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Chapter I - Ionic channels in excitable cells 

The plasma membrane is a double layer of lipids and proteins that have 

several functions, most importantly communication (receptors and ion 

channels), structure (cytoskeletal anchors) and cellular homeostasis (e.g. ionic 

pumps, enzymes). In addition, plasma membrane surrounds the cell and 

separates cytoplasm from the external environment, therefore resulting in two 

spaces (intracellular and extracellular) with different ionic concentration. The 

number of positively charged ions outside the cell is usually greater than the 

cytoplasm, and this causes a voltage difference across the membrane, known 

as membrane potential (Vm). However, ions can cross the cell membrane 

through open channels, generating a movement driven by electrical (voltage) 

or chemical (concentration) gradients, that could change the membrane 

potential, that represent a signal and are essentials to neuronal 

communication. In addition, ionic currents change the intracellular 

concentration of a particular ion and could trigger an event (e.g. throughout 

intracellular Ca2+) (Hammond, 2008). 

These mechanisms underlie cell-to-cell communication in excitable tissue, i.e. 

brain and muscles, as well as numerous functions of non-excitable cells, i.e. 

secretion or migration. 

Ion channels open and close either spontaneously or in response to a specific 

stimulus, such as the binding of a small molecule to the channel protein 

(ligand-gated ion channels) or voltage changes across the membrane (voltage-

gated ion channels). Voltage difference is sensed by charged domains of the 

channel protein. In addition, most ion channels are selective, allowing only 

certain ions to pass through. Some channels conduct only one type of ion (e.g. 

K+), whereas other channels exhibit relative selectivity (e.g. positively charged 

cations).  

Cells in higher organisms may express more than 300 different types of ion 

channels, each with different selectivity and distinct gating properties and 
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functions. Ion channels may be classified based on their gating properties (i.e. 

activated by changing in Vm or a ligand), the species of ions passing (i.e. K+ 

channels), the number of gates (i.e. two pores channels) and localization of 

proteins.  

In this thesis we focus on voltage-gated channels in central and peripheral 

nervous system (CNS and PNS), that are principal players in regulating the 

electrical signals in neurons. In addition, these families represent an important 

target for the development of future treatments for psychiatric and neurologic 

disorders. 

Ion channels play a key role both in basic functions and more complex 

functions, as cell-to-cell communication. During the evolution, several natural 

toxins have been developed that target ion channels. Examples include the 

voltage-gated Na+ channel blocker tetrodotoxin, which is produced by 

bacteria resident in puffers (blowfish) and several other organisms, as 

honeybees and scorpions. In addition, pharmacologists developed many 

therapeutic drugs, including local anaesthetics, benzodiazepines, and 

sulfonylurea derivatives, acting directly or indirectly to modulate ion channel 

activity. On the other hand, inherited mutations in ion channel genes or genes 

encoding proteins that regulate ion channel activity have been implicated in a 

number of diseases, including ataxia (the inability to coordinate voluntary 

muscle movements), diabetes mellitus, certain types of epilepsy, and cardiac 

arrhythmias. For example, genetic variations in Na+ or K+ channels, or in their 

associated regulatory subunits, underlie some forms of long-QT syndrome. 

These genetic and autoimmune disorders of the ion channels cause 

channelopathies.  

1. Voltage-gated channels 

Each channel has an ability to select one or more specific ions, as mentioned 

above, that depends on sophisticated design of protein domains. The best-

known member of this family is represented by Na+ channels. The principal α 

subunit consists of four internally homologous domains, each consisting of six 
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membrane-spanning α helices, that surround a central pore. A similar 

structure is shared by other voltage-gated channels, for example Ca2+ channels 

(Fig. 1).  It is known that four of these subunits multimerize in the plasma 

membrane to form a channel that is similar in structure to the Na+ and Ca2+ 

channels. Several other families of ion channels (KCa, CNG, HCN, and TRP) 

also present this tetrameric structure (Nestler et al., 2002) 

 

Figure 1. Structural similarities shared by voltage-gated Na+, Ca2+ and K+ channels. 
(modified from: Nestler et al., 2002). 

Voltage-activated ion channels display a gating charge that produces a shift in 

the distribution of charged aminoacids across the membrane. This shift allows 

channel activation and is believed to result from the movement of a putative 

voltage sensor within the ion channel itself (Nestler et al., 2002). When the 

change in membrane voltage subsides, the channel undergoes another 

conformational change to return in its resting conformation (deactivation). In 

some cases, the channel closes immediately after its activation even in the 

presence of sustained depolarization. This phenomenon, called inactivation, is 
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typical of Na+ channels and is present also in some Ca2+ (T-type) and K+ 

channels (IA) channels. Several toxins (scorpion toxin) and drugs (antiepileptic 

compounds) modulate channel inactivation, for examples to maintain Na+ 

channels open or to stabilize their inactivated state. 

1.1. Voltage-gated Na+ channels 

The expression of voltage-gated Na+ channels (NaVs) is a key feature for 

initiation and conduction of action potentials (APs) in excitable tissues and 

cells such as myocytes and neurons. Sodium currents were first recorded by 

Hodgkin and Huxley, who used voltage clamp techniques to demonstrate the 

three key features that characterize the Na+ channel: (i) voltage-dependent 

activation (about -10 mV), (Hodgkin and Huxley, 1952a); (ii) rapid inactivation 

(1-2 ms), required for repetitive firing of APs in neural circuits and for control 

of excitability in nerve and muscle cells (Catterall, 2017); (iii) selective ion 

conductance, controlled by a set of four residues (DEKA) that control 

selectivity for Na+ vs. Ca2+ (Heinemann et al., 1992b). 

All Na+ channels studied to date share similar permeation properties and are 

therefore expected to have similar selectivity filters. Of note, cardiac Na+ 

channels bind tetrodotoxin with 200-fold lower affinity, as a result of a change 

of a tyrosine or phenylalanine, in domain I, to cysteine in the cardiac Na+ 

channel (Heinemann et al., 1992a). A serine in this position causes even larger 

decreases in tetrodotoxin binding affinity, making it become TTX-insensitive 

NaV (NaV 1.8, 1.9), typical of some peripheral nervous tissues (Sivilotti et al., 

1997). Since cadmium interacts with the cysteine residue of domain I, it’s a 

high-affinity blocker of cardiac Na+ channels, but not of brain or skeletal 

muscle Na+ channels (Backx et al., 1992). Typically, TTX-insensitive NaV show 

smaller single-channel conductance, slower kinetics, and a more positive 

current-voltage relation than TTX-sensitive ones (Savio-Galimberti et al., 
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2012). However there are peptides of drosotoxin that can block the activity of 

both TTX-insensitive and TTX-sensitive channels (Li and Zhu, 2011).  

Natural toxins, as α-scorpion and sea anemone toxins, uncouple channel 

activation from inactivation by binding to a receptor site at the extracellular 

end of the S4 segment of IV domain and preventing its normal gating 

movement, probably trapping it in a position that is permissive for activation 

but not for fast inactivation (Catterall, 2000). Sodium channels are also blocked 

by drugs used clinically as local anaesthetics (lidocaine), antiarrhythmics 

(quinidine) and antiepileptics (carbamazepine) (Catterall, 1987).  

Biochemical studies have shown that purified Na+ channels are 

phosphorylated by the cAMP-dependent protein kinase A (PKA) at multiple 

sites in the intracellular loop between domains I and II (Cantrell and Catterall, 

2001). Consistent with the biochemical studies, phosphorylation of these sites 

reduces peak Na+ currents in brain neurons and in cells expressing cloned Na+ 

channels without substantially altering the voltage dependence of activation 

and inactivation (Li et al., 1992). For examples, it has been well-described that 

dopamine modifies the firing properties and the input-output properties of 

medium spiny neurons in the ventral and dorsal striatum through the 

activation of D1-like dopamine receptors. Activation of the Gs protein coupled 

to D1 and, consequently, cAMP increase activates PKA thus reducing Na+ 

currents and the generation of APs (Yu and Catterall, 2003). Sodium channels 

are also rapidly phosphorylated by protein kinase C (PKC) (Costa and 

Catterall, 1984), and PKC activation by diacylglycerols or by acetylcholine 

acting through muscarinic receptors slows Na+ channel inactivation and 

reduces peak Na+ currents (Numann et al., 1991). The slowing of Na+ channel 

inactivation results from phosphorylation of a site in the inactivation gate 

(West et al., 1991), while the reduction in peak Na+ current requires 

phosphorylation of sites in the intracellular loop between domains I and II, as 

observed for PKA modulation (Cantrell and Catterall, 2001). 
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Direct interaction of Na+ channels with tenascin and receptor protein tyrosine 

phosphatase β, which are implicated in neuronal development, axonal 

pathfinding, and synapse formation, suggests that Na+ channels and other 

molecules involved in neuronal signal generation and propagation may also 

participate directly in the protein–protein interactions that determine 

neuronal development and cell connectivity (Catterall, 2000). 

In addition to the differences in cellular and tissue expression, mammalian 

Na+ channels also have differential expression profiles during development 

and different subcellular localizations, consistent with a distinct role for each 

channel subtype in mammalian physiology. Nav1.1 and Nav1.3 are localized 

to the soma of neurons, where they may control neuronal excitability through 

the integration of synaptic impulses to set the threshold for AP initiation and 

propagation to the dendritic and axonal compartments. Evidence from 

immunocytochemical experiments indicates that Nav1.2 is expressed in 

unmyelinated axons, where it propagates the AP (Westenbroek et al., 1989; Yu 

and Catterall, 2003). During development, however, Nav1.6 has been shown 

to replace Nav1.2 in maturing nodes of Ranvier, the gaps between myelin 

sheaths along myelinated axons where saltatory AP conduction takes place 

(Kaplan et al., 2001). 

A number of painful and painless neuropathies have been linked to mutations 

on genes that encode for the NaV channels (especially NaV 1.7, 1.8, 1.9), in 

particular in regions that control opening, closing or channel inactivation and 

produce changes to the biophysical properties of the channel (Lampert et al., 

2014). Nav1.1, and Nav1.6 are also significantly expressed in the peripheral 

nervous system (PNS), but the most abundant Na+ channels expressed in the 

PNS are the three isoforms that have been cloned from sympathetic and dorsal 

root ganglion neurons, namely Nav1.7, Nav1.8 and Nav1.9. Among these, 

Nav1.7 is broadly expressed in the PNS and appears to be localized to axons, 

where it may function to initiate and conduct the AP (Toledo-Aral et al., 1997). 

Differently, Nav1.8 and Nav1.9 are expressed in small sensory neurons of the 
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dorsal root and trigeminal ganglia, where they have a key role in the 

perception of pain (Akopian et al., 1999). Finally, Nav1.4 and Nav1.5 are 

muscle Na+ channels that control the excitability of the skeletal and cardiac 

myocytes, respectively. Nav1.5 is transiently expressed in developing skeletal 

muscle but is replaced by Nav1.4 in the adult (Goldin, 2001). 

A large number of genetic diseases are caused by mutations of Na+ channels, 

including inherited forms of periodic paralysis, cardiac arrhythmia, epilepsy, 

and chronic pain (Catterall et al., 2008; Lehmann-Horn and Jurkat-Rott, 1999).  
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Channel 
Tissue 

expression 

Channel 

distribution 

TTX EC50 

(nm) 

Examples of human 

channelophaties 

Nav1.1 CNS, PNS Soma 6 

Epilepsy, Dravet 

syndrome, Doose 

syndrome 

Nav1.2 CNS, PNS 
Unmyelinated and 

premyelinated axons 
18 

Inherited febrile seizures 

and epilepsy 

Nav1.3 CNS, PNS Soma 4 

Potential contributor to 

peripheral neuropathic 

pain after spinal cord 

injury 

Nav1.4 
Skeletal 

muscle 
Skeletal Myocytes 25 

Muscle Na+ 

channelopathies 

Nav1.5 Heart 

Cardiac myocytes, 

developing skeletal 

muscle 

5’700 

Congenital long QT 

syndrome, Brugada 

syndrome 

Nav1.6 CNS, PNS 
Maturing nodes of 

Ranvier 
6 

Cerebellar ataxia in 

jolting mice, motor end-

plate disease 

Nav1.7 PNS DRG neuron axons 25 

Congenital insensitivity 

to pain, familial primary 

erythromelalgia, 

paroxysmal extreme 

pain disorder 

Nav1.8 PNS Small DRG neurons 60’000 
Peripheral pain 

syndromes 

Nav1.9 PNS Small DRG neurons 40’000 

Potential role in 

nociception and 

hyperalgesic syndromes 

Nax Glia DRG neurons,  unknown 
Potential role in 

temporal lobe epilepsy 

Table 1. Tissue expression of voltage-gated Na+ channel family (modified from: Bagal et al., 
2015; Lee and Ruben, 2009; Savio-Galimberti et al., 2012). 
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1.2. Voltage-gated Ca2+ channels 

Voltage-gated Ca2+ channels (CaVs), as mentioned above, present an amino 

acid sequence and a predicted transmembrane structure like NaVs (Fig. 1), 

with four domains, containing six transmembrane segments. The α1-subunit 

incorporates the conduction pore (pore loop between S5 and S6 segments), the 

voltage sensor (S4 segment) and gating apparatus, and its arrangement 

determines the pharmacological and electrophysiological diversity of CaVs 

(Hofmann et al., 1994). Three families of Cav have been distinguished, based 

on structure and function: CaV1, 2 and 3, where the number indicates the gene 

subfamily (Catterall et al., 2005). Unlike other ions, Ca2+ does not have a 

merely electrogenic role, but it is also important as intracellular messenger. 

Indeed, the intracellular Ca2+ concentration (about 100 nM) is maintained very 

low by Ca2+-buffering molecules and sequestration into intracellular stores 

(Clapham, 2007). Therefore, when CaVs open, Ca2+ influx along the 

electrochemical gradient leads to a rise of its concentration to the micromolar 

range (Wadel et al., 2007). This event triggers several intracellular Ca2+-

dependent mechanisms, as gene transcription, neurotransmitters release, Ca2+ 

spikes-APs, neurite outgrowth or activation of specific enzymes (Clapham, 

2007). However, prolonged elevation of intracellular Ca2+ levels are cytotoxic 

(Stanika et al., 2012). For this reason, it is essential to finely regulate its levels. 

On these basis, it is easy to understand that dysregulation or alteration in Ca2+ 

channels could be linked to several neurological disorders, as epilepsy or 

chronic pain (Cain and Snutch, 2011). Hence, these channels represent an 

important pharmacological target. 

Voltage-gated Ca2+ channels have been initially classified by their voltage 

dependence: high voltage-activated (HVA) and low voltage-activated (LVA). 

Then, a more accurate classification was performed, to consider the different 

kinetic and/or pharmacological properties of various Cav subtypes. 

Accordingly, they are classified in: 
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♦ L-type (long-lasting current): these channels are activated by large 

depolarization (HVA) and give rise to sustained currents throughout the 

period of depolarization, with negligible inactivating (Lipscombe et al., 2004). 

Furthermore, they are the only CaVs sensitive to dihydropyridines (DHPs; e.g., 

nifedipine), that bind to a specific site on the α1-subunit of L-type (Holz IV et 

al., 1988). Moreover, their activation by depolarization induces direct 

phosphorylation of channel by PKA, therefore the activity of L-type channels 

is modulated by the activation of adenylate cyclase (Gao et al., 1997; Hall et al., 

2007; Kamp and Hell, 2000). Thus, it is clear that neurotransmitters and 

hormones can modulate L-type Ca2+ currents. Clinically, these channels are 

important targets for antianginal and antihypertensive drugs. In particular, 

organic L-type Ca2+ channel blockers, phenylalkylamines (e.g., verapamil), 

DHPs, and benzothiazepines (e.g., diltiazem), decrease myocardial contractile 

force and thereby reduce myocardial oxygen requirements, or reduce smooth 

muscle contractility and thereby decrease arterial and intraventricular 

pressure (Catterall et al., 2005; Striessnig et al., 2015). In the CNS, L-type Ca2+ 

channels are located primarily on the cell bodies and proximal dendrites of 

neurons (Ahlijanian et al., 1990),allowing Ca2+ to enter in the cell body during 

periods of strong depolarization, this influx causing second messenger 

activation and changes in gene transcription (Ma et al., 2013). 

♦ N-type (neuronal, or CaV2.2): as for the L-type, these channels open 

upon large depolarization (HVA) but, differently from those subtypes, they 

are inactivated by depolarization. Therefore, they may open in bursts and 

inactivate with time (50 - 80 ms) and voltage (above -30 mV) upon sustained 

depolarizations. Differently from L-type, they are insensitive to DHPs and do 

not need to be phosphorylated, but they are selectively blocked by ω-

conotoxin GVIA, peptide toxin of the marine snail Conus geographicus.  N-type 

channels contribute most of the Ca2+ influx at the synaptic terminal that 

triggers neurotransmitter and hormone release. In addition, they are also key 

modulators of neurotransmitter release in sympathetic neurons. A synthetic 
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peptide blocker of N type Ca2+ channels (ziconotide) is under development for 

treating patients unresponsive to intrathecal opiates for relief of chronic pain 

♦ P/Q-type (Purkinje, CaV2.1): These channels are classified  as HVA and 

are the predominant CaVs expressed by Purkinje cells (McDonough et al., 

1997), where they contribute to most of the Ca2+ influx triggering 

neurotransmitter and hormone release. They are also expressed at the 

neuromuscular junction where they control neurotransmitter (acetylcholine) 

release leading to muscle contraction. They are insensitive to L-type and N-

type blocker, but are blocked by polyamine fraction (FTX) from funnelweb 

spider (Agelenopsis aperta) (Araque et al., 1994).  

♦ R-type (resistant current, CaV2.3): The role of CaV2.3 channels, 

belonging to the HVA Cavs, is less defined but may include neurotransmitter 

and hormone release, the generation of dendritic Ca2+ transients, synaptic 

plasticity, control of pain behaviour and myelinogenesis (Breustedt et al., 2003; 

Chen et al., 2000; Dietrich et al., 2003; Saegusa et al., 2000). They are blocked 

by the synthetic peptide toxin SNX-482, derived from Tarantula 

venom(Newcomb et al., 1998). 

♦ T-type (transient current):  these channels are activated by weak 

depolarizations, near the resting potential (i.e. -60 mV) and undergo rapid 

voltage-dependent inactivation as the depolarization producing their opening 

ultimately triggers their closure (Perez-Reyes, 2003). They are resistant to HVA 

blocker, as DHP, ω-conotoxin (ω-CTX) or ω-agatoxin (ω-AGA) and are 

expressed in a wide variety of cell types, where they are involved in shaping 

the AP and controlling patterns of repetitive firing. These channels are 

excellent generators of oscillations; indeed, they are believed to provide a 

pacemaker current in thalamic neurons that generate rhythmic cortical 

discharges associated with absence seizures (petit mal)(Powell et al., 2009). 

Accordingly, ethosuximide, which blocks T-type current, is an effective 

therapy for this kind of seizures (Brigo and Igwe, 2017). 
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 Type 
Tissue 

expression 
Functions Blockers 

Human 

channelopathies 

Cav1.1 HVA, 
L-type 

Skeletal 
muscle 

Excitation-contraction 
coupling and Ca2+ 
homeostasis 

DHP 

Hypokalemic 
periodic paralysis, 
malignant 
hyperthermia 
susceptibility 

Cav1.2 HVA, 
L-type 

Heart, 
smooth 
muscle, 
Endocrine 
cells, SNC, 
SNP 

Excitation-contraction 
coupling; hormone 
release; regulation of 
transcription; synaptic 
plasticity, AP 
propagation in sinoatrial 
and atrioventricular 
node 

DHP Timothy syndrome 

Cav1.3 HVA, 
L-type 

Sensory cells, 
Endocrine 
cells, CNS, 
PNS, heart, 
smooth 
muscle 

Neurotransmitter release 
in sensory cells, control 
of cardiac rhythm and 
atrioventricular node 
conductance at rest, 
mood behaviour, 
hormone secretion 

DHP (↓) 
Deafness, sinoatrial 
and atrioventricular 
node dysfunction 

Cav1.4 HVA, 
L-type 

Retina, PNS, 
liphoid 
tissue 

Neurotransmitter release 
in retinal cells 

DHP (↓) 
Congenital stationary 
night blindness 

Cav2.1 
HVA, 
P/Q-
type 

CNS, heart, 
pancreas  

Neurotransmitter release 
in central neurons and 
neuromuscular junction; 
excitation-secretion 
coupling in pancreatic β-
cells 

ω-AGA-
IVA 

Familial hemiplegic 
migraine, 
spinalcerebellar 
ataxia, and episodic 
ataxia. 

Cav2.2 HVA, 
N-type 

CNS, PNS 

Neurotransmitter release 
in central and 
sympathetic neurons, 
sympathetic regulation 
of the circulatory 
system, activity and 
vigilance state control, 
sensation and 
transmission of pain 

ω-CTX-
GVIA 

Myoclonus-dystonia-
like syndrome 

Cav2.3 HVA, 
R-type 

CNS, PNS, 
heart, testes, 
pituitary 

Neurotransmitter 
release, repetitive firing, 
long-term potentiation, 
post-tetanic potentiation, 
neurosecretion 

SNX-482 
Developmental and 
epileptic 
encephalopathies 

Cav3.1 LVA, 
T-type 

CNS, ovary 
placenta, 
heart 

Thalamic oscillations 
 

Mibefradil 

Cerebellar ataxia, 
childhood cerebellar 
atrophy, epilepsy, 
autism spectrum 
disorder 

Cav3.2 LVA, 
T-type 

Kidney, 
liver, adrenal 
cortex, CNS, 
heart 

Smooth muscle 
contraction, smooth 
muscle proliferation, 
aldosterone secretion, 
cortisol secretion 

Mibefradil 

Idiopathic 
generalized epilepsy, 
autism spectrum 
disorder, primary 
aldosteronism 

Cav3.3 LVA, 
T-type 

CNS Thalamic oscillations Mibefradil Schizophrenia 

Table 2. Tissue expression of voltage-gated Ca2+ channel family. (modified from: Catterall 
et al., 2005; Lory et al., 2020). 
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1.3. Voltage-gated potassium channels 

Potassium channels are found in all living organisms and play several roles in 

both excitable and no-excitable cells. These channels are distributed 

throughout the brain and in mature neurons play a critical role in membrane 

hyperpolarization, which is necessary after each AP for returning the 

membrane to a negative resting potential to terminate the AP signal. There is 

a multiplicity of roles played by K+ channels which is allowed by their 

diversity. The primitive K+ channel (KcsA), isolated from Streptomyces lividans, 

is a tetramer composed of four identical subunits consisting in two 

transmembrane (TM) domains connected by a pore region, in which the ion-

selectivity filter resides (Doyle et al., 1998). Based on this structure, K+ channels 

are divided in three classes, depending on the number of transmembrane 

domains (TM) contained in the main subunit: (i) 2TM, (ii) 4TM and (iii) 6TM 

(González et al., 2012; Fig. 2).  

 

Figure 2. Potassium channel families arranged according to their subunit structure. 
Potassium channel families can be grouped in those having two transmembrane segments 
(2TM; Kir), 4TM (2-pore domain), 6TM (voltage gated and SK), and 7TM (Slo). Note that for 
the sake of simplicity the large-conductance Slo channel family includes the Slo2.x channels, 
which have only six transmembrane domains. The 6TM domain class can be divided into four 
families: Voltage-gated Kv, voltage-gated KCNQ-type (KCNQ); ether-a-go-go (Eag), and Ca2+-
activated channels (SK). Subdivisions of the voltage-gated Kv channels into four subfamilies 
and Eag into three subfamilies are also named according to the Drosophila melanogaster 
genes. In the SK family IKCa1 stands for intermediate conductance Ca2+-activated K+ channel. 
Modified from: González et al., 2012). 
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1.3.1. 2TM or inward rectifier K+ channels 

The inward rectifier family of K+ channels (Kir) has the same structural pattern 

of the primitive KcsA channel, that is tetramers composed of subunit 

containing two TM (Hibino et al., 2010). As K+ is more concentrated inside the 

cell, at membrane potentials above the reversal K+ equilibrium (EK, usually 

about -90 mV) potassium current flowing outwardly; the electrochemical 

gradient ions allows this ion to enter the cell only at potentials below the EK. 

However, Kir channels present a greater inflow rather than outflow from the 

cell cytoplasm and, under physiological conditions, generate K+ conductance 

at potentials negative to equilibrium potential of K+ (EK) (Noble, 1965). This 

inward rectification is due to  Mg2+ and/or polyamines that intracellular block 

channel’s pore (Lopatin et al., 1994; Matsuda et al., 1987). Moreover, gating in 

Kir channels is also modulated by nucleotides such as ATP, ADP, 

phosphorylation, G-proteins and PIP2 (this lipid is essential for normal 

channel functioning) (Huang et al., 1998; John et al., 2003; Lin et al., 2002). Kir 

channels are efficiently blocked by low Ba2+ concentration (in the µM range, 

sensitivity depends on Kir subtype) and Cs+; Kir3.x and Kir1.1 are also blocked 

by Tertiapin, a toxin present in the honeybee venom (Kanjhan et al., 2005). In 

mammals, they are divided in 7 subfamilies (Kir1.x – Kir7.x), that could be 

classified into four functional groups (Hibino et al., 2010): (i) classical Kir 

(Kir2.x), (ii) G-protein-gated channels (Kir3.x), (iii) ATP-sensitive K+ channels 

(Kir6.x) and (iv) K+-transport channels (Kir1.1, 7.1, 4.x, 5.1). 

(i) All classical Kir channels (Kir2.x) are expressed in the brain and their 

expression is restricted to neurons, soma, and dendrites where they are 

important in determining the resting potential and neuronal excitability(Day 

et al., 2005). Interestingly, Kir2.1 and Kir2.3 are located in the microvilli of 

Schwann cells where they can play the role of “keepers” of the external K+ 

concentration by absorbing the excess of K+ secreted by the neurons during 

excitation (Mi et al., 1996). 
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(ii) These channels are also known as GIRK (G-protein-coupled inward 

rectifier) and they are first reported by Kurachi and collaborators and are 

formed by a variety of combinations of the four subunits (Kir3.1-4) (Kurachi et 

al., 1986). To date Kir3.1 and Kir3.3 subunits function only to assemble forming 

heteroteramic channel (Kir3.1/Kir3.3 and Kir3.2/Kir3.3)(Jelacic et al., 2000). 

GIRK are activated by the βγ of Gi/o protein (Wickman and Clapham, 1995) 

and PIP2 is essential to allow Gβγ binds Kir channels; its depletion, induced by 

PLC, mediates the inhibitory/desensitization effect of some neurotransmitter 

on GIRK channels (Huang et al., 1998). Following ligand stimulation, activated 

G protein subunits are released that directly interact with and open GIRK 

channels; subsequently GIRK become permeable to K+, that outwardly flow 

throughout neuronal membrane, hyperpolarizing it and consequence 

decreasing excitability. In the brain they are localized in dendritic spines, in 

the postsynaptic density as well as extra synaptic sites and are involved in the 

generation of slow inhibitory postsynaptic potential (Hibino et al., 2010). 

Different types of GIRK channels are, however, found in synaptic and extra 

synaptic regions of neurons. GIRK channels are activated by a large family of 

GPCRs, including dopamine 2 (D2) serotonin 1A (5-HT1A), μ-, κ-, and δ-

opioid, cannabinoid 1 (CB1), and γ-aminobutyric acid type B (GABAB) and 

adenosine receptors (Dascal and Kahanovitch, 2015; Kim and Johnston, 2015).  

(iii) ATP-sensitive K+ channels (KATP, or Kir6.x) show a weak inward 

rectification and have constitutive activities. They are octameric channels 

composed by four Kir6.x and four sulfonylurea receptor subunit (SUR1, 2A 

and 2B (Shyng and Nichols, 1997). In hypothalamic glucose-sensitive neurons 

extracellular glucose removal causes a cell hyperpolarization and an inhibition 

of AP firing (Ibrahim et al., 2003). Moreover, Kir6.2 channels are involved in 

the generation of the glucose-sensitive K+ current in neurons, hence the 

increase in neuronal excitation observed when the concentration of external 

glucose raises is due to closure of KATP channels (Miki et al., 2001). They are 

also expressed in peripheral cell, i.e. in β cells and δ cells of the pancreatic islets 
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of Langerhans where they mediate insulin secretion upon hematic glucose 

increase.  

(iv) K+-transport channels (Kir1.1, 7.1, 4.x, 5.1) are most expressed in glial cells. 

In particular, Kir4.1 can form homo- or hetero-tetramers with Kir5.1 (Hibino 

et al., 2004). Kir5.1, on the other hand, is unable to form functional homo-

tetramers and only play physiological roles in combination with Kir 4.1 or 

Kir4.2. Furthermore, Kir4.1 controls neuronal function by exerting a K+-

buffering capacity (Newman, 1984). Instead, in cortical astrocytes , Kir4.1 and 

Kir4.1/Kir5.1 channels are expressed in perisynaptic processes whereas 

Kir4.1/Kir5.1 are only expressed at the end feet (Lichter-Konecki et al., 2008). 

1.3.2. 4TM or two-pore domain K+ channels 

Two-pore family (K2P), known also as background K+ channels, are dimers 

composed by subunits thus containing, in total, four TM. The K2P channels 

are regulated by an extensive variety of stimuli: for example, pH, temperature, 

and membrane stretch (Talley et al., 2001). More evidences link these channels 

to anaesthesia and different pathologies in the nervous system, as 

neurodegeneration, neuropathic pain, depression, and epilepsy (Bayliss and 

Barrett, 2008; Honoré, 2007; Sabbadini and Yost, 2009). Depending on stimuli, 

K2P were divided into six subfamilies: (i) mechano-gated; (ii) alkaline-

activated; (iii) Ca2+-activated; (iv) weak inward rectifiers; (v) acid-inhibited; 

and (vi) halothane-inhibited channels (Honoré, 2007). 

1.3.3. 6TM or voltage-gated K+ channels 

Voltage-gated K+ channels (KV) are composed of four transmembrane 

subunits, each of which is analogous to a single domain of the principal 

subunits of Na+ or Ca2+ channels (Long et al., 2005). They include 40 different 

channels that are classified into 12 distinct groups based on their amino acid 

sequence homology (Kv1– Kv12). They are composed by α-subunits, that 

consists of six helices (S1–S6),  can assemble into homo- and heterotetramers 

within each subfamily, leading to a wide diversity of different channel 
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complexes. The diversity of K+ channels allows neurons and other excitable 

cells to precisely tune their electrical signalling properties by expression of 

different combinations of K+ channel subunits. Mutations in Kv channels 

generally lead to some form of hyperexcitability in affected tissue and are 

related to a variety of disorders, ranging from ataxia to cardiac arrhythmias.  

For example, the long QT syndrome, a delay in ventricular repolarization that 

can cause heart arrhythmias, results from a malfunction of the KV11.1 (HERG) 

K+ channel, which is responsible for repolarizing the ventricle after 

contraction. 

They are characterized by containing a voltage-sensor domain between S1 and 

S4 (Long et al., 2005). The vertebrate α-subunit of voltage-gated K+ delayed 

rectifier family (Kv channels) is composed by twelve members (Kv1–Kv12) 

according to amino acid sequence similarity. Usually, K+ currents mediated by 

6TM channels can be classified into A-type (inactivating, given by KV1.4, 3.3, 

3.4, 4.1, 4.2, 4.3-containing channels) or delayed rectifier (non-inactivating) 

currents.  

During a sustained depolarizing voltage pulses, A-type K+ current activates 

and then inactivates rapidly (within 5-10 ms), producing a transient response. 

Fast inactivation may play a role in setting the AP interval since the Kv-

dependent repolarization phase gets shorter as IA inactivates and the excitable 

cell is ready to fire a new AP (Hoffman et al., 1997). Kv 4.2 also encodes A-type 

K+ currents in dendrites of CA1 pyramidal neurons where it antagonizes the 

back propagation of centrally generated APs, dampening the development of 

Long Term Potentiation (LTP) (Chen et al., 2006). Furthermore, Kv3.3 appears 

to inhibit either excitability or Ca2+ signal propagation in cerebellar Purkinje 

cells (Zagha et al., 2010) and mutations in Kv3.3 cause spinocerebellar ataxia 

in humans (SCA13) (Figueroa et al., 2010). Kv4.1 and Kv4.2 are responsible for 

the somato-dendritic A-type currents. For example, in different neuronal 

types, KV4 channels prolong the latency to the first spike in a train of APs; they 
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also slow down repetitive spike firing and shorten APs (Covarrubias et al., 

2008). 

Other KVs are the classical delayed rectifier, a name used by Hodgkin and 

Huxley to describe main outward K+-current in the squid giant axon activated 

later than the Na+ currents (Hodgkin and Huxley, 1952b). According to this 

classical definition, these channels not only terminate the AP and restore K+ 

permeability of the resting membrane, but they also shape AP waveform 

(Gutman et al., 2005). A detailed pharmacological study comparing several 

delayed rectifiers including Kv1.1, Kv1.2, Kv1.3, and Kv1.5, found that all have 

submillimolar sensitivity to 4-AP and flacainide; tens of micromolar sensitivity 

to capsaicin, nifedipine, ditiazem, and resiniferatoxin (Grissmer et al., 1994). 

They also have different sensitivity to external TEA. Therefore, both, Kv1.1 

and Kv1.2 have low nanomolar sensitivity to dendrotoxin (DTX), while Kv1.2 

and Kv1.3 have low nanomolar sensitivity to charybdotoxin (CTX). Kv2.x 

channels are the counterpart of Shab in Drosophila. This family is composed 

of Kv2.1, the mayor delayed rectifier present in CNS neurons. On the other 

hand, Kv3.x channels are the counterpart of the Drosophila Shaw channel. 

While Kv3.3 and Kv3.4 produce A-type currents, Kv3.1 and Kv3.2 are delayed 

rectifiers expressed prominently in the brain. They are blocked by micromolar 

4AP and TEA and, in particular, Kv3.2 channels are blocked by verapamil and 

by the toxin from the sea anemone Stichodactyla helianthus (ShK). Kv3.2 

knockout mice are susceptible to epileptic seizures (Gutman et al., 2005). Of 

note, Kv7 channels are also known as the KCNQ subfamily in humans. The 

Kv7.1, in association with KCNE3 and minK, are the major determinants of 

the cardiac IKs current, which is involved in the repolarization of ventricular 

AP (Nerbonne and Kass, 2005). Instead, the heteromeric channel Kv7.2/Kv7.3 

determines subthreshold excitability and produces the M-current (muscarinic-

current) found in neurons (Wang et al., 1998). This channel is sensitive to 

external pH and is widely distributed throughout the brain, sympathetic and 

dorsal root ganglia (DRG), and expressed at high levels in hippocampus and 

amygdala. Mutations in the KCNQ2/KCNQ3 genes give rise to an idiopathic 
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form of epilepsy (Gutman et al., 2005). The Eag channel family derives its name 

from a Drosophila behavioural mutant, ether-`a-go-go, characterized by an 

enhanced neuro-transmitter release at the neuromuscular junction. Known as 

the KCNH gene family in humans, it consists of three closely related 

subfamilies of genes defined by sequence homology, Kv10 (truly Eag), Kv11 

(Erg), and Kv12, and they all produce slowly activating currents. Kv12 are 

expressed primarily in the nervous system and produce a slowly activating 

and deactivating current.  

Another family of 6TM K+ channels is the Ca2+-dependent K+ channel (KCa) 

family, consisting in three different subtypes: the large conductance Ca2+-

activated K+ channel (BK or KCa1.1), the intermediate conductance Ca2+-

activated K+ channel (IK, or KCa3.1) and the small conductance Ca2+-activated 

K+ channel (SK or KCa2.x). The BK channel subtype is blocked by the scorpion 

toxin CTX, the highly selective scorpion toxin iberiotoxin (IbTX) and are also 

highly sensitive to external TEA (100-200 µM). In the CNS, these channels are 

present in most regions of the mammalian brain.  In neurons, BKs serve 

functions such as, for example, the repolarization of the AP (Hu et al., 2001) 

and produce the fast phase of the after hyperpolarization (fAHP) following an 

AP. Therefore, they are expressed also at presynaptic level where, by co-

localizing with Cavs, they regulate neurotransmitter release (Raffaelli et al., 

2004). Then, both insufficient and excessive BK channel activity could lead to 

CNS disfunctions, as epilepsy, dyskinesia, cerebral ischemia and pain (Chen 

et al., 2009; Lee and Cui, 2009; Liao et al., 2010). 

The IK channel is distributed in peripheral tissues, including secretory 

epithelia, blood cells and lymphocytes, but it appears almost absent from 

neuronal and muscle tissue (Sforna et al., 2018). Selective blockers of this 

channels are small organic molecules like TRAM-34 and ICA-17043, recently 

proposed as immunosuppressors for the treatment of autoimmune disorders 

such as rheumatoid arthritis, inflammatory bowel disease and multiple 

sclerosis as they inhibit lymphocyte T proliferation (Jensen et al., 2002). The 
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last but not the least family is the SK channels, activated by increases in the 

intracellular calcium concentration. They are ubiquitous in the CNS and 

mediate a variety of functions in health and disease, as excitability control by 

mediating medium AHP (mAHP) following a single AP (Lorenzon and 

Foehring, 1992). Additionally, SK channels, activated through muscarinic type 

1 or group I metabotropic glutamate receptors and IP3 signalling, mediate slow 

cholinergic and glutamatergic inhibition of layer 2–3 and 5 pyramidal neurons 

in several cortical areas (Gulledge et al., 2007). Finally, SKs are also involved 

in pacemaker activity and synaptic response (Bond et al., 2005). The bee venom 

apamin is the prototypical, highly specific blocker of SK channels. 
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Structural 

classes 
Functional groups Channels 

2TM 

Classical Kir Kir2.x 

G-protein-gated Kir3.x 

ATP-sensitive Kir6.x 

K+ transport Kir1.1, 4.x, 5.1, 7.1 

4TM 

Mechano-gated 
K2p4.1 (TRAAK), 2.1 and 10.1 

(TREK1 and 2) 

Alkaline activated 
K2p5.1 (TASK2), 16.1 and 17.1 

(TALK1 and 2) 

Ca2+-activated K2p18.1 (TRESK1) 

weak Kirs 
K2p7.1 (KCNK7), 1.1 and 6.1 

(TWIK1 and 2) 

acid-inhibited 
K2p3.1, 9.1 and 15.1 (TASK1, 3 

and 5) 

halothane-inhibited K2p13.1 and 12.1 (THIK1 and 2) 

6TM 

A-type Kv1.4, 3.3, 3.4, 4.1, 4.2 and 4.3 

Classical delayed 
rectifier 

Kv1.1, 1.2, 1.3 and 1.5 

Ca2+-dependent K+ 
channel 

KCa1.1 (BK), 2.x (SK), 3.1 (IK) 

Table 3. Classification of K+ channels. 
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Chapter II - Cholinergic system and        
neurodevelopment 

In the CNS, acetylcholine (ACh) is a major neurotransmitter implicated in 

higher brain functions, including cognitive processes. The term "cholinergic 

system" defines all those components of the nervous system whose actions are 

mediated by the neurotransmitter ACh. Besides, during brain development, 

ACh regulates many events by activating its receptors (AChRs). Thus, in the 

developing CNS, both ACh receptor classes, muscarinic (mAChR) and 

nicotinic (nAChR) receptors are involved in neuronal proliferation, 

differentiation and survival, as well as synapse formation, axonal pathfinding 

and neurotransmitter release (Abreu-Villaça et al., 2011). Cholinergic neurons 

are present in both PNS and CNS. Within the CNS there are either projection 

neurons, that connect different areas of the brain, or cholinergic interneurons. 

Cholinergic interneurons are present in various brain substrates, including the 

caudate-putamen nucleus, the nucleus accumbens, the olfactory tubercle and 

the Calleja Islands complex, where they exert important modulating actions 

(Ferreira-Vieira et al., 2016). Within the basal forebrain (BF), the nucleus 

basalis of Meynert (NBM) represents the main source of cholinergic projection 

neurons (Kilimann et al., 2014). Indeed, specific degeneration of NBM neurons 

is an early and prodromal event for the pathogenesis of Alzheimer’s disease 

(Hampel et al., 2018), one of the most common form of dementia, and predicts 

cognitive decline in Parkinson’s disease (A. Schulz et al., 2018). Moreover, 

alterations in BF development, as those that may be induced by premature 

birth, are associated with neonatal complications and cognitive deficit in 

adulthood (Grothe et al., 2017). 

2. Acetylcholine 

In 1913, H. Dale and A. Ewins isolated ACh from ergot (fungus Claviceps), by 

a “lucky accident” (Ewins, 1914) and only ten years later they find it as a 

natural constituent of the mammalian body (Dale and Dudley, 1929). To date, 

its mode of action at peripheral synapses, especially in neuromuscular 
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junction, has been extensively studied and it is considered the principal 

neurotransmitter in sympathetic and parasympathetic ganglia of the 

autonomic nervous system, in adrenal medulla and in skeletal muscle. ACh 

basically transmits fast excitation through nicotinic receptors that depolarize 

cell membrane to the threshold for electrical firing. However, in some areas 

(e.g. cardiac muscle) it transmits a slower excitatory or inhibitory signal 

through mAChRs linked to second messenger signalling.  

In 1948, Feldberg W. and Vogt M. demonstrated that Ach was synthetized in 

CNS and acts as a neurotransmitter (Feldberg and Vogt, 1948). To date, its role 

is still under debate even if we know that is involved in many mechanisms, as 

attention, memory, it can also act as a neuromodulator or a neurotrophic 

factor. 

ACh is an ester whose chemical structure is composed by choline and acetic 

acid (Fig. 3). Its synthesis takes place in the cytoplasm of cholinergic neurons 

from its precursor choline, an essential nutrient provided mostly from the diet 

and transported to the brain via blood flow in free form (yolk egg, liver, 

vegetables). 

 

Figure 3. Structure of ACh. 

Choline participates to a number of physiological processes in every cell (e.g. 

it maintain membrane integrity). However cholinergic neurons have 

especially large requirements for this nutrient to supply the cargo for 

cholinergic vesicles. Neurons can hydrolyse phosphatidylcholine, a 
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membrane phospholipid, to choline; however, the de novo synthesis of choline 

provides to only with a very small fraction of the total choline necessary for 

the synthesis of ACh. Therefore, choline is taken up into the cytoplasm from 

the extracellular space by two transporter systems: first is the ubiquitous low-

affinity (Km=50 µM), sodium independent transport system; second is the 

high-affinity (Km=1-5 µM), saturable and sodium, ATP and chloride-

dependent transport system that is also specific of cholinergic neurons. Once 

choline is in the cytoplasm, it reacts with mitochondrial bound acetyl 

coenzyme A, a metabolic intermediate of the Krebs cycle, that it is transported 

by citrate to the cytoplasm.  This reaction is catalysed by the cytoplasmatic 

enzyme choline acetyltransferase (ChAT), an enzyme specific to cholinergic 

nerve terminals and whose labelling by immunochemistry has much 

facilitated the mapping of cholinergic pathways. This enzyme is not saturable, 

but its activity is limited by the availability of choline.  

Unfortunately, even if more than a hundred compounds have been reported 

as ChAT inhibitors,  none of them is indeed able to achieve the desired in vivo 

efficacy (Kumar et al., 2017). On the other hand, synthesis of Ach is inhibited 

by drugs which compete for choline uptake, as hemicholinium or 

triethylcholine (Sterling et al., 1986). 

Hence, the neurotransmitter is transported by the vesicular ACh transporter 

(VAChT) from the cytosol into synaptic vesicles by a proton electrochemical 

gradient to move ACh to the inside of the vesicle. ACh H+ antiporter channel 

is inhibited by vesamicol, a drug that reduces ACh storage and interferes with 

neurosecretion (Prior et al., 1992).  

It seems that two pools of Ach-filled vesicles exist: one (depot pool) consists in 

vesicles located close the nerve terminals, read to be release. The other (reserve 

pool) replaces the depot pool and it is required to sustain ACh release during 

sustained or intense nerve stimulation. Indeed, the depolarization of the nerve 

terminals allow the entry of Ca2+ through CaVs. The increase of intracellular 

Ca2+ promotes fusion of vesicular membranes with the plasma membrane, 
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allowing exocytosis of ACh in the synaptic cleft, where it can activate both 

mAchRs and nAchRs. Some toxins, as botulinum toxin, produced by the 

anaerobic bacillus Clostridium botulinum, and β-bungarotoxin, a protein in a 

cobra snake venom, efficiently inhibit Ach release. Of note, ACh present at the 

synaptic cleft is rapidly inactivated by the enzyme ACh esterase (AChE), 

localized on the membrane of the postsynaptic cell. This enzyme hydrolyze 

ACh into acetic acid and choline, that is continuously reuptaken into the 

presynaptic cholinergic neuron by an active transport system. The enzyme 

AChE is extremely efficient (10000 molecules of ACh each second) and 

numerous compounds that inhibit its activity have been developed to prolong 

and potentiate the action of ACh. For example, physostigmine, which can cross 

the blood brain barrier, and neostigmine reversibly bound AChE; also 

insecticide, as organophosphorus compounds and methyl carbamates, 

irreversibly inhibit AChE (Casida and Durkin, 2013).  Interestingly, it has been 

demonstrated that AChE modulates other multiple biological functions 

beyond cholinergic neurotransmission, as neurogenesis, cell adhesion, 

synaptogenesis, amyloid fibre assembly and activation of dopamine receptors 

(Paraoanu and Layer, 2008) (Fig. 4). 

