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A B S T R A C T

Realistic statistical modelling of complex phenomena often leads to considering sev-
eral latent variables and nuisance parameters. In such cases, the Bayesian approach
to inference requires the computation of challenging integrals or summations over
high dimensional spaces. Monte Carlo methods are a class of widely used algorithms
for performing simulated inference. In this thesis, we consider the problem of sample
degeneracy in Monte Carlo methods focusing on Approximate Bayesian Computation
(ABC), a class of likelihood-free algorithms allowing inference when the likelihood
function is analytically intractable or computationally demanding to evaluate. In the
ABC framework sample degeneracy arises when proposed values of the parameters,
once given as input to the generative model, rarely lead to simulations resembling
the observed data and are hence discarded. Such "poor" parameter proposals, i.e., pa-
rameter values having an (exponentially) small probability of producing simulation
outcomes close to the observed data, do not contribute at all to the representation of
the parameter’s posterior distribution. This leads to a very large number of required
simulations and/or a waste of computational resources, as well as to distortions in
the computed posterior distribution. To mitigate this problem, we propose two al-
gorithms, referred to as the Large Deviations Approximate Bayesian Computation
algorithms (LD-ABC), where the ABC typical rejection step is avoided altogether. We
adopt an information theoretic perspective resorting to the Method of Types formula-
tion of Large Deviations, thus first restricting our attention to models for i.i.d. discrete
random variables and then extending the method to parametric finite state Markov
chains. We experimentally evaluate our method through proof-of-concept implemen-
tations.

Furthermore, we consider statistical applications to anonymized data. We adopt
the point of view of an evaluator interested in publishing data about individuals in
an ananonymized form that allows balancing the learner’s utility against the risk
posed by an attacker, potentially targeting individuals in the dataset. Accordingly,
we present a unified Bayesian model applying to data anonymized employing group-
based schemes and a related MCMC method to learn the population parameters.
This allows relative threat analysis, i.e., an analysis of the risk for any individual in
the dataset to be linked to a specific sensitive value beyond what is implied for the
general population. Finally, we show the performance of the ABC methods in this
setting and test LD-ABC at work on a real-world obfuscated dataset.
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O V E RV I E W

Statistical inference is the area of science aimed at drawing conclusions about phe-
nomena of interest through quantitative measures derived from observed data. Fol-
lowing the dictionary definition, the word inference means "a conclusion reached on
the basis of evidence and/or premises ". In particular the expression Bayesian Inference,
quoting Donald B. Rubin [129], refers to

the method of statistical inference that draws conclusions by calculating
conditional distributions of unknown quantities given a) known quanti-
ties and b) model specifications. Thus, in Bayesian Inference, known quan-
tities are treated as observed values of random variables and unknown
quantities are treated as unobserved random variables; the conditional
distribution of unknowns given knowns follows from applying Bayes’s
theorem to the model specifying the joint distribution of known and un-
known quantities.

According to the Bayesian paradigm the observed data represent the evidence and the
premises are incorporated into a joint model specified through a prior distribution and
a likelihood function. Usually the parameters are the unknown quantities and the prior
distribution incorporates the prior knowledge about them. The likelihood function
results from the probabilistic model assumed for the observable random variables
and espresses how likely are the observed data given certain values of the parame-
ters. The conclusions reached about the unknown quantities are represented by the
posterior distribution, which is the conditional distribution of the unknown given the
known quantities derived through the Bayes’s Theorem. Unfortunately, only in few
cases this derivation is straightforward. In particular, the analytical computation of
the posterior distribution is feasible in the conjugate case [120], i.e., when the prior
and the posterior distributions are in the same family of probability distributions. In
many other cases the posterior computation requires approximation methods. Thus,
the main challenges in the Bayesian framework are i) the formulation of a joint model
capturing the key features of the scientific problem of interest; ii) the computation re-
quired to derive posterior quantities. Both the issues are in some sense related to the
inclusion into the joint model of auxiliary random variables. Regarding the aspect
i), one needs to specify the prior distribution and to model the relationship between
the data and all the unknown quantities. Prior distributions can be elicited in a sub-
jective manner or selected according to formal rules [71]. Modelling the structure of
the data in a realistic and comprehensive manner often requires to involve other un-
known quantities: nuisance parameters and latent variables that we are not directly
interested in. Regarding ii), the computations required to perform Bayesian inference
are mostly complex integrals (or summations in the discrete setting) over all the un-
known quantities to derive the normalizing constant of the posterior distribution,
the marginal likelihood. In such cases Monte Carlo techniques are well-known tools to
approximate complex integrals via stochastic simulations. When the joint model is
specified by introducing nuisance parameters or latent variables, further integrations
are needed to derive the posterior distribution.
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In the case of complex structure of the data, the introduction of latent variables
may provide a way of modelling comprehensively the phenomena of interest. How-
ever, in such a case, the evaluation of the likelihood function may in turn involve
high-dimensional integrals becoming analytically infeasible or computationally pro-
hibitive. In such cases, an intuitive way of performing Bayesian inference is repre-
sented by the so called likelihood-free methods. The core of this thesis is a class of
Monte Carlo likelihood-free methods known as Approximate Bayesian Computation
(ABC). This class of algorithms dispenses from the evaluation of the likelihood func-
tion by resorting to comparisons between the observed data and the pseudo-data
simulated from a generative model.

An interesting aspect is represented by the twofold role of the auxiliary random
variables. On one hand they overcomplicate the joint model requiring the implemen-
tation of Monte Carlo strategies. On the other hand, ABC, as well as most of the
Monte Carlo methods, relies on the simulation of instrumental random variables to
enable complex computations.

main contributions of the thesis In the first part of this thesis we review
some of the most important algorithms allowing simulated inference, starting from
methods requiring the likelihood evaluation to conclude with ABC methods. During
this excursus we provide formal comparisons among several Monte Carlo algorithms
highlighting that most of them suffer from the sample degeneracy problem. In par-
ticular, we note that it becomes more serious in the ABC framework.

The original contributions of the thesis can be summarized as follows:

• The thesis presents a novel ABC method to mitigate the sample degeneracy
problem. It is developed relaying on the "Method of Types" formulation of
Large Deviations Theory and applies to discrete i.i.d. data. Two alternative ABC
sampling schemes are presented and the performances are illustrated through
several examples. Furthermore, formal guarantees of their convergence are pro-
vided.1

• The presented method is extended to finite state Markov chains by deepening
the Method of Types and by considering more general results in Large Devia-
tions Theory.2

• The last part of the thesis introduces a Bayesian probabilistic model and a re-
lated MCMC method for learning from anonymized. The method applies to
data anonymized employing group-based anonymization schemes. Measures
of (relative) privacy threats and utility deriving from publishing data in an ob-
fuscated form are defined. The method is tested at work on real-world data.3

1 Part of the work presented in Chapter 5 has been accepted for publication in Computational Statistics as
"Weighted Approximate Bayesian Computation via Sanov’s Theorem". A brief synthesis of the chapter
was published in the conference proceedings Book of short papers SIS 2020 as "Improving ABC via large
deviations theory".

2 A brief synthesis of Chapter 6 has been submitted for publication to the conference proceedings Book of
short papers SIS 2021 as "Inference on Markov chains parameters via Large Deviations ABC".

3 The work presented in Chapter 8 © 2020 IEEE was reprinted, with permission, from Michele Boreale,
Fabio Corradi and Cecilia Viscardi, Relative Privacy Threats and Learning From Anonymized Data, IEEE
Transactions on Information Forensics and Security, 2020.
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• The use of ABC for inferring population parameters from obfuscated data is
discussed. Finally, the novel ABC method is tested at work on an anonymized
dataset.
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Part I

M O N T E C A R L O S T R AT E G I E S F O R B AY E S I A N S I M U L AT E D
I N F E R E N C E

"When one admits that nothing is certain one must, I think, also add that some
things are more nearly certain than others. The longing for certainty... is in

every human mind. But certainty is generally illusion. Doubt is not a pleasant
condition but certainty is an absurd one. The only unchangeable certainty is

that nothing is certain or unchangeable."

— Bertrand Russell





1
I N T R O D U C T I O N

Let x = x1, ..., xn be n observations drawn from the sample space X and assumed
to be realizations of random variables X = X1, ...,Xn. Defining a statistical model on
the sample space X corresponds to assuming a family of probability distributions
indexed by the parameter θ which takes values on the parameter space Θ

F
4
= {p(·|θ) : θ ∈ Θ}.

Throughout this thesis, we let p(·) and p(·|·) denote respectively the probability den-
sity functions (pdf) and the conditional probability density functions w.r.t. suitable
measures.

In Bayesian statistics the parameter θ is in turn modelled as a random variable and
the assumed prior distribution on Θ is denoted by π(·). Thus, given the observed data,
all the premises to the inference are incorporated into the assumed joint model

π(θ) · p(x|θ).

The mathematical object of interest for the inference is the posterior distribution derived
through Bayes’s formula:

π(θ|x) =
π(θ)p(x|θ)∫

Θ

π(θ)p(x|θ)dθ
(1)

where
∫
Θ

π(θ)p(x|θ)dθ = p(x) is the marginal likelihood.

In many applications the analytical evaluation of such integral is infeasible and
requires a numerical approximation. Furthermore, the assumed family of probability
distributions, F, can be indexed by a vector of parameters θ. However, one can be
interested in deriving the posterior distribution of only one component, say θ1 ∈ Θ1.
In such cases the other components, called nuisance parameters, must be integrated
out to derive the posterior distribution

π(θ1|x) =
π(θ1)p(x|θ1)

p(x)
=

∫
Θ\1

π(θ)p(x|θ1)dθ\1∫
Θ1

∫
Θ\1

π(θ)p(x|θ)dθ\1dθ1
, (2)

where θ\1 denotes all but the first parameter and Θ\1 denotes their joint space.
Other high-dimensional integrals are often required when is adopted a missing data

approach. It represents a useful tool for modelling complex data structures in a real-
istic and comprhensive manner [85]. The general framework was developed to deal
with problems in which the missingness of the data is not at random, meaning that
the "missing mechanism" is not ignorable since it tells us something about the quanti-
ties we are interested in estimating [128]. In order to take into account various aspects
of complex phenomena, many other difficulties can be treated as missing data prob-
lems. Examples are model involving latent variables, nuisance parameters and latent
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class models, such as models for mixture data. In all these cases marginalizations as
in (2) are needed. Further complications arise when the evaluation of the likelihood
function involves in turn the computation of complex integrals making it intractable,
meaning that its evaluation is infeasible or computationally demanding. Generally
speaking, many methods for the fomputation of poterior quantities have been pro-
posed. Here, we focus on Monte Carlo methods which represent a powerful tool for
solving many inferential problems. In particular, the core of this thesis are the ABC
methods which, when one is able to get samples from the assumed model, allow
simulated posterior inference even when the evaluation of the likelihood is infeasible.
However, besides Monte Carlo methods, other approximation methods are available.
Among them we briefly review asymptotic expansions methods which probably repre-
sent the oldest solution to the discussed difficulties [82].

monte carlo methods Monte Carlo (MC) techniques are a class of methods
aimed at solving problems of optimization and inferential problems by means of
stochastic simulations. The expression stochastic simulations refers to the execution of
systems involving one or more random components in an environment controlled
by the experimenter. The environment could be a smaller scale reproduction of the
system (e.g. repeated tosses of a coin, repeated random drawing from an urn) or a
computer. The original idea came from Enrico Fermi, the Italian physicist who first
experimented it studying neutron diffusion in the 1930s. The formalization of the
MC method as we know it, can be traced back to the 1940s, at the times when the
construction of the first electronic computer, the ENIAC, had just been completed. It
was formalized by Stanislaw Ulam, a Polish mathematician, and was implemented
with John Von Neumann. The method was finally tested by Nicholas Metropolis who
coined the name Monte Carlo [97].

Let us assume that h(·) is an integrable function of θ and that we are interested in
evaluating the following integral

I = Eπ[h(θ)] =

∫
Θ

h(θ)π(θ|x)dθ. (3)

That integral corresponds to the expected value of h(θ) w.r.t. the posterior distribu-
tion, denoted as Eπ. Note that when the h(·) is the identity function, I represents
the mean of the posterior distribution. Basically, MC methods approximate integrals
by sample averages of observations obtained via stochastic simulations. Hence, a
MC approximation of that integral in (3) can be got by drawing S random samples,
θ(1), θ(2), ..., θ(S), independent and identically distributed (i.i.d.) from π(·|x) and by
computing

Î =
1

S

s∑
s=1

h(θ(s)).

The law of large numbers (see A.1, Th.12 ) states that, as S goes to infinity, the approxi-
mation Î converges to I almost surely. The rate at which this convergence occurs can
be assessed by the central limit theorem (see A.2, Th.13) stating that

√
S(Î− I)

d−→ N(0,σ2)
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where d−→ denotes convergence in distribution and N(0,σ2) denotes a Normal distri-
bution with mean equal to zero and variance σ2. It follows that MC approximations
are based on an extensive use of simulations of random variables. Unfortunately, we
are often not able to sample directly from the target distribution π(θ|x). In such cases
we can implement other MC methods such as the Rejection Sampling, Importance
Sampling or Markov Chain Monte Carlo techniques. All these methods require the
ability of evaluating point-wise the unnormalized posterior distribution, thus avoid-
ing the computation of the unavailable normalizing constant. As already pointed out,
in many statistical applications the likelihood function is in turn intractable thus in-
hibiting also the evaluation of the unnormalized posterior distribution. In such cases
ABC methods might be a solution. Such algorithms are based on the above-mentioned
MC sampling schemes but requires the ability of simulating synthetic data from a
simulator reproducing the stochastic process underlying the assumed probabilistic
model.

This part of the thesis is organized as follows. In Chapter 2 we deal with approxi-
mation methods requiring the ability of evaluating point-wise the likelihood function.
In particular, we introduce the Rejection Sampling, the Importance Sampling, the
Markov Chain Monte Carlo methods and some comparisons among them. Further-
more, we detail how to perform Bayesian inference resorting to these MC methods
and briefly review Bayesian approximation methods based on asymptotic expansions.
In Chapter 3 we introduce ABC. Specifically, we consider the likelihood-free version
of the algorithms dealt with in Chapter 2. Moreover, we emphasize the problem of
sample degeneracy which will be the focus of Part II.
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2
B AY E S I A N C O M P U TAT I O N W I T H L I K E L I H O O D E VA L U AT I O N

In this chapter we introduce basic methods for the computations required to derive
posterior quantities when the likelihood function is available. We focus on basic MC
sampling schemes. The content of this chapter is mainly based on [85, 86, 125], with
a focus on the the derivation of two Effective Sample Size estimates and the problem
of the sample degeneracy.

A brief review of asymptotic approximations for posterior distributions is also
given based on [15, 122].

2.1 rejection sampling

The early methods for generating random variables were proposed in the same years
as the MC approach. In 1947 Von Neumann outlined the Rejection Sampling (RS)
[46] in a letter to Stanislaw Ulam and the seminal paper was published in 1951 [103].
The RS is a possible way of getting samples from a target distribution known up to
a multiplicative constant. The key idea is to rely on the Fundamental Theorem of
Simulation [125], thus resorting to an instrumental distribution from which is easier
to get samples.

Theorem 1 (Fundamental Theorem of Simulation) Let X be a random variable defined
on X and distributed according f(·). Suppose that U is an uniform random variable defined
on R+. Simulating X ∼ f(·) is equivalent to simulating

(X,U) ∼ Unif{(x,u) : 0 < u < f(x)}.

The above result suggests that the introduction of an auxiliary random variable U
leading to the joint distribution

fX,U(x,u) =

1 if 0 < u < f(x)

0 otherwise

allows retrieving the target distribution f(·) through marginalization being

f(x) =

fX(x)∫
0

du. (4)

Thus, simulating pairs (x,u) from a superset of {(x,u) : 0 < u < f(x)} and taking
only pairs satisfying the constraint 0 < u < f(x) allows getting samples from f(x)

overcoming the problem of simulating from the target distribution just evaluating it
pointwise. The superset mentioned above can be defined as

{(x,u) : 0 < u < m(x)}
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under the constraint that m(x) > f(x) for each x ∈ X. Note that m(x), the envelope
function, cannot be a probability distribution unless the equality holds, however it
can be the kernel of a probability distribution g(·) such that

m(x) =Mg(x) and M =

∫
X

g(x)dx.

Accordingly, one can generate pairs (x,u) from fX,U(·) as follows:

1. Draw Y ∼ g(·)

2. Draw U|y ∼ Unif(0,Mg(y))

3. Accept (y,u) such that 0 < u < f(y).

Following this sampling procedure the retained y’s represent realizations of the ran-
dom variable X. In fact, the cumulative density function (cdf) of X can be retrieved as
follows:

Pr{X 6 x} = Pr{Y 6 x|U < f(Y)} =
Pr{Y 6 x,U < f(Y)}

Pr{U < f(Y)}
.

The joint pdf derived from the first two steps of the outlined algorithm is

fY,U(y,u) = g(y)
1

Mg(y)
=
1

M
.

Thus,

Pr{X 6 x} =

x∫
−∞
∫f(y)
0

1
Mdudy∫

X

∫f(y)
0

1
Mdudy

(5)

=

x∫
−∞
∫f(y)
0 dudy∫

X

∫f(y)
0 dudy

=

x∫
−∞ f(y)dy∫
X

f(y)dy
(6)

=

x∫
−∞

f(y)dy.

The described sampling procedure is often replaced by the equivalent procedure de-
scribed in Algorithm 1. Looking at Algorithm 1, we note that the chosen instrumental
distribution, g(·), must have tails thicker then those of the target f(·) in order to have
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Algorithm 1 Rejection Sampling

for s = 1, ...,S do
Draw y(s) ∼ g(·) and u(s) ∼ Unif[0, 1]

Accept X = y(s) if u(s) 6
f(y(s))

Mg(y(s))
end for

a bounded ratio f(·)/g(·). Moreover, the probability of accepting X = y(s), at each
iteration s ∈ {1, ...,S}, equals 1

M :

Pr
{
U 6

f(Y)

Mg(Y)

}
=

∫
X

Pr
{
U 6

f(Y)

Mg(Y)
|Y = y

}
g(y)dy

=

∫
X

f(y)

Mg(y)
g(y)dy

=
1

M
.

Thus, M is the expected number of trials needed to obtain an acceptance. It follows
that the efficiency of the algorithm, in terms of number of simulations needed to get
an adequate sample size, depends on the size of M. In particular, when the instru-
mental distribution corresponds to the target

g(x) = f(x),

M = 1 and each proposed y(s) is accepted. Thus, when the instrumental distribution
is more resembling the target, the algorithm is characterized by a greater efficiency.
Accordingly, a possible strategy to maximize the efficiency is based on the choice
of a parametric family for the instrumental distribution and the selection of the dis-
tribution g(·) satisfying the constraint Mg(x) > f(x) with the minimum M in that
family. Note that Algorithm 1 allows also sampling from distributions known up to
the normalizing constant as shown in the following subsection.

2.1.1 Sampling from unormalized posterior distributions

Let us consider a Bayesian Inference scenario in which the target distribution is the
posterior distribution of the parameter θ as defined in (1). Suppose that its analytical
form is known up to the normalizing constant

K =

∫
Θ

π(θ)p(x|θ)dθ.

Samples from the posterior distribution can be got through Algorithm 1 as long
as the unormalized posterior, hereafter denoted by l(θ) = π(θ)p(x|θ), can be easily
computed. More precisely, Algorithm 1 can be implemented by a) replacing f(x)
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with l(θ); b) resorting to the instrumental distribution g(·) defined on Θ. Following
the same arguments as in equations from (5) to (6), it can be shown that

Pr{θ 6 t} =

t∫
−∞ l(θ)dθ∫
Θ

l(θ)dθ

=

t∫
−∞Kπ(θ|x)dθ∫
Θ

Kπ(θ|x)dθ

=

t∫
−∞

π(θ|x)dθ.

proving that the described sampling procedure provides samples from π(θ|x). Note
that the probability of accepting θ = t, at each iteration, becomes:

Pr
{
U 6

l(θ)

Mg(θ)

}
=

∫
Θ

Pr
{
U 6

l(θ)

Mg(θ)
|θ = t

}
g(t)dt

=

∫
Θ

K · π(t|x)
Mg(t)

g(t)dt

=
K

M
.

The main drawback of this sampling scheme concerns the choice of the envelope
function, m(·) = Mg(·), since it requires a proper bound M and finding a value
of M satisfying the constraint Mg(θ) > l(θ) can be difficult, especially in a high-
dimentional setting. Moreover, the acceptance probability depends on the constant
M. Since the number of trials needed to get a sample of size S is a random variable
distributed according to a Negative Binomial distribution [125], the time needed to
approximate integrals such as (3) is in turn a random variable and cannot be evalu-
ated a priori. However, the optimal choice of M leads to a maximization of the accep-
tance probability which minimizes the time and the computational cost. In contrast,
a poor choice leads to a waste of computational efforts. A possible way to overcome
this difficulty is the Importance Sampling described in the following section.

2.2 importance sampling

Importance Sampling (IS) is a MC method which, as RS, allows approximating inte-
grals as in (3) by drawing samples from an easy to sample instrumental distribution.
Unlike RS, IS accepts all the proposed values, thus dispensing with the computation
of the acceptance probability.

