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Preface

If G is a π-separable group, where π is a set of primes, it is possible to
define a peculiar set of characters Bπ(G), subset of the set of the irreducible
characters.

This set was first defined by Martin Isaacs in 1984, with the aim
of finding a generalization of the Brauer characters. In fact, these Bπ-
characters have the property that they remain irreducible, and distinct,
when restricted to the π-elements of the group, and the restriction of the
characters in Bp′(G) to the p-regular elements coincides exactly with the
irreducible Brauer characters of the group G.

Thus, Bπ-characters were originally a generalization to a set of primes
of a canonical set of lifts for the irreducible Brauer characters. However,
the theory behind them appeared, from the very beginning, to be rich
and elegant, and it was further investigated by several authors, mainly
Martin Isaacs, Gabriel Navarro and Thomas Wolf. Moreover, the new
Isaacs’ book on Character theory of solvable groups, which dedicates an
entire first part to π-separable groups, may raise a renewed interest in the
theory in the next years.

Despite the work of so many authors, however, some aspects of the
theory remain open to further investigations. The aim of this thesis is to
cover at least some of them.

In Chapter 1 we summarize the basic theory of Bπ-characters, as de-
veloped by Isaacs and, later, by Navarro, and we see an example of how
Bπ-characters can be identified without using the algorithm that defines
them. In this chapter there are almost no original results; however, it is a
useful introduction to the theory for an unfamiliar reader.

In Chapter 2, we study problems related with the zeros of irreducible

iv



Preface v

characters. We see that, in supersolvable groups, Bπ-characters behave
exactly like ordinary irreducible characters, but this is no longer true if we
consider solvable groups. However, we will see that a sort of parallelism
between ordinary and Bπ-character theory is restored if we replace the set
Bπ(G) with the larger set Bπ(G) ∪ Bπ′(G).

This unexpected similarity still holds when, in Chapter 4, we study
the relation between normal structure of the group G and prime numbers
dividing character degrees. One of the main results of Chapter 4, in partic-
ular, is that a prime number divides the degree of a character in Irr(G) if
and only if it divides the degree of a character in Bπ(G)∪Bπ′(G). This may
be surprising, since in general the degrees of characters in Bπ(G)∪Bπ′(G)
are considerably less, in number, then the degrees of the irreducible char-
acters.

Character degrees are a central topic also in Chapter 5. In fact, in
this chapter we use the degrees of the characters in Bp(G) to find a bound
for the p-length of a p-solvable group. Moreover, we will see that the
bound still holds if we only consider Bp-characters having values in some
restriction of the field of algebraic integers. This is interesting because, if
we forget about Bp-characters, we still have a non-trivial bound concerning
degrees of ordinary irreducible characters with a restricted field of values.
Furthermore, the technique we use to control the field of values of a Bp-
character leads to some original results concerning cut groups, objects
which arise in the study of the ring of unities of a group algebra. Thus, we
have an example of how the study of Bπ-characters can be used to prove
results which initially seemed to be unrelated with it. This is particularly
satisfying, since, as Martin Isaacs once wrote1, a theory “should have the
power to answer questions that it did not ask”.

In Chapter 6 we talk about character correspondence and the McKay
conjecture. Most of the theory related with Bπ-character correspondence
was already developed at the time we approached the problem; we of-
fer, however, a different point of view on some aspects of it. Then, we
temporarily forget about Bπ-characters and we study the existence of a
natural Mckay correspondence, realized by the character restriction, such
that the corresponding characters in the normalizer of the Sylow subgroup
are linear.

118, Preface.
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Finally, we mention that Chapter 3 is a stand-alone in the thesis, since
it does not involve Bπ-characters. Indeed, it is the result of a joint work
with M. J. Felipe and V. Ortiz-Sotomayor, of the Universitat Politècnica
de València, and it is a prosecution of the study of zeros of irreducible
characters which we began in Chapter 2. In particular, in Chapter 3 we
see what can be said about the zeros of irreducible characters lying in
normal subgroups of G, and what happens to the group structure when
we impose conditions on the conjugacy class size of those elements. Even
if not directly related with the main topic of the thesis, we believe that it
may be interesting for some of the few people who will read it.

There are many people who helped me during my three years as a PhD
student.

As first, I have to thank my supervisor, professor Silvio Dolfi, for
introducing me to the research in character theory and for correcting the
many mistakes I make, when I search for results with excessive optimism.

I thank the reviewers of this thesis, Emanuele Pacifici and Joan Tent,
for their useful comments. Joan’s observations, in particular, have been
precious for correcting some errors which were still present in the thesis.

I thank all the people of the Algebra group in the University of Flo-
rence, the stimulating environment they created was crucial in my growth
as a mathematician. I also thank Victor and Maria José, of the Universi-
tat Politècnica de València, for welcoming me during the three months I
spent in Spain.

Finally, I thank all the people who have previously worked on the char-
acter theory of π-separable groups, both for developing such an interesting
theory and for having left some problems unsolved for me to study.



Chapter 1

Review of the π-Theory

In this chapter, the reader is introduced to the theory of characters of
π-separable groups. At first, the definition of π-separability is given, as
well as other basic definitions. Then, we give the definition of π-special
characters, as given by Gajendragadkar in [8], and of π-factorable charac-
ters. We proceed by defining the Bπ-characters and explaining their basic
properties, as shown by Isaacs in [16]. Still following [16], we explain how
Bπ-characters have been used, in π-separable groups, to find a general-
ization of Brauer characters. Finally, we briefly see that the theory of
Bπ-characters becomes simpler in groups of odd order.

1.1 Finite π-separable groups

Let π be a set of primes and denote as π′ its complementary set. We
say that a natural number m ∈ N is a π-number if all its prime divisors
are in π. For a natural number n ∈ N, we denote as nπ its π-part, i.e., the
largest π-number to divide n. A finite group is said to be a π-group if its
order is a π-number.

A finite group G is said to be solvable if, given a composition series,
i.e., a subnormal series of maximal length, each factor group in the series
is a group of prime order. Equivalently, a finite group G is solvable if and
only if, for any normal series of maximal length, each factor group in the
series is an abelian group (of prime power order).

1



CHAPTER 1. Review of the π-Theory 2

The concept can be generalized by requiring the condition to hold only
for some primes.

Definition 1.1.1. A finite group G is said to be π-solvable if, given a
composition series, each factor group in the series is either a π′-group or a
group of prime order. Equivalently, G is π-solvable if and only if, for any
normal series of maximal length, each factor group in the series is either
a π′-group or an abelian group (of prime power order).

Now, a further generalization of the concept follows quite naturally.

Definition 1.1.2. A finite group G is π-separable if and only if, for any
normal series of maximal length, each factor group in the series is either
a π-group or a π′-group.

Clearly, a group is π-separable if and only if it is π′-separable. More-
over, a π-solvable group is always π-separable and a solvable group is
π-solvable for any set of primes π. Moreover, a {p}-separable group is
clearly also {p}-solvable and, in this case, we simplify the notation and we
write that it is p-solvable.

Definition 1.1.3. A subgroup H of a finite group G is a Hall π-subgroup
if |H| = |G|π, or, equivalently, if H is a π-group and |G : H| is a π′-number.

A finite group G is not always guaranteed to have a Hall π-subgroup.
If G is π-separable, however, then a Hall π-subgroup always exists and
any two of them are conjugate.

1.2 π-special and π-factorable characters

It is well known that the existence of the extension, to a group G, of a
G-invariant character ψ of a normal subgroup is strongly linked with the
primes dividing the order and the degree of ψ. A family of characters can
be defined, which behaves well in this sense.

Definition 1.2.1 ([8, Definition 2.1]). If G is a finite group, a character
χ ∈ Irr(G) is said to be π-special if its degree and its order are π-numbers
and, for any subnormal subgroup M of G and any irreducible constituent
ϕ of χM , o(ϕ) is a π-number.
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Sometimes, we will write Xπ(G) to describe the subset of Irr(G) of all
the π-special characters. Notice that, if G is a π′-group and ϕ ∈ Xπ(G),
since both χ(1) and o(χ) have to be π-numbers, it follows that χ(1) =
o(χ) = 1 and, therefore, Xπ(G) = {1G}.

The behaviour of π-special characters when induced from, or restricted
to, normal subgroups is well described by the following propositions.

Proposition 1.2.2 ([8, Proposition 4.1]). Let G be a finite group and
χ ∈ Xπ(G). If M is a subnormal subgroup of G, then every irreducible
constituent of χM is a π-special character.

Proposition 1.2.3 ([8, Proposition 4.5]). Let G be a finite group and let
N �G such that G/N is a π-group. If ψ ∈ Xπ(N), then every irreducible
constituent of ψG is a π-special character.

Proposition 1.2.4 ([8, Proposition 4.3]). Let G be a finite group and let
N � G such that G/N is a π′-group. If ψ ∈ Xπ(N) is G-invariant, then
it extends to G and there exists a unique extension which is a π-special
character. If ψ is not G-invariant, none of the irreducible constituents of
ψG is a π-special character.

There is no need for the group to be π-separable in order to define π-
special characters. However, if G is a π-separable group, we have further
interesting properties.

Theorem 1.2.5 ([8, Theorem 7.2]). Let G be a π-separable group and
let α, β ∈ Irr(G), with α π-special character and β π′-special character.
Then, αβ is an irreducible character of G and this factorization is unique.

An irreducible character which can be written as a product of a π-
special and a π′-special character is said to be a π-factorable character.

We now consider character pairs (H, θ), where H is a subgroup of
some fixed group G and θ is an irreducible character of H. We say that
(H, θ) ≤ (K,ϕ) if H ≤ K and θ is an irreducible constituent of ϕH . This
defines a partial order on the set of character pairs.

Definition 1.2.6 ([16, Definition 3.1]). Let G be π-separable. A π-
factorable subnormal pair of G is a character pair (S, θ), where S � �G
and θ is a π-factorable character. We write Fπ(G) to denote the set of
π-factorable subnormal pairs in G.



CHAPTER 1. Review of the π-Theory 4

Theorem 1.2.7 ([16, Theorem 3.2]). Let G be π-separable and let χ ∈
Irr(G) then there exists a π-factorable subnormal pair (S, θ) of G such that
it is maximal in Fπ(G) and (S, θ) ≤ (G,χ). Moreover, if (R, η) is another
such pair, then R = Sg and η = θg for some g ∈ G.

Theorem 1.2.8 ([16, Theorem 4.4 and Lemma 4.5]). Let G be π-separable
and let (S, µ) be a maximal π-factorable subnormal pair. Let T = IG(S, θ),
where IG(S, θ) = ING(S)(θ). Then the induction defines a bijection between
Irr(T | µ) and Irr(G | µ). Moreover, if S < G, then also T < G.

IfG is π-separable and χ ∈ Irr(G), by Theorem 1.2.7 we have that there
exists (S, µ) ∈ Fπ(G) maximal such that (S, µ) ≤ (G,χ). If T = IG(S, µ),
by Theorem 1.2.8 there exists ξ ∈ Irr(T | µ) such that ξG = χ. This
process associates, to the pair (G,χ) a specific pair (T, µ), determined
uniquely up to conjugacy in G, which is called a standard inducing pair
for (G,χ).

If χ is already π-factorable, then (S, µ) = (G,χ) and, therefore, also
T = G. Otherwise, S < G and, by Theorem 1.2.8, also T < G. In
this case, we can repeat the process and find a standard inducing pair for
(T, ξ). If we continue this way until we reach a π-factorable pair, which
will happen eventually, since the group is finite, we have

(G,χ) = (T0, ξ0) > (T1, ξ1) > ... > (Tk, ξk),

where (Ti, ξi) is a standard inducing pair for (Ti−1, ξi−1) and ξk is π-
factorable. At each stage, the pair (Ti, ξi) is determined up to conjugacy
in Ti−1, in particular, the terminal pair (Tk, µk) is determined up to con-
jugacy in G.

Definition 1.2.9 ([16, Definition 4.6]). Let G be π-separable and let
χ ∈ Irr(G). Any pair (W,µ) with µ π-factorable, which results from
repeatedly constructing standard inducing pairs, beginning with (G,χ), is
said to be a nucleus for χ. The set of nuclei for χ is denoted as nuc(χ).

If (W,µ) ∈ nuc(χ), then µ is said to be a nucleus character for χ and
µG = χ.

Corollary 1.2.10. Let G be π-separable and suppose χ ∈ Irr(G) is prim-
itive, then χ is π-factorable.
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1.3 The Bπ-characters

We can now give the definition of Bπ-characters.

Definition 1.3.1 ([16, Definition 5.1]). Let χ ∈ Irr(G), where G is a
π-separable group, and let (W,µ) ∈ nuc(χ), which is unique up to conju-
gation for elements of G. If µ is a π-special character, we say that χ is a
Bπ-character. We denote as Bπ(G) the set of Bπ-characters of the group
G.

Clearly, the principal character 1G is always a Bπ-character, for every
set of primes π. Moreover, for any π, Bπ(G) ∩ Bπ′(G) = {1G}.

As the definition may suggest, there exists a strong relation between
π-special and Bπ-characters.

Lemma 1.3.2 ([16, Lemma 5.4]). Let G be a π-separable group and let
χ ∈ Irr(G). The following are equivalent.

i) χ is π-special.

ii) χ ∈ Bπ(G) and χ(1) is a π-number.

iii) χ ∈ Bπ(G) and χ is π-factorable.

As a consequence, we have that, if G is a π-separable group, Xπ(G) ⊆
Bπ(G) ⊆ Irr(G).

It is interesting, and useful, to study the behaviour of the Bπ-characters
in relation with normal subgroups. As expected, this behaviour will be
similar to the one of π-special characters.

Theorem 1.3.3. Let G be π-separable and let M�G. If χ ∈ Bπ(G), then
every irreducible constituent of χM belongs to Bπ(M).

On the other hand, if ψ ∈ Bπ(M), then there exist some characters
in Bπ(G) lying over ψ. In particular, if G/M is a π-group, then every
character in the set Irr(G | ψ) belongs to Bπ(G) while, if G/M is a π′-
group, then there exists a unique character in the set Irr(G | ψ) which
belongs to Bπ(G).

Proof. It is a direct consequence of [16, Theorem 6.2] and [16, Theorem
7.1]
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Corollary 1.3.4 ([16, Corollary 5.3]). If G is π-separable, Oπ′(G) is in
the kernel of every character χ ∈ Bπ(G).

The main property of Bπ-characters, however, concerns their restric-
tion to Hall π-subgroups.

Theorem 1.3.5 ([16, Theorem 8.1]). Let χ ∈ Bπ(G), with G π-separable,
and let H ∈ Hallπ (G). Then the following hold.

a) For each α ∈ Irr(H), α(1) ≥ [α, χH ]χ(1)π.

b) There exists at least one irreducible constituent α of χH such that
α(1) = χ(1)π.

c) If α is as in b), then [χH , α] = 1, and [ψH , α] = 0 for any ψ ∈ Bπ(G),
ψ 6= χ.

Corollary 1.3.6 ([16, Corollary 8.2]). Let G be π-separable and let H be
a Hall π-subgroup of G. Then, restriction defines an injection from the
set of π-special characters of G into Irr(H).

Characters like the ones in Theorem 1.3.5, point b), play an important
role in the theory of characters of π-separable groups. We refer to them
as Fong characters.

Definition 1.3.7 ([16, Definition 8.6]). Let G be a π-separable group
and let H be a Hall π-subgroup of G. We say that α ∈ Irr(H) is a Fong
character of H in G if there exists χ ∈ Bπ(G) such that α is a constituent
of χH and α(1) = χ(1)π. We say that α is associated with χ.

As a first consequence of Theorem 1.3.5, we have informations about
the field of values of the characters in Bπ(G).

If n is a natural number, we write Qn to refer to the n-cyclotomic
extension of Q, i.e., the extension of the field of rational numbers obtained
by adjoining a primitive n-root of unity ζn to Q. If π is a set of primes,
Qπ denotes the extension of the field of rational numbers obtained by
adjoining all complex n-th roots of unity of Q, for all π-numbers n.

Corollary 1.3.8 ([16, Corollary 12.1]). If χ ∈ Bπ(G), then it has values
in Qπ, i.e., for every x ∈ G, χ(x) ∈ Qπ.
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If H is an Hall π-subgroup of a π-separable group G, it is in general
hard to determine whether a character ϕ ∈ Irr(H) is a Fong character
associated with some χ ∈ Bπ(G). The task, however, becomes easier
under some extra assumptions.

Theorem 1.3.9 (([21, Corollary 6.1] or [18, Theorem 5.13])). Let H
be a Hall π-subgroup of a π-separable group G and let ϕ ∈ Irr(H). If ϕ
is primitive, then it is a Fong character associated with some character
χ ∈ Bπ(G). Moreover, η ∈ Irr(H) is a Fong character associated with χ
if and only if ϕ and η are NG(H)-conjugated.

Furthermore, if a character in Irr(H) is not only primitive but lin-
ear, we can rely to an even stronger result, which allows us to determine
the associated Bπ-character without the use of the Isaacs’ algorithm we
described before Definition 1.2.9.

Theorem 1.3.10. Let G be a π-solvable group and let H be a Hall π-
subgroup of G. Let ϕ ∈ Irr(H). Then, there exists a unique maximal
subgroup W of G such that ϕ extends to W , and ϕ has a unique extension
ϕ̂ to W which is π-special.

Moreover, if ϕ is linear, then χ = (ϕ̂)G is an irreducible character in
Bπ(G) and ϕ is a Fong character associated with χ.

Finally, if ψ ∈ Irr(G) and ψ(1) is a π′-number, then there exists ϕ ∈
Lin(H) and W, ϕ̂ as in the first paragraph such that ψ = (ϕ̂β)G, for some
π′-special character β ∈ Irr(W ).

Proof. The first part is a consequence of [19, Theorem A] and of [22,
Theorem F], while the second part follows from [21, Theorem B] and [25,
Theorem 2.2] and the third part follows from [25, Theorem 3.6].

Finally, it is easy to work with Fong characters when the Hall π-
subgroup is normal.

Proposition 1.3.11. Let G be a finite group with a normal Hall π-
subgroup H, then each irreducible character of H is a Fong character
in G. Moreover, if ϕ ∈ Irr(H), I = IG(ϕ) and η ∈ Irr(I | ϕ), then
χ = ηG ∈ Irr(G) is a Bπ-character if and only if η is a π-special charac-
ter.
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Proof. Let ϕ ∈ Irr(H), then (H,ϕ) ∈ Fπ(G) since H is normal in G.
Let χ ∈ Irr(G) lying over ϕ and let (M,γ) ∈ Fπ(G) maximal such that
(H,ϕ) ≤ (M,γ) ≤ (G,χ). Then, γ = αβ, with α π-special, and thus
αH = ϕ.

Let I = IG(ϕ) and let J = IG(M,γ); then, J ≤ I, since ϕ extends
to α ∈ Irr(M) and, thus, if g ∈ NG(M) fixes α, it also fixes ϕ. By
iterating the Isaacs’ algorithm, with (M,γ) in place of (G,χ), we obtain
(W,µ) ∈ nuc(χ) such that (H,ϕ) ≤ (W,µ) ≤ (I, η), for some η ∈ Irr(I | ϕ)
such that µI = η and, thus, ηG = χ.

Now, if η is π-special, then ηH is irreducible by Corollary 1.3.6 and,
thus, also ηW ∈ Irr(W ). It follows that (W,µ) = (I, η), µ is π-special and,
therefore, χ ∈ Bπ(G).

On the other hand, if χ ∈ Bπ(G), then ϕ is a Fong character associated
with χ, since χ(1)π = ϕ(1). As a consequence, [ηH , ϕ] ≤ [χH , ϕ] = 1 and,
thus, ηH = ϕ and ηW = µ. It follows that (W,µ) = (I, η) and η is
π-special, because so is µ.

Finally, by Proposition 1.2.4, Xπ(I | ϕ) is nonempty, thus, ϕ is a Fong
character in G.

1.4 Restriction to π-elements

Let χ be a character of a finite group G, not necessarily irreducible;
it is possible to restrict χ, as a class function, to the conjugacy classes of
π-elements of G. Let χ∗ be this restriction. We say that χ∗ is a π-partial
character.

