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Abstract 
The main disadvantages of the existing methods for studying 
speech articulators (such as electromagnetic and 
optoelectronic systems) are the high cost and the discomfort to 
participants or patients. The aim of this work is to introduce a 
completely markerless low-cost 3D tracking technique in the 
context of speech articulation, and then compare it with a well-
established marker-based one to evaluate the performances. A 
Kinect-like device was used in conjunction with an existing 
face tracking algorithm to track lips movements in 3D without 
markers. The method was tested on two subjects uttering 200 
words and 100 sentences. For most of points of the lips the 
RMSE ranged between 1 and 3 mm. Although the image 
resolution used in this experiment was low, these results are 
very promising. Nevertheless, further studies should consider 
higher video resolutions in order to obtain better results. 
  
Index Terms: speech articulation, markerless, Kinect sensor, 
comparison 

1. Introduction 
In the past decades, several techniques were proposed and 
used for studying the movements of speech articulators (lips, 
tongue and jaw) as x-ray imaging, magnetic resonance 
imaging (MRI), ultrasound technique, electromagnetic 
articulography (EMA) and optoelectronic systems [1]. 
Applications of these methods may include: the study of 
speech disorders in neurological illnesses (Parkinson’s disease, 

amyotrophic lateral sclerosis, etc.) using optoelectronic 
techniques [2], [3], EMA [4] and x-ray [5]; the use of EMA to 
estimate the parameters of an articulatory model [6]; the study 
of tongue movements for speech therapy applications [7], [8]. 
The main disadvantages of these methods are the high cost and 
its discomfort to participants or patients. Moreover, the above 
techniques needs a lengthy preparation protocol. To our 
knowledge, one of the few attempts to go beyond this limit 
was a marker-based system composed by 2 consumer-grade 
cameras in conjunction with a tracking software to study lips 
and jaw movements, presented in Feng et al. (2014) [9]. 
Nevertheless, it needs some preparation, as gluing markers, 
setting and calibrating the cameras, and can still present 
discomfort to patients.  
The spread of 3D low-cost structured light 3D sensors (like 
Microsoft Kinect, Asus Xtion, Primesense Carmine, etc.), 
providing 3D information of the observed scene without 
markers, could be used to extract trajectories and kinematic 
parameters in the 3D space, and to analyze some fundamental 

articulatory parameters like lip protrusion. Moreover, these 
devices could be integrated in speech therapy applications 
since most of tasks consist of tracking facial and articulatory 
movements and  providing some feedback [10].  
Speech therapy can address the slowdown of speech disorders 
related to neurological illnesses, as hypokinetic dysarthria 
associated with Parkinson’s disease or stroke [7], [10], [11]. 
Although speech disorders concern to some extent a large 
population, speech therapy is often applied to a small number 
of patients. This is due to the following factors:  
� During group sessions, the speech therapist has difficulty 

to give exactly the same rigorous attention to each 
patient, in order to evaluate the therapy exercises and 
provide a valuable feedback to patients;  

� Due to neurodegenerative diseases, most of the patients 
with hypokinetic dysarthria are elderly people, who could 
encounter physical difficulties to visit specialized centers;  

� In several cases, patients should continue the therapy 
exercises at home. They might not be sufficiently 
motivated without the direct supervision of the therapist. 

For these reasons, it arises the need for a system, which could 
automatically provide a feedback about the articulatory 
movements and that could also be integrated to home 
environment. Therefore, this system should be as much as 
possible at reasonable price and using a contact-less technique.  
In order to use marker-less methods for studying articulatory 
movements, it is necessary to test their accuracy during the 
tracking of facial movements. Thus, the aim of this study is to 
compare the performance of a low-cost marker-less technique 
against a well-established marker-based one, to track 
articulatory movements, mainly focusing on lip movements 
during speech. The use of commercially available 3D sensors 
would help for this aim. In this case we used a Kinect-like 
sensor in conjunction with an existing face tracking algorithm 
called Intraface [12], that fits a face model to video frames, on 
the basis of SIFT texture descriptors [13]. We have used this 
algorithm for its robustness against illumination changes, for 
its performances and for its capability to generalize to cases 
never seen during training [12].  
In this paper we present our method as well as to provide 
guidelines for using Kinect-like sensors to study articulatory 
movements. 