 

Figure 4. Acetylcholine signalling pathway. (Taken from: Malenka, 2009). 
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2.1. Acetylcholine receptors 

Neurons may respond to neurotransmitters and/or neuromodulator release 

from itself (autoreceptors) or adjacent neurons (heteroreceptors); cholinergic 

nerve terminals contain both. The neurotransmitter ACh acts by activating its 

receptors and promoting either stimulation or inhibition of neuronal 

excitability, depending on receptor type and neuronal localization of the 

receptor. ACh receptors have been classified into two different categories: (i) 

nicotinic receptors (nAchRs), which are ionotropic receptors mediating fast 

synaptic transmission, and (ii) muscarinic receptors (mAchRs), which are 

metabotropic receptors modulating much slower events. 

2.1.1. Nicotinic Ach Receptors 

The nAChR was the first neurotransmitter receptor to be isolated and purified, 

in 1970, from electric organ of fish Torpedo and Electrophorus electricus (Miledi 

et al., 1971; Olsen et al., 1972). The nAChRs are ligand-gated ion channels 

permeable to cations (K+, Na+ and, in several instances, Ca2+) and each receptor 

is a pentamer consisting of five subunits (α, β, γ, δ and ε)  around a central ion 

channel pore (Cooper et al., 1991). Distinct subtypes of nAchRs are expressed 

in different structures and, depending on their location, they are classified in 

three families, with different combination of subunits. The α subunit is where 

Ach binds the receptor thus inducing a conformational change responsible for 

ion flow through the central pore of the receptor. Cation selectivity is due to 

the presence of areas enriched in negative charges within the pore, that act as 

a reminder for the positive charges of the cations. In neurons, combinatorial 

assembly of up to nine different α subunits and three β contributes to a wide 

variety of pentamers with distinct pharmacological, electrophysiological and 

kinetic properties. There are four traditional conformation states of the 

nAChR: resting (closed channel with an unoccupied agonist-binding site), 

active (open channel), desensitized (closed channel with high-affinity agonist 

binding), and an inactive state that is a more prolonged desensitized state 

(Changeux et al., 1984). With acute exposure to high concentrations of ACh or 
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non-selective nAChR agonists such as nicotine, the equilibrium between these 

conformation states shifts to an active state, allowing signal transduction 

followed by subsequent desensitization of the receptor. However, under 

sustained exposure to low concentrations of agonists, the desensitized 

conformational state of the receptor can be stabilized and become refractory to 

agonist activation (Jones et al., 2012). 

In the CNS, most of the nicotinic receptors are expressed at the presynaptic 

neuronal membrane and their main role is to regulate neurotransmitter 

release, whereas nicotinic receptors expressed in the peripheral nervous 

system are mainly post-synaptic. Agonists at the nAChR can improve, while 

antagonists impair, performances in cognitive tasks (Ferreira-Vieira et al., 

2016). Nicotine is the main agonist of the nicotinic receptor, while curare is the 

main antagonist. Of note, nAChRs are responsible for autosomal dominant 

nocturnal frontal lobe epilepsy, modulate pain transmission and seems to be 

involved also in autism, schizophrenia, Parkinson’s disease, nicotine 

addiction, Alzheimer’s disease, Tourette’s syndrome and anxiety disorders 

(Becchetti et al., 2015; Lee et al., 2002; Posadas et al., 2013; Tregellas and Wylie, 

2019; Umana et al., 2013) (Fig. 5). 

2.1.2. Muscarinic Ach receptors 

Muscarinic receptors (mAChRs) are G-protein-coupled receptors that 

modulate a wide variety of neuronal functions. On the basis of selective 

agonists and antagonists, they are further classified into five subtypes (M1-5), 

with distinct anatomical locations in the periphery and CNS. In the CNS, 

mAChRs are involved in regulating a large number of cognitive, behavioural, 

motor, and autonomic functions although some of these are also influenced by 

nAChRs. 

The M1, M3, and M5 receptors are typically coupled to pertussis toxin-

insensitive Gq, that stimulates phospholipase C (PLC). Their activation 

therefore induces hydrolysis of membrane phosphatidylinositol-4,5-

diphosphate to form inositol triphosphate (IP3) and diacylglycerol (DAG). 
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Intracellular IP3 induces release of Ca2+ from the endoplasmic reticulum, 

which could activate several events, like smooth muscle contraction. On the 

other hand, DAG activates protein kinase C (PKC), resulting in 

phosphorylation of several proteins. Therefore, the activation of Gαq-protein-

coupled muscarinic receptors can also activate phospholipase A2, leading to 

the release of arachidonic acid and then eicosanoid synthesis. Furthermore, 

M1,3,5 receptors may also regulate K+ channels, usually promoting their 

closure, thus facilitating cell excitability (Brown, 2018), but in some cases are 

also reported to inhibit Na+ conductance through activation of PKC (Cantrell 

et al., 1996; Cantrell and Catterall, 2001). 

The M2 and M4 receptors, instead, are coupled to pertussis toxin-sensitive Gi 

which lead to inhibition of adenylyl cyclase (AC) and consequent decrease in 

cyclic adenosine monophosphate (cAMP), activation of inwardly rectifying K+ 

channels and inhibition of voltage-gated Ca2+ channels (Brown, 2018). 

Functional consequence are hyperpolarization and inhibition of excitable 

membranes. Moreover, in literature was described that M2 can also enhance 

Kv currents (Cruzblanca, 2006; Harata et al., 1991). Therefore, stimulation of 

mAChRs can promote the opening or closing of Ca2+, K+, or Cl- channels, 

which might facilitate either depolarization or hyperpolarization, depending 

on the cell type where these receptors are expressed (Ferreira-Vieira et al., 

2016). The first selective agonist identified for mAChRs was the alkaloid 

muscarine, from the mushroom Amanita muscaria, and, so far, it has not been 

possible to find an agonist with specific selectivity for a particular mAChRs 

isoform. While the best-known antagonists of the mAChRs are belladonna 

alkaloids, such as atropine and scopolamine, which blocks all mAChRs 

(Ferreira-Vieira et al., 2016). Another kind of ligand, as gallamine, competes 

with classical muscarinic ligands (Fig. 5). 
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Figure 5. The structure and signalling pathways of mAChRs and nAChRs. Each mAChR 

subtype is a seven-transmembrane protein, which belongs to two major functional classes 

based on G-protein coupling. The M1, M3, and M5 mAChRs selectively couple to the Gq/G11-

type G-proteins resulting in the generation of inositol-1,4,5-trisphosphate (IP3) and 1,2-

diacylglycerol (DAG) through activation of the phosphoinositide-specific phospholipase-Cβ 

leading to increased intracellular calcium levels. The M2 and M4 mAChRs preferentially 

activate Gi/Go-type G-proteins, thereby inhibiting adenylate cyclase, reducing intracellular 

concentration of cAMP, and prolonging potassium channel opening. All mAChR subtypes 

show a high sequence homology across species, particularly in the orthosteric ACh-binding 

sites. Neuronal nAChRs are pentameric ligand-gated ion channels. The most abundant 

neuronal subunits are α4, β2, and α7, with the heteromeric α4β2 receptor subtype in highest 

abundance. The heteromeric α4β2 receptor subtype can exist in two different forms: (α4)2(β2)3 

receptors show low Ca2+ permeability and high affinity to ACh and nicotine, whereas 

(α4)3(β2)2 receptors have high Ca2+ permeability. By contrast, the α7 nAChR also shows high 

permeability to Ca2+ relative to the heteromeric α4β2 nAChRs. The action of α4β2 nAChRs can 

enhance intracellular levels of Ca2+ by secondary activation of CaVs, whereas α7 nAChRs 

preferentially increase Ca2+ release from ryanodine-sensitive intercellular stores through 

CICR. The capacity of these different nAChR subtypes to couple to CaV or CICR mechanisms 

results in distinct patterns of Ca2+ signalling that can provide a broader control of synaptic 

plasticity and neurotransmitter release, as well as gene transcription. (Modified from: Jones et 

al., 2012) 

2.2. Role of Ach in neurodevelopment 

Molecules such as ACh and glutamate act as both neurotransmitters and 

neuromodulators; as neuromodulators, they change neural information 

processing by regulating synaptic transmitter release, altering baseline 

membrane potential, and spiking activity, and modifying long-term synaptic 

plasticity. Compared to neurotransmitters, neuromodulators have slower, 

longer lasting, and more diffuse effects on neuronal physiology, often due to 

effects at metabotropic receptors rather than ionotropic receptors. Their effect 
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on synaptic transmission or cellular excitability depends on the type of pre- or 

postsynaptic receptor the modulator binds to. For example, the effect of ACh 

varies greatly depending on whether or not it binds to nicotinic compared to 

muscarinic ACh receptors (Giocomo and Hasselmo, 2007).  

In a developmental context, activation of a given set of neurotransmitter 

receptors may promote neural cell replication, initiate the switch from 

replication to differentiation, enhance or retard axonogenesis or 

synaptogenesis, evoke or prevent apoptosis, or enable the appropriate 

migration and localization of specific cell populations within each brain 

region. At the same time, these multiple developmental roles of 

neurotransmitters render the developing brain vulnerable to neuroactive 

chemicals that elicit or block neurotransmitter responses, with sensitivity 

extending through all phases of brain assembly, from the early embryonic 

stage through adolescence  (Slotkin, 2004). 

In literature it has been reported that cholinergic neurons can synthesize ACh 

during their migration and that these neurons can release ACh from their 

growth cones prior to target contact or synapse formation and also along the 

neurite and at the soma (Allen and Brown, 1996). Nicotinic receptors subunits 

are the first membrane proteins to appear during CNS development; 

functional nAChRs were revealed by patch-clamp measurements in fetal 

mouse cerebral cortex as early as on E10 (Atluri et al., 2001). On the other 

hands, in the human fetal brain, nAChRs are detected in the first trimester, 

gradually increasing up to midgestation (Morelli et al., 2017). Moreover there 

is evidence that nAChR levels remain constant or decrease throughout 

postnatal life depending on the brain region and receptor composition (Falk et 

al., 2002). These changes in nAChR expression occur during critical prenatal 

and postnatal periods of neuronal development, involving mechanisms 

associated with neurogenesis, cell migration and differentiation, and 

synaptogenesis (Abreu-Villaça et al., 2011). Instead, mAChRs are present in 

both the forebrain and the hindbrain during early developmental stages; they 
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has been demonstrated in human fetal brain from early gestation (Gremo et 

al., 1987). On the other hand, in the rat, they appear in the spinal cord on E13 

and on E15 they are evident in the rhombencephalon and mesencephalic 

structures and on E16, in forebrain regions (Schlumpf et al., 1991). The 

mAChRs have been shown to mediate effects of ACh on proliferation, 

differentiation, and survival. In embryonic P19 carcinoma cells, a widely 

accepted in vitro model for early neurogenesis, muscarine induces 

proliferation in progenitor cells by activation of M1, M3 and M5 receptors and 

mobilization of intracellular Ca2+ stores, whereas M2 receptor activity 

mediates neuronal differentiation (Resende et al., 2008; Young and Poo, 1983) 

ACh can alter several processes in neuronal development, and the molecular 

basis for a number of these developmental effects of ACh signalling have been 

elucidated recently. For example, one fundamental role for ACh signalling 

through nAChRs is to regulate the timing of expression of the chloride 

transporter that is necessary for the ability of GABA to hyperpolarize, and 

therefore inhibit, central neurons (Liu et al., 2006). Disrupting nAChR 

signalling delays the switch from GABA-mediated excitation to inhibition; 

recent studies have also shown that nAChRs contribute to the maturation of 

GABAergic (Zago et al., 2006) and glutamatergic (Lozada et al., 2012) 

synapses, highlighting an important role for ACh signalling in synaptic 

development. In addition, signalling through nAChRs is also important for 

establishing critical periods for activity-dependent shaping of visual cortical 

function (Morishita et al., 2010) and maturation of thalamocortical (Hsieh et 

al., 2002) and corticothalamic (Horst et al., 2012) glutamatergic synapses. 

In literature it has been demonstrated that nicotine exposure alters 

dopaminergic and noradrenergic systems in development (Muneoka et al., 

2001; Ribary and Lichtensteiger, 1989). Developmental nicotine exposure can 

also result in alterations of the serotonergic system, with age-dependent 

reductions in serotonin turnover observed in the forebrain, brainstem and 

cerebellum of exposed animals (Muneoka et al., 2001; Slotkin et al., 2007). 
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Alterations in the serotonergic system may contribute to some aspects of 

attention deficit hyperactivity disorder (ADHD) symptomology (Oades, 2007), 

with disruptions in the cerebellum of particular interest, given the emerging 

role for this structure in cognition and sensory processing (Arnsten, 2006). 

Therefore, it is important to note that inappropriate modulation of the 

endogenous cholinergic system, with its extensive cortical innervation may 

also be a significant contributor to the neurochemical and behavioural deficits 

observed following developmental exposure (Heath and Picciotto, 2009). 

3. The basal forebrain area 

The BF region is a broad topographic term describing a heterogeneous set of 

cellular structures on the medial and ventral cerebral hemisphere (Hardenacke 

et al., 2013). It has a complex architecture: It comprises BF cholinergic neurons 

(BFCN) within the medial septal nucleus, the vertical and horizontal diagonal 

bands of Broca and the NBM (M. Mesulam, 2013). This complex region 

contains magnocellular neurons that provide the major cholinergic projections 

to the cerebral cortex, hippocampus and amygdala (Ferreira-Vieira et al., 2016) 

(Fig. 6). Indeed, this innervation of the neocortex by BFCN is an integral part 

of cortical activation as it supports cognitive functions, such as alertness, 

memory, attention, and learning. In simplified terms, the function of the BFCN 

is sometimes described as a kind of “background tuning” (Hardenacke et al., 

2013). Furthermore, BF neurons modulate blood supply to the neocortex and 

thereby glucose metabolism. This process is considered as an elementary 

prerequisite for cognitive functions (Hardenacke et al., 2013). Importantly, the 

degeneration and loss of cholinergic neurons within the BF, especially in the 

NBM, represents a pathological correlate of the well-documented cholinergic 

derangement in Alzheimer’s disease (AD) patients (Kilimann et al., 2014), and 

also predicts cognitive decline in Parkinson’s disease (PD) (J. Schulz et al., 

2018). A better understanding of functional features of human NBM neurons 

may help to clarify disease mechanisms and to develop disease-modifying 

drugs in order to improve cognitive outcome in these pathologies. 
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Figure 6. Cholinergic circuitry of the human nucleus basalis. ACh, acetylcholine; DA, 
dopamine; EAA, excitatory amino acids; NE, norepinephrine; 5HT, serotonin. Question marks 
indicate that the connection has not been confirmed in the human brain (M. M. Mesulam, 
2013). 

3.1. Basic notions of human forebrain embryogenesis 

The evolvement of cerebral cortex is considered one of the most critical 

developmental processes underlying cognitive differences between humans 

and lower mammals. Indeed, defective development of the cerebral cortex is 

a major cause of intellectual disability disorders. In order to understand the 

molecular basis of these disorders and to develop future therapies for their 

treatment, a thorough understanding of cerebral cortex development is 

required. The entire nervous system originates from the neural plate that, 

during the third week of gestation in humans, forms neural folds which 

converge to create the neural tube and canal. Cells at the edge of each neural 

fold escape from the line of union and form the neural crest alongside the tube, 

divided in a dorsal part (alar plate) and a ventral part (basal plate). Within the 

fourth week, the rostral part of the neural tube undergoes a flexion at the level 

of the future midbrain, shaping the mesencephalon. Slight constrictions mark 
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its junction with the prosencephalon (future forebrain) and rhombencephalon 

(future hindbrain) (Mtui, 2016). The primary prosencephalon divides into two 

major components, the epichordal caudal diencephalon and the rostral 

secondary prosencephalon. The secondary prosencephalon is the entire 

prechordal part of the neural tube and includes the rostral diencephalon or 

hypothalamus, the optic vesicles, the preoptic region, and the telencephalon 

(ten Donkelaar, 2015). The alar plate of the prosencephalon expands on each 

side to form telencephalon (cerebral hemispheres), while the basal plate 

remains in place as diencephalon. In the telencephalon, mitotic activity takes 

place in the ventricular zone, just outside the lateral ventricle. Daughter cells 

migrate to the outer surface of the expanding hemisphere and form the 

cerebral cortex (Mtui, 2016). The two major telencephalic subdivisions are the 

pallium (the roof) and the subpallium (the base). The pallium gives rise to the 

cerebral cortex, whereas the basal ganglia and most cortical interneurons 

derive from the subpallium. the embryonic forebrain appears to be organized 

into transverse (prosomeres) and longitudinal subdivisions (alar and basal 

plates). The relationship between these postulated segments and telencephalic 

subdivisions, however, remains controversial. The dorsal and ventral domains 

of the developing telencephalon are distinguished by different patterns of 

gene expression, reflecting the initial acquisition of regional identity by 

progenitor populations (Zaki et al., 2003). The caudal part of the ventricular 

eminences or caudal ganglionic eminence (CGE) primarily gives rise to the 

subpallial parts of the amygdala. Therefore, the medial ganglionic eminence 

(MGE) is involved in the formation of the globus pallidus and the NBM. The 

nucleus basalis complex develops the earliest ACh sterase activity in the 

human telencephalon (Kostović, 1986) and sends widely distributed fibres to 

the anlage of the neocortex and limbic cortex via the external capsule by the 

end of the second trimester of gestation (Vasung et al., 2010). The timing of 

neuronal development in different brain regions have been extensively 

studied in rodents  (ten Donkelaar et al., 2014). Structures such as the globus 

pallidus, the nucleus of the horizontal limb of the diagonal band of Broca, the 
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caudate–putamen complex ,and the olfactory tubercle arise early, whereas 

medium-sized and small cells in the BF develop over a much longer period of 

time,  until P4 (ten Donkelaar, 2015). In the forebrain, differentiation is 

temporally regulated, with neuronal stem cells (NSCs) gradually losing their 

pluripotency, first generating neurons, and thereby astrocytes and finally 

oligodendrocytes. Hence, neural circuits are established before the formation 

of glial cells, which support the circuitry. Several factors influence NSCs 

proliferation or differentiation and regulate the length of cell cycle, of cell 

division, and extrinsic and intrinsic determinants. Cellular differentiation 

requires that neural progenitors first acquire a regional identity, which is often 

conferred by homeodomain transcription factors, followed by subtype 

specification and differentiation, which are induced by other transcription 

factors and signalling molecules (Dennis et al., 2016). 

3.2. Nucleus Basalis of Meynert: anatomy and histology 

The BF region is located above and parallel to the optic nerve, with the medial 

boundary being the wall of the lateral ventricle. This brain area was first 

described by Reil in 1809 and then was named substantia innominata (SI) of 

Reil by Theodore Meynert (Putnam, 1873), today known the SI of Reichert. 

However, instead of labelling a region, some investigators describe the SI as a 

discrete group of magnocellular neurons within the BF and Meynert first 

described a group of magnocellular hyperchromic neurons located in the SI of 

the human BF in 1873, naming it the nucleus of the ansa lenticularis; Kölliker 

later renamed it the NBM  (Kölliker and von Ebner, 1903). The intricacy of this 

area has led to multiple names for this cluster of cells, resulting in substantial 

inconsistencies across studies. Ultimately, in 1942, the term NBM was 

established and is now widely used. The nucleus basalis is well delineated in 

certain mammalian species such as dolphins (Delphinus delphis), but sparsely 

distributed and less organized in others such as in the rat (Rattus norvegicus), 

where it is referred to as nucleus basalis magnocellularis (Gorry, 1963). 
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The NBM is an “open” nucleus with no distinct boundaries and it forms 

several clusters within the BF. Therefore, attempts have been made to 

subdivide this ‘nucleus’ (Liu et al., 2015). Detailed human anatomical studies 

show that the NBM is a flat, nearly horizontal structure extending anteriorly 

from the olfactory tubercle to the hippocampus, spanning 13–14mm in the 

sagittal plane. It reaches its greatest cross-sectional diameter under the 

anterior commissure in SI, with a medio-lateral width of 16–18 mm (Mesulam 

and Geula, 1988). The anterior part of the NBM reaches the horizontal limb of 

the nucleus of the diagonal band of Broca ventrally, the ventral globus pallidus 

medially, and the lateral extension of the anterior commissure laterally. The 

posterior portion of NBM reaches the ansa lenticularis dorsally, the putamen 

laterally, the posterior tip of the amygdala ventrally, and the optic tract 

medially (Bosch, 1978). 

Histologically, NBM is characterized by the presence of magnocellular and 

hyperchromatin neurons containing conspicuous nucleus; it contains about 

200,000 neurons per hemisphere, with the highest neuronal density under the 

anterior commissure (Koulousakis et al., 2019). Since nearly 90% of nucleus 

basalis neurons are cholinergic, by using histochemical and 

immunohistochemical labelling for AChE and choline acetyl-transferase 

(ChAT), Mesulam and colleagues (Mesulam et al., 1983) were able to identify 

the various cholinergic loci in the subhuman primates’ BF and introduced the 

nomenclature Ch1–Ch4 to describe four cholinergic cell groups 

rostrocaudally. The Ch1 and Ch2 sectors are contained within the medial 

septal nucleus and the vertical limb nucleus of the diagonal band, respectively. 

The Ch3 sector is contained mostly within the lateral portion of the horizontal 

limb nucleus of the diagonal band. Finally, the Ch4 sector is comprised of 

cholinergic neurons in the nucleus basalis and parts of the diagonal band 

nuclei. The prefix Ch underlines the cholinergic nature of these cell groups and 

the Ch4 group is the largest out of the BF cholinergic groups and are mixed 

with a heterogeneous population of non-cholinergic neurons (Koulousakis et 

al., 2019). 
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Cholinergic neurons of the NBM express estrogen receptors, glutamate 

receptors and calbindin, as well as ACh receptors (Manns et al., 2001). The 10% 

of non-cholinergic interneurons of the NBM include galaninergic neurons, 

which inhibit cholinergic neurons, and nicotinamide adenine dinucleotide 

phosphate-diaphorase (NADPH-d) containing neurons, implicated in nitric 

oxide (NO) synthesis (Benzing and Mufson, 1995; Mufson et al., 2000). 

Furthermore γ-aminobutyric acid (GABA)-ergic neurons are distributed 

throughout the BF (Gritti et al., 1994). 

However, the NBM is the major source of cholinergic input to the cerebral 

cortex and projects to most cortical areas (Cummings and Benson, 1987). 

Several works, including neuroimaging studies, show how the degeneration 

of these cholinergic pathways, especially the NBM, are involved in various 

forms of dementia. Hence, the study of the anatomy and function of this 

cholinergic nucleus is relevant to better understand the role it plays in these 

pathologies. 

3.3. Connectivity: afferent and efferent projections of the 
NBM 

Retrograde axonal tracing experiments cannot be performed in human 

subjects; therefore, we assume that the afferent and efferent connections of the 

human NBM are very similar to those demonstrated in primates. Direct axonal 

tracing experiments in non-human primates show that despite widespread 

efferent projections from the NBM to the entire neocortex, reciprocal afferent 

connections from cortex to NBM are not symmetrical and are restricted to 

limbic and paralimbic areas (Gratwicke et al., 2013). NBM has rich afferent and 

efferent connections. Its input arises primarily from the limbic system and 

related structures and its output projects to most of the neocortex the principal 

inputs that arrives to NBM from orbitofrontal, insular, temporopolar, 

parahippocampal, entorhinal and cingulate regions. Subcortical afferent input 

arises from the hypothalamus, septal nuclei, nucleus accumbens, amygdala 

and peripeduncular nucleus of the midbrain (Cummings and Benson, 1987). 
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Studies from Russchen and colleagues (Russchen et al., 1985) on macaques 

have warned that the NBM also receives neuronal projections from the 

reticular formation of the brain stem and from the nucleus of the solitary tract, 

with other surrounding cholinergic nuclei of the BF. According to retrograde 

tracer experiments in primate studies, efferent connectivity between 

individual NBM subsectors and cortical areas shows topographical specificity 

(Mesulam et al., 1983): 

♦ Ch4am (anterior-medial), provides the major cholinergic projection to 

frontal, parietal and cingulate cortices situated along the medial wall of 

the hemisphere. There are also minor projections directed to the 

hypothalamus, hippocampal formation, ventral somatosensory cortex, 

amygdala, ventrolateral orbital, middle insular, parahippocampal 

regions and the inferior parietal lobule. 

♦ Ch4al (anterior-lateral), the principal source of cholinergic projections 

to frontoparietal opercular regions and the amygdala. Additional 

projections are directed to the olfactory bulb, medial frontal pole, 

dorsomedial motor cortex, ventrolateral orbital cortex, insular, 

inferotemporal area and parahippocampal region.  

♦ Ch4id (intermedio-dorsal) and Ch4iv (intermedio-ventral) present 

similar projections patterns: the main projections reach the 

ventrolateral orbital, insular, periarcuate, peristriate and 

parahippocampal areas as well as to the inferior parietal lobule. Minor 

projections occur to the medial frontal pole, dorsomedial motor cortex, 

frontoparietal opercular areas, the amygdala, anterior auditory cortex, 

and the temporal pole.  

♦ Ch4p: it has a major projection to the superior temporal gyrus and the 

temporal pole. And minor projections confined to adjacent 

inferotemporal and posterior insular regions.  

Due to the complex topographical arrangement of the efferent connectivity of 

Ch4, there is a substantial overlap of projections between the individual 
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subsectors according to primate tracing studies (Gratwicke et al., 2013). The 

anatomical analysis shows that NBM is mainly involved in a unidirectional 

flow of neuronal impulses ranging from limbic and paralimbic structures to 

the neocortex. All this is confirmed and supported by the fact that limbic and 

paralimbic areas (particularly hippocampal, amygdala and piriform regions) 

receive substantially higher levels of cholinergic input than adjacent 

neocortical association areas. Overall, the heterogeneous neural input to NBM 

from predominantly limbic structures combined with its dominant cholinergic 

output to the entire neocortex places it in a unique position in the brain where 

it can influence all aspects of complex behaviour according to the prevailing 

emotional or motivational state (Cummings and Benson, 1987; Gratwicke et 

al., 2013) 

3.4. Functions of NBM 

Despite detailed information about NBM's anatomy, connections or 

neurochemistry are available to date, its functions have not yet been fully 

clarified. Most experimental studies confirm that lesions or stimulations of 

NBM can lead to different consequences that mainly involve learning, 

memory, and modulation of the behavioural state. 

3.4.1. NBM and memory 

A role of NBM in memory tasks has been suggested by the observation that 

lesions of the medial forebrain nuclei, or isolated lesions of the NBM combined 

with anticholinergic treatment, result in a memory defect (Cummings and 

Benson, 1987). Low doses of cholinergic antagonists typically impair the 

animal's ability to perform various memory tasks, whereas cholinergic 

agonists facilitate these performances (Richardson and DeLong, 1991). 

Moreover, lesions to NBM cholinergic system or the use of anticholinergic 

agents in rodents and primates reduce cortical cholinergic functions and 

therefore compromise learning and memory on a variety of tasks by acting 

directly on cortical plasticity. It has been observed that the appearance of these 
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plastic changes is associated to cortical EEG desynchronization (transition 

from slow synchronized delta waves to fast gamma and theta waves) which 

is, in turn, associated to plasticity and learning. Subsequent studies 

demonstrated that physiological changes induced in the cortex of rats by NBM 

stimulation indeed have all the features of physiological associative memory: 

associativity, specificity, rapid acquisition, consolidation, conservation, and 

long-term extinction. Thus, compelling evidence exists that NBM plays an 

integral role in new memory formation (Gratwicke et al., 2013) 

3.4.2. NBM and attention 

A parallel line of investigation into the functions of the NBM hypothesizes a 

role in attention. In a scientific study on rats carried out by McGaughy and 

colleagues (McGaughy et al., 2002), selective NBM lesions  correlated to 

differences in ACh levels and attention. Immunotoxin IgG-saporin (SAP) was 

used to perform a selective NBM lesion. Rats were tested in a five-choice serial 

reaction time task (5CSRTT) designed to assess visual attention. Rats with 

extensive damage in the nucleus magnocellular revealed a higher impairment 

of this activity. These rats had significantly lower levels of cortical ACh. These 

data provided the first direct evidence for a relationship between selective 

damage in the BF, decreased cortical ACh efflux and impaired attention. 

Memory and attention are not mutually exclusive activities. Indeed, if we 

consider all the phases of a learning process (selection of the sensory stimulus, 

manipulation in working memory, construction of associations for recall), they 

are closely connected one each other and dependent upon attention. Indeed, 

both human neuroimaging and computational modelling studies suggest that 

cholinergic activity in the sensory cortex serves to enhance signal detection 

(and thus attention) and, by doing so, to facilitate the formation of novel input 

associations (memory formation) (Gratwicke et al., 2013). 
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3.4.3. NBM and the modulation of the behavioural state 

It has long been known that cholinergic projections of the NBM to the cortex 

are intimately involved in the regulation of cortical activation and arousal. 

Systemic injections of cholinergic agonists reliably desynchronize cortical EEG 

activity, whereas cholinergic antagonists synchronize EEG activity 

(Richardson and DeLong, 1991). The desynchronization of the neocortical EEG 

also corresponds to the presence of fast gamma waves, typical of the waking 

and alarm state. Otherwise, the failure to desynchronize the EEG due to a 

lesion of the NBM, produces slow synchronized delta waves (present in the 

state of sleep) with corresponding behavioural unresponsiveness / coma. 

Several studies have shown how cholinergic fibres of the rat's BF have a 

maximum discharge activity during the waking states to which the activity of 

the cortical gamma waves are related (emphasizing cortical excitation) and 

also the theta cortical oscillations (favouring synaptic plasticity). Summing up 

and analysing all these results it can be assumed that the function of the NBM 

is to regulate the behavioural state, allowing enhanced cognitive functions, 

attention and perception that lead to the enhancement of the ability to process 

and learn new information. Consequently, the degeneration of this nucleus 

compromises this state of activation, thus altering attention, perception of 

stimuli and the formation of new memories, as is the case in dementia 

(Gratwicke et al., 2013). 

3.5. The importance to know better NBM 

A better understanding of functional features of the human NBM is therefore 

required to clarify developmental aspects of cholinergic neurons and disease 

mechanisms that could support innovative therapeutic approaches to 

counteract the cognitive impairment produced by NBM cholinergic system 

dysfunction and/or degeneration.  

In literature, it has been well established that neuronal loss within the 

cholinergic NBM correlates with cognitive decline in dementing disorders 



______________________________________________Introduction – Chapter II 

45 
 

such as Alzheimer’s disease (AD) (Liu et al., 2015). Therefore, cell loss in NBM 

was first identified in Parkinson Disease (PD) by Lewy in 1913. Indeed, when 

directly comparing PD and AD cases, the loss is comparable (Rogers et al., 

1985) or more extensive in PD than in AD (Candy et al., 1983) and the loss was 

more apparent among PD with dementia (PDD) cases. Furthermore, the role 

of NBM was investigated in many other neuropsychiatric disorders, as 

schizophrenia (Williams et al., 2013), Pick’s disease, Creutzfeldt–Jakob disease 

(Rogers et al., 1985), dementia pugilistica (Uhl et al., 1982) and Down’s 

syndrome (Casanova et al., 1985; Liu et al., 2015). The potential for 

neuromodulatory treatment targeting the NBM is now being realised, in 

particular deep brain stimulation in dementia (Gratwicke et al., 2013) and 

stereotactic gene delivery of trophic factors (Rafii et al., 2014). Moreover, in the 

era of regenerative medicine, increasing knowledge of functional features of 

human cholinergic neuroblasts could help to arrange efficient cell-based 

therapies to treat neurodegenerative disorders (Gallina et al., 2008; Guarnieri 

et al., 2018; Parmar, 2018). In spite of this, most of present knowledge on 

cholinergic system development and functioning has been obtained from 

studies in animal models and waits for confirmation and implementation 

using human experimental model tissue. 

Studies focusing on the pharmacological and/or functional characteristics of 

human neurons isolated from the embryonic or fetal brain are limited in 

number (Hellström-Lindahl et al., 1998; Lepski et al., 2011; Sah, 1995). Indeed, 

most data concerning this issue have been collected from rodent tissues 

(Hedrick and Waters, 2010; Nakajima et al., 1985). Alternatively, immature 

neurons of human origin have been obtained from induced pluripotent stem 

cells (iPSCs) (R. Liu et al., 2013; Song et al., 2013) or embryonic stem cells 

(ESCs) (Bissonnette et al., 2011; Yang et al., 2019), but results need to be 

confirmed in developing “native” neurons. 

Recently, my research group gathered important information on the 

characteristics of human fetal NBM (hfNBM) neuroblasts isolated from 12-
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week-old human fetuses and we demonstrated that this cell culture possesses 

the hallmarks of cholinergic neurons (Morelli et al., 2017). Indeed, these 

neuroblasts express the enzymes required for ACh synthesis (choline 

acetyltransferase) and degradation (AChE) as well as the specific vesicular 

ACh transporter. Moreover, hfNBM cells can release ACh in the culture 

medium and express all subtypes of mAChRs (with predominance of M2 and 

M3 subtypes) and a variety of nAChRs. Furthermore, hfNBM neuroblasts 

exhibit tetrodotoxin- (TTX)-sensitive Na+ current and a repertoire of voltage-

dependent K+ currents, as well as cholinergic receptor-mediated responses. 

Interestingly, intravenous injection of hfNBM cells in NBM-lesioned rats 

resulted in selective colonization of the lesioned NBM by differentiating 

cholinergic neurons injected cells and recovery of the cognitive impairment 

produced determined by the lesion (Morelli et al., 2017). 

For this reason, the first aim of this thesis was to take advantage from the 

availability of hfNBM cultures to investigate the electrophysiological 

properties of immature, non-differentiating, cholinergic neurons from the 

human developing CNS and their functional responses to cholinergic agonists.  
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Chapter III – Purinergic system in PNS and CNS 

Adenosine is a purine nucleoside indispensable for DNA synthesis; therefore, 

adenosine plays an essential role as neuromodulator also in biochemical 

processes and signal transduction, being correlates with molecules such as 

ATP, ADP and AMP. Therefore, adenosine is an endogenous neuromodulator 

that recently emerged as a most pervasive mechanism for intercellular 

communication in the nervous system. The first report on adenosine actions 

by Drury and Szent-Györgyi (Drury and Szent-Györgyi, 1929) mainly 

considered the profound cardiac actions. Thirty-four years later, Berne 

identified a physiological role for adenosine as a mediator of coronary 

vasodilation in response to myocardial hypoxia (Berne, 1963). In 1970s, Sattin 

and Rall showed that adenosine, in the CNS, increases cAMP in mammalian 

brain slices, an effect inhibited by methylxanthines (i.e. caffeine and 

theophylline)  (Sattin and Rall, 1970). Later, a depressant role of adenosine on 

the firing of cortical and cerebellar neurons and on excitatory synaptic 

potential amplitude in cortical and hippocampal slices was demonstrated 

(Dunwiddie and Hoffer, 1980; Kostopoulos et al., 1975; Okasa and Ozawa, 

1980; Phillis et al., 1979). Moreover, it was shown that adenosine inhibits on 

the release of several neurotransmitters in different brain areas, as Ach, 

dopamine, noradrenaline excitatory amino acids and serotonin (Corradetti et 

al., 1984; Harms et al., 1979, 1978; Michaelis et al., 1979).  

At central level, it carries out numerous actions: acts as an endogenous 

anticonvulsant, influences control of motility, pain, learning and memory 

(Pedata et al., 2007). Moreover, it has a further crucial role in the modulation 

of emotional states, conditioning social interactions, and aggressive 

behaviours. In physiologic conditions, extracellular adenosine exerts an 

inhibition on synaptic transmission, and this makes it a highly protective 

neuromodulator. Adenosine is a paramount chemical mediator which can 

activate specific biologic responses and its action mainly occurs through 

purinergic receptors activation. To date, it is well recognised that purinergic 
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signalling plays a fundamental role in several biological systems, from 

invertebrates to mammals, and purinergic-mediated effects including both 

short-term (neurotransmission, endothelial-mediated vasodilatation, platelet 

aggregation) and long-term (cell proliferation, differentiation, migration and 

death) phenomenon have been demonstrated.  

4. Adenosine 

The nucleoside adenosine is formed by an adenine and ribose molecule joined 

through an N9-glicosidic bond (Fig. 7) and is continually formed both at 

intracellular and extracellular level (Fredholm et al., 2001).  

 

Figure 7. Structure of Adenosine. 

Adenosine is produced from dephosphorylation of adenosine 

monophosphate (AMP) by the enzyme 5'- nucleosidase (5’-NT), that is present 

at both intracellular and extracellular level (Zimmermann et al., 1998). 

adenosine can also be formed through the breakdown of nucleotides which 

are released into extracellular space, through coupled ectonucleotidases: CD39 

that converts ATP/ADP to AMP and CD73 that hydrolyses AMP to adenosine. 

A further enzyme able to generate adenosine by sequential hydrolysis of ATP, 

is the alkaline phosphatase (Zimmermann, 2000). Another possible source of 

extracellular adenosine is represented by released cAMP. In the extracellular 



_____________________________________________Introduction – Chapter III 
 

49 
 

space, cAMP can be converted to 5'-AMP by ecto-phosphodiesterase, and then 

to adenosine by 5'-ectonucleotidase. The 5’-NT is inhibited by ATP and it has 

an elevated affinity towards AMP; for this reason, when the cell is exposed to 

an intense metabolic activity with increased ATP consumption and 

consequent elevated production of AMP, the enzyme has very high enzymatic 

activity (Pedata et al., 2007). Therefore, during low energetic support 

conditions as in epileptic attacks, hypoxia or ischemia, production of 

adenosine is much raised (Latini and Pedata, 2001). Alternatively, cAMP can 

be converted into 5'-AMP within the cell and then released in the extracellular 

space, where it represents a further source of adenosine. This suggests that 

many neurotransmitters that act on metabotropic receptors whose signalling 

is linked to adenylate cyclase, by favouring the accumulation of cAMP, may 

regulate the adenosine levels and thus the inhibitory effects in the CNS (Latini 

and Pedata, 2001). 

After electrical stimulation in vitro, adenosine seems to originate directly from 

cells, while in ischemic experimental models in vitro, adenosine might have 

also an extracellular origin due to the degradation of the adenosine 

nucleotides released following changes in membrane permeability (Pedata et 

al., 1993). Under normal physiological conditions, extracellular adenosine 

levels are between 20 and 300 nM, rising to a low micromolar range under 

extreme physiological situations (intensive exercises or low atmospheric 

oxygen levels) and high micromolar levels (30 µM) in pathological conditions 

such as ischemia (Newby, 1984). 

Adenosine concentrations are regulated by a bidirectional flow mediated by 

transporters. These transporters are divided into two categories: (i) those 

capable of a bidirectional transport across the plasma membrane of both 

purines and pyrimidines, according their concentration gradient (equilibrative 

transporters, ENT1 and ENT2) and (ii) transporters that mediate the 

nucleotide influx thank to the coupling with sodium transporters 

(concentrative, CNT1 and CNT2) (Baldwin et al., 1999; Williams and Jarvis, 

1991). The equilibrative transporters work bidirectionally in order to maintain 
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the intracellular and extracellular concentrations of adenosine in a range of 30-

300 nM  (Jacobson et al., 1997). Inhibitors of adenosine equilibrative 

transporters, such as dypiridamole, might increase or decrease the efflux of 

adenosine differently according to the physiopathological conditions. It has 

been observed that TTX completely blocks adenosine release in brain slices 

electrically stimulated and that a reduction of extracellular Ca2+ concentration 

can cause a remarkable reduction of adenosine release (Pedata et al., 1990). It 

was demonstrated that adenosine efflux occurring in vivo from the striatum 

under normoxic physiological conditions does not arises from extracellular 

degradation of nucleotides and is not inhibited by dypiridamole (Melani et al., 

2012). Under these conditions the efflux of adenosine is Ca2+-sensitive and is 

inhibited by TTX (Dobolyi et al., 2000; Pazzagli et al., 1993). On the all 

observations in vitro and in vivo led to speculate that adenosine efflux under 

normoxic physiological conditions is consequent to electrical activity 

propagated along the typical modality of nervous cells that involves activity 

of voltage-gated Na+ channels. In fact, the TTX sensitivity and the Ca2+ 

dependency of adenosine release indicate that adenosine release occurs by an 

excitation-secretion modality which is typical of neurotransmitters. 

Observation that the presence of adenosine is associated with intracellular 

vesicles support the notion that adenosine is stored in vesicles and released by 

exocytosis in an excitation- secretion modality typical of neurotransmitters 

(Corti et al., 2013).  

Finally, adenosine metabolism is regulated by two enzymes: adenosine 

deaminase (ADA) and adenosine kinase (AK). ADA degrades adenosine to 

inosine and it is present both at intracellular and at extracellular sites where is 

anchored to the plasma membrane (Franco et al., 1986). AK is an enzyme that 

converts adenosine to AMP, it is characterized by high specificity. Since the 

endogenous levels of adenosine are in the nanomolar range, it is likely that 

under physiological conditions the main degradation pathway is the 

phosphorylation operated by AK, while the action of ADA is important only 
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for the significant increases in adenosine concentration, such as those that 

occur during ischemia (Latini and Pedata, 2001). 

4.1. Purinergic receptors 

The existence of adenosine receptors was proved unequivocally when the first 

adenosine receptors were cloned in 1990 (Maenhaut et al., 1990). Based on the 

responses of various tissues to purines, Burnstock proposed that there are 

distinct receptors that bind adenosine or ATP, designated P1 and P2 receptors, 

respectively (Burnstock et al., 1978). Originally, the “P” in P1 and P2 was 

meant to designate purinergic receptors. However, it has been discovered that 

some of the P2 receptors bind pyrimidines, UTP or UDP, preferentially over 

the purine, ATP. Hence, the “P” in P2 is now used to designate purine or 

pyrimidine. Despite these exceptions, P1 and P2 receptors collectively are still 

generally referred to as purinergic receptors. In addition to adenosine, various 

synthetic adenosine analogues activate P1, but not P2, receptors and synthetic 

ATP or UTP analogues activate P2, but not adenosine, receptors. P1 receptors 

were initially distinguished into two classes (A1 and A2 receptors) based on 

their excitatory or inhibitory actions on adenylyl cyclase (Van Calker and 

Hamprecht, 1979). Later work defined four different subtypes of P1 receptors: 

A1, A2A, A2B and A3 receptors (A1R, A2AR, A2BR, A3R) (Fredholm et al., 2001). 

On the other hand, P2 receptors appeared to be more heterogeneous and in 

1994 Abbracchio and Burnstock have classified P2 receptors in two major 

families: (i) P2X ligand-gated ion channel receptors and (ii) P2Y G-protein-

coupled receptors (Abbracchio and Burnstock, 1994). Receptors for both ATP 

and adenosine are widely distributed in the nervous system as well as in other 

tissues and physiological effects of adenosine on almost all tissues have been 

described.  

The development of synthetic compounds that activate P1 or P2 receptors has 

been important for elucidating how these receptors function because some of 

these compounds are more potent and selective than the parent purines and 
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most are more stable than the short-lived endogenous compounds adenosine 

and ATP. 

4.1.1. P1 adenosinergic receptors 

As stated above, molecular cloning and pharmacological studies have 

identified four subtypes of adenosine P1 receptors: A1R, A2AR, A2BR and A3R 

(Fredholm et al., 2001). All of them have already been cloned at least from rat, 

mouse and human. All receptors are metabotropic heteromeric G-protein 

coupled receptor (GPCR). Typically, their structure is formed by a polypeptide 

chain characterized by 7 transmembrane hydrophobic domains with α helix 

structure (7TM, helices 1-7) of approximately 25 residues followed by one 

short membrane-associated helix (helix 8). TM domains are closely associated 

by three extra-cellular loops (ECL1-3) and three intracellular loops (ICL1-3) 

(Cristalli et al., 2008). Biochemical experiments and computational approaches 

have revealed the importance of the TM3 and TM7 in binding the endogenous 

ligand and agonist molecules (Rivkees et al., 1995). All adenosine receptors 

present an extra-cellular amino terminus (N-terminus) and a cytosolic carboxy 

terminus (C-terminus), (Cristalli et al., 2008). The extracellular N-terminus 

contains one or more glycosylation sites, while the intracellular C-terminus 

provides sites for phosphorylation and palmitoylation, thereby playing a role 

in receptor desensitization and internalization mechanisms (Borea et al., 2018). 

Structural data report a close similarity between adenosine receptors of the 

same subtype among mammalian species, except for A3Rs. This subtype is the 

latest cloned and pharmacologically characterized and presents a considerable 

structural variability among different species. For instance, almost 30% 

difference in the amino acid sequence is found between humans and rat 

(Linden et al., 1993).  