Let us consider the random variable X distributed according to f(·) over X and the
general problem of approximating the integral

I = Ef[h(x)] =

∫
X

h(x)f(x)dx. (7)
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Algorithm 2 Importance Sampling

for s = 1, ...,S do
Draw y(s) ∼ q(·)
Assign to y(s) the importance weight ω(s) =

f(y(s))

q(y(s))

end for

The basic idea of IS [94] is sampling from an importance distribution q(·), i.e., a proba-
bility distribution over X resembling f(·) but from which is easier to get samples, and
then correcting the bias by weighting each sample as displayed in Algorithm 2. From
the output of Algorithm 2, the integral in (7) can be approximated by the following
weighted average

Î =
1

S

S∑
s=1

ω(y(s))h(y(s)). (8)

A formal justification for this approach comes from the importance sampling funda-
mental identity:

Ef[h(x)] =

∫
X

h(x)f(x)dx

=

∫
X

h(x)
f(x)

q(x)
q(x)dx

= Eq[ω(x) · h(x)]

where ω(x) =
f(x)
q(x) is an importance weight.

Let l(x) = f(x) · K be the kernel of the target distribution. When the probability
density function f(·) is known up to a normalizing constant, K, the importance weight
can be computed at each iteration s as

ω(y(s)) =
l(y(s))

q(y(s))
.

It follows that the approximation of the integral in (7) becomes:

1

S ·K

S∑
s=1

ω(y(s))h(y(s)). (9)

Being the normalizing constant unknown, an unbiased approximation [125] can be
retrieved according to the importance sampling fundamental identity:

K =

∫
X

l(x)dx (10)

=

∫
X

ω(x)q(x)dx

≈ 1

S

S∑
s=1

ω(y(s)).
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Thus, by substituting that unbiased approximation of the normalizing constant in (9)
we obtain

Ĩ =

S∑
s=1

ω̃(y(s))h(y(s)) (11)

where each ω̃(y(s)) = ω(y(s))/
S∑
s=1

ω(y(s)) is a normalized weight. As long as

supp(g) ⊃ supp(f), whatever is the choice of the distribution q(·), both Î and Ĩ

converge to (7) according to the Strong Low of Large Numbers.
One of the main drawbacks of IS is that its efficiency strongly depends on the

choice of the importance distribution q(·). In fact, a poor selection of the importance
distribution can lead to an estimator with an infinite variance. However, a properly
selected importance distribution can lead to an estimator more efficient than the one
provided by directly sampling from the target distribution.

The following theorem by Rubistain (see [131]) states that, for each target distribu-
tion f(·) there exists an optimal importance distribution depending on the integrable
function h(·).

Theorem 2 Given a target distribution f(·) and a function h(·), the importance distribution
q∗(·) minimizing the variance of the estimator in (8) is

q∗(x) =
|h(x)|f(x)∫

X

|h(x)|f(x)dx
. (12)

Proof The variance of the importance sampling estimator in (8) can be expressed, up
to a multiplicative constant, as:

Varq

[
h(X)f(X)

q(X)

]
= Eq

[(
h(X)f(X)

q(X)

)2]
−

{
Eq

[
h(X)f(X)

q(X)

]}2
,

By noting that

Eq

[
h(X)f(X)

q(X)

]
=

∫
X

h(x)f(x)

q(x)
q(x)dx

does not depend on q(·), to minimize the variance it is sufficient to minimize the
first term. From Jensen’s inequality (see Theorem 14 in Appendix A.3) follows that,
whatever is q(·), the first term is bounded below:

Eq

[(
h(X)f(X)

q(X)

)2]
>

{
Eq

[
|h(X)|f(X)

q(X)

]}2
=

( ∫
X

|h(x)|f(x)dx

)2
.

It is easy to proof that this lower bound is achieved by q∗(·):

Eq∗

[(
h(X)f(X)

q∗(X)

)2]
=

∫
X

(
h(x)f(x)

)2
q∗(x)

dx

=

( ∫
X

|h(x)|f(x)dx

)2
,
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where the last equality follows from the definition of q∗(·) in (12). �

Note that the optimal importance distribution depends on the integral I. However,
by considering that importance distribution in (12), the estimator becomes

Ĩ =

S∑
s=1

f(y(s))|h(y(s))|−1

S∑
s=1

|h(y(s))|−1

which does not depend on the intractable integral. Hence, Theorem 2 suggests to
sample y(1), ...,y(S) from an importance distribution proportional to f · |h|. Note that
the importance distribution still depends on the function h(·), hence this result is of
limited applicability since in many applications we are interested in using the same
sample to approximate many different quantities.

In order to evaluate the efficiency of an estimator derived through IS a practical
rule of thumb is the evaluation of the Effective Sample Size (ESS).

2.2.1 Effective Sample Size and Sample Degeneracy

Conceptually the ESS represents the number of samples from the target distribution
f(·), if it would be available, needed to get an estimator

Ī =
1

S

S∑
s=1

h(y(s))

with the same variance as the IS estimator Ĩ defined in (11). More formally, the ESS
is defined as

ESS
4
= S

Varf[Ī]

Varq[Ĩ]
.

Unfortunately, both the variances are not analytically available hence the exact com-
putation is infeasible. Indeed, in the MC literature the ESS is usually approximated
as proposed in [76]:

ÊSS =

(
S∑
s=1

ωs

)2
S∑
s=1

ω2s

where the importance weights ω(y(s)) are referred to as ωs for short. This approxi-
mation is derived in [85] and [47] by approximating the variance:

Varq[Ĩ] =Varq

[ S∑
s=1

ω(Y(s))h(Y(s))

S∑
s=1

ω(Y(s))

]
. (13)
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variance approximation Following [47], the variance in (13) can be approxi-
mated by resorting to the Delta Method described in Appendix B.0.1. In particular,
denoting ω(Y) by W and h(Y) by H, from (157) we obtain

Varq[Ĩ] ≈
1

S

[
Varq[W]

E2q[WH]

E4q[W]
+

Varq[WH]

E2q[W]
− 2

Eq[WH]

E2q[W]
Covq[W,WH]

]
where the symbol ≈ denotes the approximation following to the second order Tay-
lor expansion. For the sake of simplicity hereafter we assume that the importance
weights are computed involving the normalized target distribution, f(·). This assump-
tion will be relaxed in the final approximation.

By noting that

Eq[W] =

∫
X

ω(y)q(y)dy

=

∫
X

f(y)

q(y)
q(y)dy = 1

and

Eq[WH] =

∫
X

ω(y)h(y)q(y)dy

=

∫
X

f(y)

q(y)
h(y)q(y)dy

=

∫
X

h(y)f(y)dy = I,

we obtain

Varq[Ĩ] ≈
1

S

[
Varq[W]I2 + Varq[WH] − 2ICovq[W,WH]

]
. (14)

Let us expand

Covq[W,WH] =Eq[W
2H] − Eq[WH]Eq[W]

=Eq[W
2H] − I

=Ef[WH] − I (15)

=Covf[WH] + Ef[W]Ef[H] − I (16)

and

Varq[WH] =Eq[W
2H2] − E2q[WH]

=Ef[WH
2] − I2. (17)

where (15) follows from

Eq[W
2H] =

∫
X

(
f(x)

q(x)

)2
h(x)q(x)dx

=

∫
X

f(x)

q(x)
h(x)f(x)dx

= Ef[WH]
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and (17) follows from

Eq[W
2H2] =

∫
X

(
f(x)

q(x)

)2(
h(x)

)2
q(x)dx

=

∫
X

f(x)

q(x)

(
h(x)

)2
f(x)dx

= Ef[WH
2].

By applying the Delta Method to Ef[WH
2] (see (156)) follows that

Ef[WH
2] ≈ Ef[W]E2f [H] +

1

2
Varf[H] · 2Ef[W] + Covf[WH] · 2Ef[H]. (18)

Thus,

Varq[WH] =Ef[WH
2] − I2

=Ef[W]I2 + Varf[H]Ef[W] + 2ICovf[WH]. (19)

By substituting (16) and (19) into (14) follows

Varq[Ĩ] ≈
1

S

[
Varf[H]Ef[W] + I2

(
Varq[W] − Ef[W] + 1

)]
. (20)

Since
Varf[Ī] =

1

S
Varf[H]

and

Ef[W] =

∫
X

f(x)

q(x)
f(x)dx

=

∫
X

(
f(x)

q(x)

)2
q(x)dx (21)

= Eq[W
2] = 1+ Varq[W], (22)

the variance in (20) can be written as

Varq[Ĩ] ≈ Varf[Ī]
(
1+ Varq[W]

)
.

The ESS resulting from the variance approximation derived above is

ESS ≈ S

1+ Varq[W]
.

When the target distribution can be evaluated only up to a normalizing constant, the
ESS can be adapted a posteriori as

ESS ≈ S

1+
Varq[W]

K2

(23)

=
SK2

K2 + Varq[W]

=
SK2

Eq[W2]
. (24)
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Thus, by resorting to the approximation of the normalized constant in (10)

ÊSS = S

(
1
S

S∑
s=1

ωs
)2

1
S

S∑
s=1

ω2s

=

(
S∑
s=1

ωs

)2
S∑
s=1

ω2s

. (25)

Looking at (23), it is apparent that highly variable importance weights correspond
to a small ESS. Thus, an importance distribution leading to highly variable weights
results in an inefficient estimator Ĩ. Furthermore, it can be shown that Varq[W] is a
measure of distance between the importance and the target distribution [86]:

Varq[W] =Eq[W
2] − E2q[W]

=Eq[W
2] − 1

=

∫
X

(
f(x)

q(x)

)2
q(x)dx− 2+ 1

=

∫
X

(
f(x)

)2
q(x)

dx− 2

∫
X

f(x)dx+

∫
X

q(x)dx

=

∫
X

(
f(x)

)2
q(x)

dx− 2

∫
X

f(x)q(x)

q(x)
dx+

∫
X

(
q(x)

)2
q(x)

dx

=

∫
X

[f(x) − q(x)]2

q(x)
dx

=χ2(f,q)

where χ2(f,q) is the Pearson divergence between the target and the importance dis-
tribution. This result suggests that an importance distribution close to the target dis-
tribution leads to an efficient estimator and to an adequate ESS. On the other hand,
an importance distribution far from the target leads to one of the main drawbacks in
IS methods: the sample degeneracy.

sample degeneracy The problem of sample degeneracy in IS techniques arises
when only a small fraction of the importance weights has relative high weights. Gen-
erally speaking, this problem is due to an importance distribution far from the target.
As already shown, a great distance between the two distributions corresponds to
highly variable weights. It follows that when sample degeneracy occurs the IS gives
inefficient estimators and a very large number of simulations is required to get ade-
quate estimates. A common measure of the degree of sample degeneracy is the ESS.
As will be discussed in the following sections this problem becomes more serious
when one resort to RS or to a Random Weights Importance Sampling.
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2.2.2 Comparing RS and IS

In order to formally compare the performances of RS and IS we refer to Chen [23]
proving that the RS estimator is always less efficient than the one based on IS with
importance distribution equal to g(·). In particular, RS can be seen as a special IS,
that relaying on the following target and importance distributions defined on the
augmented space X× [0, 1]:

f∗(x,y) =

Mg(x) for x ∈ X y ∈
[
0, f(x)
Mg(x)

]
0 otherwise

(26)

q∗(x,y) =

g(x) for x ∈ X y ∈
[
0, f(x)
Mg(x)

]
0 otherwise.

(27)

Note that the desired target distribution f(·) can be retrieved by marginalizing out
the auxiliary variable y:

1∫
0

f∗(x,y)dy =

f(x)
Mg(x)∫
0

Mg(x)dy =
f(x)

Mg(x)
Mg(x) = f(x).

From (26) and (27) follows that the importance weights are

ω∗(x,y) =

M for x ∈ X y ∈
[
0, f(x)
Mg(x)

]
0 otherwise,

meaning that the rejection step is replaced by a weighting strategy leading to an
equivalent estimator. In fact, by denoting with A the set of iterations at which is
assigned a strictly positive weight and assuming |A| = S∗, the resulting estimator, ĨR,
is equivalent to the RS estimator:

ĨR =

S∑
s=1

ω∗s
h(Y(s))
S∑
s=1

ω∗s

S∑
s=1

ω∗s
h(Y(s))

S∗M
=
1

S∗

∑
s∈A

h(Y(s)).

Theorem 3 The Pearson distance between the target f(·) and the proposal q(·) is less than
or equal to the one between the target f∗(·) and the proposal q∗(·). In other words:

Varq

[
f(X)

q(X)

]
6 Varq∗

[
f∗(X, Y)
q∗(X, Y)

]
Proof From (22) follows that

Varq[W] = Eq[W
2] − 1.
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Thus,

1+ Varq∗

[
f∗(X, Y)
q∗(X, Y)

]
=

∫
X

f(x)
Mg(x)∫
0

(
f∗(X, Y)
g∗(X, Y)

)2
q∗(x,y)dydx

=

∫
X

f(x)
Mg(x)∫
0

M2g(x)dydx

=

∫
X

Mf(x)dx

=M

and

1+ Varq

[
f(X)

q(X)

]
=

∫
X

(
f(x)

q(x)

)2
q(x)dx

=

∫
X

f(x)

g(x)
f(x)dx

6
∫
X

Mg(x)

g(x)
f(x)dx

=M

where the inequality follows from the envelope function definition.
Thus,

Varq

[
f(X)

q(X)

]
6M− 1 = Varq∗

[
f∗(X, Y)
q∗(X, Y)

]
.

�

Summing up, the envelope function involved in RS can be used as the importance
distribution in an equivalent IS based on a target and an importance distribution
defined on an augmented space and whose marginal distributions are f(·) and q(·),
respectively. Conducting IS directly on the marginal distribution is at least efficient
as the RS.

2.2.3 Sampling from the posterior distribution via IS

Recalling that one of the main problems of Bayesian inference is the computation of
intractable marginal likelihood, one can resort to IS to address it [58]. In such a case,
a sufficient condition is the availability of the analytical form of the kernel of the
posterior distribution:

l(θ) = π(θ)p(x|θ).

In fact, by sampling θ(1), ..., θ(S) i.i.d from an importance distribution, q(·), defined
on the parameter space, Θ, and by computing the importance weights

ωs =
l(θ(s))

q(θ(s))
=
π(θ(s))p(x|θ(s))

q(θ(s))
∀s ∈ {1, ...,S},
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Algorithm 3 IS2

for s = 1, ...,S do
Draw θ(s) ∼ q(·)
Run an IS to draw y(1), ...,y(n) and compute p̂N(x|θ(s))

Assign to θ(s) the importance weight ω̂(s) =
π(θ(s))p̂N(x|θ(s))

q(θ(s))

end for

the integral in (3) is approximated by

ĨIS =

S∑
s=1

ωsh(y
(s))

S∑
s=1

ωs

.

Unfortunately, in many cases the likelihood p(x|θ) is intractable and cannot be in-
volved in the computation of the importance weights. Note that likelihood-free meth-
ods overcoming this difficulty will be discussed in the next chapter, however here
we introduce an IS technique based on an estimate of the likelihood function in turn
retrieved employing IS .

2.2.3.1 Random Weights Importance Sampling

The Random Weights Importance Sampling (RW-IS) is an IS algorithm in which the
evaluation of the likelihood function is replaced by a random estimate. In particular
in [151] it is referred to as IS2, being the likelihood estimate in turn derived employing
IS. For example, suppose that the random variable X is associated to a latent variable
Y defined on Y and that the joint probability p(x,y|θ) is analytically available. When
the likelihood function

p(x|θ) =

∫
Y

p(x,y|θ)dy =

∫
Y

p(x|y, θ)p(y|θ)dy (28)

is analytically intractable, one of the possible ways of approximating quantities such
as (3) is to approximate (28) employing IS and then resort to Algorithm 3. Note
that the importance weights ω̂(s) depend on the random estimate p̂N(x|θ(s)). More
precisely, let q(·|x, θ) be an importance distribution for Y an let

ω(y(n), θ) =
p(x,y(n)|θ)
q(y(n)|x, θ)

=
p(x|y(n), θ)p(y(n)|θ)

q(y(n)|x, θ)

be the corresponding importance weights. The density p(x|θ) is estimated by

p̂N(x|θ) =
1

N

N∑
n=1

ω(y(n), θ). (29)

A formal justification of Algorithm 3 is provided in [151] and is based on the follow-
ing arguments:

• the estimator p̂N(x|θ) can be rewritten as

p(x|θ)ez,
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where Z
4
= log p̂N(x|θ) − logp(x|θ) is a random variable whose randomness

is induced by the randomness occurring in the estimator p̂N(x|θ) and whose
probability density is denoted by qN(z|θ);

• IS2 can be considered as an IS scheme aimed at sampling from the joint poste-
rior distribution

π̃(θ, z|x)
4
= π(θ|x)ezqN(z|θ) =

π(θ)p̂N(x|θ)

K
qN(z|θ)

on the extended space Θ×R.

Assuming that p̂N(x|θ) is an unbiased estimator, the following equality holds:

EqN [e
z] =

∫
R

ezqN(z|θ)dz = 1.

Thus, the marginal posterior equals the target distribution∫
R

π̃(θ|x)dz = π(θ|x)

∫
R

ezqN(z|θ)dz = π(θ|x).

It follows that the integral in (3) can be rewritten as

Eπ[h(θ)] =

∫
Θ

∫
R

h(θ)π(θ|x)ezqN(z|θ)dzdθ

=

∫
Θ

∫
R

h(θ)
π(θ|x)ezqN(z|θ)

q(θ, z)
q(θ, z)dzdθ

where q(θ, z) = qN(z|θ)q(θ) is the importance distribution over Θ×R. Accordingly,
by computing unnormalized weights

ω̂(θ) =
l(θ)ezqN(z|θ)

q(θ, z)

=
π(θ)p(x|θ)

qN(z|θ)q(θ)
ezqN(z|θ)

=
π(θ)p̂N(x|θ)

q(θ)

from Algorithm 3 one can estimate (3) by computing

ĨIS2 =

s∑
s=1

ω̂(s)h(θ(s))

s∑
s=1

ω̂(s)

.

In [151], they prove that ĨIS2 converges almost surely to Eπ[h(θ)]. They also show
that, under mild conditions, the estimator ĨIS2 has a variance retrieved as

Var[ĨIS2 ] = C · ĨIS,

where C > 1 is a constant depending on the variance of the stochastic term Z. It
follows that ĨIS2 is less efficient then ĨIS, meaning that when the likelihood is replaced
by a random estimate, the ESS is smaller and the problem of sample degeneracy
becomes more serious.
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2.2.4 Sampling from the tails of the distribution

As already shown, the variability of the importance weights depends on the impor-
tance distribution which, if properly chosen, may reduce the sample degeneracy lead-
ing to an adequate sample size. The choice of the importance distribution is also cru-
cial when we are interested in approximating quantities involving an evaluation of
the probability in the tails of the target distribution. to show this fact we discuss an
example based on the Example 3.5. from [125].

Example 1. Approximating the Normal cumulative density function Suppose that
the we are interested in evaluating the cumulative density function (cdf) of a random
variable normally distributed. Since the cdf, denoted by Φ(·), cannot be written in an
explicit form, one can resort to a MC estimate. For example, the approximation of

0∫
−∞

1√
2π
e−x

2/2dx

can be got by sampling y(1), ...,y(S) i.i.d. from a standard normal distribution and by
computing

Φ̂(0) =
1

S

S∑
s=1

1{y(s) 6 0}. (30)

Note that each 1{y(s) 6 0} is a Bernoulli random variable with success probability
Φ(0). Accordingly, the exact variance of (30) is

Φ(0)(1−Φ(0))

S
.

Since in this simple example we know that Φ(0) = 0.5, we are able to compute

the number of simulations S needed to achieve the desired precision. For example
achieving a precision of four decimals with a confidence level of ≈ 99.5% requires

S ≈ (
√
2 · 104)2 = 2 · 108.

Now suppose that we are interested in approximating Φ(−4.5) through the following
MC estimator

Φ̂(−4.5) =
1

S

S∑
s=1

1{y(s) 6 −4.5}. (31)

Since Φ(−4.5) = 3.3977 · 10−6, to get an accurate estimate we need a precision of at
least seven decimals corresponding to ≈ 13 · 108 simulations. Otherwise, small value
of S usually produce all zeros of the indicator function since we are approximating
the probability of a very rare event. In [125], the Example 3.8 shows that IS may
improve the accuracy by relying on a clever importance distribution. In particular,
they suggest to resort to a right truncated exponential distribution with density

q(y) = e4.5+y1{y 6 −4.5}. (32)
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Figure 1: Right truncated exponential distribution (blue line) and standard normal distribu-
tion (red line).
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As shown in Figure 1, sampling values smaller than −4.5 from a truncated exponen-
tial distribution (blue line) is more likely than from the standard normal distribution
(red line). It follows that denoting by f(·) the standard normal pdf, by simulating
from q(·) we obtain the following approximation with S = 10, 000

Φ̂(−4.5) =
1

S

S∑
s=1

f(y(s))

q(y(s))
1{y(s) 6 −4.5} = 3.4139 · 10−6. (33)

2.3 markov chain monte carlo

As shown in the previous section, IS is a possible solution for approximating inte-
grals such as (7) without sampling directly from the target distribution f(·). Markov
Chain Monte Carlo (MCMC) methods represent another strategy for getting samples,
X1, ...XS, approximately distributed according to f(·). In particular, a MCMC method
is any method producing an ergodic Markov chain, {X(s)}Ss=1, whose stationary dis-
tribution is f(·) [125]. For details on Markov chains and their properties see Appendix
C. Under certain conditions the sequence produced by an MCMC method can be em-
ployed to approximate integrals via sample averages, as already shown in the case of
i.i.d. samples.