2. Materials and Methods 
To test the performances of the marker-less system (based on 
the Primesense Carmine 1.09 sensor, which is a kinect-like 
system, and the Intraface tracking algorithm) to track 
articulatory movements, we used an optoelectronic technique 
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(Vicon Motion Systems Ltd.) widely used as accurate marker-
based motion capture system. Both systems (Primesense and 
Vicon) were used simultaneously and the different streams 
were acquired synchronously. In the following, we present the 
systems used in our study and we describe the method.  

2.1. Marker-based stream 
A Vicon system based on 4 cameras (MX3+ model) with 
special optics for near range applications has been used. This 
system allows tracking 3mm-diameter reflective markers, well 
adapted to facial movements [9]. The camera location, shown 
in Fig. 1, was chosen to cover as much as possible the lower 
part of the face. The acquisition of the 3D positions of the 
markers were provided by the Vicon Nexus software at 
sampling rate of 100Hz. 

2.2. Video stream (Color and Depth) 
We have used a 3D sensor, the Primsense Carmine 1.09, 
suitable for near range applications (0.4-1.5 m), as for facial 
movements. As other structured-light sensors, it provides two 
video streams: color (RGB) and depth, where each pixel codes 
the distance in mm of a particular point in the scene from the 
camera plane. The video acquisitions were performed using 
OpenNI and OpenCV libraries. The video resolution was 320 
x 240 pixels at 30 frames per second for both streams. We 
placed the Primsense sensor as close as possible toward the 
subject’s face, without interfering with the field of view of the 
Vicon cameras. The device was fixed on a boom at a distance 
from the subject’s head between 0.7 and 0.8 m (Fig. 1). The 
audio stream was simultaneously acquired from the two built-
in microphones of the Primsense.  

 
Figure 1: Experimental setting: marker-based system and 
Kinect-sensor displacement.  

2.3. Speech corpus and acquisitions 
The acquisitions were performed in a reduced noise. Two 
healthy subjects were recruited for the experiment: an Italian 
native speaker and a French one. Subjects were seated in front 
of the camera at a distance between 0.7 and 0.8 m from the 
Primesense sensor. This range is a tradeoff between the device 
characteristics and its distance from the subject’s face (as close 

as possible) without interfering with the field of view of the 
Vicon cameras.  
Before each acquisition, 16 reflective markers were accurately 
glued on the subject’s face in precise anatomical points: 4 on 

the eyebrows, 3 on the noset, 7 on the external contour of the 
lips and 2 on the chin, as shown in Fig. 2. These locations 
were accurately chosen in correspondence to selected points of 
the face model used by the Intraface tracker (presented in the 
next section), as shown in Fig. 2. We verified that the markers 
did not alter the acquisition quality of the Intraface tracker. 
Each subject was asked to read and pronounce the corpus 
(displayed on screen in front of the subject) without any 
excess of head-movement. The face was kept under a constant 
and uniform illumination during the whole acquisition. 
We chose two corpora (one for each language), both 
composed of 50 meaningful sentences and 100 meaningful 
words. The French sentences were extracted from of the 
Comberscure corpus [14], while the words were chosen from 
the Lafon lists [15]. The Italian sentences and words were 
chosen from the corpus defined by Bocca and Pellegrini [16]. 

2.4. Data processing 

2.4.1. Face tracking 

As mentioned above, to identify some facial feature points (as 
the lips) a tracking algorithm capable of detecting and tracking 
these points, is needed. The face tracker Intraface used in this 
work fits a model of the face to the color image using texture 
descriptors (SIFT) to resolve this optimization problem [12], 
[13]. Unlike other face trackers based on a priori learned face 
model, as active appearance models [17], [18], each landmark 
position is directly optimized to the current frame based on 
texture descriptors. This involves a better ability to generalize 
situations never seen in the training set, like asymmetrical face 
movements, leading to a higher flexibility. Moreover, since the 
fitting is based on SIFT descriptors, this algorithm is robust 
against illumination changes [12]. The Intraface tracker fits to 
the scene a model composed of 49 points: 10 for the eyebrows, 
12 for the eyes, 9 for the nose and 18 for the lips (12 on the 
outer contour, 8 on the inner contour) as shown in Fig. 2. For 
this study we considered the points of the eyebrows, nose and 
of the outer lips contour.  