A π-partial character χ∗ is said to be reducible if it can be written as
a sum of two other π-partial characters, i.e., if there exist ψ, θ ∈ Char(G)
such that χ∗ = ψ∗+ θ∗. If χ∗ is not reducible, we say that it is irreducible
and we denote as Iπ(G) the set of irreducible π-partial characters.

If π = p′, so that G is a p-solvable group, Fong-Swan theorem asserts
that Ip′(G) = IBrp(G), i.e., the p′-partial characters are exactly the irre-
ducible p-Brauer characters. As a consequence, Ip′(G) is a base set for the
class functions of G defined on p-regular elements.

For a generic set of primes π, we cannot rely on Brauer theory any
more. However, it is still possible that irreducible π-partial characters
may form a basis for the class functions defined on π-elements.
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This was the motivation for Isaacs to first study, in [16], the character
theory of π-separable groups, and to introduce the Bπ-characters.

A first related result is a direct consequence of Theorem 1.3.5.

Corollary 1.4.1 ([16, Corollary 9.1]). Let G be π-separable, then the
functions χ∗ are distinct and linearly independent for χ ∈ Bπ(G).

The key result, then, is to find the relation between the number of
Bπ-characters and the number of conjugacy classes of π-elements.

Theorem 1.4.2 ([16, Theorem 9.3]). Let G be π-separable. Then |Bπ(G)|
is equal to the number of conjugacy classes of π-elements. The restriction
χ∗ of χ ∈ Bπ(G) to π-elements are distinct and they form a basis for the
class functions on π-elements of G.

An interesting consequence of the proof of Theorem 1.4.2 is a version
for Bπ-characters of Brauer theorem on group actions.

Corollary 1.4.3 ([16, Lemma 9.6]). Let G be a π-separable group and
let σ ∈ Aut(G). Then σ fixes the same number of χ ∈ Bπ(G) as it fixes
classes of π-elements.

An other consequence of Theorem 1.4.2 concerns the kernels of Bπ-
characters. We have already seen in Corollary 1.3.4 that Oπ′(G) is in the
kernel of every Bπ-character. Now, however, we can have a more precise
result.

Corollary 1.4.4. If G is a π-separable group, Oπ′(G) =
⋂
{ker(χ) | χ ∈

Bπ(G)}.

Proof. Let K =
⋂
{ker(χ) | χ ∈ Bπ(G)}, then we already know from

Corollary 1.3.4 that Oπ′(G) ≤ K. On the other hand, notice that K �G.
Thus, if ψ ∈ Bπ(K), then by Theorem 1.3.3 there exists χ ∈ Bπ(G) lying
over ψ. Since K ≤ ker(χ), we have that ψ = 1K . Thus, |Bπ(K)| = 1
and it follows by Theorem 1.4.2 that {1} is the only conjugacy class of
π-elements of K. Thus, K ≤ Oπ′(G) and the thesis follows.

Finally, using Theorem 1.4.2, it is proved that there exists a bijection
between Bπ(G) and Iπ(G).
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Corollary 1.4.5 ([16, Corollary 10.2]). Let G be π-separable. Then,
restriction to π-elements realizes a bijection between Bπ(G) and Iπ(G). In
particular, Iπ(G) is a basis for the class functions on π-elements of G.

If we take π = p′, the Corollary 1.4.5 provides a family of lifts for the
irreducible Brauer characters. In fact, the classical Fong-Swan theorem
[32, Theorem 10.1] already proved that, in a p-solvable group, every irre-
ducible Brauer character coincides with the restriction of an irreducible
ordinary character to p-regular elements. Only in [23], however, it was
provided a set of lifts for the Brauer characters which behaves well in
relation with normal subgroups.

Corollary 1.4.6 ([16, Corollary 10.3]). If G is a p-solvable group, restric-
tion to p-regular elements realizes a bijection between Bp′(G) and IBrp(G).

However, Corollary 1.4.6 can also be seen as a consequence of a more
general result.

Theorem 1.4.7 ([16, Theorem 11.1]). Let G be π-separable and let p /∈ π
be a prime. Then, restriction to p-regular elements defines an injection
Bπ(G) 7→ IBrp(G).

1.5 Groups of odd order

It is worth to talk briefly about the behaviour of Bπ-characters in
groups of odd order. In fact, in those groups the theory behind Bπ-
characters happens to be a lot simpler, and it suggests intriguing simi-
larities between ordinary and Bπ-characters, as we will see in the next
chapters.

Properties of Bπ-characters in groups of odd order have been studied
extensively in [15]. The main results of that paper are the following.

The reader shall remember that, due to Feit-Thompson Theorem, a
group of odd order is solvable. Therefore, there is no need to assume the
group to be π-separable.

Theorem 1.5.1 ([15, Theorem C]). Let G be a group of odd order and
let K be a π-complement, i.e., a Hall π′-subgroup. Let χ ∈ Irr(G). Then,
χ ∈ Bπ(G) if and only if [(1K)G, χ] is odd.



CHAPTER 1. Review of the π-Theory 11

Theorem 1.5.2 ([15, Theorem D]). Let G be a group of odd order and
let K be a π-complement, i.e., a Hall π′-subgroup. Let χ ∈ Xπ(G). Then,
1K is the only irreducible constituent of χK of odd multiplicity.

To prove those results, some interesting technique is used. One of the
key steps of the proof, in particular, is the following lemma.

Lemma 1.5.3 ([15, Lemma 3.1]). Let G be of odd order and suppose π
is a set of primes. Let χ be an irreducible character of G, then χ ∈ Bπ(G)
if and only if χ have values in Qπ.

There exists a version of Lemma 1.5.3 also for groups of even order,
assuming that 2 ∈ π.

Lemma 1.5.4 ([15, Lemma 3.3]). Let G be π-separable with 2 ∈ π. Let
χ be an irreducible character of G, then χ ∈ Bπ(G) if and only if χ have
values in Qπ and the restriction of χ to π-elements lie in Iπ(G).

A useful consequence of Lemmas 1.5.3 and 1.5.4 is the following.

Corollary 1.5.5 ([15, Corollary 3.5]). Let G be π-separable and assume
either that 2 ∈ π or that |G| is odd. Let N � G, θ ∈ Irr(N) and let
T = IG(θ). Suppose ψ ∈ Irr(T | θ) and let χ = ψG, so that χ ∈ Irr(G).
Then, χ ∈ Bπ(G) if and only if ψ ∈ Bπ(T ).

1.6 An example: characters of SL(2, 3)n (Z3)
2

We conclude the chapter with an example of Bπ-characters of a solvable
group.

Let G = SL(2, 3)n (Z3)2, with SL(2, 3) acting naturally on (Z3)2. The
group structure is well known: |G| = 216, G′ has index 3 in G and (Z3)2

is a subgroup of G′ of index 8.
We compute the character table of G using the software GAP.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

|Ci| 1 36 12 24 36 12 24 54 8 9

o(x) 1 6 3 3 6 3 3 4 3 2

χ1 1 1 1 1 1 1 1 1 1 1

χ2 1 α ᾱ ᾱ ᾱ α α 1 1 1

χ3 1 ᾱ α α α ᾱ ᾱ 1 1 1

χ4 2 1 -1 -1 1 -1 -1 0 2 -2

χ5 2 α -ᾱ -ᾱ ᾱ -α -α 0 2 -2

χ6 2 ᾱ -α -α α -ᾱ -ᾱ 0 2 -2

χ7 3 0 0 0 0 0 0 -1 3 3

χ8 8 0 2 -1 0 2 -1 0 -1 0

χ9 8 0 2α −α 0 2ᾱ −ᾱ 0 -1 0

χ10 8 0 2ᾱ −ᾱ 0 2α −α 0 -1 0

Here, α = −1+
√
−3

2 = e
2π
3
i.

We can determine which characters of G are in B{2}(G), and which
are in B{3}(G), without recurring to Isaacs’ algorithm.

Clearly, χ1 = 1G is both a B{2}-character and a B{3}-character. Char-
acters χ2 and χ3 are linear of order 3, thus, they are {3}-special characters.

Characters χ4, χ5 and χ6 restrict irreducibly to a character ψ ∈ Irr(G′)
and have (Z3)2 in their kernel. It follows that ψ is a character of the
2-group G′/(Z3)2 and, therefore, is a {2}-special character. Since ψ is
invariant in G, we know from Proposition 1.2.4 that there exists only one
irreducible {2}-special character lying over ψ. This character can only be
χ4, since it is the only one having values in Q{2} (see Corollary 1.3.8). On
the other hand, χ5 and χ6 are nor in B{2}(G) neither in B{3}(G).

The character χ7 has degree 3 and has (Z3)2 in its kernel. It follows
that is is induced by a linear {2}-special character of G′ and, thus, it is in
B{2}(G) by Theorem 1.3.3.

Finally, χ8, χ9 and χ10 are all extensions to G of a character θ ∈
Irr(G′) of degree 8, which is induced by a non-principal linear character
of the 3-subgroup (Z3)2. Therefore, θ is in B{3}(G

′) and it follows from
Theorem 1.3.3 that χ8, χ9 and χ10 are in B{3}(G).

Thus, B{2}(G) = {1G, χ4, χ7}, B{3}(G) = {1G, χ2, χ3, χ8, χ9, χ10}.



Chapter 2

Zeros of Bπ-characters

In this chapter, we study problems related with the zeros of irreducible
characters. After a brief review of the existing results concerning the zeros
of ordinary characters, we search for similar ones for π-special and Bπ-
characters. In particular, at first we study the zeros of π-special characters
under the strong hypothesis that the group is supersolvable. Then, we
characterize the elements where no Bπ-character vanishes, i.e., where the
character value is not zero, in solvable and supersolvable groups. Finally,
we see what happens when no Bπ-character and no Bπ′-character vanishes
on every p-element of a π-separable group, for some prime p.

2.1 Review of the theory of vanishing elements

Let χ ∈ Char(G) and x ∈ G. If χ(x) = 0, we say that χ vanishes on x.
It is known from a famous theorem of Burnside (see [14, Theorem 3.15])
that every nonlinear irreducible character of a group G vanishes on some
element of the group. It is interesting, however, to understand where an
irreducible character vanishes, and where it does not.

We also mention that Burnside’s Theorem has been later improved in
[29], using the Classification of finite simple groups.

Theorem 2.1.1 ([29, Theorem B]). If G is a finite group and χ ∈ Irr(G)
is nonlinear, there exists g ∈ G of prime-power order such that χ(g) = 0.

13
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We first see some results published in [33]. In that paper, it is stud-
ied where primitive characters vanish. A first interesting result of [33],
however, does not require a character to be primitive, or even irreducible.

Theorem 2.1.2 ([33, Theorem 2.1]). Let χ be a character of a finite
group G and suppose that a prime p does not divide χ(1). If x ∈ G has
p-power order, then χ(x) 6= 0.

The main result of [33] is the following.

Theorem 2.1.3 ([33, Corollary 2.4]). Let G be a solvable group and let
χ ∈ Irr(G) be primitive. Suppose χ(1) is a π-number, where π is a set of
primes. Let x ∈ G, then χ(x) = 0 if and only if χ(xπ) = 0, where xπ is
the π-part of x.

We recall that the π-part of an element x ∈ G, with G finite, is the
unique element xπ ∈ G such that o(xπ) is a π-number and x = xπy, for
some y ∈ G such that o(y) is a π′-number.

Corollary 2.1.4. Let G be a solvable group and let χ ∈ Irr(G) be primi-
tive. Let x ∈ G. If (o(x), χ(1)) = 1, then χ(x) 6= 0.

In [33], moreover, it is presented also an interesting consequence of
Theorem 1.5.2 for groups of odd order.

Theorem 2.1.5. Let G be a group of odd order and let χ ∈ Irr(G) be
π-special. If x is a π′-element of G, then χ(x) 6= 0.

The most influential paper on zeros of irreducible characters is proba-
bly [26], where nonvanishing elements are studied.

Definition 2.1.6 ([26]). An element x ∈ G is said to be nonvanishing if
no irreducible character vanishes on x.

A group G is said to be supersolvable if each chief factor of G is of
prime order. We recall that, for M,N �G, M < N , N/M is said to be a
chief factor of G if there is no H �G such that M < H < N .

It is clear from the definition that a supersolvable group is also solvable.
On the other hand, it is not difficult to prove that a nilpotent group is
supersolvable.
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If G is a finite group and M,N are two normal nilpotent subgroup of
G, then also the product MN is normal and nilpotent in G. For a group
G, the Fitting subgroup of G, denoted by F(G), is its maximal normal
nilpotent subgroup.

It exists a characterization of nonvanishing elements in supersolvable
groups, involving the Fitting subgroup.

Theorem 2.1.7 ([26, Theorem B]). If G is a supersolvable group, all the
nonvanishing elements of G lie in Z(F(G)). In particular, if G is nilpotent,
then the nonvanishing elements of G are central.

If G is solvable, however, the situation is less transparent.

Theorem 2.1.8 ([26, Theorem D]). Let x be a nonvanishing element of
the solvable group G, then the image of x in G/F(G) has 2-power order.
In particular, if x has odd order, then x ∈ F(G). In any case, if G is
not nilpotent, then x lies in the penultimate term of the ascending Fitting
series.

It is conjectured that a nonvanishing element of a solvable group always
lies in Fitting subgroup. However, the conjecture is still unproven.

A different approach to the study of nonvanishing elements was pre-
sented in [7], where it was studied what happens where every p-element
of a group is nonvanishing. The results in [7] rely on the Classification of
finite simple groups.

Theorem 2.1.9 ([7, Theorem A]). Let G be a finite group and p a prime
number. If every p-element of G is nonvanishing, then G has a normal
Sylow p-subgroup.

Using similar techniques, the result has been later improved in [28].

Theorem 2.1.10 ([28, Theorem B]). Let G be a finite group, let p be a
prime and let P ∈ Sylp (G). The following conditions are equivalent:

a) p does not divide the degree of any irreducible constituent of (1P )G;

b) χ(x) 6= 0 for all irreducible constituents χ of (1P )G and all x ∈ P ;

c) P �G.
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Notice that Theorem 2.1.10 links the normality of a Sylow p-subgroup
with both nonvanishing properties and primes dividing character degrees.
The relation between character degrees and normal structure of the group
will be the main topic of Chapter 4.

2.2 Zeros of π-special characters in supersolvable

groups

Theorem 2.1.5 says that a π-special character in a group of odd order
never vanishes on a π′-element. It would be tempting to try to generalize
the result for solvable group of every order; however, [33, Example 3.3]
proves that such generalization is impossible, even when 2 ∈ π.

Therefore, when considering groups of even order, it is necessary to
strengthen our hypothesis in other ways.

A character χ of a group G is said to be monomial if χ = λG, where
λ is a linear character of some (not necessarily proper) subgroup of G. A
group G is said to be an M-group if every irreducible character of G is
monomial.

It is known that M-groups are solvable (see [14, Corollary 5.13]); oth-
erwise, the class of M-groups remains hard to study, also because it is not
closed for subgroups. There is however a sufficient condition for a group
to be a M-group: in fact, G is a M-group if each chief factor of every sub-
group of G has nonsquare order (see [14, Theorem 6.22]). In particular,
the condition is verified when G is a supersolvable group, since in this case
every chief factor has prime order.

We prove first that, under slightly weaker conditions then the super-
solvability, every π-special character is monomial.

Lemma 2.2.1. Let π be a set of primes and let G be a solvable group such
that, if F is any subgroup of G, L/K is a chief factor of F and |L/K| is a
π-number, then |L/K| is not a square. Suppose, furthermore, that 2 ∈ π
or |G| is odd. Let χ ∈ Irr(G) be a π-special character. Then, there exists
W ≤ G and λ ∈ Irr(W ) such that λ is a linear π-special character and
λG = χ.

Proof. Let χ ∈ Irr(G) be a nonlinear π-special character and let M � G
be minimal for the property of χM being irreducible. We can assume
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M > 1, since χ is nonlinear. Let N �G such that M/N is a chief factor of
G. Then, M/N is a chief factor of π-order, since otherwise (χM )N = χN
would be irreducible, too, because χ is π-special. It follows by hypothesis
that |M/N | is nonsquare and, thus, χN =

∑t
i=1 ϕi for some distinct ϕi ∈

Irr(N) and t > 1, by [14, Theorem 6.18]. Let ϕ = ϕ1, one has that
T = IG(ϕ) < G.

Moreover, if µ ∈ Irr(T | ϕ) is such that µG = χ, since either 2 ∈ π
or |G| is odd it follows from Corollary 1.5.5 that µ is a Bπ-character and,
since µ(1) is a π-number, because so is χ(1), by Lemma 1.3.2 we also have
that µ is π-special.

It follows that, by induction on the group order, there exists W ≤ T ,
λ ∈ Lin(W ) π-special such that λT = µ. Then, λG = χ and the lemma is
proved.

Corollary 2.2.2. Let G be solvable, let χ ∈ Bπ(G) and let (V, µ) be a
nucleus for χ. Suppose that, if F is a subgroup of V , L/K is a chief
factor of F and |L/K| is a π ∪ {2}-number, then |L/K| is not a square.
Let x ∈ G be a π′-element and suppose that o(x) and χ(1) are coprime.

Furthermore, suppose that at least one of these conditions hold:

(i) o(x) is odd;

(ii) G has a normal 2-complement.

Then, χ(x) 6= 0.
Moreover, if condition (i) holds, there exists W ≤ G such that |G : W | =

χ(1) and, given T = {g1, ..., gk} a system of right coset representatives of
W in G, then χ(x) =

∣∣{g ∈ T | gxg−1 ∈W}
∣∣.

Proof. Let δ = π∪{2}, then µ is δ-special, too, and by Lemma 2.2.1 there
exists W ≤ V and λ ∈ Lin(W ) δ-special such that λV = µ and, thus,
λG = χ. Since χ(1) = |G : W | is coprime with o(x) and the group G is
solvable, W can be chosen such that x ∈W .

If conditions (i) holds, then o(λ) and o(x) are coprime and, thus,
λ(xg) = 1 for every g ∈ G such that xg ∈ W , since o(xg) = o(x) is
an odd π′-number and λ has values in Qπ. Thus, χ(x) =

∑
g∈T λ

◦(gxg−1)

and λ◦(gxg−1) = 1 if gxg−1 ∈W , zero otherwise. It follows the thesis.
Suppose now that condition (ii) holds and suppose x has even order.

Let x2 be the 2-part of x, such that x uniquely factors as x = x2y with
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o(y) an odd π′-number, so a δ′-number. Let g ∈ G such that xg ∈W , then
λ(xg) = λ(x2

g) since λ is linear and o(yg) = o(y) is coprime with o(λ).
Now, let one consider a ∈ T . If axa−1 is not an element of W , then

λ◦(axa−1) = 0. Suppose that axa−1 is in W and let P be a Sylow 2-
subgroup of W which contains x2, Q a Sylow 2-subgroup of W which
contains ax2a

−1. Since all the Sylow 2-subgroups of W are W -conjugates,
there exists w ∈ W such that Qw = P . By replacing a with w−1a, one
has that ax2a

−1 is in P , too.
Now, P is a 2-Sylow of G, too, because by hypothesis χ(1) = |G : W | is

odd. Moreover, condition (ii) is equivalent of P being conjugacy-closed in
G, i.e., two elements of P which are conjugate in G are also conjugate in P
(see [20, Theorem 5.25]). It follows that, if axa−1 ∈W , then λ(axa−1) =
λ(x) and, thus, χ(x) is a multiple of λ(x) = λ(x2) and in particular it is
nonzero.

Note that the hypothesis on G of Corollary 2.2.2 holds if the group is
supersolvable, while the hypothesis that o(x) is coprime with χ(1) holds,
in particular, if χ is π-special.

Corollary 2.2.3. If G is a supersolvable group and χ ∈ Irr(G) a π-special
character, then χ does not vanish on any π′-element of G.

2.3 π-nonvanishing elements in π-supersolvable

groups

In this section, we find a version for Bπ-characters of the results in
the first part of [26]. In particular, we prove a variant of Theorem 2.1.7
for elements of supersolvable and of π-supersolvable groups where no Bπ-
character vanishes.

We recall that a group is said to be π-supersolvable if each chief factor
is either a π′-group or a group of prime order.