The first MCMC method was developed by Nicholas Metropolis et al. in 1953 [98].
The algorithm was proposed as a modified MC integration method aimed at inves-
tigating the properties of substances consisting of interacting individual molecules.
In 1970, Hastings generalized the Metropolis algorithm presenting the Metropolis–
Hastings algorithm [63]. Another widespread MCMC method is the Gibbs Sampler
introduced by Stuart Geman and Donald Geman in 1985 [56]. In 1990 Gelfand and
Smith [52] shed light on the usefulness of the Gibbs sampler for calculating Bayesian
posterior distributions. Afterwords, Tierney [149] showed how the other MCMC
methods could be used for exploring intractable posterior distributions.
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Algorithm 4 Metropolis Algorithm

Initialize x(0)

for s = 1, ...,S do
Draw y ∼ q̃(x(s−1), ·) and u(s) ∼ Unif[0, 1]

Compute α(x(s−1),y) = min
{
1, f(y)

f(x(s−1))

}
if u(s) 6 α(x(s−1),y) then

Set X(s) = y

else
X(s) = x(s−1)

end if
end for

2.3.1 Metropolis Algorithm

The Metropolis algorithm can be seen as a generalized RS [86]. In fact, it allows
sampling from a proposal distribution, q̃(·, ·), different from the target and resorts to a
rejection step to ensure the convergence to the target distribution. The main difference
between the two algorithms is that in the Metropolis algorithm, at each step, both the
proposal distribution and the acceptance probability depend on the value accepted at
the previous iteration. Thus, samples are no longer independent of one another but
rather form a Markov chain. It follows that to ensure the convergence the algorithm
must generate a Markov chain characterized by transition probabilities, denoted by
q(·, ·), satisfying the following equation∫

X

f(x)q(x,y)dx = f(y), (34)

where x denotes the current value and y denotes the proposed value of the chain.
Equation (34) states that the target distribution is the stationary distribution of the
Markov chain characterized by that transition probabilities (see Appendix C.3 and
C.4). However, the reversibility (see Definition 16) of the target distribution is often an
easier-to-check sufficient (although not necessary) condition for the stationarity. In
fact, f(·) is reversible whenever the Detailed Balance condition holds:

f(x)q(x,y) = f(y)q(y, x). (35)

From (35) follows∫
X

f(x)q(x,y)dx =
∫
X

f(y)q(y, x)dx

= f(y)

∫
X

q(y, x)dx

= f(y).

Thus, the Metropolis algorithm is based on the definition of a transition kernel sat-
isfying this condition. In particular, the transition probabilities following from the
implementation of the Algorithm 4 are of the form

q(x,y) = q̃(x,y)α(x,y)

41



Algorithm 5 Metropolis–Hastings Algorithm

Initialize x(0)

for s = 1, ...,S do
Draw y ∼ q̃(x(s−1), ·) and u(s) ∼ Unif[0, 1]

Compute α(x(s−1),y) = min
{
1, f(y)q̃(y,x(s−1))
f(x(s−1))q̃(x(s−1),y)

}
if u(s) 6 α(x(s−1),y) then

Set X(s) = y

else
X(s) = x(s−1)

end if
end for

where q̃(x,y) is a symmetric proposal function and

α(x,y) = min
{
1,
f(y)

f(x)

}
.

In other terms

q(x,y) =

q̃(x,y)f(y)f(x) if f(x) > f(y)

q̃(x,y) otherwise.
(36)

For example, suppose that f(x) > f(y), equation (35) becomes

f(x)q(x,y) = f(x)q̃(x,y)
f(y)

f(x)

= f(y)q̃(x,y)

= f(y)q̃(y, x) (37)

= f(y)q(y, x)

where (37) follows from symmetry.

2.3.2 Metropolis-Hastings Algorithm

The Metropolis algorithm was generalized by Hastings as displayed in Algorithm 5.
This generalization, known as Metropolis–Hastings (MH) algorithm, allows overcom-
ing the requirement for a symmetric proposal distribution. Accordingly, the transition
probabilities in (36) become

q(x,y) =

q̃(x,y)f(y)q̃(y,x)
f(x)q̃(x,y) if f(x) > f(y)

q̃(x,y) otherwise.
(38)
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It is straightforward to show that the Detailed Balance condition is still satisfied
without symmetry:

f(x)q(x,y) = f(x)q̃(x,y)
f(y)

f(x)

q̃(y, x)
q̃(x,y)

= f(y)q̃(y, x)

= f(y)q(y, x).

Thus, MH algorithm admits the use of almost any pdf as proposal distribution. Here
we focus on two of the most used family of proposal distributions.

independent MH : At each iteration the proposal distribution is independent
from the value accepted at the previous iteration:

q̃(x,y) = q̃(y).

It follows that the acceptance probability becomes:

α(x,y) = min
{
1,
f(y)q̃(x)

f(x)q̃(y)

}
.

Note that, even though the proposal distribution is independent from the cur-
rent state of the chain, the acceptance ratio still depends on it thus building a
Markov chain.

This kind of proposal encourages the exploration of the sample space but can
be a poor choice for complex target distributions.

random walk metropolis : At each iteration the proposal distribution is cen-
tred on the value accepted at the previous iteration, say x. Thus, the proposed
candidate can be expressed as

y = x+ ε ε ∼ q(· |µ = 0,σ)

where µ is a centrality parameter and σ is a scale parameter.

Note that, being the transition probability symmetric, the acceptance probability
reduces to

α(x,y) = min
{
1,
f(y)

f(x)

}
.

Thus, this kind of proposal leads to the implementation of a Metropolis al-
gorithm and encourages a local exploration around the value accepted at the
previous step.

Obviously the choice of the proposal distribution and its scale parameter strongly
influences the acceptance rate. In particular, a proposal distribution with a high vari-
ance usually leads to a low acceptance rate, often implying that the chain gets stuck
because of the large number of rejections. On the other hand, a low variance leads
to proponing local moves around the last accepted value thus resulting in a high ac-
ceptance rate. However, a too high acceptance rate typically corresponds to a chain
failing to explore the entire sample space. Ideally the proposal distribution involved
in a Random Walk Metropolis should be chosen in such a way that the acceptance
rate is approximativly 40% for univariate random variables and declines to about
23% as the size of the variable increases [53].
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2.3.2.1 Convergence

MH algorithm satisfies by construction the Detailed Balance condition, thus ensuring
that the target distribution, f(·), represents the stationary distribution of the induced
Markov chain. However, to properly approximate integrals such as (7) through sam-
ple averages, {X(s)}Ss=1 must be an ergodic chain. Recalling that a Markov chain is said
to be ergodic when it is irreducible, aperiodic and positive recurrent (see Appendix C.2),
the structurally properties required to an appropriate convergence are the irreducibil-
ity and aperiodicity. As shown in [125, Ch 7], the following two conditions ensures
aperiodicity and irreducibility, respectively:

• A sufficient condition for the aperiodicity is that the algorithm allows events
such as {X(s+1) = X(s)}, i.e., there is a strictly positive probability of staying
in the same state at two consecutive steps, meaning that there exists a strictly
positive probability that

α(X, Y) = min
{
1,
f(Y)q̃(Y,X)
f(X)q̃(X, Y)

}
< 1.

It follows that a sufficient condition for aperiodicity is that:

Pr
{
f(Y)q̃(Y,X)
f(X)q̃(X, Y)

> 1

}
= Pr

{
f(Y)q̃(Y,X) > f(X)q̃(X, Y)

}
< 1.

Note that this condition does not contradict the Detailed Balance condition since
the proposal distribution q̃(·, ·) does not correspond to the transition probability
q(·, ·).

• The irreducibility follows from the positivity of the chain {X(s)}Ss=1, that is

q̃(x,y) > 0 ∀(x,y) ∈ X2

meaning that at each iteration every subset of X can be reached in a single step.

Since a MH irreducible chain is Harris recurrent (17), as proved in [125, Th. 7.3], the
conditions described above ensure that the following equality holds:

lim
S→∞ 1S

S∑
s=1

h(x(s)) =

∫
X

h(x)f(x)dx a.s.

where h(·) must be a Lebesgue integrable function. Furthermore, the distribution of
{X(s)}Ss=1 converges in total variation norm to the stationary distribution. For a formal
proof we refer the reader to [125, Th. 7.4].

2.3.3 Gibbs sampler

The Gibbs sampler is another MCMC method which can be considered as a special
case of the more general MH algorithm. It allows sampling from the joint distribu-
tion and approximating the marginal distributions when dealing with a multivariate
random variable.
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Algorithm 6 Gibbs sampler

Initialize x(0)

for s = 1, ...,S do
Draw x

(s)
1 ∼ fX1(x1|x

(s−1)
2 , ..., x(s−1)d )

Draw x
(s)
2 ∼ fX2(x2|x

(s)
1 , x(s−1)3 , ..., x(s−1)d )

...
Draw x

(s)
d ∼ fXd(xd|x

(s)
1 , ..., x(s)d−1)

end for

Let us consider the d-dimensional random variable X = (X1, ...,Xd) taking values in
D and distributed according to the joint density fX(·). Suppose that we are interested
in obtaining some features of the marginal density

fXi(xi) =

∫
f(x1, ..., xd)dx\i, (39)

where x\i denotes (x1, ..., xi−1, xi+1, ..., xd). As already stressed, this kind of compu-
tation is often infeasible. The Gibbs sampler allows generating samples distributed
according to fXi(·), for each i ∈ {1, ...,d}, without drawing directly from it. In fact, as
displayed in Algorithm 6, the Gibbs sampler resorts to what is called full conditional
distributions, in order to get samples X(1), ...,X(S) from the joint distribution. A full
conditional distribution is the probability distribution of a single component of X
given all the others and is denoted by

f(xi|x\i) = f(xi|x1, ..., xi−1, xi+1, ..., xd)

for each component i ∈ {1, ...,d}. In practice, due to the conditional dependence struc-
ture between random variables established by the assumed model, the full condi-
tional simplifies. In fact, each component xi can be sampled from its probability dis-
tribution given the Markov blanket, [109] which represents the subset of components
of X conditioned on which Xi is independent from all the others.

In addition to Algorithm 6, also known as Systematic scan, many alternative ap-
proaches to determine the order of the coordinates to be sampled can be devised.
Two well-known methods are the Symmetric scan [125] and the Random scan [84].

symmetric scan The coordinates are sampled from their full conditionals first in
an ascending order and then in a descending order.

random scan The coordinates are sampled from their full conditionals at each
iteration in a different random order.

Unlike the chain induced by Algorithm 6, both the above methods induce a reversible
Markov chain. Generally speaking, despite the fact that the chain induced by a Gibbs
sampler is possibly reversible, it is straightforward to show that the target distribution
is a stationary distribution.

Let us denote by q(x,y) the transition probability from the state x ∈ D to the state
y ∈ D, from the sampling scheme outlined in Algorithm 6 follows that

q(x,y) = fX1(y1|x2, ..., xd)fX2(y2|y1, x3, ..., xd)...fXd(yd|y1, ...,yd−1).
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Let fiX(·) denote the marginal density obtained by integrating out the i-th component,
then ∫

fX(x)q(x,y)dx

=

∫
fX(x)fX1(y1|x2, ..., xd)fX2(y2|y1, x3, ..., xd)...fXd(yd|y1, ...,yd−1)dx

=

∫
[f1X(x2, ..., xd)fX1(x1|x2, ..., xd)]fX1(y1|x2, ..., xd)...fXd(yd|y1, ...,yd−1)dx1, ...,dxd

=

∫
fX(y1, x2, ..., xd)fX2(y2|y1, x3, ..., xd)...fXd(yd|y1, ...,yd−1)dx2, ...,dxd (40)

where (40) follows by integrating out x1 and combining f1X(x2, ..., xd) with
fX1(y1|x2, ..., xd). Doing the same for the other components from x2 to xd−1 we ob-
tain: ∫

fX(y1, ...,yd−1, xd)fXd(yd|y1, ...,yd−1)dxd

=fdX(y1, ...,yd−1)fXd(yd|y1, ...,yd−1)

=fX(y).

Thus, the target distribution satisfies the condition of stationarity.

2.3.3.1 Convergence

As already discussed for MH, we need to investigate the irreducibility and aperiod-
icity of the chain to ensure that the simulated Markov chain converges appropriately.
Roberts and Smith in 1994 [126] provided simple conditions for the converge of the
Gibbs sampler and Metropolis–Hastings algorithms. In particular, for the Gibbs sam-
pler they showed that when 1) the target fX(·) is lower semi-continuous at 0; 2) fiX is
locally bounded for i ∈ {1, ...,d} and 3) D is connected,

lim
S→∞ 1S

S∑
s=1

h(x(s)) =

∫
D

h(x)fX(x)dx a.s.

and the distribution of {X(s)}Ss=1 converges in total variation to the stationary distribu-
tion. However, this level of generality may not be necessary when D is a product set.
In such a case, irreduciblity and aperiodicity follow from the well-definedness of the
full conditional distributions and from the Fubini’s theorem (see the discussion fol-
lowing Corollary 1 of [126]). Since Harris recurrence follows from irreducibility, the
induced Markov chain is ensured to be ergodic. For further details about covergence
see e.g. [125, Ch. 10]

2.3.3.2 Comparing Gibbs sampler and Metropolis Hastings

As already mentioned, the Gibbs sampler can be considered as a special case of MH
algorithm. In particular, regarding Algorithm 6 the following theorem [125, Th. 10.13]
holds.

Theorem 4 The Gibbs sampler method is equivalent to the composition of d Metropolis–
Hastings algorithms, with acceptance probability uniformly equal to 1.
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Proof Let us consider the Gibbs sampler as the composition of d MH algorithms.
Let us denote by xi = (y1, ...yi−1, xi, ..., xd) and by yi = (y1, ...,yi, xi+1, ..., xd) re-
spectively the current and the proposed state at the i-th step of the current iteration.
Then, the proposal distribution is given by

qi(x
i,yi) = δX\i

(y1, ...,yi−1, xi+1, ..., xd)fXi(yi|y1, ...,yi−1, xi+1, xd)

where δ(·) denotes the Dirac delta function. It follows that the acceptance probability
is

fX(y
i)qi(y

i, xi)
fX(xi)qi(xi,yi)

=
fX(y

i)fXi(xi|y1, ...,yi−1, xi+1, ..., xd)
fX(xi)fXi(yi|y1, ...,yi−1, xi+1, ..., xd)

=
fXi(yi|y1, ...,yi−1, xi+1, ..., xd)fXi(xi|y1, ...,yi−1, xi+1, xd)
fXi(xi|y1, ...,yi−1, xi+1, ..., xd)fXi(yi|y1, ...,yi−1, xi+1, ..., xd)

= 1. (41)

�

Thus, from this theorem the Gibbs sampler seems to be more efficient than MH. In
fact, it avoids wastes of computational resources accepting all the proposed values.
Furthermore, it dispenses from the choice of the proposal distribution by deriving
the conditional distributions from the target fX(·). However, it is worth norting that
the acceptance probability in (41) concerns the transition from the state xi to the
state yi only for the i-th component of the multivariate random variable X. A com-
plete step of the Gibbs sampler results from the compositions of d MH steps, one
for each comptonent, and even though the acceptance probability equals 1 for each
MH step, the global acceptance probability is usually different from 1 (see Example
10.14 in [125]). Note also that the d MH steps must be considerate jointly in order to
build a convergent Markov chain on the joint space D. In fact, although the sequence
{X(s)}Ss=1 forms a Markov chain enjoying the convergence properties described in
Section 2.3.3.1, considering each MH step as a different state of the chain does not
produce an irreducible Markov chain. In fact, at each MH step i ∈ 1, ...,d, the random
variable X can take values in a sample space constrained by the values taken by the
components X1, ..,Xi−1,Xi+1, ...,Xd.

2.3.4 Metropolis within Gibbs

The implementation of a Gibbs sampler requires the ability of sampling from the
univariate full conditional distributions. In many cases these conditional distributions
do not have a standard analytical form and their normalizing constants can be in turn
intractable. In such cases, sampling from the full conditionals is infeasible unless
one resorts to the Metropolis within Gibbs (MwG) algorithm. MwG is a hybrid MCMC
algorithm, meaning that it uses simultaneously both Gibbs sampler and MH steps.
In particular, MH steps should be used within the Gibbs scheme to sample from
intractable full conditional distributions exploiting the fact that in the MH acceptance
ratio the intractable normalizing constants cancel out.
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Algorithm 7 Metropolis within Gibbs sampler

Initialize x(0)

for s = 1, ...,S do
for i = 1, ...,d do

Draw yi ∼ q̃(x
(s−1)
i , · |x(s)1 , ..., x(s)i−1, x(s−1)i+1 , ..., x(s−1)d )

u(s) ∼ Unif[0, 1]
Compute

α(x
(s−1)
i ,yi) =

min
{
1,

fXi
(yi|x

(s)
1 , ...,x(s)i−1,x(s−1)i+1 , ...,x(s−1)d )q̃(yi,x

(s−1)
i |x

(s)
1 , ...,x(s)i−1,x(s−1)i+1 , ...,x(s−1)d )

fXi
(x

(s−1)
i |x

(s)
1 , ...,x(s)i−1,x(s−1)i+1 , ...,x(s−1)d )q̃(x

(s−1)
i ,yi|x

(s)
1 , ...,x(s)i−1,x(s−1)i+1 , ...,x(s−1)d )

}

if u(s) 6 α(x(s−1)i ,yi) then
Set X(s)

i = yi
else
X
(s)
i = x

(s−1)
i

end if
end for

end for

A general MwG scheme is displayed in Algorithm 7 in which is adopted a Gibbs
scheme but samples from each full conditional distribution are got by means of a MH
step. Note that the internal MH algorithm should be used only for those components
that cannot be sampled directly from the full conditional.

2.3.5 Convergence Diagnostics

Theoretical foundations of MCMC algorithms ensure the ergodicity of the induced
Markov chain and thus the convergence of the algorithm. However, from a practical
point of view, it is often difficult to establish a stopping rule deciding when it is reason-
able to consider samples as representative of the underlying stationary distribution.
The notion of convergence related to MCMC methods is different from the one of other
iterative methods: the output of the algorithm is not a single number or a probability
distribution but rather represents a sample form an unknown probability distribu-
tion. Furthermore, the Markov nature of the sampling procedure slows the algorithm
in its attempt to get samples from the target distribution. Accordingly, there are three
different types of convergence to be assessed:

• convergence to the stationary distribution;

• convergence of averages;

• convergence to i.i.d. samples.

In practice, a lot of convergence diagnostics have been developed. Among all the diag-
nostics assessing the three types of convergence, we can distinguish between methods
involving the simulation of a single chain and methods involving the simulation of
multiple parallel chains.
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The first type of convergence, the convergence to the stationary distribution, seems
to be a minimal requirement since MCMC algorithms are supposed to get samples
from the target distribution. However, despite the fact that from a theoretical point
of view the target distribution corresponds to the stationary distribution, it is only
a limiting distribution. Indeed, any inference from a finite number of simulations is
an approximation and the quality of the approximation may also still be affected by
the starting point. Accordingly, it is a standard practice to discard the initial itera-
tions not providing good information about the target distribution. Thus, following
this burn-in idea, according to [16, Ch. 6] the first part of the simulated sequences
should be discarded. An early attempt of checking the convergence to the stationary
distribution was presented by Gelfand and Smith [52]. The method is based on the
comparison between the empirical distributions evaluated at nearly consecutive itera-
tions and concludes that the convergence is achieved when the difference between the
two is negligible. This strategy usually relies on a graphical comparison and requires
the simulation of a single chain. A more formal comparison is based on nonpara-
metric tests of stationarity. Examples are tests involving the Kolmogorov–Smirnov
statistic [79] in the comparison between the first and the second halves of a single
chain. Since this kind of nonparametric tests relies on the assumption of indepen-
dence and identical distribution, in this framework one needs to correct the statistic
by discarding batches of consecutive simulations thus leading to the construction of
two quasi-independent subsamples (see e.g. [125, Sec. 12.2.2]).

As already noted, MCMC methods are often implemented to approximate inte-
grals such as (7) via sample averages. Thus, we are often interested in evaluating the
convergence of averages. A widespread diagnostic for the convergence of averages
was presented by Gelman and Rubin [54]. This method is composed of two steps:

Step 1 Obtain an overdispersed estimate of the target distribution. Generate from it
M different values to use as starting points for M parallel chains of length S.

Step 2 For the scalar quantity of interest computed from each simulated chain, say
ψ = h(X), compute the between-chain and within-chain variances, denoted by B
and W, respectively.

The variance of the quantities of interest can be estimated by the following weighted
average

V̂ar[ψ] = S−1
S W + 1

SB. (42)

To monitor the converge, one can evaluate the estimate of the potential scale reduction

R̂ =

√
V̂ar[ψ]

W
. (43)

As the length of each chain goes to infinity, R̂ coverages to 1. Thus, further simulations
may improve the quality of the approximation as long as the potential scale reduction
is higher than 1. Note that the approximation in (43) is derived in [55] and differs from
the one originally proposed in [54].

Another well-known diagnostic for the convergence of averages is the one intro-
duced by Geweke [59]. Geweke’s diagnostic is calculated by splitting a single chain
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in two subsequences and by comparing the sample averages of the quantity of inter-
est. The evaluation of the convergence is based on an adapted two-samples test on the
means. The asymptotic standard errors involved in the computation of the test statis-
tic are computed from the spectral density estimates for the two subsequences. A
similar approach for assessing the convergence when the random variables X(s) take
values in a discrete state space is based on a χ2 test adjusted for the autocorrelation of
the chain. Again, the method proceeds by partitioning the chain in subsequences and
by testing the homogeneity of the empirical distribution of each subsequence and the
empirical distribution of the whole chain [38]. For a more comprehensive review of
the diagnostic methods we refer the reader to [28] and [125, Ch. 12].