 
Figure 2: Intraface model points (green dots) and optical 
markers located on the face (red circles). 

Since the face tracker works on 2D color images, it was 
necessary to extract the 3D coordinates of the points of 
interest. Thus, for each of these points we computed the 
coordinates on the lateral axis (X) and on the vertical axis (Y) 
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starting from the depth information (frontal axis – Z). 
Since we registered and synchronized the depth frames with 
the color frames, to extract the Z value in mm for each point 
we just needed to sample the depth image in the same pixel 
coordinates provided by the face tracker. To calculate the 
other two coordinates of the points we used the following 
formulas [19]: 
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where ! and " are the coordinates on the image plane (in 
pixels) of a point of coordinates [� � �]T in the 3D space, 
 is 
the focal length (in pixels) of the camera, (cx,cy) are the 
coordinates (in pixels) of the principal point,  # and $ are the 
dimensions of the image (width and height, respectively) in 
pixels, %&'* and %&'+ are the horizontal and vertical field of 
view (equal to 57.5° and 45°, respectively). 
After computing the 3D coordinates of the points tracked with 
the marker-less system, it is necessary to align them with those 
acquired with the marker-based method, since the coordinates 
of the frame references are different. For this reason, since we 
paid a lot of attention in the positioning of the markers on the 
subject’s face, it was possible to estimate the rotations and 
translation parameters which allow mapping the 3D points 
extracted with the face tracker in the Vicon coordinate system: 

,-
. =  / ,. + 3                                          (3) 

 
where ,. is a generic point of coordinates [�5 �. �.]T in the 
marker-less reference frame mapped to the Vicon reference 
frame (,-

.) through the 3x3 rotation matrix / and the 
translation vector T. Thus, knowing couples of corresponding 
points in the two reference frames, it was possible to estimate 
the transformation parameters. Using a least squares solution 
and making use of more pairs of points than those required by 
the number of unknowns, we overestimated the system 
reducing the effect of noise on the estimation.  
For this work we used 7 pairs of points, respectively: two for 
each eyebrow, two for the nose and one for the lips (midpoint 
on the lower lip – L6, Fig. 2).   

2.4.2. Articulatory parameters and error calculation 

In addition to conducting the comparison on the 3D 
coordinates of the points of interest (points L1-7 in Fig.2), we 
computed some articulatory parameters: 
� Lip width: distance on the lateral axis between the two 

corner points (points L1 and L4); 
� Lip opening: distance on the vertical axis from the 

midpoint between points L2 and L3, and the central lower 
lip point (point L6); 

� Lip protrusion: distance on the frontal axis from the 
midpoint between points L2, L3 and L6 and a fixed 
reference point, in this case the nose tip.  

All these parameters were normalized with respect to head 
rotation angles. These angles were calculated from the markers 
located on the eyebrows and nose. 
After extracting the trajectories and the articulatory parameters 
we calculated the Root Mean Square Error (RMSE) between 
the marker-less and the marker-based measures (points 
trajectories and articulatory parameters). 

2.4.3. Depth accuracy 

The manufacturer of the Primesense sensor provided only the 
spatial resolution at 0.5 m from the camera, equal to 1 mm for 
the depth and 0.9 mm for the other two axes. Since our 
experiments were performed at a distance between 0.7 and 0.8 
m, we expected lower resolutions. To estimate the error 
introduced by the Kinect sensor in the estimation of the depth 
value of a point in the scene (and thus for the estimation of its 
3D coordinates), we used a phantom object composed by a 
box on which 7 reflective markers (of the same type used 
during experiments) were glued on small squares of yellow 
paper (surface = 1 cm2) on one surface of the box. These 
markers were located like a cross: the points on the horizontal 
axis were equally spaced of  25 mm, while those on the 
vertical axis were spaced of 50 mm. The Primesense sensor 
and the Vicon cameras were placed in front of a table on 
which the box translated at a constant speed from a distance of 
900 mm to 500 mm from the depth device. This test was 
repeated twice. 
We calculated the mean RMSE for the 7 points along the 3 
coordinates for the entire range of movement covered by the 
box. Finally, dividing this range into intervals of 20 mm, 
within which the mean RMSE was computed, 20 error values 
were obtained. 
In order to verify if the errors introduced by the Primesense 
sensor in the estimation of the depth values was comparable to 
the RMSE values obtained during speech acquisitions, we 
extracted the mean distance of the lips (in mm) from the 
camera. 