A1R, A2AR and A3R present a particularly high affinity for the endogenous 

ligand, being activated by nanomolar concentrations of adenosine (Fredholm 

et al., 2001). On the other hand, the affinity values of A2BR for adenosine in 

binding and functional experiments are higher than 1 μM (Fredholm et al., 
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2001). Physiological extracellular adenosine concentrations are sufficient to 

activate A1R, A2AR and A3R subtypes, but not A2BR, which require higher 

concentrations (micromolar range) of adenosine to be activated (Frenguelli et 

al., 2007; Latini and Pedata, 2001). Therefore, higher adenosine concentrations 

are only reached under pathological conditions, such as during hypoxia or 

ischemia in vivo (Pedata et al., 2001) and in vitro (Latini et al., 1999).  

Furthermore, A1R and A3R subtypes are associated with Gi activation, 

adenylyl cyclase inhibition and decrease of intracellular cAMP levels, while 

A2AR and A2BR are linked to Gs proteins that activate the same enzyme 

increasing cAMP concentration in the cytosol. However, adenosine receptors 

have also been reported to couple to other G-proteins than Gs, modulating 

different second messenger systems. For instance, in addition to their effects 

on adenylate cyclase adenosine A1R, A2BR and A3R are also coupoled with Gq 

and Go proteins (Antonioli et al., 2013; Burnstock et al., 2011). Furthermore, 

A1R and A3R can also activate phospholipase D (PLD) (Fredholm et al., 2001).  

Since adenosine receptors have been studied for a long time, there are several 

useful pharmacological tools available at present. Numerous adenosine 

analogues have been developed that selectively bind one of the four different 

subtypes of P1 receptors. For examples, NECA was long considered to be a 

selective A2AR agonist but it has been largely demonstrated that it is an 

unselective agonist at all P1 receptors, only slightly preferring A2AR subtypes 

(Fredholm et al., 2001) (Fig. 8). 
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Figure 8. Signalling pathway associated with adenosine receptor. ATP, adenosine 
triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; Adp, 
adenosine; Ino, inosine; CREB, cyclic AMP response element-binding protein; MAPK, 
mitogen-activated protein kinase; NFkB, nuclear factor-kappa B; PI3K, phosphatidylinositol 
3-kinase; PKA, protein kinase A; PKB, protein kinase B; PKC, protein kinase C; PLC, 
phospholipase C. (Taken from:  Malenka, 2009). 

4.1.1.1. A1Rs 

The A1R is highly conserved with an 87%-92% homology between different 

species. It is coupled with the Gi/0 protein, leading to inhibition of adenylate 

cyclase, activation of several types of K+ channels (probably via β,γ-subunits), 

inactivation of N- and P/Q-type Ca2+ channels, stimulation of phospholipase 

C, and stimulation of phospholipase D (Burnstock et al., 2011; Fredholm et al., 

2001). The highest levels of A1R expression are found in the CNS, suggesting 

a particularly important role of adenosine in brain functions. In particular, in 

rat the highest expression of A1R has been found in the cortex, hippocampus, 

cerebellum and dorsal horn of the spinal cord; intermediate levels in basal 

ganglia structures including the striatum (Dixon et al., 1996). Neuronal A1Rs 

are localized both pre- and postsynaptically (Deckert and Jorgensen, 1988); in 

the hippocampus subcellular analysis of nerve terminals revealed that A1R 

immunoreactivity is strategically located in the active zone of presynaptic 

terminals, as expected on the basis of the ability of A1R agonists to depress 
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neurotransmitter release. It has also been demonstrated that A1R 

immunoreactivity is evident at postsynaptic sites together with NMDA 

receptors and with N- and P/Q-type Ca2+ channels, emphasizing the 

importance of A1Rs in the control of dendritic integration (Rebola et al., 2003). 

Moreover, A1Rs can be found also extrasynaptically on dendrites and on the 

axonal fibres of the hippocampus  (Rivkees et al., 1995; Swanson et al., 1995). 

Activation of A1Rs along the axon may be a powerful extra synaptic 

mechanism by which adenosine alters axonal electric transmission to inhibit 

neurotransmitter release (Swanson et al., 1995). Under physiological 

conditions A1Rs mediate sedative-hypnotic, anti-epileptic and anti-

nociceptive effects by exerting a tonic inhibition of synaptic transmission both 

in vitro and in vivo (Dunwiddie, 1985). At presynaptic level, the activation of 

A1R reduces Ca2+ influx through the preferential inhibition of N-type and, 

probably, Q-type channels, with a consequent decrease in neurotransmitters 

release (McCool and Farroni, 2001). In fact, adenosine, by stimulation of A1R, 

has been found to inhibit the release of all classic neurotransmitters: 

glutamate, acetylcholine, dopamine, noradrenaline and serotonin (Ribeiro, 

1995). In particular, a powerful suppression of glutamate release from 

presynaptic terminals has been described in the hippocampus (Corradetti et 

al., 1984). At postsynaptic level, A1Rs mediate a direct hyperpolarization of 

neurones via activation of G-protein-coupled inwardly rectifying potassium 

(GIRK) channels (Kir 3.2 and 3.4 channels) and by a direct increase of Cl- 

conductance thus, stabilizing the membrane potential (Greene and Haas, 1991; 

Takigawa and Alzheimer, 2002). Out from CNS, high levels of A1R expression 

are found in adrenal glands, eye, and atria. Intermediate levels are found in 

skeletal muscles, liver, kidney, adipose tissue, gastrointestinal smooth 

muscles, and bronchi. Lung and pancreas present low level of A1R expression 

(Fredholm et al., 2001). 

The A1R full agonist 2-chloro-N-(6)-cyclopentyladenosine (CCPA), and to a 

lesser extent CPA, and the antagonist 8-Cyclopentyl-1,3-dipropylxanthine 

(DPCPX) are highly selective compounds active at nanomolar concentrations, 
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in human, rat and mouse tissues. Allosteric enhancers for this receptor 

subtype, such as PD81723 and analogues, are also available and increase the 

agonist binding and its effects (Bruns and Fergus, 1990; Van Der Klein et al., 

1999). 

4.1.1.2. A2ARs 

The A2AR is highly conserved with a homology of 90% between different 

species. This receptor is associated to a Gs protein, which stimulates adenylate 

cyclase leading to increase of intracellular cAMP concentrations and mobilize 

the intracellular Ca2+ (Mirabet et al., 1997; Moreau and Huber, 1999). These 

receptors are expressed throughout all the CNS, however they are principally 

located in the basal ganglia, as caudate-putamen, nucleus accumbens and 

olfactory tubercle (Dixon et al., 1996; Jarvis et al., 1989; Rosin et al., 1996). In 

particular, this receptor subtype is expressed on striatopallidal GABAergic-

enkephalin neurones, where it colocalises with dopamine D2 receptors, but 

not on GABAergic-dynorphin striatal neurones (Fredholm and Svenningsson, 

2003). High levels of adenosine A2AR mRNA have also been found in striatum, 

while lower levels have been found in hippocampus and cortex (Dixon et al., 

1996; Svenningsson et al., 1997). Besides postsynaptically, A2ARs are also 

located presynaptically on different GABAergic, cholinergic, glutamatergic 

neuron types (Hettinger et al., 2001; Rosin et al., 2003). In the CNS they are also 

expressed on astrocytes (Biber et al., 1999; Lee et al., 2003), microglia (Pedata 

et al., 2014) , oligodendrocytes (Stevens et al., 2002), blood cells and 

vasculature (Phillis, 2004). In recent years, particular interest has been 

dedicated to study receptor dimerization, either in homomeric and 

heteromeric structures, since this phenomenon seems to frequently occur in 

numerous cell types and can modify the pharmacological profile of receptors 

and their functional role. Various lines of evidence indicate that such an 

interaction occurs postsynaptically in the striatum between A2AR adenosine 

and D2 dopamine receptors, where this heterodimerization inhibits D2 

receptor functions (Ferre et al., 1991). Therefore, A1R and A2AR heteromers are 
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located presynaptically in glutamatergic terminals of the striatum, exerting 

opposite effects on the modulation of glutamate release through a 

“concentration-dependent switch” mechanism by which low adenosine 

concentrations inhibit, while high concentrations stimulate, glutamate release 

(Ciruela et al., 2006). In the nervous system, A2AR activation mediates 

excitatory actions, contrary to the A1R that exerts synaptic inhibition (Latini et 

al., 1996; Pedata et al., 1984; Sebastião and Ribeiro, 1996; Spignoli et al., 1984). 

Electrophysiological investigations about the role of A2ARs under 

physiological conditions have shown that they increase synaptic 

neurotransmission. In fact, the A2AR Gs-mediated signalling increases cAMP 

level, which activates PKA (Gubitz et al., 1996). Furthermore, PKA 

phosphorylates the P-type Cav, that directly modulates the mechanisms of 

vesicle release. Vesicle exocytosis can also be regulated by βγ subunits of the 

Gs protein, which can promote the phosphorylation, mediated by PKC, of N-

type Cav (Gonçalves et al., 1997; Gubitz et al., 1996). In fact, in the 

hippocampus in vitro, A2AR stimulation results in a Ca2+-dependent release of 

Ach (Cunha et al., 1995; Spignoli et al., 1984). Moreover, the selective 

stimulation of adenosine A2ARs augments the amount of glutamate released 

in hippocampus and striatum of young rats (Corsi et al., 2000, 1999; Popoli et 

al., 1995), supporting the theory about that A2ARs increase excitatory amino 

acid release. In addition, A2AR also enhance long-term potentiation (LTP), a 

form of synaptic plasticity associated with memory, central for learning 

process (Almeida et al., 2003). In fact, a decreased LTP in the nucleus 

accumbens was found in knock-out (KO) mice for the A2AR (D’Alcantara et al., 

2001). It is worth noticing that the role of A2ARs in the striatum is recently 

gaining interest considering their heterodimerization with D2 dopamine 

receptors. The association between A2AR and D2 receptors results in an 

antagonistic interaction which provided a rationale for evaluating A2AR-

selective antagonists in Parkinson’s disease. It was suggested that A2AR 

antagonists not only provide symptomatic relief but also decelerate 

dopaminergic neuron degeneration in patients (Xu et al., 2005). Finally, A2ARs 
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are also highly present in spleen, thymus, immune cells both on cells of innate 

(macrophages, mast cells, monocytes, dendritic cells, and granulocytes) and 

on cells of adaptive (lymphocytes) immunity (Antonioli et al., 2014; Haskó et 

al., 2008). Lower levels are also found in the heart, lung, and blood vessels 

(Fredholm et al., 2001). As mentioned above, NECA is an unselective 

adenosine receptor agonist; however, based on evidence that 2-substitution of 

NECA molecule increased selectivity, CGS21680 was developed as an A2AR 

selective agonist (Hutchison et al., 1989). This compound is less potent and 

selective in humans than in rats (Kull et al., 1999), but it has been replaced by 

another recently developed A2AR agonist, ATL-146, which is 50 fold more 

potent than CGS21680 at the human receptor (Rieger et al., 2001). Among the 

numerous A2AR antagonists, the most selective so far are SCH58261 and 

SCH442416 and the structurally related ZM241385 (Poucher et al., 1995). 

4.1.1.3. A2BRs 

The A2BR show a low affinity for adenosine (EC50 = 5-20 μM; (Beukers et al., 

2000; Fredholm et al., 2001; Sachdeva and Gupta, 2013) and are associated, as 

the A2AR, to Gs protein; for these reason they were initially considered a 

receptor subtype with a little physiological importance  (Sun and Huang, 

2016). Recently we are beginning to understand the importance of this receptor 

and how much they are involved in many diseases. Moreover, in physiological 

conditions, for their low affinity to adenosine, they are not activated. However, 

they are activated in pathological conditions, when adenosine reaches 

concentrations of micromolar order; for these reasons it could represent an 

interesting therapeutic target. In addition to being coupled to Gs protein, the 

A2BR can be coupled to Gq protein (Gao et al., 1999; Linden et al., 1999; 

Panjehpour et al., 2005), involving MAPK and arachidonic acid. In general, 

A2BR are widely expressed in numerous tissues and organs, including the 

vascular system, smooth muscle, gastrointestinal tract, brain tissue and 

bladder (Wang and Huxley, 2006; Yaar et al., 2005). However, the presence of 

these receptors is influenced by environmental stimuli, such as inflammation, 
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cellular stress, trauma and hypoxia, which may increase their expression 

(Fredholm et al., 2001; Hart et al., 2009; Haskó et al., 2009; Kolachala et al., 2005; 

Kong et al., 2006; Xaus et al., 1999). In addition, A2BRs are expressed both in 

the CNS and PNS (Dixon et al., 1996). They are expressed ubiquitously in the 

brain and their mRNA has been detected in all rat cerebral areas studied 

(Dixon et al., 1996; von Lubitz, 1999), with a prevalent presence on 

hippocampal neurons (Kessey and Mogul, 1997; Mogul et al., 1993)  and on 

glial cells (Fiebich et al., 1996; Peakman and Hill, 1994). These receptors appear 

to induce the release of excitatory amino acids and acetylcholine, while they 

reduce the release of γ-amino butyric acid (GABA) in rat cortex (Phillis et al., 

1993). In addition, at hippocampal level, they modulate the LTP process 

(Kessey and Mogul, 1997). 

The signalling pathways generated by A2BRs stimulation are strongly 

influenced by the signalling of other receptors that affect the PLC/PKC 

pathway. In brain slices, cAMP accumulation due to the activation of the A2BR, 

is markedly increased by drugs that stimulate PKC (Fredholm et al., 1987; 

Hollingsworth et al., 1985). At peripheral level, A2BR subtype is particularly 

abundant in the gastrointestinal tract, mainly in caecum, colon, urinary 

bladder, lung, blood vessels and adipose tissue (Fredholm et al., 2001). 

Increasing evidences indicate a role for this receptor in the modulation of 

inflammation and immune responses in selected pathologies like cancer, 

diabetes, as well renal, lung and vascular diseases (Borea et al., 2018). In 

addition, A2BR plays proinflammatory roles in human asthma and chronic 

obstructive pulmonary disease (COPD) and murine colitis (Kolachala et al., 

2008; Wendell et al., 2020). In phase I clinical trials, CVT-6883, a potent and 

selective A2BR antagonist, was demonstrated to be safe, well tolerated, and 

sustainable at a once-daily chronic dosage (Kalla and Zablocki, 2009). It may 

provide a new therapeutic option for several disease areas, including asthma, 

COPD, and pulmonary fibrosis (Wendell et al., 2020). 
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Potent A2BR agonists with affinity values in the low nanomolar range have 

been lacking till recently, when a new class of non-adenosine compounds, as 

pyridine derivatives, has been synthesised by Beukers and colleagues 

(Beukers et al., 2004). Among them, LUF5835 is a full agonist with an EC50 of 

10 nM at human A2BR expressed in CHO cells. Unfortunately, its selectivity 

towards A1R and A2AR is not adequate to discriminate between them in native 

tissues. The situation is somewhat more favourable for antagonists, as some 

potent and relatively selective compounds have been found among anilide 

derivatives of xanthines with Ki values in the low nanomolar range, such as 

MRS1754 (Ji et al., 2001), that is over 200-fold selective for A2BR versus all other 

P1 receptors (Kim et al., 2000). 

4.1.1.4. A3Rs 

The A3Rs have a high affinity for adenosine (EC50 = 300 nM) and are coupled 

to Gi proteins, whose activation inhibits the Adenylate Cyclase, stimulates the 

phospholipase C and B and induces the uptake of Ca2+ and its release from 

intracellular reserves (Sachdeva and Gupta, 2013). Their activation can lead to 

both protective and harmful effects (Cheong et al., 2013); in nonneuronal cells 

it was observed that a non-excessive activation prevents apoptosis 

mechanisms, while a persistent and intense activation induces toxic effects 

(Yao et al., 1997). The A3R evokes the same effects mentioned for A1R  (Englert 

et al., 2002), inducing Ca2+ mobilization (Englert et al., 2002; Shneyvays et al., 

2005, 2004) and interacts with MAPK (Schulte and Fredholm, 2003). The 

expression of A3R adenosine receptor in the brain is generally lower than that 

of the other subtypes (Ji et al., 1994) and is highly species-dependent 

(Fredholm et al., 2001, 2000). These receptors show a significant difference 

between the various species under the pharmacological profile, the 

distribution and their function. By the sensitive technique of real time PCR, 

A3Rs are found in both neuronal and non-neuronal elements, i.e. astrocytes, 

microglia, and vasculature of the cerebral tissue (Zhao et al., 1997) with 

widespread distribution. In the rat, a significant expression of A3Rs is found 
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in cerebellum and hippocampus (Dixon et al., 1996) where they are mainly 

expressed at the presynaptic level (Lopes et al., 2003). In literature 

discrepancies about the role of adenosine A3Rs in the CNS are present. An 

excitatory role of A3R has been supported by evidence indicating that, in the 

rat hippocampus, its activation attenuates long-term depolarization (LTD) and 

allows induction of LTP elicited by a subliminal weak-burst protocol  

(Costenla et al., 2001). Additional evidence for an excitatory role of adenosine 

A3Rs came from studies carried out in hippocampal slices (Pugliese et al., 

2007). In the same brain area, A3R activation through a selective agonist has 

been shown to antagonize the adenosine A1R-mediated inhibition of excitatory 

neurotransmission (Dunwiddie and Fredholm, 1997). However, further 

electrophysiological studies refused this hypothesis, since several authors 

demonstrated that no significant interaction between A1R and A3R occurs in 

the rat cortex and hippocampus (Brand et al., 2001; Lopes et al., 2003). 

Conversely, an inhibitory action has been attributed to A3Rs by Brand and 

colleagues, who demonstrated that, in rat cortical neurons, the selective 

activation of A3R is involved in inhibition of excitatory neurotransmission, 

suggesting a synergic action with the inhibitory effect mediated by A1R 

activation (Brand et al., 2001). Despite results obtained by A3R stimulation, 

evidence that selective block of A3Rs does not affect neurotransmission in the 

CA1 region of the hippocampus under normoxic conditions, indicates that 

endogenous adenosine at physiological concentration does not exert tonic 

activation of A3Rs (Dunwiddie and Fredholm, 1997; Pugliese et al., 2003). In 

oligodendrocytes A3R represents the main cause of toxicity due to the action 

of adenosine; in fact, the selective 2-Cl-IB-MECA A3R agonist, chlorinated 

derivative of N6-(3-iodo-benzyl)-adenosine-5′-N-methyluronamide (IB-

MECA), induces apoptosis in oligodendrocytes, while the selective antagonist 

MRS 1220 is protective when the extracellular concentration of adenosine rises 

to 10 μM, as it occurs following ischemia (González-Fernández et al., 2014). 

The toxic effect is due to the generation of reactive oxygen radicals (ROS) and 

the depolarization of the mitochondrial membrane  (Brady et al., 2004; Cao et 
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al., 2011), which leads to the release of pro-apoptotic proteins, activating the 

intrinsic pathway of apoptosis (González-Fernández et al., 2014; Masino and 

Boison, 2013). 

In the periphery, A3R subtype is mainly found in rat testis (Meyerhof et al., 

1991) and mast cells, in accordance with the fact that for a long time the unique 

role assigned to this receptor have been mast cell degranulation and histamine 

release. Intermediate levels are found in the lung, spleen, thyroid and liver 

(Linden et al., 1993; Salvatore et al., 1993). Interestingly, A3R is overexpressed 

in several cancer cells and tissues and is therefore likely to have an important 

antitumoral role (Borea et al., 2015). An emblematic feature of the adenosine 

A3R, the most recently discovered one, is its insensitivity to the antagonistic 

actions of methylxanthines, such as caffeine and theophylline, the traditional 

blockers of adenosine receptors (Fredholm, 1995). Hence, most A3R 

antagonists are dihydropyridines, pyridines and flavonoids (Baraldi and 

Borea, 2000). Another class of highly selective compounds are isoquinoline 

and quinazoline derivatives, such as VUF5574 that presents a Ki value of 4 nM 

vs human A3R but not vs the rat isoform (Van Muijlwijk-Koezen et al., 2000). 

In this regard, it is worth noticing that significant species differences in the 

affinity of adenosine A3R antagonists have been noted, as expected from the 

high structural inter-species variability already mentioned. The affinity values 

of several A3R blockers are typically more than 100-fold greater on human 

than rat receptors, as described for MRS1220. The unique rat-selective 

compound is the A3R agonist MRS1523. In contrast, the affinity of the most 

widely used A3R agonist, Cl-IB-MECA, does not vary beyond an order of 

magnitude between the species examined, at least among mammals. The high 

affinity (low nanomolar range) and selectivity (more than 100-fold vs A1R and 

A2AR) of this compound towards A3R turns it into the most used 

pharmacological tool for investigating A3R-mediated effects (Jeong et al., 

2003). 
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5. Foreword - Role of adenosine A2B receptors in 
oligodendrocyte differentiation 

Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells in 

the developing and adult CNS that, under opportune stimuli, differentiate into 

mature myelinating oligodendrocytes (OLs). During brain injury or 

demyelinating pathologies, OPCs are recruited to the site of lesion to 

remyelinate damaged axons. Growing evidence shows that failure of myelin 

formation in demyelinating diseases such as multiple sclerosis (MS) arises 

from the disruption of OPC differentiation (Levine et al., 2001). For this reason, 

therapeutic strategies aimed at fostering this process could be of interest in this 

pathology. Adenosine is emerging as an important player in OPC 

differentiation and it is demonstrated that adenosine A2ARs inhibit cell 

maturation by reducing voltage-dependent K+ currents (Coppi et al., 2013a). 

On the other hand, we know little about the role of A2BR subtype in OL.  

Furthermore, the bioactive lipid mediator sphingosine-1-phosphate (S1P) and 

its receptors (S1P1–5) are also crucial modulators of OPC development and 

Sun and colleagues demonstrated an interaction between this pathway and 

the A2BR in peripheral cells (Sun et al., 2015). For these reasons, the second aim 

of this thesis is to study the role of A2BR in OL and to investigate a possible 

crosstalk between A2BR and S1P pathway. 

5.1. Oligodendrocyte differentiation 

Before being able to produce myelin, oligodendroglia cells progress through a 

series of highly regulated steps of differentiation from OPCs to mature OLs 

(Barateiro and Fernandes, 2014; De Castro and Bribián, 2005). During 

embryonic development, OPCs are generated in restricted areas, such as the 

subventricular zone (SVZ), and present a significant migratory ability that 

allow them to spread and populate the brain and spinal cord (Emery, 2010). 

Their differentiation and maturation are postnatal processes characterized by 

the loss of proliferative activity and the acquisition of an elaborate 

morphology with highly branched processes (De Castro and Bribián, 2005). 
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Oligodendrogliogenesis involves a sequence of distinct phases that can be 

identified by the expression of stage-specific surface antigens and by 

morphological changes (Gard and Pfeiffer, 1990; Jung et al., 1996; Levi et al., 

1986; Warrington et al., 1992). On these bases, a classification into three stages 

of differentiation has been proposed: proliferating OPCs, post-mitotic pre-OLs 

and mature myelinating OLs (Barateiro and Fernandes, 2014; Coppi et al., 

2015, 2013a; Szuchet et al., 2011). The initial stage of maturation presents a 

bipolar (or tripolar) morphology, typical of proliferating OPCs (Fumagalli et 

al., 2011). Several are the markers of precocious maturation stages, such as 

platelet-derived growth factor receptor a (PDGFa), nerve glial antigen 2 (NG2) 

or the OL transcription factor 2 (Olig2) (Ligon et al., 2006; Nishiyama et al., 

2002; Pringle et al., 1992; Yu et al., 1994). 

When OPCs start to differentiate in pre-OLs, secondary ramifications emerge 

from the soma and the expression of new molecular markers, typical of 

intermediate steps of maturation, is detected, such as O4 (Szuchet et al., 2011) 

and the recently deorphanized P2Y-like GPR17 receptor (Coppi et al., 2013b; 

Emery, 2010; Fumagalli et al., 2011; Lecca et al., 2008). During this phase, cells 

acquire the typical phenotype of postmitotic, but not yet myelinating, 

immature OLs characterized by a complex multipolar morphology (Back et al., 

2001). 

Finally, when OLs reach the fully mature, myelinating phase, they acquire a 

highly ramified profile and immunoreactivity for myelin specific structural 

proteins such as 2’,3’-Cyclic-nucleotide-3’-phosphodiesterase (CNPase), 

myelin associated glycoprotein (MAG) and myelin basic protein (MBP) 

(Scolding et al., 1989; Zhang, 2001). Mature OLs synthesize large amounts of 

myelin, giving rise to multilamellar myelin sheaths that wrap and insulate 

neuronal axons which allow electrical isolation and saltatory conduction of 

electric impulses.  

It is known that, during their maturation, oligodendroglial cells display 

different functional voltage-gated ion channels (Barres et al., 1990; Sontheimer 
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and Kettenmann, 1988; Williamson et al., 1997) including either inward or 

outward rectifying K+ channels, Na+ currents and different subtypes of Ca2+ 

channels (Verkhratsky et al., 1990) and the density of channels differs within 

age and region (Spitzer et al., 2019). Such a heterogeneity may therefore reflect 

different cellular states, where densities of ion channels define a particular cell 

function. 

When OPCs first appear, i.e. at embryonic day 13 (E13) in the mouse, they have 

no detectable voltage-gated ion channels nor glutamate receptors and may be 

therefore considered in a naive state (Spitzer et al., 2019). The first ion channels 

detected are KV and glutamate AMPA and/or Kainate receptors 

(AMPARs/KARs), at E18. OPCs with these properties are considered 

migrating cells because of the strong expression of migratory genes at this time 

point. The fraction of OPCs with detectable NaV increases sharply around 

birth. It is conceivable that OPCs with high NaV and KV, and low AMPA/KAR, 

densities reflect a high proliferation state because (i) OPCs in S/G2/M phase 

have a higher density of NaV than OPCs in G0/G1 phase (Spitzer et al., 2019), 

(ii) the higher the fraction of this type of OPC, the higher the proportion of 

OPCs in G2/M phase (Spitzer et al., 2019), (iii) proliferating 5-ethynyl-2-

deoxyuridine (EdU)-positive OPCs show this pattern of ion channel 

expression (Clarke et al., 2012), (iv) this state of OPCs is the most prominent 

during the OPC recruitment phase (the period of highest proliferation) in 

myelin regeneration (Gautier et al., 2015). OPCs expressing NaV, KV, 

AMPA/KARs, and NMDARs are typically found throughout  

oligodendrogliogenesis during development, when myelin gene expression 

starts (Marques et al., 2018; Spitzer et al., 2019), and during the beginning of 

the differentiation phase of myelin regeneration (Gautier et al., 2015) and so it 

might reflect a ‘‘primed’’ OPC state for differentiation. Either KV or 

AMPA/KAR channels were expressed in nearly all recorded postnatal OPCs, 

whereas, intriguingly, not all OPCs express NaV or NMDARs, as their density 

reaches a maximum after the first postnatal week, when myelination starts, 

and then declines when myelination decays. The last state of OPC maturation 
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is distinguished by low NaV density, lack of NMDARs and high AMPA/KAR 

density and is observed at a time when OPC cell-cycle time lengthens, 

differentiation genes are downregulated and senescent molecular signature 

genes appear. In this phase, OPCs differentiation potential declines and thus 

it can be considered a ‘‘quiescent’’ OPC state. 

Among K+ currents, OPCs show outward currents conductances mainly 

composed by component is represented by delayed rectifying K+ currents (IK) 

(Sontheimer and Kettenmann, 1988) characterized by scarce time- and voltage-

dependent inactivation and by a threshold for activation around -40 mV. They 

also express a transient outward K+ current (IA), which is typically found in 

undifferentiated OPCs and presents a rapid time-dependent inactivation 

(approximately 50 ms) and a voltage-dependent inactivation at potentials 

from -40 and above (Gallo et al., 1996). A subpopulation (about 60%) of 

immature OPCs also express inward, tetrodotoxin-sensitive, Na+ currents (INa) 

typically found in neurons, with a rapid time-dependent inactivation (less 

than 1 ms) and a current peak amplitude at about -10 mV (Kettenmann et al., 

1991). INa is never observed in mature oligodendroglial stages, as previously 

reported by my research group (Coppi et al., 2013b) and others (Sontheimer et 

al., 1989). Of note, a subpopulation fraction of electrically excitable, spiking, 

NG2+ OPCs, able to generate full action potentials when stimulated by 

depolarizing current injection, have been described in brain slices, but the 

functional role of this “electrically excitable” OPC subpopulation  is still 

unknown (Káradóttir et al., 2008). Of note, single action potentials have also 

been detected in a minority of cultured OPCs (Barres et al., 1990). 

During maturation, membrane outward K+ conductance (both IK and IA) in 

OPC undergo a strong downregulation up to almost completely 

disappearance in mature OLs (Barres et al., 1990; Coppi et al., 2013a; 

Sontheimer and Kettenmann, 1988). In parallel with outward K+ current 

downregulation, there is a gradual increase in the expression of inwardly 

rectifying K+ currents (Kir), activated at potentials lower than -100 mV. Indeed, 
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Kir currents are the main conductance observed in mature OLs (Knutson et al., 

1997). Among the mentioned currents, IK are crucially linked to cell cycle 

regulation and hence to myelin formation (Chittajallu et al., 2005) because of 

the following: (i) a downregulation of IK occurs as OL lineage cells mature 

(Barres et al., 1990; Sontheimer and Kettenmann, 1988) and (2) 

pharmacological block of IK induced by tetra-ethyl-ammonium (TEA) in 

cultured OPCs is sufficient to inhibit their proliferation and differentiation 

(Chittajallu et al., 2005; Coppi et al., 2013b; Gallo et al., 1996; Knutson et al., 

1997). Hence, treatments aimed at modulating these currents may affect OL 

proliferation and myelination.  

Steps and markers of oligondendroglial differentiation described above are 

observed not only in the brain but also in the spinal cord, where a significant 

fraction of OPCs also persists throughout adult life. 

What is clear is that these changes in voltage-gated channels will have a 

profound effect on how OPCs sense neuronal activity and on the effect 

neuronal inputs will have on OPCs (Coppi et al., 2013a; Spitzer et al., 2019).  

Therefore, neurotransmitters, cytokines and growth factors have been shown 

to regulate glutamate receptor expression in OPCs (Gallo et al., 1994; 

Lundgaard et al., 2013; Malerba et al., 2015; Spitzer et al., 2019; Stellwagen and 

Malenka, 2006; Zonouzi et al., 2011). Accordingly, a combination of G-protein 

coupled receptors, growth factors, and cytokines may modify K+ current 

expression. This heterogeneity in physiological properties may cause 

differences in the myelination potential of OPCs and implicate distinct 

functions or cell states (Fig. 9). 
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Figure 9. Schematic representation of morphological and antigen/channel expression changes 
during oligodendrogliogenesis. A typical oligodendrocyte precursor cell (OPC) is positive to 
the antigens: nerve glial antigen 2 (NG2+), platelet-derived growth factor alpha (PDGFa+) and 
to the transcription factor Olig2 (Olig2+) and express glutamate AMPA and/or kainate 
receptors (AMPARs/KARs) and voltage-dependent Na+ (Nav) and K+ (IK/IA) channels. A 
typical pre-Oligodendrocyte (Pre-OL) is positive to the markers: oligodendrocyte 4 (O4+), the 
purinergic-like receptor GPR17 (GPR17+) and express AMPARs/KARs, inward-rectifier 
potassium channels (Kir) and IK/IA channels. Premyelinating OLs and myelinating OLs are 
positive to the antigens: 2’,3’-Cyclic-nucleotide-3’-phosphodiesterase (CNPase+), myelin 
associated glycoprotein (MAG+) and myelin basic protein (MBP+) and express Kir channels. 
During oligodendrogliogenesis P1Rs are expressed at all maturation stages. 

5.1.1. Role of adenosine in oligodendrocyte 

differentiation 

All P1 receptors are expressed at all maturational stages of oligodendroglial 

cells (Fields, 2004; Stevens et al., 2002) and exert a key role in cell development. 

Furthermore, the expression by OLs of the equilibrative nucleoside 

transporters ENT1 and ENT2, as well as adenosine degrading enzymes, such 

as adenosine deaminase and adenosine kinase, has been demonstrated 

(González-Fernández et al., 2014), supporting the notion that purinergic 

signalling exerts a prominent role in these cells (Burnstock et al., 2011). Indeed, 

it was demonstrated that adenosine can affect numerous OPC functions such 

as migration, proliferation and maturation (Coppi et al., 2015, 2013a, 2013b; 
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Fields, 2004; Fields and Burnstock, 2006; Stevens et al., 2002), with distinct 

effects mediated by different receptor subtypes, as described below. 

5.1.1.1. A1Rs in oligodendrogliogenesis 

Exogenous adenosine added to OPCs cultured in the presence of the mitogen 

PDGF, leads to a concentration-dependent reduction of cell proliferation and 

promotes differentiation towards pre-myelinating oligodendrocytes, an effect 

that is mainly mediated by A1Rs (Stevens et al., 2002). Furthermore, tonic 

electrical stimulation of co-cultures of OPCs with dorsal root ganglion neurons 

also promotes myelination by increasing the number of MBP+ cells (Stevens et 

al., 2002), an effect blocked by a cocktail of A1R, A2AR and A3R antagonists, 

suggesting that endogenous adenosine released in response to impulse 

activity promotes oligodendrocyte development and myelination (Stevens et 

al., 2002). In addition, A1R agonists have been reported to stimulate OPC 

migration (Othman et al., 2003). On these basis, it was proposed that A1Rs on 

OPCs prompt myelination thus offering new approaches for the treatment of 

demyelinating diseases of the CNS, such as MS. In accordance, A1R-/- mice 

developed more severe EAE with worsened demyelination, axonal injury, and 

enhanced neuroinflammation and activation of microglia/macrophages 

(Tsutsui et al., 2004). Furthermore, A1Rs promotes myelin repair by recruiting 

endogenous progenitor cells in an experimental model of optic nerve 

demyelination (Asghari et al., 2013) and, when activated on astrocytes, exert 

immunosuppressive properties (G. Liu et al., 2018). 

Such protective effects, however, are at variance from what has been described 

in in vivo neonatal rats, where the treatment with A1R agonists reduces white 

and gray matter volume, induces ventriculomegaly (Turner et al., 2002) and 

decreases the expression of MBP, similarly to what observed in neonatal rats 

reared in hypoxia (Ment et al., 1998). Ventriculomegaly was also observed in 

mice lacking the enzyme adenosine deaminase which degrades adenosine 

(Turner et al., 2003). Moreover, hypoxia-induced periventricular white matter 

injury (PWMI, a form of brain injury present in preterm infants) was 
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prevented in A1R-/- mice  (Turner et al., 2003). These data support the notion 

that adenosine, acting on A1Rs, mediates hypoxia-induced brain injury and 

ventriculomegaly during early postnatal development. Such an effect could be 

attributed to the fact that adenosine, which is released in huge amounts during 

hypoxic-ischemic conditions (Latini and Pedata, 2001), activates A1Rs leading 

to premature differentiation and reduced proliferation of oligodendroglia 

precursors. Indeed, studies on OPCs and pre-OLs in hypoxic conditions, when 

increased  glutamate outflow impairs neuronal functions (Rossi et al., 2000) 

and synaptic transmission (Colotta et al., 2012), revealed a reduced 

proliferation and an accelerated maturation, as demonstrated by the increased 

expression of the cell cycle regulatory proteins p27 (Kip1) and phospho-cdc2 

(Akundi and Rivkees, 2009). This series of events would lead to a reduced 

number of OLs available for myelination, thus contributing to PWMI (Rivkees 

and Wendler, 2011). So, strategies aimed at stimulating OPC proliferation in 

neonatal hypoxia/ischemia may be of value to prevent PWMI. 

Accordingly, Cao and co-workers (Cao et al., 2019) found that OLs pre-treated 

with 100 µM caffeine or the A1 antagonist DPCPX (100 nM) during hypoxia 

showed a significant reduction in A1R and Olig2 expression, at early stages, 

and a decreased CNPase expression, at later stages of hypoxia. In addition, 

they demonstrated that either hypoxia or adenosine treatment induced 

significant elevation in resting [Ca2+]i, which was restored to normal levels 

when cells were treated with caffeine or DPCPX. During hypoxia, adenosine 

increase leads to A1R activation which resulted in excessive Ca2+ release from 

intracellular stores (Annunziato et al., 2013; Gao et al., 2014), a condition that 

is considered to initiate cell injury (Cao et al., 2019) (Fig. 10).  

5.1.1.2. A2ARs in oligodendrogliogenesis 

The first functional characterization of the adenosine A2AR subtype  in OPCs 

has been reported by our group of research (Coppi et al., 2013a). We 

demonstrated that the selective A2AR agonist CGS21680 inhibits IK currents in 

cultured OPCs and delays in vitro OPC differentiation since it increases the 
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percentage of NG2+ immature OPCs and reduces O4+ pre-OLs and MAG+ 

mature OLs along 12 days of cell culture, without affecting neither cell 

viability nor proliferation (Coppi et al., 2013a). These effects were completely 

prevented in the presence of the selective A2AR antagonist SCH58261 (Coppi 

et al., 2013a). Tetraethylammonium (TEA), at 3 mM concentration which 

blocks sustained IK but not transient IA currents in cultured OPCs, mimics 

and occludes the effect of the A2AR agonist on membrane currents, confirming 

that this purinergic receptor subtype electively affects IK in cultured OPC 

(Coppi et al., 2013a). In keeping with data demonstrating that IK inhibition 

impairs proliferation and maturation of cultured OPCs (Attali et al., 1997; 

Coppi et al., 2013b; Gallo et al., 1996) and blocks myelin deposition in the 

embryonic spinal cord (Shrager and Novakovic, 1995), it appears that A2AR 

stimulation inhibits OPC differentiation by reducing IK currents. In line with 

this assumption is the observation that selective activation GPR17, a Gi-

coupled P2Y-like receptor, enhances TEA-sensitive IK and improves OPC 

differentiation (Coppi et al., 2013b). 

Recently, Fontenas and colleagues (Fontenas et al., 2019) demonstrated that 

the A2AR antagonist SCH-58261 induced ectopic OPC migration from motor 

exit point in transition zones in zebrafish larvae, an effect that is not shared by 

antagonists at the other adenosine receptor subtype . 

A pathological condition associated with defects in cell metabolism and OPC 

maturation is the Niemann-Pick type C 1 (NPC) disease, an autosomal 

recessive and progressive neurovisceral disorder characterized by 

intracellular cholesterol accumulation and myelin defects (Kodachi et al., 2017; 

Walterfang et al., 2010). De Nuccio and colleagues observed that in primary 

cultures of OPCs exposed to a cholesterol transport inhibitor (U18666a), used 

to induce the NPC1-like phenotype in vitro, A2AR expression was significantly 

decreased whereas treatment with the A2AR agonist CGS21680 triggered a 

protective effect by reducing cholesterol accumulation and mitochondrial 

membrane potential (mMP) alterations in U18666a-treated OPCs (De Nuccio 
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et al., 2019). Consistent with data from Coppi et al., the same study 

demonstrates that CGS21680 induced a decrease in the percentage of O4+, O1+ 

and MBP+ in control OPCs (Coppi et al., 2013b; De Nuccio et al., 2019). In 

contrast, after 48 h of U18666a treatment, CGS21680 overcame the maturation 

arrest induced by the compound, even when A2AR stimulation occurred 24 h 

after U18666a exposure. Finally, the same study also demonstrated that 

protein-kinase A (PKA) activation is responsible for the A2AR-dependent effect 

on cholesterol accumulation since the PKA inhibitor KT5720, but not the 

extracellular signal-regulated kinases 1/2 (ERK1/2) inhibitor PD98059, 

prevented the cholesterol redistribution induced by CGS21680 in NPC-OPC. 

The dual effect of CGS21680 on OPC differentiation, arresting OLs maturation 

in control cultures and promoting differentiation in U18666a-treated cultures, 

is in keeping with differential effects by CGS21680 previously reported in a 

model of Huntington’s disease (HD), where the compound induces opposite 

effects in the striatum of Huntington versus wild-type mice (Martire et al., 

2007).  

However, other intracellular pathways, in addition to IK block, could 

contribute to the A2AR-mediated inhibition of OPC differentiation. OPCs also 

express the tyrosine kinase fibroblast growth factor (FGF) receptor whose 

activation promotes cell proliferation and inhibits the expression of myelin 

components (Besnard et al., 1989). As an example, in PC12 cells (a cell line that 

was confirmed to express the A2AR and FGFRs),  the simultaneous activation 

of both A2AR and FGF receptors by robust activation of the mitogen activated 

protein kinase (MAPK/ERK) pathway, brings to  increased differentiation and 

neurite extension  (Flajolet et al., 2008). It is possible that a crosstalk between 

A2ARs and FGF receptors regulates cell maturation also in OPCs.  

Of note, upregulation of A2AR expression has been observed in cerebral white 

matter of patients with secondary progressive MS and a higher density of 

brain A2AR appeared to correlate with higher disability scale scores in MS 

patients (Rissanen et al., 2013). On these bases, it has been hypothesized that 
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A2AR upregulation on brain cells is associated with disease progression. In 

agreement, in a mouse model of MS, the experimental autoimmune 

encephalomyelitis (EAE), A2AR antagonists protected from disease 

development (Mills et al., 2012), suggesting that activation of A2ARs glial and 

neuronal cells is responsible for EAE development in mice. Moreover, in a rat 

model of focal brain ischemia (by middle cerebral artery occlusion: MCAo), 

systemic administration of A2AR antagonists after ischemia prevented the 

activation of JNK mitogen activated kinase (Melani et al., 2009) and 

subsequent activation cascade of caspase3 and the pro-apoptotic regulator 

DP5 (Yin et al., 2005), involved in OL death (Howe et al., 2004; Jurewicz et al., 

2006). Accordingly, selective A2AR antagonists also prevented myelin 

disorganization in the basal nuclei and striatum of MCAo rats (Melani et al., 

2009). So, it emerges from above data that A2AR activation is deleterious in 

demyelinating disorders. Moreover, in a rat model of focal brain ischemia (by 

middle cerebral artery occlusion: MCAo), the myelin damage inflicted to the 

striatum by the ischemic insult is significantly prevented by the A2AR 

antagonist SCH58261 that reduced the activation of JNK mitogen activated 

kinase in oligodendrocytes and subsequent activation of caspase3-mediated 

oligodendrocyte cell death (Melani et al., 2009). 

In keeping with these data, it can be concluded that the activation of A2ARs by 

adenosine released during a demyelinating insult contributes to brain damage 

by hampering OPC maturation and myelin deposition. Such a role might 

appear in contrast with the observation that A2A R agonists proved protective 

in EAE models by decreasing immune cell infiltration and lymphocyte Th1 cell 

activation (Y. Liu et al., 2018)  . Furthermore, genetic ablation of both central 

and peripheral A2ARs exacerbates brain damage and neuroinflammation in 

EAE (Ingwersen et al., 2016; Yao et al., 2012). Indeed, A2ARs expressed on 

peripheral leucocytes are known to exert important anti-inflammatory effects, 

i.e. by reducing adhesion cell factor production and neutrophil activation 

(Sitkovsky et al., 2004). Thus, genetic ablation of adenosine A2ARs on blood 

cells exacerbates leucocyte infiltration, neuroinflammation and brain damage 
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in a model of chronic inflammation such as EAE (see: Pedata et al., 2014). It 

appears that, beside disadvantageous central effects on OPC differentiation, 

A2AR stimulation may also alleviate neuroinflammation by peripheral 

mechanisms, thus complicating the role of this endogenous nucleoside in 

neurodegenerative diseases. Successive studies contributed to elucidate the 

multifaceted role played by A2ARs in EAE. Ingwersen et al. demonstrated that 

A2ARs were upregulated predominantly on T cells and 

macrophages/microglia within the inflamed tissue and preventive EAE 

treatment with A2AR-specific agonist inhibited myelin-specific T cell 

proliferation ex vivo and ameliorated disease, while application of the same 

agonist after disease onset exacerbated non-remitting EAE progression and 

tissue damage (Ingwersen et al., 2016). Similarly, Chen and co-workers (Chen 

et al., 2019)  demonstrated that the administration of the selective A2AR 

antagonist SCH58261 at 11-28 days post-immunization with MOG prevented 

neurological deficits and reduced local infiltration and demyelination. By 

contrast, the same treatment was ineffective when administered at the 

beginning of the onset of EAE (i.e., 1-10 after immunization). So, it appears 

that, while providing anti-inflammatory effects on T cells and thus protection 

at early stages, A2AR seems to play a detrimental role during later stages of the 

disease and may thus contribute to sustained tissue damage within the 

inflamed CNS. Hence, the identification of the effective therapeutic window 

to optimize the beneficial effects of A2AR antagonists is of crucial importance 

to support SCH58261 as a candidate for the treatment of MS in human (for a 

review see: (Rajasundaram, 2018)). (Fig. 10) 

5.1.1.3. A2BRs in oligodendrogliogenesis 

The functional role of the A2BR in OLs has not yet been clarified. Among 

adenosine receptors, the A2BR is the least studied and still remains the most 

enigmatic adenosine receptor subtype because of the relatively low potency of 

adenosine at this receptor (EC50 value of 24 μM) (Burnstock et al., 2011) and 

the very few specific agonists that have been described so far. Therefore, Wei 
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and co-workers, who demonstrate that pharmacological blockade of A2BR 

with selective antagonists or receptor knock out the in a rodent model of EAE, 

protects from myelin disruption and neurological impairment due to this 

pathological condition (Wei et al., 2013). However, unless the lack of 

preclinical studies where A2BR agonists are administered in EAE mice up to 

date, it cannot be ignored that the A2BR subtype shares with the A2AR the anti-

inflammatory impact in many different pathologies (Dettori et al., 2020; Eckle 

et al., 2008; Pedata et al., 2016; Yang et al., 2006) so, possible side effects could 

arise in MS patients treated with A2BR blockers (Fig. 10).  