Definition 2.3.1. An element x ∈ G, for G π-separable, is called π-
nonvanishing if χ(x) 6= 0 for each χ in Bπ(G).

The concept of Fitting subgroup can be generalized for a set of primes.
The π-Fitting subgroup of a finite group G is defined as the normal sub-
group Fπ(G) such that Fπ(G)/Oπ′(G) = F(G/Oπ′(G)).



CHAPTER 2. Zeros of Bπ-characters 19

It is known that x ∈ G belongs to F(G) if and only if it centralizes every
chief factor of G (see [13, Theorem 4.2]). An other known property of F(G)
is that, if G is solvable, CG(F(G)) = Z(F(G)) (see [20, Exercise 3B.14]).
Before we begin to study π-nonvanishing elements, we need to prove that
a similar properties exist also for Fπ(G). We believe the following results
to be already known but we still provide a proof, since we did not find
any reference of them in the literature.

Lemma 2.3.2. Let x ∈ G be a π′-element, with G π-separable; x central-
izes every π-chief factor of G if and only if x ∈ Oπ′(G).

Proof. One direction clear, so let us suppose x centralizes every π-chief
factor of G and let N be a minimal normal subgroup of G. By induction on
the order ofG, we have that x ∈ O�G such thatO/N = Oπ′(G/N). IfN is
a π′-group, then O = Oπ′(G) and we are done. Thus, assume that N is a π-
group; Let C = CO(N)�G and observe that, by Shur-Zassenhaus theorem,
C = N ×Oπ′(C). As x ∈ C, we conclude x ∈ Oπ′(C) ≤ Oπ′(G).

Proposition 2.3.3. Let G be π-separable, then x ∈ Fπ(G) if and only if
it centralizes every π-chief factor of G.

Proof. For sake of simplicity, we may refer to the group G/Oπ′(G) as Ḡ
and, in a similar fashion, we may call x̄ and N̄ the images in Ḡ, under the
canonical epimorphism, of an element x ∈ G and of a subgroup Oπ′(G) ≤
N < G.

One direction of the proof is trivial, since if x ∈ Fπ(G), then it follows
that x̄ ∈ Fπ(G)/Oπ′(G) = F(G/Oπ′(G)) centralizes every chief factor of
G/Oπ′(G).

Let now C be the intersection of all the centralizers of π-chief factors
of G, then C � G. By Lemma 2.3.2, we know that Oπ′(G) ≤ C and
C̄ = C/Oπ′(G) is a π-group. Thus, C̄ centralizes every chief factor of
Ḡ = G/Oπ′(G), since a normal π-group centralizes every π′-chief factor
and C centralizes every π-chief factor by definition. It follows that C̄ ≤
F(Ḡ) and, thus, C ≤ Fπ(G).

Proposition 2.3.4. Let G be π-solvable, then CG(Fπ(G)) = Z(Fπ(G)).

Proof. Let C = CG(Fπ(G)) and F = Fπ(G), let H = CF �G and suppose
|H : F | > 1. Let F < N ≤ H such that N/F is a chief factor of G, then
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either N/F is a π′-group or it is a p-group for some p ∈ π. In the former
case, let δ = π′, while in the latter let δ = π′ ∪ {p}. Notice that, in either
cases, Oδ(N) ≤ F . Now, let N̄ = N/Oδ(N) and let F̄ be the image of F
in N̄ under the canonical epimorphism. It follows that N̄/F̄ and F̄ are of
coprime order and, thus, there exists K̄ complement of F̄ in N̄ . However,
since K̄ is centralized by F̄ , we have that K̄ = Oδ(N̄) = 1 and, thus,
N = F . Therefore, |H : F | = 1 and F = H. It follows that C ≤ F and
C = Z(F ).

We can now proceed to studying π-nonvanishing elements in then con-
text of π-supersolvable groups. We do so by adjusting some techniques of
[26] to our situation.

Lemma 2.3.5 ([26, Lemma 2.1]). Let H ⊆ G and suppose all the mem-
bers of the coset Hg are conjugate in G. If χ ∈ Char(G) and χH has no
principal constituents, then χ(g) = 0.

Lemma 2.3.6. Let G be π-separable, let x ∈ G be π-nonvanishing, M ≤ G
and suppose that [M,x] �G and it is centralized by M . Then, [M,x] is a
π′-group.

Proof. One proceeds as in the proof of [26, Lemma 2.2].
Let H = [M,x], since H is centralized by M , then the map m 7→

[m,x] is a homomorphism from M onto H. Thus, for h ∈ H, one has
h−1 = [m,x] for some m ∈ M . Then, h = [x,m] = x−1xm and one
has xh = xm. Thus, all elements of the coset xH are G-conjugate and,
since H � G by hypothesis, it follows by Lemma 2.3.5 that χ(x) = 0
for any character χ ∈ Irr(G) such that H * ker(χ). Since, however,
x is π-nonvanishing, this never happens for any Bπ-character and, thus,
[M,x] ≤ ker(χ) for each χ ∈ Bπ(G). Then one concludes that it is a
π′-group for Corollary 1.4.4.

Theorem 2.3.7. Let G be π-supersolvable. If x ∈ G is π-nonvanishing,
then xOπ′(G) ∈ Z(Fπ(G)/Oπ′(G)). In particular, x ∈ Fπ(G).

Proof. Let F = Fπ(G) and let N be minimal normal in G. We can clearly
assume that Oπ′(G) = 1, thus, |N | = p for some prime p ∈ π. By
induction on |G|, one has that x̄ ∈ Ḡ = G/N centralizes F̄ , since F̄ is a
normal π-subgroup of Fπ(Ḡ). Thus, [x, F ] ≤ N .
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Since |N | = p, it follows that [x, F ] � G. Moreover, F centralizes N
and, thus, it centralizes [x, F ]. It follows from Lemma 2.3.6 that [x, F ] is
a π′-group and, therefore, [x, F ] = 1.

This proves that x ∈ CG(F ) = Z(F ), when the last equivalence holds
for Proposition 2.3.4.

Corollary 2.3.8. Let G be solvable and π-supersolvable and suppose that
either 2 ∈ π or G has a normal 2-complement. Let x ∈ G be a π′-element
and suppose o(x) is coprime with the degree of every character in Bπ(G).
Then, x ∈ Oπ′(G).

Proof. By Corollary 2.2.2, x is π-nonvanishing and the thesis then follows
from Theorem 2.3.7.

2.4 Nonvanishing elements in solvable groups

In this section, we study analogues of the results of [26] for solvable
groups.

We begin with a variant of [26, Lemma 2.3].

Lemma 2.4.1. Let G be π-separable, let x ∈ G be a π-nonvanishing
element and let N � G, then x fixes some member of each orbit of the
action of G on Bπ(N).

Proof. Let ψ ∈ Bπ(N), one knows by Theorem 1.3.3 that there exists
χ ∈ Bπ(G | ψ). Let T be the stabilizer of ψ in G, then, by Clifford’s
correspondence, there exists θ ∈ Irr(T |ψ) such that θG = χ. Since x is
π-nonvanishing, θG(x) 6= 0 and it follows that there exists at least one
conjugate xg of x which lies in T . It follows that x stabilizes ψ−g.

We use Lemma 2.4.1 to prove an analogue of [26, Theorem 2.4] in-
volving Bπ-characters, and we will also prove an analogue result of [26,
Theorem D]. However, in order to do so we need to adopt stronger hy-
pothesis on the nonvanishing elements.

Theorem 2.4.2. Suppose G is solvable but not nilpotent and let x ∈ G be
both a π- and a π′-nonvanishing element. Then, x is in the penultimate
term of the ascending Fitting series.
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We recall that the ascending Fitting series of a π-solvable group G is
a series

1 = F0 < F1 < ... < Fk = G

such that, for each i > 0, Fi = F(G/Fi−1).

Proof. We prove it in the same way [26, Theorem 2.4] is proved.
Let N �G be the second-from-the-last term of the Fitting series of G.

Then x̄ is nonvanishing in Ḡ = G/N and one needs to show that x̄ ∈ F(Ḡ).
Thus, let one assume that N = 1 and G/F(G) is nilpotent and prove that
x ∈ F(G). In particular, by [13, Theorem 4.2], it is enough to prove that
x ∈ C for C = CG(K/L), where K/L is any chief factor of G.

Let Ḡ = G/C, since C contains F(G) one has that Ḡ is nilpotent
and, thus, if we apply Theorem 2.3.7 two times, we have that [x, Ḡ] ≤
Oπ(Ḡ) ∩ Oπ′(Ḡ) = 1 and it follows that x̄ ∈ Z(Ḡ). Moreover, Ḡ acts on
Irr(K/L) and its orbit are exactly the orbits of the action of G. Since K/L
is either a π-group or a π′-group, by Lemma 2.4.1 x fixes some member
of each of those orbits; it follows that so does x̄ and, being x̄ central in
Ḡ, it fixes each member of Irr(K/L). It follows that x fixes all members
of Irr(K/L), too, and thus also each conjugacy class of K/L. However,
K/L is abelian, so each conjugacy class contains just one element and x
centralizes K/L, as required.

The key passage to prove [26, Theorem D] is the following theorem.

Theorem 2.4.3 ([26, Theorem 4.2]). Let x ∈ F(G), where G acts faith-
fully and irreducibly on a finite vector space V , and assume that x fixes
a point in each G-orbit in V . Then x2 = 1. Also, if x lies in an abelian
normal subgroup of G, then x = 1.

We use Theorem 2.4.3 to find a version of [26, Theorem D] for π-
nonvanishing elements.

Theorem 2.4.4. Let G be a solvable group and let x ∈ G be both π- and
π′-nonvanishing. Then, the image of x in G/F(G) has 2-power order.

Proof. Let x = x2u, where x2 is the 2-part of x and u is of odd order;
we need to prove that u ∈ F(G). For this purpose, it is enough to show
that u ∈ C, where C = CG(K/L) and K/L is an (abelian) arbitrary chief
factor of G.
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Now, x fixes some member of eachG-orbit in Irr(K/L), by Lemma 2.4.1.
The same is true for u and, if we consider Ḡ = G/C, also for ū ∈ Ḡ.
Moreover, the solvability of G implies that C > 1, thus,

∣∣Ḡ∣∣ < |G| and, by
induction on group order, one has that ū ∈ F(Ḡ). Then, Theorem 2.4.3
applies and we deduce that ū2 = 1. Since u has odd order, however, then
ū = 1 and u ∈ C, as desired.

One may wonder if it is true that the image of a π-nonvanishing element
in G/Fπ(G) has 2-power order, as the analogies between nonvanishing
and π-nonvanishing elements may suggest. However, for π-nonvanishing
elements this version of [26, Theorem D] is false, as the following ex-
ample proves. The example also proves that there is not a version for
π-nonvanishing elements for [26, Theorem 2.4].

Example 2.4.5. Let G = SL(2, 3)n (Z3)2, with SL(2, 3) acting naturally
on (Z3)2. From the discussion in Section 1.6, we see that G has two
conjugacy classes of nonvanishing elements, C1 = {1} and C9, whit this
last one counting 8 elements. Moreover, no B{3}-character vanishes on
classes C3, C4, C6 and C7, which makes a total of 81 {3}-nonvanishing
elements in the group.

On the other hand, we see that F(G) = F{3}(G) = (Z3)2, which there-
fore has only 9 elements. It follows that there are {3}-nonvanishing ele-
ments of order 3 which do not lie in F{3}(G).

The author has found no examples of group with elements which are
both π-nonvanishing and π′-nonvanishing, but vanishing.

2.5 Vanishing elements in minimal normal sub-

groups

In this section, we will see some preliminary results, which will be used
later in the thesis. Let us recall at first one of the tools used in [7].

We recall that a group M is said to be characteristically simple if
it has no proper nontrivial Aut(M)-invariant subgroups. A group M is
characteristically simple exactly when it is the direct product of isomorphic
simple groups.
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Lemma 2.5.1 ([7, Lemma 2.8]). Let A be an abelian group which acts
faithfully by automorphisms on a group M . Assume that |A| and |M | are
coprime. If M is characteristically simple, then there exists θ ∈ Irr(M)
such that IA(θ) = 1.

A first consequence of Lemma 2.5.1 is the following lemma, borrowed
from [7], which we adapt for Bπ-characters.

Lemma 2.5.2. Let G be a group, let N be a minimal normal π′-subgroup
and let M � G such that M/N is an abelian π-group. Let A < G be a
complement of N in M . Furthermore, suppose that Oπ(M) = 1. Then,
there exists a character χ ∈ Bπ′(G) which vanishes on every nontrivial
element of A and such that χ(1) is divided by |M : N |.

Note that the group A always exists, by the Schur–Zassenhaus theo-
rem.

Proof. Since CA(N) � M and A is a π-group, CA(N) ≤ Oπ(M) = 1;
thus, A acts faithfully on N . By Lemma 2.5.1, there exists some character
τ ∈ Irr(N) such that η = τM ∈ Irr(M). In particular, |M : N | divides
η(1). Since τ ∈ Bπ′(N) = Irr(N) and N is normal in M , by Theorem 1.3.3
the character η is in Bπ′(M), too. Moreover, note that η vanishes on A
and that the same is true for ηg for each g ∈ G. Then, every character in
Bπ′(G | η), which is a nonempty set because of Theorem 1.3.3, vanishes
on every nontrivial element of A and its degree is divided by |M : N |.

We may see now a first application of Lemma 2.5.2. The following
result is in the spirit of the ones of the previous section; however, the
techniques we use are more similar to the ones we will use in the next
section.

Proposition 2.5.3. Let G be π-separable and let H be a Hall π-subgroup
of G. Let x ∈ Z(H) be a π′-nonvanishing element. Then, x ∈ Z(Oπ(G)) ≤
Z(F(G)).

Proof. Suppose x 6= 1 and proceed by induction on |G|. Assume at first
that Oπ(G) = 1 and let N be a minimal normal subgroup of G. Then,
N is a π′-group. Let O � G such that O/N = Oπ(G/N) and let Z � G
such that Z/N = Z(O/N); by induction, x ∈ Z, so Z > 1. Since Z/N is
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a π-group, by the Schur–Zassenhaus theorem we have Z = NA, for some
complement A of N in Z such that x ∈ A.

Now, by Lemma 2.5.2, with Z in place of M , there exists a character
χ ∈ Bπ′(G) which vanishes on every nontrivial element of A and, in partic-
ular, on x. This, however, contradicts the fact that x is π′-nonvanishing.
It follows that K = Oπ(G) > 1.

Now, by induction, one has that x̄ ∈ Oπ(G/K) = 1 and, thus, x ∈ K.
Finally, x ∈ Z(H) ∩K ≤ Z(K).

Let us now see some other results, adapted from [7], which allow us
to handle nonabelian simple groups. Some of these results rely on the
Classification of finite simple groups.

Lemma 2.5.4 ([7, Proposition 2.2]). Let N = S1×· · ·×Sk be a minimal
normal subgroup of G, where Si ∼= S, a nonabelian simple group. If θ ∈
Irr(S) extends to Aut(S), then θ × · · · × θ ∈ Irr(N) extends to G.

Lemma 2.5.5. Let S be a nonabelian simple group and let p | |S|. Then
either there exists χ ∈ Irr(S) of p-defect zero or there exists a p-element
x ∈ S and a character χ ∈ Irr(S) such that χ extends to Aut(S) and χ
vanishes on x.

Proof. It is the consequence of Proposition 2.1, Lemma 2.3 and Proposi-
tion 2.4 of [7].

Proposition 2.5.6. Let N�G be a nonabelian minimal normal π-subgroup
of the π-separable group G and let p | |N |. Then, there exists a p-element
x ∈ N such that χ(x) = 0 for some χ ∈ Bπ(G).

Proof. The Proposition is proved using arguments from the proof of [7,
Theorem A].

Let N = S1×· · ·×Sk with Si ∼= S for each i, where S is a non-abelian
simple group. Assume at first that there exists θ ∈ Irr(S) of p-defect zero,
then ψ = θ×· · ·×θ ∈ Irr(N) is of p-defect zero, too. By [14, Theorem 8.17],
ψ vanishes on every p-element of N . Let χ ∈ Bπ(G) lying over ψ, which
exists by Theorem 1.3.3, then all the irreducible constituents of χN are
conjugated to ψ and it follows that χ vanishes on every p-element of N .

By Lemma 2.5.5, one can assume now that there exists a p-element
x ∈ S and a character θ ∈ Irr(S) such that θ extends to Aut(S) and
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χ vanishes on x. Let ψ = θ × · · · × θ ∈ Irr(N), then ψ vanishes on
y = (x, · · · , x) and it extends to G by Lemma 2.5.4. In particular, ψ is
G invariant. It follows that, if χ is a Bπ-character of G which lies over ψ,
which exists again by Theorem 1.3.3, then χN is a multiple of ψ and it
vanishes on the p-element y.

2.6 Groups where every p-element is nonvanish-

ing

In this section, we study variants for the Bπ-characters of the results
in [7].

We have already seen in Proposition 2.5.3 that a π′-nonvanishing ele-
ment lying in the centre of a Hall π-subgroup is contained in Oπ(G). From
this, it easily follows that, if the Hall π-subgroup is nilpotent and every
π-element is π′-nonvanishing, then the Hall π-subgroup is normal in G.
However, a similar result can be also obtained imposing weaker conditions
on the group.

Proposition 2.6.1. Let G be a π-solvable group. If every p-element of G
is π′-nonvanishing for each p ∈ π, then G has a normal Hall π-subgroup.

Note that, if the Hall π-subgroup H is normal, then it is in the kernel
of every character in Bπ′(G), so this is also a sufficient condition.

Proof. One argues by induction on |G|.
Let G not be a π′-group and, at first, suppose Oπ(G) = 1. Let N be a

minimal normal subgroup of G, then N is a π′-group. By induction, G/N
has a normal Hall π-subgroup M/N . Thus, there exists K < M , K � G
such that K/N is a chief factor for G. Since G is π-solvable, then K/N
is an abelian π-group. By Schur-Zassenhaus theorem, K = NA for some
complement A of N in K.

Now, from Lemma 2.5.2 it follows that there exists a character χ ∈
Bπ′(G) which vanishes on every nontrivial element of the π-subgroup A of
G, in contradiction with the hypothesis.

It follows that, if G is not a π′-group, then O = Oπ(G) > 1. By
induction, the Hall π-subgroup H/O of G/O is normal. However, H/O ≤
Oπ(G/O) = 1, thus, H = O and it is normal in G.
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A reader may have noticed that, from the results of Proposition 2.6.1
and Theorem 2.1.2, it follows that, if G is a π-solvable group and each Bπ′-
character is π′-special, then G has a normal Hall π-subgroup. However,
in Chapter 4 we will see that the same is true also without assuming the
group to be π-solvable.

We shall now prove a version for π-nonvanishing elements of [7, The-
orem A]. However, as we have done in Theorem 2.4.4, we need to assume
the elements to be both π- and π′-nonvanishing.

Since it requires no extra effort, we prove a slightly more general ver-
sion of the theorem, in the spirit of the results we will see in the next
chapter.

Theorem 2.6.2. Let G be a π-separable group, let N � G and let p be
any prime. Suppose that no character in Bπ(G)∪Bπ′(G) vanishes on any
p-element of N . Then, N has a normal Sylow p-subgroup.

Proof. One argues by induction on |G|+ |N |.
Assume p divides |N |, otherwise the theorem is trivial. Moreover, we

can assume, without loss of generality, that p ∈ π.
If O = Op(N) > 1 and P is a Sylow p-subgroup of N , then by in-

duction the Sylow p-subgroup P/O of N/O is normal. However, P/O ≤
Op(N/O) = 1, thus, P = O is normal in N .

Suppose then that Op(N) = 1 and let M ≤ N be a minimal normal
subgroup of G. If p | |M |, then M is a nonabelian π-group and, by
Proposition 2.5.6, there exists a character in Bπ(G) which vanishes on
a p-element of M , in contradiction with the hypothesis. Thus, we can
assume p does not divide |M |.

By induction, let P0/M be a normal Sylow p-subgroup of N/M , which
is nontrivial because p divides |N : M |, and let C/M = Z(P0/M). Note
that C �G, since P0 �G. Let A be a complement of M in C. Then, by
Lemma 2.5.2, there exists a character in Bπ(G)∪Bπ′(G) which vanishes on
every nontrivial element of A. However, since A is a nontrivial p-subgroup
of N , this contradicts the hypothesis.

