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1. Introduction

In this paper we deal with equations that have as prototype

with p > 1 and 3 — p < m + p < 2 which correspond to take —1 < v < 0, where v =

ur = div(um*l|Du\p_2Du)7 (1.1)

m+p—2

T being this

structure typical of doubly nonlinear equations.
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Many of our results and of the techniques we apply here hold also in the case p > 1, m < 1 and
3—p < m+p # 2 < 3, which correspond to take 0 < |y| < 1; and all the results presented in this
paper are also valid for v = 0, for more details see [31].

Note that when p = 2 we have the Fast Diffusion Equation

ug = m~ T A(u™), m <1 (1.2)
while, when m = 1, we have to deal with the Singular p-Laplacian Equation
u; = div(|Duf’ " Du), l<p<2 (1.3)
We can formally write equation (1.1) as
u; — div(|Dw|’ "> Dw) = 0, (1.4)

u¥—1

where w = , and this shows that when m +p — 2, which corresponds to v — 0, the equations converge

formally to the logarithmic limit
u; — Ap(logu) = u; — div(|D(logu)|’ *Dlogu) =0,  p> 1. (1.5)

The singular Egs. (1.2) and (1.3) have been widely studied, as they have a great mathematical interest
and are also connected to several applications. But the more they are becoming singular the less is known.
Consider, for instance, the singular equation (1.3). It is known that any bounded solution is regular (see, for
instance, the monograph [18]), but Harnack inequality, the existence of potential and the boundedness of
any weak solution happen only in the supercritical range p > J\Qf—fz, with N standing for the dimension of the

space domain (see, for instance, the monograph [24]) and these phenomena look like to be highly correlated

2N
N+2

some suitable L" — L estimates can be proved (see [22]) and the Harnack estimates are degenerating in a
very weak form (see [2,22,23] and [35]). The same results hold for the fast diffusion equation (1.2) (for the
subcritical case see also [3]) and for doubly nonlinear parabolic Egs. (1.1) with 2 < m+p < 3 [34] being the

(see, for instance, the review papers [27] and [28]). When p is in the subcritical range (1 < p < ) only

threshold m = ¥7 for Eq. (1.2), and m + p = 3 — &, for Eq. (1.1). The doubly nonlinear case is not yet
totally understood, although many results are available (see, for instance [32-34,37-39] and [40]). The case
m +p = 3, the so called Trudinger’s equation, is still object of intensive studies (see, for instance [42]). The
regularity theory is fully developed only for the supercritical case (for an overview, see [52]).

Regarding the case m + p < 2 not very much is known. The most important case concerns the Fast
Diffusion Equation which becomes u; = A(logu) when m — 0. This equation comes from differential

geometry when describing Ricci flow on complete R? (see, for instance, [5,36], [11,14,54] and [15]). In [19]

1
loc

the Cauchy problem, with a nonnegative initial datum u, € L} .(R?), was deeply analyzed obtaining
necessary and sufficient conditions for the existence of the solutions. The case N > 3 was widely studied
by Daskalopoulos and del Pino, and they proved the existence of radial solution with prescribed growth
to infinity and the nonexistence of integrable solutions even with an integrable initial datum (see, for
instance, [13]). Not very much is known about bounded domains (see, for instance, [44]). Under a suitable
definition, it is possible to show the existence of noncontinuous solutions [48]. Such kind of equations have
applications in kinetic theory of gases (see, for instance, [6,17] and [45]), in thin film dynamics (see, for
instance, [4,16] and [53]), and in general diffusion processes with singular diffusivity (see, for instance, [46]).
For more details about this equation see, for instance, [21], [29,30,49] and [50]. The general case m + p = 2
and p > 1, was studied in [31]. We stress out that not much is done for m < 0. This problem was first faced
in [47] (where the nonexistence of solution is studied) and [12] (where also the existence is considered).
Several papers stemmed from these two foundational papers. Among them we quote the recent paper [41]
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where wellposedness and large-time behavior for a class of weighted ultrafast diffusion equations is studied.
In that paper one can find not only updated references but also recent applications of these equations for
problems related to quantization for probability measures.

However, to our knowledge, there is only a paper where equation (1.2) is studied for m < 0 with DeGiorgi
regularity approach: in [20] where the authors considered the case —1 < m < 0. We recall that the value
m = —1 represents a critical threshold because under that value the energy estimates (on which the DeGiorgi
method is based) reverse the sign. More precisely, in that paper uniform local upper and lower bounds were
derived for the solutions u,, to the equations u; = A(u™), for —1 < m < 1 and m # 0. It was also proved
the stability of the case m = 0 i.e. the logarithmic case: the authors proved that, when m — 0, the solutions
Um — U, Where u, is the solution of (1.5) with p = 2.

In this paper, we start the analysis of very singular doubly nonlinear equation, i.e. when 3—p < m+p < 2
and m(1, p)l. Besides their intrinsic mathematical interest, such kind of equations appear in recent models
of morphogenesis (see [1] and [10]); in [7,8] and [9] one can find results regarding the wellposedness of
the model as well as qualitative properties of the equations. Here we prove suitable L™ — L estimates,
a result of expansion of positivity and Harnack estimates. The proofs of many of the results hold also in the
case 2 < m+p < 3 and m(1,p)1. In particular, we prove a weak form of Harnack, for which the derived
constant depends on the ratio of some integral norms of the weak solution u (see Section 7). One should
not be surprised by this dependence as it is now well-known that, within the critical and subcritical ranges
2<m+p<3— %, for p< N, no Harnack inequalities hold with an absolute constant. Another interesting
feature, which we are willing to address in a nearby future, concerns the regularity of u since the properties
we present are somehow related to regularity results.

For the sake of simplicity we prove our results only for the prototype equations but, working with the
prototype equations is immaterial and the same results hold for equations with variable coefficients (we will
be more precise in the next sections). All these results are proved having, as starting point, the techniques
introduced in [20] and in [31]. In a forthcoming paper we will prove a stability result: i.e. when m +p — 2
the solutions to (1.4) converge to the solution of (1.5).

2. Setting the framework

Let 2 be an open set of RV, for N > 1, and T a positive real number, then define 27 = 2 x (0, T]. Let
p and m verify
p>1, m<1l and 3—-p<m+p#£2<3,

m+p—2

which corresponds to take v = in the range 0 < || < 1.

p
We say that a nonnegative function u is a local weak sub(super)solution to
u; — div(u™ " DulP~* Du) = 0, (E)

if
we C(0,T: L2, (2)), o' € L2 (0,T;WEP(2)), w5 |Dul € IP, (2r)

loc loc loc
/ updx
K

for every compact set K C {2, for every sub-interval [¢1,t2] C (0,7] and for all nonnegative smooth test

and

12} to
+/ / (—uwt +u™ Y Dul’*Du - Dw)dxdt < (>)0 (2.1)
t1 t1 K

functions .
We say that u is a local weak solution if it is both a local weak sub and supersolution.

3
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In the sections to come, we consider the extra regularity assumption
we Ly (0,T; Ly .(£2)), for some a > N + p, (2.2)

where

u’ —1
S

This assumption on w allows us to get good energy estimates and from them derive a DeGiorgi type Lemma,

w =

crucial to the expansion of positivity. We refer to [44] for some comments regarding this assumption when
working with the Dirichlet problem related to (1.5) for p = 2.

