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Abstract: Background: Diabetic Cardiomyopathy (DC) has been defined as a distinct en-

tity characterized by the presence of diastolic or systolic cardiac dysfunction in a diabetic 

patient in the absence of other causes for Cardiomyopathy, such as coronary artery dis-

ease (CAD), hypertension (HTN), or valvular heart disease. Diabetes affects every organ 

in the body and cardiovascular disease accounts for two-thirds of the mortality in the dia-

betic population. Diabetes-related heart disease occurs in the form of coronary artery dis-

ease (CAD), cardiac autonomic neuropathy or DC. The prevalence of cardiac failure is 

high in the diabetic population and DC is a common, but underestimated cause of heart 

failure in diabetes. The strong association between diabetes and heart failure has fueled 

intense human and animal research aimed at identifying the mechanisms underlying dia-

betic myocardial disease. Despite significant progress made, the precise pathogenesis of 

diabetic Cardiomyopathy is yet to be clearly defined. Hyperglycemia, dyslipidemia and 

inflammation are thought to play key roles in the generation of reactive oxygen or nitro-

gen species which are in turn involved.  

Methods: We have reviewed the up-to-date scientific literature addressing these issues. 

Results: The myocardial interstitium undergoes alterations resulting in abnormal contrac-

tile function noted in DC. In the early stages of the disease, diastolic dysfunction is the 

only abnormality, but systolic dysfunction supervenes in the later stages with impaired 

left ventricular ejection fraction. Transmitral Doppler echocardiography is usually used to 

assess diastolic dysfunction, but tissue Doppler Imaging and Cardiac Magnetic Resonance 

Imaging are being increasingly used for early detection of DC. Diabetic patients with mi-

crovascular complications show the strongest association between diabetes and Cardio-

myopathy, an association that parallels the duration and severity of hyperglycemia.  

Conclusion: The management of DC involves improvement in lifestyle, control of glu-

cose and lipid abnormalities, together with treatment of hypertension and CAD, if present. 

Keywords: Cardiomyopathy, diabetes, glucose dysregulation, heart failure, medication.  
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1. INTRODUCTION 

Worldwide, diabetes mellitus is now viewed as an 

epidemic, with cardiovascular disease being the pri-

mary driver of the raised levels of morbidity and mor-

tality in diabetic patients. Besides an increased risk of 

cardiovascular disease in type 1 and type 2 diabetes 

(T2DM) mellitus, this risk may also be evident in pre-

diabetic stages, driven by symptomatology such as im-

pairments in fasting glucose and glucose tolerance, as 

well as wider processes associated with metabolic syn-

drome and obesity. 

Diabetic patients have a high prevalence of heart 

failure or impaired diastolic and systolic cardiac func-

tion subsequent to hypertension, coronary artery dis-

ease and DC [1]. Diabetic patients have a two-fold in-

crease in short- term mortality rate following acute my-

ocardial infarction, compared to non-diabetic patients, 

with the glucose admission profile being a better pre-

dictor of outcome than glycated hemoglobin (HbA1c) 

after a heart attack in diabetic patients [2]. Conse-

quently, the management of cardiovascular risk factors 

in T2DM is of great clinical importance, with wider 

implications driven by the financial and therapeu-

tic/side effect burden of pharmaceutical treatment [3].  

This review focuses on human studies, including 

pathophysiology, diagnostic evaluation and manage-

ment options, whilst highlighting the clinical impor-

tance of early DC identification for the optimization of 

treatment in diabetic patients. 

2. DEFINITION 

The term DC was first introduced over 30 years ago, 

following evidence indicating that diabetes is associ-

ated with a distinct cardiomyopathy, which was inde-

pendent of other known risk factors, such as hyperten-

sion and coronary artery disease. 

Studies using cardiac catheterisation or echocardi-

ography show diastolic dysfunction to be an early indi-

cant of diabetes-driven heart muscle disease, with this 

preceding systolic dysregulation and associated dam-

age. Many of the pathogenetic mechanisms underpin-

ning the risk of DC have been identified, although in 

many cases, their mode of action has still to be clarified 

[4]. Metabolic abnormalities such as hyperglycemia, 

hyperinsulinemia and hyperlipemia may, both directly 

or indirectly, drive the alterations in cardiomyocytes 

that underpin DC pathophysiology, including myocar-

dial fibrosis and myocardial hypertrophy. 

Clinically, metabolic abnormalities are the main 

treatment target. Given that DC is also highly associ-

ated with asymptomatic T2DM patients, it is important 

that screening occurs early, in order to prevent the pro-

gression to chronic heart failure [5].  

3. EPIDEMIOLOGY 

Besides clinical studies, epidemiological data show 

a significant association of T2DM and heart failure. In 

diabetic and non-diabetic patients with symptomatic 

chronic heart failure, HbA1c levels are an independent 

risk factor for cardiovascular-associated death, and 

overall mortality as well as heart failure linked hospi-

talization [6]. A role for HbA1c levels was also indi-

cated in a recent study of 20,985 T1DM patients [7]. 

These authors showed 3% of T1DM patients to be di-

agnosed with heart failure over a 9 yrs follow-up, giv-

ing an incidence of 3.38 events per 1,000 patient/year. 

The hazard ratio for the development of heart failure 

was four-fold higher when HbA1c levels >10.5%, ver-
sus controls with HbA1c <6.5% [7]. 

Hyperglycemia is associated with a change in glu-

cose metabolism, leading to heightened beta-oxidation 

and consequent free fatty acid (FFA) damage, namely 

lipotoxicity, also in the myocardium. Hyperglycemia 

also associates with insulin resistance, activation of the 

renin-angiotensin-aldosterone system, changes in cal-

cium homeostasis and structural changes in the natural 

collagen network. The latter can lead to a less flexible 

matrix, due to advanced glycation end-product (AGE) 

formation, hypertrophy and fibrosis, which all contrib-

ute to the pathophysiology of clinical DC phenotypes. 