5.1.1.4. A3Rs in oligodendrocyte survival 

No data are present in the literature about the effect/s of A3Rs on 

oligodendrocyte differentiation. However, Results obtained by Gonzalez-

Fernandez  and colleagues (González-Fernández et al., 2014) demonstrate that  

the A3R agonist 2-CI-IB-MECA induces apoptosis of cultured O4+ OLs isolated 

from  rat optic nerve through the activation of Bax and Puma proapoptotic 

proteins. Furthermore, incubation of ex vivo preparations of optic nerve with 

adenosine or 2-CI-IB-MECA induces OL damage and myelin loss, effects 

prevented by the A3R antagonist MRS220 (González-Fernández et al., 2014). 

Moreover MRS220 also prevented OL damage and myelin loss in the optic 

nerve exposed to in vitro ischemic like conditions, i.e. oxygen–glucose 

deprivation (González-Fernández et al., 2014). Thus, data suggest that 

adenosine, via activation of A3Rs, triggers OL death and contributes to white 

matter ischemic damage (Fig. 10). 
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Figure 10. Effects of A1, A2A and A3 receptor (A1R, A2AR and A3R) activation on OPCs and 
intracellular pathways involved. The activation of A1Rs by adenosine (ADO) or other 
receptor agonists facilitates myelin deposition by Gi coupling. The stimulation of Gs-coupled 
receptors A2AR leads to adenylyl cyclase (AC) activation causing an increase in intracellular 
cAMP, which, in turn, closes IK channels and inhibits OPC differentiation possibly by a 
mechanism involving protein kinase A (PKA) activation. The activation of A3Rs induces OPC 
apoptosis by activating the intrinsic pathway through reactive oxygen species (ROS) 
production and following activation of Bax and PUMA. 

5.2. Multiple sclerosis 

Multiple sclerosis (MS) is a chronic disease of the CNS that mainly presents in 

young adults, creating a substantial health-care burden at individual, family 

and community levels (Ontaneda et al., 2017). MS is primarily considered to 

be an immune-mediated disease and is characterized by focal areas of 

inflammatory demyelination that spread in the brain and in the spinal cord 

with time, driven by an infiltration of lymphocytes. In according, the first years 

of relapsing–remitting MS, the form of MS that many individuals with the 

disease initially develop, are characterized by recurrent episodes of 

neurological dysfunction from which the individual usually recovers 

(Compston and Coles, 2002), and the frequency of such episodes can be even 
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markedly reduced by treatments that modulate or suppress the immune 

system (Comi et al., 2017). The classic pathological hallmark of MS was long 

considered to be the presence of focal white matter demyelinating lesions. 

However, pathological changes are also detectable in normal-appearing white 

matter, as well as in the CNS grey matter, with the presence of focal grey 

matter lesions and grey matter atrophy (Calabrese et al., 2015; Filippi et al., 

2012). Axonal damage and diffuse microglial activation dominate MS-related 

pathological changes and are accompanied by progressive, mostly 

untreatable, accumulation of neurological disability affecting many functional 

domains from mobility to cognition. Current available MS therapies target 

immune modulation with some efficacy, however, concomitantly with 

adverse side effects (English and Aloi, 2015). Damaged OLs no longer generate 

myelin and remyelination requires generation of new mature OL from the 

differentiation of OPCs (Dawson et al., 2003). Therefore, these cellular 

resources are especially active after demyelinating episodes in early phases of 

MS, indeed OPCs actively proliferate and migrate  in the lesioned area (Levine 

et al., 2001). Efficient remyelination is accomplished when new OLs reinvest 

nude neuronal axons and restoring the normal properties of impulse 

conduction. However, when the disease progresses, this fundamental process 

fails (Levine et al., 2001). Multiple causes seem to contribute to such transient 

decline, including the failure of OPCs to differentiate and enwrap the 

vulnerable neuronal axons; for example, the observation that OPCs are present 

in MS lesions but fail to differentiate into mature OLs (Chang et al., 2000; 

Levine et al., 2001) suggests that the remyelination process is blocked at a 

premyelinating stage in demyelinating lesions. Unfortunately, the precise 

mechanisms underlying cognitive impairment in MS are still largely 

unknown, and efficacious treatments for this aspect of the disease are lacking. 

Pathological changes in CNS white matter and specific neuronal grey matter 

structures could play a crucial role in the pathogenesis of MS-related cognitive 

impairment (DeLuca et al., 2015). Alterations in the physiological crosstalk 

between the immune and nervous systems might also have a role, as such 
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crosstalk modulates synaptic transmission and the induction of synaptic 

plasticity in the CNS (Di Filippo et al., 2008). 

 

5.2.1. S1P as a target for MS 

S1P is a soluble signalling molecule involved in a wide range of 

immunological, cardiovascular, and neurological processes through 

interaction with five members of a G-protein-coupled receptor family (S1PR1-

5) (Rosen et al., 2009). S1P levels are primarily regulated by sphingosine kinase 

1 and 2 (SphK1 and SphK2), and S1P-degrading enzymes, such as S1P 

phosphatases (SPPs), that convert S1P to sphingosine, and S1P lyase, which 

terminally cleaves this sphingolipid (Brinkmann et al., 2002).  Furthermore, 

SphK1 and SphK2 sequence differences arise from alternative splicing, which 

affects their differential subcellular localization and biochemical properties 

(Alemany et al., 2007); therefore, the S1P pools synthesized by individual 

kinases could play different roles in each cell. In particular, S1P synthesized 

by SphK1, localised in the cytoplasm and endoplasmic reticulum, can be 

transported out of the cell and exert mitogenic and anti-apoptotic effects in an 

autocrine manner (O’Sullivan and Dev, 2017). S1P receptors were originally 

described as endothelial differentiation genes (edg) and build a subclass of G 

protein-coupled lipid receptors, which are most homologous to the 

lysophosphatidic acid (LPA) receptors (Binder et al., 2015). So far, 5 subtypes 

of S1P receptors have been identified, denoted S1P1–5, that bind S1P with high 

affinity (Kihara et al., 2014) with binding constants ranging from 1 to 10 nM, 

except for S1P4, which has a ten-fold lower affinity (Mandala et al., 2002). 

S1PR-mediated signalling is essential for development of the neural tube and 

vascular system during embryogenesis (Mizugishi et al., 2005). In the mature 

CNS, S1P regulates the activation of neuronal progenitor cells and their 

migration to possible lesions (Blanc et al., 2015). S1P-dependent signalling 

influences the synthesis of neurotrophic factors and pro-inflammatory 

cytokines, as well as cellular communication (Wollny et al., 2017).  
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Four of the five S1P receptors (S1PRS), (S1P1R, S1P2R, S1P3R, and S1P5R) are 

expressed in both neurons and glial cells within the CNS, where S1P1R is the 

most abundant (Dev et al., 2008; Fig. 11). The level of expression of S1P1R and 

S1P3R changes over a lifespan, under pathological conditions, and depends 

on the environmental milieu (Watson et al., 2010). Mice with a S1P1R receptor 

deletion are characterized by abnormal formation of the neural tube and blood 

vessel failure that leads to embryonic death; however, mortality at the 

embryonic stage is not observed upon deletion of the other four S1PRs 

(Mizugishi et al., 2005). 

A disrupted balance between S1P and ceramide has been documented in AD 

patients and reported in other neurodegenerative diseases. Activity of SphK1s 

and level of S1P decline in brain regions that are affected relatively early in 

AD (Couttas et al., 2014; He et al., 2010) increase in ceramide concentration in 

the cerebrospinal fluid and serum is suggested to be an appropriate biomarker 

of AD (He et al., 2010; Satoi et al., 2005). It was also reported that S1P 

concentration exhibits a strong inverse correlation with tissue Aβ levels and 

hyperphosphorylation of tau protein in post-mortem brain from AD patients 

(He et al., 2010). In addition, endogenously released Aβ peptides induced 

significant inhibition of both expression and activity of SphKs in PC12 cells 

transfected with the human gene for Aβ precursor protein (Gassowska et al., 

2014); moreover, another study demonstrated decreased SphK1 expression 

under Aβ peptide toxicity in PC12 cells (Cieślik et al., 2015). Importantly, small 

interfering RNA knockdown of SphK1 increases Aβ accumulation and 

decreases learning and memory function in an AD mouse model, revealing 

SphK1 modulation as a potential target for AD treatment (Zhang et al., 2013). 

5.2.2. Fingolimod 

Fingolimod (FTY720; Gilenya®, Novartis), a sphingosine analogue, was 

approved as the first oral MS therapy by the United States Food and Drug 

Administration (FDA), the European Union, and several other countries 

(Chun and Brinkmann, 2011; Fig. 11). In 1995, Fujita synthesized FTY720 (2-
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amino-2[2-(4-octylphenyl)ethyl]-1,3-propanediol) using the natural 

compound myriocin (Adachi et al., 1995). Myriocin was previously isolated by 

the same group from the culture broth of Isaria sinclairii, the imperfect or 

asexual stage of the genus Cordyceps sinclarii (cordycipitaceae), a subfamily of 

parasitic fungi (Zhou et al., 2009). Remarkably, extract and powder from the 

near relative Cordyceps sinensis has been widely used in Traditional Chinese 

Medicine for its energy boosting effect and to grant eternal youth (Zhou et al., 

2009). FTY720 turned out to be an even more potent immunosuppressant 

when tested in vitro in a mouse allogenic mixed lymphocyte reaction assay, 

and in vivo in different animal models (Fujita et al., 1996; Suzuki et al., 1996; 

Yanagawa et al., 1998). Indeed, FTY720 was described as an 

immunosuppressant 10–100 times more potent than cyclosporine A and its 

main immunomodulatory mechanism of action is based on its effect on 

lymphocyte homing (Fujita et al., 1996; Yanagawa et al., 1998). 

5.2.2.1. Fingolimod modulates S1P pathway  

Furthermore, FTY720 is a pro-drug which requires SphK to become active; it 

was demonstrated that both enzymes can phosphorylate FTY720 in vitro 

(Billich et al., 2003). However, SphK2 is 30-fold more efficient due to a lower 

Km value of FTY720 for SphK2 compared to SphK1 (Billich et al., 2003).  

Indeed, SphK2 is the only enzyme which activates FTY720 in vivo, since only 

SphK2 knockout mice are resistant to FTY720-induced lymphopenia (Zemann 

et al., 2006) and lack FTY720-mediated protection from disease symptoms in 

experimental autoimmune encephalomyelitis (EAE), a widely used animal 

model for multiple sclerosis (Imeri et al., 2016). FTY720, but not FTY720-P, acts 

also as a direct inhibitor of SphK1, but very high concentrations (50 mM) are 

needed to achieve 50% inhibition (Tonelli et al., 2010; Vessey et al., 2007). As a 

pharmacological target with oncogenic potential, SphK1 is of interest for 

cancer therapy (Shida et al., 2008). Considering the toxicity profile of FTY720 

at 0.5 mg per day in patients, however, it is unrealistic to believe that such high 

doses can be tolerated. Nevertheless, numerous preclinical studies have 
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shown pro-apoptotic and antitumor effects of FTY720 with tumour cell lines 

in vitro and in tumour models in mice, which could be partly attributed to 

inhibition of SphK1 (Pchejetski et al., 2010). Therefore, it was found that FTY-

720-P inhibit S1P lyase, the enzyme responsible for irreversible S1P 

degradation,  activity in vitro and in vivo (Bandhuvula et al., 2005; Park et al., 

2014). Since FTY720-P mimics S1P in structure, not surprisingly, that also 

binds to its receptors (Brinkmann et al., 2002; Mandala et al., 2002). In detail, 

FTY720-P binds with similar affinity as S1P to S1P1, S1P3, and S1P5, but shows 

much better binding to S1P4 than S1P (6 nM vs 90 nM), even if it is not a ligand 

for S1P2 (Mandala et al., 2002). Due to the diversity of S1P receptor subtypes 

with their distinct function and ubiquitous expression in the body, multiple 

effects can be expected from using FTY720, which may either have therapeutic 

benefit or cause adverse events (Kihara et al., 2014; O’Sullivan and Dev, 2017). 

As outlined above, because of FTY720-P binds and activates S1P receptor 

subtypes, except for S1P2, “active” FTY720 is pharmacologically considered 

an unselective S1P receptor agonist (Brinkmann, 2007; Brinkmann et al., 2002; 

Mandala et al., 2002). Moreover, it causes sustained desensitization of the 

S1P1-mediated signalling pathway by inducing receptor internalization and 

degradation, which on the cellular level results in functional antagonism 

(Brinkmann et al., 2004). This effect of FTY720 on S1P1 is unique and not seen 

with the endogenous ligand S1P, which also internalizes S1P1 upon binding 

but then dissociates in endosomes and the receptor recycles back to the plasma 

membrane (Myat et al., 2007). Similarly, S1P3, S1P4 and S1P5 are also 

internalized upon FTY720-P binding and then redistribute back to the cell 

surface (Brinkmann et al., 2004). Particularly, downregulation of S1P1 on T 

cells is supposed to account for the immunosuppressive effect of FTY720, 

whereas downregulation of S1P1 in other cell types, notably in endothelial 

cells, is likely responsible for the adverse events observed under long-term 

FTY720 treatment (Brinkmann, 2007). The agonistic effect of FTY720 on S1P3, 

S1P4 and S1P5 may account for additional biological effects with unknown 

consequences as outlined below. Since S1P1 is ubiquitously expressed in 
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almost every cell type, its downregulation by prolonged FTY720 treatment is 

expected to have multiple consequences on cellular responses and tissue 

homeostasis (Brinkmann et al., 2004). Therefore, S1P1 activation improves the 

endothelial barrier function, whereas S1P1 antagonism, notably also by 

prolonged FTY720 treatment, disrupts it, thereby increasing permeability and 

vascular leakage (Wilkerson and Argraves, 2014). 

FTY720-P has an EC50 value of 7 to 10 nM for S1P3, which is comparable to the 

endogenous ligand S1P; however, its efficacy reached only 50% of S1P, 

suggesting a partial agonistic effect (Riddy et al., 2012). By definition, a partial 

agonist in the presence of a full agonist produces an antagonistic output. This 

could mean that in vivo, FTY720 can also antagonize S1P3 signalling rather 

than stimulate it, depending on the local S1P concentration. 

On the other hand, the role of S1P4 in physiological processes is still poorly 

understood and therefore the effects of FTY720 mediated by S1P4 are unclear. 

S1P and FTY720-P associate with S1P4 with binding constants of 95 nM and 6 

nM, respectively, which means that FTY720 is a much better ligand for this 

receptor than the endogenous ligand (Mandala et al., 2002). Therefore, S1P4 

expression is restricted in the body and mainly found in lymphocytes and 

tissues of the immune and hematopoietic system (Gräler et al., 1998). 

Finally, the S1P5 receptor was originally cloned as rat nerve growth factor-

regulated G protein-coupled receptor Nrg-1 and later found to be identical to 

S1P5 (Glickman et al., 1999). It is predominantly expressed in the brain and 

spleen (Im et al., 2000; Malek et al., 2001) and in these tissues, it is further 

concentrated in OLs and natural killer cells (O’Sullivan and Dev, 2017). 

FTY720-P and S1P bind to S1P5 with equally high affinity. Moreover, S1P5 is 

also expressed on brain microcapillary endothelial cells where it contributes 

to the blood-brain barrier function and maintains the immunoquiescent state 

of brain endothelial cells (van Doorn et al., 2012).  

In the last few years, several second-generation compounds with structural 

similarity to the FTY720 prodrug backbone, such as KRP203, CS-0777, and 
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RPC-1063, were synthesized and used in clinical trials; these S1PR modulators 

show higher selectivity for S1P1R than S1P3R (O’Sullivan and Dev, 2017). 

Therefore, recently, FDA has approved Siponimod (Mayzent®; Novartis, 

approved in march 2019) and Ozanimod (Zeposia®; Celgene Corporation, 

approved on march 2020) as oral treatments for relapsing forms of MS (Fda 

and Cder, 2020, 2019). Both are a highly selective S1PR1 and S1PR5 (Pan et al., 

2013; Sørensen, 2016) and, as FTY720, they limit the capacity of lymphocytes 

to egress from peripheral lymphoid organs  (Pan et al., 2013; Scott et al., 2016). 

In addition, FTY720 has reached clinical trials for other nervous system 

diseases, like amyotrophic lateral sclerosis (ALS), acute stroke, Rett syndrome, 

glioblastoma, and schizophrenia. Its potential utility has also been 

demonstrated in numerous in vitro and in vivo models of neurological 

disorders, like spinal cord injury, Huntington's disease, epilepsy, and toxicity 

of Aβ (O’Sullivan and Dev, 2017). 

On the other hand, patients with MS undergoing long-term treatment with 

FTY720 showed reduced brain volume loss, reduced number of relapses, and 

a significantly slower progression of disability suggesting that FTY720 has also 

a neuroprotective properties (De Stefano et al., 2017). Patients treated with 

FTY720, might be more susceptible to serious infections, such as disseminated 

or CNS herpetic infection, because of reduced number of circulating 

lymphocytes (Cohen et al., 2010). The above side effects determine some 

limitations with FTY720 therapy to patients with cardiovascular and immune 

risk factor, especially in patients with diagnosed immunodeficiency syndrome 

(Yoshii et al., 2017).  

The therapeutic effect of FTY720 in MS and its animal model experimental 

autoimmune encephalomyelitis (EAE) is attributed to the downregulation of 

S1P1 on lymphocytes resulting in their retention within lymph nodes (Balatoni 

et al., 2007; Brinkmann, 2007; Brinkmann et al., 2002; Mandala et al., 2002; 

Matloubian et al., 2004). In addition, there is also evidence supporting the 

concept of anti-inflammatory, glioprotective and neuroprotective actions of 
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S1PR modulators in the CNS (Choi et al., 2011; Kim et al., 2011; Soliven et al., 

2011).  

 

Figure 11. S1P and S1P signalling pathways FTY720. S1P is generated intracellularly from the 
phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2). S1P propagates 
its signals by interacting with its intracellular targets or is transported extracellularly to 
activate its cell surface receptors (S1PR1-5). Intracellular S1P is recycled into sphingosine by 
S1P-specific ER phosphatases (SPP1 and SPP2) or irreversibly degraded by S1P lyase (S1PL). 
The S1PRs are coupled to different G proteins (Gi/o, Gq, and G12/13) to regulate downstream 
biological responses. Fingolimod (FTY720) shows high analogy to sphingosine and is 
phosphorylated by sphingosine kinases, mainly SphK2, which is the predominant SphK 
isoform in the brain. Fingolimod is a prodrug of fingolimod phosphate that can signal via S1P 
receptors and activate intracellular targets of S1P (Modified from: Brunkhorst et al., 2014; Tsai 
and Han, 2016). 

5.2.2.2. Fingolimod in oligodendrogliogenesis 

S1P1-5 are found in oligodendroglial cells, where they regulate several 

processes, ranging from cell proliferation and maturation to branches 

elongation (Jaillard et al., 2005; Jung et al., 2007; Miron et al., 2008). Mature 

OLs express S1P5 and at lesser extent S1P1 S1P2 and S1P3, whereas OPCs 

express at a higher level S1P1 than S1P2, S1P3 and S1P5 (Jung et al., 2007; 

Novgorodov et al., 2007; Yu et al., 2004).  

In vitro studies have demonstrated that FTY720‐P regulates the survival, 

differentiation and process dynamics of cultured rodent and human OL 

lineage cells (Coelho et al., 2007; Jung et al., 2007; Miron et al., 2008). 

Furthermore, it has been demonstrated that treatment of mice with FTY720 

protects against acute cuprizone‐induced OL injury, demyelination and 
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axonal loss without promoting remyelination in this model (Kataoka et al., 

2005; Rothhammer et al., 2017). The protective effect of FTY720 in the 

cuprizone model may be mediated not only by direct actions on S1PR on OLs, 

but also by indirect or antinflammatory actions on astrocytes and microglia 

(Kim et al., 2011). 

Moreover, FTY720-P, through S1P5, triggers two distinct functional responses 

depending on the OL developmental stage; it leads to process retraction in pre-

OLs, whereas it increases the survival of mature cells (Jaillard et al., 2005). In 

addition, migration of OPCs, which normally migrate over considerable 

distances during brain development, is inhibited by S1P5 activation 

(Novgorodov et al., 2007). FTY720 was also shown to protect human OLs from 

apoptosis induced by serum and glucose deprivation, suggesting a 

neuroprotective effect by activating S1P5 (Miron et al., 2008). In agreement, it 

was demonstrated that also Siponimod can modulate glial cell function and 

attenuate demyelination (O’Sullivan et al., 2016). 
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6. Role of adenosine A3Rs in pain 

Pain control is a vast, unmet medical need with a high societal cost impact 

(Goldberg and McGee, 2011). Current treatments (opioids, non-steroidal anti-

inflammatory drugs, antidepressants or anticonvulsants) are frequently 

inadequate or associated with adverse side effect (Goldberg and McGee, 2011; 

Maloy et al., 2014; Pizzo and Clark, 2012). Therefore, new therapeutics for 

managing patient pain are being developed. 

Several early electrophysiological studies reported that adenosine and its 

analogues inhibit Ca2+-dependent plateau potentials and CaV activation in 

isolated rat DRG neurons (B. Y. A. C. Dolphin et al., 1986; Gross et al., 1989; 

MacDonald et al., 1986). However, adenosine receptors subtypes were initially 

poorly characterized, with only A1R and a “generic” A2 subtype being 

described based on their ability to modulate intracellular cAMP accumulation. 

Nevertheless, MacDonald and colleagues (MacDonald et al., 1986) argued that 

neither AlR nor A2AR seems to be entirely responsible for Ca2+ current 

inhibition in rat DRG neurons, leading to the possibility that a hypothetically 

different adenosine receptor could be involved. Building on this observation, 

a part of this study was aimed to fill a major gap by investigating whether the 

A3R modulates membrane currents and excitability in isolated rat DRG 

neurons. 

6.1. Pain 

Recently, the International Association of the Study of Pain (IASP) has revised 

the definition of pain as “An unpleasant sensory and emotional experience 

associated with, or resembling that associated with, actual or potential tissue damage” 

(Raja et al., 2020). Pain has physiologic, behavioural, and aversive emotional 

components, and is an adaptive response to actual or potential damage to the 

body. Without its alerting, pain would not reliably trigger escape from danger 

and avoid a future damage. When it becomes chronic, however, pain loses its 

adaptive role as a defender of the body’s integrity and becomes a pressing 
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medical problem. As mentioned above, pain has also an emotional and 

motivational component, and as there are different types of pain, some 

inconsistencies arise from the literature in its classification. According to the 

IASP, pain can be classified based on the region of the body involved (e.g., 

head, visceral), pattern of occurrence’s duration (acute and chronic), or the 

system whose dysfunction could be causing pain (e.g., gastrointestinal, 

nervous). Thus, pain has been classified into three major classes: nociceptive 

pain, neuropathic pain and inflammatory pain (Woolf et al., 1998).  

The ascending pain pathway begins with primary afferent nociceptors that 

have cell bodies in dorsal root ganglia (DRG) and that make synapses in the 

dorsal horn of the spinal cord. The peripheral terminals of primary afferent 

nociceptors are morphologically undifferentiated free nerve endings, that 

express several receptors and/or ionic channels. When activated, noxious 

stimulus-detecting channels produce depolarizing currents within the 

peripheral terminals of primary nociceptors that can initiate trains of action 

potentials transmitted to the dorsal horn of the spinal cord. Nociceptive 

neurons of dorsal root ganglia represent “first order” neurons that synapse on 

“second order” neurons within the dorsal horn. These second order neurons 

may be local interneurons or projection neurons that carry nociceptive 

information to the brainstem and thalamus (Nestler et al., 2002; Fig. 12). 
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Figure 12. Nociceptive pathways. Taken by (Nestler et al., 2002). 

6.1.1. The Dorsal Root Ganglia in chronic pain 

The DRG contains cell bodies of the primary sensory neurons responsible for 

modulation and transduction of sensory information to the spinal cord. The 

primary sensory neuron is a pseudounipolar neuron with one branch 

extending to the peripheral receptive field and the other entering the spinal 

cord (Aldskogius et al., 1986). 
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In humans, there are 31 pairs of “mixed” spinal nerves carrying sensorimotor 

information between the spinal cord and the periphery. These spinal nerves 

are formed by dorsal afferent sensory axons (dorsal rootlets) and ventral 

efferent motor axons (ventral rootlets). As the dorsal sensory root fibres travel 

laterally, their processes connect via a T-junction with their cell bodies, which 

form the DRG. The T-junction of the DRG neurons can act as an impediment 

to electrical impulses traveling from the peripheral nociceptor to the dorsal 

root entry zone of the spinal cord, can participate in the propagation of the 

electrical pulse, or can act as a low-pass filter to electrical information from the 

periphery (Gemes et al., 2013; Fig. 13).  

 

Figure 13. Role of T-junction of DRG. The T-junction acts either as (i) a barrier to the 
propagation of actionpotentials (APs) to the dorsal horn (DH) of the spinal cord, (ii) a low-
pass filter tothe propagation of APs to the DH, or (iii) an active participant in the 
propagationof APs to the DH of the spinal cord. Taken by (Krames, 2015). 

The cell bodies of the DRG neurons are separated from each other by an 

envelope of satellite glial cells (SGCs) that respond to peripheral and central 

processes including nociception, peripheral afferent fiber injury, and 

inflammation. Glial cells have important roles in pathological states such as 

pain and inflammation (Aldskogius and Kozlova, 1998; Cherkas et al., 2004; 

Watkins and Maier, 2002), are involved in the regulation of transmission at the 
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synapse (Haydon, 2001), elicit Ca2+ waves that transmit signals over long 

distances (Newman, 2003), and express numerous receptors to 

neurotransmitters and other bioactive molecules (Kamiya et al., 2006).  

As most studies of the DRG are performed in rats, it should be stated that  

human and rat differ with respect to the number of spinal segments and thus 

primary sensory nerves (Gelderd and Chopin, 1977). In 1985, Harper and 

Lawson classified rat DRG neurons into small- (20-27 µm), medium- (33-38 

µm), and large- (45-51 µm) sized, depending on cell bodies diameter (Harper 

and Lawson, 1985). These neurons give rise to C (less than 1.4 m/s), Aδ (2.2-8 

m/s), and Aα/β (more than 14 m/s) fibres, respectively (Harper and Lawson, 

1985). Because of its important roles in the modulation of sensory processing, 

including nociceptive pain, and the development of neuropathic pain, along 

with its anatomic accessibility to clinical intervention (Hasegawa et al., 1996, 

1993), the DRG is an excellent clinical target for pain control. 

6.1.2. Ionic channels and Pain 

Much is known regarding the role of Na+, K+, and Ca2+ current changes and 

their up- and down-regulation in the development of neuropathic pain.  

In 1983, Wall and Devor showed that electrical impulses in peripheral afferent 

fiber injury may originate not only from the damaged fiber, but also from 

within the DRG itself, and that systemic application of lidocaine suppressed 

ectopic impulse discharges generated both at sites of experimental nerve 

injury and within axotomized DRG cells (Wall and Devor, 1983; Wu et al., 

2002). These studies suggest that electrical impulses originating in the DRG 

are mostly due to activation of normal or abnormal Na+ channels, which play 

a very important role in the development of hyperexcitability and neuropathic 

pain. Observations by Sukhotinsky and colleagues support the hypothesis that 

ectopic firing in DRG neurons induces central sensitization and clinical 

allodynia (Sukhotinsky et al., 2004). 
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DRG neurons co-express several types of Na+ channels, in particular TTX-

resistant NaV1.8, and it is hypothesized that various subtypes of these channels 

are associated with neuropathic pain (Dong et al., 2007; Ekberg et al., 2006; 

Gold et al., 2003; Joshi et al., 2006). Na+ channels within the DRG after 

peripheral afferent fiber injury can change expression and gating properties 

and can give rise to spontaneous action potential activity or pathological burst 

firing, which is the electrophysiological signature of neuropathic pain (Devor 

et al., 1993; Waxman et al., 1999). 

Besides the up-regulation of TTX-resistant Na+ channels, nerve injury leads to 

striking reduction in voltage-gated K+ channel subunits expression in DRG 

neurons, suggesting that also K+ channels play an important role in the 

development of hyperexcitability of injured nerves (Ishikawa et al., 1999; 

Kajander et al., 1992; Kawano et al., 2009; Rasband et al., 2001). Therefore, 

modulating the expression and/or function of these channels can help 

normalizing membrane functions and provide potential mechanisms by 

which electrical fields can chronically modulate these cells. 

It is reasonable  that an increase in voltage-activated Ca2+ currents may 

contribute to inflammation-induced increase in afferent nerve input associated 

with neuropathic pain: (i) an increase in T-type Ca2+ currents in peripheral 

afferent terminals is associated with a decrease in nociceptive threshold (Bilici 

et al., 2001); (ii) inflammatory injuries are associated with an increase in the α-

subunit protein thought to underlie P/Q-type Ca2+ currents (Westenbroek and 

Byers, 1999); (iii) persistent inflammation results in an increase in Ca2+-

dependent transmitter release from primary afferents (Neubert et al., 2000) 

and the selective N-type Ca2+ blocker ω-conotoxin GVIA (ω -CTX) inhibits 

dorsal root stimulus-evoked excitatory postsynaptic currents in lamina I 

dorsal horn neurons by 60% (Heinke et al., 2004); (iv) inflammation and nerve 

injury appear to have opposite effects on the expression of several ion channels 

(Amir et al., 2006), and nerve injury results in a decrease in both HVA and 

LVA Ca2+ currents in primary afferents (McCallum et al., 2006, 2003); (v) 
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persistent inflammation alters the density and distribution of CaV channels in 

subpopulations of rat cutaneous DRG neurons (Lu et al., 2010) and aberrant 

expression and/or activity of N-type Ca2+ channels is associated with 

neuropathic pain (Hannon and Atchison, 2013). 

After chronic constriction injury of the peripheral axon, LVA Ca2+ currents are 

significantly reduced, so the cell becomes less stable and more likely to initiate 

or transmit bursts of action potentials thus contributing to increased 

excitability. Loss of inward Ca2+ currents in DRG neurons after peripheral 

nerve injury induces the by closure of KCa (BK and SK) channels thus 

contributing to increased sensory neuron excitability (Lirk et al., 2008), and 

restoring the inward Ca2+ current leads to decreased neuronal excitability 

(Hogan et al., 2008).  

Furthermore, CaV channels are crucial mediators of neuropathic pain, as 

confirmed by the fact that α2δ ligands, ie, gabapentinoids, are a first line 

treatment for this type of pain (Field et al., 2007; Vink and Alewood, 2012). In 

addition, ziconotide, a derivative of v-CTX, was FDA approved in 2000 (Prialt) 

for intrathecal treatment of severe and refractory chronic pain (Brookes et al., 

2016; Jain, 2000; McDowell and Pope, 2016).  

 

6.1.3. Role of Adenosine in Pain 

Adenosine receptor system is a widely studied target, which evidently was 

successful for neuropathic pain control in several experimental paradigms, 

and researchers are putting efforts in building its clinical roadmap. Adenosine 

receptors act by different mechanisms and their targeting for neuropathic pain 

involves several important pathways such as MAPK, ERK, BDNF signalling, 

neurotransmitters as well as the ion channel modulations, as mentioned 

above. 
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6.1.3.1. A1Rs in pain 

A1Rs are present on the small, medium and large-sized sensory neurons as 

well as on the periaqueductal grey and brainstem, which are involved in pain 

perception (Sawynok, 2013). The role of A1R in neuropathic pain has been well 

studied and it was found that  mice  deficient of  A1R showed increased 

neuropathic pain-like behaviour (Wu et al., 2005). Therefore, A1R 

downregulation was found in neuropathy induced by Resiniferatoxin (RTX), 

a derivate of capsaicin that mainly affect the non-selective cation TRPV1 

channel (Kan et al., 2018). In addition, it was found that A1R co-localised with 

TRPV1 and Kan and colleagues speculates that development of neuropathic 

pain by TRPV1 was due to a reduction in adenosine levels and adenosine A1R 

density (Kan et al., 2018). On the other hand, it was demonstrated that 

peripheral nerve injury increases A1R expression in glial cells (Luongo et al., 

2012). Besides, 5′-chloro-5′-deoxy-(±)-ENBA, a potent A1R agonist, attenuated 

mechanical allodynia, thermal hyperalgesia and microglia activation, induced 

by Spared Nerve Injury  of  sciatic nerve, an effect prevented by DPCPX 

(Luongo et al., 2012). 

Furthermore, A1R was involved in caffeine inhibition of oxcarbazepine 

response, an anticonvulsant used in the management of neuropathic pain 

(Sawynok et al., 2010), in Paeoniflorin-induced effect, a monoterpene 

glycoside which alleviates neuropathic pain, and TRR469 anti-hyperalgesia, a 

novel allosteric modulator that inhibit neuropathic pain (Andoh et al., 2017; 

Vincenzi et al., 2014). Finally, A1Rs are involved in electroacupuncture 

mediated antinociception, which acts through the suppression of astrocyte 

action and up-regulation of TNF-α (Zhang et al., 2018).  

Unfortunately, the therapeutic utility of A1R agonists is limited by their 

adverse cardiovascular effects.  
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6.1.3.2. A2ARs and A2BRs in pain 

As mentioned above, A2AR and A2BR are present on different kinds of cells, 

such as glial and inflammatory cells; activation of A2AR promotes pro-

inflammatory cytokines and inhibits anti-inflammatory cytokines (Haskó et 

al., 2008). Centrally, A2BR is located in the microglia and astrocytes whereas, 

in the periphery, it is found on immune and inflammatory cells (Merighi et al., 

2017; Sawynok et al., 2010). It was reported that  the expression of microglia 

and astrocytes was enhanced in wild-type mice exposed to sciatic nerve injury 

and this response was attenuated in  A2AR knockout animals (Bura et al., 2008), 

indicating the involvement of this receptor in the neuropathic pain.  

In contrast, it was seen that in chronic constriction injury-induced neuropathic 

pain in rats, a single intrathecal injection of ATL313, an A2AR agonist, reversed 

the allodynic effect via PKA and PKC signalling (Loram et al., 2013). Indeed, 

A2AR agonist decreased mechanical allodynia and reduced the expression of 

CD11b mRNA, a microglial activation marker, and TNFα, but it did not affect 

IL-10 expression after spinal neuropathic avulsion pain surgery (Kwilasz et al., 

2018). Furthermore, A2AR agonists increased IL-10 levels in the cerebrospinal 

fluid of rats with neuropathic pain (Malcangio et al., 2013). Consistently with 

these data, peri-sciatic administration of an A2AR agonist reduces neuropathic 

pain and prevented sciatic inflammatory neuropathy (SIN) (Kwilasz et al., 

2019). Finally, administration of A2AR antagonist SCH58261 (50 nM) prevents 

BDNF secretion as well as microglia proliferation, thus regulating the 

microglial activity during neuropathic pain (Gomes et al., 2013). At variance, 

there are very few pieces of evidence on the involvement of A2BR in 

neuropathic pain; therefore, limited studies were conducted based on this 

receptor. However, it has been shown that mice with adenosine deaminase 

deficiency develop an adenosine-induced pain behaviour, that was prevented 

only by A2BR antagonist PSB1115 (Hu et al., 2016). In confirm, 

coadministration of low doses (10mg/kg) with a low dose of morphine 

enhanced the efficacy of morphine (Abo-Salem et al., 2004).   
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6.1.3.3. A3Rs in pain 

It has been demonstrated that A3R activation reduces the excitability of the 

neurons and decreases the activity of astrocytes, thus decreasing inflammation 

in the nervous tissues (Wahlman et al., 2018). A3Rs are expressed in DRG 

neurons, with species-specific differences being described (Ray et al., 2018; 

Usoskin et al., 2015). This receptor is also present at spinal and supraspinal 

sites,  thus  it  emerges as  a  good target for anti-nociceptive activity as well as 

prophylactic action of neuropathic pain (Little et al., 2015), but the mechanisms 

behind this anti-hyperalgesic effect are not clearly understood. It was also 

discovered that amitriptyline, a tricyclic antidepressant, has an antinociceptive 

activity through the A3R pathway (Cho et al., 2018). In addition, A3R also 

reduced CCI-induced pain behaviour at the spinal cord level through the 

GABAergic pathway (Ford et al., 2015). 

The well-known A3R agonists IB-MECA and Cl-IB-MECA acted in opiate 

receptor-independent way and were found to be five times more potent than 

opioids, also more efficacious than morphine (Chen et al., 2012). Furthermore, 

IB-MECA inhibited neuropathic pain by blocking the activation of NADPH 

(nicotinamide adenine dinucleotide phosphate oxidase) as well as of MAPK 

(mitogen-activated protein kinase) (Janes et al., 2014; Terayama et al., 2018) 

and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) 

along with increased production of IL10 and decrease in levels of TNFα and 

IL1β. (Janes et al., 2014). Indeed, IBMECA or Cl-IB-MECA are in phase II/III 

clinical trials for other indications such as rheumatoid arthritis, hepatitis, 

psoriasis, dry eye, and glaucoma and are showing safety data which may 

guarantee a rapid translational potential.  

The recently synthetized and highly selective A3R agonist MRS5698, and the 

more water-soluble congener MRS5980, proved effective in preventing 

allodynia and hyperalgesia associated with traumatic nerve injury, 

chemotherapy, and bone cancer in rodents (Ford et al., 2015; Janes et al., 2014; 

Little et al., 2015). These second-generation, highly selective A3R agonists are 
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at least several orders of magnitude more selective than the early generation 

exemplified by IB-MECA and Cl-IB-MECA (Janes et al., 2014; Little et al., 2015; 

D. K. Tosh et al., 2014). Finally, A3R agonist prevents astrocyte and microglial 

activation and elevates the level of anti-inflammatory cytokines and decreases 

the level of proinflammatory cytokines (Janes et al., 2015).  

The adenosine A3R has stood out as one of the most potential targets for the 

management of chronic neuropathic pain. 
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Aim I – Study about electrical oscillatory activity and 

muscarinic effects on K+ and Na+ currents in human foetal 

cholinergic neurons from the nucleus basalis of Meynert. 

The Nucleus Basalis of Meynert (NBM) is the major source of cholinergic input 

to the cerebral cortex and projects to most cortical areas and is implicated in 

several roles, as memory, attention and behaviour. It has been demonstrated 

that the degeneration of NBM is involved in various forms of dementia, as 

Alzheimer and Parkinson diseases, but also in schizophrenia.  

The first aim of this thesis was to take advantage from the availability of 

human foetal nucleus basalis of Meynert (hfNBM) cultures to investigate the 

electrophysiological properties of immature, non-differentiating, cholinergic 

neurons from the human developing CNS and their functional responses to 

cholinergic agonists. For this purpose, we used electrophysiological patch-

clamp recordings and selective cholinergic agonist and/or antagonist, to 

investigate functional metabotropic receptors in hfNBM cultures. 

Aim II – Study about the effect of adenosine A2B receptors 

on K+ currents and cell differentiation in cultured 

oligodendrocyte precursor cells and modulation 

sphingosine-1-phosphate signalling pathway.  

Oligodendrocytes are the only myelinating cells in the brain and differentiate 

from their progenitors (OPCs) throughout adult life. However, this process 

fails in demyelinating pathologies. Adenosine is emerging as an important 

player in OPC differentiation and all its receptors (named A1, A2A, A2B and A3) 

are expressed in oligodendroglial cells, at all maturation stages. Our group 

recently demonstrated that A2ARs inhibit cell maturation by reducing voltage-

dependent K+ currents. To date, no data are available about the A2BR. On the 

other hand, the bioactive lipid mediator sphingosine-1-phosphate (S1P) and 

its receptors (S1P1–5) are also crucial modulators of OPC development. In 

addition, an interaction between this pathway and the A2BR activation is 

reported in peripheral cells. The second aim was to study the role of A2BRs in 
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modulating K+ currents and cell differentiation in rat OPC cultures. We also 

investigated the possible interplay between A2BRs and S1P signalling. All 

experiments were performed by electrophysiological recordings and 

biochemical assays, as real-time quantitative polymerase chain reaction 

experiments (RT-PCR), Western blot, small interference RNA transfection and 

immunofluorescence analysis. 

Aim III – Study about the role of adenosine A3 receptor 

activation in inhibition of pronociceptive N-type Ca2+ 

currents and of cell excitability in dorsal root ganglion 

neurons.  

Recently, studies have focused on the antihyperalgesic activity of the 

adenosine A3 receptor (A3R) in several chronic pain models, but the cellular 

and molecular basis of this effect is still unknown. Therefore, our last aim was 

to investigate the expression and role of A3R on the excitability of small- to 

medium-sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons 

isolated from 3- to 4-week-old rats, by using patch-clamp and RT-PCR 

experiments and immunofluorescence analysis.  
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1. Cell culture preparation 

1.1. Human foetal NBM neuroblast cultures 

The use of human foetal tissue for research purposes was approved by the 

National Ethics Committee and the local ethic committee for investigation in 

Humans of the University of Florence (Permit Number: 678304).  

Human foetuses biopsies were obtained from therapeutic medical abortions 

after women approved and signed the informed consent document, as already 

reported (Gallina et al., 2008). Cell used in the present study were isolated 

from two female 12-weeks old human foetuses and have been already 

characterized as cholinergic neuroblasts by qRT-PCR, immunofluorescence 

and cytofluorimetric analysis, as reported in previous work (Morelli et al., 

2017). Cell suspensions were mechanically dispersed and cultured in Coon's 

modified Ham's F12 medium (Euroclone, Milan, Italy) supplemented with 

10% FBS (Hyclone, Logan, UT), as described (Morelli et al., 2017). Cells were 

split from plates when confluent: approximately twice a week for the first 10-

12 passages, then once a week/every 10 days for later passages. Thus, the 

whole period of observation in the present research was, from p9 to p25, about 

3-3.5 months. 

In the present work, we refer to hfNBM cells as cholinergic neuroblasts on the 

basis of previous work (Morelli et al., 2017) in which we the expression of 

specific neuronal vs glial markers was elucidated in detail, as well as markers 

of immature stem-like cells. It should be considered that the same cell cultures, 

prepared from the same tissue isolations, were used in the present research. 

1.2. OPC cultures 

Purified cortical OPC cultures were prepared as described elsewhere (Coppi 

et al., 2013b; Malerba et al., 2015). Wistar rat pups (postnatal day 1–2) were 

killed and cortices removed, mechanically and enzymatically dissociated, 

suspended in DMEM medium containing 20% foetal bovine serum (FBS), 4 

mM L-glutamine, 1 mM Na-pyruvate, 100 U/ml penicillin, 100 U/ml 
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streptomycin (all products are from EuroClone, Milan, Italy), and plated in 

poly-D-lysin coated T75 flasks (1 flask per animal). After 2–3 days in culture, 

OPCs growing on top of a confluent monolayer of astrocytes were detached 

by 5 h of horizontal shaking. Contaminating microglial cells were eliminated 

by a 1 h pre-shake and by further plating detached cells on plastic culture 

dishes for 1 h. OPCs, which do not attach to plastic, were collected by gently 

washing the dishes and plated onto poly-DL-ornithine-coated (final 

concentration: 50 μg/ml, Merck) 13 mm-diameter glass coverslips laid in 24 

multiwell chambers (l04 cells/well) for electrophysiological and 

immunocytochemical experiments, or on poly-DL-ornithine-coated 25 mm-

diameter glass coverslips laid in 6 multiwell chambers (l05 cells/well) for 

Western blot or real-time polymerase chain reaction (RT-PCR) experiments. 

OPC cultures were maintained in Neurobasal medium (Thermo Fisher 

Scientific) containing 2% B27, 4 mM L-glutamine, 1 mM Na-pyruvate, 100 

U/ml penicillin, 100 U/ml streptomycin, 10 ng/ml platelet derived growth 

factor-BB (PDGF-BB) and 10 ng/ml basic fibroblast growth factor (bFGF; both 

mitogens were from PeproTech EC Ltd, London, UK) to promote cell 

proliferation. In some cases, OPC were allowed to differentiate into mature 

OLs by mitogen withdrawal. The day at which cells were deprived of 

mitogens is indicated as t0. According to our previous results (Coppi et al., 

2013a, 2013b), cells cultured in mitogen-free medium undergo gradual 

maturation as demonstrated by the increase in myelinrelated proteins such as 

MAG and MBP. After 7 days in these conditions (t7), the expression of myelin-

related proteins reaches a peak so most of our analysis were performed at this 

time point. In order to study the effect of A2BR and/or SphK/S1P signalling 

pathway on oligodendroglial maturation, selective ligands for these targets 

were added every two days from t0 to t7. 