It is well known that the time derivative u;, in general, only makes sense in a distributional context so,
and in order to use u as test function, one can overcome this difficulty by considering, for instance, the

regularization

I
u*(x,t) = f/ e vtu(x,s) ds, o>0, (2.3)
0

used by Kinnunen and Lindqvist [43] (see Lemma 2.11 for regularity results on this average) when studying
several properties for the porous medium equation, and then pass to the limit as ¢ — 0 to recover u. This
average only needs to consider values of u(z,t) taken in {27, it is defined at each point, for continuous or
bounded and semicontinuous functions u, and verifies

The average inequality for a nonnegative weak supersolution u in {27 to Eq. (E) is the following: for every
compact set K C 2, for every sub-interval [t1, 5] C (0,7

/ / Ve —l— u™” 1|Du|p_2Du)* . Dw)dxdt >0 (2.4)

(0,T; Wol’p(K)), where ¢ > 1 will be fixed
according to the regularity of u: when deriving the energy estimates (3.1) we take ¢ = 2 whereas for the L"

for all nonnegative test functions ¢ € L{L (0,T;L9(K)) N L},

loc

estimates we consider ¢ = r.

Let us now introduce some notation regarding the sets (cubes and cylinders) we will be working with. We
denote by K ,(y) the cube of R centered at y with edge 2p. If y = 0, we simply write K, instead of K,(0).
Let 6 > 0. We define the cylinders

Q; (0) = K, x (09,0, QF(8) = K, x (0,0p7]
and, for (y,s) € RV x R,
(y:5) +Q, (0) = K,(y) x (s = 0p”,s],  (y,5) +Q (0) = K,(y) x (5,5 +0p”].
3. Energy estimates

The energy estimates satisfied by the weak (super)solutions are one of the main tools in regularity theory,
and are the scope of the following result.

Proposition 3.1. Let u be a nonnegative, local weak supersolution to (E) in 2p. Then for every cylinder
(y,8) + Q. (0) C 2r, k > 0 and every nonnegative smooth cutoff function ¢ vanishing on the boundary of
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K,(y), it holds

sup / (u — k)% CP(x, t)de + k™1 // |D[(u — k)_¢]|Pdxdt
s=0pP<t<sJ Ky(y) (v:5)+Q; (9)
g
< 2kt [ ek - opds s ] (u— k)_CIGildrdt
T+ Uk (v.5)+Q; (6)
4 2P~ lgpm=t // ( k)P |D¢|Pdadt
(v, S)+Qp

2p—1 1 — k'}’ P p
F o2l (p 1Pl ) \DCPP drdt.
(v5)+Q5 <e v /-

Analogous estimates hold in the cylinder (y,s) + Q}(0) C Q2.

(3.1)

Proof. Without loss of generality, we assume (y,s) = (0,0). Due to the regularity constraints on u, the
time derivative u; may not exist in the Sobolev’s sense and we have to consider the regularized function u*
defined in (2.3).

Now, in (2.4) we consider the integration over Q. = K, x (—0p?, 7], where —fp? < 7 < 0, and take

v=-(225) e
Y _

where ( is a nonnegative smooth cutoff function vanishing on the boundary of K, and u. is defined as follows

o ifu>e (3.2)
R if u<e, '

being 0 < & < k. Notice that, since the function f(s) = % is increasing in [0, +00) for every 0 < |y| < 1, we

u) (u"—67> e
e _ +
Y Y + 7

which implies that |D("s )| belongs to LY (£27). We also have ¢ € L} (£2r) due to (2.2), therefore the
function v is an admissible test function and we get

o () o [ e p () ¢]arzo

We observe that u. converge to u a.e. as € — 0. Then, by dominated convergence,

_//T(u*)t (ug;kﬁ> CPdrdt — — //T (m _kv)cpda:dt

The last term verifies

//T (mm) CPdudt — // (W), (kv(u*)vVUWHU*)W)C”X[Q<;&7]dxdt
//Tat </ ( ﬁ) )C Xpuct < g2yt
// t( 7_W)C”x[%<%dgcdt
> //Tat (/k (kug) ds> s i
5

have
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k kv — s »
= ds | ¢ (.’E, T)X[u<k]dx
K, w*(z,7) Y

k
_/ (/ (lﬂ—sW) ds) (@, —0pP )X fuerydr
u*(x,—6pP) Y
kv — s -
—p//T (/ ( - > ds) ¢v 1CtX[u<k]dedt.

The estimate was obtained due to the fact that

(u*): W) —wl _u—w )
v o v

§7
since f(s) = — is an increasing function. We then pass to the limit as o — 0 to obtain the inferior bound
Y

k k
kY — 7 kY — s7
/ (/ ( > d3> CPX[u<k]dx_/ </ < ) dS) P Xu<k)de
Kpx{t} u 0 Kpx{—60pP} u 0
k
kY —s7
—-p / / / ( 7 ) dsCP X juak) dadt.

In order to obtain upper and lower bounds to f: (M

) ds, on the set [u < k] N Q,, we proceed as
follows. On the one hand and since v > —1 and f(s) = s7/~ is an increasing function,

R — s Tt kY uw o u
/( >ds — —u+
u v y+1 oy v+l
kYL kY 1 kY
< —u(l—)z (u—Fk)_ .
y+1 oy

On the other hand and since v < 1,

kY — g7

/ O de > K - s)y

k YooY k y—1
/ (k S>d5>k71/(k—s)+ds:k2 (u—k)2.
u ’y u

Therefore the parabolic term can be estimated from below by

and then

f-! kY
/ (= W2 e = 5 [ e
7+1 (u — k) _CP7 Y ¢ |dadt.

Concerning the elliptic term we get

// u™ 1 Du|P 2 Du)* - [(M)CP] dadt
// W™ DufP "2 Du)* - K“_k>_] CPdxdt

_ — kY
—p// (u™ Y DuP~2Du)* - D¢ (7) P dxdt = I + Is.
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We observe that

uw) — kY uY — kY i
b (6’7) =P ( 2 > X[e<u<k] = —UPT DU X[ecu<h];

thereby as ¢ — 0
L = // (w1 DulP > Du)* 45T Du X[e<u<k)CPdadt
Qr

m—1
— // (u™ Y Dul’"*Du)* - uP=T Du Xpy<p(Pdudt

since uF=T |Du| € LY (£2r). Taking the limit as o — 0, using the properties stated in Lemma 2.11 in [43]

p(m—1)
// u P=T |D(u—k)_|P¢Pdadt.

The estimate of I5 is easier, as we do not have to differentiate u” hence, letting first € and then o to 0, we
_ uYy — kY
- p// w™ | DulP"*Du - D¢ ( ) PV dzdt

Y
Y Y
= [[ Wb B eing (“ - ) dudt
Qr -

_ D p(m—1) »
> _(p—1)5 // WEFT D (u — k) [PCPdadt

Y EY\P
—5?// \DCJP (” b ) dadt,
Q- -

where we applied Young’s inequality with §. Therefore the elliptic term is estimated from below by

(1- -5 // BT D — k)PPt — 51)// |Dg|p< kv)p dadt.

(m—1) p(m—1) —1
Since m < 1, we deduce = >k =T | whenever v < k. Finally, choosing § = (2(p — 1)) and

taking the supremum over 7, we obtain (3.1). O

we obtain

are led to

4. De Giorgi-type lemma

Let us now consider « to be a nonnegative, locally bounded, local, weak supersolution to (£) in {2r and
let 6 > 0 be such that the cylinder

(y,5) + Qg,(0) = Ks,p(y) x (s — 0(8p)", 5]
is contained in f27. Take M > 0 such that

essinf w< M <esssup u. (4.1)
(4:5)+Qg,,(6) (4:5)+Qg,(0)

We remark that in [33], for 2 < m + p < 3, a DeGiorgi type Lemma was derived not considering the
extra regularity assumption (2.2). However it is also useful within this range when performing the limiting

procedure m + p — 2.
Set

Q=

MY — '\ %
L,= [ sup ][ (u) dm] (4.2)
to—0p(8p)P <t<tg KSp(IO) ’YM’Y +

and finally take A, = max{1, L, }.
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Lemma 4.1. For every & and a in the interval (0,1), there exists a positive number v, depending on
M,0,¢,a,N,p, Ay and independent of v such that if

f[u <EMIN (y,8) + Q3,(0)] < v|Q3,(0)]
then
u>alM a.e. in (y,s) +Q, (0).