Cardiac metabolism is significantly altered in diabetes, 

as indicated by reduced glucose utilization, lower rates 

of lactate oxidation and heightened use of fatty acids. 

Amino acid disturbances are also of potential clinical 

relevance due to quantitative and qualitative changes in 

contractile proteins [8]. 

4. STRUCTURAL/FUNCTIONAL CHANGES IN 

THE DIABETIC HEART 

Significant alterations in the anatomy and the func-

tion of the myocardium underpin the clinico-patholo-

gical consequences of DC. 

Myocardial structure is primarily comprised of 

small cardiomyocytes that are densely packed with mi-

tochondria. The classical phenotype in DC is character-

ized by large areas of fibrosis and a marked reduction 

in sarcomeres. This contrasts to the pathophysiology 

typical of restrictive Cardiomyopathy, where the myo-

cardial structure appears to be characterized by hyper-

trophic cardiomyocytes, collagen deposition between 

cardiomyocytes as well as preserved sarcomeres [9]. In 
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the early stages of DC, pathological alterations occur 

mainly at the level of myocardial interstitium (forma-

tion of AGEs, impaired compliance and ischemia of the 

vasa vasorum), with myocardial contractile dysfunction 

emerging as a consequence of such changes [10]. Later 

abnormalities, including ventricular myocardial hyper-

trophy, fibrosis (interstitial and perivascular) and car-

diac microvascular abnormalities emerge. 

4.1. Left Ventricular Hypertrophy  

Left ventricular hypertrophy (LVH) significantly 

predicts heart failure development, and associated mor-

tality [11]. Hypertension is the main risk factor for 

LVH, although diabetes can also drive such pathologi-

cal remodeling. Echocardiographic studies performed 

in diabetic patients have consistently shown a strong 

association between diabetes, increased LV mass, and 

LVH even in the absence of coexistent hypertension 

[12, 13]. Moreover, obesity itself also portends a raised 

risk of concentric LVH, which is independent of ele-

vated blood pressure [14]. Although the precise 

mechanisms of the hypertrophic response to metabolic 

stress remain to be fully elucidated, LVH has become a 

defined structural characteristic of DC.  

4.2. Diastolic Dysfunction 

DC associated ventricular hypertrophy and fibrosis 

are the primary mediators of diastolic dysfunction. 

Similar to the data on LVH in metabolic disease, 

diabetes is also strongly associated with diastolic dys-

function. In fact, diastolic abnormalities are thought to 

be among the earliest functional manifestations of DC. 

The prevalence of diastolic dysfunction in diabetics 

ranges between 40- 75% [15]. The mechanism of dia-

stolic dysfunction in the diabetic heart may be a conse-

quence of alterations in calcium handling, impaired 

energetics, cardiac lipid accumulation, and/or myocar-

dial fibrosis. Interestingly, the early stages of diastolic 

dysfunction are reversible in diabetics who lose weight 

and normalize their metabolism [16]. This finding im-

plies that the pathogenesis of DC may have a reversible 

phase and emphasizes the importance of early, aggres-

sive lifestyle modification in diabetics with impaired 

myocardial relaxation.  

4.3. Systolic Dysfunction 

Systolic dysfunction is only evident at later DC 

stages. It is unknown whether systolic heart failure is 

the final common pathway of DC or is an alternate 

phenotype determined by the interaction of genetics 

and diabetes in susceptible individuals. It is also impor-

tant to recognize that many diabetics with "normal" 

ejection fraction may actually have impaired systolic 

function when more sophisticated measures, such as 

myocardial strain measurements or tissue doppler, are 

employed [17]. To date, the early stages of systolic 

dysfunction are likely to go unrecognized clinically. 

Cardiac output diminishes progressively with sys-

tolic dysfunction and disease severity. LV systolic ejec-

tion fraction is a reliable indicant of systolic dysfunc-

tion severity and associated heart failure. 

5. FROM THE PATHOGENESIS TO A POSSI-

BLE THERAPY 

DC pathogenesis is complex, typically showing 

changes in lipid metabolism, insulin resistance and mi-

tochondrial function as well as alterations in adipokine 

secretion and signaling. Such factors suggest therapeu-

tic approaches in DC (Table 1) [18]. In summary, the 

most important aspects of DC include: 1) metabolic 

disturbances (insulin resistance, loss of glucose trans-

porter 4, carnitine deficiency, alterations in calcium 

homeostasis and AGE); 2) myocardial fibrosis (in con-

junction with heightened levels of angiotensin II, IGF-

I, pro-inflammatory cytokines, and apoptosis); 3) mi-

croangiopathy (impaired coronary flow reserve, and 

endothelial cell function); 4) cardiac autonomic neu-

ropathy (including denervation as well as changes in 

myocardial catecholamine levels); and 5) mitochon-

drial dysfunction. Each of these alterations suggests a 

possible therapy, as summarized in Fig. (1). In Fig. (2) 

we summarize the difference between the classical and 

other, different phenotypes, in particular, the relative 

importance of DM- related pathophysiological mecha-

nisms for development of DC.  

Table 1. Relationship between pathogenic mechanisms 

and possible specific therapeutic strategies. 