A useful measure of convergence to an i.i.d sample is the ESS. It represents the
effective number of independent samples thus indicating how close to be i.i.d the
considered sample is.

2.3.5.1 Effective Sample Size

Consider the case in which we resort to MCMC algorithms to simulate a Markov
chain {X(s)}Ss=1 for approximating the integral in (7). Let us denote by ÎMCMC =

1/S
S∑
s=1

h(X(s)) the resulting sample average. Note that if the random variables

X(1), ...,X(S) were sampled employing an i.i.d. MC sampling scheme, the variance
of the resulting estimator would be

Var[ÎMC] =
1

S2

S∑
s=1

Var[h(X(s))] =
1

S
Var[h(X(s))]. (44)

However, due to the autocorrelation in MCMC algorithms, the variance in (44)
underestimates the desired variance. In fact, the asymptotic variance of the sum of
correlated random is derived by

lim
S→∞SVar[ÎMCMC] = Var[h(X(s))] + 2

∞∑
t=1

Cov(h(X(s)),h(X(s+t)))

= Var[h(X(s))] + 2

∞∑
t=1

ρtVar[h(X
(s))]

= Var[h(X(s))]
(
1+ 2

∞∑
t=1

ρt
)
, (45)

where ρt is the autocorrelation at lag t. As already shown in Section 2.2.1 for IS , the
ESS depends on the ratio between the variances of the two estimators:

ESS
4
=
SVar[ÎMC]

Var[ÎMCMC]
. (46)

Thus, by substituting (44) and (45) into (46) we obtain the following well-known
equality [55, Section 11.5] [125, Section 12.3.5]:

ESS =
S

1+ 2
∞∑
t=1

ρt

. (47)
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However, in order to compute the ESS we need an approximation of the sum of
the autocorrelations. Here, we give some details on the derivation of a computable
approximation of the ESS reported in [55, Section 11.5].

First of all we define the variogram, Vt, which describes the degree of dependence
between pairs of random variables at lag t, say h(X(s)) and h(X(s−t)):

Vt
4
= Var

[
h(X(s)) − h(X(s−t))

]
=
1

S

S∑
s=t+1

(
h(X(s)) − h(X(s−t))

)2, (48)

where (48) follows form the fact that each variable in the sequence has the same ex-
pected value. The variogram is related to the autocorrelation by the following equa-
tion:

Vt = Var[h(X(s))] + Var[h(X(s−t))] − 2Cov[h(X(s)),h(X(s−t))]

= 2Var[h(X(s))] − 2ρtVar[h(X
(s))]

= 2Var[h(X(s))]
(
1− ρt).

Thus, by approximating Var[h(X(s))] as in (42), we obtain the estimate for the auto-
correlation:

ρ̂t = 1−
Vt

2V̂ar[h(X)]
. (49)

It follows that the ESS can be computed as

ESS ≈ S

1+ 2
S∑
t=1

ρ̂t

. (50)

Thus, an highly correlated Markov chain leads to a small ESS and poorly approxi-
mates an i.i.d. sample.

sample degeneracy As already noted, in MCMC methods the choice of the
proposal distribution plays a key role since the acceptance ratio depends from it.
When an MCMC algorithm leads to a low acceptance ratio the resulting Markov chain
is highly autocorrelated. An high autocorrelation leads to highly variable estimates
(see (45) ) and to a low ESS. As already discussed, this problem is known as sample
degeneracy.

2.3.6 MCMC for sampling from the posterior distribution

The described MCMC methods represent also a possible way of getting samples from
an intractable posterior distribution. In particular, properly defined the proposal dis-
tribution on the parameter space, both the Metropolis and MH algorithm only require
the ability of evaluating the unnormalized posterior distribution l(θ). In fact, looking
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at the acceptance ratio we can see that the intractable normalizing constant cancels
out:

α(θ(s), θ(s+1)) = min
{
1,
π(θ(s+1)|x)q(θ(s+1), θ(s))
π(θ(s)|x)q(θ(s), θ(s+1))

}
= min

{
1,
l(θ(s+1))q(θ(s+1), θ(s))
l(θ(s))q(θ(s), θ(s+1))

}
= min

{
1,
π(θ(s+1))p(x|θ(s+1))q(θ(s+1), θ(s))
π(θ(s))p(x|θ(s+1))q(θ(s), θ(s+1))

}
. (51)

In many cases the target of the inference is a vector of parameters, θ. In such cases,
may be difficult (or impossible) to sample directly from the joint posterior distri-
bution. The Gibbs sampler allows sampling from the target distribution by getting
samples from the full conditional distribution of each unknown quantity. However,
when sampling from one or more full conditional distributions is in turn prohibitive,
one can resort to a MH step.

MCMC methods, as well as the other methods described in this chapter, requires
the ability of evaluating pointwise the likelihood function. In many contexts they
require also a great computational effort to achieve convergence, while the methods
described in the next section are based on analytical asymptotic approximation.

2.4 asymptotic approximations for bayesian inference

In this section we review some important asymptotic results for approximating the
posterior distribution. These approximation methods are based on Taylor expansions
and integrations over kernels of normal pdf. The key idea of these methods is that
as the sample size increases the likelihood function becomes roughly normal and
dominated by a unique mode. In contrast to MC methods, asymptotic methods rely
on analytical approximations, thus requiring only differentiation and maximization
procedures. Although the computation of Bayesian approximations is quite straight-
forward, they do not appear to be much used in the literature on applications of
Bayesian methods, preference being given to MC methods [122].

2.4.1 First order approximation

The main asymptotic result in likelihood-based Bayesian inference is that the poste-
rior distribution is asymptotically normal (see [82, Ch. 7 Th. 1]). To make this state-
ment more formal, we introduce the following notation:

• X = X1, ...,Xn is a vector of i.i.d. random variables distributed according to
p(·|θ);

• x = x1, ..., xn is a realization of X;

• p(x|θ) denotes the joint pdf evaluated at x;

• L(θ; x)
4
= c(x)p(x|θ) is the likelihood function which equals the joint pdf up to

a normalizing constant c(x);
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• `(θ; x)
4
= logL(θ; x) is the log-likelihood function;

• θ̂ is the maximum likelihood estimate (MLE);

• j(θ̂) = −d2`(θ; x)/dθ2|θ=θ̂ is the observed Fisher information;

• W(θ) = 2{`(θ̂; x) − `(θ; x)} is the log-likelihood ratio.

More formally, the asymptotic result mentioned above can be written as

lim
n→∞

bn∫
an

π(θ|x)dθ = Φ(b) −Φ(a),

where an = a · j(θ̂)−1/2 + θ̂ and bn = b · j(θ̂)−1/2 + θ̂. Under regularity conditions
for the prior distribution and conditions required for the normality of the maximum
likelihood estimator, the asymptotic normality of the posterior distribution can be
motivated as follows. By considering the Taylor expansion of the log-likelihood about
the MLE we get

`(θ; x) = `(θ̂; x) +
d`(θ; x)
dθ

∣∣
θ=θ̂

(θ− θ̂) +
1

2

d2`(θ; x)
dθ2

∣∣
θ=θ̂

(θ− θ̂)2 + R

≈ `(θ̂; x) −
1

2
j(θ̂)(θ− θ̂)2, (52)

where (52) follows from the fact that θ̂ maximizes the likelihood and R represents the
reminder of order n−1/2. Accordingly, the Bayes’ formula can be written as

π(θ|x) ∝ π(θ)L(θ; x) = exp
[

logπ(θ) + `(θ; x)
]
. (53)

Accordingly, by substituting (52) into (53), the posterior distribution can be rewritten
as

π(θ|x) ∝ exp
[

logπ(θ)
]

exp
[
`(θ̂; x) −

1

2
j(θ̂)(θ− θ̂)2 + R

]
∝ exp

[
logπ(θ)

]
exp

[
−
1

2
j(θ̂)(θ− θ̂)2 + R

]
≈ exp

[
−
1

2
j(θ̂)(θ− θ̂)2

]
, (54)

where, since `(θ; x) increases as n goes to infinity and logπ(θ) remains constant,
this latter can be ignored when considering an asymptotic approximation. Note that
(54) represents the kernel function of a Normal distribution, meaning that θ|x is ap-
proximately distributed according to a N(θ̂, j(θ̂)−1). For a rigorous statement of this
asymptotic result, a more detailed discussion of the arguments reported above and
of the extensions to the case of a vector of parameters θ see e.g. [82, Ch 7].

The first order approximation allows approximating the marginal likelihood and
integrals such as (3) without resorting to the simulation methods described until now.
However, the quality of the approximation depends on the features of the posterior
distributions and can be very low when the posterior distribution is asymmetric or
skewed. In such cases, higher-order asymptotic approximations are needed to pro-
vide improvement.
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2.4.2 Higher-order asymptotic approximations

One appealing feature of higher-order approximations is that they may be applied
at little additional computational cost over simple first-order approximations and, at
the same time, they allow avoiding the implementation of MCMC methods. In fact,
their main advantage over the MCMC approach is that higher-order approximations
can be achieved through independent samples, so that much less computational time
is needed.

An higher-order approximation of the posterior distribution can be derived by re-
sorting to the Laplace approximation of the marginal likelihood [150]. In particular,
by considering the Taylor expansion of the integrand function about θ̂, one can reach
an approximation of the posterior distribution of order n−1 in regions of the param-
eter space in which |θ− θ̂| < δ/

√
n, δ > 0 [155]:

π(θ|x) ∝ π(θ)L(θ; x)∫
Θ

π(θ̂) exp
[
`(θ̂; x) − 1

2 j(θ̂)(θ− θ̂)
2
]
dθ

=
1√

2π j(θ̂)−1

π(θ)

π(θ̂)
exp

[
`(θ; x) − `(θ̂; x)

]
. (55)

It follows that the intractable integrals required to compute the probability in the
tails of the posterior distribution can be approximated to the same order according to
the following arguments. Starting from the log-likelihood ratio, W(θ), we can rewrite

the exponent in (55) as exp[−1/2 ·W(θ)]. By considering the likelihood root r(θ) 4=
sign(θ̂− θ)W(θ)

1
2 , the tail area probability can be written as

∞∫
θ0

π(θ|x)dθ ≈
∞∫
θ0

1√
2πj(θ̂)−1

π(θ)

π(θ̂) exp
[
− 1
2r(θ)

2
]dθ.

After two changes of the variable of integration (for further details see e.g. [155]), first
from θ to r(θ) and then to r∗(θ) = r(θ) − 1

r(θ) log
[
|j(θ̂)|1/2

(
π(θ)/π(θ̂)

)(
r(θ)/` ′(θ)

)]
,

we get

∞∫
θ0

π(θ|x)dθ ≈

r∗0∫
−∞

1√
2π

exp
[
−
1

2
(r∗)2

]
dr∗ = Φ(r∗0),

where r∗0 = r(θ0) +
1

r(θ0)
log
[
|j(θ̂)|−1/2

(
π(θ̂)/π(θ)

)(
` ′(θ)/r(θ0)

)]
. This result gives an

approximation accurate to order O(n−3/2) in regions where |θ − θ̂| < δ/
√
n [137,

Ch 2]. This approximation offers an alternative solution for the evaluation of prob-
abilities involving the computation of intractable integrals. Following similar argu-
ments, one can retrieve the analogous result when the posterior computation requires
the marginalization w.r.t. nuisance parameters, as in (4). In particular, denoting by
θ = (ψ, λ) the vector of parameters, where ψ is the parameter of interest and λ ∈ Λ is
the nuisance parameter (or a vector thereof), the marginal posterior distribution can
be approximated through the Laplace approximation of the following integral

π(ψ|x) =

∫
Λ

π(ψ, λ|x)dλ,
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leading to

π(ψ|x) ≈ 1√
2π jp(ψ̂)−1

π(ψ, λ̂ψ)
π(ψ̂, λ̂)

exp
[
`p(ψ; x) − `p(ψ̂; x)

] |jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2

where the subscript p denotes that the observed Fisher information and the log-
likelihood are computed from the profile likelihood (see [29, Ch 3]) and λ̂ψ is the
constrained MLE of λ given ψ. Note that, when θ is a d-dimensional vector, the
Fisher information computed from the full log-likelihood is given by a d× d matrix
and jλ,λ denotes its (λ, λ)-block. Following arguments similar to the ones reported
above, the probabilities in tail areas are approximated by (see [155])

∞∫
ψ0

π(ψ|x)dψ ≈ Φ
(
r∗p(ψ0)

)
, (56)

where r∗(ψ) = rp(ψ) + 1
rp(ψ) log

[
1

rp(ψ)`
′
p(ψ)|jp(ψ̂)|

−1/2 π(ψ̂, λ̂)
π(ψ, λ̂ψ)

|jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2

]
.

2.4.3 HOTA sampling scheme

The first order approximation represents an analytical approximation of the poste-
rior distribution and requires no simulation for evaluating the marginal likelihood.
Moreover, expectation w.r.t. the posterior distribution, as in (3), can be computed at a
little computational cost. Higher-order tail area approximations (HOTA) [132] require
additional computational effort but still lead to a gain with respect to IS or MCMC
methods. In fact, from (56) one can define a simple HOTA sampling scheme for get-
ting a sample from π(ψ|x). It is essentially an inverse sampling method [125, Ch 2]
and can be summarized as follows:

1. Draw z(s) ∼ N(0, 1);

2. Set ψ(s) = ψ∗, with ψ∗ such that r∗p(ψ∗) = z(s)

for s ∈ {1, ....,S}. Meaning that only a numerical procedure for solving the equation
r∗p(ψ

∗) = z(s) is needed.
This method is often implemented to perform sensitivity analysis since it gives

the same MC error also with different models and prior distributions (see e.g. [70,
123]). However, HOTA sampling schemes are affected both from the MC error and
the asymptotic error. Stated otherwise, the quality of the approximation depends also
on the sample size. Furthermore, the approximations are only available in models en-
joying regularity conditions such as those characterized by posterior densities having
a unique mode and being differentiable in regions with moderate deviations from
the mode (see [69], for further details).

Finally, asymptotic approximations, as well as all the MC methods in the previous
sections, require the ability of evaluating the likelihood function and cannot be im-
plemented when the assumed model is intractable or computationally intensive to
evaluate. In such a case, Bayesian inference can be conducted by resorting to other
methods such as pseudo-likelihoods, composite-likelihoods [154] or ABC. This latter
will be introduced in the following chapter and will be the focus of this thesis.
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3
A P P R O X I M AT E B AY E S I A N C O M P U TAT I O N

ABC is a broad class of methods allowing Bayesian inference on parameters gov-
erning complex models. Since for such models the likelihood evaluation is typically
infeasible, either analytically or numerically, the methods described in the previous
chapter do not apply. In fact, all of them require a pointwise evaluation of the like-
lihood function to determine acceptance probabilities or importance weights. ABC
methods dispense with exact likelihood computation and only require the ability of
simulating pseudo-data by sampling observations from the assumed model employ-
ing a generative model a.k.a. simulator. A simulator can be thought as a probabilistic
computer program taking as input a parameter value (or a vector thereof) θ ∈ Θ
and returning a sample from the distribution p(·|θ). In general, no knowledge of the
analytical form of the likelihood is necessary to write down such a program.

The original intuition comes from the interpretation of Bayes’ Theorem provided by
Rubin [129]: samples from the prior distribution are converted into samples from the
posterior by collecting only those values that, when given as input to the generative
model, produce pseudo-data exactly matching the observed data. More specifically,
in the primal rejection ABC sampling scheme, whose origins can be traced back to
Tavaré et al. [148] and Pritchard et al. [116], the following actions are taken:

1. S > 1 parameter values from the prior distribution π(·) are generated;

2. for each s ∈ {1, ...,S}, given the parameter proposal θ(s) as input, the simulator
generates a realization of a random variable Y ∈ Xn distributed according to
p(·|θ(s));

3. only parameter values leading to pseudo-data equal to the observed data are
accepted, thereby samples from the exact posterior are derived by conditioning
on the event {Y = x}.

However, the probability that the simulated and the observed data are identical is
zero in the continuous setting and may be extremely small when Xn is a large discrete
sample space. Thus, even in the discrete case, a very large number of simulations
may be required to get an appreciable number of accepted parameters. Introducing
a twofold approximation scheme, as illustrated in Algorithm 8, might increase the
efficiency of the algorithm outlined above. First, one introduces a summary statistic,
s(·), which is a function from the sample space Xn ⊆ Rn to a lower-dimensional
space S ⊂ Rk, with k� n. Second, exact matching of the simulated and the observed
data is relaxed to similarity, expressed in terms of a predefined distance function
d(·, ·) and tolerance threshold ε > 0.

The underlying idea of ABC methods relies on the introduction of an auxiliary la-
tent variable: the pseudo-data, Y . As always, the aim of the method is getting samples
from the posterior distribution in order to approximate quantities such as the integral
in (3). Since sampling directly from

π(θ|x) ∝ π(θ)p(x|θ)
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Algorithm 8 R-ABC

for s = 1, ...,S do
Draw θ(s) ∼ π(·)
Generate y(s) ∼ p(·|θ(s)) from the simulator
Accept the pair

(
θ(s), s(y(s))

)
if d
(
s(y(s)), s(x)

)
6 ε

end for

is infeasible, samples from the desired posterior distribution are obtained by drawing
from a joint posterior distribution defined on a augmented space and from which is
easier to get samples:

π(θ,y|x) ∝ π(θ)p(y|θ)1{y = x}, (57)

where 1{y = x} is the indicator function assuming the value 1 if the pseudo-data
equals the observed data and 0 otherwise.

The primal rejection scheme is just a way of sampling pairs (θ,y) from π(θ,y|x).
It follows that marginalizing out y in (57), that is ignoring the simulated data y, the
output of the algorithm becomes a sample from the exact posterior distribution

π(θ|x) =

∫
Xn

π(θ,y|x) =
∫
Xn

π(θ)p(y|θ)1{y = x}dy.

Abbreviating s(y) by sy and s(x) by sx, the output of the Algorithm 8 is a sample of
pairs (θ, sy) from an approximate joint posterior distribution due to the data compres-
sion in summary statistics and the relaxation of the equality constraint. In particular,
Algorithm 8 provides samples from the following joint approximate posterior distri-
bution:

π̃ε,d(θ, sy|sx) ∝ π(θ)p(sy|θ)1{d(sy, sx) 6 ε}. (58)

Marginalizing out sy in (58), that is, ignoring the simulated summary statistics, the
output of Algorithm 8 becomes a sample from the following approximate marginal
posterior distribution

π̃ε,d(θ|sx) ∝
∫
S

π(θ)p(sy|θ)1{d(sy, sx) 6 ε}dsy. (59)

Note that the approximate posterior distribution can be also written as

π̃ε,d(θ|sx) ∝ π(θ)
∫
S

p(sy|θ)1{d(sy, sx) 6 ε}dsy

= π(θ) · Pr
(
d(sY , sx) 6 ε|θ

)
. (60)

The probability Pr
(
d(sY , sx) 6 ε| θ

)
, where s(Y) is referred to as sY for short, is the

probability of accepting a simulation given the parameter value and approximates
the likelihood. In fact, from (60) follows that the ABC approximate likelihood can be
written as

L̃ε,d(θ; sx) =
∫
S

p(sy|θ)1{d(sy, sx) 6 ε}dsy.
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Note that as ε→ 0, the approximate posterior distribution converges to the true pos-
terior distribution obteined conditiong on the observed summary statistics sx [140]:

lim
ε→0

π(θ)

∫
S

p(sy|θ)1{d(sy, sx) 6 ε}dsy = π(θ)

∫
S

δsx(sy)p(sy|θ)dsy

∝ π(θ|sx).

See also [112, Appendix A, p. 832] for a proof of the ABC likelihood convergence.
The accuracy of the approximation of the posterior distribution depends both on

how much information about the parameters is preserved by the summary statistics
and on the magnitude of the threshold ε. In fact, as long as sufficient summary
statistics for θ are chosen, the approximate posterior distribution π̃(·|sx) converges
to the true posterior π(·|x) (see [140, Ch. 1]). On the other hand, as ε → ∞, the
probability Pr

(
d(sY , sx) 6 ε|θ

)
approaches to 1 and samples are generated from

the prior distribution. This establishes a trade-off between the statistical bias and
the computational efficiency [83]: as the tolerance level ε decreases, the error of the
approximation of the ABC posterior vs. the true posterior decreases at the cost of
higher computational effort.

Remark 1 (Computational cost) The evaluation of the computational efficiency depends
on two alternative termination criteria: 1) stop when S values have been proposed; 2) stop
when S parameter proposals have been accepted. In the first case the running time does not
depend on ε but an evaluation of the computational efficiency may be done looking at the
resulting sample size. Otherwise the running time and the number of proposed values are
indicative of the algorithm computational cost. For a complete analysis of the asymptotic
effects of ε both on the computational cost and on the bias, see [156, Ch. 1, 2].

A discussion about the choice of the threshold ε and the summary statistics is
provided in the next section.

As pointed out in [140, Ch. 1], the use of the indicator function does not enable one
to discriminate between whether the pseudo-data y coincides with the observed data
and whether y is just close enough. This may lead to a waste of information. For this
reason, the indicator function in (58) is often replaced by

Kε
(
d(sy, sx)

)
=

κ
(
d(sy, sx)

)
if d(sy, sx) 6 ε

0 if d(sy, sx) > ε
(61)

where κ
(
·
)

is a kernel function (e.g., triangular, Epanechnikov, Gaussian, etc.) defined
on a compact support and decaying continuously from 1 to 0 (see e.g. [6]).