Proof. We limit ourselves to the case (y,s) = (0,0), which is admissible via a translation argument.
Introduce the decreasing sequences of numbers

pn=p+ — € (p,2p], kn = &M, where &, = (a&, €]

21’L
and construct the sequences of nested cubes and cylinders
K, = Kpn> Qn =K, x (—GPZ,O],

for n =0,1,2,..., over which we define the cutoff function {(x,t) = (1(z){2(t) verifying

1 in Kn 1 1 2n+1
gl = . N+ |DC1‘ S = )
0 in R \ K, Pn — Pn+1 P
and (i)
0 if t<—6pP op(n+
G={ " 0< (o) < .
1 if t>-0p, 0pP

For the above choices, the energy estimates (3.1) now read

sup / (u — kp)2 CP(z, t)da 4+ k™™ 1// [(u — ky)_C]|Pdzdr
79pf,,<t§0 n n

<e Wwﬂ*{(ukg o p)A |+ 12| A, Q, |}
S e (v+1)0

where ¢, = max{2%~1(p — 1)P~1,22Pp 22P=1} and A,, = [u < k,] N Q,. To estimate the last integral in the
energy estimates, we start by applying Holder’s inequality (recalling that o > p), then we use the definition
(4.2) of L., and finally we exploit the fact that f(s) = (s” — u”)/(ys”) is an increasing function; and we

m—1 ufy
fn P // ( = |D<|” dxdt

_m=1 9p n+1) kY — Y
< kn Pt P // ( n ~ Y )pX[u<kn]dxdt

/a
2p(n+1) _m-—1 kY — Y « P P P
< R O A e e Bk
pP (=802 0] " ’Ykn +

21)(n+1 P
= e BT AR AR QP
PP
The cases p > 2 and 1 < p < 2 are studied separately. At first we consider p > 2.

Observe that (u — k)% > k27P(u — k, )", hence from the previous estimate we arrive at

sup /n( o). CP(, ) dar + kTP~ 3//n (1 = k) ][Pdadr

—0pP <t<0

arrive at

3—m—p
< e, 2 pmton- 3{<1+k >|A |+ 22 AL [ E Q. |a}
pP (y+1)0

8
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Now we need to recall the definition of A,,, apply consecutively Holder’s inequality, then apply the Sobolev
embedding (see Proposition 3.1, chapter I, in [18]) and finally use the previous estimate to get

(50) (€0 s = (b = b Ao

< // (u— kn)’iX[u<kn+l]dxdT
Qn+1

< // (u — k)P dxdr
Qn+1

< ( J/NCE kn>_<1pNN“’dxdT>NN+" AT
<on (] - ”pdmyﬁp

Np P
( s [ |<u—kn>_<|p<x,t>d:c) A | V7

6pP <t<0

2pn (N+m+2p—3)NL+p {<1+ k3-—m=p

< Co— kn T VA 4 L2 AT |Qul® b AT
o g Ml ZEA 1@, 1,

where Cy = Cn,p X ¢, depends only upon N and p.
Having in mind that |y| < 1 and therefore m < 1, m + p < 3 and k,, < {M, we can go even further and
get the upper bound

1-a\” 2P (EM)> P
(2"+1> (EM)P|Ap11| < Cow)p(g—&irp_p)pp(fM)p (1 + w) A

x {1 4n| T 4 |4, T8 Q, A

and then, being Y,, := IAZI’ we get

for C, = 2N*3P+1C, (just depending on N and p), b, = 2% > 1 and 8 = &~ — £ > 0.

kn+k N+p
5L and observmg that

Y1 < C,

If 1 < p < 2, we start by considering the average level k, =

/ (u — kp)? CP(z,t)dx > / (u— kn)? P (u— k)P CP(a, t)da
Kp

KpNu<kn]
9
> (L32[ -k ot e

and also, since [[, |[D[(u— kn)_¢]|"dzdr > [[, |D[(u— kn) (][ dwdr, k, <&M and 3 —m —p > 0, we
have

//H|D[(ulén)_g]|”dxd7gcp2::kg{(1+(’“3;1;>|A |+ LP|An =%1Qn, |}
<o 2@ { (1+ ST a4 i, FlQu .
9
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Then, arguing as before in the case p > 2,
1—a)’ P I P
W (EM) ‘An+1| = (kn - kn—i—l) |An+1|

< // (u— l%n)’1><[u<kn+1]dxd7
Qn+l

< // (uw — kp)? dzdr
Qn+1

< ( Il - mdpwdm)“” AT

N

<c(/f ID{u- - dedr)

x( sup / [(u—kn)_C| (x,t)daj) [[u < kp] N Qp|NtP
—0pP <t<0J Kn

N
P

2pn M)3—m=p _r p)\ VPP
< Oy (o eany { (14 2 )l + g1 Flu )

~ P NLH P
< sup /|(u—kn),g| @z ) AT
Kp,

—0pP <t<0

Combining the two previous estimates we arrive at

i NP 1 p(]i]\/:p?) (gM)?ﬁm*p
Y1 <O [ —o—— /Ll e A— | Vg
5 Gl ((5M>3mp> (1—a> ( LNCESYT ) n

- N_H_?(Q—p)p (2—p)p
where C1 = Cn,p X ¢ X 2 N+p by =2 N+r > 1 and [ the same as before.

So, in both cases, by choosing conveniently C' = C'(N, p), we have a recursive algebraic estimate of the

type .
c ( (fM)gmp> ( 0 >N+p 2pny-1
Yn < AP (14 2 PnYn +/87
R RS AVANG Y e

therefore, from a fast geometric convergence result (see Lemma 4.1, chap.1, in [18]), one has Y;, — 0, as

n — oo, if

P
¢ (M)>—m—P 6 N+ 2
= gz (1 ) (@ 2

(1—a) N+p

@l

By taking )
p(N+2) p B

Lo [Aza) ¥ 1 ( (v +1)¢ ) <(§M)3‘m"’> A (4.3)

e R A R G R 0 |

the condition on Yj is verified and the proof is complete. O

And LT

loc

5. LT

p— oo H
loc L7, estimates

In this section we present and prove local estimates involving L” and L° norms within the singular range
3—p<m+p#2<3, m< 1. Note that they were already derived for 2 < m + p < 3 in [51] and in [32];
and for m + p = 2: with p = 2 in [16] and within the wider range p > 1 in [31]. So the truly missing case is

10
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m+p < 2, corresponding to v < 0. The proofs presented here work for all 0 < |y| < 1 and contain a precise
trace of the various constants, which in particular are shown to be independent of ~.
Consider the extra regularity assumption

N
uwe Ly (0,75 L,.(£2)), for r > max {1, } (5.1)
p
together with
Ar=rp+N(m+p—3)>0 r+m+p—3>0. (5.2)
This assumption allows us to turn the qualitative information on the local boundedness of u into a

quantitative estimate (see Theorems 5.3 and 5.5).

Proposition 5.1 (L

Toe Estimates Backwards in Time). Let u be a nonnegative, locally bounded, local weak

solution to (E) in Qp satisfying (5.1) for some r as in (5.2). Assume that the cylinder Ka,(y) X [s,t] is
included in 2. Then there exists a positive constant C, depending only upon m,p, N and r, such that

: : (t =9y
sup u(x,7)dr < C u"(x, s)dx + oy .
s<t<t Kp(y) K?p(y) P

The expression of the constant C' is explicitly given in the proof.