3. Results 
The acquisition relative to the French subject was carried out 
at a mean distance of the mouth from the Primesense sensor of 
(737.99 ± 41.88) mm, while those relative to the Italian subject 
were performed at a mean distance of (770.20 ± 14.14) mm. 
The mean values and the standard deviations of the RMSE for 
the 3D trajectories of the 7 points of interest as well as the 
RMSE for the 3 articulatory parameters were reported in table 
1. These results were computed on the whole corpus.  Since 
the points extracted with the marker-less method were mapped 
to the Vicon reference frame, the notation used in this table 
refers to Vicon coordinates system: x is the lateral axis, y is 
the frontal axis and z is the vertical axis.  
Considering the mean distances at which the experiments were 
performed, the mean errors introduced by the Primesense 
sensor, for  the French corpus were 0.99 mm on the lateral 
axis, 0.83 mm on the vertical axis and 1.13 mm on the frontal 
axis. For the Italian corpus, the mean errors were 1.17 mm on 
the lateral axis, 0.81 mm on the vertical axis and 1.21 mm on 
the frontal axis. 
As shown in tab. I, the mean values of RMSE relative to the 
French corpus ranged between 1 and 3 mm (except for the 
coordinate y of the points L5 and L7 and the coordinate x of 
the point L7). Even in the Italian corpus we noticed mean 
values under 3 mm, although errors higher than 3 and 4 mm 
are more frequent. In particular, for the coordinate y of the 
points L2, L3, L5 and L7 the RMSEs ranged between 4 and 5 
mm.  
Considering the depth accuracy of the device, the error for the 
depth values (z-axis) was approximately of 0.7 mm for z < 600 
mm, ranged between 0.8 and 1.2 mm for z between 600 mm 
and 800 mm and is about 2 mm for z > 800 mm. Similar 
values were present on the x-axis, although the increase of the 

2164



RMSE values over 2 mm occurs after 850-870 mm of 
distance. On the y-axis (vertical), the error seems to be 
constant along the entire range covered by the object. In fact, 
we found that the RMSE ranged between 0.7 mm and 1.2 mm 
in the considered distance range. 

Table 1. RMSE (mean values and standard deviations) for 
the 7 points of interest and for the 3 articulatory parameters 
Points and 
Parameters 