1.3. DRG neuronal cultures 

Animal experiments were performed according to Directive 2010/63/EU of 

the European Parliament and of the European Union Council (September 22, 
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2010) and to the Italian Law on Animal Welfare (DL 26/2014). The protocol 

was approved by the University of Florence Institutional Animal Care and Use 

Committee and by the Italian Ministry of Health. All efforts were made to 

minimize animal suffering and to use a minimal number of animals needed to 

produce reliable scientific data. Sprague-Dawley rats (3-4 weeks old, Envigo, 

Udine, Italy) of both sexes were housed in a temperature- and humidity-

controlled vivarium (12-hour dark/ light cycle, free access to food and water) 

and sacrificed by cervical dislocation. Primary DRG neurons were isolated and 

cultured as described (Fusi et al., 2014; Nassini et al., 2015). Briefly, ganglia 

were bilaterally excised and enzymatically digested using 2 mg/mL of 

collagenase type 1A and 1 mg/mL of trypsin (both compounds from Sigma-

Aldrich, Milan, Italy) in Hank’s balanced salt solution (25-35 minutes at 37°C). 

Cells were then pelleted and resuspended in Dulbecco’s modified Eagle’s 

medium supplemented with 10% heat inactivated horse serum, 10%heat-

inactivated foetal bovine serum, 100 U/mL penicillin, 0.1 mg/mL 

streptomycin, and 2-mM L-glutamine for mechanical digestion. After 

centrifugation (1200g, 5 minutes), neurons were suspended in the above-

mentioned medium, enriched with 100 ng/mL of mouse nerve growth factor 

and 2.5 mM of cytosine-b-D-arabino-furanoside free base, and then plated on 

13- mm or 25-mm glass coverslips coated by poly-L-lysine (8.3 mM) and 

laminin (5mM). Dorsal root ganglion neurons were cultured for 1 to 2 days 

before being used for experiments. In a set of experiments, DRG cultures were 

maintained in the absence of nerve growth factor. However, no difference was 

found in any of the effects tested in the present research, and data were pooled. 

2. Electrophysiology – Whole-cell patch clamp 

For these studies patch clamp experiments in whole-cell configuration have 

been performed. For this purpose, cells were transferred to a recording 

chamber (1 ml volume) mounted on the platform of an inverted microscope 

(Olympus CKX41, Milan, Italy) and superfused at a flow rate of 1.5 ml/min 

with a standard extracellular solution, depending on the cell investigated 
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(Table 4), by a three-way perfusion valve controller (Harvard Apparatus).  

Table 4. Electrophysiological solutions. 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid, 
N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (HEPES); ethylene glycol-bis(2-
aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA); Liquid Junction Potential (LJP). 

Borosilicate glass electrodes Harvard Apparatus, Holliston, Massachusetts 

USA) were pulled with a Sutter Instruments puller (model P-87) to a final tip 

resistance suitable for each cell investigated (2÷4MΩ, 4÷7MΩ and   1.5÷3MΩ 

for hfNBMs, OPCs and DRGs, respectively).  Then, data were acquired with 

an Axopatch 200B amplifier (Axon Instruments, CA, USA), low pass filtered 

at 10 kHz, stored, and analysed with pClamp 9.2 software (Axon Instruments, 

CA, USA). All the experiments were carried out at room temperature (RT: 20–

22°C). 

Cells were voltage-clamped at -60 mV as previously described (Coppi et al., 

2012), except for OPC (-70 mV), and input resistance (Rin) and membrane 

capacitance (Cm) were routinely measured by fast hyperpolarizing voltage 

Standard extracellular solution (mM) 

 hfNBMs OPCs DRGs 

HEPES 10 5 10 
D-glucose 5 10 10 

NaCl 140 140 147 
KCl 3 5.4 4 

MgCl2 2 1.2 1 
CaCl2 1 1.8 2 

pH 7.4 with NaOH 7.3 with NaOH 7.4 with NaOH 

Standard pipette solutions (mM) 

K-Aspartate 130 - - 
K-gluconate - 130 130 

KCl - - 10 
NaCl - 6 4.8 

MgCl2 2 2 2 
CaCl2 5 - 1 

Na2-ATP 5 2 2 
Na2-GTP 0.1 0.3 0.3 

EGTA 11 0.6 3 
HEPES 10 10 10 

pH 7.2 with KOH 7.4 with KOH 7.4 with KOH 
LJP 14.5 mV 14.5 mV 15 mV 
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pulses (from -60 to -70 mV, 40 ms duration). Only cells showing a stable Cm 

and Rs before, during, and after drug application were included in the 

analysis. In some experiments, cell resting membrane potential (Vm) was 

determined immediately after seal breaking-through by switching the 

amplifier to the current-clamp mode. 

Current amplitude (measured as pA) was normalized to respective cell 

capacitance (Cm, measured in pF) and expressed as current density (pA/pF) 

in averaged results. All drugs were dissolved in extracellular solution and 

were applied by superfusion with a three-way perfusion valve controller 

(Harvard Apparatus, Holliston, MA USA) after a stable baseline was obtained. 

A complete exchange of bath solution in the recording chamber was achieved 

within 28 s. 

2.1. Electrophysiology - Protocols used in hfNBMs  

K+ currents were evoked by a voltage ramp protocol (1 s depolarization from 

-120 to +150 mV) once every 15 s before, during, and after drug treatments. 

Ramp-evoked outward currents were measured at +150 mV and quantified by 

averaging current values recorded between +139 and +149 mV. On the other 

hand, ramp-evoked inward currents were measured at -120 mV quantified by 

averaging current values recorded between -109 and -119 mV.  

In the present work, we refer to “muscarinic effect” of ACh on ramp currents 

when a sustained increase of +150 mV currents was observed in the absence 

of any change in -120 mV currents. We refer to “nicotinic effect” of ACh on 

ramp currents when a concomitant increase in +150 mV and -120 mV current 

were measured, both responses fading before drug removal. In some cases, 

both the nicotinic and muscarinic effects were observed in the same cell during 

Ach application.  

Control ramps were obtained by averaging the last 4 traces (1 min) of baseline 

and were compared to those measured during the last min of drug application 

(muscarinic effect) or at the peak (nicotinic effect). Net ACh- or CCh-activated 
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currents were obtained by subtraction of the control ramp from the ramp 

recorded in the presence of the compound as described above. Concentration-

response curve of CCh was obtained by averaging at least 4 individual 

experiments for each CCh concentration. 

Na+ currents were isolated by substituting extracellular K+ with equimolar Cs+ 

and by using the following Cs+-based pipette solution (mM):  

CsCl 120; NaCl 4.8; CaCl2 1; MgCl2 2; Na2-ATP 5; Na2-GTP 0.1; EGTA 11; 

HEPES 10 (pH 7.4 with CsOH), in order to block K+ conductance.  

Na+ currents evoked in Cs+-replacement conditions by a 0 mV step 

depolarization (40 ms) from a holding potential (Vh) of -90 mV once every 5 s. 

Current-to-voltage relationship of Na+ currents was obtained by a series of 

depolarizing voltage steps from -60 to +60 mV (10 mV step depolarization, 40 

ms step duration, 2 s inter-step interval; Vh=-90 mV). Control values of Na+ 

current amplitude were measured by averaging the last 12 traces (1 min) of 

baseline and were compared to those measured during the last min of drug 

application. Activation/inactivation curves of Na+ currents were obtained by 

a series of depolarizing voltage steps from -100 to +60 mV (10 mV step 

depolarization, 60 ms step duration, 2 s inter-step interval; Vh=-110 mV; post-

step potential = 0 mV). Open-channel current-to-voltage relationship of Na+ 

current was used to calculate Na+ conductance (G) and normalized to the 

maximal Na+ conductance recorded during the depolarizing voltage step 

protocol (G/Gmax).  

Curves obtained by this method were then fitted by a Boltzmann equation: 

𝐺

𝐺𝑚𝑎𝑥
= 1 −

1

1 + 𝑒
𝑉−𝑉1/2

𝑘

 

Therefore, concentration-response curves were obtained by fit of data to four-

parameter logistic equation: 

𝑌 = min +
(max − min )

1 + 10(𝐿𝑜𝑔𝐸𝐶50−𝑋)𝑛𝐻
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where EC50 is the half-maximally effective concentration, X is the logarithm 

of concentration, nH is the Hill coefficient and min and max are the bottom 

and the top of the curve, respectively. 

Finally, current-clamp recordings were performed as described (Coppi et al., 

2012). Electrical activity was elicited in hfNBM neuroblasts by depolarizing 

current steps injection (100 pA increment, from -100 pA to +700 pA; 600 ms, 2 

s inter-episode interval). Sampling rate for current-clamp recordings was 50 

µs.  

In some experiments we substituted intracellular EGTA with equimolar 

BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid).  

Where indicated, the antibiotic neomycin (500 µM) was added to the pipette 

solution to prevent PLC activation (Felder et al., 1990; Mlinar et al., 1995). In 

those experiments, at least 10 min we waited after seal breakthrough before 

starting the experiment to allow complete intracellular diffusion of the drug. 

Where indicated, pertussis toxin (PTx; 1 µg/ml) was added to the culture 

medium and maintained overnight (o/n). 

2.2. Electrophysiology - Protocols used in OPCs 

In all electrophysiological experiments, the following adenosine receptor 

antagonists were added to the extracellular solution in order to prevent 

nonspecific adenosine receptor activation upon the superfusion with various 

A2BR agonists: DPCPX, SCH58261 and MRS1523, all at 100 nM concentration, 

in order to block A1R, A2AR and A3R respectively.  

It is known that the vast majority of voltage-dependent currents expressed by 

OL cells are K+ currents. Therefore, Na+ currents are recorded in about 60% of 

cells only at the stage of bipolar, undifferentiated OPCs whereas appreciable 

Ca2+ currents can only be evoked in very high extracellular Ba2+ conditions (i.e 

90 mM [Ba2+]o) (Coppi et al., 2013b).  
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A voltage ramp protocol (800 ms depolarization from −120 to +80 mV) was 

recorded every 15 s to evoke a wide range of overall voltage-dependent 

membrane currents before, during and after drug treatments. Variations in 

membrane potential (Vm) induced by drug treatments were measured by 

calculating the reversal potential (the “zero current” potential) of ramp-

evoked currents before, during and after drug application. Outward K+ 

currents were evoked by two different depolarizing voltage-step protocols, in 

order to separate delayed rectifier outward K+ currents (IK) from transient 

outward (IA) conductances. A first protocol consisted in 10 mV depolarizing 

voltage steps from −40 to +80 mV (200 ms each, 1 s inter-step interval) 

preceded by a 100 ms pre-step potential (Vpre) at −80 mV. This protocol 

activates a mixture of outward IK and IA currents in cultured OPCs. Since 

transient IA currents present a voltage-dependent inactivation at potential 

positive to −80 mV, a second protocol was applied in the same cell with a pre 

step at −40 mV, to selectively inactivate IA thus leaving the IK component 

unchanged (IK protocol). Net IA current was then obtained in each cell by 

digital subtraction of the two current traces. Current-to-voltage relationships 

(I-V plots) of IK or IA currents were obtained by measuring current amplitude 

at the steady state (200–250 ms after step onset) of the IK protocol or at the 

peak of subtracted trace (1–20 ms after step onset), respectively.  

2.3. Electrophysiology - Protocols used in DRG neurons  

Ca2+ currents were isolated by replaced of K+ with equimolar Cs+ and by using 

the following Cs+-based pipette solution (mM): 

CsCl 120; Mg2-ATP 3; EGTA 10; and HEPES 10 (pH 7.4 with CsOH). 

In addition, TTX (1 mM), A887826 (200 nM) were added to block TTX-sensitive 

and TTX-insensitive Na+ channels, respectively. As reported in Results, ramp 

experiments revealed that Cl-IB-MECA–inhibited Ca2+ currents in DRG 

neurons were completely prevented in the presence of extracellular Cd2+. The 

effect of Cd2+ was not different when applied at 100 mM, 500 mM, or 1 mM 

concentrations (Fig. 43). So, when studying the effect of this compound on Ca2+ 
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currents evoked in isolation, Ni2+ (100 mM) was added to the extracellular 

solution to exclude T-type Ca2+ channels, which do not seem to be involved in 

A3AR-mediated effect. For this reason, the hypothetical, additional, 

involvement of T-type Ca2+ channels in A3AR-mediated Ca2+ channel 

modulation was not investigated in the present research and will be addressed 

in a separate work.  

A voltage-ramp protocol (800-ms depolarization from +65 to -135 mV; holding 

potential, or Vh, of -75 mV) was used to evoke a wide range of overall voltage 

dependent currents before, during, and after drug treatments. TRPA1- or 

TRPV1-mediated currents were detected as inward currents activated in -60 

mV (corresponding to -75 mV after liquid junction potential correction) 

clamped cells on superfusion of the respective agonists allyl isothiocyanate 

(AITC) and capsaicin, respectively, as already shown elsewhere (Fusi et al., 

2014; Nassini et al., 2015). 

Voltage-dependent Ca2+ channels’ currents were evoked in Cs+-replacement 

conditions by a 0 mV step depolarization (200 ms, Vh of -65 mV) once every 30 

seconds, a time that allowed complete recovery from eventual Ca2+ channel 

inactivation and minimized Ca2+ current run down. The current-to-voltage 

relationship of Ca2+ currents was obtained by eliciting 10 depolarizing voltage 

steps (200-ms duration, 10-mV increments, 5-second interval) from -50 to +50 

mV starting from a Vh of -65 mV.  

On the other hand, Na+ currents were isolated by using Cs+-based pipette 

solution and by adding Cd2+ (100 mM) and Ni2+ (100 mM) to a Cs+-substituted 

extracellular solution. Na+ currents were evoked in Cs+-replacement 

conditions by a 0 mV step depolarization (40 ms, Vh of -90 mV) once every 5 

seconds.  

Cell capacitance was used to estimate neuronal diameter by assuming an 

approximated spherical cell shape according to the calculated Cm for all 

biological membranes of 1 µF/cm2 and to the equation of the sphere surface: 

𝐴 = 4𝜋𝑟2 (Jain, 2000). 
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Current-clamp recordings were performed as described (Coppi et al., 2012) in 

the standard extracellular solution, by lowering CaCl2 (2 mM). A ramp current 

protocol consisting in 1 second injection of 30 pA positive current from the 

resting membrane potential (only cells showing a Vm of at least -50 mV were 

chosen) was used to evoke action potential (AP) firing in a typical DRG neuron 

once every 30 seconds. After at least 3 minute recording of a stable baseline, 

Cl-IB-MECA (100 nM) was applied for 8 to 10 minutes. Action potential firing 

was quantified by counting the number of APs evoked by a ramp current (1 

second). When the Cl-IB-MECA was applied in the presence of MRS1523 (100 

nM; A3R antagonist) or PD173212 (1 mM; N-type Cav blocker), the blocker was 

added at least 10 minutes before the agonist. Current-clamp recordings were 

filtered at 10 kHz and digitized at 1 kHz. All current-clamp values reported in 

Table 5 are the average of at least 3 episodes and have been corrected for liquid 

junction potential. All AP parameters refer to the first AP generated by the 

ramp, and in particular: 

♦ The rate of AP depolarization and hyperpolarization was measured as 

the first derivative of membrane potential over time (mV/ms); 

♦ AP threshold was defined as the point at which the derivative first 

exceeded 30 mV/ms; 

♦ AP amplitude was calculated as the difference between the peak 

reached by the overshoot and the threshold; 

♦ AP time to peak was measured as the time between the threshold and 

the voltage peak reached by the AP; 

♦ Action potential half-width was measured as the time to reach half the 

AP amplitude (ms); 

♦ Resting Vm was calculated as the averaged membrane voltage 

measured 200 ms before ramp current injection; 

♦ The current needed to produce the first spike was defined as “current 

threshold” and measured as the minimal amount of current (pA) 

injected during the ramp protocol leading to the first AP initiation; 
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♦ The AP duration measured the difference between the time of reaching 

the threshold potential during the rising phase and the time when the 

repolarizing potential crossed the threshold value again; 

♦ The fast afterhyperpolarization was measured as the difference 

between the voltage threshold and the minimum potential reached 

after the AP peak. 

 Ctrl Cl-IB-MECA Ctrl PD173212 
Ctrl in 

PD173212 
PD173212 + 
Cl-IB-MECA 

n=6 n=7 n=8 

Vrest  

(mV) 
-61.2 ± 2.3 -60.1 ± 2.1 -63.6 ± 2.9 -59.7 ± 3.6* -53.3 ± 4.0 -54.1 ± 2.6 

AP-ttp  

(ms) 

685.1 ± 

100.7 

684.6 ± 

105.2 
530.7 ± 61.9 504.2 ± 70.5 

465.0 ± 

73.54 

480.1 ± 

84.65 

AP-hw 

(ms) 
1.7 ± 0.2 2.6 ± 0.6 2.2 ± 0.6 4.4 ± 2.3 3.8 ± 2.0 2.6 ± 0.6 

AP-a 

(mV) 
65.0 ± 6.3 57.7 ± 7.9 60.6 ± 7.6 58.0 ± 12.4 57.6 ± 6.2 52. ± 6 5.5 

Ith  

(pA) 
16.0 ± 5.3 20.7 ± 7.4 4.0 ± 1.6 4.3 ± 2.0 3.3 ± 1.1 3.8 ± 1.1 

APth 

(mV) 
-15.7 ± 1.8 -14.5 ± 1.4 -12.7 ± 1.9 -14.1 ± 1.5* -14.1 ± 2.6 -13.8 ± 2.4 

APd 

(ms) 
3.7 ± 0.4 3.2 ± 0.7 3.9 ± 0.7 4.5 ± 0.6† 4.3 ± 0.5 4.2 ± 0.8 

fAHP 

(mV) 
41.9 ± 2.9 39.5 ± 4.1 46.0 ± 2.1 34.8 ± 4.4* 37.4 ± 3.1 34.3 ± 4.0 

Table 5. Action potential parameters. The following experimental groups were analysed: 
Control: Ctrl vs Cl-IB-MECA (100 nM; n=6); Ctrl vs PD173212 (1 mM; n=7); and PD173212 vs 
PD1732121Cl-IB-MECA (n=8). All action potential (AP) parameters are referred to the first 
action potential (AP) generated by the ramp. Resting Vm (Vrest) was calculated as the averaged 
membrane voltage measured 200 ms before ramp current injection. Action potential time to 
peak (AP-ttp) was measured as the time between the threshold and the voltage peak reached 
by the AP. Action potential half-width (AP-hw) was measured as the time to reach half the 
AP amplitude. Action potential amplitude (AP-a) was calculated as the difference between 
the peak reached by the overshoot and the threshold. The current needed to produce the first 
spike was defined as “current threshold” (Ith) and was measured as the minimal amount of 
current (pA) injected during the ramp protocol leading to the first AP initiation. Action 
potential threshold was defined as the point at which the derivative first exceeded 30 mV/ms. 
Action potential duration (APd) measured the difference between the time of reaching the 
threshold potential during the rising phase and the time when the repolarizing potential 
crossed the threshold value again. The fast afterhyperpolarization (fAHP) was measured as 
the difference between the voltage threshold and the minimum potential reached after the AP 
peak. The paired Student t test, n = 7. * P < 0.05; † P < 0.01 vs respective ctrl.  
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3. Quantitative RT-PCR analysis 

Gene expression analysis was performed by RT-PCR, using 2(-ΔΔCT) 

comparative method of quantification (Schmittgen and Livak, 2008).  

For OPC cultures, total RNA (500 ng), extracted with GenElute™ Mammalian 

Total RNA Miniprep (Sigma-Aldrich s.r.l. Milan, Italy) was reverse 

transcribed using iScript™ Advanced cDNA Synthesis Kit for RT-qPCR (Bio-

Rad Laboratories S.r.l., Segrate (MI), Italy) according to the manufacturer's 

instructions. The design of MAG, MBP, S1P2, S1P3 and A2BR primers were 

performed employing Primer Express® Software v3.0.1 (Thermo Fisher 

Scientific INC. Monza (MB), Italy) that provides customized application-

specific documents for absolute and relative quantitation. Rat oligonucleotide 

primers employed in gene expression studies are listed in Table 6.  

The quantification of target gene mRNA levels was performed employing 

PowerUp™ SYBR™ Green Master Mix (Bio-Rad Laboratories S.r.l). Each 

measurement was carried out in triplicate, using the automated ABI Prism 

7500 Sequence Detector System (Thermo Fisher Scientific INC) as described 

previously (Donati et al., 2007), by simultaneous amplification of the target 

gene together with the housekeeping gene (β-actin and glyceraldehyde-3-

phosphate dehydrogenase: GAPDH) in order to normalize expression data. 

Results were analyzed by ABI Prism Sequence Detection Systems software, 

version 1.7 (Applied Biosystems, Foster City, CA). The 2(−ΔΔCT) method was 

applied as a comparative method for quantification and data were normalized 

to β-actin and GAPDH expression. 

Oligo name Sequence 5′ to 3′ (include modification codes if applicable) 

MAG-FW TTCCGAATCTCTGGAGCACCTGATAAG 

MAG-RV TCCTCACTTGACTCGGATTTCTGCGT 

ACTB-FW GAACACGGCATTGTCACCAACTGGGA 

ACTB-RV GCCTGGATGGCTACGTACATGGCT 

MBP-FW GCCCTCTGCCTTCTCATGCCC 

MBP-RV CCTCGGCCCCCCAGCTAAATCT 

NG2 CSPG4-FW ACCCTCAGCACTTTCTCCTGGAGAG 
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NG2 CSPG4-RV CAAGCCTGTGTTTGTGGTGATGACAG 

ADORA2B-FW GTGGGAGCCTCGAGTGCTTTACAG 

ADORA2B-RV GCCAAGAGGCTAAAGATGGAGCTCTG 

GAPDH-FW AACCCATCACCATCTTCCAGGAGCG 

GAPDH-RV TCTCGTGGTTCACACCCATCACAAAC 

SPHK1-FW ACCTGCTTCCTCACTGGCACAGAAG 

SPHK1-RV CAGATGCATAACACCAGCCTCGCAG 

SPHK2-FW GAGTGAGTGGGAAGGCATTGTCACTG 

SPHK2-RV GAGCAACAGGTCAACACCAACAGTTTGC 

S1PLYASE-FW GTCAAGAACATGCCATTCCTGAAGTTGGA 

S1PLYASE -RV GAATTCTCCGTAAGCCTGCACCAGC 

S1P2-FW GGTGGAGAACCTTCTGGTGCTAATCG 

S1P2-RV GTGATGAAGGCTGAACCCTCTCGG 

S1P3-FW TGATCAAGATGAGGCCGTACGACGC 

S1P3-RV GGCTGTGAAGATGCTGATGAGAAAGG 

S1P5-FW GCTTCCATGCACCCATGTTCCTGC 

S1P5-RV CGCTCTATAGCAATGGCCAGGAGG 

CNPASE-FW TCTCCGAGGAGTACAAGCGTCTGG 

CNPASE-RV CTCCTTGAGCTGGGCACAGTCTAGT 

Table 6. Sequences of rat oligonucleotide primers employed in gene expression studies of real-
time polymerase chain reaction (RT-PCR). The following mRNA were used: rattus 
norvegicus myelin-associated glycoprotein (MAG); rattus norvegicus actin beta (Actb); rattus 
norvegicus myelin basic protein transcript variant 1 (MBP); rattus norvegicus chondroitin 
sulfate proteoglycan 4 (NG2 Cspg4); adenosine A2B receptor (ADORA2B); glyceraldehyde-3-
phosphate dehydrogenase (Gapdh); sphingosine kinase 1 (Sphk1); sphingosine kinase 2 
(Sphk2); sphingosine 1-phosphate lyase (S1Plyase); sphingosine 1-phosphate receptor 2, 3, 5 
(S1P2, S1P3, S1P5); 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase). Forward (FW); 
reverse (RV). 

 

For DRG cultures, total RNA was isolated using Nucleospin RNA (Macherey–

Nagel Duren, Duren, Germany) with DNAse treatment according to the 

manufacturer’s instructions. The expression of A3Rs was evaluated by 

quantitative real-time polymerase chain reaction (RT-PCR) using gene-specific 

fluorescently labelled TaqMan MGB probe (minor groove binder). For the RT-

PCR of A3ARs, a predeveloped assay was used: Adora3 Rn_00563680_m1. The 

amount of target mRNA was normalized to the endogenous reference, 

GADPH Rn 01749022_g1, and to a homogenate of the rat brain taken as a 

positive control, according to the 2(−ΔΔCT) method. Data are the result of 3 

independent experiments performed in triplicate. 
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4. Western blot analysis 

Primary rat cortical OPC culture were collected after 10 μM BAY60-6583 

challenge for 10 min and lysed in a buffer containing 50mM Tris, pH 7.5, 

120mM NaCl, 1mM EDTA, 6mM EGTA, 15mM Na4P2O7, 20mM NaF, 1% 

Nonidet protease inhibitor and phosphatase inhibitor cocktail for 30 min at 

4°C. Then lysates were centrifuged at 10.000xg, 15 min 4°C, supernatant 

collected for protein quantification and 15 μg of protein from total cell lysates 

were used to perform a SDS-polyacrylamide gel electrophoresis and Western 

blot analysis. The rate of phosphorylation of SphK1 and SphK2 were measured 

using the Sphingosine kinase activation antibody sampler kit (ECM Biosiences 

ECM Biosciences, Versailles, KY USA). Membranes were incubated overnight 

with the primary antibodies at 4°C and then with specific secondary 

antibodies for 1 h at room temperature. Binding of the antibodies with the 

specific proteins has been detected by Enhanced chemiluminescence (ECL), 

employing Amersham Imager 600. Densitometric analysis was performed by 

ImageJ software. 

 

5. Small interference RNA transfection and gene 

downregulation 

OPC were transiently transfected with Lipofectamine RNAi-MAX according 

to the manufacturer's instructions, as already reported (Bruno et al., 2018). 

Briefly, Lipofectamine RNAiMAX (Thermo Fisher Scientific) was incubated 

with siRNA in Neurobasal medium without serum and antibiotics at room 

temperature for 20 min, and afterwards the lipid/RNA complexes were added 

with gentle agitation to cells to a final concentration of 75 nM in B27-containing 

Neurobasal in the presence of PDGF-BB and bFGF. After 24 h, cell medium 

was changed with serum-free medium and then used for the experiments 

within 72 h from the beginning of the transfection. The specific gene 

knockdown was evaluated by RT-PCR. 
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6. Immunocytochemical analysis 

OPC and DRG cultures grown on 13-mm diameter coverslips were fixed with 

4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS, Pan-Biotech, 

Milan, Italy) for 10 min at RT.  

Then OPC were washed twice with PBS and incubated with PBS containing 

0.25% Triton X-100 (Sigma-Aldrich, Milan Italy) (PBST). After three washes in 

PBS, OPCs were incubated with 10% goat serum (Sigma-Aldrich, Milan Italy) 

in PBST (PBST-GS) for 30 min to block unspecific binding of the antibodies. 

OPCs were incubated for 2.5 hours at RT in rabbit anti-A2BR-selective primary 

antibody (Alomone, Jerusalem, Israel) diluted 1:200 in PBST-GS. Cells were 

then washed 3 times with PBS and incubated 1 h at RT with goat 

AlexaFluor647 anti-mouse secondary antibody (AbCam, UK, Cambridge) 

diluted 1:500 in PBST-GS. Coverslip were mounted with Fluoroshield (Sigma-

Aldrich, Milan Italy) containing 49,6-diamidino-2-phenylindole (DAPI) to 

visualize cells nuclei. Immunocytochemical images were captured by a SP8 

laser scanning confocal microscope (Leica Microsystems, Mannheim, 

Germany), using a 63X oil-immersion objective (NA 1.40) and the collected 

images were analyzed with an open source software (ImageJ, version 1.49v 

National Institutes of Health, Bethesda, MD, USA). 

For DRG cultures, rabbit polyclonal A3AR-selective primary antibody 

(Alomone Labs, Jerusalem, Israel) was diluted 1:200 in bovine serum dilution 

buffer (450-mM NaCl, 20-mM sodium phosphate buffer, pH 7.4, 15% fetal 

bovine serum, and 0.3% Triton X-100) and incubated for 2.5 hours at RT. Cells 

were then washed 3 times with phosphate-buffered saline and incubated for 1 

hour at RT with a donkey anti-rabbit secondary antibody (diluted 1:500 in 

bovine serum dilution buffer) conjugated to AlexaFluor 488 (Life 

Technologies, Invitrogen, Milan, Italy). Coverslips were mounted with 

Vectashield mounting medium (Vector Laboratories, Burlingame, CA) 

containing 49,6-diamidino-2-phenylindole (DAPI) to visualize cells nuclei, 

digitized, and acquired by using an Olympus BX40 microscope equipped with 
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CellSens Dimension Software (Olympus, Hamburg, Germany). Control 

experiments were performed by incubating fixed cells with the secondary 

antibody alone to exclude nonspecific binding. 

In both cases, control experiments were performed by incubating fixed cells 

only with the secondary antibodies and DAPI in order to exclude nonspecific 

binding.  

7. Intracellular Ca2+ measurement 

Intracellular cytosolic Ca2+ dynamic ([Ca2+]i) was evaluated in fura-2–loaded 

DRG neurons as described (Di Cesare Mannelli et al., 2016). Briefly, 104 cells 

were plated on round glass coverslips (25-mm diameter) and seeded for 1 to 2 

days in a complete medium. Cells were loaded with 4 mM fura-2AM 

(Molecular Probes-Invitrogen Life technologies, San Giuliano Milanese, Italy) 

for 45 minutes at 37°C and then washed with the K+-containing standard 

extracellular solution described above. Coverslips were mounted in a 

perfusion chamber and placed on the stage of an inverted reflected light 

fluorescence microscope (Zeiss Axio Vert. A1 FL-LED) equipped with 

fluorescence excitation (385 nm) based on LED. Before electrical field 

stimulation, cells were incubated for at least 5 minutes with different solutions 

containing the following molecules: control (standard extracellular solution), 

1 µM TTX + 200 nM A887826, 30 nM Cl-IB-MECA, and 1 µM verapamil + 0.5 

µM PD173212. Fura-2 fluorescence was recorded with a Tucsen Dhyana 400D 

CMOS camera (Tucsen Photonics, Co, Ltd, Fuzhou, China) with a frame rate 

of 40 Hz and a resolution of 1024 x 1020 pixels2. Ca2+ dynamic was measured 

by single-cell imaging analysis at 35°C (Di Cesare Mannelli et al., 2016).  

Images were recorded using Dhyana software SamplePro and dynamically 

analyzed with the opensource community software for bio-imaging Icy 

(Institute Pasteur, Paris, France). Ca2+ transients were induced by electrical 

field stimulation at 0.1 Hz frequency, 100 mV voltage, and 50 ms width 

duration. Preliminary experiments were performed to optimize stimulation 
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parameters in control condition (standard extracellular solution). Frequency, 

voltage, and duration were chosen to obtain a high number of responder cells, 

defined as “spiking” cells, without signs of membrane electroporation and 

stable fura-2 fluorescence. A signal-to-noise ratio of at least 5 arbitrary units 

was considered as Ca2+ transient. Spiking DRG neurons were identified as 

cells showing at least 5 Ca2+ transients in 1 minute. In spiking cells, the 

following parameters were evaluated as the mean of at least 3 different Ca2+ 

transients: the ratio between the fluorescence maximal variation induced by 

electrical field stimulation and basal fluorescence (ΔF/F, measured as 

arbitrary units) and the decay time of Ca2+ transient (tau, τ). Tau was calculated 

according to the following equation: 𝑌 = 𝑦0 + 𝐴 × 𝑒(−𝑥
𝜏⁄ ). 

According to the fitting function, the tau (τ) parameter represented the time 

necessary for [Ca2+]i to reach 36.8% of the maximal value. Tau was therefore 

reported as the decay time value (s). At least 3 Ca2+ transients for each different 

treatment were analysed and averaged. The cell diameter of analyzed DRG 

neurons was measured in pixels using ImageJ software and transformed in 

micrometer by a specific calibration scale. Experiments were repeated in 4 

different neuronal preparations. All DRG neurons (identified by transmitted 

light microscopy) found in an optical field (using 40X magnification objective) 

were analyzed. From 16 to 22 cells were evaluated blindly every experimental 

day for each experimental treatment. 

8. Drugs 

Acetylcholine (ACh), carbachol (CCh), atropine (atr), pertussis toxin (PTX), 

neostigmine, neomycin, 4-aminopyridine (4-AP), EGTA, apamin, 

tetraethylammonium (TEA), 1,1-dimethyl-4-diphenylacetoxypiperidinium 

iodide (4-DAMP), 2-[[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy) 

phenyl]-2-yridinyl]thio]-acetamide (BAY 60-6583), 8-cyclopentyl-1,3-

dipropylxanthine (DPCPX), 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl 

-4-propyl-3-pyridine carboxylate (MRS1523), 7-(2-phenylethyl)-5-amino-2-(2-

furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261), 8-(4-(4-(4-
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Chlorophenyl)piperazide-1-sulfonyl)phenyl)-1-propylxanthine (PSB603), 8-

[4-[((4-Cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine 

(MRS1754), 5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl) 

phenyl]-1,2,4-oxadiazole (SEW2871), (R)-3-amino-(3-hexylphenylamino)-4-

oxobutylphosphonic acid (W146), forskolin, 2-Chloro-N6-(3-iodobenzyl)-

adenosine-59-N-methyluronamide (Cl-IB-MECA), 5-(4-butoxy-3-chloro 

phenyl)-N-[[2-(4-morpholinyl)-3-pyridinyl] methyl]-3-pyridinecarboxamide 

(A 887826), N-(2-methoxyphenyl)-N9-[2-(3-pyridinyl)-4-quinazolinyl]-urea 

(VUF5574), N6-cyclopentyladenosine (CPA) and adenosine were purchased 

from Sigma/Merck Life Science S.r.l. (Milan, Italy).  

Verapamil was purchased from Calbiochem (Merck, Darmstadt, Germany). 

N-[[4-(1,1-Dimethylethyl)phenyl]methyl-N-methyl-L-leucyl-N-(1,1-dimethyl 

ethyl)-O-phenylmethyl)-L-tyrosinamide (PD173212) were purchased from 

Alomone Labs (Jerusalem, Israel).  

Tetrodotoxin (TTX), N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-

1,3-dipropyl-1H-purin-8-yl)phenoxy]-acetamide (MRS1754) and N-(4-

acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl) 

phenoxy]acetamide (MRS1706) were purchased from Tocris (Bristol, United 

Kingdom). 

2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol (fingolimod)-phosphate 

(FTY720-P) was purchased from Cayman Chemical (Michigan, USA) 

Methoctramine was a kind gift from Dr. Rosanna Matucci (University of 

Florence) and Prof. Carlo Melchiorre (University of Bologna).  

Amidine analogs that inhibits sphingosine kinase, VPC96047 and VPC96091, 

were kindly provided by Prof. K. Lynch (University of Virginia, USA) 

The new, highly selective, A2BR agonist 2-{[(1H-imidazol-2-yl)methyl]thio}-6-

amino-4-[4-(cyclopropylmethoxy)phenyl]pyridine-3,5-dicarbonitrile (P453) 

was previously described (Betti et al., 2018; Fig. 14).  
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Figure 14. Chemical structure of the non-adenosine like A2BR agonist. (2-{[(1H-imidazol-2-
yl)methyl]thio}-6-amino-4- [4-(cyclopropylmethoxy)phenyl]pyridine-3,5-dicarbonitrile) 
(P453). 

 

The new, highly selective, A3R agonist (1S,2R,3S,4R,5S)-4-(2-((5-

chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy 

-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) was synthesized as 

reported previously (Fang et al., 2015; D. K. Tosh et al., 2014).  

 

Figure 15. Chemical structure of the A3 receptor agonist. (1S,2R,3S,4R,5S)-4-(2-((5-
chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-
methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980). 



Materials and Methods_______________________________________________ 
 

122 

 

Ach, CCh, atropine, PTx, neostigmine, neomycin, 4-AP, EGTA, apamin, TEA, 

methoctramine, TTX were dissolved in distilled water.  

4-DAMP, Cl-IB-MECA, A887826, MRS1523, VUF5574, DPCPX, CPA, 

PD173212, MRS5980, BAY 60-6583, SCH58261, PSB603, MRS1754, SEW2871, 

W146 and forskolin were dissolved in dimethyl sulphoxide (DMSO).  

Control experiments were performed to confirm that the maximal 

concentration of DMSO used in our experiments was 0.1% and it did not alter 

electrophysiological properties nor drugs effects in hfNBM neuroblasts, OPCs 

nor DRGs. 

All drugs were stored at -20°C as 103 to 104 times more concentrated stock 

solutions and dissolved daily in the extracellular solution to the final 

concentration and applied by bath superfusion.  

 

Table 7. Adenosine receptors ligands used in this thesis. 

 

9. Data and Statistical analysis 

Data are expressed as mean ± SEM (standard error of the mean). Two tailed 

Student’s paired or unpaired t-tests or One-way ANOVA followed by 

Bonferroni post-test analysis were performed, as appropriated, in order to 

determine statistical significance (P<0.05).  
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In experiments of intracellular Ca2+ measurement, 3 different parameters were 

measured: (1) the ratio between DRG neurons defined as “spiking” (Ca2+  

transient) and “not spiking” in each experimental condition; (2) ΔF/F; and (3) 

tau of Ca2+ transient evoked in “spiking” cells. The effect of each treatment in 

changing the ratio between “spiking” and “not spiking” was evaluated using 

the 𝑋2 test (PRIMER); other data (reported as mean ± SEM) were statistically 

analyzed using One-way ANOVA followed by Bonferroni analysis.  

Data were analyzed using “Origin 10” (OriginLab, Northampton, 

Massachusetts, USA) or “GraphPad Prism” (GraphPad Software, San Diego, 

CA, USA) software. 
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Aim I - Electrical oscillatory activity and muscarinic 
effects on K+ and Na+ currents in human foetal cholinergic 
neurons from the nucleus basalis of Meynert 

Part of the following results were recently published in: 

Coppi, E., Cherchi, F., Sarchielli, E., Fusco, I., Guarnieri, G., Gallina, P., 

Corradetti, R., Pedata, F., Vannelli, G.B., Pugliese, A.M., et al. (2020). 

Acetylcholine modulates K+ and Na+ currents in human basal forebrain 

cholinergic neuroblasts through an autocrine/paracrine mechanism.  

J. Neurochem. jnc.15209. 

1.1. Electrophysiological characterization of a primary 

culture of hfNBM neuroblasts 

Electrophysiological properties were recorded in hfNBM neuroblasts 

propagated up to p25, i.e. up to ~15 weeks in culture. As summarized in Fig. 

16, cells exhibited stable passive and active membrane properties throughout 

this period of observation. Input resistance (Rin) and resting membrane 

potential (Vm) were not statistically different from p9 to p25 (Fig. 16A, B) and 

were, on average, 645.7 ± 48.7 MΩ (n=176) and -45.1 ± 1.6 mV (n=102), 

respectively. Cell capacitance (Cm: Fig. 16C), as directly proportional to cell 

size, significantly increased during the culture period starting from p20 and 

was, on average, 24.0 ± 2.4 pF from p9 to p18 (n=71) and 54.8 ± 3.5 pF from p20 

to p25 (n=105). Active electrophysiological properties of hfNBM neuroblasts 

were also stable during cell culture: fast, TTX-sensitive Na+ currents were 

present in about 64.3 % of cells (90 out of 140) from p9 to p25 and their 

amplitude was similar along passages (Fig. 16D-F). Overall voltage-dependent 

outward K+ currents evoked by a voltage ramp protocol (Fig. 16G) were stable 

throughout cell culture (Fig. 16H) with an average amplitude of 2.9 ± 0.2 nA 

at +150 mV (n=85). A phase contrast image of typical hfNBM used for 

recording is shown in Figure 16I.  
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Figure 16. Electrophysiological properties of a primary culture of hfNBM neuroblasts. A-C. 
Pooled data of membrane resistance (Rm: A), resting membrane potential (Vm: B) and cell 
capacitance (Cm: C) measured in hfNBMs at different passages (p). *p<0.05 vs p9, p14, p16; 
**p<0.01 vs p9, p14, p16, p18, One-way ANOVA, Bonferroni’s post-test. D. Original Na+ 
current (INa) traces elicited in a hfNBM in the absence (control: ctrl) or presence of 
tetrodotoxin (TTX). Scale bars: 0.5 nA; 5 ms. E. Fraction of cells expressing (INa) or not 
expressing (no INa) Na+ currents at distinct passages. F. Averaged INa amplitude was not 
different during cell culture. One-way ANOVA, Bonferroni’s post-test. G. Original current 
trace elicited by a voltage ramp protocol. H. Averaged ramp-evoked outward currents 
measured at +150 mV in hfNBMs were not different at various passages. One-way ANOVA, 
Bonferroni’s post-test. I. Phase contrast microphotograph showing cell morphology at p18. 
Number of cells is indicated inside the columns. Data are mean ± SEM. 

1.2. Effects of acetylcholine in hfNBM neuroblasts 

In previous work (Morelli et al., 2017) it was demonstrated the functional 

expression of nAChRs, whose activation elicits an inward current at -60 mV, 

and mAChRs, whose activation increases ramp-evoked K+ currents. In the 

present work, we investigated the effect of ACh on hfNBM neuroblasts at 

different passages in culture to reveal whether significant changes in the 

response to the activation of these receptors by the physiological agonist 

occurred between p9 and p25. To this purpose, we recorded the response of 
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hfNBM neuroblasts to voltage ramps from -120 mV to + 150 mV (Fig. 17A, 

upper left inset). This permitted to simultaneously monitor possible 

modulation of inward (at -120 mV) and outward (at +150 mV) currents by 

ACh. Figure 17 illustrates the effects of ACh on ramp-activated outward 

currents in hfNBM neuroblasts from p9 to p25. Three different responses were 

observed. In the majority of cells (38 out of 73: 52.1%; Fig. 17A) application of 

ACh (20 μM, 5 min) produced an increase in ramp-activated outward currents 

that reached a steady-state level after 3 min and slowly reversed after drug 

washout. In a second group of cells (16 out of 73: 21.9%; Fig. 17B) we recorded 

a transient increase in ramp activated outward and inward currents. The effect 

peaked within the first minute of ACh application and rapidly faded before 

drug washout. In the third group of cells (19 out of 73: 26.0%; Fig. 17C) a 

combination of both responses was present. In the presence of the muscarinic 

antagonist atropine (100 nM, n=9), that per se did not elicit any effect on ramp-

activated currents, the increase in +150 mV ramp-evoked currents elicited by 

Ach was fully antagonized in 5 cells. In the remaining 4 cells a transient 

increase in both inward and outward currents was recorded, indicating that 

the effect was mediated by nAChRs. On these bases, we define the former as 

a “muscarinic-like effect” of ACh, and the latter as a “nicotinic-like effect” of 

ACh on ramp currents. Figure 17E summarizes the panel of responses in the 

presence and in the absence of atropine. The relative distribution of the three 

responses to ACh application (i.e.: muscarinic-like, nicotinic-like, and both 

combined) did not show significant differences throughout cell passages (Fig. 

17F).  



Aim I – Results_______________________________________________________ 
 

130 

 

 

Figure 17. Effects of acetylcholine on ramp-activated currents in hfNBM neuroblasts. A-C. 
Representative time courses of whole-cell recordings illustrating three different responses to 
acetylcholine (ACh, 20 μM) application in subsets of hfNBM neuroblasts. Voltage ramps (from 
- 120 mV to + 150 mV; 1 s duration, every 15 s: see upper left inset in A) were imposed to 
hfNBM neuroblasts to simultaneously measure inward (at -120 mV) and outward (at +150 
mV) currents during drug application (see also methods). A. Sustained, muscarinic-like, 
response (n=57) B. Rapidly desensitizing, nicotinic-like, response (n=16). C: Mixed, nicotinic-
like and muscarinic-like, response (n=19). Note the simultaneous changes in inward and 
outward currents in B and C. Upper insets: original current traces recorded at time points 
indicated by letters in the corresponding time course. D. Representative time-course showing 
that the rapidly desensitizing response to ACh was not sensitive to atropine (atr: 100 nM), 
indicating nicotinic receptor activation. Note the simultaneous change in inward and outward 
currents. E. Effect of atropine on responses to ACh application. Averaged (mean ± SEM) time 
courses of ramp-activated outward currents measured at +150 mV and expressed as percent 
of baseline values in hfNBM neuroblasts at passages 9-25. In the presence of atropine (atr; 100 
nM; n=9) neuroblasts showed either no response (n=5; blue circles) or fast desensitizing, 
nicotinic-like effect (nicot: n=4, open blue diamonds) to ACh application (20 μM). Muscarinic-
like (musc: n=28, red circles) and nicotinic-like (n=11; open red diamonds) responses from 
parallel recordings in the absence of atropine are shown for comparison. F. Graph: Averaged 
ACh-activated net currents, obtained by subtraction of the control ramp from that recorded in 
ACh, during muscarinic (n=38, black trace) or nicotinic (n=35, red trace) responses. 
Histogram: fraction of cells showing muscarinic response (musc), nicotinic response (nicot) or 
both responses (both). No significant difference was found between groups, One-way 
ANOVA, Bonferroni’s post-test. Numbers in the columns are the number of cells tested. 