Proof. We follow the strategy of the proof of Proposition A.3.1 in [24]. Let 0 < ((z) < 1 be a smooth
function defined in K(115),(y), where s <7 <t and 0 <& < 1, such that

(=1inKy(y), ¢=0in 2\ Kuyz),(y), D¢ <

=

Let k > 0 be a constant to be chosen and ¢ such that
max{r—1,1} <g<r.

Consider the average inequality (2.4) over the cylinder Q. = K(145),(y) x (s, 7] and take ¢ = f(u)(? as test

) =t (L2

u

function, where

u— q-1
Then one computes f/(u) = u"~2 (%) [(r = 1)(“3%) + q] which easily implies

u

(r — 1y ((“"f)*) < F'(u) < qu' 2 ((“"“)*) |

w=[ oy
// gpdxdt+// u™ | Duf"” 2DU) - D(f (u)¢P)dxdt > 0.

Both the integrals in the previous inequality are finite. This can be seen arguing as follows. By (5.1), u

Finally, set

We then get

belongs to LT, (£2r) and therefore (u*); is in LI _(27) and u™~' is in LT (£2r), being r’ the conjugate
exponent of ’I" Since f(u) < u"~1, this shows that the first integral converges. As for the second one, since
u™ | Dul’~" belongs to LIOC(QT) where 1 5+ ;T = 1, it remains to prove that |D(f(u)¢P)| € LY (£27). T

11
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this aim, we compute the derivative D(f(u)(?) = f'(u)Du? + f(u)D((P), recall the bound for f/(u) and

notice that
9 M2 ifr>2
u" <
K2 ifr<2,

where M = [[ul[ 100 (kp, (y) x[s,4))» and that [Du| € LY (£2r) since ubT |Du| belongs to LY (2r) and w is
locally bounded.

Next, we estimate the two integrals separately.
As for the parabolic term we have

// w)¢Pdeds = // )+ flu) — f(u*)) Pdzdt

= [ arene+ [ B 0 - s s

> / F(u*)¢? dx —/ F(u*)¢P dx.
Kaya)pw)x{r} Kya)py)x{s}

The inequality relies on the fact that f(u) is an increasing function and that the cutoff function (¢ is
independent of ¢.

Letting 0 — 0 we get the lower bound

/ Flu(w, 7))¢P(x) do — / Flu(z, 5))CP(x) da.
K(115)p(¥)

K(115)p(y)

As for the elliptic term, passing to the limit as ¢ — 0 we obtain
// um*1|Du|pf'(u)§pdmdt+p// ™Y DulP "2 Du - D¢ f(u)¢P  dadt
Qr Qr
>(r—1) // um71M|Du|pg‘pda§dt - p// w™ Y DulP T | DC| f(u)¢P T dadt
Qr u Qr

and then, by means of Young’s inequality with 0, the lower bound is obtained
(1) (1 - 51,/@ l)) // =2 () | Duf? (P ddt — 67 // W3 D Pt

1
() s

p—1
by taking § = (2 %) P and discarding the nonnegative term containing the gradient of wu.

Combining the previous estimates, recalling the definition of ¢ and applying Hoélder’s inequality, we
arrive at

s<1t<t s<1t<t

E ! m+p—2 p
S/Kwp@)F<“(x’5”<p(x)dx*(2r— ) [ w2 iy asa

1 Pt
< / F(u(z,s))CP(x)dx + = ( > // u™ P 3 dydt
K1 4)p®) arpr \" r—1 .

where the last inequality comes from the estimate f(v) < v"~! which implies F'(u) < u". Then we obtain

1 Pt
sup F(u(z,7))dr < / u'(z,s)dr + — ( ) // um TP 3 dpdt.
s<T<t /Kp(y) (1l ) Koqo - (@,5) aPpP r—1 .

(1+a’)p(y)

sup/ Fu(z,7))dr < sup/ F(u(z,7))CP(x)dx
Kp(y) K(1+g ()

12
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A lower bound for the left hand side can be obtained by the following argument. Write the classical inequality
2% < § + Cszb, which holds all 2> 0,0 < a < band § > 0, for z =

v—k
v

,a=7r—1and b= q to get

—k r—1 —k q
() e ()

v v
where Cs > 0 depends on d,r, g. Multiplying both sides by v"~! and integrating from k to u we have

— k) L
(w=k)" _5u + C5F(u).
T r
It follows that

u" < 2rt ((u — k)" + kT> <27 (uh — k7Y + 27 Cs F(u) + 27 kT
and therefore, by choosing § = 27",

u” < (2" = 1Dk" 4+ CF(u)
with C' = C(r, q). Integrating over K,(y) N [u > k]

/ u"(z,s)dr < C F(u(z,s))dz + (2" — 1)k"| K|,
Kp(y)Nu>k] Kp(y)

and then

sup ][ u"(z,7)dx < C sup ][ F(u(x,7))dz +2"Kk".

s<T<tJKy(y) s<T<tJ K,(y)
Now we choose k according to )
k" = s—5 sup ][ u"(x, T)dz,
or+1 s<T<tJ Kp(y)
which yields the desired lower bound
sup ][ u"(z,7)dr < 2C sup ][ F(u(z,7))dz.
s<t<t Kp(y) s<T<t Kp(y)
Then

. . . 2C —1\"! .
sup / u(x,7)dx < 2C u"(x, s)dx + — (2 p ) // u™ TP dydt
s<r<t JK,(y) K(14a)p(®) aPp r—1 Qr
<aC u”(z, s)dx
K(115)p(y)
_ 1 r+m+p—3
2C —1\?" " rtmAp—3 _ rtm4p—3
— (2 P ) sup / u'dx (t —s) e Q¢! "
oPp r—1 s<tT<t Kays))x{r}
<2C u”(z, s)dx
K(115)p(¥)

r+m+p—3
T

1 .= oL
+ 2p—1+2N(3—m—p)/r p—- 1 v E (t — S)
r—1 oP

R sup / u’dx
P s<1t<t K(1+a)p(y)><{7}
< 2@/ u"dx
K(1+5)p(y)><{5}

ol = 1 r+m+p—3
—1\" " C [(t—5)"\T" "
L gptan (p 1) p<< AT)) (Sup/

"= g P K(145)pW)x{T}

u"dx
s<t<t
recalling the conditions presented in (5.2).

13
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To obtain an iterative relation regarding the values sup [ ", we start by considering the sequence of radii,

“ 1 1 ,
Pn = PZ ? = p(l - 27)3 being  ppi1 = (1 + Un)pna
i=1

and defining

Y, = sup/ u"dx.
s<TSES Ky, (y) < {7}

Hence, from the previous integral estimate applied to the sequences above, we arrive at the recursive
inequality

1

T 1_377717;7

_ t— )"
Y, <2C u'dx + C2"P ((pf)> Yoo, T,

sz(y)X{S}

T

_ p—1
where C' = C 22N+» (% . Applying Young’s inequality with € and exponents and its conjugate

3—m—p
” .
o we obtain

- , ) (t—s)"\3 ™ P __npr

Y, <2C u"dx + C.ilon ) 23=m=p 4+ €Y, 11,
Kap(y)x{s} P
m+p+r—3
where C.ilon = 377:”” (erprrTfS) C. By iteration we get for n > 2

n—2
Yl S 26’2 Gi/

i=0 Kop(y)x{s}

—Lt n-2

t—s)"\35—mp LN

u"dz + Cilon <( px\f) > 2(23*75717 &) + 1Yy,
i=0

Taking € so that 95 mpe = 271 letting n — 400 and since u € L2 (0, T; LT, .(12))

loc loc

— 1
9 t— g)7\ 3=m=p
Yi < C_/ urdx+C’€<( -9) ) "o
1= € Jrapu)x{s) pr

Remark 5.2. We stress that the constant C' of Proposition 5.1 goes to infinity as r N\, 1.