French RMSE (mm) Italian RMSE (mm) 
x y z x y z 

L1 1.63 
± 

0.99 

2.15 
± 

0.96 

2.57 
± 

1.53 

2.91 
± 

2.30 

2.35 
± 

1.54 

1.61 
± 

1.01 
L2 1.39 

± 
0.82 

2.98 
± 

1.44 

1.40 
± 

0.96 

2.79 
± 

1.85 

4.17 
± 

2.17 

1.50 
± 

0.99 
L3 1.28 

± 
0.95 

2.99 
± 

1.49 

1.50 
± 

1.04 

5.62 
± 

3.06 

4.14 
± 

1.68 

1.57 
± 

1.39 
L4 2.10 

± 
1.14 

1.53 
± 

0.85 

2.23 
± 

1.51 

2.54 
± 

2.08 

1.85 
± 

1.27 

1.92 
± 

1.21 
L5 1.30 

± 
0.80 

3.43 
± 

1.40 

2.46 
± 

1.52 

2.93 
± 

2.30 

5.50 
± 

2.81 

2.36 
± 

1.27 
L6 1.96 

± 
1.13 

2.47 
± 

1.39 

2.49 
± 

1.61 

2.85 
± 

2.49 

2.92 
± 

1.85 

2.47 
± 

1.31 
L7 3.15 

± 
1.54 

6.50 
± 

2.08 

2.44 
± 

1.59 

3.29 
± 

2.73 

5.08 
± 

2.62 

2.63 
± 

1.51 
Width 2.07 ± 1.22 1.86 ± 1.07 

Opening 2.72 ± 1.66 3.81 ± 2.39 
Protrusion 1.36 ± 0.81 4.45 ± 2.08 

4. Discussion 
For most of the points, the RMSE mean values ranged 
between 1 and 3 mm (Tab. I). Considering the low image 
resolution used for the experiment, this is a very promising 
result. Further information about acceptable error ranges could 
be provided by future works that might try to extract error 
measures with other algorithms, devices and configurations. 
Concerning the articulatory parameters (Tab. I), we obtained 
good results for the width in both corpora (mean RMSE 
around 2 mm) and for opening and protrusion in the French 
corpus (mean values: 2.72 mm and 1.36 mm, respectively). 
Instead, the errors for opening and protrusion in the Italian 
corpus were higher, with values over 4 mm for protrusion. 
Since protrusion is computed from the y-coordinate of points 
L2, L3 and L6, bigger errors for these points could lead to a 
bigger protrusion error; in fact, the error on the y-coordinate 
for these 3 points is always bigger in the Italian corpus with 
respect to the French one (Tab. I). 
These differences could be due to several factors. First of all, 
the markers were accurately positioned to match the Intraface 
points, but this positioning (as far as accurate may be), 
presents an intrinsic error due to the manual settings. For the 
opening, the higher RMSE could be due to the higher distance 
of the acquisition and different orientation of the Primesense 
with respect to the face that, in conjunction with the low 
resolution of the images, could lead to bigger errors. 
Considering the depth accuracy of the device we found that 
the errors on the x (lateral) and z (frontal) axes exhibited 

similar behaviors, with higher values with increasing distance 
from the camera. Considering the distances at which the 
speech acquisitions were performed (0.7-0.8 m) the errors in 
the depth estimation reflected what has already been observed 
in the results of table I, namely for most of points the biggest 
error is on the frontal axis (that in the Vicon reference frame is 
the y-axis). However, this error is always smaller than those 
reported in Tab. I (only in the case of the point L4 might be 
similar, since it is between 1.5 mm and 1.8 mm). Even for the 
other two coordinates the device errors were lower than those 
computed during speech experiments. We believe that this is 
due to the low resolution of the video frames (320 x 240 
pixels) and the distance of the Primesense to the subject. This 
means that the pixels of the color images (those on which the 
face tracker works) correspond to an area of the face larger 
than that which would be using a higher resolution and/or 
decreasing the distance between the face and the Primesense 
camera. Thus, some depth variations of the face (in particular 
the cavities in the corner of the mouth due to the lip anatomy) 
might be indistinguishable.  
For these reasons for further experiments that will involve 
structured light cameras (Microsoft Kinect, Primesense, Asus 
Xtion, etc.) we strongly recommend to acquire images of at 
least 640 x 480 pixels of resolution for both streams.  
Although the working range used for this experiment led to 
reasonable errors in the estimation of the 3D coordinates 
another requirement to adopt for future experiments is to 
perform the acquisitions at distances lower than 0.7 m. In fact, 
according to our results and considering the range of working 
specified by the manufacturer (0.4-1.5 m), the resolution on 
the 3 axes should be better at distances between 0.4 and 0.6 m 
from the camera. This recommendation allows increasing 
indirectly the resolution. However, due to the technical design 
of this experiment, we could not bring the camera closer to the 
subject’s face. 

5. Conclusion 
This work is a first attempt to test the performance of a 
completely low-cost marker-less technique against a well-
established marker-based one, to track articulatory movements 
during speech. Using a depth sensor in conjunction with an 
efficient face-tracking algorithm, it is possible to obtain good 
accuracies to analyze lip movements during speech, despite 
the limitations in terms of low-resolution images and distance 
from the camera. Moreover, these promising results are 
encouraging in order to achieve marker-less low-cost 
techniques to study facial movements for speech therapy 
purposes. This would result in the increasing of the percentage 
of patients undergoing speech therapy, bringing benefits in 
particular to elderly patients who cannot move to specialized 
centers, and for children which could deal with the 
rehabilitation exercises in the form of interactive games. From 
the results of this study, any new implementation or 
experiment in this perspective should be performed at 
distances of the face between 0.5 m and 0.6 m from the 
camera, acquiring images of resolution greater than 640 x 480 
pixels. Since this paper presents overall results, further 
developments will concern the analysis of errors at phoneme 
level, in order to find the phonemes for which the best and the 
worst results can be achieved with this technique. 
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