Corollary 2.6.3. Let G be π-separable and let N � G be a π-subgroup.
If no Bπ-character of G vanishes on any p-element of N , then N has a
normal Sylow p-subgroup. In particular, if every element of prime power
order of N is π-nonvanishing, then N is nilpotent.
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Proof. Since N is in the kernel of every Bπ′-character, every element of N
is π′-nonvanishing and the thesis follows directly from Theorem 2.6.2.

Clearly, if in Theorem 2.6.2 we take N = G, we have a version for
π-nonvanishing elements of [7, Theorem A].

Theorem 2.6.4. Let G be a π-separable group and let p be any prime.
Suppose that no character in Bπ(G) ∪ Bπ′(G) vanishes on any p-element
of G. Then, G has a normal Sylow p-subgroup.

It could be noticed that, from Theorem 2.6.4 and Theorem 2.1.2 it
follows that the group G has a normal (abelian) Sylow p-subgroup if and
only if p does not divide the degree of any character in Bπ(G) ∪ Bπ′(G).
However, we will give a different proof of this fact in Chapter 4.



Chapter 3

Nonvanishing elements in

normal subgroups

As a digression from the main theme of the thesis, in this chapter
we talk about nonvanishing elements of a group which are contained in
a normal subgroup. We first assume that all the p elements of a normal
subgroup N of a group G are nonvaishing in G and we see that N has
a normal Sylow p-subgroup. Then we weaken our hypothesis on N by
allowing some elements to be vanishing in G and imposing conditions on
class sizes of these elements.

3.1 Introduction and preliminaries

The results in this chapter are from a joint work with M. J. Felipe and
V. Ortiz-Sotomayor, of the Universitat Politècnica de València.

In Chapter 2 we studied the properties of elements of a π-separable
group G where no Bπ-character vanishes. Let N be a normal subgroup of
G, in this chapter we investigate the properties of elements of N where no
irreducible character of G vanishes.

The result presented in this chapter do not involve Bπ-characters, since
it would need to add the hypothesis of the group to be π-separable, which
otherwise we can avoid. Therefore, this chapter needs to be seen more as
a digression from the main theme of the thesis.

29
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However, we mention that, with the further hypothesis of the group
being π-separable, most of the results presented here still hold if we con-
sider elements of a normal subgroup where no character in Bπ(G)∪Bπ′(G)
vanishes.

A first result can be obtained as a consequence of Theorem 2.6.2, from
Chapter 2.

Theorem 3.1.1. Let N be a normal subgroup of a group G, and let p be
a prime. If χ(x) 6= 0 for every p-element x ∈ N and for all χ ∈ Irr(G),
then N has a normal Sylow p-subgroup.

In particular, if χ(x) 6= 0 for every prime power order element x ∈ N
and for all χ ∈ Irr(G), then N is nilpotent.

Proof. It follows directly from Theorem 2.6.2, when we take π = π(G),
i.e., we take as π the set of all the primes dividing |G|.

Let us denote as Van(G) the set of all vanishing elements of the group
G.

A straightforward consequence of Burnside’s Theorem is that, if we
have Van(G) = ∅, then G is abelian. Concerning fact, it is worth noting
that, in general, it is not true that a normal subgroup N is abelian if and
only if every element of N is non-vanishing in G, i.e. if N ∩Van(G) = ∅.

In fact, if G = Q8 is a quaternion group of 8 elements and N is a
normal subgroup of G isomorphic to a cyclic group of order 4, then N is
abelian and N ∩ Van(G) 6= ∅. On the other hand, by [26, Theorem 5.1],
for any prime p there exists a group G having a normal non-abelian Sylow
p-subgroup, and every p-element of G is non-vanishing.

Moreover, one may notice that, from Theorem 2.1.7, which appears as
Theorem B in [26], it follows that G r Z(G) = Van(G) for any nilpotent
group G. Observe, however, that if a normal subgroup N is nilpotent,
then N r Z(G) may not coincide with Van(G)∩N . For instance, one can
consider as G the normaliser in a Suzuki group of degree 8 of a Sylow 2-
subgroup of it, and N the Sylow 2-subgroup. It holds that Van(G)∩N = ∅
although clearly N r Z(G) 6= ∅.

In fact, in general, Van(N) 6= Van(G) ∩ N . It can happen, however,
under some conditions.
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Lemma 3.1.2. [12, Corollary 1.3] Let H be a subgroup of a group G.
Assume that G = H CG(x) for some x ∈ H. Then x ∈ Van(G) if and only
if x ∈ Van(H).

In the chapter, we also generalize some results on nonvanishing ele-
ments by imposing conditions on the class size of vanishing elements of
the group. For this reason, we collect here some preliminary results regard-
ing conjugacy class sizes. We start with the next elementary properties
which are frequently used, sometimes with no comment.

Lemma 3.1.3. Let N be a normal subgroup of a group G, and let p be a
prime. We have:

(a)
∣∣xN ∣∣ divides

∣∣xG∣∣, for any x ∈ N .

(b)
∣∣(xN)G/N

∣∣ divides
∣∣xG∣∣, for any x ∈ G.

(c) If xN ∈ G/N is a p-element, then xN = yN for some p-element
y ∈ G.

Lemma 3.1.4. Let N be a normal subgroup of a group G, and let H ∈
Hallπ (N) for a set of primes π. If x ∈ H is such that

∣∣xG∣∣ is a π-number,
then x lies in Oπ(N).

Proof. Since
∣∣xN ∣∣ divides

∣∣xG∣∣, then (
∣∣xN ∣∣ , |N : H|) = 1. It follows N =

H CN (x) and so 〈xN 〉 ≤ Oπ(N).

We also recall a generalisation of the above lemma when N = G and
π = {p}.

Lemma 3.1.5. [3, Lemma 3] Let x ∈ G. If
∣∣xG∣∣ is a power of a prime p,

then [xG, xG] is a p-group.

We end this section with the main result of [5], which will be necessary
for proving Theorem 3.3.7. We present here an adapted version for our
context of vanishing G-conjugacy classes.

Proposition 3.1.6. [5, Main Theorem] Let G be a group which contains
a non-trivial normal p-subgroup N , for a given prime p. Then

∣∣xG∣∣ is a
multiple of p for each x ∈ N ∩Van(G).
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3.2 Nonvanishing elements and normal Sylow p-

subgroups

In the Introduction of Chapter 2 we have mentioned Theorem 2.1.10,
which appears as Theorem B in [28], which links the normality of a Sylow
subgroup P of a group G with the fact that no irreducible constituent of
(1P )G vanishes on the elements of P .

The aforementioned Theorem 3.1.1, on the other hand, fails to provide
such link. In this section, we refine Theorem 3.1.1 in order to have an ana-
logue of Theorem 2.1.10 for nonvanishing elements in normal subgroups.

Theorem 3.2.1. Let N be a normal subgroup of a group G, and let P
be a Sylow p-subgroup of G for some prime p. Let P0 = P ∩ N and
β ∈ Irr(P/P0). Then the following conditions are pairwise equivalent:

(i) P0 is a normal Sylow p-subgroup of N ;

(ii) χ(x) 6= 0 for all irreducible constituents χ of (1P0)G and all x ∈ P0;

(iii) χ(x) 6= 0 for all irreducible constituents χ of βG and all x ∈ P0.

To prove the theorem, we will use some of the results we already men-
tioned in Section 2.5. Some of them, however, need to be adapted to the
hypothesis of Theorem 3.2.1.

For this purpose, we mention here some preliminary results from [28],
which rely on the Classification of finite simple groups.

Lemma 3.2.2. [28, Lemma 2.2] Let G be a finite group, p a prime, and
P ∈ Sylp (G). If χ ∈ Irr(G) has p-defect zero, then χ is a constituent of

(1P )G and vanishes on the non-trivial p-elements of G.

Lemma 3.2.3. [28, Theorem 2.1] Let S be a finite non-abelian simple
group, p a prime, and P ∈ Sylp (S). Then either S has a p-defect zero
character, or there exists a constituent θ ∈ Irr(S) of the permutation char-
acter (1P )S such that θ extends to Aut(S) and θ(x) = 0 for some p-element
x of S.

Now, we can prove the next proposition, inspired by the proof of [28,
Theorem B].
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Proposition 3.2.4. Let M be a non-abelian minimal normal subgroup of
a group G, and let p be a prime divisor of |M |. Let H be a subgroup of G
such that H ∩M ∈ Sylp (M). Let β ∈ Irr(H/H ∩M) Then, there exists

χ ∈ Irr(G) such that χ is a constituent of βG and it vanishes on some
p-element of M .

In particular, if H = P ∈ Sylp (G), then there exists χ ∈ Irr(G) such

that χ is a constituent of (1P )G and it vanishes on some p-element of M .

Proof. We have M = S1 × · · · × Sk, where all Si are isomorphic to a
non-abelian simple group S with p ∈ π(S). If θ ∈ Irr(S) is of p-defect
zero, then η = θ × · · · × θ ∈ Irr(M) and η is also of p-defect zero. By
Lemma 3.2.2 applied to M we have [η, (1H∩M )M ] 6= 0 and η vanishes on
the non-trivial p-elements of M .

Since β ∈ Irr(H/H∩M), we have [βH∩M , 1H∩M ] 6= 0. Then (βHM )M =
(βH∩M )M = β(1)(1H∩M )M and [η, (βHM )M ] = [ηHM , βHM ] 6= 0. Hence
there exists τ ∈ Irr(HM) such that [τ, ηHM ] 6= 0 6= [τ, βHM ]. Let χ ∈
Irr(G) over τ . Then χM is sum of G-conjugate characters of η. Therefore
χ vanishes on the non-trivial p-elements of M and [χ, βG] = [χH , β] 6= 0.

Suppose now that S does not have a character of p-defect zero. We have
that, by Lemma 3.2.3, there exists θ ∈ Irr(S) such that [θ, (1H∩S)S ] 6= 0
(note H ∩ S ∈ Sylp (S)) which extends to Aut(S), and there exists a
p-element x ∈ S such that θ(x) = 0. Thus 1 6= y = (x, . . . , x) ∈M is a p-
element and η = θ×· · ·×θ vanishes on y, and certainly [ηH∩M , 1H∩M ] 6= 0.
Since [βH∩M , 1H∩M ] 6= 0, arguing as in the previous paragraph, we may
affirm that there exists τ ∈ Irr(HM) over η and over β. Let χ ∈ Irr(G)
be over η, so [χ, βG] 6= 0. By Lemma 2.5.4, η extends to G. Let η̂ be an
extension of η. By Gallagher, χ = η̂ρ for some ρ ∈ Irr(G/M). Therefore,
χ lies over β and χ(y) = η(y)ρ(1) = 0.

Theorem 3.2.5. Let N be a normal subgroup of a group G, and let P0

be a Sylow p-subgroup of N for some prime p. Let H be a subgroup of G
such that H ∩N = P0, and let β ∈ Irr(H/P0). Then, P0 is normal in N
(and therefore in G) if and only if all irreducible constituents of βG do not
vanish on any p-element of N .

Proof. Suppose P0�N . Let χ be a constituent of βG for β ∈ Irr(H/H∩N).
We have [βP0 , 1P0 ] 6= 0, so [χP0 , 1P0 ] 6= 0. Since P0 � G, then χ(x) 6= 0
for all p-elements x ∈ N . Conversely, we consider that all irreducible
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constituents of βG, where β ∈ Irr(H/H ∩ N), do not vanish on any p-
element of N , and we claim that P0 is normal in N .

Suppose that the claim is false, and let us consider a counterexample
which minimises |G|. Let M be a minimal normal subgroup of G such
that M 6 N . We check that the hypotheses are inherited by G = G/M .
Certainly H ∩N = N/M ∩HM/M = (H ∩N)M/M ∈ Sylp (N/M). Since

β ∈ Irr(H/H ∩N), then β ∈ Irr(H/H ∩M) so β ∈ Irr(HM/M). Besides,
H ∩ N 6 kerβ, so H ∩N 6 kerβ. Let χ ∈ Irr(G) be an irreducible

constituent of β
G

and x ∈ N a p-element. Then we may assume that

x ∈ N rM is a p-element and, since [χ, β
G

] 6= 0, then it is easy to see
that [χH , β] 6= 0 and χ(x) = χ(x) 6= 0. By minimality, we get P0 �G, so
P0M �G.

Let us assume that p divides the order of M . If M is a p-group, then
M 6 P0 and P0 = P0M � G, a contradiction. Hence M is non-abelian.
Since β ∈ Irr(H/H ∩M), in virtue of Lemma 3.2.4 there exists χ ∈ Irr(G)
such that [χ, βG] 6= 0 and χ(x) = 0 for some p-element x ∈ M 6 N , a
contradiction again.

Thus p does not divide the order of M and Op(N) = 1. Let K/M be a
chief factor of G such that K ≤ P0M �G, so K/M is an abelian p-group.
Note K = M(K ∩ P0) and K ∩ P0 ∈ Sylp (K) is abelian. By Frattini’s
argument, G = K NG(K ∩ P0) = M NG(K ∩ P0), so CK∩P0(M) � G and
CK∩P0(M) 6 Op(N) = 1. Therefore K ∩ P0 is an abelian p-group which
acts coprimely and faithfully on M , and M is characteristically simple.
By Lemma 2.5.1 and Clifford theory, there exists θ ∈ Irr(M) such that
η = θK is irreducible. In particular, η and all its conjugates vanish on
KrM . Therefore, if we prove that there exists χ ∈ Irr(G) which lies over
both η and β we will reach the final contradiction.

Let T be the inertia subgroup for θ in P0M�G. Since (|T/M | , |M |) =
1 we have that θ extends to θ̂ ∈ Irr(T ) by [14, Corollary 6.28]. Further,
p does not divide θ̂(1) so θ̂P0∩T has at least one linear constituent λ. As
T = M(P0∩T ), then P0∩T ∼= T/M and we can see λ also as a character of
T/M . By Gallagher, ν = λ̄θ̂ is an irreducible character of T , where λ̄ is the
complex conjugate of λ. Moreover, νM = θ and by Clifford correspondence
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νP0M ∈ Irr(P0M). Hence

0 6= [1P0∩T , λP0∩T θ̂P0∩T ] = [1P0∩T , νP0∩T ] = [(νP0∩T )P0 , 1P0 ] =

= [(νP0T )P0 , 1P0 ] = [(νP0M )P0 , 1P0 ] = [νP0M , (1P0)P0M ],

while (βHN )N = β(1)(1P0)N = β(1)((1P0)P0M )N , so

[(βHN )N , (ν
P0M )N ] = [(βHN )N , ν

N ] = [βHN , νHN ] 6= 0.

Therefore there exists τ ∈ Irr(HN) over β and over ν. Let χ ∈ Irr(G)
over τ , so [χ, βG] 6= 0. Moreover, χ lies over θ, and then χ lies over η = θ̂.
Thus χK is a sum of G-conjugate characters of η. Hence χ(x) = 0 for all
x ∈ K ∩ P0 and this is a final contradiction.

Theorem 3.2.1 is now a corollary of the above result when we take
H a Sylow p-subgroup of G (for Theorem 3.2.1 (iii)) and H = P0 (for
Theorem 3.2.1 (ii)). Moreover, when N = G in Theorem 3.2.1, then we
obtain Theorem 2.1.10.

Example 3.2.6. (1) Note that in Theorem 3.2.1 it is possible to choose
β ∈ Irr(P/P0) distinct from 1P , in contrast to Theorem 2.1.10: Let G
be a symmetric group of degree 4 and let N be an alternating group of
degree 4. Take P ∈ Syl2 (G). Then there exists a non-trivial irreducible
character β ∈ Irr(P ) with P0 = P ∩ N 6 kerβ. Additionally, the irre-
ducible constituents of βG do not vanish on the p-elements of N , so the
hypotheses in Theorem 3.2.1 (iii) are fulfilled.

(2) The following equivalence, similar to Theorem 2.1.10 (i)-(iii), is
not true: P0 is a normal Sylow p-subgroup of N if and only if p does not
divide χ(1) for all irreducible constituents of (1P0)G: Consider G and N
as above. Then (1P0)G has three distinct irreducible constituents, being
one of them of degree 2.

Both examples have been checked using the software GAP.

Let consider now a set of primes π instead of a single prime p. As a
consequence of Theorem 3.1.1, we give in the following proposition extra
information on the structure of a π-complement of G when N contains a
Hall π-subgroup of it.
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Proposition 3.2.7. Let N be a normal subgroup of a group G such that
every prime power order π-element of N is non-vanishing in G, for a set
of primes π. Then N has a nilpotent normal Hall π-subgroup.

Further, if |G : N | is a π′-number, then any π-complement F of G
verifies that F Z(G) is self-normalising.

Proof. Certainly, in virtue of Theorem 3.1.1 we have that N has a nilpo-
tent normal Hall π-subgroup, say H. In fact, if |G : N | is not divisible by
any prime in π, then H is a normal Hall π-subgroup of G. Let F be a
π-complement of H in G, so G = HF . We aim to show that F Z(G) =
NG(F Z(G)). Take a prime power order element x ∈ NH(F Z(G)). Then
F x Z(G) = (F Z(G))x = F Z(G), so there exists some y ∈ F Z(G) such
that F x = F y = F . Thus, x ∈ NH(F ) 6 CH(F ) because [NH(F ), F ] 6
H∩F = 1. Therefore G = HF = H CG(x). Since x /∈ Van(G) by assump-
tion, then Lemma 3.1.2 yields that x /∈ Van(H). Since H is nilpotent, from
Theorem 2.1.7 it follows that x ∈ Z(H) ∩ CG(F ) 6 Z(G). As this argu-
ment is valid for every prime power order element in NH(F Z(G)), then
NH(F Z(G)) 6 Z(G). Finally, note that NG(F Z(G)) = NG(F Z(G)) ∩
HF = F (NH(F Z(G))) = F Z(G), as wanted.

Corollary 3.2.8. Let G be a group such that all the p-elements are non-
vanishing. Then G has a normal Sylow p-subgroup, and F Z(G) is self-
normalising for any p-complement F of G.

3.3 Lengths of G-conjugacy classes of vanishing

elements

We now study the problem under a weaker assumption: instead of
asking that no element of a given order is vanishing, we impose a condition
on class size of the vanishing element.

In general, the group G is not asked to be δ-separable, for some set of
primes δ. We mention, however, that if G is δ-separable, then the same
results are still valid if we replace the condition of being vanishing with
the condition of being δ- or δ′-vanishing.

We start by showing an extension of Lemma 3.1.5 for a set of primes
π and a G-conjugacy class. The proof is inspired by [2, Theorem C] under
the weaker hypothesis of the π-separability of the normal subgroup N .
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Proposition 3.3.1. Let N be a normal π-separable subgroup of a group
G. If x ∈ N is such that

∣∣xG∣∣ is a π-number, then [xG, xG] 6 Oπ(N). In
particular, xOπ(N)/Oπ(N) ∈ Z(F(N/Oπ(N))).

Indeed, if π consists of a single prime p, then the same statement is
valid even if N is not p-soluble.

Proof. In order to prove the first claim, let us consider a counterexample
which minimises |G| + |N |. One can clearly assume Oπ(N) = 1, so we
aim to get the contradiction [xG, xG] = 1. Let us suppose firstly that 〈x〉
is subnormal in G. Then x ∈ F(G). As F(G) is a π′-group and

∣∣xG∣∣ is a
π-number, then clearly x ∈ Z(F(G)) and 〈xG〉 6 Z(F(G)), so [xG, xG] = 1.

Next we assume that the normal subgroup M := 〈xG〉 is proper in
N . Then by minimality we obtain [xM , xM ] = 1, and it follows that
x ∈ Z(〈xM 〉). In particular, 〈x〉 is subnormal in M , and therefore in G,
which contradicts the previous paragraph. Hence M = N .

Let K := Oπ′(N). Since N is π-separable, then K is non-trivial.
It follows from the class size hypothesis that K centralises xG, so K is
central in N = 〈xG〉. As [xG, xG]K/K 6 Oπ(N/K) by minimality, and
Oπ(N/K) = Oπ(N)K/K because K is central N , we deduce [xG, xG] =
N ′ 6 K 6 Z(N). Therefore N is a nilpotent π′-group. Since

∣∣xG∣∣ is a
π-number, we obtain x ∈ Z(N) and [xG, xG] = 1.