In what follows we present and prove a sup estimate for the weak solutions to (F), known in the literature

T oo M
as Ly, . — L75. estimate.

Theorem 5.3 (L] . — LS, Estimate). Let u be a nonnegative, locally bounded, local weak solution to (E) in

07 satisfying (5.1), (5.2). Then there exists a positive constant C, depending only upon N, p, m and r, such

that
PP by 1 t £ t—s =
sup u<C ( ) (N / / ur)rJr( >
K g () x[s.1] t—s PN (t—8) 125 K, () PP

for all cylinders

Kop(y) x [s = (t—s),s+ (t —s)] C £27.

The constant C' is quantitatively determined in the proof.

Proof. Assume (y,s) = (0,0) and for fixed o € (0,1) set

1- 1-
2n0p7 tn:—at—Tot, n=012...

pn =0p+

14
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Consider the sequence of nested and shrinking cylinders Q,, = K, x (t,,t) with common vertex (0,¢) and

observe that, by construction
Qo=K,x(-t,t) and Qo = Ky, x (—0t,t).

Set

M =supu and M, =supu.
Qo Qoo

We first prove an estimate of M, in terms of M.
Consider cutoff functions & € C§°(Qy,), verifying &(x,t) = &1 (x)&2(t) € [0, 1]
. . ON 2
& =1in K, &H=0imn R\ K,,, \D£1|§1_7

n+17
52:1)7—22‘:7%‘1-17 52:O7TStn7 Og(é.?)tgi
(I—-o)t

Finally define the sequence of levels

1
kn:k(l_zn_"_l>, n:0,1,2,...

where k£ > 0 is to be chosen.

In what follows we derive integral estimates to the truncated functions (u—ky41)+. So we will be working
on sets where u > k,+1 > k/2 > 0, therefore u is bounded away from zero and one can apply the chain rule
for all r satisfying (5.1) and (5.2). To be accurate one should start by considering the average inequality
(2.4) and then pass to the limit as 0 — 0. We decided to proceed formally at this stage since the arguments
to be used do not bring any kind of novelty regarding what has been done previously.

Consider first 1 < p < 2. Formally multiply equation (F) by (u — knﬂ)rlfﬂ where r > 1 satisfies (5.2),
and integrate over the cylinders K,, x (t,,7), for 7 € (t,,1].

The parabolic term is easily estimated from below by

; / (v = kpt1)} 80 (2, 7)da ; 2—n+1 // T dxdt
- — hn , T - - - n .
T JK,, U+ 1 a " H

As for the elliptic term, we integrate by parts and then use Young’s inequality (with €) to arrive at the

inferior bound

= 1) [ [ DG = ) Pl = R 2€” dde
Qn

[ [ Dt k)€ b)Y D] dod

-1
25 [ D ) P )27 dads

p—1
_< rl) // (1 — kg1 )22 DEP devdt

By recalling that u < M and 3 —m —p >0

r|p r p e
Dt~ k[ = (£) 0 k)00~ )

p

P
r —m—p, m— r—
< <p> M? Pu 1|D(U_kn+1)+|p(u_kn+1)+ :

15
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and then, by noticing that £ 5 <hknt1 <u< M, we get

// u™ _1‘D(u - kn+1)+| (u— k‘n+1)1_2§p dxdt

2M3 m—p // O ”+1)J§r| €¥ dxdt
> // ) P[P dwdt — // w— kit )| DEP dudt
T 2 3—m—p
Z2(1) 1)M3 m—p // n+1) 5” dxdt — (k) // - n+1 |D£|p dxdt
and for

/ / ™ (u — k)2 T DEP dadt

m—1
[ () e re

// — ko) PR DEP dadt, since m <1 dueto |y <1
- ~ kn+k
// r+m+p 3|D€‘pX[u>kn+1] dl‘dt, for k, = %

2n—:2 3—m—p
( ) // kn) | DEP dxdt .

Combining all the previous estimates and taking

t\3 z
—m—p
= ( ) 7
=\ »
we obtain, for all 7 € (¢,,1],

—1)
/K (4 — kpy1)} &P (x, 7)dx + 2P](\;3 p— //n (u—kng1)? 5]] dxdt

Pn

2(n+1)(37m) T(T—l) P\P p—l p—1
< gy (Y g (20 // ) dedt
~ (1—o)ppr Pt 7)ot T(r—l) k?’mp “ v
22(n+1)
1 ot // " dzdt,
70‘
p—1 Pl
r—l)

By first applying Holder’s inequality (with exponent (N + p)/N), then Sobolev’s embedding (with

for €y = 23-m—p {p + X2l (2)P o gp (

exponent p(N + p)/N and a constant k = (N, p)) and finally using the previous estimate we get

Xn+1:// (= kps1) da:dt<// k) €7 dadt = // T +§) dudt
Qna1 n

r \p(N+p)/N N/(N+p)
(// — kn+1 15) dxdt) 1Qn N [ > kg ][/ OHP

(1 st o) g, |, s

16
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x ‘Qn n [u N kn+1]|p/(N+p)

)N 92(n+1)
< CQM(3 P)N+p mXﬂ|Qnm [U > kn+1]‘p/(N+p)
P
O N 922(n+D) 9(n+2)r\ N+p 1B
< CyMBm PN X
< Oz P oyt e 7

P
where Cy = k x C; X (r(fi:) (%) ) eE . The last inequality was obtained by noticing that

X, > / /
nm[u>k)

From the previous estimate on X,,;; and by defining Y,, = %, we have, for Cy = 2N+4+p+2rQ,

k s
(u— k)Y, dudt > (w) Q1 [ > K]l

n+1

v <C o p)NLH J NLJFP bnlerNL-*-p b 2+rp/(N+p)
n+1 3kTp/(N+p)(1 —O')p 7 n ) =2 > 1.
From a geometric convergence lemma, one has Y,, — 0, as n — oo, if

N+p

o MO NEE e\ T\ 7 ()2
S\ A — o) \ £ o

1

This estimate together with the previous one, k > (p%) ST s verified once we take

Nip (N+p)2
for C4y =Cy"™ b r?
For this choice of k£ we have

N B-m=p)FE 1r s o pN\ pr N
My =supu < 047Np ]l]l u” L + = " (5.3)
Qoo (1—0) 7" Q t PP

Now consider the sequences, n = 0,1, ...

n

N 1 . 1
pnzap—l-(l—cr)pzi and t, =—ot—(1—o)t o

i=1 i=1
f9r which K, x (tn,t) = Qn C Quy1, and define M,, = supg,, u. Applying (5.3) to the cylinders Q,, and
Qn+1 and then Young’s inequality (with e = 1/2), we arrive at

1
M, < §Mn+1 +Cs1

for L
1 r t \3-—m-p
-1 < ) (][][ o d:z:dt) ; (pp)
(1 o) 5
pr s N@-—m-p)\ ~1
and C5 = C,'" <S:_1 (3) > , where s = F=f—. By iteration
1 n—1
e () (L)