Now the ABC approximate likelihood becomes the convolution of the true likeli-
hood with the kernel Kε [112]:

L̃ε,d,K(θ; sx) =
∫
S

p(sy|θ)Kε(d(sy, sx) )dsy (62)

leading to the general approximate posterior distribution

π̃ε,d,K(θ|sx) ∝ π(θ)L̃ε,d,K(θ; sx). (63)
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Note that this general setting encompasses also the case of R-ABC employing the
uniform kernel. For the sake of an easier notation, hereafter we omit the indexes of
the sources of approximation and denotes the approximate posterior by π̃(·|sx).

In the literature, a variety of methods for sampling from (63) have been proposed.
Some of them are known as Marginal samplers (e.g., [93, 141], etc.) since they allow
directly sampling from the approximate marginal posterior distribution π̃(θ|sx). The
key idea is that π̃(θ|sx) can be estimated pointwise as

π(θ(s)) · 1
M

M∑
i=1

Kε{d(s
(i)
y , sx) 6 ε} ∀s ∈ {1, ...,S} (64)

by simulating M pseudo-datasets from p(·|θ(s)) and computing s(i)y for i ∈ 1, ...,M
at each iteration s. As is apparent, the second term in (64) provides a Monte Carlo
estimate of the ABC approximate likelihood in (62). Instead marginalizing the output
of Algorithm 8 corresponds to the implementation of a marginal sampler withM = 1.
In such case the indicator function represents a crude Monte Carlo estimate of the
probability Pr

(
d(sY , sx) 6 ε|θ

)
.

3.1 summary statistics an tolerance threshold

A crucial point in the implementation of ABC algorithms is the choice of an adequate
threshold and suitable summary statistics. Regarding the tolerance threshold, a prac-
tical rule is to choose the α-th quantile of the empirical distribution of the distances
between the observed and the simulated summary statistics [6].

The quality of the posterior distribution depends also on the amount of preserved
information about the parameters. However, low-dimensional sufficient summary
statistics are often unavailable and preserving a great amount of information by in-
volving many non-sufficient summaries does not represent a clever solution. Indeed,
the opportunities for random discrepancies between sy and sx increase as the size of
the summaries increases. This is a weak point in ABC methods as stated by Beaumont
et al. [6]:

A crucial limitation of the...method is that only a small number of sum-
mary statistics can usually be handled. Otherwise, either acceptance rates
become prohibitively low or the tolerance...must be increased, which can
distort the approximation.

It follows that a good choice of ABC summary statistics must strike a balance be-
tween low dimension and informativeness. The summary selection methods have
been extensively discussed in the literature and, according to the overview given in
[140, Ch. 5 ], can be classified in three categories: i) subset selection ii) projection and
iii) auxiliary likelihood.

Methods based on subset selection start from a vector of candidate summary statis-
tics, say z = (z1, ..., zk), and try to select an informative minimal subset. Some of them
(e.g. [4, 67, 105]) require to run ABC with different possible subsets in order to find
the best among them according to a specific criterion. Joice and Marjoram [67] pre-
sented a stepwise selection based on an approximate sufficiency test criterion. The key
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idea is that, given the minimum size subset of sufficient statistics, adding other sum-
maries does not affect the approximation of the posterior distribution. Accordingly,
this approach consists in testing whether changing the subset lead to a significantly
different approximation of the posterior distribution. A different approach was pro-
posed by Nunes and Balding [105]. They suggested to measure the informativeness
of the ABC posterior distribution by computing its entropy and to select the subset
of z which minimises it. However, as pointed out by Blum et al. [11], given a par-
ticularly precise prior the correct posterior may be more diffuse. In such cases, the
ABC posterior having the smaller entropy does not correspond to more accurate in-
ference. Barnes et al. [4] found out that a null Kullback–Leibler divergence between
π(θ|sy) and π(θ|x) represents a necessary condition for sufficiency of sy. Accordingly,
their stepwise selection method adds statistics to the actual subset one-by-one until
the Kullback–Leibler is lower than a predefined positive threshold. Sedki and Pudlo
[136] and Blum et al. [11] proposed a method that, when compared to the methods
mentioned above, has the advantage of not requiring to run ABC many different
times. It represents a regularisation procedure based on the idea of fitting a linear
regression with response θ and covariates z based on training data and performs a
variable selection to find an informative subset of z.

Projection methods start with a vector of summaries z as well. However, here the
idea is to find an informative lower-dimensional projection of z, e.g., through a lin-
ear transformation. Among others, Fearnhead and Prangle [48] proposed to fit the
following linear model to the training data:

θ ∼ N(Az+ b,Σ).

The resulting vector of parameter estimates, θ̂ = Âz+ b̂, is used as ABC summary
statistics.

A completely different perspective is that of the methods based on auxiliary likeli-
hoods. This approach is similar in spirit to another likelihood-free method: the indirect
inference approach [62]. In fact, the key idea is to specify an auxiliary tractable model
and to derive summary statistics from it. A possibility is to use the MLE of the aux-
iliary model as summary statistic [43, 60]. This idea is supported by the fact that the
MLE is typically asymptotically sufficient for the auxiliary model and the same holds
for the intractable model whether this latter is nested in the auxiliary model. Despite
the fact that this kind of tractable auxiliary model are often unavailable, this approach
still reasonable even without asymptotic sufficiency since Bayesian consistency can
be attained [95]. Soubeyrandand and Haon-Lasportes [144] discussed the properties
of the posterior distributions conditional on MLE estimates obtained by maximiz-
ing pseudo-likelihood functions built by ignoring some dependence structures in the
data. Gleim and Pigorsch [60] suggested to use the score function of the auxiliary
model as summary statistic. Ruli et al. [133] showed that the ABC posterior distribu-
tion, when based on a suitably rescaled score function derived form the true likeli-
hood, converges to the true posterior as ε → 0. Moreover, the size of the summary
statistics equals the number of the parameters and the resulting posterior distribution
is also invariant to re-parametrization. However, being the true likelihood function in-
tractable, they propose the cs-ABC in which a rescaled score function is derived from
a composite likelihood (see [154], for a review on composite likelihood methods). In
[134], the cs-ABC was included in a more general framework in which they proposed
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Algorithm 9 General Rejection Sampling ABC

for s = 1, ...,S do
Draw θ(s) ∼ g(·)
Generate y(s) ∼ p(·|θ(s)) from the simulator
Accept the pair (θ(s), s(s)y ) with probability

π(θ(s))Kε(d(s
(s)
y , sx))

Mg(θ(s))

end for

to get a robust ABC inference involving robust estimating functions (e.g., the score
function or the composite score function) as summaries. They also showed that the
approach based on the estimating functions use the same information as the method
based on the MLE but resorting to different distance metrics. Hence, as ε → 0 both
methods converge to the posterior conditional on the MLE.

3.2 some ABC sampling schemes

For almost all the existing MC methods a likelihood-free version for sampling from
the approximate posterior distribution have been implemented. Here we focus on the
ABC version of the sampling schemes described in the previous chapter. For further
details on ABC sampling schemes we refer the reader to [140, Ch. 4].

3.2.1 Rejection Sampling ABC

The Rejection Sampling ABC is a sampling scheme allowing to get samples from the
approximate posterior distribution by resorting to an easier-to-sample distribution. In
particular, in order to get samples form π̃(θ, sy|sx), we define the following proposal
distribution on the joint space Θ× S:

g(θ, s) = g(θ)p(s|θ).

As described in Section 2.1 for the standard RS, also the likelihood-free version of
RS requires an envelope function, m(·, ·), satisfying

m(θ, s) =Mg(θ, s) > π̃(θ, s|sx)

for each pair (θ, s) ∈ Θ× S. Accordingly, M must be

M >max
θ,s

π(θ)p(s|θ)Kε(d(s, sx))
g(θ)p(s|θ)

=Kε(0)max
θ

π(θ)

g(θ)
. (65)
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Algorithm 10 IS-ABC

for s = 1, ...,S do
Draw θ(s) ∼ q(·)
Generate y(s) ∼ p(·|θ(s)) from the simulator

Set the IS weight for (θ(s), s(s)y ) to ωs = Kε
(
d(s(s)y , sx)

)
· π(θ

(s))

q(θ(s))
.

end for

Following the same arguments as in Section 2.1, the likelihood-free RS can be imple-
mented as displayed in Algorithm 9, where the intractable likelihood cancels out in
the computation of the acceptance probability:

AP
4
=
π̃(θ(s), s(s)y |sx)

g(θ(s), s(s)y )
=
π(θ(s))p(s(s)y |θ(s))Kε(d(s

(s)
y , sx))

Mg(θ(s))p(s(s)y |θ(s))

=
π(θ(s))Kε(d(s

(s)
y , sx))

Mg(θ(s))
. (66)

Note that RS in Algorithm 9 encompasses also R-ABC scheme in Algorithm 8 where
1) the proposal distribution g(θ) corresponds to the prior distribution; 2) the ker-
nel function Kε(·) corresponds to the indicator function 1{d(sy, sx) 6 ε}; 3) M = 1

according to (65) .

3.2.2 Importance Sampling ABC

The efficiency of Rejection Sampling ABC, as the standard RS, depends on the choice
of the optimal envelope function m(θ, s) = Mg(θ, s). An inadequate envelope func-
tion can lead to a waste of computational effort due to a large number of rejections.
To overcome this problem one can resort to an Importance Sampling scheme in which
is assigned an importance weight to any proposal, thus avoiding rejections.

Following the standard Importance Sampling scheme introduced in Section 2.2,
the IS-ABC displayed in Algorithm 10 consists of sampling pairs (θ, sy) from an
importance distribution, q(·, ·), and of weighting each pair avoiding the computation
of the acceptance probabilities. In the ABC framework, the importance distribution
can be set as

q(θ, s) = q(θ)p(s|θ),

thus the parameter proposals are drawn from the importance distribution on the
parameter space, q(·), and the pseudo-data is generated from the simulator. This
implies that the importance weights do not depend from the intractable likelihood.
In fact, denoted by Z the normalizing constant of the joint posterior, the resulting
importance weights ω̄(θ(s), s(s)y ), referred to as ω̄s for short, are

ω̄s =
π(θ(s)) p(s(s)y |θ(s)) Kε

(
d(s(s)y , sx)

)
Zq(θ(s)) p(s(s)y |θ(s))

=
Kε
(
d(s(s)y , sx)

)
Z

· π(θ
(s))

q(θ(s))
∀s ∈ {1, ...,S}.
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By computing, at each iteration s, the following unnormalized weight

ωs = Kε
(
d(s(s)y , sx)

)
· π(θ

(s))

q(θ(s))
,

an approximation of the constant Z is obtained as

Z =

∫
Θ

∫
S

π(θ) p(sy|θ)Kε
(
d(sy, sx)

)
dsydθ

=

∫
Θ

∫
S

ω(θ, sy)q(θ, sy)dsydθ ≈
1

S

S∑
s=1

ωs,

where the second equality is got by multiplying and dividing by q(θ, sy). It follows
that, given an integrable function h : Θ → R, the output of Algorithm 10 allows
estimating posterior quantities such as

Eπ̃[h(θ)] =

∫
Θ

h(θ)π̃(θ|sx)dθ

by computing the sample average

1

SZ

S∑
s=1

ωs h(θ
(s)) ≈

S∑
s=1

ω̃s h(θ
(s)) (67)

where each ω̃s = ωs/
S∑
r=1

ωr is a normalized weight.

At each iteration, the importance weight depends on the distance d(sY , sx), hence
on the random variable s(Y) [140]. To wrap up, IS-ABC can be considered equivalent
to a RW-IS in which s(Y) represents the auxiliary latent variable and Kε

(
d(s(s)y , sx)

)
is

a random estimate of the intractable likelihood. Accordingly, we can say that IS-ABC
replaces the random estimate p̂N(x|θ) derived via IS in Section 2.2.3.1 with a crude
MC estimate. Thus, as already noted in Section 2.2.3.1, being the likelihood replaced
by a random estimate, IS-ABC leads to highly variable estimates and IS-ABC esti-
mator results less efficient than the IS estimator one would obtain knowing the likeli-
hood. Furthermore, being the crude MC estimate derived employing the evaluation of
a kernel function defined on a compact support, it often assumes the value 0 leading
to a null weight corresponding to an implicit rejection. As a result, in ABC framework
the sample degeneracy problem becomes more serious. In fact, since IS-ABC leads to
estimators characterized by a higher variance, the ESS value becomes smaller.

3.2.3 Comparing Rejection Sampling and Importance Sampling ABC

In order to compare Importance Sampling ABC and Rejection Sampling ABC, it is
straightforward to show that also in the ABC framework the same arguments as in
Section 2.2.2 hold. Thus, by properly defining a target and an importance distribution
on an augmented space, one can show that the general Rejection Sampling ABC is a
special case of the IS-ABC.
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In particular, by introducing an auxiliary variable U ∈ [0, 1], as in Section 2.2.2,
we can define the following target and instrumental distribution on the augmented
space Θ× S× [0, 1]:

π̃∗
(
(θ, sy),u

)
=

Mg(θ, sy) for (θ, sy) ∈ Θ× S ,u ∈
[
0, AP

]
0 otherwise

q∗
(
(θ, sy),u

)
=

g(θ, sy) for (θ, sy) ∈ Θ× S ,u ∈
[
0, AP

]
0 otherwise

.

It follows that the importance weights are

ω∗
(
(θ, sy),u

)
=

M for (θ, sy) ∈ Θ× S ,u ∈
[
0, AP

]
0 otherwise

where AP is the acceptance probability as defined in (66). Again the target distribu-
tion π̃(θ, sy|sx) is obtained by marginalizing π̃∗

(
(θ, sy),u

)
w.r.t. u:

AP∫
0

Mg(θ, sy)du =Mg(θ, sy)

AP∫
0

du

=Mg(θ)p(sy, θ)
π(θ)Kε

(
d(sy, sx)

)
Mg(θ)

∝ π̃(θ, sy|sx)

and the resulting estimators are equivalent to the one of the Rejection Sampling ABC
in Algorithm 9. Hence, according to Theorem 3 the IS-ABC involving Mg(θ, sy) as
instrumental distribution is at least efficient as Algorithm 9.

Note also that R-ABC in Algorithm 8 corresponds to an IS on the augmented space
with

π̃∗
(
(θ, sy),u

)
=

π(θ)p(sy|θ) for (θ, sy) ∈ Θ× S ,u ∈
[
0, 1{d(sy, sx) 6 ε}

]
0 otherwise

and

q∗
(
(θ, sy),u

)
=

π(θ)p(sy|θ) for (θ, sy) ∈ Θ× S ,u ∈
[
0, 1{d(sy, sx) 6 ε}

]
0 otherwise

.

It follows that the importance weights are

ω∗
(
(θ, sy),u

)
=

1 for (θ, sy) ∈ Θ× S ,u ∈
[
0, 1{d(sy, sx) 6 ε}

]
0 otherwise

,

meaning that they are equal to 1 whenever one gets d(sy, sx) 6 ε, since u lies in [0, 1]
by definition. On the other side, ω∗

(
(θ, sy),u

)
= 0 when d(sy, sx) > ε. Summing

up the primal Rejection Sampling is a special case of the IS-ABC with 1) the prior as
instrumental distribution on the parametric space, i.e., q(θ) = π(θ); 2) the indicator
function 1{d(sy, sx) 6 ε} as kernel function; 3) the importance weights equal to 0 or
1 depending on the acceptance or rejection.
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3.2.4 Markov Chain Monte Carlo ABC

Likelihood-free MCMC algorithms were introduced by Marjoram et al. in [93] as an
answer to the inefficiency of the R-ABC in Algorithm 8. In fact, with non-informative
priors, it does not take into account the information provided by the data at the
proposal stage. This leads to proponing values located in region corresponding to
low posterior probabiliies [92]. Marjoram et al. presented a MH algorithm defined
as a marginal sampler: the Markov chain is defined on the parameter space Θ and
the likelihood involved in the acceptance ratio is approximated by means of a MC
estimate as in (64). Here, for the sake of consistency with the other sampling schemes,
we adopt the same approach as in [140, Ch. 4] in which the MCMC-ABC provides
samples from the approximated joint posterior distribution π̃(θ, sy|sx) by defining
a Markov chain on the joint space S× Θ. More specifically, Algorithm 11 requires
the definition of a proposal distribution q̃

(
(θ, sy), (t, s)

)
, where (θ, sy) represents the

state of the chain at the current iteration and (t, s) is the proposed pair. In the ABC
framework the proposal is set to be

q̃
(
(θ, sy), (t, s)

)
= q̃(θ, t)p(s|t).

In fact, by resorting to this proposal distribution the acceptance ratio simplifies as
follows

r((θ, sy), (t, s))
4
=

π̃(t, s|sx)q̃((t, s), (θ, sy))
π̃(θ, sy|sx)q̃((θ, sy), (t, s))

=
π(t)p(s|t)Kε

(
d(s, sx)

)
q̃(t, θ)p(sy|θ)

π(θ)p(sy|θ)Kε
(
d(sy, sx)

)
q̃(θ, t)p(s|t)

=
π(t)Kε

(
d(s, sx)

)
q̃(t, θ)

π(θ)Kε
(
d(sy, sx)

)
q̃(θ, t)

(68)

and does not depend on the intractable likelihood.
Accordingly, Algorithm 11 builds a Markov chain with the following transition

kernel

q((θ, sy), (t, s)) =

q̃((θ, sy), (t, s))r((θ, sy), (t, s)) if π̃(t, s|sx) > π̃(θ, sy|sx)

q̃((θ, sy), (t, s)) otherwise.

Thus, the Detailed Balance condition w.r.t. to the target distribution, π̃(θ, sy|sx), is
satisfied:

π̃(θ, sy|sx)q((θ, sy), (t, s))

= π̃(θ, sy|sx)q̃((θ, sy), (t, s))r((θ, sy), (t, s))

= π̃(θ, sy|sx)q̃((θ, sy), (t, s))
π̃(t, s|sx)q̃((t, s), (θ, sy))
π̃(θ, sy|sx)q̃((θ, sy), (t, s))

= π̃(t, s|sx)q((t, s), (θ, sy)).

It follows that the conclusions about the convergence drawn in Section 2.3 are still
valid in the ABC framework.

An interesting aspect is that the acceptance ratio in (68) is equal to the one in
(51) except that the likelihood is approximated by the kernel function defined on a
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Algorithm 11 MCMC-ABC

Initialize θ(0) and generates y(0) ∼ p(·|θ(0))
for s = 1, ...,S do

Draw θ∗ ∼ q̃(θ(s−1), ·)
Draw y∗ ∼ p(·|θ∗) from the simulator and compute s∗y
Compute

α
(
(θ(s−1), s(s−1)y ), (θ∗, s∗y)

)
= min

{
1,

π(θ∗)Kε
(
d(s∗y, sx)

)
q̃(θ∗, θ(s−1))

π(θ(s−1))Kε
(
d(s(s−1)y , sx)

)
q̃(θ(s−1), θ∗)

}

Draw u(s) ∼ Unif[0, 1]
if u(s) 6 α

(
(θ(s−1), s(s−1)y ), (θ∗, s∗y)

)
then

Set (θ(s), s(s)y ) = (θ∗, s∗y)
else

(θ(s), s(s)y ) = (θ(s−1), s(s−1)y )

end if
end for

compact support. This means that in the ABC framework the acceptance probability
can be equal to 0. In particular, it is equal to 0 whenever the distance between simu-
lated and observed data exceeds the threshold. This leads to an implicit rejection step
based on the comparison between the simulated and the observed data.

3.3 sample degeneracy in ABC

As already pointed out, in the ABC framework the sample degeneracy problem be-
comes more serious. In fact, all the described sampling schemes involve an implicit
rejection step relying on kernel functions defined on a compact support to approxi-
mate the likelihood.

Remark 2 (Likelihood approximation) Recalling that the ABC approximate likelihood is
defined as

L̃(θ; sx) =
∫
S

p(sy|θ)Kε(d(sy, sx) )dsy, (69)

we note that its evaluation involves the computation of an integral on the space of the sum-
mary statistics. Replacing that integral with a random estimate corresponds to adopt the same
strategy as in Section 2.2.3.1. The main difference is that in the ABC framework we are able
to get samples from the true likelihood p(·|θ) by means of a simulator. This fact can be ex-
ploited to derive a MC estimate for such integral by sampling from p(·|θ) and computing the
following average:

1

M

M∑
i=1

Kε(d(s
(i)
y , sx) 6 ε).

This is the estimate of the likelihood function involved in the marginal samplers. It can
be proved that the more efficient choice is M = 1 [13], thus ABC algorithms are usually
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implemented resorting to a crude MC estimate. However, this choice implies that all the
ABC algorithms implicitly involve a rejection step based on the comparison between a single
pseudo-dataset and the observed data.

The consequences of sample degeneracy in ABC methods are discussed in the next
part of this thesis in which we propose a novel ABC method based on Large Devia-
tions Theory.
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Part II

I M P R O V I N G A B C V I A L A R G E D E V I AT I O N S T H E O RY

Ab assuetis non fit passio.





4
I N T R O D U C T I O N

In the literature, a variety of ABC methods have been proposed, see Sisson, Fan, and
Beaumont [140, Ch. 4], and for recent reviews [68, 83]. In the vast majority of these
methods, the approximate likelihood function takes positive values only when the
distance between the simulated and the observed data is lower than a predefined
threshold. In other words, most ABC schemes involve — implicitly or explicitly —
a rejection step, which often leads to discarding a very large number of proposals.
This results in a waste of computational resources and/or in an inadequate sample
size, that is, in sample degeneracy. Sample degeneracy may also cause serious distor-
tions in the form of the approximate posterior distribution. Indeed, accepting poor
parameter proposals, i.e., those producing simulated data very rarely resembling the
observed data, is a rare event. In the lack of accepted values, the posterior probability
of such proposals will be approximated just as zero, in turn resulting in a distortion
in the tails. This may be especially problematic for posterior distributions with long
tails.

