [v]α,Ω

(

2 σ

dΩ

)α
]

,
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for every 0 < σ < R/b0. Hence, this time we can choose

(3.4)
2 σ∗

dΩ
=

[

N

αp

(

C b0
c

)N/p
‖v‖p,Ω
[v]α,Ω

]p/(N+αp)

,

and have that (2.8) and (3.3) hold true if σ∗ < R/b0.
On the other hand if σ∗ ≥ R/b0, since by (1.3) it holds that

max
Γ

v −min
Γ

v = v(x1)− v(x2) ≤ 2α [v]α,Ω

(

σ∗b0
R

)α

≤ [v]α,Ω (2 σ∗)
α

(

b0
R

)α

,

by (3.4) we immediately get

max
Γ

v −min
Γ

v ≤

(

dΩb0
R

)α (

N

αp

)

αp
N+αp

(

Cb0
c

)
αN

N+αp

[v]
N

N+αp

α,Ω ‖v‖
αp/(N+αp)
p,Ω .

Hence, (2.8) and (3.3) still hold true. �
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