Pathogenic  

Mechanisms 
Possible Therapy 

Metabolic disturbances Lifestyle modification, hypoglycemic 

drugs and lipid-lowering therapy 

Myocardial fibrosis ACE inhibitors  

Angiotensin II receptor antagonists  

beta adrenoreceptor antagonists  

endothelin-1 receptor antagonists  

antioxidants (magniferin, metal-

lothionein, vitamins C and E)  

Microangiopathy PKC-beta isoform inhibitor  
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Fig. (2). A two-faced disease: restrictive or dilated pheno-

type diabetic Cardiomyopathy  

HFPEF: Heart failure with preserved Ejection Fraction;  

HFREF: Heart failure with reduced Ejection Fraction 

(modified from Petar M. Seferović. Eur. Heart J., 2015).  

5.1. Metabolic Disturbances 

The effects of elevated glucose or altered insulin 

sensitivity on cellular components within the heart has 

significant impacts on cardiac extracellular matrix 

(ECM), contributing to the impact of diabetes in reduc-

ing cardiac function [19]. Factors contributing to such 

alterations in the ECM may include the heightened 

production, lower degradation and chemical modifica-

tion of ECM proteins. The direct or indirect effects of 

high glucose concentrations may be driving such 

changes [20]. In particular high glucose concentration 

levels accelerate collagen types I and III synthesis, 

which an increase in extracellular signal-related kinase 

(ERK)1/2 signalling in cardiac fibroblasts may have an 

important role [21]. Moreover in diabetes, energy pro-

duction shifts from glucose utilization to the beta-

oxidation of FFA, which are supplied to cardiac cells 

from two sources, namely endogenously from the 

lipolysis of cardiac triglyceride stores, or exogenously 

from the blood. 

In a state of impaired /deficient insulin secretion, 

adipose tissue lipolysis is increased, leading to a 

heightened level of circulating FFA. Also, hydrolysis 

of the augmented myocardial triglyceride stores may 

enhance tissue FFA. Regardless of the FFA source, 

their increased utilization can have negative impacts on 

myocardial function, including from the higher oxygen 

requirement required during FFA metabolism, poten-

tially toxic FFA intermediate accumulation intracellu-

larly, and a FFA- driven inhibition of the oxidation of 

glucose oxidation, as well as significant morphological 

changes. Therapies targeting such cardiac metabolic 

alterations in the early stages of diabetes would then 

 

Fig. (1). Summary of the pathogenic mechanisms of diabetic Cardiomyopathy. 
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have the potential to delay the onset of more permanent 

sequelae [22]. The exposure to high levels of circulat-

ing FFA has been proposed to be a major contributor to 

DC [23]. Data in women classed as overweight or 

obese, indicate insulin resistance to be linked to height-

ened myocardial triglyceride content and cardiac re-

modelling as well as lower diastolic function [24]. 

High density lipoprotein (HDL) cholesterol may in-

directly modulate DC, via the regulation of metabolic 

triggers, such as hyperglycemia, hyperinsulinemia, and 

hyperlipidemia. Such factors can drive DC associated 

cellular changes by a variety of processes, as detailed 

above, including immune-inflammatory processes, and 

Ca
2+

 handling, as well as oxidative and nitrosative 

stress, and endothelial dysregulation [25]. Disturbed 

glucose metabolism can lead to AGE formation, which 

can associate with lipofuscin, and is linked premature 

cell ageing. A recent investigation assessed heart fail-

ure and AGE formation in patients with or without 

T2DM. The amount of AGE in cardiomyocytes in-

creases significantly, both in diabetes and heart failure, 

with a staining pattern that is typical for each condition 

[26]. As previously indicated oxidative stress has a sig-

nificant impact on the pathogenesis of DC, suggesting 

the potential utility of antioxidant therapy [27]. The 

inflammation associated transcription factor, nuclear 

factor-kappa B (NF-kB), is an important driver of 

many of the changes occurring across an array of 

medical conditions, including different heart diseases. 

As such, NF-kB may be a crucial driver of many of the 

processes linked to DC, including oxidative stress and 

inflammation [28]. The post-translation attachment of 

O -linked N-acetylglucosamine, or O-GlcNAc, to ser-

ine and threonine residues within both nuclear and cy-

toplasmic proteins, is achieving growing recognition as 

an important regulator of an array of cellular processes. 

The heightened and sustained enhancement of O-

GlcNAc levels are associated with glucose toxicity and 

insulin resistance. Increased O-GlcNAc levels could 

contribute to the negative impacts of diabetes on the 

heart, including impairments in contractility and cal-

cium handling, as well as stress responses. As recent 

data indicates that O-GlcNAc modulates epigenetic 

processes, this could be another ubiquitious mechanism 

that may contribute to diabetes-driven changes in DC 

[29]. 

No single pharmaceutical can treat DC, with man-

agement thought to necessitate a variety of approaches, 

including: lifestyle modification; glucose control (insu-

lin, sulfonylureas, thiazolidinediones, alpha glucosi-

dase inhibitors, biguanides, meglitinides and dipeptidyl 

peptidase 4 (DPP-4) inhibitors); GLP -1 analogs; cal-

cium channel blockers (amlodipine, verapamil); ACE 

inhibitors (captopril, enalapril); angiotensin II receptor 

antagonists (losartan, olmesartan); endothelin-1 recep-

tor antagonists (bosentan, tezosentan); beta adrenore-

ceptor antagonists (acebutolol, carvedilol); peptides 

(adrenomedullin); antioxidants (methalothionein, alpha 

tocopherol, alpha lipoic acid); and antihyperlipidemic 

drugs (fenofibrate, simvastatin, ezetimibe [30].  

5.2. Microangiopathy 

Hemodynamic and structural changes, such as capil-

lary basement membrane thickening, and interstitial 

fibrosis as well as myocyte hypertrophy and cellular 

necrosis can arise as a result of changes in several fac-

tors including vasoactive molecules, which may be 

crucial in mediating the deficits in structure and func-

tion during the early and late disease stages [31]. 