Our idea is to mitigate the problem of sample degeneracy by improving the ap-
proximation of the likelihood function. In particular, we speculate that taking into
account the positive, however small, probability of rare events, i.e., poor proposals
leading to simulated data resembling the observed data, allows avoiding the rejection
step altogether; we instead weight all parameter proposals. To this end, we resort to
Large Deviations Theory (LDT). Our aim is to show how LDT provides a convenient
way to define an approximate likelihood, as well as guarantees of its convergence
to the true likelihood as the size of the pseudo-dataset goes to infinity. In order to
make the incorporation of LDT into ABC as smooth as possible, we rely on one of
the less general formulations of Sanov’s theorem and on its extension to finite state
Markov chains. Accordingly, we only consider models for discrete random variables
which, despite their apparent simplicity, will be shown to be of interest in several
applications of ABC. This allows adopting a straightforward information theoretic
formulation of LDT known as the Method of Types [27, 31]. Here, a type is basically
an empirical distribution and, as an additional benefit of this approach, is a natural
candidate for the summary statistics.

4.1 related work

Generally speaking, inefficiency in ABC originates from the low probability of ac-
cepting certain parameter proposals. Thus, getting a proper sample size may require
considerable computational effort. In the literature, there have been many proposals
aimed at improving the computational efficiency of basic ABC. Prangle [111] pro-
posed Lazy ABC, which saves computing time by abandoning simulations likely to
lead to a poor match between the simulated and the observed data. To this end, at
each iteration, the simulation is given up with a probability depending on its accep-
tance and on the expected required time for its completion.
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Unlike our method, Lazy ABC does not avoid rejection, but rather accelerates the
process leading to discarding a proposal.

Another way to improve computational efficiency is to consider proposal distri-
butions closer to the posterior on the parameter space, employing sophisticated
sampling methods, such as MCMC [93], Population Monte Carlo [7] and Sequen-
tial Monte Carlo [37]. In the same vein, Chiachio et al. [24] proposed a sequential
way of achieving computational efficiency by overcoming the difficulties in getting
samples resembling the observed data. This was the first attempt to improve the ac-
ceptance rate by adopting a rare-event approach. In particular, in [24], they combined
the ABC scheme with a rare-event sampler that draws conditional samples from a
nested sequence of subdomains. However, even this method cannot completely avoid
rejections, and only partially mitigates the sample degeneracy problem.

In order to tackle the problem more systematically, clever proposal distributions
should be combined with better approximations to the likelihood. Accordingly, Pran-
gle [112] also resorted to a sequential approach, but explicitly considering a likeli-
hood estimate that takes into account the probability of rare events. As a comparison,
our method evaluates the probabilities of rare events are based on theoretical re-
sults (LDT), rather than on MC estimates of tail probabilities. Moreover, they focus
on continuous data by showing that extensions to discrete data can be challenging
and require application-specific solutions; in contrast the Method of Types provides
a natural way of dealing with discrete random variables by summarizing data via
empirical distributions, thus avoiding the common practice of summarizing data by
selecting ad hoc summary statistics.

Other methods have been proposed avoiding the selection of summary statistics
and relying on empirical distributions. In particular, Park et al. [108] rely on the max-
imum mean discrepancy between the embeddings of the simulated and the observed
empirical distributions. They avoid rejection by weighting each parameter proposal
by means of a kernel function defined on a non-compact support. Other interesting
methods involve the Wasserstein distance [8] or the Kullback–Leibler divergence [65]
as measure of discrepacy between the observed and the simulated data. In particular,
Jiang [65] approximates the likelihood by means of an estimator of the Kullback–
Leibler divergence between the unknown distribution of the data given the true pa-
rameter, and given the parameter sampled at the current iteration. Exploiting the fact
that the maximum likelihood estimator is the one minimizing that Kullback–Leibler
divergence, they prove that their approximate posterior distribution converges to a
restriction of the prior distribution on the region in which the above mentioned di-
vergence is smaller than a predefined threshold. Even though most of the above men-
tioned methods apply to continuous data, we note that ABC applications to discrete
data appear frequently in population genetics, epidemiology, ecology and system bi-
ology (see [5] for an overview of the applications of ABC in these fields). In particular,
in population genetics, discrete (possibly i.i.d.) data representing the genotyping at
a few loci of different (unrelated) individuals have often been summarized through
their empirical distributions (see [17, 93] among others).

A very different way of bypassing the selection of summary statistics relies on the
random forest method [121]. Here, regression random forests are trained by using
a training-set composed of a large number of parameter proposals and pseudo-data
sampled from the prior distribution and the generative model, respectively. Since all
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the summary statistics are involved as covariates, summary selection is avoided. The
output of the algorithm is the predicted expected value of an arbitrary function of
interest on the parameter space, conditional on the observed data.

Going beyond ABC, other methods addressing the intractability of the likelihood
are the quasi-likelihood approximation [18], the Bayesian computation via empirical
likelihood [96] and the Bayesian synthetic likelihood [115], aimed at reducing the
number of simulations from the generative model [140, Ch 12]. The Bayesian empir-
ical likelihood approach is based on the maximization of a likelihood built empiri-
cally under constraints on the moments. The quasi-likelihood approximation and the
Bayesian synthetic likelihood can be considered as direct competitors of ABC, being
simulator-based methods. As the empirical Likelihood approach, the quasi-likelihood
approximation replaces the true likelihood with an estimate based on unbiased esti-
mating functions, however here such a function is derived via simulations from the
generative model as in the Bayesian synthetic likelihood approach. This latter derives
a parametric approximated likelihood function from a normal density estimate for
the summary statistics, with plug-in mean and covariance matrix obtained byMC
simulations from the model. Thanks to the parametric approximation, this algorithm
scales better as the dimension of summary statistics increases. However, it is still in-
herently dependent on the number of simulations required by the plugged-in mean
and variance estimates. As involving a parametric auxiliary model, Bayesian synthetic
likelihood is a member of the so called parametric Bayesian Indirect Likelihood (pBIL)
class of methods [44]. ABC can instead be viewed as a member of the nonparametric
Bayesian Indirect Likelihood (npBIL) class of methods.

Referring to the classification outlined in [44], our method can be placed in the class
of nonparametric Bayesian Indirect Likelihood methods as well. In particular, it can
be considered belonging to the class denoted as "npdBIL", being the non-parametric
auxiliary model applied to the full dataset instead of summary statistics.

structure of part ii This part of the thesis is structured as follows. In Chapter
5 we introduce our method restricting our attention to i.i.d discrete data. In particular,
in Section 5.1 we introduce LDT in the i.i.d. case by adopting the Method of Types.
In Section 5.2 we show how LDT allows poor parameters proposals to contribute to
the representation of the approximate posterior distribution. For the sake of an easy
introduction, we firstly consider the case of a basic R-ABC, then we give two LD-ABC
algorithms in Section 5.3. In Section 5.4 we give some details on the resolution of a
practical computational difficulty and in Section 5.5 we illustrate the results obtained
from several toy examples.

In Chapter 6 we extend the theory developed in the i.i.d case to finite state Markov
chains. In Section 6.1 we introduce the notation and some preliminary concepts nec-
essary for the extension of the Method of Types to finite state Markov chains, which
is introduced in Section 6.2. The LD-ABC algorithms for Markov chains are given in
Section 6.3 and tested at work in Section 6.4.
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5
I M P R O V I N G A B C V I A S A N O V ’ S T H E O R E M

In the ABC sampling schemes described in Chapter 3, at each iteration s, the indicator
function represents a crude estimate for the ABC approximate likelihood based on
the estimate of the acceptance probability (see Remark 2). A possible approach to
mitigate sample degeneracy is to provide a finer estimate for the ABC likelihood by
evaluating that probability. In order to deal with rare events, we resort to LDT, which
studies the exponential decay of the probabilities of such events. In particular, in this
chapter we consider i.i.d. data and rely on one of the major results in LDT: Sanov’s
Theorem.

We speculate that taking into account the positive probability of large deviations
events allows one to avoid rejection at all. This might provide a higher ESS, thus
making the algorithm more efficient.

set up and notation For the sake of a smooth introduction of LDT into ABC
from now on we will confine our attention to discrete random variables, and adopt
an information theoretic point of view based on the Method of Types [27, 31]. In
particular, we will assume that X = {r1, ..., r|X|} is a finite, nonempty set. Moreover,

F
4
= {P(·|θ) : θ ∈ Θ} is a family of probability mass function (pmf) on X, where each

P(·|θ) = Pθ has full support: supp(P(·|θ)) 4= {r : P(r|θ) > 0} = X for each θ ∈ Θ.
We will let Xn = {Xi}

n
i=1, Ym = {Yi}

m
i=1 and so on denote sequences of i.i.d. random

variables, distributed according to an (intractable) probability distribution Pθ ∈ F.
Note also that log(·) will denote the logarithm to base 2.

5.1 large deviations theory via method of types

The Method of Types was fully developed by Csiszár and Körner [32], who derived
the main theorems of information theory from this viewpoint. Key applications range
from hypothesis testing to LDT. This powerful tool moves the focus from a sequence
of observation, say xn, to its empirical distribution, the type.

More formally the type is defined as follows.

Definition 1 (Type) Let xn = (x1, ..., xn) ∈ Xn. The type of xn, written Txn , is the
probability distribution on X defined by

Txn(r)
4
=

|{i : xi = r}|

n
∀r ∈ X. (70)

We let Tn denote the set of n-types, that is types with denominator n.

Note that the superscript n keeps track of the length of the sequence, which is also
the denominator of the type. As is apparent, the type is a function summarizing the
information included in the observed sequence xn by mapping the n-dimensional
observed sequence onto a |X|-dimensional summary statistic.
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The following quantities play a crucial role in the Method of Types. Below, we

stipulate that 0 · log 0r
4
= 0 and that r · log r0

4
= +∞ if r > 0. Given two probability

distributions on X, P and Q, we consider:

• the entropy of P, defined as

H(P)
4
= −

∑
r∈X

P(r) logP(r) ;

• the Kullback–Leibler divergence between P and Q, defined as

D(P||Q)
4
=
∑
r∈X

P(r) log
P(r)

Q(r)
.

With an abuse of notation, whenever the first argument of D(·||Q) is a set of
probability distributions, say E, D(E||Q) stands for infP∈ED(P||Q). When P∗ =

argminP∈ED(P||Q) exists, it is called the information projection of Q onto E.
Let Xn = {Xi}

n
i=1 be a sequence of i.i.d. random variables, distributed according to

Pθ
4
= P(·|θ), for some θ ∈ Θ. In what follows, we let Pr(·|θ) be the probability measure

on sequences induced by Pθ. The joint probability of n i.i.d. extractions xn from Pθ,
according to Proposition 5 can be written as :

Pr(Xn = xn|θ) = 2n
(
−D(Txn ||Pθ)−H(Txn)

)
. (71)

From the Neyman–Fisher theorem [30, Ch. 2.2] follows that types are always suffi-
cient statistics for θ, whatever Pθ.

Remark 3 (Types and ABC) While the number of sequences of length n is exponential in
n, it is easy to show that the cardinality of the set of types with denominator n, Tn, is poly-
nomial in n; in fact, |Tn| 6 (n+ 1)|X|, see [27, Ch.11]. From an ABC perspective, it follows
that using types as a summary statistics could mitigate the computational problems related to
the comparison between the observed dataset and the pseudo-data, especially for large n. Fur-
thermore, summarizing data through their empirical distributions is a way of overcoming the
difficulties in finding sufficient statistics when Pθ is unknown (and Pr(·|θ) as well). Indeed,
even when confined to discrete random variables, P(·| θ) is an unknown model, not necessarily
a Multinomial model, see Section 8.6 for examples. With no knowledge of the analytical form
of the likelihood, finding sufficient summary statistics for θ, the vector of parameters given
as an input to the simulator, is a central issue. In the literature there are several examples
of models for conditionally independent discrete data in which the likelihood is analytically
intractable and the required ABC method concerns empirical distributions. Examples are the
ABC methods proposed in [66] and [17] to make inference on the mutation and selection pa-
rameters governing the Fisher–Wright model [49]. There, despite the conditional independence
and the discreteness of the observations, the likelihood function is difficult to evaluate since the
normalizing constant depends on the parameters: for small values of the selection parameter,
numerical solutions have been found by Genz and Joice [57], in other cases, likelihood-free
methods are required.
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Noting from (71) that the probability of the observed sequence decreases exponen-
tially at a rate given by the Kullback–Leibler divergence between Txn and Pθ, we can
say (informally) that a sequence xn is typical if D(Txn ||Pθ) < δ for some small δ > 0.

The Law of Large Numbers states that as the length of a typical sequence goes to
infinity, its type converges in probability to Pθ. A proof is reported in Appendix 5.

Theorem 5 (Law of Large Numbers) Let Xn = {Xi}
n
i=1 be a sequence of i.i.d random

variables with Xi ∼ Pθ. Then for each δ > 0

Pr(D(TXn ||Pθ) 6 δ|θ) > 1− 2
−n(δ−|X|

log(n+1)
n ).

Moreover,under Pr(·|θ), as n→∞, D(TXn ||Pθ)→ 0 with probability 1.

On the other hand, observing a sequence whose type is far from Pθ, called a non-
typical sequence, is a rare event, and its probability obeys a fundamental result in
LDT, Sanov’s theorem; see [27, Th.11.4.1].

Theorem 6 (Sanov’s Theorem) Let {Xi}ni=1 be i.i.d. random variables on X such that each
Xi ∼ Pθ. Let ∆|X|−1 be the simplex of probability distributions over X and let E ⊆ ∆|X|−1.
Then

Pr
(
TXn ∈ E | θ

)
6 (n+ 1)|X|2−nD(P∗||Pθ), (72)

where P∗ = argmin
P∈E

D(P||Pθ) is the information projection of Pθ onto E. Furthermore, if E is

the closure of its interior,

lim
n→∞ 1n log Pr(TXn ∈ E | θ) = −D(E||Pθ) = −D(P∗||Pθ).

Suppose that E is composed of types of non-typical sequence. Then Sanov’s theo-
rem characterizes the exponential decrease rate of the probability of E. Taking into
account this probability may provide a finer ABC approximation for the likelihood,
as discussed in the next section.

5.2 large deviations theory in ABC

In this section we provide a formal explanation of what is meant by "poor" parame-
ter proposals and how they can contribute to the representation of the approximate
posterior distribution by means of LDT. Suppose for simplicity that we are interested
in obtaining an approximation of the posterior distribution, π̃(θ|xn), via R-ABC or an
equivalent IS-ABC (see Section 3.2.3) by assuming as given: a) the marginal impor-
tance density q(θ) to be the prior distribution on Θ; b) ε > 0 as a threshold; c) types
as summary statistics; d) the Kullback–Leibler divergence as distance function. For
the sake of simplicity, from now on we will also assume Txn to be full support.

Given a budget of S iterations, both R-ABC and IS-ABC generate a sequence of
pairs (T

(s)
ym , θ(s)) with s ∈ {1, ...,S}. Each T (s)ym is an m-type resulting from a sequence

of i.i.d. random variables, Ym = {Yj}
m
j=1, distributed according to P

(
· | θ(s)

)
. We stress

that the length of the simulated sequence, m, need not be equal to n, the length of
the observed data sequence. Note also that, because of the independence assumption,
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choosing m = M · n with M ∈ N means that the algorithm simulates M pseudo-
datasets at each iteration like a marginal sampler.

Looking at Algorithm 8 and 10, being the whole pair (θ(s), T (s)ym) accepted or re-
jected, one can define the joint acceptance region for these algorithms on the space
Θ× Tm. However, being the acceptance rule based only on the simulated type, re-
gardless of the proposed parameter value, the acceptance region can be projected
onto the probability simplex ∆|X|−1 ⊃ Tm.

Definition 2 (Acceptance region) Let ∆|X|−1 be the simplex of probability distributions
over X and let Txn be the type of the observed sequence xn. The acceptance region Bε(Txn),
referred to as Bε for short, is defined for any ε > 0, as

Bε
4
=
{
P ∈ ∆|X|−1 : D(P||Txn) 6 ε

}
Now we can define a "poor" parameter proposal as a parameter θ(s) such that

Txn and the other types in the acceptance region are types of non-typical sequences
w.r.t. P(· | θ(s)). Accordingly, sampling a "poor" parameter means that there is a large
divergence between Txn and P(·|θ(s)). On the other hand, with m large enough, T (s)ym
is very likely to be close to P(·|θ(s)), due to the Law of Large Numbers. Heuristically,
this implies that the probability of simulating a sequence ym whose type is in the
acceptance region is very small. Recalling that in R-ABC and in IS-ABC a crude
Monte Carlo estimate of the probability Pr(TYm ∈ Bε| θ

(s)) is given by the indicator
function 1{D(T

(s)
ym ||Txn) 6 ε}, the vast majority of the "poor" parameter proposals are

discarded altogether. Thus the posterior probability of “poor” parameters values is
approximated as zero, even when the true posterior probability is strictly positive.
We propose to mitigate this problem by assigning strictly positive weights to each
proposal θ(s), even if T (s)ym is outside the acceptance region. To this end, we want
to replace the indicator function with a finer estimate of the probability Pr(TYm ∈
Bε| θ

(s)).
In principle, Sanov’s theorem implies that, for m large enough, that probability can

be approximated at each iteration by

Pr
(
TYm ∈ Bε | θ

(s)
)
≈ 2−mD(Bε||Pθ(s)). (73)

By substituting this probability to the indicator function in (58), the approximated
posterior becomes

π̃(θ, Tym |Txn) ∝ π(θ)P(Tym |θ)2−mD(Bε||Pθ) . (74)

Unfortunately, the computation of the probability in (73) is still not feasible when the
model F = {Pθ : θ ∈ Θ} is unknown, as we do not know how to compute D(Bε||Pθ(s)).
The following theorem provides an asymptotic approximation to circumvent the prob-
lem. A proof is provided in Appendix D.1

Theorem 7 Let Ym = {Yj}
m
j=1 be a sequence of i.i.d. random variables taking values on the

finite set X = {r1, ..., r|X|}, with each Yj ∼ Pθ. Then under the measure Pr(·|θ)

lim
m→∞D(Bε||TYm) = D(Bε||Pθ) a.s. (75)
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In essence, this result says that, as m increases and the type Tym converges to the
distribution Pθ that has generated ym, the information projection of Tym onto Bε
converges to that of Pθ onto Bε (see Figure 2). From (73) and Theorem 7, for m large
enough, 2−mD(Bε||Tym) provides a feasible asymptotic estimate for the acceptance
probability, Pr(TYm ∈ Bε | θ). Replacing the indicator function in the ABC approxi-
mate posterior (58) with this estimate, we obtain the following new joint approximate
posterior distribution:

π̃(θ, Tym |Txn) ∝ π(θ)P(Tym | θ)2−mD(Bε||Tym). (76)

Tym

Txn ε Pθ

Figure 2: Acceptance region, Bε, types, Txn and Tym , and the probability distribution Pθ that
generated ym. Asymptotically (as m → ∞) Tym converges to Pθ and the distance
D(Bε||Tym) (red) converges to D(Bε||Pθ) (green).

5.3 large deviations approximate bayesian computation (LD-ABC)

The discussion in the previous section indicates that ABC methods can be improved
by resorting to a better approximation for the likelihood. In particular, the (implicit)
rejection step can be avoided by evaluating the positive probability of rare events via
Sanov’s theorem. Indeed, an easy way of sampling from (76) is a Large Deviations
version of the ABC algorithms, which is what we will call Large Deviations Approximate
Bayesian Computation (LD-ABC).

Here, we consider two different sampling schemes:

• an Importance Sampling LD-ABC;

• a Metropolis-Hastings LD-ABC.

In both the algorithms, the involved sufficient summary statistics are the types, the
distance function is the Kullback–Leibler divergence and the kernel density function
is defined by

Kε,m
(
Tym

)
=

1 if D(Tym ||Txn) 6 ε

2−mD(Bε||Tym) if D(Tym ||Txn) > ε.
(77)

The output of the LD-ABC algorithms is a sample from the following approximate
joint posterior distribution:

π̃(θ, Tym |Txn) ∝ π(θ)Kε,m
(
Tym

)
Pθ(Tym) (78)
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which, by marginalizing out simulated types, becomes

π̃(θ|Txn) ∝ π(θ)
∑

Tym∈Tm
Kε,m

(
Tym

)
Pθ(Tym) (79)

where Tm denotes the set of the m-types, i.e., types with denominator m. Hence, the
likelihood approximated by LD-ABC is

L̃ε,m(θ; Txn)
4
=
∑

Tym∈Tm
Kε,m

(
Tym

)
Pθ(Tym) . (80)

Note that the quality of the approximation depends both on the threshold ε and on
the size of the pseudo-dataset, m. More precisely, the adjustment w.r.t. the likelihood

approximate by R-ABC1, here denoted L̃Rε,m(θ; Txn)
4
=
∑

Tym∈Bε
Pθ(Tym), depends on m

and ε. In fact, from (77) and Definition 2, the approximate likelihood in (80) can be
written as

L̃ε,m(θ; Txn) =
∑

Tym∈Bε

Pθ(Tym) +
∑

Tym∈Bcε

2−mD(Bε||Tym)Pθ(Tym)

=L̃Rε,m(θ; Txn) +αε,m(θ)

where the term 0 6 αε,m(θ) 6 1 is the adjustment. The following lemma gives an
upper bound for that adjustment αε,m(θ), in two cases depending on Pθ.