Next we concentrate on the second assertion. Let G := G/Oπ(N).

Then, [xG, xG] = 1 by the first claim. It follows that 〈x〉 � Z(〈xG〉) � G,
so 〈x〉 6 F(G) ∩ N 6 F(N). As F(N) is a normal π′-subgroup of G and

|xG| is a π-number, then necessarily x ∈ Z(F(N)).
Finally, observe that the last statement follows from Lemma 3.1.5,

since [xG, xG] 6 Op(G) ∩N 6 Op(N).

Example 3.3.2. Note that the π-separability assumption in the previous
result cannot be removed, even when N = G: Consider any non-trivial
element in the centre of a Sylow p-subgroup of a non-abelian simple group
and π = p′, for a prime divisor p of its order.

For a normal subgroup N of a group G, note that if xN is a vanishing
(prime power order) element of G/N , then we can assume that x is also
a vanishing (prime power order) element of G. This is because there
exists a bijection between Irr(G/N) and the set of all characters in Irr(G)
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containing N in their kernel. This fact will be used in the sequel with no
reference.

As an application of the above proposition and mainly Theorem 3.1.1,
we prove the following.

Theorem 3.3.3. Let N be a normal subgroup of a group G, and let π be
any set of prime numbers.

(1) Suppose that
∣∣xG∣∣ is a π′-number for every prime power order π-

element x ∈ N which is vanishing in G. If N is π-separable, then
N/Oπ′(N) has a nilpotent normal Hall π-subgroup. In particular,
the Hall π-subgroups of N are nilpotent.

(2) Suppose that
∣∣xG∣∣ is a π-number for every prime power order π-

element x ∈ N which is vanishing in G. If Hallπ (N) 6= ∅, then
N has a normal Hall π-subgroup. Additionally, if all

∣∣xG∣∣ are also
π-numbers for the prime power order π′-elements x ∈ N that are
vanishing in G, then the Hall π′-subgroups of N are nilpotent.

Proof. (1) Assume that N is π-separable, and that
∣∣xG∣∣ is a π′-number

for every prime power order π-element x ∈ Van(G) ∩ N . Let us prove
that N/Oπ′(N) has a normal Sylow p-subgroup for each prime p ∈ π.
Certainly, whenever Oπ′(N) 6= 1, the assertion follows by induction, con-
sidering the groups G/Oπ′(N) and N/Oπ′(N). Therefore we may assume
that Oπ′(N) = 1. Let Zp := Z(Op(N)). In virtue of Proposition 3.3.1,
we have that all the p-elements of Van(G) ∩ N lie in Z(F(N)), and thus
in Zp. Therefore, if we denote G := G/Zp, then it follows that no prime
power order p-element of N is vanishing in G. Now Theorem 3.1.1 yields
that N has a normal Sylow p-subgroup P , where P ∈ Sylp (N). Since Zp
is a p-group, then P is normal in N clearly and we get the claim. As this
is valid for each prime p ∈ π, then N/Oπ′(N) has a nilpotent normal Hall
π-subgroup, as wanted.

(2) Assume that N has Hall π-subgroups, and that
∣∣xG∣∣ is a π-number

for every prime power order π-element x ∈ Van(G)∩N . We claim that N
has a normal Hall π-subgroup. Clearly we may assume Oπ(N) = 1. Let
H ∈ Hallπ (N), and let p ∈ π. If x ∈ N ∩ Van(G) is a p-element, then
x ∈ P ∈ Sylp (N). Hence there exists g ∈ N such that xg ∈ P g ∈ Sylp (H).
Now Lemma 3.1.4 yields xg ∈ Oπ(N) = 1. Thus there are no p-elements
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in N ∩Van(G), and by Theorem 3.1.1 we get that N has a normal Sylow
p-subgroup. Since this is valid for every prime p ∈ π, then N has a
(nilpotent) normal Hall π-subgroup, as desired.

Next we show that N has nilpotent Hall π′-subgroups under the addi-
tional assumption that the prime power order π′-elements in N ∩Van(G)
have also G-class sizes not divisible by any prime in π′. Note that N
is π-separable because it has a normal Hall π-subgroup, say H. If we
take any prime power order element xH ∈ (N/H) ∩ Van(G/H), then we
may suppose that x ∈ N ∩ Van(G) is a prime power order element, so
by assumptions

∣∣xG∣∣ is a π-number. Thus
∣∣(xH)G/H

∣∣ is also a π-number.

Therefore every
∣∣(xH)G/H

∣∣ is a π-number for each prime power order π′-
element xH ∈ (N/H)∩Van(G/H), so by assertion (1) the π′-group N/H
is nilpotent. Since N/H is isomorphic to a Hall π′-subgroup of N , the
proof is completed.

Example 3.3.4. We remark that the π-separability assumption in Theo-
rem 3.3.3 (1) is necessary for the first claim. Let G be a symmetric group
of degree 5, and let N be an alternating group of degree 5. Consider
π = {3}. Then all the 3-elements in N ∩Van(G) have conjugacy class size
equal to 20. Nevertheless, N/Oπ′(N) = N does not have a normal Sylow
3-subgroup.

Example 3.3.5. It is not difficult to find groups satisfying the assump-
tions of Theorem 3.3.3. For instance, let G = AΓ(23) be an affine semi-
linear group of order 168, and let N be the Hall 3′-subgroup of G. If we
consider π = {7}, then the pair (N,G) satisfies the hypotheses of The-
orem 3.3.3 (1). Concerning Theorem 3.3.3 (2), if π is any set of prime
numbers, G = Oπ(G) × Oπ′(G) and N = Oπ(G), then the pair (N,G)
certainly holds the hypotheses.

The next theorem combines the arithmetical conditions on the vani-
shing G-class sizes of Theorem 3.3.3.

Theorem 3.3.6. Let N be a normal π-separable subgroup of a group G.
Assume that

∣∣xG∣∣ is either a π-number or a π′-number for every prime
power order π-element x ∈ Van(G) ∩ N . Then N/Oπ′(N) has a normal
Hall π-subgroup. Thus N has π-length at most 1.



CHAPTER 3. Nonvanishing elements in normal subgroups 40

Proof. First, we claim that O := Oπ,π′(N) contains a Sylow p-subgroup
of N , for a prime p ∈ π. Let x ∈ Van(G) ∩ N be a p-element. If

∣∣xG∣∣
is a π-number, then x lies in Oπ(N) because of Lemma 3.1.4, so clearly
x ∈ O. If

∣∣xG∣∣ is a π′-number, then by Proposition 3.3.1 we get xOπ′(N) ∈
F(N/Oπ′(N)), and again x lies in O. It follows that N := N/O contains
no vanishing p-element of G/O, so N has a normal Sylow p-subgroup P in
virtue of Theorem 3.1.1. Since p ∈ π and clearly Oπ(N) = 1, thus P = 1.

Therefore O contains a Sylow p-subgroup of N for every p ∈ π, and
thus O/Oπ′(N) is a Hall π-subgroup of N/Oπ′(N).

The main theorem of [2] examines groups such that all their π-elements
have prime power class sizes. The next result is a “vanishing version” of
that theorem for prime power order elements and in the context of G-
conjugacy classes.

Theorem 3.3.7. Let N be a normal subgroup of a group G. Assume that∣∣xG∣∣ is a prime power for each prime power order π-element x ∈ N that
is vanishing in G. Then N/Oπ′(F(N)) has a normal Hall π-subgroup.

In particular, if π is the set of prime divisors of |N |, then N/F(N) is
nilpotent.

Proof. We claim that N := N/F(N) has a normal Hall π-subgroup, and
therefore N/Oπ′(F(N)) so does because F(N)/Oπ′(F(N)) is a π-group.
Arguing by contradiction, and in virtue of Proposition 3.2.7, we may as-
sume that N ∩ Van(G) contains a non-trivial q-element for some prime
q ∈ π, say x. Hence we may suppose that x ∈ (N ∩ Van(G))r F(N) is a
q-element. By assumptions, we have that

∣∣xG∣∣ is a power of some prime
p. Observe that, since x /∈ F(N), then q 6= p due to Lemma 3.1.4. Now
the last statement of Proposition 3.3.1 yields (〈xG〉)′ 6 Op(N) 6 F(N),

so 〈x〉 is a subnormal nilpotent subgroup of N . It follows that x ∈ F(N),

and as x is a q-element, then x ∈ Oq(N). Now
∣∣∣xG∣∣∣ is a multiple of q by

Proposition 3.1.6, and then
∣∣xG∣∣ so is, a contradiction.

Finally, if π = π(N), then with a similar argument we deduce that
there is no prime power order element in N/F(N) vanishing in G/F(N).
Hence Theorem 3.1.1 applies and N/F(N) is nilpotent.
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3.4 Some consequences on vanishing conjugacy

classes

New interesting contributions on the lengths of vanishing classes of a
group G emerge from Theorem 3.3.3, Theorem 3.3.6 and Theorem 3.3.7
when N = G.

Theorem 3.4.1. Let G be a π-separable group. If
∣∣xG∣∣ is a π′-number

for every prime power order π-element x ∈ Van(G), then G/Oπ′(G) has
a nilpotent normal Hall π-subgroup. Therefore, G has nilpotent Hall π-
subgroups, and its π-length is at most 1.

Theorem 3.4.2. Let G be a finite group such that Hallπ (G) 6= ∅. Assume∣∣xG∣∣ is a π-number for every prime power order π-element x ∈ Van(G).
Then G has a normal Hall π-subgroup.

Further, if the prime power order π′-elements in Van(G) have also
class size a π-number, then the Hall π′-subgroups of G are nilpotent.

Theorem 3.4.3. Let G be a group. Suppose that
∣∣xG∣∣ is either a π-number

or a π′-number for every prime power order π-element x ∈ Van(G). Then
G/Oπ′(F(G)) has a normal Hall π-subgroup. In particular, G has π-length
at most 1.

Theorem 3.4.4. Let G be a group. Assume that
∣∣xG∣∣ is a prime power

for every vanishing element x of G of prime power order. Then G′ is
nilpotent.

Proof. Arguing as in the proof of Theorem 3.3.7 we can see that G/F(G)
has no prime power order vanishing elements. Thus, Theorem 2.1.1 applies
and G/F(G) is abelian, so G′ is nilpotent.



Chapter 4

Bπ-character degrees and

normal subgroups

The classical Ito-Michler theorem and Thompson’s theorem on charac-
ter degrees prove that there exists a deep connection between the normal
structure of a group G and the primes dividing the degrees of characters in
Irr(G). In this chapter, we will see some variants, involving Bπ-characters,
of these two theorems. In particular, we will see that the theorems are
still true if we consider the set Bπ(G) ∪ Bπ′(G) instead of Irr(G).

4.1 Character degrees and normal subgroups

One of the main topics of the theory of characters of finite groups is to
find connections between the normal structure of a group and the primes
dividing the degrees of its irreducible characters.

The most famous result of this type is the classical theorem of Ito-
Michler.

Theorem 4.1.1 (Ito-Michler). Let G be a finite group and let p a prime
number, then G has a normal abelian Sylow p-subgroup if and only if p
does not divide the degree of any character in Irr(G).

There exists many variants of this theorem, one of them involves irre-
ducible Brauer character and it is due to Michler himself.

42
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Theorem 4.1.2 (Michler). Let G be a finite group and let p a prime
number, then G has a normal Sylow p-subgroup if and only if p does not
divide the degree of any character in IBrp(G).

In more recent years, some more variants of Ito-Michler Theorem have
been found.

A first result, that we already cited in Chapter 2, links the normality
of the Sylow subgroup with the degree of only some of the irreducible
characters.

Theorem 4.1.3 ([28, Theorem B]). Let G be a finite group, let p be a
prime and let P ∈ Sylp (G). Then, P �G if and only if p does not divide

the degree of any irreducible constituent of (1P )G.

Another result of this type takes into account p-rational characters,
i.e., those characters whose field of values is contained in a cyclotomic
field Qn for some n not divisible by p.

Theorem 4.1.4 ([35, Theorem A]). Let G be a finite group and let p be
a prime. If p does not divide the degree of any p-rational character in
Irr(G), then G has a normal Sylow p-subgroup.

In Section 1.4 we have seen that, in a p-solvable groupG, the characters
in IBrp(G) are lifted by the characters in Bp′(G), therefore they have the
same character degrees. Moreover, we have seen in Section 1.5 that, if the
group G is of odd degree and P ∈ SylP (G), Bp′-characters are exactly
the constituents of (1P )G of odd multiplicity, and exactly the p-rational
characters of G.

This may suggest that there are analogues of Theorems 4.1.3 and 4.1.4
also for Bπ-characters.

The next theorem, due to Thompson, is a sort of dual of the theorem
of Ito-Michler, since it describes what happens when a prime divides the
degree of each nonlinear irreducible character of a group.

Theorem 4.1.5 ([14, Corollary 12.2]). Let G be a finite group and p a
prime. If p divides the degree of every nonlinear irreducible character of
G, then G has a normal p-complement.
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In [38], it is studied a variant of the above theorem which involves
more then one prime. Let Irrπ′(G) be the set of irreducible characters
which degree is not divided by any prime in π, for some set of primes π.
Then, the condition that p divides the degree of every irreducible nonlinear
character of G is equivalent to asking that Irrp′(G) = Lin(G).

Theorem 4.1.6. [38, Corollary 3] Let G be a π-separable group and let H
be a Hall π-subgroup, then Irrπ′(G) = Lin(G) if and only if G′ ∩NG(H) =
H ′.

Notice that, if Thompson’s theorem holds for a group G and a prime
p, then G is p-solvable and, thus, Theorem 4.1.6 applies, too.

4.2 Variants of Ito-Michler theorem

In this section, we see some variants of Ito-Michler theorem for Bπ-
characters. The techniques we use are similar to the ones of Chapter 2.
In particular, we use the results we cited in Section 2.5.

As a first result of the section, we present a different proof of [18,
Theorem 3.17] using Lemma 2.5.2.

We recall that a Bπ-character χ belongs to Xπ(G), i.e., it is π-special,
if and only if its degree is a π-number.

Theorem 4.2.1 ([18, Theorem 3.17]). Let G be π-separable, then Bπ(G) =
Xπ(G) if and only if G has a normal π-complement.

Proof. Note at first that, if G has a normal π-complement, then it follows
that Bπ(G) = Xπ(G). Thus, there is only one implication to be proved.

Let us assume that Bπ(G) = Xπ(G) and prove the thesis by induction
on |G|. At first, let us assume that Oπ′(G) = 1.

Let N be a minimal normal subgroup of G and suppose it to be a π-
group. Since the hypothesis are preserved by factor groups, if H is a Hall
π′-subgroup of G, then by induction HN is normal in G. In particular, it
follows that there exists K � G such that K/N is a π′-chief factor of G.
Since |N | and |K/N | are coprime, at least one of them is odd and, thus,
since an odd group is solvable and both N and K/N are minimal normal
subgroups, of G and G/N respectively, at least one of them is abelian.
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Suppose K/N is abelian and let A be an abelian complement of N in
K. Since we have assumed Oπ′(G) = 1, it follows by Lemma 2.5.2 that
there exists a character in Bπ(G) which degree is divided by the π′-number
|K : N |, contradicting the hypothesis.

Suppose now that K/N is not abelian, so N has to be, and let λ ∈
Irr(N) = Bπ(N). If λ is not K-invariant, then the degree of some θ ∈
Bπ(K | λ) is divided by some primes in π′ and, therefore, so is the degree
of some character χ ∈ Bπ(G | θ), in contradiction with the hypothesis. It
follows that K fixes every character of N and, thus, it also centralizes N ,
since N is abelian. If B is a complement of N in K, it follows that it is
normal in K. In particular, 1 < B = Oπ′(K) ≤ Oπ′(G).

Therefore, we have that Oπ′(G) 6= 1 and the thesis follows by induction,
because Bπ(G/Oπ′(G)) = Bπ(G).

In Chapter 2, we have anticipated that we can tell whether a group has
a normal Sylow p-subgroup from the degrees of the characters in Bπ(G)∪
Bπ′(G). We actually have an exact equivalent of Ito-Michler theorem for
π-separable groups.

Theorem 4.2.2. Let G be a π-separable group and p be any prime. Then
G has a normal abelian Sylow p-subgroup if and only if p does not divide
the degree of any character in Bπ(G) ∪ Bπ′(G).

Proof. It can be observed that there is little to prove in one direction,
being it a consequence of the Ito-Michler theorem. Thus, we assume that
p does not divide the degree of any character in Bπ(G) ∪ Bπ′(G) and we
first prove that there exists a normal Sylow p-subgroup. We argue by
induction on |G|.

Let N be a minimal normal subgroup of G. Without loss of generality,
we can assume N to be a π-group. If p | |N |, then p ∈ π. By induction,
let K/N be a normal Sylow p-subgroup of G/N , then K is a normal
π-subgroup of G which contains a Sylow p-subgroup P ∈ Sylp (G). If
P is normal abelian in K, then it is also in G. Otherwise, there exists
θ ∈ Irr(K) = Bπ(K) such that p | θ(1) and, by Theorem 1.3.3, there exists
χ ∈ Bπ(G) lying over θ. As a consequence, p | χ(1), in contradiction with
the hypothesis.

Therefore, we can assume p does not divide |N |. Since N is arbitrarily
chosen, we can assume that Op(G) = 1. As in the previous paragraph, let
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K/N be a normal Sylow p-subgroup of G/N , which is nontrivial because
p divides |G : N |, and let C/N = Z(K/N). Note that C �G. Let A be a
complement of N in C. Then, by Lemma 2.5.2, there exists a character χ
in Bπ(G) ∪Bπ′(G) such that |C : N | divides χ(1). However, since |C : N |
is a power of p, this would contradict the hypothesis.

Finally, if P is a normal Sylow p-subgroup of G and γ ∈ Irr(P ), then
by Theorem 1.3.3 there exists χ ∈ Bπ(G)∪Bπ′(G) lying over γ and, thus,
γ(1) | χ(1). Since p - χ(1), then γ is linear. It follows that Irr(P ) = Lin(P )
and, thus, P is abelian.

Since the conditions on the group of Theorem 4.2.2 are the same as in
the Theorem of Ito-Michler, a corollary easily follows.

Corollary 4.2.3. Let G be a π-separable group and let p be any prime.
Then, p divides the degree of some characters in Irr(G) if and only if it
divides the degree of some characters in Bπ(G) ∪ Bπ′(G).

Finally, we recall that, in a p-solvable group G, the set Bp′(G) is a
family of lifts for the irreducible Brauer characters.

Corollary 4.2.4. Let G be a p-solvable group. If a prime q divides the
degree of some characters in Irr(G) and it does not divide the degree of any
irreducible Brauer character, then q divides the degree of some characters
in Bp(G).

4.3 Groups where only one Bπ-character is not

π-special

In the previous section, we have seen what happens when Bπ(G) =
Xπ(G). We now see what can we say on a group when |Bπ(G) \Xπ(G)| =
1.

A first result is easy to prove.

Proposition 4.3.1. Let G be π-separable and suppose Bπ(G) \ Xπ(G) =
{χ}. If χ(1) is a π′-number, then Oπ(G) = G.

Proof. Let K = Oπ(G), then χK is irreducible and it follows from Gal-
lagher theorem that χψ ∈ Bπ(G) \ Xπ(G) for each ψ ∈ Irr(G/K). Then,
|Irr(G/K)| = 1 and G = K.
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In order to study the problem without the hypothesis that χ(1) is a
π′-number, we need to further assume that π = {p}. In order to simplify
the notation, we write Bp(G) and Xp(G) instead of B{p}(G) and X{p}(G).

Lemma 4.3.2. Let G be a p-solvable group and let P ∈ Sylp (G). Let
H,N � G such that N ≤ H, N is a minimal normal p-group (and, thus,
it is also abelian) and H/N is a normal p-complement for G/N . Suppose
that Bp(G)\Xp(G) = {χ} and that χ(1) = qn with q power of p, p - n and
q, n > 1. Then:

A) H =
⋂
{ker η | η ∈ Xp(G)};

B) n = |N | − 1;

C)
∑

η∈Xp(G) η
2(1) = q2.