Moreover, diabetes affects the heart via a quantifiable 

increase in chamber visco-elasticity rather than an in-

crease in chamber stiffness and the phenotypic charac-

terization of DC is facilitated by diastolic function as-

sessment [32]. A new role of DPP4 in micro- and 

macro-vascular vessels is emerging [33, 34]. 

Diastolic dysfunction and microvascular function 

may be intimately linked, although the relationship be-

tween endothelial dysfunction, profibrotic connective 

tissue growth factor and refined measures of diastolic 

dysfunction is not strong, suggesting that other factors 

may be crucial to the early pathogenesis of subclinical 

cardiac diastolic dysfunction common in T2DM [35]. 

Diabetic patients with microangiopathy have impair-

ments in left ventricle functioning, whereas those with 

uncomplicated diabetes have normal function. This 

suggests the existence of a specific subtype of DC with 

microangiopathy, but not with a metabolic defect. The 

linking of microangiopathy and suboptimal left ventri-

cle functioning may underpin the high immediate mor-

tality and the heightened incidence of cardiogenic shock 

and congestive heart failure that is evident after myo-

cardial infarction in diabetic patients [36]. Although 

requiring further investigation, such studies may sug-

gest a subclinical DC that arises from small-vessel dis-

ease [37]. 

Human diabetes mellitus shows evidence of de-

creased cardiac myofilament functioning, which, cou-

pled to depressed cardiac myofilament Ca
2+

 respon-

siveness, may underpin the suboptimal ventricle func-

tioning that is characteristic of DC [38]. Recent data 

indicates that diabetes depresses AMP-activated pro-

tein kinase (AMPK) activity, thereby promoting the 
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interaction of BECN1 and the anti-apoptotic protein, 

BCL2. Concurrently, diabetes increases the risk of car-

diomyocyte apoptosis, whilst also suppressing cardiac 

autophagy. AMPK activation leads to MAPK8 phos-

phorylation, in turn driving BCL2 phosphorylation and 

is dissociation from the BECN1-BCL2 complex. There-

fore AMPK, via BCL2, restores cardiac autophagy, 

protects against cardiac apoptotic processes, thereby 

better optimizing cardiac structure and function. 

The dissociation of BCL2 from BECN1 through the 

activation of MAPK8- BCL2 signalling may be impor-

tant in driving the processes through which AMPK ac-

tivation can restore autophagy, whilst protecting agai-

nst cardiac apoptosis and preventing DC [39].  

Protein kinase C (PKC) is linked to alterations in 

the vasculature, including increasing permeability, ex-

tracellular matrix synthesis, contractility, cell growth, 

apoptosis, angiogenesis and leukocyte adhesion, as well 

as both cytokine activation and inhibition. Different 

PKC isoforms (PKC-alpha, -beta1/2, and PKC-delta) 

underpin such perturbations in vascular cell homeosta-

sis, including in large as well as small vessels. In clini-

cal trials, a PKC-beta isoform inhibitor has shown posi-

tive effects in diabetic non proliferative retinopathy and 

nephropathy, as well as in endothelial dysfunction [40]. 

The selective inhibition of PKC βII represents an effec-

tive approach for treating microvascular complications 

[41].  

5.3. Myocardial Fibrosis 

A number of factors contribute to the dysregulation 

of cardiac insulin and metabolic dysregulation, includ-

ing: systemic insulin resistance, adipokine secretion 

dysregulation, hyperinsulinemia, raised levels of circu-

lating inflammatory mediators, aberrant renin angio-

tensin aldosterone system activation and increased oxi-

dative stress, which all contribute to diastolic dysfunc-

tion. Suboptimal calcium homeostasis and endothelial 

cell dysregulation as well as endoplasmic reticular 

stress may also contribute to cardiomyocyte fibrosis 

and diastolic dysfunction [42]. Many investigators have 

proposed that inhibiting the renin-angiotensin-aldoste-

rone and sympathetic nervous systems may have clini-

cal utility in DC patients. The efficacy of angiotensin II 

and aldosterone blockade has been proposed to be me-

diated, at least in part, by aldosterone blockade leading 

to the down-regulation of the activity of the Na(+)/H(+) 

exchanger 1. Such a role for the regulation of ion chan-

nels in DC requires further investigation [43]. Apopto-

sis is crucial to the pathophysiology of most medical 

conditions, including DC, by driving the death of ter-

minally differentiated cardiomyocytes. The efficacy of 

apoptosis inhibition in preventing the development of 

heart failure has been shown in many studies. We now 

review the role of apoptosis across cardiovascular dis-

eases, especially its role in the molecular processes 

driving cardiomyocyte death [44]. 

The FKHR gene product, FoxO1, belongs to the 

forkhead box family of transcription factors, and con-

tributes to the regulating of metabolism, cell prolifera-

tion, the oxidative stress response and immune homeo-

stasis as well as having a role in cell death processes. 

Given that FoxO1 has cardio-protective effects against 

an array of stressors, it has been the subject of investi-

gation in regard to DC. The cardiac tissue- specific de-

letion of FoxO1 affords protection to the heart against 

Cardiomyopathy, whilst FoxO1 down-regulation in 

endothelial cells may afford protection against athero-

sclerotic plaques [45]. Future studies will have to clar-

ify the role of FoxO1 in the etiology, course and man-

agement of DC. Two important pathways are involved 

in development of cardiac fibrosis: the renin-angio-

tensin system and AGE and its receptor, RAGE. Car-

diac fibrosis is an important component of DC, with a 

recent study suggesting a possible crosstalk between 

the RAS and AGE/RAGE pathway in the etiology of 

cardiac fibrosis in diabetes [46]. There is a growing 

appreciation of the multitude of roles and impacts of 

the renin-angiotensin-aldosterone system, including in 

the regulation of diabetes [47]. Other processes may 

also be relevant, with data indicating that endothelin-1 

and Na + /H + exchanger -1 (NHE-1) can lead to car-

diomyocyte hypertrophy via the activation of the MAPK 

activation pathways, suggesting a role in DC [48]. 