Proposition 1 (The adjustment upper bound) Let αε,m(θ) = L̃ε,m(θ; Txn) −

L̃Rε,m(θ;Bε) be the difference between the two likelihood functions approximated by
LD-ABC and R-ABC. Let Bε be the ABC acceptance region and B̊ε its interior. We have
the following upper bounds, depending on θ, which hold for all m > 1.

(a) Pθ ∈ B̊ε. Then D(Bcε||Pθ) > 0 and αε,m(θ) 6 (m+ 1)|X|2−mD(Bcε||Pθ);

(b) Pθ ∈ Bcε. Let γ 4= D(Bε||Pθ) > 0. Then there exists 0 < δ < γ s.t. αε,m(θ) 6
(m+ 1)|X|2−mδ.

Proof Let us consider the two cases separately, Pθ ∈ B̊ε = {P ∈ ∆|X|−1 : D(P||Txn) <

ε} and Pθ ∈ Bcε = {P ∈ ∆|X|−1 : D(P||Txn) > ε}.

• Pθ ∈ B̊ε.

αε,m 6
∑

Tym∈Bcε

Pθ(Tym) 6 (m+ 1)|X|2−mD(Bcε||Pθ)

where the last inequality follows from a direct application of Sanov’s Theorem.

• Pθ ∈ Bcε. Choose any 0 < γ ′ < γ
4
= D(Bcε||Txn) (note that γ > 0) and apply

Lemma D.1.1 with E = Bε andQ = Pθ to obtain δ > 0 such thatD(Bε||Q
′) > γ ′

1 Here we refer to an R-ABC involving types as summary statistics, the Kullback–Leibler divergence as
distance function and the same tuning parameters, m and ε, as in the corresponding LD-ABC.
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for each Q ′ ∈ Bδ(Pθ). We can assume without loss of generality that δ 6 γ ′. It
follows that

αε,m =
∑

Tym∈Bcε

2−mD(Bε||Tym)Pθ(Tym)

=
∑

Tym∈Bcε∩Bcδ

2−mD(Bε||Tym)Pθ(Tym)+
∑

Tym∈Bδ

2−mD(Bε||Tym)Pθ(Tym)

6
∑

Tym∈Bcε∩Bcδ

Pθ(Tym) +
∑

Tym∈Bδ

2−mD(Bε||Tym)

6
∑

Tym∈Bcε∩Bcδ

2−mD(Tym ||Pθ) +
∑

Tym∈Bδ

2−mD(Bε||Tym) (81)

6
∑

Tym∈Bcε∩Bcδ

2−mδ +
∑

Tym∈Bδ

2−mγ
′

6
∑

Tym∈Bcε

2−mδ

6 (m+ 1)|X|2−mδ

where (81) follows from (71) and the last step follows from an upper bound for
the size of Tm (see [27, Ch. 11, Th. 11.1.1]).

�

5.3.1 Importance Sampling LD-ABC

Starting from the definition of an acceptance region satisfying the hypothesis of
Sanov’s theorem , as in Definition 2, a sample from the approximated posterior dis-
tribution π̃(θ, Tym |Txn) can be obtained as illustrated in Algorithm 12.

Algorithm 12 LD-ABC Importance Sampling

for s = 1, ...,S do
Draw θ(s) ∼ q(·)
Generate Ym = {Yj}

m
j=1 with Yj ∼ P(·|θ(s)) from the simulator

if D(T
(s)
ym ||Txn) 6 ε then

Set the IS weight for (θ(s), T (s)ym) to ωs =
π(θ(s))

q(θ(s))
else

Set the IS weights for (θ(s), T (s)ym) to

ωs = 2
−mD(Bε||T

(s)
ym

)π(θ
(s))

q(θ(s))

end if
end for
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Looking at Algorithm 12, it is apparent that this LD-ABC algorithm is a specializa-
tion of the more general IS-ABC. In fact, it relies on an instrumental distribution of
the form

q(θ, Tym) = q(θ)P(Tym |θ)

and returns a weighted sample with the following importance weights:

π(θ(s))P(T
(s)
ym |θ

(s))Kε,m
(
T
(s)
ym
)

q(θ(s))P(T
(s)
ym |θ

(s))
=
π(θ(s))Kε,m

(
T
(s)
ym
)

q(θ(s))
. (82)

However, in contrast with IS-ABC, at each iteration s, is assigned a positive weight to
the proposed θ(s) since the weight equals the value 0 only when D(Bε||Tym) =∞.

From Proposition 1 it follows that, as m goes to infinity, αε,m(θ) → 0 for almost
all θ ∈ Θ. Therefore, the approximate likelihood from LD-ABC Importance Sampling
achieves the approximate likelihood from R-ABC and preserves its asymptotic prop-
erties. Moreover, we speculate that LD-ABC Importance Sampling improves the effi-
ciency of the standard IS-ABC by mitigating the sample degeneracy. An evaluation
of the ESS in (25) might be a way of appreciating the improved induced by avoiding
the implicit rejection.

Recalling that

ÊSS =

(
S∑
s=1

ωs

)2
S∑
s=1

ω2s

(with the proviso that ÊSS
4
= 0 if all ωs’s are zero). Let ÊSSIS and ÊSSLD be, respec-

tively, the ESS achieved by S iterations of IS-ABC and LD-ABC by setting the same
tuning parameters, distance function and importance density q(θ). Explicitly, let us
assume that the kernel function for IS-ABC is 1 within the acceptance region Bε and
0 outside. Heuristically, adding positive weights increases the numerator more than
the denominator in (25), suggesting that a non null weight assigned by LD-ABC to
a parameter proposal rejected by IS-ABC is enough to have ÊSSLD > ÊSSIS. This is
confirmed by the following simple result, whose proof is given in Appendix D.1.

Proposition 2 (Empirical ESS) It holds that ÊSSLD > ÊSSIS. Moreover this inequality is
strict, provided that in at least one iteration of the algorithm is generated a full support Tym
falling outside Bε is generated.

A tedious but straightforward analysis shows in fact that the event mentioned in
the statement, upon which strict inequality holds, occurs with probability 1 as S −→
+∞. The above result will be empirically validated in the experiments of Section 5.5,
thus providing further evidence that LD-ABC achieves an improvement in terms of
efficiency.

Below, we sum up the technical development so far with a discussion on the role
of the parameters m and ε.

Remark 4 (On the role of the tuning parameters) Concerning the role of m and ε, we
can sum up the content of Propositions 1 and 2 as follows:
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1. large m and small ε point to low ÊSS and low αε,m;

2. small m and large ε point to high ÊSS and high αε,m.

If one regards ÊSS as a measure of efficiency, and αε,m as a measure of (lack of) accuracy
w.r.t. the R-ABC likelihood (but see also below), 1 and 2 above indicate how to trade off one
for the other.

In particular, as Theorem 7 requires a relatively large m in order to get a good approxi-
mation for the posterior probability, 1 above says we can increase the tolerance ε to mitigate
the resulting inefficiency. On the other hand, in cases where a small tolerance parameter ε is
required, 2 above offers room to mitigate the resulting inefficiency, by decreasing m.

Note, however, that when considering accuracy w.r.t. the target posterior density π(θ|Txn),
the adjustment αε,m cannot simply be regarded as a measure of imprecision: rather, it rep-
resents a compensation for those θ’s that would be assigned a too low probability by pure
R-ABC. In this case, as sounder measure of precision can be obtained by directly comparing
a kernel-estimated density (obtained with LD-ABC weights) and the target posterior density,
e.g., in terms of the mean integrated squared error (MISE). This measure is, however, im-
possible to evaluate analytically, since its calculation presupposes the knowledge of the target
posterior density. From a more empirical point of view, further discussion of the consequences
of different choices of ε and m on the performance of the posterior estimators is presented in
Section 5.5, illustrated by a number of examples.

5.3.2 Metropolis-Hastings LD-ABC

The Metropolis-Hastings sampling scheme represents an alternative for sampling
from the approximate joint posterior distribution, π̃(θ, Tym |Txn). Algorithm 13 is a
LD version of the MCMC-ABC described in Section 3.2.4.

Algorithm 13 LD-ABC Metropolis-Hastings

Initialize θ(0) and y(0)

for s = 1, ...,S do
Draw θ∗ ∼ q̃

(
θ(s−1), ·

)
Generate Ym∗ and compute T∗ym

Compute α = min
{
1,

π(θ∗)Kε,m(T∗ym)q̃
(
θ∗, θ(s−1)

)
π(θ(s−1))Kε,m(T

(s−1)
ym )q̃

(
θ(s−1), θ∗

)}
Draw u ∼ Unif[0, 1]
if u < α then

Assign (θ(s), T (s)ym)← (θ∗, T∗ym) with
else

Assign (θ(s), T (s)ym)← (θ(s−1), T (s−1)ym )

end if
end for

The LD-ABC Metropolis-Hastings builds a Markov chain on the joint space Θ
timesTm by getting samples from the following proposal distribution:

q̃
(
(θ, Tym), (t, T))

)
= q̃(θ, t) · Pθ(T),
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where q̃(θ, ·) is the proposal distribution on the parameter space, (θ, Tym) represents
the current state, the (t, T) the proposed state. The resulting Markov chain is charac-
terized by the following transition probability

q((θ, Tym), (t, T)) =q̃((θ, Tym), (t, T))r((θ, Tym), (t, T)) if π̃(t, T |Txn) > π̃(θ, Tym |Txn)

q̃((θ, Tym), (t, T)) otherwise

where

r((θ, Tym), (t, T)) =
π̃(t, T |Txn)q̃((t, T), (θ, Tym))
π̃(θ, Tym |Txn)q̃((θ, Tym), (t, T))

=
π̃(t)P(T |t)Kε,m

(
T)q̃(t, θ)P(Tym |θ)

π̃(θ)P(Tym |θ)Kε,m
(
Tym)q̃(θ, t)P(T |t)

=
π̃(t)Kε,m

(
T)q̃(t, θ)

π̃(θ)Kε,m
(
Tym)q̃(θ, t)

.

Note that the approximated posterior distribution satisfies the Detailed Balance con-
dition:

π̃(θ, Tym |Txn)q((θ, Tym), (t, T))

= π̃(θ, Tym |Txn)q̃((θ, Tym), (t, T))r((θ, Tym), (t, T)) (83)

= π̃(θ, Tym |Txn)q̃((θ, Tym), (t, T))
π̃(t, T |Txn)q̃((t, T), (θ, Tym))
π̃(θ, Tym |Txn)q̃((θ, Tym), (t, T))

= π̃(t, T |Txn)q((t, T), (θ, Tym)). (84)

It is worth noting that in the LD version of the MCMC-ABC the acceptance ratio
r((θ, Tym), (t, T)) assumes strictly positive values and does not lead to implicit rejec-
tions.

5.4 a computational issue : the minimization of the kl-divergence

In the proposed LD-ABC, the minimization of the KL divergence between the ac-
ceptance region and the simulated type poses a computational difficulty. This is a
constrained minimization problem on a space of dimension |X|. As |X| grows, this
problem can rapidly become intractable.

A practical work-around to this problem can be found by considering a suitable
path from Tym to Txn , passing through P∗. In Information Geometry, this path is rep-
resented by a linear interpolation on the logarithmic scale, the exponential geodesic
[104].

Definition 3 (Exponential geodesic) Let P1 and P2 be two probability distributions over
X and let Pξ be the probability distribution such that for each r ∈ X

logPξ(r) = ξ logP1(r) + (1− ξ) logP2(r) + log c

where ξ ∈ [0, 1] and c is a proper normalizing constant. The exponential geodesic between
P1 and P2 is the following set of distributions

γe
(
P1,P2

) 4
= {Pξ : ξ ∈ [0, 1]}. (85)
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Min Mean Max s.d.

0.0052 · 10−14 1.0719 · 10−6 0.0052 5.3075 · 10−7

Table 1: Summaries of the empirical distributions of the relative errors of the approximate
distances.

Our approach when minimizing the KL divergence between Bε(Txn) and Tym is to
focus on a path between the observed and the simulated type, that is the exponential
geodesic γe(Txn , Tym). We search in this path the information projection P∗, or an
approximation of it. This reduces the dimension of the minimization problem from
|X| to 1, that of the parameter ξ. Specifically, let Pξ∗ ∈ Bε(Txn) be the element of
γe(Txn , Ty) defined as

P∗ξ(r)
4
= Txn(r)

ξ∗ · Tym(r)1−ξ
∗
c∗ (r ∈ X)

where ξ∗
4
= argmin
ξ∈[0,1] :Tξ∈Bε

D(Pξ||Tym).

Hence, whatever |X|,D(Bε||Tym) is approximated by means of a minimization with
respect to a single parameter, ξ.

In the experiments described in the next section the minimization procedure is im-
plemented resorting to a Sequential Least Square Programming algorithm (SLSQP)
optimizer available in the scipy.optimize package in Python. The optimizer uses a
slightly modified version of Lawson and Hanson’s nonlinear least-squares solver [77].
We have empirically verified that D(Pξ∗ ||Tym) approximates with very good accuracy
D(Bε||Tym). Table 1 summarizes the distribution of the distances approximation rela-
tive errors w.r.t. the true distance, over the S = 100, 000 simulations in the experiment
in Section 5.5.2, with m = 500 and ε = 0.005.

5.5 experiments

In order to evaluate the performance of the proposed method, we have put a proof-
of-concept implementation of LD-ABC at work on two examples. We compare the
results obtained from LD-ABC algorithms with those obtained from standard R-ABC
and MCMC-ABC. To isolate the improvement introduced by LDT, we compare the
standard algorithms with their LD counterpart by using the same tolerance thresh-
old,the same summary statistic (the type), a kernel function assuming value 1 in the
acceptance region (uniform kernel), the same proposal or importance distributions.
Recall that by setting the importance distribution equal to the prior the Importance
Sampling LD-ABC in Algorithm 12 represents the LD counterpart of the R-ABC in
Algorithm 8. For both the examples, there is a closed form or a MCMC method for
sampling from the exact posterior distribution, and the resulting posterior inference
is taken as a reference for comparison. Recalling that our aim is to mitigate sample
degeneracy and the resulting bias in the approximation of the posterior density in
tail area, the comparison is mainly based on the evaluation of the ESS and of the
MISE. We also consider the performance in terms of point estimators by computing
the mean squared error (MSE).
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Table 2: Squared errors, integrated squared errors and ESS averaged over 100 reruns, with
ε = 0.01, m = 100.

Algorithm M̂SE M̂ISE ÊSS

R-ABC 0.0002 0.6399 1, 282

LD-IS-ABC ≈ 0 0.0153 3, 051

MCMC-ABC 0.0002 0.6922 684

LD-MCMC-ABC≈ 0 0.0203 1, 750

5.5.1 Example 1: Binomial distribution.

Let x20 be a sample from i.i.d. Bernoulli random variables with parameter θ. Suppose
that x20 has empirical distribution Txn = [0.3, 0.7]. Assuming a uniform prior distribu-
tion for θ, the posterior distribution, π(θ|x20), is a Beta distribution with parameters
α = 15 and β = 7.

We ran S = 10, 000 iterations of IS-ABC with the proposal distribution equal to
the prior and with both the uniform kernel and the proposed LD kernel. Note that
in the first case the algorithm corresponds to the R-ABC and the only difference
between R-ABC and its LD counterpart is the value assumed by the kernel function
outside the acceptance region (inside both the kernels are uniform, see (77)). We
also implemented the MCMC-ABC sampling scheme. For the sake of readability, we
adopt the abbreviation LD, standing for Large Deviations, when is employed the
kernel function is (77).

Since our speculation is that the evaluation of the probability of rare events pro-
vides a better approximation in the tail areas, we are interested in a comparison
among the shapes of the approximate posterior distributions. Accordingly, besides
the posterior mean of θ, we also approximate the posterior densities by means of a
Gaussian kernel density estimation.

Figure 3 shows the posterior distributions and cumulative density functions (cdf)
approximated by each algorithm. As it is apparent, the LD algorithms (blue lines)
approximate better the true posterior (dashed grey line). Looking at the cdf’s, we can
see that using the standard algorithms (red lines) provide a worse approximation in
the tail areas. Figure 4 shows also the 99% credible intervals for the estimated cdf’s.
Note that the estimates of the cdf achieved by standard R-ABC and MCMC-ABC are
more variable then the estimate got via LD-ABC and LD-MCMC-ABC.

We can evaluate the point estimates of the posterior mean and the estimate of the
posterior densities through MSE and the MISE. We also consider ESS as a measure
of the degree of sample degeneracy. In Table 2 we report the estimated mean squared
errors (M̂SE), the estimated mean integrated squared errors (M̂ISE), and estimated
effective sample size (ÊSS) computed by averaging the squared errors, the integrated
squared errors and the ESS over 100 reruns of each algorithm. We can see that the
proposed method outperforms the standard methods. Even though the quality of the
point estimations is almost the same, the proposed kernel function leads to a clear
improvement in terms of density estimation and ESS.
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Figure 3: Posterior distributions (LHS) and posterior cumulative density functions (RHS) pro-
vided employing IS and MCMC schemes with the uniform kernel (red lines) and
with the LD kernel (blue lines).

Figure 4: Posterior cumulative density functions with 99% credible intervals derived from 100

reruns of IS (RHS) and MCMC algorithms (LHS) with the uniform kernel (red) and
the LD kernel (blue).

To evaluate the improvement induced by the LD kernel in the mixing of the chain
induced by MCMC-ABC, we consider the distributions of the sojourn time. The so-
journ time is defined by the number of consecutive iterations at which the sampled
parameter remains above (or under) a given threshold [139]. When a MCMC sampler
gets stuck in regions of low posterior density, the chain exhibits longer sojourn times
above (or under) the threshold. In Figure 5, we can see that the LD-MCMC-ABC pro-
vides distributions of the sojourn time more concentrated around small values then
MCMC-ABC, for each of the four considered threshold (0.55, 0.6,0.75 and 0.8). We
can conclude that our method leads also to a better mixing of the chain in regions of
the parameter space characterized by low probability posterior densities.

A possible drawback of the method is represented by the scalability af the algo-
rithms with respect to the cardinality of X. To investigate this feature, we tested both
R-ABC and LD-ABC at work on five sequences of n = 250 random variables dis-
tributed according to a Binomial(θtrue,N) distribution with parameters θtrue = 0.3
and N equal to 3, 4, 5, 6 and 7, respectively. We adapt the threshold ε to each case
by choosing an α-quantile (with α = 0.0005) of the distribution of the distances be-
tween the observed and the simulated types, according to Beaumont et al. [6]. The
resulting values are displayed in Table 3. Here, we exploited the fact that both the
algorithms are embarrassingly parallel, thus running them in parallel on a machine
with 16 vCPU setting S = 100, 000 and m = 500 .

Figure 6 shows the posterior distributions for θ computed from the five datasets.
The black dashed lines represent the true Beta(α,β) posteriors. The quality of the
approximation seems to not be affected by the cardinality of X and the LD algorithm
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Figure 5: Boxplots of the distributions of the sojourn time in the LD-MCMC-ABC and MCMC-
ABC with four different thresholds: 0.55 (top-left), 0.6 (top-right), 0.75 (bottom-left),
0.8 (bottom-right).

Figure 6: Posterior distributions of θ approximated by LD-ABC (blue lines) and R-ABC (red
lines). The black dashed lines represent the true Beta posterior distributions. Each
panel corresponds to a different a value of N (3,4,5,6 and 6).
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Table 3: ÊSS’s, running times and tolerance thresholds for each algorithm and dataset.

Algorithm ÊSS Time ε

N = 3
LD 4, 807 25.06 s 0.0007

R 61 1.38 s

N = 4
LD 4, 448 24.96 0.0002

R 31 1.42 s

N = 5
LD 4, 382 16.67 s 0.0095

R 137 1.40 s

N = 6
LD 2, 763 16.07 s 0.0012

R 48 1.42 s

N = 7
LD 1, 346 12.13 s 0.0062

R 45 1.42 s

always outperforms the standard R-ABC. Regarding the efficiency of the algorithms,
Table 3 displays the ÊSS and the computational times of each experiment. The ÊSS
achieved by LD-ABC decreases asN increases, however it is always much greater than
the one achieved by R-ABC. Note that, in this example the generative model is very
simple and requires only to get samples from a Binomial distribution. Accordingly,
the running time of R-ABC appears short and very stable. Running the LD-ABC
requires a greater computational time to evaluate the importance weights employing
the minimization procedure described in Section 5.4. However, being the ÊSS about
40 times greater, one can choose a smaller number of iterations when is implemented
the LD version (see Section 5.5.3). Finally, we want to emphasize that as N increases
the running time decreases. This is due to the fact that the procedure proposed in
Section 5.4 makes the dimension of the minimization problem independent from
|X|. Accordingly, the computational time depends only on the number of iterations
required by the least-squares solver.