As hfNBM neuroblasts express high levels of the ACh degrading enzyme 

AChE (Morelli et al., 2017), the effect of ACh could be underestimated. 

Therefore, we applied ACh in the presence of the AChE inhibitor neostigmine 

(100 nM). As illustrated in Figure 18A, upon neostigmine application a slowly 

developing increase in ramp-activated outward currents (b, blue trace) 
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reminding the muscarinic-like response evoked by ACh itself was observed in 

all cells tested (n=6). ACh (20 μM), applied in the presence of neostigmine, 

elicited a further increase in ramp-activated outward currents (c, red trace). As 

summarized in Figure 18B, both these effects were prevented by atropine (100 

nM: Fig. 18B, right panel), indicating their dependence on muscarinic receptor 

activation. As expected, the effect of ACh in neostigmine was significantly 

greater than that of ACh alone (Fig. 18C). Importantly, the effect of 

neostigmine itself was statistically significant indicating that, when AChEs are 

inhibited, endogenous ACh produced by hfNBM neuroblasts accumulates in 

the culture medium and activates AChRs. Notably, in 2 out of these 6 cells, the 

muscarinic-like effect of neostigmine was preceded by a transient increase in 

both inward and outward ramp-activated currents (Fig. 18D, E), characteristic 

of nicotinic receptor-mediated response in hfNBM cells (see: Morelli et al. 

2017). Collectively, these data indicate that cultured hfNBM neuroblasts 

spontaneously release ACh which, in the presence of neostigmine, can activate 

nAChRs and/or mAChRs. This result is consistent with our previous 

observation that ACh is found in nM amounts in the culture medium of these 

cells (Morelli et al., 2017). 
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Figure 18. Block of acetylcholine-esterases reveals endogenous acetylcholine release and 
enhances the effect of acetylcholine application in hfNBM neuroblasts. A. Time course of 
ramp-activated currents recorded before, during, or after the application of the acetylcholine-
esterase (AChE) inhibitor neostigmine (100 nM) alone or in combination with ACh (20 μM). 
Upper inset: original current traces recorded in the same cell at time points indicated by 
corresponding letters in the time course. B. Pooled data (mean ± SEM) of ramp currents 
measured at +150 in control (ctrl), neostigmine (neost) or neostigmine with ACh (neost + ACh) 
(n=5, left panel) or the same experimental conditions but in the presence of atropine (atr, n=5, 
right panel). *P < 0.05, paired Student’s t-test. C. Pooled data of ACh-mediated effect (% 
increase of ramp-activated currents at +150 mV from the value measured during the last 
minute before ACh application) in the absence or presence of neostigmine. *P < 0.05, unpaired 
Student’s t-test. D. Time course of ramp activated currents recorded before and during the 
application of the AChE inhibitor neostigmine (100 nM) applied alone or in combination with 
ACh (20 μM). Arrowheads indicate the transient nicotinic effect elicited by neostigmine. E. 
Original current traces recorded in the same cell at time points indicated by corresponding 
letters in the time course. 

1.3. Muscarinic M2 receptors modulate K+ conductance in 

hfNBM neuroblasts 

Next, we characterized the muscarinic receptors and the intracellular 

pathways implicated in the response of hfNBM neuroblasts to ACh by using 

the muscarinic agonist carbachol (CCh). CCh concentration-dependently 

increased ramp-activated outward currents (Fig. 19A, B) with an EC50 value 

of 1.7 μM (C.I.: 1.1 – 2.7 μM; Fig. 19C). The effect of CCh (50 μM) was prevented 

by atropine (100 nM; Fig 17D) confirming that the response to the agonist was 
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mediated by muscarinic receptors. Fig. 19D also summarizes the sensitivity of 

CCh-evoked responses to a variety of K+ channel ligands. Thus, the K+ 

currents modulated by CCh resulted insensitive to the small conductance 

Ca2+-activated K+ (SK) channel blocker apamin (100 nM) and to the inward 

rectifying K+ (Kir) channel blocker Ba2+ (2 mM), but were blocked by the 

delayed rectifier K+ channel blocker TEA (10 mM). We conclude that mAChR 

activation in hfNBM neuroblasts enhances TEA-sensitive K+ currents.  

 

Figure 19. Effect of carbachol on ramp-activated K+ currents in hfNBM neuroblasts. A. Time 
course of carbachol (CCh) concentration-dependent effect on ramp-activated outward 
currents in a representative neuroblast. B. Original current traces recorded at points indicated 
by corresponding letters in the time course; same cell shown in A. C. Average concentration-
response curve. Given are the mean ± SEM of at least 4 determinations. When not visible error 
bars are smaller than symbols. Curve represents the best fit to four-parameter logistic equation 
(see methods). The calculated EC50 of CCh effect on ramp currents is 1.7 μM (confidence limits: 
1.1 - 2.7 μM). D. Pooled data (mean ± SEM) of net CCh (10 μM)-activated currents at +150 mV 
in control conditions (ctrl: n=8), in the presence of atropine (atr: 100 nM; n=5), in 
tetraethylammonium (TEA: 10 mM; n=5), in apamin (100 nM; n=5) or in Ba2+ (2 mM; n=5). 
One-way ANOVA, Bonferroni post-test. 

In the attempt to elucidate the intracellular pathway/s involved in the action 

of CCh, we first recorded the effect of the agonist using patch pipettes 

containing 500 μM neomycin, known to prevent PLC activation (Felder et al., 

1990). Intracellular neomycin did not significantly affect the response to CCh 

(10 μM; Fig. 20A) indicating that PLC was not involved in this specific effect 

of the agonist. Similarly, when the elevation of intracellular Ca2+ was 

prevented by the presence of BAPTA (10 mM) in the recording pipette, CCh 

still produced an increase in ramp-activated outward currents (Fig. 20B) 

indicating that intracellular Ca2+ mobilization was not required for the 

response to CCh. Finally, to test the dependence of CCh effect on G protein 

activation, we incubated hfNBM neuroblasts in pertussis toxin (PTx; 1 μg/ml, 
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overnight). In all neuroblasts recorded (n = 6). PTx treatment prevented CCh 

to affect ramp-activated outward currents (Fig. 20C) showing that the 

response in hfNBM neuroblasts was mediated by Gi/Go–coupled, likely M2 

and/or M4, receptors.  

 

Figure 20. Carbachol-evoked increase of ramp-activated K+ currents in hfNBM neuroblasts is 
mediated by Gi protein activation. A-C. Time courses of carbachol (CCh: 10 μM)-mediated 
effect on ramp-activated K+ currents in different experimental conditions: neomycin (500 μM)-
containing pipettes (n=5) (A), BAPTA (10 mM)-containing pipettes (n=5) (B) or pertussis toxin 
(PTx: 1 μg/ml)-incubated cells (n=6) (overnight: o/n) (C). Upper insets: original current traces 
recorded in representative cells before (control: ctrl) or after CCh application (left panels) and 
respective net CCh-activated currents (right panels), obtained in each cell by subtraction of 
the control ramp from the ramp recorded in CCh. D. Averaged time courses of CCh-mediated 
effect in different experimental conditions. For the sake of clarity, error bars (SEM) are shown 
in a single direction. E. Averaged net CCh-activated currents measured in the same 
experiments shown in D. For the sake of clarity, error bars are not shown. 

As the Gi/Go-coupled M2 and the Gq/11-coupled M3 are the most abundant 

muscarinic receptors expressed by hfNBM neuroblasts (Morelli et al., 2017), 

we tested the sensitivity of CCh effect to the selective M2 antagonist 

methoctramine (1 μM: Fig. 21A) and to the selective M3 blocker 1,1-dimethyl-

4-diphenylacetoxypiperidinium iodide (4-DAMP; Fig. 21B). Both compounds 

did not modify ramp-activated K+ currents per se. Consistently with PTx block, 

CCh-mediated effect on K+ currents was significantly antagonized by 

metochtramine but not by 4-DAMP, (Fig. 21C, D) demonstrating the 

involvement of M2, but not M3, mAChRs. 
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Figure 21. The M2 muscarinic receptor subtype is responsible for the increase in K+ current 
induced by carbachol in hfNBM neuroblasts. A-B. Original current traces recorded in typical 
cells where carbachol (CCh: 50 μM) was applied in the presence of the M2 antagonist 
methoctramine (meth: 1 μM: A) or the M3 antagonist 4-DAMP (1 μM: B). C. Averaged (mean 
± SEM) time courses of net ramp-activated currents in hfNBM cells in different experimental 
conditions. Data are expressed as % of control (ctrl). For the sake of clarity, error bars (SEM) 
are shown in a single direction. D. Pooled data of net CCh activated currents at +150 mV, 
obtained by subtraction of the control ramp from the ramp recorded in CCh, in control 
conditions (ctrl: n=8), in 1 μM methoctramine (n=5) or in 1 μM 4-DAMP (n=7). **** P <0.0001, 
One-way ANOVA, Bonferroni post-test. 

1.4. Muscarinic M3 receptors decrease Na+ currents in hfNBM 

neuroblasts 

The effect of cholinergic agonists on Na+ currents in hfNBM neuroblasts was 

tested in conditions of K+ channel block by Cs+ replacement (see methods). As 
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shown in Figure 22, Na+ currents elicited by single voltage steps (from -90 mV 

to 0 mV; 40 ms) were efficiently isolated in these experimental conditions and 

were concentration-dependently inhibited by CCh (1-50 μM) and ACh (1-50 

μM). Both effects were fully antagonized by atropine (100 nM; Fig. 22A, B), 

showing that inhibition of Na+ currents was produced by activation of 

muscarinic receptors. Similar results were obtained when Na+ currents were 

evoked by a sequence of depolarizing voltage steps (from -90 mV to +60 mV; 

40 ms) to investigate muscarinic modulation in a wider range of membrane 

potentials (Fig. 22C-F). 

To further define the characteristics of Na+ current modulation by muscarinic 

receptors we have studied the effects of ACh (50 μM) and CCh (50 μM) on 

activation and inactivation properties of Na+ currents. As illustrated in Fig. 

22G-J, ACh, (Fig. 22G, H) but not CCh (Fig. 22I, J), caused a depolarizing shift 

in the activation curve and a hyperpolarizing shift in the inactivation curve. 
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Figure 22. Muscarinic receptor activation by acetylcholine or carbachol decreases Na+ 
currents in hfNBM neuroblasts. A. Time courses of carbachol- (CCh)-mediated effect on Na+ 
current (INa) elicited by voltage pulses (upper diagram) in the absence (left panel) or in the 
presence (right panel) of atropine (100 nM). Insets: original INa traces recorded at time points 
indicated by letters in the corresponding time-course. Scale bars: 1 nA, 5 ms. B. Pooled data 
(mean ± SEM) of CCh- (left panel; n=5) or acetylcholine- (ACh: right panel; n=8) mediated INa 
decrease at different concentrations or in the presence of atropine (atr; 100 nM). Data were 
expressed as % INa decrease. * P <0.05 vs 1 μM CCh (left panel) or 1 μM ACh (right panel). § 
P <0.05 vs 50 μM CCh (left panel) or 50 μM ACh (right panel); One-way ANOVA, Bonferroni 
post-test. C-F. Original current traces (C,E) and averaged I-V plots (D,F) recorded before and 
during ACh (50 μM) or CCh (50 μM) applied alone (D) or in the presence of 100 nM atropine 
(F). Paired Student’s t-test. Scale bars: 0.5 nA, 5 ms. G,I. Activation and inactivation curves 
elicited by a depolarizing voltage step protocol (from -100 to +60 mV, 40 ms; final step = 0 mV: 
upper inset) in ACh (G, n=8) or CCh (I,  n=7) compared to control conditions (ctrl). Lines 
represent fittings with Boltzmann equation. H,J. Pooled data of half-activation (V1/2 act) or 
half-inactivation (V1/2 inact) voltages in ctrl and in the presence of ACh (H, n=8) or CCh (J, 
n=7). Note that ACh significantly modifies V1/2 act and V1/2 inact. Activation curve: V1/2 = -
27.2 ± 1.5 mV in ctrl and -24.0 ± 1.4 mV in ACh; *P < 0.05; paired Student’s t-test; slope factor 
= 5.0 ± 0.6 in ctrl and 4.2 ± 0.6 mV in ACh, P > 0.05; paired Student’s t-test; ACh inactivation 
curve: V1/2 = -63.8 ± 4.2 mV in ctrl and -72.4 ± 3.4 mV in ACh; P < 0.05, slope factor = 14.5 ± 1.7 
in ctrl and 15.6 ± 2.2 mV in ACh; P > 0.05; paired Student’s t-test, n=8. Data are mean ± s.e.m. 
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In order to depict the intracellular signaling pathway/s involved in the 

modulation of Na+ current amplitude by muscarinic receptor activation, we 

tested the effects of CCh (50 μM) in hfNBM neuroblasts incubated in PTx 

overnight or using patch pipettes containing neomycin in control conditions. 

As illustrated in Fig. 23A, Gi/Go protein block was ineffective in preventing 

Na+ current reduction by CCh, whereas the effect was fully blocked by 

neomycine showing that PLC pathway was involved in the effect. 

Furthermore, the action of CCh was abolished by the selective M3 receptor 

antagonist 4-DAMP (1 μM; Fig. 23B), demonstrating that the effect of CCh was 

mediated by the M3 mAChRs. 

 

Figure 23. Muscarinic M3receptors inhibit Na+ currents in hfNBM neuroblasts by activating 
phospholipase C. A. Averaged time courses of Na+ current (INa) amplitude recorded before, 
during or after the application of carbachol (CCh: 50 μM) in control conditions (ctrl; n=6), in 
cell incubated with pertussis toxin (PTx: 1 μg/ml overnight; n=5) or in cells patched with 
neomycin (500 μM)-containing pipettes (n=8). Upper insets: original current traces recorded 
before or at the end of CCh application in representative cells. Scale bars: 1 nA, 5 ms. B. Pooled 
data (mean ± SEM) of INa amplitude recorded before (ctrl) or at 5 min of CCh (10 μM) 
application in different experimental conditions. 4-DAMP shows the effect of CCh in the 
presence of the selective M3 blocker 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide. *P 
< 0.05, paired Student’s t-test. 
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1.5. An oscillatory activity in membrane voltage was 

observed in hfNBMs upon depolarizing current injection 

Finally, we studied the electrical activity of hfNBMs in the current-clamp 

mode. For these experiments, a physiological-like, low-EGTA (0.1 mM) 

containing, pipette solution was used, at variance from that used in voltage-

clamp experiments previously described (10 mM EGTA). To our surprise, as 

shown in Figure 24, we observed an oscillatory activity in membrane voltage 

upon positive current injection in hfNBMs, which, to our knowledge, has 

never been described before in neuronal cells. In particular, we observed three 

different responses, as follow. In a group of cells (18 out of 30), an oscillatory, 

periodic-like activity was recorded upon depolarizing current injections (Fig. 

24A). These oscillations were defined by us “voltage waves" and were 

observed between 100 and 900 pA of injected current, depending on cells. 

Voltage waves presented an averaged frequency of 89.4 ± 14.7 Hz and an 

amplitude of 148.2 ± 6.1 mV (values measured at +500 pA step, n=18). No 

evidence of frequency accommodation was detected up to 1 s of current 

injection (Fig. 24E). A second, minor group of cells (3 out of 30) presented a 

single, immature action potential (AP) evoked at current values between 700 

and 900 pA (Fig. 24B). A third group of cells (6 out of 30) presented both 

phenomena, with the single AP being evoked at higher current values, where 

voltage waves disappeared (Fig. 24C). In the 3 (out of 30) remaining cells, no 

electrical activity was recorded. Of note, only 1 cell (at p12) was found to fire 

multiple APs (and up to 11 APs at 600 pA current injection: Fig. 24F). In that 

case, however, multiple APs clearly accommodated during the 500 ms of 

current injection. Considering all oscillating cells (18 of 30 with waves only 

and 6 with waves plus single AP), it appears that the majority of hfNBMs (24 

out of 30 cells: 80%) presented voltage waves (Fig. 24D). No difference was 

found in wave frequency nor amplitude at different passage in culture, as 

shown in Figure 24G.  
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Figure 24. Electrical activity in hfNBMs. A-C. Original voltage traces recorded in the current-
clamp mode in a representative hfNBMs where a rhythmic oscillatory activity (A), a single 
action potential (AP: B) or both events (C) were observed. Upper panels: oscillation 
parameters (waves frequency: waves freq; waves amplitude: waves ampl) or AP amplitude 
are plotted vs the current injected. D. Fraction of cells examined showing voltage waves, a 
single AP, both phenomena or no electrical activity. E. Original voltage traces recorded in the 
current-clamp mode in a representative hfNBM neuroblast where the current injection (200 
pA) was prolonged to 1 s. No signs of wave frequency accommodation were observed. F. Left 
panel: Original voltage traces recorded in the current-clamp mode in a representative hfNBM 
neuroblast where multiple action-potential-like waveforms of activity were evoked by a 
depolarizing current step protocol (from 0 to +800 pA current injection, 500 ms). Right panel: 
the number of AP (right y axis) were pooled as a function of the current injected in the same 
cell. G. Averaged values of waves frequency or amplitude were not different during the 
period of observation. One-way ANOVA, Bonferroni post-test.  

Of note, only 10 out of the 30 oscillating cells also express INa currents when 

investigated in the voltage-clamp mode. Differently, when considering the 

totality of cells presenting the single AP (9 out of 30 cells: 30 %; 3 cells with AP 

only plus 6 cells with AP plus waves), the majority of them (7 out of 9 cells) 

also expressed INa. Of note, TTX was unable to prevent single AP either in 4 

cells tested, even if efficiently prevented INa in the same cell (Fig. 25A).  All 

cells recorded in the current-clamp mode presented a negative peak at 

hyperpolarizing current values. The peak waveform was sharp at -200 pA 

whereas it assumed a rounded shape at -100 pA values, resembling the Ih-

dependent “sag”. Consistently with this observation, the -200 pA-elicited 

negative peak was insensitive to the Ih blocker ZD7288 (50 µM: Fig. 25B, left 

panel), whereas the -100 pA-elicited “sag” was significantly reduced by the Ih 

blocker ZD7288 (50 µM: Fig. 25B, right panel). Similar results were obtained 

with 100 µM ZD7288 (n=3, data not shown). Of note, TTX (1-10 µM) was 

unable to block voltage oscillations (Fig. 25D: left and central panels and upper 

inset and Fig. 25E). Similarly, a subsequent application of the voltage-
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dependent Ca2+ channel (CaV) blocker Cd2+ was unable to block voltage 

oscillations (1 mM: Fig. 25D: right panel). Figure 25E shows pooled data 

demonstrating that neither TTX, Cd2+, nor the combination of both 

compounds was able to affect voltage waves in hfNBMs. We then tested the 

effect of intracellular Ca2+ chelation by using a high (10 mM) EGTA-containing 

pipettes. In these experimental conditions, the fraction of voltage wave-

presenting cells was greatly reduced (11 out of 46 cells investigated: 24%; Fig. 

25F upper panel). The population of single AP-expressing cells in these 

conditions was unchanged (12 out of 46 cells: 26%). No electrical activity was 

found in 23 out of 46 cells recorded in high EGTA. Since BAPTA is more 

effective as a Ca2+ chelator than EGTA, we repeated above experiments by 

using high BAPTA (10 mM)-containing pipettes. As shown in figure 25F and 

25G (left panel), none of the 8 cells tested in 10 mM BAPTA oscillated whereas 

2 of them presented a single AP (not shown). It is worth to note that, once 

initiated, voltage waves were not different in low (0.1) or high (10 mM) EGTA 

conditions in terms of frequency (Fig. 25G right panel, filled columns, left y 

axis) or amplitude (dotted columns, right y axis). It appears that intracellular 

Ca2+ chelation reduces the fraction of oscillating hfNBMs. 
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Figure 25. Only intracellular Ca2+ chelation reduces the fraction of oscillating hfNBMs. A. 
Original voltage traces recorded in a representative cell where a TTX-insensitive AP was 
elicited at +800. Scale bars: 100 mV; 20 ms. Upper inset: TTX abolished INa in the same cell. 
Scale bars: 1 nA; 10 ms. B. Pooled data of sag ratio recorded at -200 pA (left panel) or -100 pA 
(right panel) in control (ctrl) or in 50 µM ZD7288; *p < 0.05, paired Student’s t-test. Upper 
insets: respective original current traces. C. Representative image of hfNBMs at p18 expressing 
HCN3 channels (red) and the nuclear neuronal marker NeuN (green). D. Original voltage 
traces recorded in a representative hfNBM in the absence (left panel) or presence of 
tetrodotoxin (TTX) alone (central panel) or in co-application with Cd2+ (right panel). E. 
Averages voltage waves parameters, measured at 900 pA of current injection, were not 
different in distinct experimental conditions. One-way ANOVA, Bonferroni’s post-test. F. 
Original voltage traces recorded in a representative hfNBM in a high-EGTA (10 mM)-
containing pipette (upper panel) or in a BAPTA (10mM)-containing pipette (lower panel).  G. 
Left panel: the fractions of cells presenting or not voltage waves in different experimental 
conditions were quantified. Right panel: averaged waves frequency or amplitude were not 
different in 0.1 or 10 mM EGTA. Unpaired Student’s t-test. Number of cells is indicated inside 
the columns. Data are mean ± SEM. 

 

In order to describe the ionic current/s subtending voltage oscillations, we 

used a less invasive protocol consisting in a single step at +500 pA (500 ms 

duration) repeated once every 30 s to obtain reproducible oscillations during 

a relatively long time (up to 30 min: Fig. 26).  
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Figure 26. Long-term recording of stable voltage waves in a typical hfNBM neuroblast. A. 
The frequency (left y axis) and amplitude (right y axis) of voltage waves was pooled as a 
function of time in a representative cell where a stable recording was performed up to 30 min 
by using a single step protocol of 500 pA current injection (500 ms duration: inset of B). B. 
Original voltage traces recorded in the same cell at the beginning (1 min: black trace) or after 
25 min (red trace) of current-clamp recording. 

Sensitivity of voltage oscillations to different channel blockers and/or receptor 

agonists and antagonists was than tested. As shown in Figure 27, oscillations 

were unaffected by cholinergic agonists (Ach 50 µM; Fig. 27A and B, right 

panel) or antagonists (atropine 100 nM: Fig. 27A and B, right panel), as well as 

by the Ih blocker ZD7288 (Fig. 27C and D, upper right panel). On the contrary, 

oscillations were completely blocked by a high concentration (10 mM) of the 

unselective K+ channel blocker TEA (Fig. 27A and B, right panel). Among the 

subtype/s of K+ channels possibly involved in voltage waves, on the basis of 

their sensitivity to BAPTA and EGTA, likely candidates are Ca2+-activated K+ 

channels. Accordingly, the selective blocker of big-conductance Ca2+-activated 

K+ (BK) channels iberiotoxin completely prevented voltage waves initiation 

(200 nM: Fig. 27C and D, upper left panel). The involvement of BK channels in 

this phenomenon was confirmed by its sensitivity to a low concentration (0.2 

mM) of TEA (Fig. 27C and D, lower left panel), which is known to selectively 

block this channel subtype without interfering with delayed rectifier IK 

conductances. Both IbTx and TEA effects were rapidly reversed upon washout 

(Fig. 27A, C). Of note, also the Kir channel blocker Ba2+, applied at 2 mM 

concentration, efficiently blocked voltage waves but its effect was not reversed 

by up to 10-15 min washout in 4 cells tested (Fig. 27C and D, lower right panel) 

probably because, differently from TEA, it caused massive depolarization of 

resting membrane potential leading cells to death. None of the drugs tested 
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significantly affected cell resting membrane potential excluded Ba2+, which 

significantly depolarized hfNBMs (Fig. 27I). Finally, in conditions of 

intracellular Ca2+ stores depletion by thapsigargin (1 µM), voltage waves 

transiently disappeared as long as the compound dialyzed cell cytoplasm, i.e. 

7 - 8 min after seal breakthrough (Fig. 27E and F, left panel) (Thastrup et al., 

1990). After this period, waves recurred with a significantly slower frequency 

(Fig. 27E-G) and with a different shape (Fig. 27F right panel), but unchanged 

amplitude (Fig. 27G). Under these experimental conditions, 1 mM Cd2+ was 

sufficient to abolish oscillations (Fig. 27E and F, right panel, and 27G). Only 1 

out of 5 cells tested with intracellular thapsigargin did not show any 

oscillatory activity. Consistently with current-clamp results, 

immunocytochemical analysis revealed the expression of BK channels in 

hfNBM culture (Fig. 27H). 
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Figure 27. Voltage waves recorded in hfNBMs are prevented by BK or Kir channel inhibition 
and are impaired by thapsigargin. A, C, E. The frequency or amplitude of voltage waves were 
pooled as a function of time in representative hfNBMs. B, D, F. Original voltage traces 
recorded in respective cells. Acetylcholine (Ach); atropine (atr); tetraethylammonium (TEA); 
Iberiotoxin (IbTx); ZD7688 (ZD); thapsigargin (taps) effect was measured at different times 
after seal breakthrough (0, 7, 10 and 18 min) (F). G. Pooled data of waves frequency or 
amplitude expressed as % of ctrl. *p<0.05; #p<0.0001 vs Veh for frequency; §p<0.0001 vs Veh 
for amplitude, One-Way ANOVA, Bonferroni’s post-test. Vehicle (Veh; n=4) was 0.1% 
phosphate buffer saline (PBS). MCM (mecamilamine) 10 µM; 4-AP (4-amino-pyridine): 1 mM; 
bicu (bicuculline): 1 µM; apa (apamin). H. Representative image of hfNBMs at p20 expressing 
BK channels (red) and the nuclear neuronal marker NeuN (green). 
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1.6. Discussion 

In the years of my doctorate, I contributed to provide detailed 

electrophysiological characterization of hfNBM neuroblasts kept in culture up 

to 3.5 months (p25). Our results indicate that these cells spontaneously release 

ACh and that activation of Gi/Go-coupled M2 mAChRs positively modulates 

voltage-dependent K+ currents whereas stimulation of Gq/11 protein-coupled 

M3 receptors produces inhibition of Na+ currents via PLC-dependent 

mechanism(s). A detailed description of hfNBM cultures as cholinergic 

neuroblasts is provided in our previous work (Morelli et al., 2017). Here we 

characterized major passive and active membrane properties in hfNBM 

neuroblasts at increasing passages to describe whether or not the culture 

underwent functional maturation. Our results show that immature 

electrophysiological properties (i.e. a relatively depolarized resting membrane 

potential and the lack of TTX-sensitive action potentials) were maintained for 

at least 3 months in culture, regardless the number of passages and in vitro 

proliferation of these cells. Only cell capacitance showed significant increase 

during hfNBM cell culture starting from p20, indicating an increase in cell size, 

in line with previous data (Lepski et al., 2011). Furthermore, the expression of 

INa only in a portion of cells is in line with that reported by Lepski and co-

workers in similar human fetal-derived neuronal progenitor cells (Lepski et 

al., 2011). However, it is at variance from what reported by Sah in human fetal 

neurons isolated from the whole brain (Sah, 1995) where all cells investigated 

expressed Na+  currents. We hypothesize that differences in the isolation (i.e. 

NBM vs whole brain) or cell maintenance (absence of mitogens vs 

N2/fibroblast growth factor-supplemented medium) could justify this 

discrepancy. Consistent with the expression of both nAChRs and mAChRs in 

our hfNBM cell culture (Morelli et al., 2017), ACh modulated voltage-

dependent currents in hfNBM neuroblasts by activating either or both 

mAChRs and nAChRs and these effects remained constant throughout culture 

passages. An important finding was that endogenous ACh released by hfNBM 
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neuroblasts is able to activate both mAChRs and nAChRs. Indeed, exposure 

of cells to the AChE inhibitor neostigmine produced a small but significant 

atropine-sensitive muscarinic-like effect. In addition, a rapidly-desensitizing 

nicotinic-like response was occasionally observed upon neostigmine 

application. It should be considered that these data were obtained in 

continuously perfused (1.5 ml/min) cells, so the relatively small effect of 

neostigmine on ramp currents could be underestimated by partial wash out of 

the endogenously released ACh. These results indicate that cultured hfNBM 

neuroblasts spontaneously release ACh which is actively hydrolyzed by 

AChEs. Consistently, nanomolar levels of ACh were detected in the culture 

medium of these cells (Morelli et al., 2017). Of note, as this value was measured 

in the absence of AChE inhibitors, it might be underestimated. The lack of 

effect of atropine per se on ramp currents confirms rapid ACh degradation by 

AChE activity in hfNBM cultures. In fully developed cholinergic neurons of 

the NBM, stimulation of AChRs modulates excitability and firing activity 

likely influencing the cholinergic system output in cortical areas (Khateb et al., 

1997; Zhang et al., 2000). However, the existence of an active ACh release and 

expression of a panel of AChRs in this immature phase of neuronal 

development suggests that autocrine/paracrine ACh release could participate 

in migration and/or differentiation, maturation and neuronal specification of 

hfNBM neuroblasts within NBM in vivo (Abreu-Villaça et al., 2011). However, 

since there are extrinsic sources of ACh in the in vivo BF (e.g., from brainstem), 

the specific role of autocrine ACh release in NBM development remains to be 

better clarified. In our work, we characterized mAChR subtypes responsible 

for the action of ACh on hfNBM neuroblasts by using the selective muscarinic 

agonist CCh. Although activation of nAChR by high concentrations of CCh 

has been reported (Liu et al., 2007; Nguyen et al., 2013), this action was not 

apparent in hfNBM cultures because all CCh-mediated effects were blocked 

by atropine. Consistent with relatively abundant expression of M2 and M3 

mAChR subtypes in hfNBM cell cultures (Morelli et al., 2017), we found two 

distinct atropine-sensitive muscarinic responses in these cells. Namely, 
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stimulation of the M2 receptor subtype activates a Gi/Go protein responsible 

for the enhancement of a TEA-sensitive, Ba2+- and apamine-insensitive, K+ 

current whereas the stimulation of Gq/11-coupled M3 subtype receptors 

decreased Na+ currents via a PLC-dependent mechanism. The latter effect is 

in agreement with the observation that CCh inhibits INa in hippocampal 

neurons by Gq/11-coupled muscarinic receptors in a protein kinase C-

dependent manner (Cantrell et al., 1996). Interestingly, the endogenous 

agonist ACh, but not CCh, also induced a negative shift in the inactivation 

curve, and a positive shift in the activation curve, of Na+ currents. In mature 

NBM cholinergic neurons in vivo, this type of channel modulation would lead 

to narrowing of the voltage window for Na+ channel opening, decrease in 

neuron excitability and reduction of cholinergic tone in the brain (Dong and 

Xu, 2002; Keynes et al., 1992). The discrepancy between CCh and ACh effects 

on the voltage-dependence of Na+ conductance could be due to differential 

activation of intracellular pathways by different agonists acting on the same 

receptor/s subtype/s (Ilyaskina et al., 2018). In spite of the scarce/null 

excitability of hfNBM immature neuroblasts described in the present research, 

it appears that cholinergic modulation is complex in the developing NBM and, 

even if it would have no effects at this stage in terms of firing or 

neurotransmitter release, it indicates that the machinery is already present 

and, if retained, would have an impact on CNS circuitry in the adult. In 

particular, we suggest that ACh released in the NBM will lead to inhibition of 

neuronal excitability by activating mAChRs, which enhance K+ currents 

(thought Gi/Go-coupled M2 receptors) and inhibit Na+ currents (thought 

Gq/11-coupled M3 receptors). However, ACh acting at nAChRs elicits a 

depolarizing inward current (Morelli et al., 2017) that would excite NBM 

neurons (Fig.28). These results are in agreement with previous work 

demonstrating that nicotinic receptors increase, while muscarinic receptors 

decrease, the excitability of BF cholinergic neurons (Khateb et al., 1997). So, the 

weight assigned to each component of cholinergic modulation in the NBM 

circuitry in vivo will depend on the interaction between Na+ channels, 
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muscarinic or nicotinic receptors, and K+ channels targeted by cholinergic 

input. ACh has been demonstrated to have trophic and/or migratory impact 

on proliferating neuroblasts in forebrain areas (Bruel-Jungerman et al., 2011; 

Resende and Adhikari, 2009; Zheng et al., 1994)  as other neuromodulators do 

in different immature cells (Coppi et al., 2015). Indeed, ACh has been shown 

to promote a favorable environment for progenitor proliferation, neurite 

extension and synaptogenesis (for review: (Bruel-Jungerman et al., 2011)). 

However, the effects of ACh on developing BF cholinegic neurons in humans 

remain unknown. On the basis of present data, we may hypothesize that 

autocrine ACh released within the developing NBM drives neuronal 

excitability and, possibly, cell fate of fetal cholinergic neuroblasts. 

Most of cells were not excitable, with only a minority (about 25%, this 

percentage being stable upon time) of them presenting a single spike. This 

phenomenon, already described in our previous work (Morelli et al., 2017), 

was TTX-insensitive and was also observed in cells devoid of Na+ currents. On 

these bases, we hypothesize that it is Ca2+-dependent. On the whole, the lack 

of mature APs, as a landmark of attained neuronal differentiation (Prè et al., 

2014), confirms that hfNBM neuroblasts retain immature features during the 

entire culture period. This notion is not in contrast with previous literature. 

The lack of full APs in human fetal neurons is consistent with data obtained 

by others in similar preparations, i.e. telencephalic vesicles isolated from 12 

week fetuses and maintained in mitogens at least for at least 6 weeks (Lepski 

et al., 2011), or cortical neurons isolated during the second trimester of 

gestation (Mo et al., 2007). At variance, full APs have been reported in prenatal 

(Levine et al., 1995) or perinatal (Nakajima et al., 1985) rodent BF neurons, as 

well as in ESC- (Bissonnette et al., 2011) or iPSC-derived (M. L. Liu et al., 2013) 

human cholinergic neurons. As no data are present to date about the electrical 

activity in human NBM neurons at this time of gestation nor at corresponding 

developmental stages in rodents (the earlier time point analyzed during 

rodent gestation is E17, which is very close to birth: (Levine et al., 1995)), we 

reasoned that the lack of full APs is not surprising in hfNBM cultures. Indeed, 
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these cells exemplify an immature, still proliferating, step of neuroblast 

differentiation, as confirmed by the lack of changes in active nor passive 

membrane electrophysiological properties throughout the culture period. 

The most relevant finding of the present work is probably the rhythmic, 

oscillatory activity in cell voltage recorded in the vast majority of cells upon 

depolarization. This active phenomenon, named by us “voltage waves”, was 

unexpected and inedited. It was observed in 80% of hfNBMs recorded in low 

(0.1 mM) EGTA. The high frequency (about 80-100 Hz) of these oscillations 

resembles the firing frequency recorded in the NBM of behaving monkeys 

(Martinez-Rubio et al., 2018)  or in different regions of the in vivo human brain, 

for example in as the globus pallidus of parkinsonian patients (Alam et al., 

2016; Lee et al., 2020). Importantly, alterations in these firing activities has been 

reported in patients with dystonia or PD (Alam et al., 2016; Lee et al., 2020). 

However, in our case, oscillations differ from standard APs in their waveform. 

Of note, their frequency fits also with the “gamma-band rhythm” (30-100 Hz) 

recorded in many cortical areas, for example in the visual cortex of macaque 

monkeys during visual exploration (Brunet et al., 2015). Gamma oscillations 

are known to be related to different cognitive capacities, from selection by 

attention to formation of Hebbian assemblies (Fries, 2015, 2009; Singer, 1999). 

We can only speculate that voltage waves recorded by us in hfNBMs could 

represent the ancestors of adult gamma rhythm. 

The description of voltage waves in hfNBMs is only at its infancy and to 

decipher the intracellular mechanisms underlying this phenomenon is 

complex at best. Most classical blockers of neuronal conductances, i.e. TTX for 

INa, Cd2+ for ICa, were totally ineffective in modulating voltage waves, 

including ZD7288. This compound is a selective blocker of Ih current, known 

to participate to electrical oscillatory activity in different kind of rhythmically 

firing pacemaker cells, i.e. in sinoatrial node cells (Wahl-Schott et al., 2014). 

Importantly, intracellular Ca2+ buffering by high intracellular EGTA or 

BAPTA respectively impaired or abolished voltage waves. However, EGTA 
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did not modify the frequency nor amplitude of the voltage waves, once 

elicited. So, we conclude that intracellular Ca2+ rise plays a role in triggering 

voltage waves but not in maintaining them. 

Of note, K+ emerged as the leading ion in this phenomenon since the 

unselective K+ channel blocker TEA (10 mM) abolished oscillations. This 

notion, together with the sensitivity to EGTA or BAPTA, gave us a clue about 

the involvement of BK and SK channels, known to participate in the 

conversion of intracellular Ca2+ oscillation into propagative electrical signals 

in different cell systems (Saeki et al., 2019). Accordingly, the selective BK 

channel blocker IbTx prevented voltage waves in all cells tested, a result 

confirmed by TEA at 0.2 mM, a concentration considered selective to BK 

channel block. The fact that the CaV blocker Cd2+ did not affect oscillations in 

physiological-like conditions, i.e. intact intracellular Ca2+ homeostasis, let us 

hypothesize that Cavs channels were not involved in the event. However, 

when tested in conditions of intracellular Ca2+ store depletion by thapsigargin, 

oscillations presented a significantly lower frequency and were completely 

prevented by Cd2+ demonstrating that, when intracellular Ca2+ rise cannot be 

achieved by store release, external Ca2+ entering from Cavs compensates, even 

if not so efficiently as demonstrated by their lower frequency. 

Importantly, previous data demonstrated that intracellular Ca2+ oscillations 

can trigger propagative electrical signals (Saeki et al., 2019) and these events 

have been indeed related to BK channel opening. However, the high frequency 

of hfNBM oscillations is at variance from those reports that describe strikingly 

slower frequencies (in the range of 0.3-1 HZ). A similar observation can be 

made for the facilitating effect of nicotine in spontaneous Ca2+ waves observed 

in cortical neurons (Wang et al., 2014). 

Beyond BK channels, other players are involved in the event, i.e. Kir channels, 

as their selective blocker Ba2+ prevents waves initiation but this effect, 

differently from IbTx and TEA, is irreversible upon washout as most cells 

depolarized to death. These data demonstrate that: i) Kir channels are essential 
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for maintaining Vm polarization and ii) a polarized Vm is required to evoke 

voltage waves (Fig.28). 

In trying to understand this unexplored phenomenon, we have to consider 

that hfNBMs are immature, still proliferating, neuroblasts isolated from the 

developing foetal human brain, a rare source of cells. Indeed, the vast majority 

of previous studies devoted to describe the behaviour of immature neurons 

have been performed by using iPSCs (M. L. Liu et al., 2013; Song et al., 2013) 

or ESCs (Bissonnette et al., 2011) committed to neuronal phenotype or in 

rodent-derived neuronal precursors (Nakajima et al., 1985). These cell sources 

are profoundly different from hfNBMs which are non-manipulated, genuine 

neuroblasts: immature, but already committed toward the cholinergic 

phenotype. These cells in culture retain, under defined experimental 

conditions and over a relatively long-time frame (3-3.5 months), peculiar 

immature neuronal features, among which we should include the oscillatory 

activity in membrane potential. 

In finding a functional explanation to voltage waves, it is worth to note that 

intracellular Ca2+ waves are frequently associated to cell migration and, in 

particular, recurrent Ca2+ oscillations involving BK channels have been 

described to mediate in vitro glioblastoma cell migration (Catacuzzeno and 

Franciolini, 2018). So, as an alternative explanation beyond adult NBM firing 

precursors, a possible functional role for voltage waves is their involvement in 

hfNBM migration. Consistently, we demonstrated that intravenously injected 

in NBM-lesioned rats, hfNBMs migrated to the injured area (Morelli et al., 

2017). Furthermore, we have evidence that serum-starved hfNBMs are 

attracted by 10% FBS in the lower chamber of a Boyden chamber-based 

migration assay (manuscript in preparation). Hence, we speculate that voltage 

waves in hfNBMs may serve to promote cell migration. 

Furthermore, malfunctioning of BK channels is responsible for several 

diseases involved in different pathologies. It was found that intracellular 

amyloid-β (Aβ) inhibits these currents in cortical neurons (Yamamoto et al., 
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2011) and that BK deficient mice show impaired spatial memory (Typlt et al., 

2013). Importantly, early memory dysfunction observed in a transgenic mouse 

model of AD is prevented by chronic activation of BK channels (Wang et al., 

2015). 

Finally, in line with previous works (Lepski et al., 2011; Morelli et al., 2017; 

Song et al., 2013), we also observed an immature AP which was elicited in 30% 

of hfNBMs. Of note, only 1 cell was found to fire more than one AP upon 

depolarizing current injection, resembling classical AP firing. The single AP 

was insensitive to high intracellular EGTA or BAPTA and to TTX, even if the 

compound efficiently blocked INa which are responsible for APs in adult 

neurons. At present, the ionic channel/s underlying this phenomenon remain 

unknown. 

 

Figure 28. Schematic representation of the results discussed in this section. 
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Aim II - Adenosine A2B receptors inhibit K+ currents and 
cell differentiation in cultured oligodendrocyte precursor 
cells and modulate sphingosine-1-phosphate signalling 
pathway.  

The following results were recently published in: 

Coppi, E., Cherchi, F., Fusco, I., Dettori, I., Gaviano, L., Magni, G., Catarzi, D., 

Colotta, V., Varano, F., Rossi, F., et al. (2020). Adenosine A2B receptors inhibit 

K+ currents and cell differentiation in cultured oligodendrocyte precursor cells 

and modulate sphingosine-1-phosphate signaling pathway.  

Biochem. Pharmacol. 177. 

2.1. Selective A2BR stimulation inhibits voltage-dependent K+ 

currents in cultured OPCs. 

Electrophysiological recordings were performed on 221 cells showing, on 

average, a Vm of -60.8 ± 1.6 mV, a Cm of 7.2 ± 0.3 pF of and a Rm of 840.1 ± 

49.7 MΩ. All experiments were performed in the continuous presence of the 

A1R, A2AR and A3R antagonists DPCPX, SCH58261 and MRS1523, respectively 

(100 nM each). As shown in Figure 29A, we applied a voltage ramp protocol 

(from -120 to +80 mV, 800 ms duration: upper inset of Fig. 29A) in cultured 

OPCs in the absence or presence of the selective A2BR agonist BAY60-6583 (10 

μM) and we found that the compound reversibly inhibited ramp-evoked 

outward currents (Fig. 29A and lower inset). BAY 60-6583-inhibited current, 

obtained by subtraction of the ramp recorded in the presence of BAY 60-6583 

from the control ramp, is a voltage-dependent outward conductance (Fig. 

29B). In agreement, immunofluorescence experiments confirmed A2BR 

expression on NG2+ cells (Fig. 29C). The maximal effect of BAY60-6583 was 

reached within 5 min application (lower inset of Fig. 29A) and was statistically 

significant in 51 cells investigated (Fig. 29D: 41.9 ± 2.8% current inhibition). Of 

note, ramp-evoked outward currents were absent, as well as the effect of 

BAY60-6583, when extra- and intra-cellular K+ ions were replaced by 

equimolar Cs+ (Fig. 29D), demonstrating that the current involved in A2BR-
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effect is a voltage-dependent K+ current. The effect of BAY60-6583 on K+ 

currents was concentration-dependent (Fig. 29E) with an EC50 = 0.6 μM (Fig. 

29E, left panel: confidence limits: 0.04 – 9.4 μM), and prevented by the selective 

A2BR antagonist MRS1706 (10 μM: Fig. 29E, F). In accordance with K+ current 

inhibition, BAY60-6583 caused a concentration-dependent depolarization in 

cultured OPCs and this effect was also concentration-dependent and 

prevented by the A2BR antagonist MRS1706 (Fig. 29G and Table 7).  

We further investigated which subtype/s of K+ currents are targeted by A2BRs. 

OPCs are known to express sustained, delayed rectifier, IK currents and a 

transient, rapidly inactivating, IA conductance (Knutson et al., 1997; 

Sontheimer and Kettenmann, 1988). We applied a voltage-step protocol (from 

-40 to +80 mV, 200 ms duration, lower inset in Fig. 29H) to activate both IA 

and IK in the absence or presence of 10 μM BAY60-6583. As shown in figure 

29H-I, both K+ currents were inhibited in the presence of the A2BR agonist, as 

demonstrated by a significant decrease in either transient IA (Fig. 29I, left 

panel) or steady state IK (Fig. 29I, right panel) starting from a voltage of 0 mV. 