More recently, it has been shown that the role of 

AMPK extends to several non-metabolic effects related 

to other cardiac diseases, suggesting that AMPK could 

play both physiological and pathophysiological roles in 

the regulation of cardiac metabolism and wider heart 

functioning [49]. Matricellular proteins are induced 

following cardiac injury and the process of cardiac re-

modeling heart, where they act to regulate inflamma-

tory, reparative, fibrotic and angiogenic processes. 

Thrombospondin (TSP)-1, -2, and -4, tenascin-C and - 

X secreted protein acidic and rich in cysteine (SPARC), 

periostin, osteopontin, and the CCN family members, 

such as CCN1 and CCN2/connective tissue growth fac-

tor, are important regulators of an array of cardiac con-

ditions and pathophysiological processes, including DC 

[50]. Both ramipril and telmisartan, used in the treat-

ment of hypertension, improve echocardiographic left 

ventricular diastolic indices, whilst lowering plasma 

brain natriuretic peptide (BNP) levels in patients with 
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diabetes, especially when used in combination [51]. An 

array of other medications and factors show evidence 

of decreasing interstitial fibrosis and improving heart 

functioning in DC, including beta- adrenoreceptor an-

tagonists, ACE inhibitors, Bonestan, an antagonist at 

the endothelin-receptor antagonist, and adrenomedullin, 

as well as hormones, such as (insulin, IGF-1, and anti-

oxidants, including vitamins C and E, magniferin and 

metallothionein [52]. Clinical trials are necessary to 

clarify the utility of such data [53]. Other data has im-

plicated a role for immune cells in DC, with myeloid 

dendritic cells being upregulated in the course of insu-

lin-resistance and obesity, which may modulate the 

pathological vascular remodeling evident in DC [54]. 

5.4. Cardiac Autonomic Neuropathy 

Autonomic dysfunction, in the form of cardiovascu-

lar autonomic neuropathy, is not uncommon in diabetes 

mellitus and is proposed to be associated with heart 

rate control dysregulation as well as abnormalities in 

vascular dynamics. Moreover, cardiac autonomic neu-

ropathy is linked to left ventricular diastolic dysfunc-

tion (LVDD) in T2DM patients with no clinical mani-

festations of heart disease. DC can be detected by 24hr 

ECG monitoring and echocardiography, including in 

the early stages of DC and is recommended as an as-

sessment in all patients at risk [55]. The diastolic dys-

function of T2DM associates with sympathetic integ-

rity regional markers as well as autonomic neuropathy 

clinical markers [56]. 

LVDD and cardiac autonomic neuropathy (CAN) 

may be present in otherwise well-managed T2DM pa-

tients. The parameters defining LVDD and CAN may 

useful in better identifying DC, and therefore could 

prove to be good prognostic indicators, as in nondia-

betic populations [57].  

5.5. Mitochondrial Dysfunction  

Evidence indicates that myocardial metabolism is 

significantly changed in diabetes, which is thought to 

contribute to contractile dysfunction as well as ven-

tricular failure. Mitochondria are crucial to alterations 

in metabolism, and have a role in DC recent data [58]. 

Cardiomyocytes are packed with mitochondria, so 

any progressive decline in mitochondrial functioning 

will contribute to heart senescence. Suboptimal mito-

chondrial functioning leads to lower levels of ATP 

production and higher levels of ROS, with both 

changes contributing to an increased likelihood of 

apoptosis. Dysfunctional mitochondria also need to be 

removed in order to optimize cell functioning, which is 

achieved by macroautophagy, a process that is less ef-

ficient with advancing age. As such, the activity, 

movement and disposal of mitochondria are important 

in heart senescence as well as age-related cardiovascu-

lar diseases more widely. 

Interventions that inhibit cardiac ageing, will lead to 

improvements in mitochondria functioning as well as 

macroautophagy and the oxidative/antioxidative bal-

ance, suggesting impacts on key processes of cellular 

functioning and important therapeutic targets in DC 

[59].  

5.6. Other Possible Future Therapy  

Zinc homeostasis is as a growing area of research in 

cardiovascular disorders. Zinc is important in the 

maintenance of cellular structure and physiology. As 

such, zinc replenishment can improve cardiac function 

as well as prevent any further damage [60].  

Another candidate is represented by cardiac ryano-

dine receptors (RyR2s) that act on the redox regulation 

of the cardiac Ca(2+) transport systems and could have 

a role in redox regulation of pathological cardiac dys-

regulation that is present in diabetes [61]. 

Diabetes associated cardiac fibrosis is linked to the 

endothelial-to-mesenchymal transition process, which 

is positively modulated by endothelin 1 (ET-1). This 

suggests that the targeting ET-1 from endothelial cells 

may have treatment efficacy in DC [62].  

Hyperglycemia can contribute to raising levels of 

the pro-inflammatory cytokine, macrophage migration 

inhibitory factor (MIF), which increases the likelihood 

of developing Cardiomyopathy in T2DM patients, with 

increased levels of MIF also contributing to wider 

symptomatology. The elevated levels of cardiac dys-

function in T2DM patients [63]. The identification of 

the mechanism underlying such hyperglycemic-driven 

effects should aid in the search for new treatment tar-

gets in DC [64].  