17
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and then, since (M,),, is equibounded, when taking n — oo,

supu < Csl
Qo

and the proof is complete once we take o0 = %

Now consider p > 2. Proceed in a formal way and multiply equation (F) by (u — k,11)+&P and then
integrate over the cylinders K,, X (t,,7), for 7 € (t,,1].
While there are no substantial changes in the estimation of the parabolic term, the elliptic term is

estimated from below as follows

lp//Qn Um—1|D(U—k/’n+1)+§|p dxdt — <;+( )//n u_ n+1) |D€|P drdt

Mm 1 1 W(p—1 p—1
// = kn+1)+€]7 dudt — H+)// w3 (= k)3 | DEN dadt
Mm 1
// (u— kny1)+&|" dadt
1+4+20(p—1)p~1 (2\*777P gp(ntl)
e o e
2 k 1 — o)PpP
3 1
By considering k£ > (pr) ~"7P one gets, for all T € (t,, 1]

Mm—l
/K (u = kny1) €7 (2, 7)dx + o1 // [D(u — kny1)4€|" dadt -
on 5.4

2(n+1
1 ot // dacdt
—O'

where C, = p+ (1 + 2P(p — 1)P71)2P. Set X,, = fon (u — ky)% dzdt. Arguing as before we have

p(N+p) P( +P) 1__2N _
n+1<// (u—kpt1 +f dxdt < // —kpt1)+€) N dxdt |Qn N [u > Epyq]]  PONFR)

x P(J%’NFP)
=" <// Dl = kot dxdt) ( Sup / (u— kn+1)ﬁ§f’(x77)d$>
" tn <7<t JK,,
1——2N
X |Qn N [’LL > kn+1]| p(N+p)
_oN
p(N+p)

o1 e ), et

1__2N
X |Qn N[u> kpiq]| PNFP)

2 1——2N
< kC2/Po P~V Ut =D R, ((2( o )p (22( +2)> R Ao e

1—o)rt k2
Set Y, = \Q - Then
[1—m+(p—2) %] 2 24n pP s (1) 45
Y1 <CiM PP m - = Y,

18
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for C1 = C1(N,p). The fast geometric convergence lemma says that Y, — 0, when n — oo, if

_N+tp
2

2N
Yo < (ClMs(l (2)™ k—zo—p(m)) -

1—0)2 \ ¢t

where s=[1—-m+ (p—2)& ]p(N+p) > 0.
Our next step will be to obtain a bound to Yj related to the L™-norm of w, which will be accomplished
by considering separately the two possible cases: r > 2 and r < 2. As for r > 2, we estimate

) =) f

Thus we just need to choose k in order to satisfy the inequality

_N+tp

2—r _2N 2
k ][][ < ClMs# PP PINFR) kiz(lfip(?‘ﬁm) 2_(N+p)2’
2 o (I1—0)2 \ 't
so we consider
D N 1
][][ = (1 m)N +p(p—2) o’ 1 w N t 3=m—p
t 1—0 PP )

P
where w = p(N +p+7r—2)—2N, Cy = (C(N+p)/22r_2+(N+p)2) “ . Thus M, < k. By applying Young’s

inequality with exponent u = W

M;géM+c§é ua;W”>< ) <£% ) (;)3ip

_ N -1
where C' = (u’ (,u2*1)%> and u' denotes the conjugate exponent of . By computing p’ we notice that

=
=
z
+
<

> 1, we estimate k£ obtaining

, 2
cy = (C§N+p)/22“2+(]\’+1’)2) A Arguing as in the case 1 < p < 2, we first apply the previous estimate to
the sequence (M,,), and then, by iteration and taking the limit as n — oo, we arrive at

1
1 ¢\ Fmr
Kopx(—ot,t) (1 _ 0') (N+p) pp

! —
where C' = C4 C.
In the case r < 2, we start by noticing that

YOSJ[J[U2SM2—T][][UT’
Q Q

___»
(C£N+p)/22(N+P)2) P(NTpFr—2)—2N

and consequently, being C3 =

p(N+p)—2N] N+p —2N] (I—m)N+p(p—r) pp W 1 % t %
M, < Cs M p(N+p)—2N A + =
t l1—0 oP
1 1 T
—n=p
< g () (F) "+ ()
(N+ )
? (1-0) %" o

p(N+p)—2N

withCy =Cy and C is similar to C' with x given by %_

The conclusion is as above. [
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Remark 5.4. When 1 < p < 2, the constant C' — co when r — 1 due to the presence of the factor r — 1
in the denominator; for p > 1, C' becomes unbounded when A, — 0.

Due to Theorem 5.3 and Proposition 5.1 we can also prove (it is a straightforward proof) the following
result.

Theorem 5.5. Let u be a nonnegative, locally bounded, local weak solution to (E) in 2 satisfying (5.1),

forr > 1 satisfying (5.2). Then there exists a positive constant C' depending on N,p,m,r such that, for all
cylinders K,(y) x [2s —t,t] C O2p,

1 A t— s\ T
sup u<C{ — / u'(x,2s — t)dx + ”
K p (y)x[s.1 (t—s)3 \JK2,(v) P

The constant C — oo as either r — 1 or A\, — 0.

Remark 5.6. The results of this section were obtained under the extra regularity assumption (5.1) verifying
also (5.2). These conditions are not new and for that coherent with the literature. In fact, in [25,26] and [51]
counterexamples were produced regarding the sharpness of such assumptions in the case of: the porous
medium equation, for 0 < m < 1; the p-Laplacian equation, for 1 < p < 2; and the doubly nonlinear
equation (), for m +p > 2, m+p>3— £, p> 1. In the setting considered in this work and to the best
of the authors knowledge, counterexamples were not yet discussed — most possibly because, if one follows
the previous approaches, one has to rely on comparison and uniqueness results (not yet obtained within our
range).

6. Expansion of positivity

The expansion of positivity is an essential tool in establishing regularity results, in particular Harnack
type inequalities. It has already been established for m + p = 2 in [31] and for 2 < m + p < 3 in [33].
Therefore, here we are focussed on m + p < 2, namely v < 0.

Proposition 6.1. Let u be a nonnegative, locally bounded, local weak supersolution to (F) satisfying (2.2),
(5.1) with r as in (5.2). Assume that for some M > 0 as in (4.1) and parameters a,é € (0,1) there holds

[u(-,7) = M]N K,y (y)] = alK,(y)| (6.1)

for all T such that
s — 6M3*m*ppp <7r<s.

Then there exists a constant o € (0,1) that can be determined in terms of {a,d, A,,~v} such that
u(-t) > oM in Kop(y)

for all times

Following, for instance, the approach presented in [31], the proof of this result relies on the following
lemma.
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Lemma 6.2. Under the assumptions of Proposition 6.1, for every v > 0 there exists o € (0,1) depending
on N,p,a,A,,v,6 and v, such that

[u(-,t) < 20M] N Kay(y)| < V||

for all

To simplify the notation, we perform the change of variables

s — SM3=m=PpP)
SM3—m=ppp ’

t—
m—)u, t— 8P ( u —
p

“
M
which transforms the cylinder Ks,(y) x (s — §M3~™~PpP slinto QF = Kz x (0,87] and the new function
(still denoted by w) into a weak solution to the equation
up — 68 Pdiv (um—1|Du|p*2Du) =0, in QF. (6.2)

Moreover, assumption (6.1) yields u

1) 2 1)1 Kol > Kl
and consequently a

[u(, ) 2 1] N Ks| > o7 | Ks| (6.3)

for all t € (0,87].

Note that assumption (5.1) is preserved under the change of variables and the quantities L., and 4,
presented in (4.2), remain unchanged.

In this new setting Lemma 6.2 can be (re)stated as follows.

Lemma 6.3. Let u be a nonnegative, locally bounded, local weak supersolution to Eq. (6.2) satisfying (6.3),
(4.2), (5.1) and (5.2). Then for every v > 0 there exists o € (0,1) depending upon N, p,a, Ay, v, 6 and~y, such
that

[u(-,t) < o] N Ky| < v[Kq| (6.4)

for all %SP <t <8P,

Proof. Assume that u; € C(0,87; L*(Kg)). Since u is a supersolution, for every nonnegative test function
$ € C(QF) N C(0,8; Wy P(Kg)) we have for any k > 0

/ g(k —u)ypdr + o ™Dk —u) 4 PP D(k —u)y - Dddx < 0.