Proof. Let ψ ∈ Bp(H) be an irreducible constituent of χH and µ ∈ Irr(N)
be and irreducible constituent of ψN . Note that µ is a Fong character for
ψ and, since µ is linear, then ψ(1) = n.

Step 1: all the nonprincipal characters in Irr(N) are constituent of
χN . Moreover, A) holds.

Let C = CN (H), then C �G and C ≤ N , thus C = 1 or C = N , since
N is minimal normal in G. If C = N , however, then H = N ×H0 and H0

is a normal p-complement of G, thus, Bp(G) = Xp(G), a contradiction. It
follows that C = 1 and, thus, no nonprincipal character in Irr(N) is H-
invariant. From this, in particular, one has that Xp(H) = {1H}, since any
p-special character would restrict irreducibly to N (see Corollary 1.3.6).
By Proposition 1.2.2, H is in the kernel of every p-special character in G.
On the other hand, H =

⋂
{ker η | η ∈ Irr(G/H)} ≥

⋂
{ker η | η ∈ Xp(G)}

and A) holds.
Moreover, it follows that, for every nonprincipal ξ ∈ Irr(N), there

exists a character θ ∈ Bp(H | ξ) such that θ(1)p′ > 1. However, since χ is
the only character in Bp(G) such that χ(1)p′ > 1, every such character θ
has to be a constituent of χH and Step 1 follows.

Step 2: ψ is G-invariant. Moreover, B) holds.
Let χH = e

∑m
i=1 ψi, where m = |G : IG(ψ)| is a power of p, and let

ψN =
∑n

j=1 µj , since all the characters µj are Fong characters for ψ and
so they have multiplicity 1. Moreover, since all the characters ψi are



CHAPTER 4. Bπ-character degrees and normal subgroups 48

distinct Bp-characters and N is a Sylow p-subgroup for H, if ψi1 6= ψi2
then [ψi1N , ψi2N ] = 0. It follows that χN = e

∑mn
k=1 µk. However, by Step

1, one has that each character in Irr(N) \ {1N} is a constituent of χN ,
thus mn = |Irr(N)| − 1 = |N | − 1. Since p - |N | − 1, then p - m and thus
m = 1 and n = |N | − 1. Moreover, e = q.

Step 3: C) holds.
All the irreducible components of ψG are in Bp(G), for Theorem 1.3.3,

and the p′-part of their degree is not 1, thus ψG = qχ. It follows that χ
and ψ are fully ramified and, thus, |G : H| = q2. However, by A), one has
that H is the intersection of all the kernels of the p-special characters in
G; it follows that Xp(G) = Irr(G/H) and thus C) holds.

Corollary 4.3.3. Let G be p-solvable. If Bp(G) \ Xp(G) = {χ}, then
χ(1)p

2 ≤ |G : Op(G)|.

Proof. Suppose it is not true and let G be a minimal counterexample, such
that |G : Op(G)| < χ(1)p

2. Then clearly χ(1)p > 1. Let N be a minimal
normal subgroup of G and notice that |G/N : Op(G/N)| ≤ |G : Op(G)|,
thus, |G/N : Op(G/N)| < χ(1)p

2. Therefore, by the minimality of G, χ
is not a character of G/N ; it follows that N is a p-group and that G/N
has a normal p-complement H/N , by Theorem 4.2.1, since Bp(G/N) =
Xp(G/N). Notice that H ≥ Op(G), because |G : H| is a p-number.

Now, by Lemma 4.3.2, points A) and C), one has that

χ(1)p
2 =

∑
η∈Xp(G)

η2(1) =
∑

θ∈Irr(G/H)

θ2(1) = |G : H| ≤ |G : Op(G)|

and the corollary is proved.

4.4 Variants on Thompson theorem

In this section, we see a refinement of Theorem 4.1.6 involving Bπ-
characters. In particular, we study what happens in the group when
Bπ(G) ∩ Irrπ′(G) ⊆ Lin(G) and when Xπ′(G) ⊆ Lin(G), keeping in mind
that Xπ′(G) = Bπ′(G) ∩ Irrπ′(G) by Lemma 1.3.2.

For the section, we need a corollary to a variant of the famous McKay
conjecture, due to T. Wolf.
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Corollary 4.4.1. Let G be a π-separable group, let H be a Hall π-subgroup
of G and let N = NG(H). Then:

|{χ ∈ Bπ(G) |χ(1) is a π′-number}|= |{ψ ∈ Bπ(N) |ψ(1) is a π′-number}| ,

|Xπ′(G)| = |Xπ′(N)| = |Irr(N/H)| .

Proof. It is a direct consequence of [42, Theorem 1.15].

At first, an easy lemma is needed, which uses the properties of the
Fong characters associated with a Bπ-character.

Lemma 4.4.2. Let G be a π-separable group and let H be a Hall π-
subgroup, then Irrπ′(G)∩Bπ(G) ⊆ Lin(G) if and only if every linear char-
acter of H extends to G.

Proof. Let λ be a linear character in H. By Theorem 1.3.9, λ is the Fong
character associated with some character χ ∈ Irrπ′(G)∩Bπ(G). It follows
that, if χ is linear, then it extends λ, while on the other hand if λ extends
to G, then by Theorem 1.3.10 it has a linear π-special extension, which
coincides with χ by Theorem 1.3.5.

We can now prove a first result, which underlines a relation between
the families of characters Irr(G) and Bπ(G) ∪ Bπ′(G) for what concerns
the hypothesis of Thompson’s theorem.

Proposition 4.4.3. Let G be a π-separable group. Then, Irrπ′(G) =
Lin(G) if and only if Irrπ′(G) ∩

(
Bπ(G) ∪ Bπ′(G)

)
⊆ Lin(G).

Proof. One direction is obviously true. Thus, let one assume Irrπ′(G) ∩
Bπ(G) ⊆ Lin(G) and suppose there exists a nonlinear character χ ∈ Irr(G)
such that χ(1) is a π′-number. By Theorem 1.3.10 there exists W ≤ G,
α ∈ Xπ(W ) linear and β ∈ Xπ′(W ) such that χ = (αβ)G, W contains a
Hall π-subgroup H of G and it is the maximal subgroup of G such that
αH extends to W . However, by Lemma 4.4.2, αH extends to G, thus
W = G. It follows that β is a nonlinear π′-special character of G and this
contradict the fact that every character in Xπ′(G) = Irrπ′(G) ∩ Bπ′(G) is
linear, in contrast with the hypothesis.

At this point, we can already see what happens when the set Irrπ′(G)∩
Bπ(G), or the set Xπ′(G), contains only the principal character.
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Corollary 4.4.4. Let G be a π-separable group and let H be a Hall π-
subgroup, then

i) Irrπ′(G) = {1G} if and only if Irrπ′(G)∩
(

Bπ(G)∪Bπ′(G)
)

= {1G};

ii) Irrπ′(G) ∩ Bπ(G) = {1G} if and only if H = H ′;

iii) Xπ′(G) = {1G} if and only if H is self-normalizing;

iv) Irrπ′(G) = {1G} if and only if H = H ′ and H is self-normalizing.

Proof. For point (i), only one direction is needed. Suppose, thus, that
Irrπ′(G)∩

(
Bπ(G)∪Bπ′(G)

)
= {1G} ⊆ Lin(G), then by Proposition 4.4.3

Irrπ′(G) = Lin(G). It follows that every character in Irrπ′(G) can be
factorized as a product αβ, with α ∈ Irrπ′(G) ∩ Xπ(G) and β ∈ Xπ′(G);
however, the two sets of characters both coincide with {1G} by hypothesis.

Point (ii) follows directly from Lemma 4.4.2. In fact, if Irrπ′(G) ∩
Bπ(G) = {1G} ⊆ Lin(G), then every character in Lin(H) extends to G
and, by Theorem 1.3.10, it has an extension in Irrπ′(G) ∩ Bπ(G), thus
Lin(H) = {1H}. On the other hand, if Lin(H) = {1H}, then there
are no nonprincipal linear Fong characters of H in G and it follows that
|Irrπ′(G) ∩ Bπ(G)| = 1 and the thesis follows.

Finally, point (iii) is a direct consequence of Corollary 4.4.1 and point
(iv) follows from points (i), (ii) and (iii).

Let us now proceed by studying variants of Theorem 4.1.6.

Proposition 4.4.5. Let G be a π-separable group and let H be a Hall
π-subgroup. Then, Irrπ′(G)∩Bπ(G) ⊆ Lin(G) if and only if G′ ∩H = H ′.

Proof. From Lemma 4.4.2 we know that the property that every character
in Irrπ′(G) ∩Bπ(G) is linear is equivalent to the fact that every character
of H/H ′ extends to G. Thus, suppose that for every λ ∈ Irr(H/H ′) there
exists χ ∈ Lin(G) such that χH = λ. It follows that

H ′ ≤ G′ ∩H =
⋂

χ∈Lin(G)

ker(χH) =
⋂

λ∈Lin(H)

ker(λ) = H ′

and, therefore, G′ ∩H = H ′.
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On the other hand, suppose G′ ∩ H = H ′; then, if K/G′ is a Hall
π′-subgroup of G/G′, one can write

G

G′
=
HG′

G′
× K

G′
=
H

H ′
× K

G′

and, thus, every λ ∈ Irr(H/H ′) extends to λ× 1K/G′ ∈ Irr(G).

Proposition 4.4.6. Let G be a π-separable group, let H be a Hall π-
subgroup for G and let N = NG(H). Then, Xπ′(G) ⊆ Lin(G) if and only
if G′ ∩N ≤ H.

Proof. Assume at first that Xπ′(G) ⊆ Lin(G); therefore, if χ ∈ Xπ′(G),
then χN is linear. Suppose that, for some χ, ψ ∈ Xπ′(G), χN = ψN ; then
N ≤ ker(χψ̄)�G. It follows that ker(χψ̄) = G, by Frattini argument, and
thus χ = ψ. Therefore, the restriction realizes an injection from Xπ′(G)
to Xπ′(N) and, since |Xπ′(G)| = |Xπ′(N)| by Corollary 4.4.1, it is actually
a bijection. It follows that every character in Irr(N/H) is the restriction
of a linear character of G, thus we have that

G′ ∩N =
⋂

χ∈Lin(G)

ker(χN ) ≤
⋂

λ∈Irr(N/H)

ker(λ) = H.

On the other hand, suppose that G′∩N ≤ H. Let X be a complement
for H in N and note that X is abelian. Moreover, note that NG′ is normal
in G and it contains N , thus G = NG′ by the Frattini argument. It follows
that

G

G′
∼=

N

G′ ∩N
= X × H

G′ ∩H
and, thus, there is a bijection between characters in Irr(X) = Irr(N/H)
and characters in Xπ′(G/G

′). However, by Corollary 4.4.1 we have that
|Xπ′(G/G

′)| = |Irr(N/H)| = |Xπ′(G)| and, thus, it follows that every π′-
special character in G is linear.

We shall now summarize these last results in a single theorem.

Theorem 4.4.7. Let G be a π-separable group, let H be a Hall π-subgroup
for G and let N = NG(H). Then,

a) Irrπ′(G) ∩ Bπ(G) ⊆ Lin(G) if and only if G′ ∩H = H ′;
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b) Irrπ′(G) ∩ Bπ′(G) ⊆ Lin(G) if and only if G′ ∩N ≤ H.

It is now easy to see that Theorem 4.1.6 can also be obtained as a
corollary of Theorem 4.4.7 and of Proposition 4.4.3.

Corollary 4.4.8 ([38, Corollary 3]). Let G be a π-separable group and let
H be a Hall π-subgroup for G and N = NG(H). Then, Irrπ′(G) = Lin(G)
if and only if G′ ∩N = H ′.

Proof. If N is the normalizer in G of a Hall π-subgroup H, Theorem 4.4.7
and Proposition 4.4.3 provide that Irrπ′(G) = Lin(G) if and only if both
G′ ∩ N ≤ H and G′ ∩ H = H ′ and the two conditions on G happen
simultaneously if and only if G′ ∩N = H ′.

4.5 Some examples

Considering the nature of the results presented in this chapter, a natu-
ral question a reader may ask is whether the set Bπ(G)∪Bπ′(G) is actually
strictly smaller then Irr(G). This happens quite often. In fact, we have
seen in Theorem 1.4.2 that |Bπ(G)| is equal to the number of conjugacy
classes of π-elements of G. Therefore, Bπ(G) ∪ Bπ′(G) = Irr(G) if and
only if each element of the π-separable group G is either a π-element or
a π′-element. This is proved in [11, Lemma 4.2] to happen if and only if
G is a Frobenius or a 2-Frobenius group and each Frobenius complement
and Frobenius kernel is either a π-group or a π′-group.

Let us call cd(G) the set of irreducible character degrees of G and
let us refer as cdBπ(G) and cdBπ′ (G) to the sets of character degrees of,
respectively, Bπ-characters and Bπ′-characters. Even when Bπ(G)∪Bπ′(G)
is strictly smaller then Irr(G), it may happen that cd(G) = cdBπ(G) ∪
cdBπ′ (G). This happens, for example, if we consider the group SL(2, 3)n
(Z3)2 with π = {2}, as we have seen in Section 1.6, or the group (C3nC7)o
C2, with π = {7}.

However, for a π-separable group G, in general we have that cd(G) 6=
cdBπ(G) ∪ cdBπ′ (G). A first, obvious example of this fact is when G =
H × K, with H a π-group and K a π′-group, both nonabelian. In this
case, in fact, we have that Bπ(G) = Irr(H) and Bπ′(G) = Irr(K).

Let us see some less trivial examples.
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Example 4.5.1. A first example is derived directly form the trivial one.
Let G = H ×K, with H a π-group and K a π′-group, both nonabelian,
and let Γ = G o C2. Suppose 2 ∈ π. Let θ be a nonlinear character
in Irr(H) and let η be a nonlinear character in Irr(K). The character
(θ × 1K) × (1H × η) is an irreducible character of the base group G × G
and it is not Γ-invariant, therefore it induces irreducibly to a character
χ ∈ Irr(Γ).

We have that the π-part of the degree of χ is χ(1)π = 2θ(1) > 2
and the π′-part of the degree is χ(1)π′ = η(1) > 1. Suppose there exists
ψ ∈ Bπ(Γ)∪Bπ′(Γ) such that χ(1) = ψ(1) and let λ1×λ2 be a constituent of
ψG×G. Since 2 ∈ π and ψ(1) is not a π-number, we have λ1(1)π′ ·λ2(1)π′ =
ψ(1)π′ > 1, thus, λ1, λ2 ∈ Bπ′(G), being G the direct product of a π-group
and a π′-group. As a consequence, λ1(1)π · λ2(1)π = 1 while ψ(1)π > 2, a
contradiction.

It follows that cdBπ(Γ) ∪ cdBπ′ (Γ) is strictly smaller then cd(Γ).

The group in Example 4.5.1 still involves a group of type H ×K, with
H a π-group and K a π′-group, both nonabelian. However, there exist
examples which are not derived from the trivial one.

Example 4.5.2. Let G = SL(2, 3) n (Z3)2, as in the example of Sec-
tion 1.6. Computing the character table of G, in Section 1.6 we have seen
that cdB{3}(G) = {1, 8} and cdB{2}(G) = {1, 2, 3}.

Now, let Γ = G o C2, let θ ∈ B{3}(G) of degree 8 and let η ∈ B{2}(G)
of degree 3. The character θ × η ∈ Irr(G × G) induces irreducibly to a
character χ ∈ Irr(Γ) and χ(1) = 48.

Suppose there exists ψ ∈ B{2}(Γ)∪B{3}(Γ) such that ψ(1) = χ(1) and
let λ1 × λ2 be an irreducible constituent of ψG×G. Then, λ1 and λ2 are
either both in B{2}(G) or they are both in B{3}(G). Moreover, since ψ(1) =
48, then λ1(1)·λ2(1) ∈ {24, 48}. However, neither 24 nor 48 can be written
as a product of two numbers in cdB{2}(G) or as a product of two numbers
in cdB{3}(G). It follows that 48 ∈ cd(Γ) but 48 /∈ cdB{2}(Γ) ∪ cdB{3}(Γ).



Chapter 5

A bound for the p-length

In this chapter, we will see how the set of character degrees of Bp-
characters having values in Qp can provide a bound for the p-length of a
p-solvable group. In order to do so, we will see how we can control the
field of values of a Bp-character.

5.1 Bounds for the p-length from the character

table

In this chapter, we will see how the theory of the Bπ-characters can be
used to study a problem which is apparently unrelated with it.

Let G be a finite group and let cdp′(G) be the set of irreducible charac-
ter degrees not divisible by a prime p. In a recent paper [10], it is proved
that, if cdp′(G) = {1,m}, then the group G is solvable and Opp′pp′(G) = 1.

If G is a finite p-solvable group; the p-length of G, denoted as `p(G), is
the minimum possible number of factors that are p-groups in any normal
series for G in which each factor is either a p-group or a p′-group. It is not
hard to prove that it is equal to the number of factors which are p-groups
in the upper p-series of G. Therefore, the aforementioned result of [10]
provides that, if

∣∣cdp′(G)
∣∣ = 2, then G is solvable and `p(G) ≤ 2.

Let E ⊆ C be a field and let G be a finite group. We call IrrE(G) the
set of irreducible characters which have values in E. Then, we define the

54
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set
cdE,p′(G) = {χ(1) | χ ∈ IrrE(G) and p - χ(1)}.

We will see that, for some E ⊂ C,
∣∣cdE,p′(G)

∣∣ can provide a bound for the
p-length of a p-solvable group G.

We recall that, if n is a natural number, we write Qn for the n-
cyclotomic extension of Q, i.e., the extension of the field of rational num-
bers obtained by adjoining a primitive n-root of unity ζn to Q. Notice
that, in this notation, Q2 = Q.

It is proved in [36] that the 2-length of a solvable group G is bounded
by the number of rational-valued irreducible characters of odd degree.
This result was later improved in [39] and [40].

Theorem 5.1.1 ([40, Theorem A]). Let G be a p-solvable group and let
` = `p(G). Then, G has at least 2` irreducible characters of degree coprime
to p and field of values contained in Qp.

We mention that [40, Theorem A] is for us of particular interest, be-
cause it is proved using techniques which involve Bp-characters.

In this chapter, however, we find a bound that does not depend from
the number of irreducible characters but from the number of distinct irre-
ducible character degrees.

Theorem 5.1.2. Let G be a p-solvable group and let `p(G) its p-length,
then `p(G) ≤

∣∣cdQp,p′(G)
∣∣. In particular, if G is solvable, then `2(G) ≤∣∣cdQ,2′(G)

∣∣.
We will see that, as in [40], the bound will be a consequence of a

(stronger) one which depends from the degrees of Bp-characters.
Anyway, a Corollary easily follows from Theorem 5.1.2.

Corollary 5.1.3. Let G be a p-solvable group and let `p(G) its p-length,
then `p(G) ≤

∣∣cdp′(G)
∣∣.

5.2 The field of values of the Bp-characters

We have seen in Corollary 1.3.8 that the field of values of a character
χ ∈ Bπ(G) is contained in Qπ. Here, we will see that, under some further
assumptions, the field of values of χ is contained in some smaller extension
of Q.
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Proposition 5.2.1. Let G be a π-separable group and H a Hall π-subgroup
of G. Let χ ∈ Bπ(G) and let σ ∈ Gal(Q|G||Q). If ϕ ∈ Irr(H) is a Fong
character associated with χ and ϕσ = ϕ, then also χσ = χ.

In particular, if ϕ is rational-valued, then so is χ.
Moreover, if π = {p} and o(σ) is a power of p, then σ fixes χ if and

only if it fixes some of the Fong characters associated with χ.

Proof. Suppose that there exists a Fong character ϕ ∈ Irr(H) associated
with χ such that ϕσ = ϕ. Since χσ is again a Bπ-character (see Chapter 1)
and it lies over ϕ, it follows from the uniqueness part of Theorem 1.3.5
that χσ = χ.

In particular, since a character is rational-valued if and only if it is
fixed by every σ ∈ Gal(Q|G|), we have that χ is rational valued if ϕ is.