In addition to life style modifications, and well re-

searched treatments, such as ACE inhibitors, beta-

blockers and angiotensin II receptor antagonists, 

trimetazidine may be usefully administered to patients 

showing impaired glucose tolerance and/or in the early 

course of T2DM. This is proposed, given that trimetaz-

idine can act as a metabolic switch, leading to the pref-

erential use of glucose over FFA as the metabolic sub-

strate in cardiomyocytes [65]. Trimetazidine may also 

lower the prevalence of heart failure as increase long-

term survival in T2DM patients, in part via the early 

normalization of the substrate of myocardial metabo-
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lism [66]. Further investigation on the potential effi-

cacy of trimetazidine on idiopathic dilated Cardiomy-

opathy in diabetic patients is required. 

Galanin can modulate glucose homeostasis and car-

bohydrate metabolism in cardiomyocytes as well as in 

skeletal muscles. Galanin also increases the expression 

levels and translocation of the glucose transporter 4 

(GLUT4) in insulin-sensitive cells, thereby lowering 

levels of insulin resistance. Such data suggests that en-

dogenous galanin is likely to positively regulate the 

diabetic heart [67]. 

A recent study in a DC model, investigated the car-

dio-reparative properties of sildenafil, which is well 

researched selective phosphodiesterase type 5 inhibitor. 

Given that an early aspects of DC include LV concen-

tric hypertrophy in association with alterations in the 

dynamics of myocardial contraction, it is of note that 

the chronic inhibition of phosphodiesterase type 5, at 

such an early stage, inhhibits remodelling, with conse-

quent benefits in icardiac kinetics as well as circulating 

markers. This effect seems to be mediated via direct 

impacts on intramyocardial activity, being independent 

of vasodilatory and endothelial cell regulation [68]. 

A growing body of data indicates a role for the fatty 

acid transporter and scavenger receptor, CD36, in the 

etiology of insulin resistance and the development of 

T2DM associated cardiovascular problems. The shift of 

CD36 to the plasma membrane from intracellular stores 

occurs early in the heart during the course of diet in-

duced obesity and the development of insulin resis-

tance. This CD36 shift increases the rate of fatty acid 

uptake, leading to fatty acid incorporation into triacyl-

glycerol stores and consequently to lipid intermediates, 

with these changes compromising insulin-induced 

GLUT4 recruitment. Such data indicates that CD36 

requires further investigation, including as a therapeu-

tic target in the redirecting of body fatty acid fluxes 

[69]. 

6. DIAGNOSIS 

Most DC cases may be subclinical, with no evident 

overt symptoms, such as changes in left ventricular 

mass, wall thickness and cardiac cavity dimensions. 

However, Cardiomyopathy-related abnormalities are 

functionally expressed and can be detected by echocar-

diography. 

The initial DC stages show a deterioration in longi-

tudinal systolic function that is compensated by an ele-

vation in the radial function. Diastolic dysfunction is 

also an initial sign. A shift from functional to morpho-

logical changes occurs as DC progresses, including left 

ventricular concentric hypertrophy and fibrosis, as in-

dicated above. End stage DC characteristics include a 

reduction in the ejection fraction as well as ventricular 

dilatation, whilst the very late stages can often mimic 

dilatative Cardiomyopathy [70]. The analysis of dia-

betic heart disease with pulsed Doppler techniques in 

order to assess the systolic and diastolic functioning of 

the left ventricle, is important to investigate in all indi-

cated patients, as an asymptomatic patient can show 

indications of diastolic dysfunction that is treatable 

[71]. Early stage DC can also be indicated by Doppler 

imaging, which is clinically important at an early stage 

where left ventricular diastolic dysfunction, without 

any obvious clinical symptomatology [72]. As indi-

cated above, diabetes leads to myocardial damage lead-

ing to diastolic dysfunction, prior to any systolic dys-

function.  

Diastolic dysfunction significantly correlates with 

disease duration, as well as glycemic levels and the 

patients treatment history. Echocardiography is a rela-

tively inexpensive investigative tool that detects struc-

tural and functional cardiac abnormalities. It should 

also be noted that systolic dysfunction can be detected 

by the standard echocardiography in the relatively early 

stages. 

Transmitral Doppler (Mitral valve blood flow 

measured by pulsed wave Doppler) is the standard pro-

cedure for the assessment of ventricular diastolic func-

tion [73]. Transmitral Doppler measures a number of 

variables, including: the early (E-wave) and late (A- 

wave) ventricular filling waves, providing an E/A ratio; 

the isovolumetric relaxation time (IVRT); the E-wave 

deceleration time (EDT); the E-wave peak velocity (E); 

and the A-wave duration (A-dur). Diastolic function, 

on the basis of such measures, can be categorized ac-

cordingly: (1) normal pattern; (2) grade I (impaired 

relaxation); (3) grade II (pseudonormal pattern); and 

(4) grade III (restrictive pattern) [74]. Grade I diastolic 

dysfunction patients show an E/A ratio < 1, arising 

from a lower early and raised late diastolic flows [75]. 

This assessment is routinely administered to diabetic 

patients, prior to the reporting of any cardiac symptoms 

[76].  

Some authors have suggested that plasma BNP may 

be utilized as an alternative screening tool for the iden-

tification of subclinical LV dysfunction. However, 

other alternative screening approaches, such as BNP, 

are not sufficiently sensitive in the case of subclinical 

dysfunction presentations [77]. Modern tissue Doppler 

applications have greater sensitivity for diagnosing dia-



1518     Current Medicinal Chemistry, 2018, Vol. 25, No. 13 Tarquini et al. 

stolic dysfunction, when compared to pulsed Doppler 

(63% vs. 50%) [78] and they may detect abnormalities 

of diastolic function when the patient is still asympto-

matic and their systolic function is normal. Tissue 

Doppler imaging (TDI) measures myocardial tissue 

velocities over the cardiac cycle, allowing the quantita-

tive assessment of myocardial global and regional sys-

tolic and diastolic functions [79, 80]. TDI allows myo-

cardial tissue velocities measurement in the longitudi-

nal direction, as well as peak early diastolic myocardial 

velocity (E0), which is a reflection of global left ven-

tricular diastolic function [81]. 