Take ¢ = (@)4_ P, where k € (0,1] and ¢ € C§°(Q4) verifies ((x,t) = (1(2)(a(t) € [0,1]

1

(1 =1in Ky, ¢ =0in RV \ K, \DCl|§Z
=1, t>38,  G=0,t<0, 0<(C)<——
2 — B =14 ) 2 — 3 ~ U, ~ 2t_3'8p'

By Young’s inequality and recalling that f(s) = % is an increasing function, we get

O = D= W+l g,
Ky

dt Kg 2.8p u(lgﬁ)p
< 58P (2(p — 1) / WP ()| D¢ da + p / B ()P Gy
Kg Kg
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where

@k(u)( Mos, > wk(u):(kLWL.

kY —57 kot
/0 7+1'

Uy (u) = ]ﬂ(l_(;‘/WY)JF < Iw(l _,YUW)JF since 0 < k<1.

Taking these estimates into account, applying Holder’s inequality and recalling the definition of L., given
n (4.2), we arrive at

L d(u)er e+ =2 / D=0+l g,
Ky

Thus we have

As for Wi (u) we have

dt 2.8p (1—m)p
(T
< |K8|{323p ST 5o 3(p_1)fﬂ*1L7}wgc1 A2

where (' is a constant depending only upon N and p.
The left hand side is estimated as follows: we start by noticing that

Dk —u)yl?
/ l(@fm)b'@’dxz/ |D @ (u)"¢Pdx
Ky Kg

u p-1
and then, from Proposition 2.1 of Chapter I of [18] and (6.3), we get a constant Cy = Co(N,p) > 0 such
that

/ DO (w)[PCPdz > Co |[Be(u) = 0] A Ky | 7P / y (u)PCPdz,

Ky Kg

Ks)\ %7
> Cya? ('85') | mwreds
Kg

ngap/ Py (u)PCPde,
Ky

for some C5 = C5(N,p) > 0. Hence we obtain

d
4 / By (u)CP (. )+ Caa?s | WP (w)CPdz < CohP A, (6.5)
being Cy = 27173203 = C4(N, p). Let us introduce the quantities
Vo= swp [ Nuoemlat)ds (6.6)
0<t<8? J kg

where h € (0,1) is to be chosen. We

Claim. given v > 0, there exist h,§ € (0,1) depending on N,p,a,0,v,y and A, such that for every
n=20,1,...
either Y, <v or Y,y1 <max{y£Y,}. (6.7)

Now (6.4) is a straightforward consequence of this claim. In fact, by iterating (6.7) we find Y,, <
max{v,£"Yy} for every n > 1. Choosing 7 such that " < 127V we have Y; < v|Ky|, since Yy < |Kg|.
By the definition of Y; we get

sup  |KyN[u(,t) <h™| < sup / X[u(-t)<hn) 6P (@, t)dr < v|Kql ,
%8p<t<8p 0<t<8P JKg

which yields (6.4) with o = h".
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The proof is complete once the claim is proved.

Proving the Claim. Fix v > 0, take n € N and assume that Y,, > v, otherwise there is nothing to prove.
By the definition of Y41, for every € € (0, ) there exists ¢. € (0,8”] such that

/ X[u(.,ts)<hn+1]Cp(x,tg)dx > Y1 — €.
K

8

At this point we have two alternatives, either

a Ppnfu(-, te)|CP (z, te)dz > 0
dt [,

or
d
s Ppn [u(-,t:)]CP(x, te)dx < 0.
Ks

Assume that the first alternative holds true. Then, by (6.5) we deduce that

hP Cy
p = — =
g C=g =C(N.p)

| ot i, e < 0
Ksg
On the set [u(-,t.) < h"*1] we have

Gy [u(-, )] = hm(W)Jr > h"‘*(l —7h7> -

Therefore

(l—h”Y

» 1
’y ) A X[u(x,t6)<h"+1]cp(x7tf)d‘r S A Wﬁn [U(£E7t6)]€p(.r,t5)dl' S C%A’P;
8 8

and also

1 ¥ P
< P
Vi < O (202) 2 4

So we just need to recall that ¢ € (0, 5) and then choose h sufficiently small (recall that v < 0) so that

1 0 P, _V
< Z .
Capé(l—fﬂ) A= 2 (6.8)

to complete the proof, in the case the first alternative holds.
Now assume that the second alternative holds and define

t, = sup{t € (0,t.) | i/ Py [u(x, t)|CP(z,t)dz > 0} .

dt J,

It follows that the function ¢ — Ppn[u(z, t)|CP(z, t)dx has negative derivative in the interval (¢.,t.] and
Kg

/ By [, £)]CP (2, £.)d < / By [, £)|CP (, £.) .
Kg

Kg

this yields

Due to the definition of ¢, and arguing as in the first alternative we have
AP
/ O [u(x, t.)]¢P (z, t)de < CR™MP—L C = C(N,p).
Kg G/p(s

For every s € (0,1), on the set [u(-,t.) < h"™(1 — s)] we have

— (1 =g
Upn [u(,t*)] > B (1(1h>>
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and therefore » /12

ol
n p « < —_— .
/KS X[u(z,ts)<h (178)]< (J?,t )dx = C(l — (1 — S)WI aPd

By the definition of Y,,, since [u < h™(1 — s)] C [u < h"], we have

CP(z,ty)dr <min< Y,,C S pﬁ
Kg NGty <hm(1=2)] B ML= =s)hl) ars [°

p
Being s — (1(1|7|)|7|) a monotone decreasing function in (0, 1), there exists s, such that
—(1-s
P Ap
Y,=C # S
1—(1—s)hl) ar§
hence
Y, if 0 <s < s,
/ Xfu(ate)<hn(1—)) 67 (2, t)dw < 1yl P
Kg C m % if Sy <5< 1

In particular

‘ -

2

VI
s=1—-<1—
s (¢ )

1
18

Ap D [v]
<1-<1-—1y] (Capgy> , since Y, >v

1
—1-(1- KT, A= (L)

a \ov
<l-e =3, (6.9)

1
s

since g(s) =1 — (1 —sA)s, s > 0, is a monotone decreasing function verifying

lim g(s)=1—e4.
s—07t

Thereby, on the one hand
| aneluto e tdde < [ anoluto ) o )t
Kg Ksg

(hnfu(xvt*))+ h'yn — (s +U v
/0 X[s<(hm—u) 4] % ds) CP(x,ty)dx

.
™ — (s +u)?
/0 ><[s<<h"—u>+17(7 ) d5>ép(x,t*)dw

hn B — g
< / —_— </ X[s<(hn—u)+]§”($,t*)dx) ds
0 Y Ks
1
1—s7
= / hn(’y+1)7 (/ X[sh”<(h"—u)+]cp(m7t*)dx) ds
0 v Ks
1
1— g7
:/ hn(V—H)is </ Cp(x,t*)dx) ds
0 Y KsNu<h®(1—s)]

S 1 p
T L R AR P STCHE) Ry 1 (R ol M RPN
0 v s v ard\1—(1—s)hl

Sx

24



S. Fornaro, E. Henriques and V. Vespri

for

On the other hand

Afmumn

2,
o

Vv

pr(v+1)

v+1
hpr(r+1)

v+1

Combining the last two estimates we have

1
ds—/
v Su
[

S (e

Nonlinear Analysis 205 (2021) 112213
1 — gl

o e (it ] @)
(i) ] o

1 — g7l

)
b))
[ [ () ) e
MMQ7

)l

Ppnlu(zx, to)|CP(x, to)dx

N[u(z,te)<h™t1]

hn
N[u(z,te)<hmtl) </u(w,t5) Y
hn
KgN[u(z,te)<hntl] (/h”'H

h — 7

ds) Pz, te)dx
+

K g
S ds) CP(x,t.)dx
v +

1-hY
( 1—h-— h )/ CP(x,t.)dx
Y KgN[u(z,te)<hmtl]

1—n
(1—h—h . >(Yn+1—5).