Above data were obtained in OPCs at t0, which correspond to the period at 

which most cells are immature NG2+ OPCs (Coppi et al., 2013a, 2013b). We 

also tested BAY60-6583 effects on mature oligodendrocytes (OLs) allowed to 

differentiate by mitogen withdrawal for 7 days (t7). At these time point, as it 

previously shown (Coppi et al., 2013b, 2013a), oligodendroglial cultures are 

mostly composed by highly ramified, MBP+ and MAG+ mature OLs (Attali et 

al., 1997; Gallo et al., 1996; Knutson et al., 1997; Sontheimer and Kettenmann, 

1988).  
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Figure 29. The A2BR agonist BAY60-6583 inhibits IK and IA outward K+ currents in cultured 
OPCs. A. Original whole-cell patch clamp current traces evoked by a voltage ramp protocol 
(from −120 to +80 mV, 800 ms: upper inset) in a typical OPC before (baseline: bsl, black trace) 
or after the application of BAY60-6583 (BAY: 10 μM; 5 min, red trace). Inset: time course of 
ramp-evoked currents at +80 mV in the same cell. B. Net BAY60-6582-inhibited current, 
obtained by subtraction of the trace recorded in BAY60-6582 from the control ramp, in the 
same cell. C. Confocal image of immunofluorescence staining for A2BR (green) and NG2 (red) 
in OPC cultures (at t0). Cell nuclei are marked with DAPI (blue). Scale bar: 50 μm. D. Averaged 
ramp-evoked currents, and pooled data at +80 mV (mean ± SEM), recorded in the absence 
(bsl) or presence of 10 μM BAY60-6583 under control conditions (K+; n=51) or in Cs+-
replacement experiments (n=5). ****P < 0.0001 vs respective bsl, paired Student’s t-test. E. 
Pooled data of K+ current inhibition obtained in different experimental conditions in cultured 
OPCs. *P < 0.05 vs 0.1 μM BAY60-6583; #P < 0.05 vs 10 μM BAY60-6583, One-way ANOVA, 
Bonferroni post-test. Number of observation is written in the columns. F. Averaged time 
courses of ramp-evoked currents at +80 mV in cultured OPCs before and after the application 
of BAY60-6583 (10 μM) under control conditions (ctrl: red circles; n=51) or in the presence of 
the selective A2BR antagonist MRS1706 (10 μM: blue diamonds: n=7). G. Pooled data of 
membrane potential depolarization induced by BAY60-6583 in cultured OPCs under different 
experimental conditions. *P < 0.05 vs 0.1 μM BAY60-6583; #P < 0.05 vs 10 μM BAY60-6583, 
One-way ANOVA, Bonferroni post-test. Number of observations is written in the columns. 
H, I. Original current traces evoked by two different voltage-step protocols (from −40 to +80 
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mV, Vpre=-40 mV; 200 ms: lower panel in H; or from −40 to +80 mV, Vpre=-80 mV; 200 ms: 
lower panel in I) in a representative OPC before (bsl: black traces) or after the application of 
BAY60-6583 (10 μM, 5 min; red traces). J. Net IA current in the same OPC obtained by 
subtraction of traces reported in H and I. Scale bars: 200 pA; 100 ms. K, L: Averaged current-
to-voltage relationship (I-V plot) of steady-state, sustained, IK currents (K) or peak, transient, 
IA currents (L) recorded in the absence (bsl: black circles) or in the presence (red circles) of 10 
μM BAY60-6583 in 7 cells investigated. *P < 0.05; **P < 0.01 paired Student’s t-test. All 
experiments were performed in the presence of the A1R, A2AR and A3R antagonists DPCPX, 
SCH58261 and MRS1523, respectively (all 100 nM). 

 

Table 8. Selective A2BR stimulation depolarizes cell membrane potential (Vm) in cultured 
OPCs. Membrane potential (Vm) was measured during the last min preceding drug 
application (baseline, bsl) or after 5 min application of A2BR agonists: BAY 60–6583 (BAY: 10 
μM) or P453 (50 nM), or vehicle (Veh: 0.1% DMSO). The A2BR antagonist MRS1706 (10 μM) 
was applied at least 10 min before BAY60-6583. ** P < 0.01; ****P < 0.0001 vs respective bsl, 
paired Student’s t-test. 

 

As shown in figure 30A-C, BAY 60-6583 (1–30 μM) inhibited outward K+ 

currents in OLs at t7 and presented a concentration-dependent effect similar 

to what observed in immature OPCs (Fig. 30D-F). 

 

 Vm (mV) n 

CTRL −58.3 ± 2.4 
n = 51 

10 µM BAY −48.4 ± 2.5 **** 

CTRL −57.5 ± 3.4 
n = 6 

VEH −56.1 ± 4.1 

CTRL −55.1 ± 3.0 
n = 23 

50 nM P453 −43.0 ± 3.9 ** 

MRS1706 −61.4 ± 5.2 
n = 7 

MRS1706 + 10 µM BAY −56.3 ± 4.2 
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Figure 30. The A2BR agonist BAY60-6583 inhibits ramp-evoked outward currents in mature 
OLs. A. Original whole-cell patch clamp current traces activated by a voltage ramp protocol 
(from −120 to +80 mV, 800 ms) in a typical OL at t7 before (baseline, bsl) or after BAY60-6583 
(BAY) applied at different concentrations (1–10-30 μM). Inset: time course of ramp-evoked 
currents at +80 mV in same cell. B. Net BAY60-6583-inhibited current, obtained by subtraction 
of the trace recorded in 10 μM BAY60-6583 from the control ramp, in the same cell. C. Pooled 
data (mean ± SEM) of ramp current amplitude at +80 mV, recorded in the absence (black 
column) or presence (red column) of 10 μM BAY60-6583 in 5 cells investigated. * P < 0.05, 
paired Student’s t-test. D. Averaged BAY60-6583-inhibited currents, recorded in the presence 
of different agonist concentrations, in mature OLs at t7. At least n = 4 in each experimental 
group. E. Concentration-response curve of BAY60-6583-mediated inhibition of ramp currents 
at +80 mV in cultured OPCs (EC50 =0.6 μM, confidence limits: 0.04 – 9.4 μM: black diamonds) 
or in mature OLs (EC50 = 2.1 μM, confidence limits: 0.2 – 23.6 μM: red circles). F. Pooled data 
of maximal ramp current inhibition achieved by BAY60-6583 (10 μM) in OPCs (black column) 
or OLs (open column) at +80 mV. P > 0.05, unpaired Student’s t-test. All experiments were 
performed in the presence of the A1R, A2AR and A3R antagonists DPCPX, SCH58261 and 
MRS1523, respectively (all 100 nM).  

We also tested the functional effect of a newly synthesized, highly selective, 

A2BR agonist: P453 (Betti et al., 2018). As shown in figure 31A, and similarly to 

BAY 60-6583, P453 at a concentration of 50 nM significantly inhibited ramp-

evoked currents in 23 cells tested and significantly depolarized OPCs, as 

reported in Table 7. The effect was concentration dependent (Fig. 31B), blocked 

by the A2BR antagonist MRS1706 (10 μM: Fig. 31B, D) and prevented by Cs+-
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replacement of K+ ions (Fig. 31C), thus confirming that A2BR activation inhibits 

K+ currents in cultured OPCs. Of note, averaged P453-inhibited current was 

superimposable to BAY-inhibited current (Fig. 31D: black circles and grey 

diamonds). When tested on the voltage step protocol, P453 inhibited both IA 

and IK currents (Fig. 31E, F), similarly to BAY60-6583.  

 

Figure 31. The effect of the prototypical A2BR agonist BAY60-6583 on IK and IA currents is 
mimicked by P453, a recently synthetized A2BR agonist. A. Averaged ramp evoked currents, 
and pooled data at +80 mV (mean ± SEM), recorded before (baseline: bsl) or after P453 
application (50 nM, 5 min) in 23 OPCs tested. ****P < 0.0001, paired Student’s t-test. B. 
Averaged ramp-evoked currents, and pooled data at +80 mV, recorded in the absence (bsl) or 
presence of the A2BR agonist P453 (50 nM) in Cs+-replacement experiments (n=5). No 
significant difference was found in ramp currents measured at +80 mV in the absence or 
presence of P453, paired Student’s t-test. C. Pooled data of ramp current inhibition at +80 mV 
induced by different concentrations of P453 or by 50 nM P453 applied in the presence of the 
A2BR antagonist MRS1706 (10 μM). *p < 0.05 vs 5 nM P453; §p < 0.05 vs 50 nM P453, One-way 
ANOVA, Bonferroni post-test. Number of observations is written in the columns. D. Net A2B-
inhibited currents, obtained by subtraction of the trace recorded in the presence of A2BR 
agonists from the control ramp, in different experimental groups. Note that no A2B-inhibited 
current is recorded when P453 (50 nM) is co-applied with the A2BR antagonist MRS1706 (10 
μM). 

 

We also tested the unselective adenosine agonist NECA. The compound was 

applied, as in all other experimental groups, in the continuous presence of the 

A1R, A2AR and A3R antagonists DPCPX, SCH58261 and MRS1523 (all 100 nM), 

respectively, to isolate A2BR-mediated effects. As shown in figure 32A, NECA 

(50 μM) mimicked BAY60-6583-mediated inhibition of ramp-evoked K+ 

currents. The effect was significant in 8 cells tested (Fig. 32B), prevented by the 

selective A2BR antagonist PSB603 (10 μM: Fig. 32C, D) and concentration-

dependent (Fig. 32D), with an EC50=1.9 μM (confidence limits: 0.4 – 9.0 μM: 

Fig. 32E).  
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Figure 32. The effect of BAY60-6583 on ramp-evoked K+ currents is mimicked by the 
unselective adenosine receptor agonist NECA. A. Original whole-cell patch clamp current 
traces activated by a voltage ramp protocol (from −120 to +80 mV, 800 ms) in a typical OPC 
before (baseline: bsl, black trace) or after the application of NECA (50 μM; 5 min, grey trace). 
Inset: time course of ramp-evoked currents at +80 mV in same cell. B. Pooled data (mean ± 
SEM) of ramp-evoked currents at +80 mV in the absence (bsl) or presence of 50 μM NECA in 
8 cells tested. **P < 0.01, paired Student’s t-test. C. Averaged NECA-inhibited currents, 
obtained by subtraction of the trace recorded in NECA from the control ramp in each cell, 
measured in the absence (control: ctrl; n = 8) or in the presence of the A2BR antagonist PSB603 
(PSB, 10 μM; n = 5). D. Pooled data of ramp current inhibition measured at +80 mV in the 
presence of NECA at different concentrations or at 50 μM in the presence of the A2BR 
antagonist PSB603. *P < 0.05 vs 0.1 μM NECA; #P < 0.05 vs 50 μM NECA, One-way ANOVA, 
Bonferroni post-hoc test. Number of observations is written in the columns. E. Concentration-
response curve of NECA-mediated inhibition of ramp currents at +80 mV. EC50 = 1.9 μM, 
confidence limits = 0.4 – 9.0 μM. All experiments were performed in the presence of the A1R, 
A2AR and A3R antagonists DPCPX, SCH58261 and MRS1523, respectively (all 100 nM). 

In order to confirm the involvement of IA and IK currents in the A2BR-

mediated effect, we applied BAY60-6583 in the presence of a combination of 

the IA blocker 4-AP (500 μM) plus the IK blocker TEA (3 mM: Fig. 33A) 

(Gutman et al., 2005). It has previously shown that, in cultured OPCs, 3 mM 

TEA inhibits delayed rectifier IK currents whereas 500 μM 4-AP selectively 

blocks transient IA conductances (Coppi et al., 2013b, 2013a). As shown in 

figure 33A, a co-application of both compounds fully prevented ramp current 

inhibition mediated by this A2BR agonist whereas TEA alone did not 
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significantly block BAY60-6583-mediated effect (Fig. 33B). Concerning the 

intracellular mechanism by which the Gs-coupled A2BR inhibits IK, we tested 

the hypothesis of intracellular cAMP being involved, in accordance with Gs 

coupling of A2BRs and with previous data showing that increased levels of this 

intracellular metabolite decreased steady state outward K+ conductances in 

ovine OPCs (Soliven et al., 1988). The adenylyl cyclase activator forskolin 

(FSK; 20 μM) mimicked and occluded the effect of BAY 60-6583 on ramp-

evoked K+ currents in cultured OPCs (Fig. 33C-D) thus confirming that A2BR 

inhibit IK currents by increasing cAMP levels. 

 

Figure 33. The effect of BAY60-6583 on ramp-evoked K+ currents is occluded by a combination 
of the K+ channel blockers TEA and 4-AP and by the adenylyl cyclase activator forskolin. A. 
Averaged time course (mean ± SEM) of ramp-evoked currents measured at +80 mV in 
cultured OPCs before or after the application of a combination of the IK blocker 
tetraethylammonium (TEA; 3 mM) plus the IA blocker 4- amynopyridine (4-AP; 500 μM) or 
during the subsequent application of BAY60-6583 (BAY; 10 μM). Upper panel: original ramp 
current traces recorded in a typical OPC at representative time points: in control conditions 
(bsl; black trace); after 3 min of TEA with 4-AP (TEA + 4-AP; grey trace) or after 5 min of 10 
μM BAY60-6583 applied in the presence of TEA with 4-AP (TEA + 4- AP + BAY; dotted black 
trace). B. Pooled data of BAY60-6583-inhibited currents measured at + 80 mV in the absence 
(n = 10) or presence of 3 mM TEA (+TEA) alone or in combination with 500 μM 4-AP (+TEA 
+ 4-AP). *P < 0.05; One-way ANOVA, Bonferroni post-hoc test. Number of observations is 
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written in the columns. C, D. Averaged time course (C) and pooled data (D) of ramp-evoked 
currents measured at +80 mV in cultured OPCs before or after the application of the adenylyl 
cyclase activator forskolin (FSK; 20 μM) and during the subsequent application of BAY60-6583 
(BAY; 10 μM). Upper panel in C: original ramp current traces recorded in a typical OPC at 
representative time points: in control conditions (bsl; black trace); after 3 min of FSK (dotted 
grey trace) or after 5 min of 10 μM BAY60-6583 applied in the presence of FSK (FSK + BAY; 
grey trace). **P < 0.01 from bsl, paired Student’s t-test, n = 6. All experiments were performed 
in the presence of the A1R, A2AR and A3R antagonists DPCPX, SCH58261 and MRS1523, 
respectively (all 100 nM). 

2.2. A2BR activation stimulates SphK1 phosphorylation in 

cultured OPCs 

In the attempt to identify a putative cross-talk between A2BR and SphK/S1P 

signalling pathways, as already proposed by others in peripheral cells (Sun et 

al., 2015), we studied whether BAY60-6583, applied at the same concentration 

found to inhibit K+ currents (10 μM), could affect the activation of one or both 

isoforms of SphK, SphK1 and SphK2, known to be expressed in 

oligodendroglial cells (Saini et al., 2005). It has been previously demonstrated 

that SphK activation requires phosphorylation and then translocation to the 

plasma membrane, where the substrate is located (Hait et al., 2007; Pitson et 

al., 2003). We quantified the phosphorylation of both these enzymes after 10 

min application of BAY60-6583 (10 μM) in OPC cultures and we found that the 

A2BR agonist significantly increased SphK1, but not SphK2, phosphorylation 

in cultured OPCs (Fig. 34A, B). 

 

Figure 34. A2BR activation increases SphK1 phosphorylation in cultured OPCs. A. Western 
Blot analysis of phospho-SphK1 (upper panel) and phospho-SphK2 (lower panel) performed 
in total cell lysates of OPC cultures after 10 min application of BAY60-6583 (BAY; 10 μM). B. 
Pooled data (mean ± SEM) of phospho-SphK1 (left panel) and phospho-SphK2 (right panel) 
levels measured in control conditions (ctrl) or in 10 μM BAY60-6583. In the histogram, band 
intensity corresponding to phospho-SphK1 or phospho-SphK2 was normalized to SphK1 or 
SphK2 total content of three independent experiments performed in triplicate (-fold change 
over control). **P < 0.01, unpaired Student’s t-test. 
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2.3. FTY720-P interferes with A2BRs in decreasing outward K+ 

currents in cultured OPCs 

Based on the latest results, we next tested the hypothesis of a possible 

involvement of SphK1/S1P pathway in A2BR-mediated K+ current inhibition 

in OPCs. As shown in Figure 35A, cell preincubation with the pan SphK1/2 

inhibitor VPC96047 (500 nM, at least 30 min pre-incubation) did not prevent 

BAY60-6583 (10 μM)-mediated ramp current inhibition. Of note, VPC96047-

preincubated cells presented a significant increase in ramp currents at +80 mV 

under baseline conditions (bsl), i.e. before the application of BAY60-6583, vs 

respective, non-VPC-pre-incubated, matched controls (Fig. 35B), indicating 

that sustained SphK inhibition affects K+ current amplitude in cultured OPCs. 

The S1P analogue FTY720-P, at a concentration of 1 μM, mimicked the effect 

of BAY60-6583 in inhibiting ramp currents (Fig. 35C). Of note, 1 μM FTY720-P 

reduced the effect of a subsequent application of the A2BR agonist (Fig. 35G), 

indicating these two effects are not additive. Differently, a low (10 nM) 

concentration of FTY720-P did not modify ramp current amplitude per se (Fig. 

35D) and significantly increased the effect of a subsequent application of 

BAY60-6583, as shown in figure 35G. Finally, the product of SphK activity, 

S1P, did not modify ramp-evoked currents in cultured OPCs (Fig. 35E, F), nor 

the inhibitory effect of BAY60-6583 on them (Fig. 35G), at concentrations 

ranging from 10 nM to 1 μM. 
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Figure 35. The effect of BAY60-6583 on ramp-evoked currents is differently modulated by 
FTY720-P depending on the concentration applied. A. Original ramp current traces recorded 
before (baseline: bsl; black trace) or after the application of BAY60-6583 (BAY: 10 μM, 5 min; 
grey trace) in a typical OPC pre-incubated (at least 45 min) with the pan-SphK inhibitor 
VPC96047 (VPC: 500 nM). Inset: pooled data (mean ± SEM) of ramp-evoked currents at +80 
mV recorded before or after 10 μM BAY60-6583 in 11 cells tested. *P < 0.05; paired Student’s 
t-test. B. Pooled data of ramp-evoked currents at +80 mV recorded in control OPCs (ctrl),   
OPCs not incubated with VPC96047 and before the application of BAY60-6583 (n = 24), or in 
OPCs pre-incubated with VPC96047 (500 nM; n = 11). *P < 0.05; unpaired Student’s t-test. C-

F. Original ramp current traces, and respective pooled data at +80 mV (insets), recorded 
during baseline (bsl), after the application of FTY720-P (FTY: 1 μM in C; 10 nM in D) or S1P (1 
μM in E; 100 nM in F) or after a subsequent application of BAY60-6583 (10 μM). *P < 0.05; **P 
< 0.01; ***P < 0.001vs bsl, paired Student’s t-test. G. Pooled data of ramp current inhibition at 
+80 mV, expressed as % of bsl, induced by 10 μM BAY60-6583 in different experimental 
conditions. *P < 0.05; **P < 0.01 vs ctrl, One-way ANOVA, Bonferroni post-test. Number of 
observations is written in the columns. All experiments were performed in the presence of the 
A1R, A2AR and A3R antagonists DPCPX, SCH58261 and MRS1523, respectively (all 100 nM). 
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2.4. A2BRs and S1P pathway interact to modulate 

oligodendrocyte maturation in vitro 

To study oligodendroglial cell maturation in vitro, OPCs were lead to 

differentiate into mature OLs by mitogen withdrawal and gene-related targets 

of cell maturation were studied (see Table 6). As shown in figure 36A and 36B, 

a significant and time-dependent increase in MAG and MBP expression were 

found, with a maximal peak after 7 days (t7). Moreover, we studied the 

expression of A2BRs during oligodendroglial differentiation and we found out 

that this receptor is overexpressed during cell maturation (Fig. 36C). 

Interestingly, A2BR expression was not affected by low (10 nM) nor high (1 μM) 

concentration of FTY720-P whereas it was dramatically decreased when the 7 

days differentiation period was carried out in the presence of the pan SphK1/2 

inhibitor VPC96047 (500 nM). Similarly to the A2BR, also S1P5 displays a time-

dependent expression during OL differentiation, in line with previous data in 

the literature about the expression of S1P receptors in mature OLs (Jung et al., 

2007; Novgorodov et al., 2007; Yu et al., 2004). S1P5 mRNA levels presented a 

time-dependent increase during cell maturation but were not significantly 

changed in the presence of high doses of FTY720-P nor VPC96047 whereas 10 

nM FTY720-P induced a significant upregulation of the receptor (Fig. 36D). 

 

Figure 36. Time course of the expression of oligodendrocyte markers, A2BR and S1P5 receptor 
during oligodendroglial cell differentiation in vitro. A, B. Gene expression analysis of 
oligodendrocyte differentiation markers MAG (A) and MBP (B) performed by Real Time-PCR 
(RT-PCR) from OPC cultures at t0 (OPC) to oligodendrocyte cultures (OL) after 3, 7 and 10 
days of differentiation (t3, t7, t10). C, D. Gene expression analysis of A2BR (C) and S1P5 (D) 
performed by RT-PCR from OPC to OL cultures at t3, t7, t10. Mature OL at t7 were challenge 
with or without 10 nM and 1 μM FTY720-P or 500 nM VPC96047. RT-PCR was performed by 
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using SYBR green probe and specific rat primers, as reported in Table 6. The 2(−ΔΔCT) method 
was applied as a comparative method of quantification and data were normalized to β-actin 
expression. Data are means ± SEM of three independent experiments performed in triplicate. 
*P < 0.05; ** P < 0.01; *** P < 0.001, One-way ANOVA, Bonferroni post-test. 

We finally investigated the involvement of A2BR agonists in oligodendroglial 

cell maturation at t7, alone or in combination with various S1P analogues or 

SphK inhibitors (Fig. 37). The A2BR agonist BAY60-6583 (10 μM) dramatically 

reduced MAG or MBP expression at t7 (Fig. 37A, B:), indicating that A2BR 

stimulation counteracts OPC maturation towards OLs. The opposite effect was 

observed when cells were grown in the presence of the pan SphK1/2 inhibitor 

VPC96047 or the selective SphK1 inhibitor VPC96091 (both at 500 nM: Fig. 

37A, B), thus indicating that SphK inhibition promotes OPC maturation. 

Furthermore, in line with electrophysiological data, the A2BR agonist BAY 60-

6583 still inhibited cell maturation when applied in the presence of either of 

the two SphK inhibitors tested, VPC96047 and VPC96091. The S1P analogue 

FTY720-P, at a concentration of 1 μM, mimicked the effect of BAY 60-6583 in 

inhibiting oligodendroglial cell differentiation (Fig. 37A, B) and a combination 

of both compounds did not produce any additional effect (Fig. 37A, B). These 

results are also consistent with what observed on IK currents (see Fig. 35C). 

On the contrary, 10 nM FTY720-P positively affected oligodendrocytes 

differentiation by increasing MAG expression, a result consistent with 

previous data (Jung et al., 2007) and with the present research (see Fig. 35D, 

G). OL differentiation was also significantly decreased by the recently 

described A2BR agonist P453 and, similarly to BAY60-6583, the effect of P453 

was not reverted by VPC96047 (Fig.37A, B). Data in literature show that mice 

with a targeted deletion of S1P1 did not show an obvious clinical phenotype, 

but there were subtle abnormalities in myelin (Kim et al., 2011). Interestingly, 

recent results demonstrated that S1P1 deficiency caused delayed 

differentiation of OPCs into OLs at 3 weeks (Dukala and Soliven, 2016). For 

this reason, we employed the specific S1P1 agonist and antagonist, SEW2871 

and W146 respectively, to analyze the contribution of S1P1 in BAY60-6583-

mediated inhibition of OPC differentiation. As reported in figure 37C and 37D, 
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neither SEW2871 (1 μM) nor W146 (10 μM) exerted any significant effect on 

OPC differentiation. Moreover, MAG and MBP expression after BAY60-6583 

stimulation were not significantly affected by the S1P1 blocker W146, ruling 

out a role for S1P1 in BAY60-6583-mediated inhibition of oligodendroglial 

differentiation. Notably, S1P2 expression was significantly downregulated in 

OL at t7 compared to OPC as shown in figure 37E. Finally, S1P3 expression 

was upregulated during OL differentiation and this effect was significantly 

enhanced in the presence of BAY60-6583 (Fig. 37F). 

 

Figure 37. A2BR- and SphK/S1P axis-mediated effects on oligodendrocyte differentiation in 
vitro. A-D. Gene expression analysis of oligodendrocyte differentiation markers MAG (A and 
C) and MBP (B and D) by Real Time-PCR (RT-PCR) in OPC at t0 and in OL at t7 in different 
experimental conditions. E, F. Gene expression analysis of S1P2 (E) and S1P3 (F) by RT-PCR 
in OPC at t0 and in OL at t7 in different experimental conditions. BAY60-6583 (BAY, 10 μM), 
VPC96091 (500 nM); VPC96047 (500 nM); FTY720-P (FTY: 10 nM or 1 μM), P453 (500 nM), 
SEW2871 (1 μM), W146 (10 μM). RT-PCR was performed by using SYBR green probe and 
specific rat primers, as reported in Table 6. The 2(−ΔΔCT) method was applied as a comparative 
method of quantification and data were normalized to β-actin expression. Data are means ± 
SEM of three independent experiments performed in triplicate. * P < 0.05; ** P < 0.01; *** P < 
0.001, One-way ANOVA, Bonferroni post-test. 
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2.5. A2BR silencing by siRNA enhances oligodendrocyte 

maturation in vitro and affects S1P pathway 

In order to confirm above data obtained with A2BR ligands, we took advantage 

of the interference RNA strategy to test the impact of transient A2BR silencing 

in OPC cultures. Figure 38A shows that transfection of OPCs with scramble 

silencing RNA (SCR-siRNA) did not affect BAY60-6583- mediated inhibition 

of ramp currents. On the contrary, when cells were transfected with a pool of 

specific A2BR silencing RNA duplexes (A2BR-siRNA), the effect of the A2BR 

agonist was significantly reduced (Fig. 38B), i.e. BAY60-6583-inhibited current 

was halved (Fig. 38C, D). However, total outward currents evoked by the 

voltage ramp protocol at +80 mV were not different in the two groups (94.9 ± 

16.0 pA/pF in the SCR-siRNA group, n=12, vs 88.0 ± 8.8 pA/pF in the A2BR-

siRNA group, n=14; p = 0.1576, unpaired Student’s t-test; data not shown). As 

shown in figure 38E, downregulation of A2BR expression in A2BR-siRNA-

transfected OPCs was about 50 % (open bars) at 3 days post-transfection. 

Importantly, A2BR-siRNA transfection significantly reduced NG2 and 

increased CNPase expression, an earlier marker of differentiation, 

demonstrating that A2BR silencing enhanced OPC maturation (Fig. 38E). 

Furthermore, a significant reduction in S1P3, S1P5 and SphK1, but not SphK2, 

expression was observed. Finally, the expression of S1P degrading enzyme 

S1P lyase was strikingly enhanced in A2BR siRNA-transfected cells (Fig. 38E, 

black bars). 
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Figure 38. A2BR silencing in cultured OPCs by small interference RNA (siRNA) prevents the 
effect of BAY60-6583 on K+ currents, facilitates cell maturation and interferes with S1P 
signaling. A, B. Original ramp current traces recorded before (baseline: bsl; black traces) or 
after the application of BAY60-6583 (BAY: 10 μM; grey traces) in typical OPCs transfected with 
scramble (SCR)-siRNA (A) or A2B-siRNA (B). Insets: time courses of ramp-evoked currents at 
+80 mV in respective cells. C. Averaged BAY60-6582-inhibited currents, obtained by 
subtraction of the trace recorded in BAY60-6582 (10 μM) from the control ramp, measured in 
OPCs transfected with SCR-siRNA or A2B-siRNA. D. Pooled data of BAY-inhibited current at 
+80 mV recorded in OPCs transfected with SCR-siRNA (n = 12) or A2B-siRNA (n = 14). ** P < 
0.01, unpaired Student’s t-test. E. Relative quantitative mRNA analysis was performed by 
Real-Time PCR in OPCs transfected with SCR-siRNA or with A2B-siRNA; the content of 
housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was analyzed in 
parallel. Results are expressed as fold changes according to the 2(−ΔΔCT) method, utilizing as 
calibrator the expression of each gene in scrambled siRNA-transfected cells. Data are means ± 
SEM of three independent experiments performed in triplicate. * P < 0.05, ** P < 0.01, *** P < 
0.001; unpaired Student’s t-test. All experiments were performed in the presence of the A1R, 
A2AR and A3R antagonists DPCPX, SCH58261 and MRS1523, respectively (all 100 nM). 
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2.6. Discussion 

The present work has provided the first description of A2BR-mediated effects 

in oligodendroglial cell cultures. We demonstrate here that selective A2BR 

activation inhibits IK and IA currents and delays maturation of cultured OPCs. 

Furthermore, A2BRs activate SphK1 and differently modulate S1P3, S1P5 and 

S1P lyase expression levels. Adenosine participates to a number of OPC 

functions, from cell migration to myelin production (Coppi et al., 2015; Fields 

and Burnstock, 2006). My group recently contributed to address this issue 

(Coppi et al., 2013a) by demonstrating that A2AR stimulation counteracts 

oligodendroglial cell differentiation in vitro by inhibiting TEA-sensitive IK 

currents that are necessary to OPC maturation (Gallo et al., 1996). In the 

present work, we demonstrated that similar effects are achieved by selective 

A2BR stimulation: the A2BR agonist BAY60-6583 decreased IK currents and 

inhibited OPC differentiation into mature OLs when added in the culture 

medium of these cells. These data are consistent to the notion that the 

inhibition of TEA-sensitive IK current in cultured OPCs prevents cell 

differentiation (Attali et al., 1997; Chittajallu et al., 2005; Coppi et al., 2013a; 

Gallo et al., 1996; Knutson et al., 1997). However, differently from A2ARs, 

A2BRs not only inhibit IK conductances but also IA transient currents. This 

discrepancy could be due to the fact that A2BRs, differently from A2ARs, may 

also activate Gq proteins (Antonioli et al., 2019). Finally, in accordance with K+ 

channel inhibition, the A2BR agonist BAY60-6583 also significantly 

depolarized cell membrane potential. Cell depolarization could be one of the 

mechanisms by which A2BRs modulate cell cycle and maturation, as suggested 

by other authors (Chen et al., 2014; Rao et al., 2015). A2BR-mediated IK 

inhibition was obtained in the present work by using three different A2BR 

agonists: the prototypical, commercially available, selective A2BR agonist 

BAY60-6583, a recently synthetized A2BR agonist P453, described by Betti and 

co-workers (Betti et al., 2018) and, lastly, the unselective adenosine receptor 

agonist NECA. All compounds were applied in the continuous presence of 

saturating concentrations of A1R, A2AR and A3R antagonists to avoid 
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nonspecific effects on other adenosine receptor subtypes. We can conclude 

that ramp current inhibition observed in the presence of the above mentioned 

compounds is A2BR-mediated. We also investigated the intracellular pathway 

by which A2BRs inhibit K+ currents. Our previous data showed that the Gs-

coupled A2AR decreases ramp-evoked K+ currents in purified OPCs (Coppi et 

al., 2013a), whereas the Gi-coupled GPR17 receptor increases (Coppi et al., 

2013b) the same conductances. So, we tested the hypothesis of intracellular 

cAMP being involved. Indeed, the adenylyl cyclase activator forskolin 

inhibited ramp currents and occluded the effect of a further application of 

BAY60-6583, demonstrating that A2BR-mediated effect is mediated by 

intracellular cAMP rise (Fig. 39). 

Silencing experiments demonstrate that A2BR downregulation is, per se, a 

signal for enhancing OPC differentiation. Given the notoriously low affinity 

of this receptor for the endogenous ligand adenosine, we discourage the 

hypothesis that A2BR could be activated by adenosine released from OPC 

cultures under control conditions. Furthermore, constitutive activation of 

A2BR is also improbable because we did not observe any modification in ramp 

currents when the A2BR antagonist MRS1706 was applied alone in OPCs. So, 

we hypothesize that A2BR could dimerize with some other receptors (an option 

that has been previously reported for this adenosine receptor subtype: (Fusco 

et al., 2019, 2018)) or, indeed, could promote the maintenance of high levels of 

S1P by some still unknown mechanisms. Consistently with this hypothesis, we 

demonstrate here that SphK inhibition by VPC96047 counteracts the 

overexpression of A2BRs observed in OPC cultures during the 7 days of 

maturation. Furthermore, either SphK inhibition or A2BR silencing produce 

enhanced OPC differentiation, thus corroborating our hypothesis of crosstalk 

and, in particular, of reciprocal control between these two pathways (Fig. 39). 

Of note, data by Gonçalves and co-workers reported that A2BR-KO mice are 

devoid of any obvious behavioural phenotype when tested by open field, 

elevated plus-maze or Y-maze paradigms (Gonçalves et al., 2015). Here we 

found some important effects of A2BRs on in vitro OPC maturation, which is 
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inhibited by A2BR agonists and enhanced by receptor silencing. Thus, 

theoretically, A2BR-KO mice would present increased, or more efficient, 

myelination, a fact that is not necessarily linked to appreciable differences in 

behavioural tests.  

S1P activates a family of G-protein coupled receptors, S1P1-5 that modulate a 

variety of cell functions (Strub et al., 2010). S1P is reported to act as a mitogen 

in glial cells and neural progenitors, i.e. it increases cell proliferation and 

promotes the production of neurotrophic factors, (Bassi et al., 2006; Harada et 

al., 2004; Yamagata et al., 2003). As an example, PDGF-stimulated OPC 

proliferations is attenuated in S1P1 silenced cells (Jung et al., 2007) or by SphK 

inhibitors. Thus, it appears that high levels of this metabolite support the 

undifferentiated OPC phenotype whereas a decrease in S1P production, or an 

increase in S1P degradation, would promote OPC maturation. This notion is 

confirmed by the present work as SphK inhibition by VPC96047 or VPC96091 

markedly increased MAG and MBP expression in OL cultures at t7 and also 

significantly increased IK currents when incubated for 45 min in OPC cultures, 

an effect that has already been linked to increased OPC maturation (Coppi et 

al., 2013b). Furthermore, we provide here the first demonstration of an 

interplay between SphK and A2BR activation in OPCs as demonstrated by the 

fact that: (i) an acute application of the A2BR agonist BAY60-6583 promotes 

SphK1 (but not SphK2) phosphorylation; (ii) the SphK inhibitor VPC96047 

prevents the increase in A2BR expression observed during OPC maturation; 

(iii) A2BR silencing decreases SphK1 (but not SphK2), S1P3 and S1P5 levels and 

highly increases S1P lyase expression. 

Of note, either Western blot, RT-PCR or silencing experiments demonstrated 

that A2BR activation specifically affects SphK1 isoform. However, to our 

surprise, neither of the two SphK inhibitors tested, VPC96047 (which blocks 

both SphK1 and 2) and VPC96091 (which selectively inhibits SphK1) were able 

to prevent BAY60-6583-mediated effect either on ramp currents nor on OPC 

differentiation, demonstrating that A2BRmediated response overrides the pro-
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differentiating effect of SphK inhibition. However, the fact that A2BR silencing 

strikingly increased S1P lyase expression suggests an interplay between A2BR 

and S1P signalling more at the level of S1P degradation, rather than its 

synthesis. 

Indeed, in conditions of altered S1P degradation, we hypothesize that 

inhibition of S1P synthesis by VPC96047or VPC96091 would have little impact 

on S1P levels. This concept is in accordance with previous data showing that 

increased S1P levels found in mixed glial cell cultures after treatment with 

remyelination promoting antibody rHIgM22, were not associated to an 

increased expression and/or phosphorylation of SphK1 or 2 but rather to a 

decrease in S1P lyase (Grassi et al., 2019). Of note, increased S1P levels are 

associated to mitogenic effects, as mentioned above.  

An additional proof that A2BRs are critical modulators of OPC maturation 

resides in the fact that this receptor subtype is clearly upregulated during cell 

differentiation, an effect that is completely prevented when cells are 

differentiated in the presence of the pan SphK inhibitor VPC96047. S1P5 

receptor, whose expression is limited to the oligodendroglial lineage (Jaillard 

et al., 2005), is also upregulated during oligodendrogliogenesis, a result that 

was previously reported by others (Yu et al., 2004) but, differently from A2BR, 

its upregulation is not modified when OPCs are differentiated in the presence 

of VPC96047. Fingolimod (FTY-720) is the first oral MS disease therapeutic 

agent and the first human medicine to be approved that targets S1P receptors. 

Emerging evidence indicates that its immunomodulatory role could be 

supported by an additional protective effect exerted at central level, possibly 

on OPCs, by facilitating myelin production. Results from in vitro studies have 

shown that the effect of FTY720-P on cultured oligodendrocyte lineage cells is 

complex at best as is affected by developmental stage of OPCs, concentration 

and duration of treatment (Miron et al., 2008; Novgorodov et al., 2007). 

Here we found that FTY720-P differently affected BAY60-6583-mediated K+ 

current inhibition depending upon the concentration applied. When 
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administered at 1 µM, it mimicked and partially occluded the effect of a 

subsequent BAY60-6583 application on voltage-dependent K+ currents. This 

confirms, again, that S1P and A2BR pathways converge. On the other hand, the 

effect of BAY60-6583 on ramp currents was significantly enhanced in the 

presence of 10 nM FTY720-P. Similarly, 10 nM FTY720-P increased, whereas 1 

µM decreased, MAG expression after 7 days of OPC maturation. Contrasting 

effects of this compound depending on the concentration used have been 

previously reported by others. For example, Jung and collaborators 

demonstrated that high (1 µM) and low (10 nM) doses of FTY720-P mediate 

opposite effects in rat OPC cultures (Jung et al., 2007). Similarly, Miron et al. 

reported that the effects of fingolimod on process dynamics in mature 

oligodendrocytes depended on both concentration and treatment duration 

(Miron et al., 2008). Differently from FTY720-P, when S1P is used as a ligand, 

the effect on ramp currents was not observed. This apparent discrepancy may 

be ascribed to the fact that receptor ligation by FTY720-P is restricted to all S1P 

receptors except S1P2. Moreover, the functional outcome induced by S1P 

receptor modulators could differ from one ligand to another since it could 

differently affect receptor fate. Indeed, it has been shown that FTY720P can 

induce S1P1 receptor degradation, whereas S1P affects receptor recycling. 

Finally the lack of effect exerted by exogenous S1P is in agreement with 

previous data in different cellular models, such as skeletal muscle cells, were 

agonist-induced S1P intracellular production opposite actions compared to 

exogenous S1P (Cencetti et al., 2013, 2010; Donati et al., 2005). This effect can 

be explained by a localized release of bioactive lipid in membrane 

microdomain where the availability of certain receptor subtypes is limited. 

The spatial regulation of S1P biosynthesis within the cell, together with its 

localized partitioning into plasma membrane domains, determines the subset 

of engaged S1P receptors and thus the biological outcome (Donati et al., 2013). 

The differentiation of OPCs in our experimental model is reduced after the 

treatment with high (μM) concentrations of FTY720-P, in agreement with 
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previous results obtained in rat cultured OPC (Coelho et al., 2007; Jung et al., 

2007; Miron et al., 2008). 

Among the different S1P receptors expressed in OPCs, namely S1P1, S1P2, 

S1P3 and S1P5, binding of S1P to S1P1, S1P2, and S1P3 receptors has been 

shown to promote cell proliferation whereas binding to S1P5 is associated with 

anti-proliferative effect (Gonda et al., 1999; Malek et al., 2001). However, in the 

present work, neither the S1P1 agonist SEW2871 nor its antagonist W146 were 

able to affect OPC differentiation nor the effect of BAY60-6583 on it, thus ruling 

out a role of this receptor subtype in this phenomenon. 

Differently, Dukala and Soliven reported that deletion of S1P1 in 

oligodendroglial lineage cells leads to a delayed differentiation of OPCs into 

OLs in the mouse brain solely during early myelination stages (i.e. at P14 and 

P21) but not at 3 months (Dukala and Soliven, 2016; Kim et al., 2011). So, we 

hypothesize that differences in the in vivo time window analyzed by those 

authors vs the in vitro stage of differentiation investigated in the present work 

could justify the discrepancy. 

 

Figure 39. Schematic representation of the results discussed in this section.
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Aim III - Adenosine A3 receptor activation inhibits 

pronociceptive N-type Ca2+ currents and cell excitability 

in dorsal root ganglion neurons.  

The following results are recently published in: 

Coppi, E., Cherchi, F., Fusco, I., Failli, P., Vona, A., Dettori, I., Gaviano, L., 

Lucarini, E., Jacobson, K.A., Tosh, D.K., et al. (2019). Adenosine A3 receptor 

activation inhibits pronociceptive N-type Ca2+ currents and cell excitability 

in dorsal root ganglion neurons.  

Pain 160, 1103–1118. 

3.1. Selective A3R activation inhibits Ca2+ currents in cultured 

rat dorsal root ganglion neurons 

Because no data are available up to now concerning the electrophysiological 

effect/s of A3R on DRG neurons, we first tested the prototypical A3R agonist 

Cl-IB-MECA under “similar physiological conditions,” i.e., we applied a 

voltage-ramp protocol (from +65 to -135 mV, 800-ms duration: see inset of Fig. 

A) in K+-containing solutions before, during, and after the superfusion of this 

compound. As shown in figure 40A, the application of 100 nM Cl-IB-MECA 

decreased overall outward currents evoked by the voltage ramp: the effect 

peaked within 5 minutes and was partially reversed after drug washout. 

Figure 40B shows that the net Cl-IB-MECA–inhibited current was an outward 

current activated at potentials positive to -45 mV. Ramp current inhibition 

measured at +65 mV in the presence of Cl-IB-MECA was statistically 

significant in 14 cells investigated (Fig. 40C, D: from 799.0 ± 111.9 pA/pF in 

control to 617.2 ± 92.3 pA/pF in 100 nM Cl-IB-MECA, P < 0.001, the paired 

Student t-test), whereas no changes in inward ramp currents at 2135 mV were 

detected (Fig. 40C, D: from -46.6 ± 10.7 pA/pF in control to -42.8 ± 7.5 pA/pF 

in 100 nM Cl-IB-MECA, P = 0.3734, the paired Student t-test). The Cl-IB-MECA 

effect was observed in all cells tested, in agreement with high A3R levels 

expression in DRG homogenate as revealed by RT-PCR (Fig. 40E) and 

immunocytochemical analysis (Fig. 40F, G). Our data are in line with previous 
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work in the literature demonstrating the expression of this receptor subtype 

on rat DRG neurons, even if species-specific differences have been found (Ray 

et al., 2018; Usoskin et al., 2015). The effect was concentration dependent (Fig. 

40H), with an EC50 of 2.0 nM (confidence limits: from 1.2 to 3.2 nM; Fig. 40I), 

and prevented by 2 different A3AR antagonists: VUF5574 (100 nM) 

andMRS1523 (100 nM) (Fig. 40 J, K).  
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Figure 40. Selective A3R activation inhibits ramp-evoked outward currents in cultured rat 
DRG neurons. A. Left panel: original patch-clamp current traces recorded in a representative 
cell where a voltage-ramp protocol (165/2135 mV, 800 ms: lower inset) was applied before 
(ctrl), during, and after Cl-IB-MECA (100 nM) superfusion. Upper inset: time course of ramp-
evoked currents at 165 mV in the same cell. B. Net Cl-IB-MECA–inhibited current, obtained 
by subtraction of the ramp recorded in Cl-IB-MECA from the control ramp, in the same cell. 
C, D. Averaged ramp traces (C) and pooled data at +65 and -135mV (D) of ramp-evoked 
currents measured in the absence or presence of Cl-IB-MECA in 14 cells investigated. P = 
0.0005 at +65 mV; P = 0.3734 at −135 mV; the paired Student t test, n = 14. E. Real-time 
polymerase chain reaction experiments demonstrated that A3R-coding mRNA is present in rat 
DRG homogenates. Data were normalized to A3 receptor expression as a fraction of the house-
keeping gene GADPH (glyceraldehyde-3-phosphate dehydrogenase) and have been obtained 
in 3 independent experiments performed in triplicate. A brain tissue homogenate was taken 
as the positive control. F, G. 20× (F) and 40× (G) magnification of A3R immunofluorescent 
labelling (green) of DRG cultures. Cells nuclei were marked with DAPI (blue). Scale bar: 50 
μm. H. Averaged Cl-IB-MECA–inhibited currents at different agonist concentrations (0.1–
1000 nM; at least n = 4 in each experimental condition). I. Concentration-response curve of Cl-
IB-MECA effect on ramp currents measured at +65 mV (confidence limit: from 1.2 to 3.2 nM). 
J, K. Net 100 nM Cl-IB-MECA–inhibited currents (J) and respective pooled data at +65 mV (K) 
recorded in the absence or presence of 2 different A3R antagonists: MRS1523 (100 nM; n = 5) 
and VUF5574 (100 nM; n = 6). One-way ANOVA, Bonferroni post-test.  
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Another highly selective A3R agonist was tested: MRS5980, whose EC50 is 

described in the sub nanomolar range (EC50 = 0.7 ± 0.1 nM; (D. Tosh et al., 

2014)). This compound also concentration dependently inhibited total 

outward currents evoked by the ramp protocol at +65 mV in 8 cells 

investigated (Fig. 41A–C), and the effect was prevented by MRS1523 (inset in 

Fig. 41A). The effect of both A3R agonists was shared by the endogenous 

ligand adenosine (30 μM: Fig. 41D), which significantly decreased ramp 

currents at + 65 mV in 5 cells tested without modifying the inward component 

(Fig. 41E). Notably, the adenosine effect was significantly inhibited by 

VUF5574 (100 nM; n = 6: Fig. 41F; **P < 0.01, the unpaired Student t-test). 