Assume now that π = {p}, H = P is a Sylow p-subgroup of G and
o(σ) is a power of p. If χσ = χ, then σ permutes the Fong characters
associated with χ. Suppose none of these Fong characters is fixed by σ. If
C1, ..., Ct are the orbits of this action, then p | |Ci| for each i = 1, ..., t.

Now, let χ(1)p = pa, so that pa is the maximal power of p dividing
χ(1), and notice that, by Theorem 1.3.5, we can write

χP =
t∑
i=1

∑
ϕ∈Ci

ϕ+ ∆,

where either ∆ is zero or the degree of each irreducible constituent of
∆ is divided by pa+1. Moreover, by definition, ϕ(1) = pa for each Fong
character ϕ associated with χ.

Let ϕi be a representative for Ci for each i, then χ(1) =
∑t

i=1 |Ci|ϕi(1)+
∆(1). Since pa+1 divides ∆(1) and p divides |Ci| for every i, it follows that
pa+1 divides χ(1), in contradiction with the maximality of pa.

It follows that |Ci| = 1 for at least one index i and, thus, σ fixes at
least one Fong character of χ.

The condition on the order of the automorphism, in the second part
of Proposition 5.2.1, is actually less strong then how it may seem. In fact,
we know from Corollary 1.3.8 that a Bp-character has values in Qπ, with
π = {p}. Therefore, if χ ∈ Bp(G), its field of values is contained in Qpa ,
where pa = |G|p.
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Now, it is known from Galois Theory that Gal(Qpa |Q) ∼= Cp−1×Cpa−1 ,
for p odd, and Gal(Q2a |Q) ∼= C2 × C2a−2 . Moreover, we also know that
Gal(Qpa |Q) = {σi | (i, p) = 1}, where σi is determined by σi(ω) = ωi for
any root of unity ω (see, for instance, [31, Corollary 7.8]).

Let Qpb be a subfield of Qpa , for some 0 < b ≤ a, and notice that
every automorphism of Qpb can be extended to an automorphism of Qpa .
It follows that the restriction of automorphisms from Qpa to Qpb is a
projection from Gal(Qpa |Q) to Gal(Qpb |Q) with kernel Gal(Qpa |Qpb). It
follows that

Gal(Qpa |Q)

Gal(Qpa |Qpb)
∼= Gal(Qpb |Q)

and, from the description of Gal(Qpa/Q) of the previous paragraph, we
have that

∣∣Gal(Qpa/Qpb)
∣∣ = pa−b (actually, assuming b ≥ 2 if p = 2, it is

possible to prove that Gal(Qpa |Qpb) ∼= Cpa−b).
After this discussion, we can prove the following corollary.

Corollary 5.2.2. Let G be a p-solvable group and P a Sylow p-subgroup
of G. Let χ ∈ Bp(G) ∩ Irrp′(G) and let λ ∈ Lin(P ) be a Fong character
associated with χ. Let pb > 1 be a power of p. Then, χ has values in Qpb
if and only if o(λ) | pb.

Notice that this result can also be seen as a consequence of [25, Corol-
lary D].

Proof. We know from the previous discussion that the field of values of
every Bp-character of G is contained in Qpa , for some pa = |G|p. As a
consequence, a Bp-character has values in Qpb if and only if it is fixed by
every morphism in Gal(Qpa |Qpb), and every such morphism has p-power
order.

It follows from Proposition 5.2.1 that χ has values in Qpb if and only
if so does some Fong character ρ ∈ Lin(P ) associated with χ. However,
by Corollary 1.3.9, λ = ρn for some n ∈ NG(P ) and they have the same
field of values; thus, χ has values in Qpb if and only if so does λ.

Finally, since λ is linear, it has values in Qpb if and only if o(λ) | pb.

We conclude the section by talking briefly about an interesting conse-
quence of Corollary 5.2.2 when applied to the study of cut groups.
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The concept of cut groups arises form the study of group rings. In fact,
a finite group G is said to be a cut group if ZG only contains trivial central
units (see [1, Definition 1.1] for details). The reason why we are interested
in these groups, however, is that, by [1, Proposition 2.2], G is a cut group
if and only if, for each χ ∈ Irr(G), Q(χ) = Q(

√
−d) for some non-negative

integer d, where Q(χ) is the field of values of χ. In particular, for every
χ ∈ Irr(G), |Q(χ) : Q| ≤ 2.

An open problem related to cut groups is to determine whether the
Sylow 3-subgroup of a solvable cut group is again a cut group, another
one is to say whether O5(G) and O7(G) of a cut group G are elemen-
tary abelian. The following corollary does not answer to any of the two
questions; however, it is somehow related to both of them.

Corollary 5.2.3. Let G be a p-solvable cut group and let P be a Sylow
p-subgroup of G. If p is odd, P/P ′ is elementary abelian. If p = 2, then
the exponent of every element in P/P ′ is at most 4.

Proof. It is enough to prove that every nonprincipal character in Lin(P )
has order p, for p odd, and order 2 or 4 for p even. Let λ ∈ Lin(P ) \ {1P },
then by Theorem 1.3.9 it is a Fong character associated with some χ ∈
Bp(G). Since G is cut, |Q(χ) : Q| = 2. If p is odd, then χ has values in
Qp, because it is fixed by every σ ∈ Gal(Q|G|p |Q) of odd order and, thus,

by every σ ∈ Gal(Q|G|p |Qp); then, the thesis follows from Corollary 5.2.2.

For p = 2, the argument is a little more complex. Since |Q(χ) : Q| = 2,
we have that |Gal(Q(χ)|Q)| = 2, as intermediate extensions of cyclotomic
fields are Galois extensions. Let τ ∈ Gal(Q|G||Q) be the complex con-
jugation. If τ fixes χ then, for Proposition 5.2.1 and since all the Fong
characters associated with χ are conjugated in NG(P ), it fixes also λ.
However, λ is linear and, thus, o(λ) = 2.

Suppose, now, that τ does not fix χ. Then, Gal(Q(χ)|Q) = {id, τ |Q(χ)}.
It follows that, for any σ ∈ Gal(Q|G|2 |Q), either σ|Q(χ) = id or σ|Q(χ) =
τ |Q(χ). Thus, either σ or στ fixes χ and, by the same arguments as before,
either σ or στ fixes also λ. As a consequence, Gal(Q(λ)|Q) = {id, τ |Q(λ)}
and, since λ is linear, it follows that o(λ) = 4.
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5.3 A bound from the Bp-character degrees

We will prove Theorem 5.1.2 as a consequence of the following theorem,
concerning the Bp-characters.

Theorem 5.3.1. Let G be a p-solvable group, let `p(G) its p-length and
let

cd
Bp
Qp,p′(G) = {χ(1) | χ ∈ Bp(G) ∩ IrrQp(G) and p - χ(1)},

with Qp being the p-cyclotomic extension of Q. Then, `p(G) ≤
∣∣∣cd

Bp
Qp,p′(G)

∣∣∣.
In particular, if G is solvable, then `2(G) ≤

∣∣∣cdB2
Q,2′(G)

∣∣∣.
We need at first to prove two preliminary results.
If a linear character of a subgroup extends to the whole group G, it is

not always true that there exists an extension which preserves the order.
However, it happens to be possible under special conditions.

Lemma 5.3.2. Let M � G and suppose M is complemented in G, i.e.,
there exists H ≤ G such that G = HM and H ∩M = 1. If λ ∈ Lin(M)
is invariant in G, then there exists ϕ ∈ Lin(G) such that θ extends λ and
o(θ) = o(λ).

Proof. Since kerλ � G, there is no loss to assume kerλ = 1. Since λ is
linear, it follows that M ′ = 1 and, thus, M is abelian. However, since λ
is G-invariant and faithful, we have that H acts trivially on M . It follows
that G = H ×M and the thesis follows.

We already know from Theorem 1.3.3 how Bπ-characters behave in
relation with normal subgroups. However, here a refinement is needed, in
order to have more precise informations on character degrees.

Proposition 5.3.3. Let G be a π-separable group and let M � G. Let
λ ∈ Lin(M) such that o(λ) is a π-number and assume also that λ extends
to ν ∈ Lin(HM), where H is a Hall π-subgroup of G. Then, there exists
a character χ ∈ Bπ(G) such that χ lies over λ and χ(1)π = 1. Moreover,
νH is a Fong character associated with χ.

Proof. Let ν ∈ Lin(HM) be an extension of λ toHM and let ϕ = νH , then
ϕ is a linear character of the Hall π-subgroup H and, by Theorem 1.3.9,
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there exists χ ∈ Bπ(G) which lies over ϕ and χ(1)π = ϕ(1) = 1. Thus, ϕ
is a Fong character associated with χ.

Moreover, if K = H ∩M , then ξ = ϕK is a Fong character associated
with λ and it also lies under χ. Let θ be an irreducible constituent of χM
which lies over ξ, then θ is a Bπ-character, because of Theorem 1.3.3, and
it follows that θ = λ for the uniqueness part of Theorem 1.3.5. Thus, χ
lies over λ and the proof is concluded.

Now, we are ready to prove Theorem 5.3.1.

Proof of Theorem 5.3.1. In order to simplify the notation, since there is
no ambiguity, we will write Bcdp′(G) to refer to cd

Bp
Qp,p′(G).

Let G be a counterexample of minimal order to the theorem and let
K be a minimal normal subgroup of G, then `p(G) >

∣∣Bcdp′(G)
∣∣ and

`p(G/K) ≤
∣∣Bcdp′(G/K)

∣∣ because of the minimality in the choice of G.
Moreover, since K is minimal normal, `p(G/K) ≤ `p(G) ≤ `p(G/K) + 1,
while

∣∣Bcdp′(G/K)
∣∣ ≤ ∣∣Bcdp′(G)

∣∣ because Bcdp′(G/K) ⊆ Bcdp′(G). It
follows that

`p(G/K) ≤
∣∣Bcdp′(G/K)

∣∣ ≤ ∣∣Bcdp′(G)
∣∣ < `p(G) ≤ `p(G/K) + 1.

As a consequence, `p(G) = `p(G/K) + 1 and Bcdp′(G/K) = Bcdp′(G).
Therefore, we have that K is a p-group and Op′(G/K) 6= K, since

otherwise `p(G/K) = `p(G). Since K is arbitrarily chosen, it follows that
Op′(G) = 1. Moreover, if N/K = Op′(G/K), we have that N > K and
Bcdp′(G/N) = Bcdp′(G/K) = Bcdp′(G).

Let Y be a complement for K in N . By the Frattini argument, we
have that G = NG(Y )N = NG(Y )K. Moreover,

NG(Y ) ∩K = CK(Y ) = Op(Z(N)) �G.

Since, however, K is a minimal normal subgroup of G and K � Z(N)
(otherwise, Y ≤ Op′(G) = 1), we have NG(Y ) ∩K = 1. Hence, K is com-
plemented in G and, by Lemma 5.3.2, every λ ∈ Irr(K) has an extension
to its inertia subgroup Gλ of the same order.

Since we have proved that CK(Y ) = 1, the only element in K to be
centralized by Y is 1. Since K is abelian, it follows that no nonprincipal
character in Irr(K) is N -invariant. Thus, for any λ ∈ Irr(K), N � Gλ.
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On the other hand, let P be a Sylow p-subgroup of the group G, then
Z(P ) ∩ K 6= 1. Therefore, the action of P on K fixes more then one
element and, thus, there exists λ ∈ Irr(K) \ {1K} which is P -invariant.

Let λ ∈ Irr(K) be a nonprincipal P -invariant character and let T = Gλ,
so that P ≤ T and λ has an extension to T of order p (notice that o(λ) =
p because K is elementary abelian). It follows from Proposition 5.3.3
that there exist some characters in Bp(G) ∩ Irrp′(G) lying over λ with an
associated Fong character of order p and, by Corollary 5.2.2, they have
values in Qp. Among these characters, let χ be the one of maximal degree.
By the third paragraph of the proof, Bcdp′(G/N) = Bcdp′(G), thus, there
exists ψ ∈ Bp(G/N) having values in Qp such that ψ(1) = χ(1). Let
γ ∈ Lin(PN/N) be a Fong character associated with ψ. If we consider ψ
and γ as characters of, respectively, G and PN , we have that ε = γP is a
Fong character associated with ψ (as a character in Bp(G)), since it is a
constituent of ψP and ε(1) = ψ(1)p = 1. Notice that o(ε) = p because of
Corollary 5.2.2.

Let W be the unique maximal subgroup of G such that ε extends to
W and notice that N ≤ W . Moreover, let λ̂ be an extension of λ to T
of order p, let υ = λ̂P and let V be the unique maximal subgroup of G
such that the linear character ρ = ευ extends to V . Notice that both W
and V exist by Theorem 1.3.10 and, for the last part of that theorem,
ψ(1) = |G : W |.

Now, let θ ∈ Irr(V ) be the unique p-special extension of ρ to V , then
θK = ρK = λ, as K ≤ ker(ε). Therefore, λ extends to V and it follows
that V ≤ T . Moreover, if ξ = λ̂V , then (θξ̄)P = ρῡ = ε; since W is
the unique maximal extension subgroup for ε, it follows that W ≥ V .
However, for the second part of Theorem 1.3.10, we have that θG ∈ Bp(G)
and, by Corollary 5.2.2, θG have values in Qp, because o(ρ) = p. Since θ
lies over λ, the choice of χ to be of maximal degree leads to

|G : V | = θG(1) ≤ χ(1) = ψ(1) = |G : W | .

Therefore, V = W and W is contained in T .
However, we showed earlier in the proof that N � T . On the other

hand, we also have that N ≤W ≤ T and this leads to a contradiction.

We can now prove Theorem 5.1.2.
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Proof of Theorem 5.1.2. Since cdQp,p′(G) ⊇ cd
Bp
Qp,p′(G), the conclusion is

true for Theorem 5.3.1.

To conclude the chapter, let us see some example to show that, in

general, for a p-solvable group G,
∣∣cdp′(G)

∣∣ 6= ∣∣cdQp,p′(G)
∣∣ 6= ∣∣∣cd

Bp
Qp,p′(G)

∣∣∣.
Example 5.3.4. Let G = A5×C7 and p = 7. We can see that cd7′(G) =
{1, 3, 4, 5}, cdQ7,7′(G) = {1, 4, 5} and cdB7

Q7,7′
(G) = {1}. Clearly, `7(G) =

1.

Example 5.3.5. Let G be the semidirect product of SL(2, 3) acting nat-
urally on (Z3)2 and let p = 3. In Section 1.6 we have seen that cd3′(G) =
cdQ3,3′(G) = {1, 2, 8} and cdB3

Q3,3′
(G) = {1, 2}. Notice that, in this case,

`3(G) = 2.



Chapter 6

Character correspondence

in π-separable groups

In this chapter we talk about correspondence of characters between
the group and the normalizer of one of its Sylow or Hall subgroups. After
a brief introduction on the McKay conjecture and its variants, we first
talk about the restriction of Bπ-characters to the normalizer of a Hall
π-subgroup, and we define the upper-Fong characters. Then, we focus
on ordinary irreducible characters and we investigate when there exists a
McKay natural correspondence such that the corresponding characters in
the normalizer are linear.

6.1 The McKay conjecture

One of the most famous problems in character theory of finite groups
is for sure the Mckay conjecture. Initially proposed in 1972 for characters
of odd degree, it correlates irreducible characters of a group with the ones
of the normalizer of a Sylow subgroup.

Conjecture 6.1.1 (McKay, 1972). Let G be a group and p a prime, and
let P be a Sylow p-subgroup of G. Then,

∣∣Irrp′(G)
∣∣ =

∣∣Irrp′(NG(P ))
∣∣.

The conjecture, however, is already proved to be true for solvable
groups. In fact, it was reduced to simple groups in [24] and later it was

63
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proved in [30] for p = 2. The conjecture is also verified to be true, for
every p, for many classes of groups; however, it is in general still open.

As we may expect for a problem of this fame, many variants of the
McKay conjecture have been proposed in the last decades. Here, we only
mention one involving Bπ-characters, which was proved in [42].

Theorem 6.1.2 ([42, Theorem 1.15]). Let π and ω be two sets of primes
and let G be both π-separable and ω-separable. Let H be a Hall ω-subgroup
of G and let N = NG(H). Then:

|{χ ∈ Bπ(G) |χ(1) is a ω′-number}|= |{ψ ∈ Bπ(N) |ψ(1) is a ω′-number}| .

In particular, from this theorem it follows a result we already men-
tioned in Section 4.4.

Corollary 6.1.3. Let G be a π-separable group, let H be a Hall π-subgroup
of G and let N = NG(H). Then:

|Bπ(G) ∩ Irrπ′(G)| = |Bπ(N) ∩ Irrπ′(N)| and |Xπ′(G)| = |Xπ′(N)| .

Theorem 6.1.2 leads to further refinements of the McKay conjecture.
In fact, the character theory of π-separable groups has been used in [25]
to prove some variants of the conjecture for p-solvable groups. In particu-
lar, in [25] it was first introduced the so called Galois-McKay conjecture,
proved for p-solvable groups in the same paper and recently reduced to
simple groups in [34].

We are not going to talk about this specific conjecture, since it is not
strongly related with the arguments of the thesis. However, we believe it
was worth to be mentioned, since it is an interesting application of the
theory of the Bπ-characters.

If
∣∣Irrp′(G)

∣∣ =
∣∣Irrp′(NG(P ))

∣∣, then it is possible to define a bijection
between the two sets of characters. It is natural to ask if there exists
a canonical, or natural, bijection, i.e., a correspondence which can be
established choice-freely.

Despite the fact that it is proved to exists for several classes of groups,
in general no choice free correspondence exists between the two sets Irrp′(G)
and Irrp′(NG(P )), even for solvable groups.
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For what concerns solvable groups, however, it is interesting to no-
tice that in [17] a choice free correspondence is established for groups of
odd order. Moreover, in [37, Theorem D] a choice free correspondence
is established for p-solvable groups under the stronger assumptions that
NG(P ) = P CG(P ).

If we further strengthen our hypothesis on NG(P ), the hypothesis of
p-solvability can be dropped.

Theorem 6.1.4 ([37, Corollary B]). Let G be a finite group, let p be odd,
and let P ∈ Sylp (G). Suppose that NG(P ) = P . Then there is a natural
bijection χ 7→ χ∗ between Irrp′(G) and the linear characters of P . In fact,
if χ ∈ Irrp′(G) and λ ∈ Lin(P ), then χ and λ correspond under bijection
if and only if

χP = λ+ ∆

where ∆ is either zero or a character whose irreducible constituents all
have degree divisible by p.

Notice that Theorem 6.1.4 gives an example of choice free correspon-
dence realized by character restriction.

6.2 The upper-Fong characters

We first see what happens when we restrict Bπ-characters to the nor-
malizer of a Hall π-subgroup.

From now on, if not otherwise specified, we assume G to be a π-
separable group, χ ∈ Bπ(G), H to be a Hall π-subgroup for G and N =
NG(H).

Let ϕ ∈ Irr(H) be a Fong character associated with χ, then there
exists an irreducible constituent ψ of χN which lies over ϕ. In particular,
ψ(1)π = χ(1)π.

Definition 6.2.1. Let G be a π-separable group, let H be a Hall π-
subgroup for G and let N be the normalizer of H in G. Let χ ∈ Bπ(G), if
ψ ∈ Irr(N) is an irreducible constituent of χN such that ψ(1)π = χ(1)π,
then ψ is an upper-Fong character associated with χ.
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Lemma 6.2.2. Let G be a π-separable group, H ∈ Hallπ (G) and N =
NG(H). Let χ ∈ Bπ(G) and let ψ ∈ Irr(N) be an irreducible constituent
of χN . Then the following are equivalent:

a) ψ is an upper-Fong character associated with χ;

b) ψ lies over a Fong character of H in G associated with χ;

c) ψ(1)π is minimal among the irreducible constituents of χN .

Moreover, if ψ is an upper-Fong character lying over ϕ ∈ Irr(H), then ψ
is the unique constituent of χN lying over ϕ and [χN , ψ] = 1. Finally, the
sum

∑
i ψi(1)π′ on the upper-Fong characters associated with χ is equal

the number of Fong characters associated with χ.