As well as such conventional assessment tools, 

newer approaches to the diagnostic measurement of 

myocardial fibrosis and cardiac metabolic dysfunction 

include magnetic resonance imaging (MRI) and spec-

troscopy plus contrast agents. When complemented 

with serum biomarkers such strategies provide a valu-

able indication of diabetes-driven alterations in cardiac 

structure and function, including the very early stages 

of disease manifestation [82]. Furthermore, MRI is 

gaining popularity as a valuable diagnostic tool for 

myocardial disorders [83, 84], including by demon-

strating the presence of fatty or fibrosis infiltrates in the 

hypertrophied myocardium, as well as a notable altera-

tion in the myocardial geometry and ventricular mass. 

Generally, left ventricular diastolic and systolic func-

tional abnormalities have been detected in 21% and 

15% of the asymptomatic diabetic patients, respec-

tively [85]. Cardiac MRI also has utility in the detec-

tion of diastolic dysfunction and myocardial steatosis 

[86].  

Cardiac MRI, using different radionuclides, and 

positron emission tomography (PET) clearly have util-

ity in the diagnosis of DC. The cutting edge of diagnos-

tic imaging in diabetes, includes: 1) PET, which can 

measure resting and stress blood flow as well as coro-

nary flow reserve; 2) radionuclide procedures that 

measure aerobic and anaerobic cardiac metabolic activ-

ity; and 3) cardiac neurotransmission imaging, which is 

useful in the diagnosis and evaluation of autonomic 

neuropathy [87].  

As indicated above, both metabolic and vascular 

disturbances contribute to DC. The correlation among 

myocardial diastolic dysfunction, metabolic distur-

bances, and post-contrast T1 values supports the role of 

diffuse myocardial fibrosis in the biological underpin-

nings of early DC [88]. Fig. (3) shows possible diag-

nostic criteria for the diagnosis of the two DC subtypes.  

7. IS IT POSSIBLE TO PREVENT DC? 

Some studies have proposed possible strategies for 

preventing DC, although we are far from being able to 

identify patients at risk of developing DC. Only study 

that has evaluated the DC predictors, showing that 

apolipoprotein 1 has predictive utility [87-89]. 

Cardiovascular complications are major contributors 

to the heightened mortality and morbidity levels in dia-

betic patients, with epigenetic changes, as a conse-

quence of environmental factors and their interactions 

with genetic factors, proposed to play an important role 

in disease susceptibility. Epigenetic mechanisms, in-

cluding DNA methylation, microRNA, chromatin re-

modelling and histone modifications are powerful regu-

 

Fig. (3). Possible diagnostic criteria for the two subtypes of diabetic Cardiomyopathy (modified from Petar M. Seferović. Eur 

Heart J 2015). 
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lators of gene expression, with relevance to the patho-

physiology of DC [90, 91]. MicroRNAs are a novel 

group of non-coding small RNAs that co-ordinate gene 

activity patterns, being increasingly recognized to have 

a significant role in a wide array of physiological and 

pathophysiological processes. Recent studies indicate 

that microRNAs have a critical role in cardiovascular 

complications, as well as having utility as blood bio-

markers [92-94].  

A recent study showed that lower eNOS expression 

can predispose to impaired glucose homeostasis, with 

consequences for cardiovascular diseases [95], whilst 

other researchers have suggested adipokines as poten-

tial novel predictors of cardiovascular diseases, and 

therefore with potential to treat prior to obvious symp-

tomatology [96]. 

8. ORAL GLUCOSE-LOWERING THERAPIES: 

INFLUENCE IN CARDIOVASCULAR MORBID-

ITY AND MORTALITY 

An important year for cardiac dysregulation in dia-

betes was 2013 for two reasons: 1) a major revision of 

the clinical guidelines for heart failure with comorbid 

diabetes was published [97]; and 2) there was an unex-

pected increase in heart failure incidence in the clinical 

trials of saxagliptin versus placebo [98]. A large scale 

clinical trial in 2008 suggested intensive glycemic con-

trol increased, rather than decreased, cardiovascular 

mortality in patients with diabetes [99]. In the same 

year, the Food and Drug Administration gave their ap-

proval of oral glucose-lowering therapies for T2DM, 

with an approval that was contingent on an effective 

reduction in HbA1c reduction followed by a postmar-

keting cardiovascular outcomes trial that had prede-

fined end points, with relatively longer follow-up peri-

ods, and tested in a sample of patients at high risk, with 

efficacy criteria requiring a demonstration of “noninfe-

riority” to placebo. Incretin-based therapies were the 

initial drugs evaluated under this new guidance policy 

[100]. The cardiovascular side effects of anti-diabetic 

drugs are believed to be an important reason for the 

increased heart failure risk in intensive glycemic con-

trol patients. Most of the currently available oral anti-

diabetic drugs have more or less shown adverse cardio-

vascular side effects. In addition to DPP4 inhibitors, 

commonly used oral anti-diabetes agents, include 

biguanides, thiazolidinediones, and sulfonylureas 

[101], with the biguanide, Metformin, contraindicated 

in diabetic patients with heart failure, likely from an 

increased risk of lactic acidosis. However, later studies 

demonstrated that metformin is safe and may be linked 

to a lower morbidity and mortality in diabetic patients 

with established heart failure, when compared to other 

anti-diabetic therapy.  