 

Figure 41. The newly synthetized, highly selective, A3R agonist MRS5980 and the endogenous 
ligand adenosine mimic Cl-IB-MECA effect in inhibiting ramp-evoked outward currents in 
isolated rat DRG neurons. A. Averaged traces of ramp-evoked currents measured before or 
after MRS5980 application (100 nM) in 8 cells investigated. Inset: pooled data or ramp-evoked 
current at +65 mV in the presence of MRS5980 alone or during coapplication with the A3R 
antagonist MRS1523 (100 nM; n = 5). The paired Student t-test. B. Net MRS5980-inhibited 
current in 8 cells tested. C. Comparison between net Cl-IB-MECA–or MRS5980-inhibited ramp 
currents measured at +65 mV at different agonists concentrations. D. Original ramp current 
traces recorded in a representative cell before (ctrl), during, or after adenosine (30 μM) 
superfusion. Inset: time course of ramp-evoked currents at +65 mV in the same cell. E. Pooled 
data of ramp-evoked currents at +65 mV or −135 mV before or after the application of 
adenosine in 5 cells investigated. P = 0.0088 at +65 mV; P = 0.0738 at −135 mV, the paired 
Student t-test, n = 5. F. Averaged adenosine-inhibited currents, obtained by subtraction of the 
adenosine ramp from the control ramp, recorded in the absence (n = 5) or presence of A3R 
antagonist VUF5574 (100 nM, n = 6). **P < 0.01 at + 65 mV, the unpaired Student t test. 
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To define A3R -responding DRG neurons as nociceptors, cells were tested for 

their responsiveness to the TRPA1 agonist AITC and the TRPV1 agonist 

capsaicin. At least 5 minutes after Cl-IB-MECA removal, cells were voltage 

clamped at −75 mV and the 2 TRP agonists were applied consecutively. As 

shown in a typical cell in figure 42A, both compounds activated an inward 

current in the vast majority of cells investigated (Fig. 42B): 8 of 33 cells tested 

for TRP response were insensitive to 1 of the 2 TRP agonists, and 1 cell was 

insensitive to both compounds but still sensitive to Cl-IB-MECA. In figure 42C, 

we pooled cell capacitance values measured in those 33 TRP-sensitive cells vs 

capacitance values measured in the residual cells analyzed in the present 

research but not tested for TRP responses (TRP not tested: n = 112). Of note, 

cell capacitance, as a measure of a spherical-approximated cell soma, was not 

statistically different in TRP-sensitive (25.1 ± 1.7 pF; n = 33, corresponding to 

a cell diameter of 28.3 μm: see Methods) vs TRP not tested (25.3 ± 1.2 pF; n = 

112, corresponding to a cell diameter of 28.4 μm; the unpaired Student t test, P 

= 0.9825; Fig. 42C) neurons. Our results thus indicate that both groups of cells 

were composed of neurons with a 25-μm diameter, therefore adhering to the 

definition of small- to medium-sized DRG neurons defined as “nociceptors” 

(Harper and Lawson, 1985; Scroggs and Fox, 1992).  

 

Figure 42. Dorsal root ganglion (DRG) neurons responding to Cl-IB-MECA are nociceptors 
sensitive to the TRPV1 and TRPA1 agonists capsaicin and allyl isothiocyanate. A. Original 
current trace recorded in a −75 mV-clamped cell after 10-minute washout of a previous Cl-IB-
MECA application. Scale bars: 200 pA; 1 minute. B. Pooled data of AITC- and capsaicin-
activated currents in 33 cells investigated. C. Pooled data of cell capacitance measured in 
AITC- and capsaicin-sensitive cells (“TRP-sensitive” neurons: n = 33) or in cells not exposed 
to capsaicin or AITC challenge (“TRP non-tested” neurons, n = 112). P = 0.8045, the unpaired 
Student t test. AITC, allyl isothiocyanate. 
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Data in the literature demonstrate that adenosine and its analogues inhibit 

CaVs in rat DRG neurons (A. C. Dolphin et al., 1986; MacDonald et al., 1986) 

with no obvious distinction between A1- vs A3-mediated effects provided to 

date. For this reason, we tested the hypothesis that the decreased total outward 

currents observed in the present work by A3R activation might depend on a 

decrease of Ca2+ entry from CaVs and, thus, reduced activation of Ca2+-

activated K+ conductances (KCa). Therefore, we applied Cl-IB-MECA in the 

presence of the nonselective CaV blocker Cd2+. First of all, by using our voltage-

ramp protocol, we confirmed the activation of KCa channels in DRG neurons 

by applying extracellular Cd2+ that, per se, induced a 34.0 ± 13.3% inhibition of 

total outward currents evoked by the ramp protocol (from +245.7 ± 15.6 

pA/pF in ctrl to 167.2 ± 26.3 pA/pF in 100-μM Cd2+ at +65 mV, n = 4, P < 0.05; 

the paired Student t test; Fig. 43C: 34.0 ± 8.7% current inhibition). The effect of 

Cd2+ was not different when applied at 100 μM, 500 μM, or 1 mM 

concentrations (Fig. 43A–C).  

 

Figure 43. Extracellular Cd2+ inhibits outward K+ currents evoked by the voltage ramp 
protocol. A. Original ramp current traces recorded before (control: ctrl) and after the 
application of different concentrations of Cd2+ in a representative DRG neuron. B. Time course 
of ramp-evoked currents at +65 mV in the same cell. C. Pooled data of ramp-evoked currents 
at +65 mV before or after the application of different Cd2+ concentrations. *P=0.0339 vs ctrl, 
paired Student’s t-test, n=4. 

Thus, we applied Cl-IB-MECA in the presence of Cd2+ to test whether the A3R 

agonist effect was prevented in conditions of Ca2+ entry block. As shown in 

Figure 44A–C, Cd2+ completely prevented Cl-IB-MECA–induced decrease of 

outward ramp currents. Data were confirmed by applying 2 selective blockers 

of KCa channels: apamin (100 nM), which selectively blocks small-

A B C 
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conductance KCa (SK channels), and TEA at low concentrations (200 μM), 

which selectively inhibits big-conductance KCa (BK channels). Alone or in 

combination, both compounds significantly or completely prevented Cl-IB-

MECA–mediated inhibition of ramp-evoked outward currents (Fig. 44D, E). 

The above data demonstrate that BK and SK channel activation was necessary 

for the A3R-mediated ramp-current inhibition in rat DRG neurons. 

Two possibilities exist to explain this phenomenon: (i) A3R activation directly 

inhibits SK and BK channels; or (2) A3Rs activation inhibits Ca2+ entry from 

CaV, which, in turn, decreases SK and BK channel opening. To test the latter 

hypothesis, we blocked all K+ currents by replacing intracellular and 

extracellular K+ ions with equimolar Cs+. In these experimental conditions, an 

inward component arose in the ramp protocol peaking around 0 mV (Fig. 44F). 

This current was identified as a Ca2+ current because it was abolished by 

extracellular Cd2+ (Fig. 44F, G). When applying Cl-IB-MECA in Cs+-

replacement conditions, a significant decrease in inward peak current was 

observed (Fig. 44H: from −64.3 ± 14.8 pA/pF in control to −41.1 ± 11.4 pA/pF 

in Cl-IB-MECA, *P < 0.05, the paired Student t-test; n = 5), thus demonstrating 

that A3R activation directly inhibited Ca2+currents.  
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Figure 44. A3R activation in DRG neurons inhibits Ca2+-activated K+ currents by reducing 
Ca2+ influx from voltage-dependent Ca2+ channels. A. Original ramp current traces recorded 
in 1 mM Cd2+containing extracellular solution before (ctrl) or during Cl-IB-MECA (100 nM) 
application in a representative cell. Inset: time course of ramp-evoked currents at +65 mV in 
the same cell. B. Pooled data of ramp-evoked currents measured at +65 mV in the absence or 
presence of Cl-IB-MECA in Cd2+-containing extracellular solution in 7 cells investigated. P = 
0.2653, the paired Student t-test. C. Averaged time course of ramp-evoked currents at +65 mV 
in the presence of Cl-IB-MECA (n = 14), its vehicle (Veh: 0.1% DMSO: n = 3), or Cl-IB-MECA 
in Cd2+ (n = 7). D. Original ramp current traces recorded in apamin (100 nM) with 
tetraethylammonium (TEA, 200 µM) before (apamin + TEA) or during Cl-IB-MECA (100 nM) 
application in a representative cell. Inset: time course of ramp-evoked currents at +65 mV in 
the same cell. E. Averaged Cl-IB-MECA–inhibited currents in the absence (n = 14) or presence 
of apamin alone (n = 4) or during co-application with TEA (n = 4). F. Original ramp current 
traces recorded before (ctrl) and during 1-mM Cd2+ application in a representative cell where 
extracellular and intracellular K+ were replaced by equimolar Cs+. Note that in these 
experimental conditions, a Cd2+-sensitive inward current appears, which presents an I–V 
relationship typical of Ca2+ currents. Inset: time course of ramp-evoked current measured at 
the inward peak in the same cell. G. Net Cd2+-blocked Ca2+ current evoked by the ramp 
protocol in the same cell. H. Averaged ramp-evoked currents recorded in Cs+-replacement 
conditions before (ctrl) or during Cl-IB-MECA (100 nM) application in 5 cells tested. *P < 0.05, 
the paired Student t test. I. Averaged Cl-IB-MECA–inhibited Ca2+ currents in Cs+-replacement 
experiments.  
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Dorsal root ganglion neurons express different subtypes of Ca2+ currents 

(Scroggs and Fox, 1992, 1991; Wilson et al., 2000). To identify which of them 

are inhibited by the A3R, we further isolated CaV-mediated currents by adding 

the Nav1.1, 1.2, 1.3, 1.4, 1.6, and 1.7 blocker TTX (1 mM) plus the Nav1.8 

inhibitor A887826 (200 nM, to block this TTX-resistant Na+ channel) to the Cs+-

containing extracellular solution. Nav1.8 is known to be expressed at high 

levels in DRG neurons (Dib-Hajj et al., 2009), which we confirmed, because in 

the presence of 1 µM extracellular TTX, 200 nM A887826 completely blocked 

residual, TTX-resistant, Na+ currents (Fig. 45A, B). As shown in figure 45C, 

under these experimental conditions, we successfully isolated Ca2+ currents 

activated by a 0 mV voltage step depolarization (200 ms duration), which were 

completely blocked by 100 µM Cd2+ (Fig. 45C–E). Such Ca2+ currents were 

predominantly N-type currents because application of selective N-type 

blocker PD173212 (500 nM: Fig. 45F, G) achieved a >80% block (Hu et al., 1999; 

Theis et al., 2018). Residual, PD173212-insensitive (up to 1 µM: Fig. 45H) Ca2+ 

currents in our experimental conditions were blocked by Cd2+ (Fig. 45H) and 

were attributed to Cd2+-sensitive L-type and, eventually, R- and/or P/Q-type 

CaVs, consistently with a previous report (Wilson et al., 2000). Current-to-

voltage (I–V plot) relationship of Ca2+ currents activated by a series of 

depolarizing voltage steps (from -50 to +50 mV, 10 mV increment, 200 ms 

duration, Vh = -65 mV: inset in Fig. 45I) was consistent with Cd2+-blocked (Fig. 

45I) and PD173212-sensitive (Fig. 45J) N-type CaV activation.  
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Figure 45. The major component of Ca2+ currents recorded in DRG neurons is carried by N-
type CaV opening. A. Time course of Na+ currents recorded in Cs+-replacement conditions in 
the presence of extracellular TTX (1 µM), Cd2+ (500 µM), and Ni2+ (100 µM) and activated every 
5 seconds by a 0 mV step depolarization (40 ms duration, Vh = −90 mV: lower inset in B) 
before or during the application of Nav1.8 blocker A887826 (200 nM). B. Original current 
traces recorded before and after 3 minute A887826 application. Scale bars: 3 nA; 10 ms. C. 
Original current traces evoked in a typical DRG neuron by a 0 mV step depolarization (200 
ms; Vh = −65 mV: lower inset) in the presence of extracellular TTX (1 µM), Ni2+ (100 µM), and 
A887826 (200 nM) before (ctrl) or during the application of 100 µM Cd2+. Scale bars: 1 nA; 50 
ms. D. Averaged time courses of Ca2+ currents, measured at the inward peak, before and 
during the application of the nonselective CaV blocker 100 µM Cd2+ (n = 4). E. Pooled data of 
Ca2+ current inhibition in the presence of 100 µM, 500 µM, or 1 mM Cd2+, n = 4. F. Original 
current traces evoked in a typical DRG neuron by a 0 mV step depolarization (200 ms; Vh = 
−65 mV) in the presence of extracellular TTX (1 µM), Ni2+ (100 µM), and A887826 (200 nM) 
before (ctrl) or during the application of PD173212 (0.5 µM) and, subsequently, 500 µM Cd2+. 
Scale bars: 1 nA; 50 ms. G. Averaged time courses of Ca2+ currents before and during the 
application of selective N-type Ca2+ channel blocker PD173212 (500 nM, n = 4). H. Pooled data 
of Ca2+ current inhibition in the presence of 0.5 µM PD173212, 1 µM PD173212, or 0.5 µM 
PD173212 + 500 µM Cd2+. I, J. Original current traces (left panels), and respective averaged I–
V plots (right panels), of Ca2+ currents evoked by a series of 10 depolarizing voltage steps 
(from −50 to + 50 mV, 200 ms duration, Vh = −65 mV: see lower inset) before or during 500 
µM Cd2+ (I) or 0.5 µM PD173212 (J) application. Scale bars: 1 nA; 50 ms. DRG, dorsal root 
ganglion; CaV, voltage-dependent Ca2+ channel. *P < 0.05; **P < 0.01; ***P < 0.001, paired 
Student t-test. 
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When Cl-IB-MECA was applied in these experimental conditions, a reversible 

decrease in total Ca2+ currents (both in the peak and steady-state component) 

was observed within 5 minutes of drug application (Fig. 46A). The I–V plot of 

such Ca2+ conductance (Fig. 46C) demonstrated that the A3R agonist 

significantly inhibited CaVs from 0 to +20 mV (the paired Student t-test, n = 5). 

The Cl-IB-MECA effect was significant in 8 cells tested (Fig. 46B), either as 

peak current amplitude (arrow in the right panel of Fig. 46A or Fig. 46B) or at 

the steady state (arrowhead in the right panel of Fig. 46A: from 57.4 ± 14.5 to 

39.8 ± 10.2 pA/pF; P < 0.05, the paired Student t-test). However, the A3R 

agonist apparently did not change the Ca2+ current kinetics because the time 

to peak was unaffected (from 15.1 ± 2.2 to 15.7 ± 3.0 ms; P = 0.5553, the paired 

Student t-test, data not shown). Cl-IB-MECA–mediated inhibition of CaVs was 

concentration dependent with a maximal effect observed at 30 nM (Fig. 46E), 

in accordance with ramp experiments, and completely prevented by the A3R 

antagonist MRS1523 (100 nM) and by the selective N-type channel blocker 

PD173212 (500 nM) but not by the selective, at least at 1 µM concentration (De 

Paoli et al., 2002), L-type blocker lacidipine (1 µM: Fig. 46D, E). The above data 

demonstrate that A3R activation selectively inhibits N-type Ca2+ currents in rat 

DRG neurons. In the attempt to compare A3R- vs A1R-mediated effects on 

CaVs, we applied the A1R-selective agonist CPA. As shown in figures 46E and 

42F, CPA-inhibited Ca2+ currents by 24.8 ± 3.2% (n = 9) and by 24.1 ± 3.0% (n 

= 7) at 1 and 10 µM concentrations, respectively. Of note, Ca2+ current 

inhibition measured in the presence of 1 µM CPA was significantly smaller 

compared with the Cl-IB-MECA–mediated effect (44.1 ± 5.6% inhibition in the 

presence of 30-nM ;Cl-IB-MECA vs 24.8 ± 3.2% inhibition in the presence of 1-

µM CPA, P < 0.05, One-way ANOVA, Bonferroni post-test; fig. 46E). 
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Figure 46. Cl-IB-MECA inhibits N-type Ca2+ currents in DRG neurons. A. Left panel: time 
course of peak Ca2+ currents (ICa) evoked by a 0 mV step depolarization in a typical DRG 
neuron. Note that Cl-IB-MECA (30 nM) inhibits Ca2+ currents that were completely abolished 
by a subsequent 500 µM Cd2+ application. Right panel: original current traces recorded in the 
same cell at significant time points. Scale bars: 0.5 nA, 100 ms. Arrow indicates peak Ca2+ 
currents, and arrowhead indicates steady-state Ca2+ currents. B. Pooled data of peak ICa 
measured in the absence or presence of Cl-IB-MECA in 8 cells investigated. P < 0.0001, the 
paired Student t-test. C. Left panel: original Ca2+ current traces evoked by a series of 
depolarizing voltage steps (inset) before (ctrl) or after Cl-IB-MECA (30 nM) application in a 
representative cell. Right panel: averaged I–V plot of Ca2+ currents measured at the peak in 5 
cells tested. *P < 0.05; **P = 0.01; §P = 0.0105, the paired Student t test. Scale bars: 0.5 nA, 50 
ms. D. Averaged time courses of peak Ca2+ current, expressed as % of baseline values, 
measured before or after the application of Cl-IB-MECA in different experimental groups. E. 
Pooled data of Cl-IB-MECA– or CPA-inhibited peak Ca2+ currents at different agonist 
concentrations, or in 30 nM Cl-IB-MECA during co-application with the A3R antagonist 
MRS1523 (1523, 100 nM) or with the selective N-type and L-type Ca2+ channels blockers 
PD173212 (PD, 0.5 µM) and lacidipine (LAC, 1 µM), respectively. *P < 0.05; ***P < 0.0001 vs 30 
nM Cl-IB-MECA; #P < 0.05 vs 10-nM Cl-IB-MECA, One-way ANOVA, Bonferroni post-test. 
F. Left panel: time course of peak ICa evoked by a 0 mV step depolarization in a typical DRG 
neuron in the absence or presence of N6-cyclopentyladenosine (CPA: 1-10 µM). Right panel: 
original current traces recorded in the same cell at significant time points. Scale bars: 1 nA, 100 
ms.  

 

The newly synthetized A3R agonist MRS5980 mimicked the Cl-IB-MECA 

effect in inhibiting Ca2+ currents (Fig. 47A, C) but with higher efficacy, 

showing a maximal CaV inhibition at 3 nM concentration (Fig. 47B) compared 

with 30 nM for Cl-IB-MECA. Furthermore, the MRS5980-mediated effect was 

prevented in the presence of A3R antagonist MRS1523 (100 nM; Fig. 47B). 

To explore the contribution of A3R-mediated inhibition of CaVs when the 

endogenous agonist is present in the extracellular space, we applied adenosine 

(30 µM) in the absence or presence of a selective A1R or A3R antagonist, 
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DPCPX or MRS1523, respectively. As expected from published data (A. C. 

Dolphin et al., 1986; MacDonald et al., 1986), adenosine inhibited Cd2+-

sensitive Ca2+ currents with a maximal effect observed at 30 µM (Fig. 47E). Of 

note, the effect induced by 30 µM adenosine was blocked by 39.1 ± 9.0% in the 

presence of DPCPX (500 nM) and by 56.6 ± 9.0% in the presence of MRS1523 

(100 nM; Fig. 47E, F). No significant difference was found between DPCPX- 

and MRS1523-mediated inhibition of adenosine effects (One-way ANOVA, 

Bonferroni post-test). 

 

 

Figure 47. The inhibitory effect of Cl-IB-MECA on N-type Ca2+ currents in DRG neurons is 
mimicked by the newly synthetized A3R agonist MRS5980 and by adenosine. A. Left panel: 
time course of peak ICa in a typical DRG neuron before and after MRS5980 (30 nM) and Cd2+ 
(500 µM) application. Right panel: original current traces recorded in the same cell at significant 
time points. Scale bars: 2 nA; 100 ms. B. Pooled data of MRS5980-inhibited peak Ca2+ current 
at different agonist concentrations or in the presence of 30 nM MRS5980 + 100 nM MRS15253. 
One-way ANOVA; Bonferroni post-test. C. Averaged time courses of peak ICa before or 
during Cl-IB-MECA (30 nM) or MRS5980 (3 nM) application. D. Left panel: time course of peak 
ICa in a typical DRG neuron before and after adenosine (30 nM) and Cd2+ (500 µM) 
application. Right panel: original current traces recorded in the same cell at significant time 
points. E. Pooled data of adenosine-inhibited peak Ca2+ currents at different agonist 
concentrations or in the presence of 30 µM adenosine + the A3R antagonist MRS15253 (100 
nM) or the A1R antagonist DPCPX (500 nM). No significant difference was found between any 
of the experimental groups (One-way ANOVA, Bonferroni post-test). F. Averaged time 
courses of peak Ca2+ current amplitude before or after adenosine (30 µM) application alone or 
in the presence of DPCPX (500 nM) or MRS1523 (100 nM).  
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Finally, we evaluated the impact of selective A3R activation on neuronal 

excitability. We induced AP firing by injecting a depolarizing ramp current 

from the resting membrane potential. As shown in figure 48A, this protocol 

induced repetitive firing in DRG neurons, which was markedly reduced in the 

presence of Cl-IBMECA (Fig. 48A, B). The effect was statistically significant in 

6 cells tested (Fig. 48C) and prevented in the presence of A3R antagonist 

MRS1523 (100 nM; Fig. 48D–F) but not by the N-type CaV blocker PD173212 (1 

mM; Fig. 48G–I). Of note, a two-way ANOVA comparison between the effect 

of Cl-IB-MECA when applied alone (Fig. 48J, left column: “in ctrl”) or applied 

in the presence of PD173212 (Fig. 48J, right column: “in PD173212”) 

highlighted that: (i) a statistical difference was found between the number of 

APs recorded in control conditions or in the presence of PD173212 alone (Fig. 

48J, black circles: before Cl-IB-MECA: 6.5 ± 1.3 APs in ctrl, n = 6, vs 19.1 ± 3.4 

APs in PD173212, n = 7; P < 0.01), indicating that N-type CaV block exerts a 

pro-excitatory effect on cells firing; and (ii) no difference was found in the 

inhibitory effect of Cl-IB-MECA when applied in the absence or presence of 

PD173212 (gray circles: after Cl-IB-MECA: 3.3 ± 1.9 APs in Cl-IB-MECA, n = 6, 

vs 5.6 ± 1.1 APs in Cl-IB-MECA + PD173212; P = 0.7109), indicating that Cl-IB-

MECA effect on firing is not occluded by N-type CaV.  
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Figure 48. Cl-IB-MECA inhibits AP firing in DRG neurons. A. Original AP traces evoked in a 
typical DRG neuron by a 1 second depolarizing ramp current injection (lower inset) recorded 
before (black trace) or after (red trace) 5 minute Cl-IB-MECA (100 nM) application. B. Time 
course of AP number in the same cell. C. Pooled data of AP number measured before or after 
5 minute Cl-IB-MECA application in 6 cells tested. P < 0.01, the paired Student t-test. D. 
Original AP traces evoked by a 1 second depolarizing ramp current injection recorded before 
(black trace) or after (green trace) 5 minute Cl-IB-MECA (100 nM) application in the presence 
of MRS1523 (100 nM). E. Time course of AP number in the same cell. F. Pooled data of AP 
number measured before or after 5 minute Cl-IB-MECA application in the presence of 
MRS1523 in 5 cells tested. P = 0.5809, the paired Student t-test. G. Original AP traces evoked 
by a 1 second depolarizing ramp current injection recorded before (black trace) or after (purple 
trace) 5 minute Cl-IB-MECA (100 nM) application in the presence of PD173212 (1 µM). H. Time 
course of AP number in the same cell. I. Pooled data of AP number measured before or after 
5 minute Cl-IB-MECA application in the presence of PD173212 in 6 cells tested. The paired 
Student t-test. Scale bars: 50 mV; 500 ms. J. Comparison between the effect of Cl-IB-MECA on 
AP firing when applied alone (“in ctrl,” n = 6) or when applied in the presence of 1 µM 
PD173212 (“in PD173212,” n = 7). Treatment (Cl-IB-MECA): F(1,22) = 11.46, P < 0.01; time 
(before/after): F(1,22) = 14.27, P < 0.001; interaction: F(1,22)= 5.416, P < 0.01; 2-way ANOVA, 
Bonferroni post-test. Note that there is a statistical difference (**P < 0.001) between the AP 
number recorded before Cl-IB-MECA application in the ctrl group (“in ctrl”) or in the 
PD173212 group (“in PD173212”) but not between the AP number recorded after Cl-IB-MECA 
application in the ctrl group or in the PD173212 group (P = 0.7109).  
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To corroborate the proexcitatory effect of N-type CaV block, we applied 

PD173212 alone in a separate group of cells, and we observed a significant 

increase in AP firing (Fig. 49) accompanied by a significant cell depolarization 

(Fig. 49B, C and Table 5: from −63.6 ± 2.9 mV in control to −59.7 ± 3.6 mV in 1-

µM PD173212; P < 0.05, the paired Student t-test, n = 7) and lowering of AP 

threshold (Table 5: from −12.7 ± 1.9 mV in control to −14.1 ± 1.51 mV in 1-µM 

PD173212; P < 0.05, the paired Student t-test, n = 7). Furthermore, in 

accordance with KCa inhibition and in particular with BK channel block, we 

measured a significant increase in AP duration (from 3.9 ± 0.7 ms in control to 

4.5 ± 0.6 ms in 1 µM PD173212; P < 0.01, the paired Student t-test, n = 7) and a 

reduction in fast afterhyperpolarization (from 46.0 ± 2.1 mV in control to 34.8 

± 4.4 mV in 1 µM PD173212; P < 0.05, the paired Student t test, n = 7) on 

PD173212 superfusion (see Table 5). Other AP parameters (reported in Table 

5) were not modified by any treatment.  

 

Figure 49. The N-type Ca2+ channel blocker PD173212 increases AP firing in DRG neurons. A. 

Original AP traces evoked in a typical DRG neuron by a 1 s depolarizing ramp current 
injection (lower inset) recorded before (black trace) or after (purple trace) 5 min PD173212 (1 
µM) application. B. Time course of AP number (open black circles, left y axis) and resting 
membrane potential (open grey circles, right y axis) in the same cell. C. Pooled data of AP 
number (left panel) and resting membrane potential (Vm: right panel) measured before or 
after 5 min PD173212 application in 8 cells tested. Paired Student’s t-test. 

In the attempt to identify the mechanism by which A3R inhibits cell firing, we 

tested the effect of Cl-IB-MECA on Na+ currents with no obvious differences 

detected in its presence (Fig. 50A, B), either on current amplitude (Fig. 50C) or 

time to peak (Fig. 50D). 
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Figure 50. Cl-IB-MECA does not affect Na+ currents in DRG neurons. A. Original Na+ current 
traces evoked by a 0 mV depolarization (40 ms duration, Ih = -90 mV: see lower inset) recorded 
in a typical DRG neuron before (black trace) or after (red trace) the application of Cl-IB-MECA 
(100 nM; 5 min). B. Averaged time course of peak INa amplitude in 5 cells investigated. C. 

Pooled data of Na+ current peak amplitude measured before or after 5 min application of Cl-
IB-MECA in 5 cells investigated. P=0.0642, paired Student’s t-test. D. Pooled data of Na+ 
current time to peak measured before or after 5 min application of Cl-IB-MECA in 5 cells 
investigated. P=0.5288, paired Student’s t-test. 

 

3.2. Intracellular Ca2+ measurements confirmed that A3R 

activation inhibits electrical field stimulation–evoked Ca2+ 

transients in isolated dorsal root ganglion neurons 

Fura-2–loaded DRG neurons analysed by transmitted light and fluorescence 

showed a round morphology with an average diameter of 27.6 ± 0.3 μm (n = 

318). In control conditions (standard extracellular solution), 60% (40 of 68) of 

the DRG neurons presented electrically evoked Ca2+ transients on 0.1-Hz field 

stimulation. These cells were defined as “spiking” cells. The dynamic of 

cytosolic Ca2+ increase presented a rapid onset and a return to basal Ca2+ levels 

following a monoexponential kinetic. Figure 51A shows typical Ca2+ transient 

traces in control conditions, in the absence of extracellular Ca2+ (0[Ca2+]out), in 

the presence of TTX + A887826, or in the presence of verapamil + PD173212.  

In 0[Ca2+]out, only 4 of 37 (10.8%, Fig. 51B) analysed DRG neurons responded 

to electrical field stimulation (P < 0.01 vs control, the χ2 test, Table 8). Indeed, 

as shown in a typical trace in figure 51A (dotted line), the majority of analysed 

cells did not show Ca2+ transients in 0[Ca2+]out. Figure 51B depicts Ca2+ 

transients in 1 of the 4 spiking cells in 0[Ca2+]out. In those 4 spiking cells, the 
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ΔF/F was slightly reduced, whereas the monoexponential decay phase was 

significantly reduced (Table 8). We supposed that in the 4 of 37 cells oscillating 

in 0[Ca2+]out, the electrical field stimulation could induce a Ca2+ release from 

intracellular stores, as already shown (Scarlett et al., 2009), or, alternatively, 

that incomplete Ca2+ buffering was achieved. In the presence of TTX + 

A887826, only 12 of 55 (21.8%; Fig. 51B) DRG neurons were spiking (P < 0.05 

vs control, the χ2 test), and in the majority of cells, we did not observe any Ca2+ 

increase (Fig. 51A). Figure 51B displays the trace of 1 of 12 responder cells in 

TTX + A887826. Among them, either ΔF/F or tau was slightly (but not 

significantly) reduced (Table 8). In finding an explanation to the observation 

that 12 of 55 cells still oscillated in the presence of TTX plus A887826, we have 

to consider that A887826 block of TTX-resistant Na+ currents is dependent on 

Nav1.8 channels being in the open state  (Zhang et al., 2010). In fact, A887826 

potently (IC50 = 8 nM) inhibits TTX-resistant Na+ currents in rat DRG neurons 

in a voltage-dependent way, being about 8-fold less potent at relatively 

hyperpolarized (Vm <−60 mV) membrane voltages in comparison with −40 

mV-clamped cells (Zhang et al., 2010). Alternatively, we can envisage that in 

those 12 spiking cells, field depolarization was sufficient to activate CaVs, in 

line with previous observation (MacDonald et al., 1986). The block of L- and 

N-type CaVs by verapamil (1 µM) + PD173212 (500 nM) induced a significant 

reduction in ΔF/F (Table 8, P < 0.01, ANOVA followed by the Bonferroni test) 

without a significant decrease in tau. The number of spiking cells under these 

experimental conditions was 17 of 37 cells investigated (45.9%, not significant 

vs control: P = 0.658, the χ2 test). Preincubation with Cl-IB-MECA significantly 

decreased the number of spiking cells (17 of 64: 23%; P < 0.05, the χ2 test) as 

compared to control (Fig. 51C). However, Ca2+ parameters of spiking cells 

were not modified by this treatment (Table 8). 
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Figure 51. A3R stimulation reduces electrically evoked and TTX-sensitive intracellular Ca2+ 
transients in isolated DRG neurons. A. Typical time courses of Ca2+ transient induce in DRG 
neurons by 0.1 Hz electrical field stimulation in control condition (ctrl: black trace), 
extracellular free-Ca2+ solution (0[Ca2+]out: dotted trace), 1 µM tetrodotoxin + 200 nM A887826 
(TTX: yellow trace), or verapamil (VERA; 1 µM) + PD173212 (PD; 500 nM). B. Time courses of 
spiking cells recorded in 0[Ca2+]out (dotted trace) or in TTX + A887826 (gray trace). C. Numbers 
of spiking or not spiking DRG neurons in control conditions or after preincubation with 30 
nM Cl-IB-MECA. Statistical analysis was performed using the χ2 test.  

 

Treatment 
No. of spiking 

cells out of 
analyzed cells 

ΔF/F (A.U.) 
(spiking) 

τ (decay time) (s) 
(spiking) 

Control  40 out of 68 3.8 ± 0.47 1.24 ± 0.087 
0[Ca2+]OUT 4 out of 37 2.2 ± 0.81 0.51 ± 0.082* 
TTX + A887826 12 out of 55 1.6 ± 0.50 0.98 ± 0.159 
VERAPAMIL + 
PD173212 

17 out of 37 1.6 ± 0.38† 0.96 ± 0.101 

CI-IB-MECA 17 out of 64 5.6 ± 0.77 1.33 ± 0.106‡ 

Table 9. ΔF/F and decay time (τ) measured in spiking DRG neurons during electrical field 
stimulation, according to treatments. The decay time (tau, τ) was calculated according to the 
following equation: Y=y0+A×e(−X/τ). One-way ANOVA followed by the Bonferroni post-
test. *P = 0.006 vs control. †P = 0.03. ‡P = 0.004 vs 0[Ca2+]. 



Aim III – Discussion__________________________________________________ 
 

196 

 

3.3. Discussion 

In the present work, we investigated the expression and electrophysiological 

effects of A3R in primary sensory neurons. We report evidence of A3R mRNA 

expression in the rat DRG, and that A3R activation inhibits both 

pronociceptive N-type CaV activation and AP firing in isolated DRG neurons. 

The bulk of evidence in studies of in vivo animal models indicates that 

adenosine is a powerful antihyperalgesic compound (Dickenson et al., 2000), 

with a crucial role recognized for A1R activation. Of note, the A3R has recently 

gained attention because its activation provides pain relief without adverse 

side effects (Janes et al., 2016). 

In this study, we demonstrated by RT-PCR that A3R mRNA is abundant in 

DRG homogenate and by immunocytochemistry that A3R protein is present 

on both neurons and glia. It should be noted that although it is generally 

accepted that A3Rs are expressed either by rat or human DRG neurons, a 

debate exists concerning their presence in the mouse. Based on mRNA 

sequencing, it appears that mouse DRG neurons do not express A3R (Ray et 

al., 2018; Usoskin et al., 2015). 

We then explored the A3R functional role in DRG neurons by performing 

patch-clamp recording in the absence or presence of 2 different receptor 

agonists: the commercially available Cl-IB-MECA and the new highly selective 

A3R agonist MRS5980 (Fang et al., 2015; D. K. Tosh et al., 2014). Our first 

approach was to investigate the effects of A3R under basal (non-

pharmacologically manipulated) conditions by using a voltage-ramp protocol 

to activate a wide range of voltage-dependent conductances. We found that 

the prototypical A3R agonist Cl-IB-MECA reduced total outward K+ currents 

evoked by the ramp. It is worth stressing that when tested for TRP responses, 

the vast majority of neurons responding to Cl-IB-MECA were also sensitive to 

TRPA1 and/or TRPV1 agonists, AITC and capsaicin, respectively, and 

presented an average cell diameter of 25 µm, thus being considered as 

“nociceptors”. 
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When analyzed in detail, the Cl-IB-MECA effect on ramp K+ currents was 

found to be dependent on Ca2+ channel opening because it was prevented by 

the nonselective CaV blocker Cd2+. Indeed, in accordance with previous works 

(Mongan et al., 2005; Pagadala et al., 2013), we demonstrated that DRG 

neurons express Ca2+-activated K+ channels (KCa) as indicated by the 

observation that extracellular Cd2+ inhibits 34.0% of total outward currents 

evoked by the ramp. At variance, Cl-IB-MECA, that indirectly reduces Ca2+ 

currents through A3R activation, inhibits 23.3% of total ramp-evoked outward 

currents. Among KCa, SK and BK channels are involved in the Cl-IB-MECA 

effect, as demonstrated by the fact that apamin plus TEA (200 µM) prevented 

ramp current inhibition. 

Different CaV types in DRG neurons have been described: P/Q and N types, 

encoded by Cav2.1 and Cav2.2, respectively, which are mainly involved in 

neurotransmitter release, and R, L, and T types, encoded by Cav2.3, Cav1.1 to 

1.4, and Cav3.1 to 3.3, respectively (Scroggs and Fox, 1992, 1991; Wilson et al., 

2000). When CaV-mediated currents were studied in isolation, A3R activation 

selectively inhibited N-type Ca2+ channels because the Cl-IB-MECA effect was 

prevented by the ω-CTX analogue PD173212 but not by the L-type blocker 

lacidipine. We conclude that A3R activation directly inhibits Ca2+ entry by CaV 

on ramp depolarization and consequently reduces BK and SK channel opening 

(Fig.52). 

It is known that A1Rs also inhibit CaVs in DRG neurons (A. C. Dolphin et al., 

1986). Consistently, we observed a 24.8 ± 3.2% Ca2+ current decrease in the 

presence of CPA. When testing the endogenous agonist effects, adenosine-

mediated inhibition of Ca2+ currents was either sensitive to the A3R blocker 

MRS1523 or to the A1R antagonist DPCPX, demonstrating that these two 

adenosine receptor subtypes are major mediators of adenosine effects in these 

cells. Of note, the CPA-mediated Ca2+ current inhibition (24.8 ± 3.2%) was 

significantly smaller compared with Cl-IB-MECA effect (44.1 ± 5.6%) 

indicating a prominent functional role of A3R vs A1R in this cell type. 
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Gi-coupled receptors, eg, A3Rs and A1Rs, as well as µ-opioid receptors, can 

inhibit CaV activation, and the mechanism may occur through the Gβ,γ 

subunit binding directly to the channel protein (Zamponi et al., 2015). Of note, 

the A3R has also been found to activate secondarily Gq proteins (Jacobson et 

al., 2018) which could also modulate CaVs (Heneghan et al., 2009). Here, we 

describe A3R-induced inhibition of CaVs for the first time in DRG neurons, but 

we have not determined the G-protein pathway involved. Furthermore, N-

type channels are known to promote nociception by providing more than 60% 

of the neurotransmitter release by DRG neurons to lamina I dorsal horn 

neurons (Harding et al., 1999; Heinke et al., 2004). Previous observations 

demonstrate that N-type CaVs blockers result in analgesia in a range of pain 

models (Cheong et al., 2013; Gandini et al., 2015; Vink and Alewood, 2012), 

and ziconotide, the first-choice compound among ω-CTX analogues, is in 

clinical use as an intrathecal medication for chronic pain in the United States 

(Adler and Lotz, 2017; Brookes et al., 2016). Of note, a direct block of N-type 

Ca2+ channels, as that achieved by ziconotide or ω-CTXs, is associated with 

serious side effects (psychological and neuropsychiatric symptoms including 

depression, cognitive impairment, and hallucinations; anxiety; panic attacks; 

ataxia; asthenia; headache; and dysesthesia; (Lynch et al., 2006)). Interestingly, 

an “indirect” CaV modulation as that accomplished by A3R activation could 

represent a suitable approach to pain control without adverse side effects. 

Beyond CaV inhibition, we also demonstrated that Cl-IB-MECA decreases the 

number of APs elicited by a depolarizing ramp current injection in isolated 

DRG neurons. This effect, also shared by μ-opioid agonists (Cai et al., 2014; 

Song et al., 2002; Valdez-Morales et al., 2013), could be a further crucial 

mechanism by which the A3R exerts pain relief. The Cl-IB-MECA effect was 

blocked by the A3R antagonist MRS1523 but was insensitive to the N-type Ca2+ 

channel blocker PD173212, demonstrating that A3R-induced inhibition of cell 

excitability is not mediated by N-type CaV inhibition. Indeed, we 

demonstrated here that a direct block of N-type Ca2+ channels by PD173212 

induces an opposite effect on cell firing, i.e., it increases the number of evoked 
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APs, depolarizes cell membrane, and reduces voltage threshold. This indicates 

that a reduced Ca2+ influx through N-type CaVs is proexcitatory at a somatic 

level. Such an effect could be secondary to a reduced activation of KCa 

channels as indicated by previous data showing that either BK or SK channel 

inhibition increases DRG excitability (Li et al., 2007; Pagadala et al., 2013; 

Zhang et al., 2012). In light of this information, it appears that A3R signalling 

in sensory neurons is complex and could lead to contradictory effects: CaV 

inhibition induces, on one hand, a reduction in neurotransmitter release at the 

presynaptic level, thus providing pain control; on the other hand, it decreases 

KCa opening at the somatic level, thus increasing neuronal excitability and 

producing a possible proalgesic effect. Indeed, multiple studies demonstrate 

that A3R agonists, applied either centrally (Little et al., 2015; Wahlman et al., 

2018; Yoon et al., 2005) or peripherally (Ford et al., 2015; Janes et al., 2014; 

Paoletta et al., 2013) are potent antihyperalgesic compounds (Janes et al., 2016). 

This observation supports the notion that the inhibitory effect of Cl-IB-MECA 

on CaVs at a presynaptic level prevails over the potentially proalgesic A3R 

effect at a somatic level. Furthermore, the potentially proalgesic effect of Cl-

IB-MECA at a somatic level is masked by another, still unexplored, inhibitory 

A3R effect on cell firing, which could provide a therapeutic advantage of an 

A3R agonist over a direct Ca2+ channel blocker. This effect remains 

unexplained and will be addressed in our future work; our preliminary 

experiments revealed no obvious differences in Na+ currents evoked in the 

absence or presence of Cl-IB-MECA. 

Importantly, when we measured the intracellular Ca2+ rise after electrical field 

stimulation, we observed an overall reduction in the excitability of the DRG 

neuronal population in the presence of the A3R agonist. Thus, Cl-IB-MECA 

significantly reduced the number of cells responding to 0.1 Hz stimulation, 

even if it did not change the dynamics of the Ca2+ rise (ΔF/F or tau) once Ca2+ 

spikes were triggered (Fig. 52). 
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It must be pointed out that the above-mentioned effects may not be the only 

mechanism by which A3R agonists exert antihyperalgesia. Research studies 

have described a peripheral A3R effect on cytokine release during 

chemotherapeutic-induced neuropathic pain (Janes et al., 2014; Wahlman et 

al., 2018). Additional A3AR-mediated modulation of nociception could 

possibly arise from receptor stimulation at a central level, i.e., in thalamic 

nuclei. 

 

Figure 52.  Schematic representation of the results discussed in this section.
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In conclusion, in the present thesis we first characterized the electrical activity 

of developing hfNBMs and functional modulation of their voltage-gated 

channels by cholinergic ligands. We found that hfNBMs spontaneously release 

Ach that activates either nicotinic or muscarinic receptors. Furthermore, we 

demonstrated that the stimulation of Gi-coupled muscarinic receptors (likely 

M2/M4) increases IK whereas Gq-coupled muscarinic receptors, by PLC 

activation (likely M1/M3/M5), inhibit INa. We disclosed the presence of an 

oscillatory activity of membrane voltage upon cell depolarization which is 

dependent on BK and Kir channels opening. Hence, our findings describe 

functional and electrophysiological features of human neuroblasts committed 

to NBM cholinergic neurons. This characterization is of relevance in view of 

elucidating the role of Ach as an autocrine trophic-like factor in brain 

development and of the involvement of BK channels in hfNBM 

electrophysiological behaviour. Increasing our knowledge about the biology 

of human NBM neurons may help to understand their role in different CNS 

pathologies and to develop new therapeutic strategies, including cell-based 

regenerative medicine, to combat brain diseases linked to deficits of 

cholinergic neurotransmission.  

Afterwards, we demonstrated for the first time that adenosine A2BRs inhibit 

IK and IA currents in cultured OPCs and decrease oligodendroglial 

differentiation. Furthermore, by stimulating SphK1 phosphorylation, they 

positively modulate S1P synthesis leading to an increase in S1P intracellular 

levels. The increased concentration of S1P in its turn would account for an anti-

differentiating effect. Results suggest the possibility that antagonism of A2BRs 

represents a strategy to improve remyelination processes.  

Finally, we found that the selective adenosine A3R stimulation inhibits N-type 

CaV opening, leading to a reduction in neurotransmitter release, and reduces 

electrically evoked excitation in isolated rat DRG neurons. Both these effects, 

as independent mechanisms, may be important in accounting for A3R's pain-

relieving effect and support the notion that an A3R-based therapy may 

represent an important strategy to alleviate pain in different pathologies. 
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Figure 53. Schematic representation of results obtained in different experimental models 
discussed in this thesis 
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