Proof. It all follows directly from Theorem 1.3.5.
Let ϕ be an irreducible constituent of ψH ; since H � N and N/H is

a π′-group, it follows that ψ(1)π = ϕ(1) and, thus, ψ(1)π = χ(1)π if and
only if ϕ(1) = χ(1)π. Thus, a) is equivalent to b). Moreover, since ϕ is a
Fong character if and only if is of minimal degree among the irreducible
constituents of χH , it follows that b) is equivalent to c).

Finally, one has that [χN , ψ] ≤ [χH , ϕ] = 1 and also [ψH , ϕ] = 1,
thus, ψ is the unique constituent of χN lying over ϕ, ψH =

∑m
i ϕi and

ψ(1)π′ = m is the number of Fong characters associated with χ which lie
under ψ. Then the thesis follows.

One may wonder if an upper-Fong character is itself a Bπ-character.
We do not have a general answer to this question; however, we can answer
positively under some extra assumptions.

At first, we see an interesting consequence of Proposition 1.3.11.

Proposition 6.2.3. Let G be a π-separable group, H ∈ Hallπ (G) and
N = NG(H), and let ψ ∈ Irr(N) be an upper-Fong character for the group
G lying over ϕ ∈ Irr(H). Let I = IN (ϕ), then there exists η = αβ ∈ Irr(I)
such that ηN = ψ, α is the (unique) π-special extension of ϕ to I and β
is either 1I or a linear π′-special character of order 2. In particular, if
either 2 ∈ π or 2 - |I : I ′|, then ψ is in Bπ(N).

Proof. Since H is normal in N , we know from Clifford theory that there
exists η ∈ Irr(I | ϕ) such that ηN = ψ and, by Gallagher theorem and
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Proposition 1.2.4, η = αβ with α being the unique π-special extension
of ϕ to I and β ∈ Irr(N/H). In particular, β is a π′-special character,
because N/H is a π′-group, and it is linear, since β(1) ≤ [ψH , ϕ] = 1.

Now, suppose ψ is associated with a character χ ∈ Bπ(G) and let σ
be any element of Gal(Q|G|π′ |Q). Then, 0 6= [χN , ψ] = [χN , ψ

σ], since by
Corollary 1.3.8 χ has values inQπ and, thus, it is invariant for σ. Moreover,
0 6= [ψH , ϕ] = [ψσH , ϕ] because ϕ is a character of a π-group. It follows
that ψσ is an irreducible constituent of χN and ψσ(1)π = ψ(1)π = χ(1)π,
thus ψσ is an upper-Fong character associated with χ which lies over ϕ,
by Lemma 6.2.2, and it follows that ψσ = ψ by uniqueness.

Now, since σ fixes both ψ and ϕ, then η is fixed, too, by uniqueness
of the Clifford correspondence. Since, however, η = αβ and α, being π-
special, is σ-invariant, we have that βσ = β and, since this holds for any
σ ∈ Gal(Q|G|π′ |Q) and β is a linear π′-special character, it follows that
either β = 1I or o(β) = 2. Finally, by Proposition 1.2.4, if β = 1I , then ψ
is a Bπ-character.

Corollary 6.2.4. If either |G| is odd or 2 ∈ π, then all the upper-Fong
characters are Bπ-characters.

We now see that an upper-Fong characters is a Bπ-character also when
it lies over a primitive Fong character ϕ. We see this as a direct conse-
quence of the theory developed in [25] and, later, in [6].

Before we proceed, however, notice that, if H is a Hall π-subgroup of
a π-separable group G, N = NG(H) and ϕ ∈ Irr(H) is a primitive Fong
character associated with some χ ∈ Bπ(G), then by Theorem 1.3.9 the
Fong characters associated with χ are an orbit for the action of N on
Irr(H). In particular, under these hypothesis, χ has a unique upper-Fong
character. We now see that it is also a Bπ-character.

Theorem 6.2.5. Let G be a π-separable group, let H be a Hall π-subgroup
of a π-separable group G, let N be the normalizer of H in G and let ϕ ∈
Irr(H) be a primitive Fong character associated with some χ ∈ Bπ(G). If
ψ is the (unique) upper-Fong character associated with χ, then ψ ∈ Bπ(N).

Moreover, under this hypothesis, ψ(1) divides χ(1), and χ(1)
ψ(1) divides

|G : N |.
Proof. By [25, Theorem 2.2], there exists (W,µ) ∈ nuc(χ) such that H ≤
W and µH = ϕ. Moreover, if I = IN (ϕ), by the proof of [25, Theorem
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3.5] it follows that W ∩ N = I. Finally, by Clifford theory, µI
N is an

irreducible constituent of χN and µI
N (1)π = ϕ(1) = χ(1)π, thus ψ = µI

N

and, since µI is π-special (because it is π-factorized by Proposition 6.2.3
and its order divides the order of µ), it follows from Proposition 6.2.3 that
ψ ∈ Bπ(N).

In order to prove the last assertion, observe that ψ(1)π = χ(1)π
and ψ(1)π′ = |N : W ∩N |, χ(1)π′ = |G : W |. Moreover, |G : W ∩N | =
|G : W | |W : W ∩N | = |G : N | |N : W ∩N | and |G : N | is the number
of Hall π-subgroups in G, while, on the other hand, |W : W ∩N | =
|W : NW (H)| is the number of Hall π-subgroups in W . Then, it fol-
lows from [41, Corollary 1.2] that |W : W ∩N | divides |G : N |. Thus,

|N : W ∩N | divides |G : W | and |G:W |
|N :W∩N | divides |G : N |.

Corollary 6.2.6. Let G be a π-separable group and let N be the nor-
malizer of a Hall π-subgroup of G. Let B(G) and B(N) be the sets of
Bπ-characters of, respectively, G and N which lie over primitive Fong
characters. Then, the character restriction realizes a bijection between
B(G) and B(N). In fact, χ ∈ B(G) and ψ ∈ B(N) correspond under bi-
jection if and only if ψ is the unique upper-Fong character associated with
χ.

Finally, notice that the correspondence in Corollary 6.2.6 preserves the
π-part of character degrees, i.e., χ(1)π = ψ(1)π when χ and ψ correspond
under bijection. This leads to the following corollary.

Corollary 6.2.7 ([6, Theorem 2.2]). Let G be a π-separable group and
let N be the normalizer of a Hall π-subgroup of G. Then, the charac-
ter restriction realizes a bijection between the sets Bπ(G) ∩ Irrπ′(G) and
Bπ(N) ∩ Irrπ′(N).

6.3 A linear McKay correspondence

We now temporarily forget about Bπ-characters to talk about a differ-
ent problem related with character correspondence.

As we have mentioned at the beginning of this chapter, it is not always
possible to find a choice free McKay correspondence, even for solvable
groups. On the other hand, if we further assume that NG(P ) = P CG(P ), a
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choice free correspondence has been described in [37] for p-solvable groups.
The correspondence, however, is not given by the character restriction,
i.e., the character corresponding to χ ∈ Irrp′(G) is not necessarily the only
irreducible constituent of χNG(P ) with a degree not divisible by p.

One may wonder if it is possible to have a correspondence given by the
character restriction, eventually under some stronger assumptions on the
group structure and characters.

Problem 6.3.1. Let G be a finite group, let p be a prime number and let
N be the normalizer of a Sylow p-subgroup ofG. Under which assumptions
on G, for each χ ∈ Irrp′(G) there exists exactly one irreducible constituent
χ∗ of χN which belongs to Irrp′(N) and χ∗ is linear?

We first herd about this problem from Carolina Vallejo, from Uni-
versidad Autónoma de Madrid, who also explained us some very basic
characterization, suggested by Gabriel Navarro, which we report here.

In this section, we see some necessary condition for the existence of the
correspondence in Problem 6.3.1, while we will see a sufficient condition
in the next section.

For the sake of synthesis, let us establish an hypothesis which will be
referred repeatedly.

Hypothesis 6.3.2. Let G be a finite group, χ an irreducible character in
Irrp′(G), p a prime number, P a Sylow p-subgroup of G and N = NG(P )
the normalizer of P in G, and suppose that the restriction of χ to N is
χN = λ + ∆, where λ is a linear character and ∆ is either zero or such
that every irreducible constituent of it has a degree divisible by p.

If Hypothesis 6.3.2 holds, we will refer sometimes to the character λ
of the hypothesis also as χ∗.

Here it is presented a partial characterization of the groups where
Hypothesis 6.3.2 holds. We first state an easy lemma suggested, originally,
by Gabriel Navarro.

Lemma 6.3.3. Let G be a group where Hypothesis 6.3.2 holds for every
χ ∈ Irrp′(G) and let P be a p-Sylow and N its normalizer in G. Then:

1. Irrp′(N) = Lin(N) and, for each λ ∈ Lin(N), there exists χ ∈
Irrp′(G) such that χ∗ = λ;
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2. N = X × P for some abelian p′-group X.

Proof. For point 1), one only has to notice that, if λ ∈ Irrp′(N), then λG

is a p′-number. It follows that λG has at least one irreducible constituent
χ in Irrp′(G) and the thesis follows by Hypothesis 6.3.2: since λ is an
irreducible constituent of χN , then λ = χ∗ and it is linear.

For point 2), we only have to notice that, since Irrp′(N) = Lin(N), it
follows from Thompson theorem on character degrees (Theorem 4.1.5 in
this thesis) that N has a normal p-complement X. Since both X and P
are normal in N , it follows that N = P × X. Finally, since p - ξ(1) for
every ξ ∈ Irr(X), it follows from 1) that every irreducible character of X
is linear; thus, X is abelian.

A further characterization of the subgroup X is possible.

Proposition 6.3.4. Let G, N and X be as in Lemma 6.3.3, then, for
each x ∈ X, xG ∩X = {x}.

Proof. Let λ ∈ Irr(X) and let χ ∈ Irrp′(G) such that χ∗ = λ × 1P . Since
Hypothesis 6.3.2 holds and N = X × P , then χN = λ × 1P + ∆, with
∆ =

∑
i µi × εi for some µi ∈ Irr(X) and some nonlinear εi ∈ Irr(P ).

Now, let R be the ring of algebraic integers and let M be a maximal
ideal containing pR, so that F = R/M is a field of characteristic p. For any
x ∈ X, µi×εi(x) = εi(1)µi(x) ≡ 0 (mod M), since p | εi(1); thus, it follows
from the previous paragraph that χ(x) ≡ λ(x) (mod M). Since, for any
y ∈ X G-conjugate to x, χ(x) = χ(y), we have that λ(x) ≡ λ(y) (mod M)
and, since λ(x), λ(y) ∈ Qm for some p - m, it follows from [14, Lemma 15.1]
that λ(x) = λ(y).

Thus, if x, y ∈ X are G-conjugate, then λ(x) = λ(y) for every λ ∈
Irr(X) and, since X is abelian, it follows that x = y.

Another result relates Hypothesis 6.3.2 with the character restriction
to the derived subgroup of a Sylow subgroup.

Proposition 6.3.5. Let χ ∈ Irrp′(G), then Hypothesis 6.3.2 holds for χ
if and only if [χP ′ , 1P ′ ] = 1.

Proof. Let us consider the restriction of χ toN . Since p does not divide the
degree of χ, then it does not divide the degree of at least one irreducible
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constituent of χN . Thus, let χN = λ + ψ1 + . . . + ψk, where λ, ψi are
characters in Irr(N) and p - λ(1).
Now, consider that:

1. since p - λ(1) and P �N , all the irreducible constituents of λP are
linear, therefore they all lie over 1P ′ and it follows that λ is linear if
and only if [λP ′ , 1P ′ ] = 1;

2. p | ψi(1) if and only if it divides the degree of all the irreducible
constituents of (ψi)P , thus, if and only if [(ψi)P ′ , 1P ′ ] = 0.

Since [χP ′ , 1P ′ ] = [λP ′ , 1P ′ ] +
∑k

i=1[(ψi)P ′ , 1P ′ ], the thesis follows.

Thus, it may be useful to better know how P ′ behaves in the group
G. What we are able to do is characterize its normalizer when Hypothe-
sis 6.3.2 holds for every character in Irrp′(G).

Proposition 6.3.6. Let G be a group and let P be a Sylow p-subgroup
of G. Let N be the normalizer of P in G and let M be the normalizer
of P ′. Suppose that for every χ ∈ Irrp′(G) Hypothesis 6.3.2 holds. Then,
Irrp′(M) = Lin(M) and M = NK for some normal p′-subgroup K of M .
Moreover, N ∩K = {1} and M ′ = P ′K.

Observe that N ≤M , since P ′ is normal in N .

Proof. At first, let us prove that Irrp′(M) = Lin(M). Let ψ ∈ Irrp′(M),
then there exists a character χ ∈ Irrp′(G) which lies over ψ. Since Hy-
pothesis 6.3.2 holds for χ, then so it does for ψ and it follows from Propo-
sition 6.3.5 that [ψP ′ , 1P ′ ] = 1. Since however P ′ is normal in M , we have
that ψ is a linear character in Irr(M/P ′). Therefore, Irrp′(M) = Lin(M).

Now, by Thompson theorem on character degrees, it follows that M
has a normal p-complement and, in particular, it is p-solvable. Then it
follows from Theorem 4.1.6 that M ′∩N = P ′. Now, since M has a normal
p-complement, so does M ′; let K be the normal p-complement of M ′, then
M ′ = P ′K. Finally, K is normal in M , too, and, since M = NM ′ for
the Frattini argument and M ′ ∩ N = P ′, it follows that M = NK and
N ∩K = {1}.
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6.4 A sufficient condition for the linear McKay

correspondence

In this section, we find a sufficient condition for Problem 6.3.1. It is,
however, a strong condition to impose. In fact, we assume X to be a Hall
subgroup of G.

Theorem 6.4.1. Let G be a π-separable group and P ∈ Sylp (G). Let
N = NG(P ) and suppose N = P × X with X ∈ Hallπ (G) and abelian.
Moreover, assume that either G is solvable or p is odd. If χ ∈ Irrp′(G),
then the restriction of χ to N is χN = λ+∆, where λ is a linear character
and ∆ is either zero or such that every irreducible constituent of it has a
degree divisible by p.

To prove Theorem 6.4.1, we use some techniques from [37], like the
following lemma.

Lemma 6.4.2. Let G be a finite group, let P ∈ Sylp (G) and let N =
NG(P ). Suppose M �G and that, for some g ∈ G and µ ∈ Irr(M), µ and
µg are both P -invariant. Then µg = µn for some n ∈ N .

Proof. It is part of the proof of [37, Lemma 2.1].

Lemma 6.4.3. Let G be a finite group and let P ∈ Sylp (G). Let N =
NG(P ) and suppose N = P ×X with X abelian. Let M �G be a p′-group
and suppose that, for some g ∈ G and µ ∈ Irr(M), µ and µg are both
P -invariant. Then, µ = µg.

Proof. From Lemma 6.4.2 we know that µg = µx for some x ∈ X. Let C =
CM (P ) and notice that C = X∩M . Let µ∗ and (µx)∗ be the Glaubermann
correspondents of µ and µx in Irr(C), then consider (µ∗)x and notice that
it is the only constituent of (µx)C with multiplicity non divisible by p,
therefore (µx)∗ = (µ∗)x by [14, Theorem 13.1 c)]. However, (µ∗)x = µ∗

because X is abelian. It follows that µg = µ, since the Glaubermann
correspondence is injective.

We are now ready to prove Theorem 6.4.1.
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Proof of Theorem 6.4.1. At first, notice that if X = 1 then the thesis is
true for Theorem 6.1.4, for p odd, and [37, Theorem D], for G solvable.

Suppose X > 1 and let M � G minimal, then we can assume M to
be a p′-group, since Op′(G) 6= 1 by [37, Theorem 3.2]. Let χ ∈ Irrp′(G),
suppose M is not in kerχ (otherwise, for the character χ the thesis follows
by induction, since NG/M (PM/M) = NM/M) and let ξ be an irreducible
constituent of χM which is P -invariant. By Lemma 6.4.3, ξ is unique
among the irreducible constituents of χM .

On the other hand, however, since ξ 6= 1M , by the Glaubermann cor-
respondence we have that X ∩M 6= 1; therefore, since G is π-separable,
M is a π-group and it follows that M ≤ X. In particular, we have that ξ
extends to X. Moreover, since P ≤ X, it follows that every character of
M is P -invariant; thus, ξ is the unique irreducible constituent of χ and it
is also G-invariant.

Let r be any prime and let R/M be a Sylow r-subgroup of G. If r ∈ π,
then R ≤ X up to conjugation and ξ extends to R. On the other hand,
if r /∈ π, then r - o(ξ) and thus ξ extends to R because it is G-invariant.
It follows, by [14, Theorem 6.29], that ξ extends to G. Therefore, χ = νψ
for some ν extension of ξ and ψ ∈ Irr(G/M). By induction, there exists a
unique irreducible constituent λ of ψN such that p - λ(1), and λ is linear.
It follows that the character νNλ is the unique irreducible constituent of
χN whose degree is not divided by p, and of course it is linear.



Conclusion and future

developments

In this thesis, we studied some aspects of the theory of characters of
π-separable groups which were previously never studied, and we found
some original results. Some problems, however, remain open and some
new questions arise.

In Chapter 2 we proved that there are strong analogies between ze-
ros of irreducible and Bπ-characters. In particular, we saw that, in a
supersolvable group, there are necessary conditions for an element to be
π-nonvanishing which are similar to the known necessary conditions for
an element to be nonvanishing. Moreover, in a solvable group, there ex-
ist necessary conditions for an element to be both π-nonvanishing and
π′-nonvanishing and these conditions are the same we know exist for non-
vanishing elements. Since, however, these are necessary conditions, and
not sufficient, we are still not able to proceed further with the analogies
between the two sets of characters.

Thus, a question remains unanswered: letG be a π-separable group, let
x ∈ G and suppose there exists a character χ ∈ Irr(G) such that χ(x) = 0,
then is it true that there exists also a character ψ ∈ Bπ(G)∪Bπ′(G) such
that ψ(x) = 0?

In Chapter 4 we saw that strong analogies between the sets of char-
acters Irr(G) and Bπ(G) ∪ Bπ′(G) continue to appear. In particular, we
proved that the degrees of characters in Irr(G) and in Bπ(G) ∪ Bπ′(G)
are divided by the same primes. When we study the prime degree graph,
however, the situation is less transparent. In fact, most of the techniques
which are used to study the prime degree graph, in solvable groups, cannot
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be applied if we consider only the degrees of characters in Bπ(G)∪Bπ′(G).
There exist some results about the prime degree graph of Bπ-characters,
see for example [27]; however, in general we still do not have an optimal
bound for the diameter of a connected component of the prime graph of
the character degrees in cdBπ ∪Bπ′ (G).

A related open problem is to understand how much different the two
sets cd(G) and cdBπ ∪Bπ′ (G) are. In fact, we have seen in the examples
of Section4.5 that, in general, cd(G) 6= cdBπ ∪Bπ′ (G); thus, is it possible
to find a bound for

∣∣cd(G) \ cdBπ ∪Bπ′ (G)
∣∣? To answer to this question,

results of Chapter 5 may be of use, since they provide a lower bound for∣∣∣cd
Bp
p′ (G)

∣∣∣. The generalization of this bound to π containing more then one

prime, however, appears to be hard. In fact, we believe that, in general,
the π-length of a π-separable group do not provide a lower bound for∣∣∣cdBπ

π′ (G)
∣∣∣. It may still provide a bound for

∣∣cdBπ(G)
∣∣; however, in this

situation we cannot rely on the fact that the Fong characters are linear
and, thus, it is much harder to work with them.

In Chapter 6, we described the behaviour of Bπ-characters when re-
stricted to the normalizer of a Hall π-subgroup. In particular, we defined
the upper-Fong characters and we proved that they are Bπ-characters un-
der some further assumptions. However, may be possible that they are
always Bπ-characters but we are still not able to prove it, nor to find
counterexamples. If it was true, it would provide an elegant, alternative
way to prove the McKay natural correspondence in case of primitive Fong
characters.

The theory behind Bπ-characters may be difficult to approach, and
it is hard to master. Nevertheless, the study of Bπ-characters can be
rewarding, both when they are applied to other problems, independent
from the theory, and when we focus on the most profound aspects of the
theory itself. I am grateful I have had the possibility to do research in this
fascinating area of the character theory of finite groups.
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