1—hY !
(1 —h— 5 ) (Yoe1—¢) <Y, (1 - fy(s)ds) .
Set
1
€o = f~(s)ds
and note that €, depends on s,, and 7.
Then
Y1 < 176y
ntl S T agr fn TE.

Now we just need to take h sufficiently small such that

1—¢,
Lo e S
v

1-h

and by letting ¢ — 0 we finally get Y, 11 < £Y,,, for a constant £ = 1 — %2 € (0,1

N,p,a,0,A,,v and v and our claim is proved.

€o

<1--2 (6.10)

5 ) depending only on

A final remark: the assumption u; € C(0,87; L*(Kg)) can be removed and one has to argue in a similar

way as in [18], chapter IV, section 9. O
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Proof of Proposition 6.1. We are now in position to prove Proposition 6.1. Consider any cylinder of the
form (y,t) + @Q,,(0), with

SMB—m—P
—

and o to be fixed. Then the inclusion (¢ — (4p)?0,t] C (s — M/}p, s] holds true for any t as above if
and only if

6= (ocM)>™P and s— PP <t<s

SMB—m—p SM3—m—p »
8 1
which we may assume, without loss of generality, by choosing o smaller if necessary. From Lemma 6.2, we
know that for every v > 0 there exists o € (0,1) such that

(4, 8) + Qu, (0) N [u < 20M]| < w[Qy,(0)]-

s P = (4p)P (e M) P > s

1
Let us fix v according to Lemma 4.1 with a = 5 and €M replaced by 20 M and 6 as above. Then by (4.3)

we get )

p2+B8) 1 \B p P
= B —_— = —_—— .
v=(c 7 ) .8 E>0

Thus we arrive at
u Z oM in Kgp(y) X (t - H(Qp)p7t]

The Proposition is completely proved once we recall the previous choices on ¢t. [

7. Harnack inequality

Let u be a nonnegative, locally bounded, local weak solution to the singular equation (F) satisfying
(2.2), (5.1) and (5.2). In the next few lines we fix the necessary notation for the Harnack inequality. Let
(xo,t0) € £2p and p > 0 be such that Ks,(x¢) C {2, and introduce the quantity

1\ 3—m—p

bo=|¢ (i{p(wo) uT(~,t0)dx> , (7.1)

where € € (0,1) is to be chosen. If 6 > 0 assume that
(zo,to) + Qs,(00) = Ksp(x0) X (to — 00(8p)",t0] C 21,
and set .
Ar

][ u”(x,to)dx
n= Kp(z0)
][ u"(x,tg — Gop”)dx
K4p(E0)

where A, is defined in (5.2). We first establish the following intermediate result.

(7.2)

Proposition 7.1. Suppose 0 < n < 1. Then there exist constants e, u, ag € (0,1), depending only upon the
data {p, N} and r and v, such that

[, t) > pnM*] N Kap(wo)| > con” | Koyl

forallt € (tg — %GOp”,to], where
1
93—m—p
M ==L
n s

for a suitable 6* € (0,1) depending only on N,p,r, A .
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Proof. Assume that (z¢,ty) coincides with the origin and write K,(0) = K,. By Proposition 5.1, considered
for the cylinder Ky, x (s,0), s € (—0pp”, 0], and recalling the definition (7.1) of 6, there exists C' > 0 such
that

(90,0’))7'] =

U7(;U7s)d1'+c|: 5
p T

/ u"(x,0)dx < C
Kp

Kgp

=C ur(x,s)dx—FC’sr/ u"(x,0)dx

K, K,

and then, by choosing ¢ in such a way that Ce” < %, one arrives at

/ u"(x, 8)dx > L/ u"(x,0)dx (7.3)
Ka, 2C Jk,

for all s € (—6pp?,0]. Observe that being e fixed, the length 6y of the cylinder is completely determined.
Now consider the cylinder K3, x (—%90/)1’ ,0] for which we apply Theorem 5.5. Recalling the definitions
(7.1) and (7.2), of 8y and of n respectively, and recalling that 0 < n < 1, one obtains

D
!

Ar 1
sup u < — <]l u'(x, Hopp)dzzz> +C'9;m P
Kip

Kopx(—460pP,0] 04"

c 1 g
== (][ u”(z, O)dx) +C'e <][ u” (z, O)dx>
grr(g*m*p) n K, Ky

1
1 - T
= Cl<)]\\r(3—7n—p) + E) <]{( u (x70)dac>
ne-sr

P
N(B—m—p)

< 1 ][ u"(x,0)dx g = =
- 5/7’] Kp ’ ’ N 2C"

where C' = C'(N, p,r). Let us define M* according to

% 9%
enM* = (][ u%x,O)dw) =2 . (7.4)
Kp

€

Sl

Sl=

Then we have
sup u< M*.
Koy X (—500pP,0]

Let pu € (0,1) to be chosen. Using (7.3) and (7.4) and the estimate above, for all s € (—36p",0] one gets

(e'nM*)" < 2NFIC u"(x, s)dx

<2V*lc (][ u"(z,s)dx +][ u”(x, s)dx>
KopN[uspunM*] KopNlu>pnM*]

> pnM*]1 0 Kap|

S2N+1cur(nM*)r+2N+10(M*)r|[u(-,8) it
2p

Thereby
[u(-,8) > pnM*]1 N Kap| > aon” [ K2yl
for all s € (—160p”,0], where
e — uroN+ o
2N+H1IC
By choosing i € (0, 1) sufficiently small we can ensure that «p € (0,1). O

ag =
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We are now ready to prove the following Harnack inequality.

Theorem 7.2. Let u be a nonnegative, locally bounded local weak solution to the singular equation (E),
satisfying (2.2), (5.1) and (5.2) in 2p. Introduce 0y as in (7.1) and assume that 8y > 0. There exist a constant

€ (0,1) depending only on N,p, and a continuous, increasing function f(n), defined in R and such that
f(n) =0, asn — 0, that can be determined a priori only in terms of {o, N,p, } and A, such that

inf u> f(n) sup u. (7.5)
K4p(fbo)x(to—%%0p,to) Kgp(zo)x(to—%lpp,to)

Proof. In fact, being the conditions of Proposition 7.1 verified we can then spread the positivity of u. For

6
that, in Proposition 6.1 set M = unM*, a = agn? and § = ﬁ = ;i Such M verifies (4.1):
1

1

M = punM* = ﬁ,<][ u%x,O)dm) < &/supu(-,O) < sup u
€ \Vk, & K Qs (%0)

since, from the previous choice of p, we have p < &’. Therefore, there exists a constant o in (0, 1), depending
upon the data {p, N} and ag,n and § such that

u(-,t) > o unM* in Ky,

for all t € (—15600p",0); thereby, recalling the estimate for M*,

inf u> f(n) sup  u,  f(n)=opn. O
K4p><(—%%pp,0) Kgpx(—%pp,o)

Remark 7.3. Inequality (7.5) is not a Harnack inequality per se, since 17 depends upon the solution itself.
Therefore it can be regarded as a weak form of a Harnack estimate. Also the size of the cylinder depends
on the solution, giving thereby the name intrinsic to the inequality.
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