However, it should be noted that no placebo-

controlled large scale trials on heart failure are avail-

able [102, 103], with the thiazolidinediones, such as 

rosiglitazone and pioglitazone, linked to increased 

heart failure and fluid retention [104]. Sulfonylureas 

seem to produce a dose-dependent and time-dependent 

increase in the risk of heart failure, whilst clinical evi-

dence has shown the 2
nd

 generation of sulphonylureas 

(glipizide, gliquidone, glimepiride, glibenclamide, and 

gliclazide) to have an increased the risk of developing 

congestive heart failure by 18%, compared to metfomin 

[105]. In another study following 4,902 diabetic 

women for a mean duration of 11 years, Li et al. re-

ported that sulfonylurea increased the risks of coronary 

heart disease [106]. 

In contrast, preclinical data on GLP-1 agonists and 

DPP4 inhibitors, indicate that they promote nonglyce-

mic-mediated cardioprotective effects. To date, 3 DPP4 

inhibitors (saxagliptin [107], alogliptin [108], and sita-

gliptin [109] and one GLP-1 agonist (lixisenatide 

[110], published data on cardiovascular outcomes. 

Their results have questioned the cardiovascular safety, 

especially in regards to heart failure from the DPP4 

inhibitors class, following the completion of two large 

clinical trials [106, 107]. While both trials showed no 

significant increase risk in composite cardiovascular 

outcome measures, the SAVOR-TIMI 53 trial reported 

a 27% rise in hospitalization for heart failure, but not in 

heart failure mortality. 

There have been two other large scale trials, one on 

DPP4 inhibitor sitagliptin (TECOS) and one on GLP-

1R agonist lixisenatide (ELIXA), which reported no 

excess heart failure risk. Future studies will be required 

to clarify the implications of these studies.  

Studies in humans confirmed the vasodilatory effect 

of GLP-1. GLP-1 analogs are also able to reduce blood 

pressure by increasing urinary sodium excretion, pro-

moting atrial natriuretic peptide (ANP) release from the 

atrium, and relaxing vascular smooth muscle cells. Ac-

tivation of GLP-1R in the central nervous system in-

duces satiety and thus reduces body weight and cardio-

vascular risk. In addition to enhancing GLP-1 effects, 

DPP4 inhibitors also increases stromal cell-derived fac-

tor (SDF)-1, a chemoattractant for many types of he-

matopoietic cells, including cardiac stem cells, endo-

thelial progenitor cells, and mesenchymal stem cells. 

Preservation of SDF-1 by DPP4 inhibition enhances 

chemotaxis and the repopulation ability of hema-
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topoietic progenitor cells and stem cells, increasing the 

neovascularization of injured tissues [111]. A further 

prospective study on heart failure risk induced by anti-

diabetic medications are under consideration for the 

incidence of hypoglycemia, heart failure, and cardiac 

function [112].  

Empagliflozin iselectively inhibits the sodium-

glucose cotransporter 2 (SGLT2), and is used in the 

management of T2DM. By inhibiting SGLT2, empagli-

flozin reduces the reabsorption of glucose in the kidney 

and therefore increases glucose excretion in the urine. 

As well as lowering hyperglycemia, empagliflozin is 

associated with a number of other changes, including 

osmotic diuresis, lower body weight and blood pressure 

without raised heart rate, whilst it also has favourable 

impacts on markers of arterial stiffness and vascular 

resistance and albuminuria, as well as serum uric acid 

[113]. In the EMPA-REG OUTCOME trial, empagli-

flozin lowered the primary composite outcome on car-

diovascular death as well as lowering non-fatal myo-

cardial infarction and non-fatal stroke, including lower-

ing cardiovascular death by 38%, hospitalization for 

heart failure by 35%, and overall mortality by 32%, 

versus placebo, in T2DM patients with a high cardio-

vascular risk over a median time period of 2.6 years. 

The effect of empagliflozin on heart failure hospi-

talization, cardiovascular death and on all-cause hospi-

talization was present early in the trial, being sustained 

throughout. This indicates a non-atherosclerosis related 

effect, with efficacy that requires clarification in future 

studies [114]. 

Recently, Ferranini [115] hypothesized that SGLT2 

inhibitor-driven mild, persistent hyperketonemia, b-

hydroxybutyrate is readily taken up by the heart, where 

it is oxidized in preference to fatty acids. Such an al-

teration in fuel selection improves the transduction of 

oxygen consumption and consequently mitochondrial 

functioning. In addition, the hemoconcentration follow-

ing SGLT2 inhibition increases oxygen release to the 

tissues. These mechanisms may interact with the other 

SGLT2-induced changes, such as lowering blood pres-

sure and increasing diuresis that would be expected to 

afford some cardioprotection, as indicated in the 

EMPA-REG OUTCOME trial. 

Given the microvascular benefit of improved gly-

cemic control, the identification of diabetic medication 

with a safe cardiovascular profile and which signifi-

cantly lowers glucose is still an unfulfilled clinical need 

and target, requiring future investigation and long-term 

outcome studies [100]. 

CONCLUSION 

These recent insights provide important additions to 

our knowledge regarding DC, although much remains 

to be discovered. In particular, specific pharmacothera-

pies for DC are required that reduce the raised levels of 

cardiovascular morbidity and mortality in diabetic pa-

tients. It is important to detect DC in the early stages as 

well as research of DC in asymptomatic diabetic pa-

tients, which may help to stop the progression to heart 

failure. It is clear that further work is required on the 

biochemical underpinnings in different cell types that 

produce a bias toward DC symptomatology, which may 

provide more targeted pharmaceutical treatments. 
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