5.5.2 Example 2: Mixture of binomial distributions .

Let Xn = {Xi}
n
i=1 be a sequence of i.i.d, discrete random variables distributed accord-

ing to the following parametric finite mixture model:

λBin(θ1,N = 4) + (1− λ)Bin(θ2,N = 4). (86)

Here we assume a uniform prior distribution on the mixture weight λ and that
(θ1, θ2) are uniformly distributed on the set {(θ1, θ2) : 0 6 θ2 6 θ1 6 1} by imposing
the following identifiability constraint:

θ1 > θ2.
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An analytical computation of the posterior distribution requires the evaluation of
the likelihood

P(xn|λ, θ1, θ2) =
n∏
i=1

(
N

xi

)[
λθxi1 (1− θ1)

N−xi + (1− λ)θxi2 (1− θ2)
N−xi

]
. (87)

The direct computation of (87) is infeasible, even with few hundred observations, as it
involves the expansion of the likelihood into 2n terms. In the literature there are sev-
eral methods to deal with this problem, which allow sampling from the parameters’
posterior distributions, see [91]. A widespread method is a Gibbs Sampling handling
the finite mixtures issue as a missing data problem, see [39]. Samples from the joint
posterior distribution are obtained by means of a hierarchical model involving a vec-
tor of latent random variables, Zn = {Zi}

n
i=1, where each Zi ∼ Bernoulli(1 − λ)

indicates to which component the i-th observation belongs:Xi ∼ Bin(θ1,N) if zi = 0

Xi ∼ Bin(θ2,N) if zi = 1.
(88)

Table 4: Details for the simulation of the data-set and for the Gibbs implementation.

θtrue
1 θtrue

2 λtrue N n

0.9 0.2 0.8 4 100

S Burn-in Thinning

100, 000 50, 000 10

Table 5: Posterior estimates derived via Gibbs Sampling

MCMC posterior estimates

θ1 θ2 λ

Mean 0.8998 0.1556 0.8281

Variance 0.0004 0.0036 0.0018

Here the generative model consists of simulating each of the n values from one
of the two binomials according to the result of a Bernoulli(1− λ) experiment. The
same generative model has been run by a plug-in of the true values of the parame-
ters displayed in Table 4 (LHS) to obtain the observed data. The implemented Gibbs
sampling is illustrated in the Direct Acyclic Graph (DAG) in Figure 7 and displayed
in Algorithm 14. We ran Algorithm 14 as detailed in Table 4 (RHS) and after burn-in
and thinning we got 5, 000 values for each parameter regarded as drawn indepen-
dently from the true posterior distributions. The Posterior means and variances are
displayed in Table 5.

In order to compare LD-ABC performance with that of a R-ABC, the marginal
importance distributions are set to be the prior distributions and types are used as
summary statistics also in R-ABC. We ran R-ABC and LD-ABC with S = 100, 000
and with four different pairs (m, ε). The M̂SE and M̂ISE, are computed by averaging
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Figure 7: DAG representation of the finite mixture of binomials distributions.

Algorithm 14 Gibbs sampling

Require: xn

Initialize p(0) = p
(0)
1 , ...,p(0)n

for s = 1, ...,S do
Draw Z

(s)
i ∼ Ber(p

(s−1)
i ) ∀i ∈ {1, ...,n}

Draw θ
(s)
1 ∼ TruncatedBeta

(
1 +
∑n
i=1 xi1{zi = 0}, 1 +

∑n
i=1(N − xi)1{zi =

0}, θ(s−1)2 , 1
)

Draw θ
(s)
2 ∼ TruncatedBeta

(
1 +
∑n
i=1 xi1{zi = 1}, (1 +

∑n
i=1N − xi)1{zi =

1}, 0, θ(s)1
)

Draw λ(s) ∼ Beta
(
1+n−

n∑
i=1

z
(s)
i , 1+

n∑
i=1

z
(s)
i

)
Compute p(s)i =

(1− λ(s))(θ
(s)
2 )xi(1− θ

(s)
2 )N−xi

(1− λ(s))(θ
(s)
2 )xi(1− θ

(s)
1 )N−xi + λ(s)(θ

(s)
1 )xi(1− θ

(s)
2 )N−xi

end for

over 100 reruns of each ABC algorithm (with S = 100, 000) the squared errors and the
integrated squared errors (w.r.t. the output given by the Gibbs sampler), respectively.
The results are summarized in Table 6.

First, we note that both the M̂SE and the M̂ISE achieved by LD-ABC are always
lower for LD-ABC than for R-ABC. Hence, in our example, taking into account the
probability of large deviation events has improved both the point estimates and the
approximation of the posterior distributions. Moreover, as already pointed out in
Section 5.3.1, LD-ABC mitigates the sample degeneracy by achieving an ÊSS up to
more than five times that achieved by R-ABC (see Table 7).

In order to evaluate the sample degeneracy, Table 7 (RHS) also displays the nor-
malized perplexity, which equals 2H(ω̃)/S, where H(ω̃) denotes the entropy of the
normalized weights. Cappé et al. [19] show that the normalized perplexity repre-
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Figure 8: Posterior distributions corresponding to four different pairs of tuning parameters
(m, ε). Each panel refers to one of the three model parameters. Red lines represent
the posterior density estimates provided via R-ABC. The blue lines represent the
estimates provided via LD-ABC. The dashed black lines are the output of the Gibbs
sampler. The gray dashed lines are the ratios L̃ε,m(θ; Txn)/L̃Rε,m(θ; Txn) providing
a representation of the adjustment αε,m.
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Table 6: Squared errors and integrated squared errors averaged over 100 reruns. Each column
contains results for one of the model parameters both for LD-ABC and R-ABC.

m = 500, ε = 0.005

θ1 θ2 λ

M̂SEmean
LD 0.0121 · 10−4 0.1516 · 10−4 0.1444 · 10−4

R 0.0679 · 10−4 2.4437 · 10−4 0.9420 · 10−4

M̂SEvar
LD 0.0000 · 10−4 0.0012 · 10−4 0.0004 · 10−4

R 0.0006 · 10−4 0.055 · 10−4 0.0135 · 10−4

M̂ISE
LD 0.1445 0.0479 0.0799

R 2.9162 0.8656 1.6831

m = 500, ε = 0.01

θ1 θ2 λ

M̂SEmean
LD 0.015 · 10−4 0.0581 · 10−4 0.0251 · 10−4

R 0.0288 · 10−4 1.6023 · 10−4 0.681 · 10−4

M̂SEvar
LD 0.0000 · 10−4 0.0079 · 10−4 0.0013 · 10−4

R 0.0003 · 10−4 0.0277 · 10−4 0.0065 · 10−4

M̂ISE
LD 0.4662 0.2019 0.2344

R 0.8509 0.2744 0.4634

m = 5 000, ε = 0.005

θ1 θ2 λ

M̂SEmean
LD 0.0189 · 10−4 2.7694 · 10−4 0.9609 · 10−4

R 0.0281 · 10−4 3.8095 · 10−4 1.1787 · 10−4

M̂SEvar
LD 0.0006 · 10−4 0.0639 · 10−4 0.0148 · 10−4

R 0.0009 · 10−4 0.0854 · 10−4 0.0196 · 10−4

M̂ISE
LD 3.2921 1.0344 1.6270

R 7.3482 2.3676 3.4212

m = 5 000, ε = 0.01

θ1 θ2 λ

M̂SEmean
LD 0.0184 · 10−4 1.489 · 10−4 0.6666 · 10−4

R 0.024 · 10−4 2.3092 · 10−4 0.9049 · 10−4

M̂SEvar
LD 0.0003 · 10−4 0.029 · 10−4 0.0068 · 10−4

R 0.0005 · 10−4 0.0495 · 10−4 0.0115 · 10−4

M̂ISE
LD 0.7410 0.2175 0.3856

R 1.8753 0.5775 0.9733
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Figure 9: Posterior cumulative density functions for θ2. Each plot shows in blue the output
of LD-ABC, in red the output of R-ABC and in black the true cumulative density
function for a pair (m, ε). For θ2 < 0.5 both the cumulative density functions equal
0. 90% intervals over 100 reruns of each algorithm are also shown.

sents an estimate of 2−D
(
π̃(θ,Tym |Txn)||q(θ,Tym)

)
, meaning that when the perplexity is

larger, the sample degeneracy is smaller.
The following comments are consistent with Remark 4. Concerning the role of

the tuning parameters, m and ε, we note that by fixing a large m (e.g., 5, 000), as
ε increases both ÊSS and the perplexity increase as well. Moreover, both M̂SE and
M̂ISE decrease. The same happens by reducing m with ε fixed to a small value (e.g.,
0.005).

In Figure 8 three matrices of plots, one for each parameter, show the posterior den-
sities: the size of the pseudo-dataset, m, equals 500 in the plots on the LHS of each
panel, and 5, 000 on the RHS. The topmost plots show the approximate distributions
with ε = 0.01, the others the distributions corresponding to ε = 0.005. We note that
as m increases the blue lines (LD-ABC) overlap the red ones (R-ABC). In principle,
we would expect that both the algorithms achieve a better approximation of the pos-
terior shapes with ε = 0.005 than ε = 0.01. However, in the case of R-ABC, we see
a deviation from the true posterior distributions (dotted lines), when moving from
the first to the second row of each matrix. The same deviation occurs for LD-ABC,
but only in the second column, when m = 5, 000. This suggests that the quality of
the R-ABC approximation is affected by a low value of the ESS which is in turn de-
termined by a too ambitious value of ε and m. On the other hand, when m = 500,
LD-ABC manages to mitigate the effect of a small ε, but it fails when a large value
of m causes a too small ESS for the LD-ABC as well. In the figures we also superim-
posed the ratio L̃ε,m(θ; Txn)/L̃Rε,m(θ; Txn) = 1+ αε,m(θ; Txn)/L̃Rε,m(θ; Txn) evaluated
pointwise and shown by the gray dashed lines. This quantity depends on the contri-
bution of the adjustment w.r.t. the R-ABC likelihood and shows how the adjustment
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Table 7: ÊSS and normalized perplexity averaged over 100 reruns for each pair of tuning
parameters.

ÊSS

ε = 0.005 ε = 0.01

m = 500
LD 261 445

R 25 81

m = 5 000
LD 71 168

R 31 94

Normalized Perplexity

ε = 0.005 ε = 0.01

m = 500
LD 0.0034 0.0055

R 0.0002 0.0008

m = 5 000
LD 0.0008 0.0018

R 0.0003 0.0009

acts in modifying this latter when the R-ABC posterior density is underestimated
(gray areas). Figure 9, shows the posterior cdf for θ2. The Posterior cdf for the other
two parameters are given in Appendix D.3, Figures 21 and 22. We also show the 90%
credible intervals for the estimated cumulative density functions. The red areas are
always larger than the blue areas, meaning that the estimates provided by R-ABC
exhibit greater variability. This is more significant when ε = 0.005, due to the small
acceptance probability.

To wrap up, as suggested by the M̂ISE’s, the posterior distributions approximated
by LD-ABC appear more faithful to the true shapes. Moreover, the ESS and the vari-
ability of the estimates are less sensitive to small values of ε.

5.5.3 Concluding remarks on the choice of the tolerance threshold

The discussion of the results in the previous subsection, together with Remark 4,
gives some useful suggestions for tuning the parameters m and ε. Further research
may provide a more formal way of choosing the optimal pair (m, ε). A possible strat-
egy is to automaticly tune m and ε by minimizing an objective function. For instance,
one can follow the method suggested by Soubeyrand et al. [145], which employs the
minimization of the Bayesian mean squared error for selecting the optimal weighting
function and tolerance threshold. However, it is worth to note that, regarding the LD
method, the role of the threshold ε is quite different w.r.t. to other ABC strategies. In
order to discuss such differences, let us consider a standard procedure for the choice
of ε. As already mentioned, it can be set equal to the α-th quantile of the empiri-
cal distribution of the distances between the observed and the simulated summary
statistics. Note that the number of the accepted parameter proposals (and the ESS)
is strongly related to α: small values of α correspond to a small acceptance rate. On
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Figure 10: ESS of the two algorithms vs. the number of iterations. The dotted red line rep-
resents the ÊSS achieved by R-ABC after S = 100, 000 iterations. The gray dashed
lines indicates the number of iterations (14, 985) needed by the LD-ABC to get the
same ESS as the R-ABC.

the other hand, large values of α correspond to large values of ε and to a consequent
bias in the approximation of the posterior distribution. To wrap up:

• large α (ε) −→ large ESS (bias);

• small α (ε )−→ small ESS (bias).

Most of the more sophisticated ABC strategies (such as sequential methods) improve
the exploration of the parameter space and provide a more targeted sample from the
parameter space. This leads to observing smaller distances between the observed and
the simulated summary statistics. Accordingly, by comparing two different sampling
schemes one note that the same value of α corresponds to different ε’s: sampling
schemes providing an efficient explorations of the parameters space are associated
with small values of ε.

The LD method, as already discussed, can be applied to different sampling schemes
(in this thesis we give an IS and a MCMC sampling scheme). It improves the ABC
performances both in terms of bias reduction and of efficiency (ESS). For a given
value of α, the LD version and the standard version of an ABC sampling scheme lead
to the same empirical distribution of the distances and the same value of ε.

Let us consider the R-ABC and its LD version described in the previous subsection.
The two algorithms produce the same samples (θ(s), T (s)ym) but they assign different
weights. By resorting to a pilot run, with α = 0.0005, we get ε = 0.0089. Figure
11 shows that the two algorithms achieve very different results, even though they
employ the same ε and number of iterations (100, 000). Looking at Figure 10 we can
see that R-ABC achieves an ÊSS of about 50, meaning that the pairs (θ(s), T (s)ym) in the
acceptance region are about the α · S. The LD-ABC, borrowing information from the
pairs outside the acceptance region, achieves an ÊSS greater then 400. Finally, it is
noteworthy that Figures 10 and 11 show that LD-ABC needs only 14, 985 iterations
to achieve the same ÊSS as the R-ABC and a better approximation of the posterior
distributions.
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Figure 11: Posterior density functions of the three parameters of the Binomial mixture model
in Section 5.5.2. The true posterior distributions are represented by the black
dashed lines. The continuous red lines represent the posterior density estimates
provided via R-ABC and the blue ones via LD-ABC. The dashed blue lines repre-
sent the density estimates achieved by the LD-ABC after 14, 985 iterations.
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6
L D - A B C F O R F I N I T E S TAT E M A R K O V C H A I N S

In the previous chapter we introduced two LD-ABC algorithms restricting ourselves
to discrete i.i.d. random variables. Here, we extend the proposed method to se-
quences of dependent random variables, in particular to homogeneous finite state
Markov chains. This will requires to consider more sophisticated versions of LDT,
where the i.i.d. assumption is relaxed, as well as extensions of the Method of types.

In the following section we define the doublet probability distribution, which plays
a key role in this framework. We also introduce some additional notation and some
preliminary concepts.

6.1 finite state markov chains and doublet probability distribu-
tions : set up and notation

Let X be a finite set of cardinality k

X
4
= {r1, ..., rk}.

For the sake of simplicity, hereafter we will denote the elements of the set X by their
labels {1, ...,k}. The set of all possible probability measures over X can be identified
as the (k− 1)-dimensional probability simplex:

∆k−1
4
= {p ∈ [0, 1]k :

k∑
i=1

pi = 1}.

A stationary Markov Process {Xt} on X can be equivalently characterized: 1) by the
transition matrix or 2) by the doublet probability distribution. Here, we resort to the
second approach since the doublet probability distribution will play a key role in the
ABC framework. See Appendix C for the alternative formulation.

Define the doublet probability distribution, P, as a non negative matrix of order k× k
summing to 1 and inducing a probability measure, Pr(·, ·), over X2

4
= X× X. Thus,

denoted by pij, the entries of P are

pij = Pr(Xt = i,Xt+1 = j) ∀(i, j) ∈ X2. (89)

Let us denote by M(X2) ⊆ ∆k2−1 the set of the stationary doublet probability distri-
butions over X2 defined as follows.

Definition 4 (Stationary doublet probability distribution) A distribution P ∈M(X2)

is said to be stationary if∑
j∈X

pij =
∑
j∈X

pji ∀i ∈ X. (90)
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Suppose that {Xt} is a stationary Markov process assuming values in X. Then the
doublet probability distribution, P, captures all the relevant information about the
process. In particular, the distribution of the process, p = (p1, ...,pk), can be retrieved
from P as follows

pi
4
=
∑
j∈X

pij =
∑
j∈X

pji ∀i ∈ X. (91)

The corresponding state transition matrix of the Markov chain, Q, is the stochastic
matrix of order k× k composed by entries

qij
4
= Pr(Xt+1 = j|Xt = i) ∀(i, j) ∈ X2. (92)

Note that the doublet probability distribution does not represent a stochastic matrix,
hence cannot correspond to the transition matrix Q. However, each entry of Q can be
derived from P as follows:

qij =
pij

pi
. (93)

Hence, given a stationary doublet probability distribution P, from Definition 4 and
(93), follows that the marginal distribution, p, is the distribution satisfying stationarity
(as defined in C.3) being a (normalized) row eigenvector of Q corresponding to the
eigenvalue 1:

(pQ)j =
∑
i∈X

piqij =
∑
i∈X

pij = pj ∀j ∈ X. (94)

This implies that the probability of each state does not change during the process.

notation We stress that throughout this chapter we still denote by X =

{r1, ..., r|X|} a finite, nonempty set. We denote with the upper-case letter P a matrix
representing a pmf over X2 and with Q a stochastic transition matrix. A generic en-
try of P is denoted by pij, which is the element in the i-th row and j-th column. The
entries of the transition matrix Q are denoted by qij, which represents the probabil-
ity of going from the state i to the state j. The bold lower-case letters p and qi are
vectors of probabilities representing a pmf over X, marginal probabilities and condi-
tional probabilities, respectively. We will let Xn = {Xi}

n
i=1, Ym = {Yi}

m
i=1 and so on

denote sample paths from finite state Markov chains taking values in X.

6.1.1 Entropy, Relative Entropy and Conditional Entropy

Here we recall the definitions of entropy and relative entropy and introduce the joint
entropy and the conditional (relative) entropy.

Let X be a discrete random variable taking values in the finite set X = {1, ..,k} and
p ∈ ∆k−1 a probability mass function over X. We define the entropy of p as follows:

H(p)
4
= −

k∑
i=1

pi log
(
pi
)
. (95)

Suppose that p,p ′ ∈ ∆k−1 are two probability mass functions such that p is dom-

inated by p ′, i.e., supp(p ′)
4
= {i ∈ X : p ′i > 0} ⊇ supp(p)

4
= {i ∈ X : pi > 0}, we

define:
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• The Kullback–Leibler divergence or relative entropy between p and p ′:

D(p||p ′)
4
=

k∑
i=1

pi log
(
pi
p ′i

)
;

• The cross entropy between p and p ′:

J(p,p ′)
4
= −

k∑
i=i

pi logp ′i.

Let (Xt, Xt+1) be a pair of discrete random variables defined on the finite set X2. Let
P = {pij : (i, j) ∈ X2} ∈ M(X2) be their joint probability mass function over X2 and
p = {pi : i ∈ X} the marginal distribution over X.

We define:

• the joint entropy

H(P)
4
= −

k∑
i=1

k∑
j=1

pij log(pij); (96)

• the conditional entropy

Hc(P)
4
=
∑
i∈X

Pr(X = i)H(qi) (97)

= −
∑
i∈X

pi
∑
j∈X

qij logqij

= −
∑
i∈X

∑
j∈X

pij logqij,

where the vector qi = (qi1, ...,qik) ∈ ∆k−1 is the conditional probability distri-
bution defined by

Pr(Xt+1 = j|Xt = i) = qij
4
=
pij

pi
.

Let P,P ′ ∈ M(X2) be two probability mass functions such that supp(P ′) ⊇ supp(P).
We define the conditional relative entropy between P and P ′.

Dc(P||P
′)
4
=
∑
i∈X

Pr(X = i)D(qi||q
′
i) (98)

=
∑
i∈X

pi
∑
j∈X

qij log
qij

q ′ij

=
∑
i∈X

∑
j∈X

pij log
pij

q ′ijpi

where q ′ij =
p ′ij
p ′i

. Note that in what follows we impose the conditions supp(P ′) ⊇
supp(P) and supp(p ′) ⊇ supp(p) by considering only full-support distributions.

The following two chain rules prove that the (relative) entropy of a pair of random
variables is the sum of the (relative) entropy of one of the two variables plus the
conditional (relative) entropy.
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Theorem 8 (Chain rule for entropy)

H(P) = Hc(P) +H(p)

Proof

H(P) = −

k∑
i=1

k∑
j=1

pij log(pij)

= −

k∑
i=1

k∑
j=1

pij log(qijpi)

= −

k∑
i=1

k∑
j=1

pij logqij −
k∑
i=1

k∑
j=1

pij logpi

= −

k∑
i=1

k∑
j=1

pij logqij −
k∑
i=1

pi logpi

= Hc(P) +H(p)

�

Theorem 9 (Chain rule for relative entropy)

D(P||P ′) = Dc(P||P
′) +D(p||p ′) (99)

Proof

D(P||P ′) =

k∑
i=1

k∑
j=1

pij log
pij

p ′ij

=

k∑
i=1

k∑
j=1

pij log
pi
p ′i

qij

q ′ij

=

k∑
i=1

k∑
j=1

pij log
pi
p ′i

+

k∑
i=1

k∑
j=1

pij log
qij

q ′ij

=

k∑
i=1

pi log
pi
p ′i

+

k∑
i=1

k∑
j=1

pij log
qij

q ′ij

= D(p||p ′) +Dc(P||P
′)

�

From Theorems 8 and 9 we derive the following alternative definitions for the condi-
tional entropy and the conditional relative entropy, respectively:

Hc(P)
4
= H(P) −H(p) (100)

Dc(P||P
′)
4
= D(P||P ′) −D(p||p ′). (101)
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6.2 the method of types for markov chains

A type is commonly defined by the empirical distribution of a sequence of random
variables, as in Chapter 5. More precisely, given a sequence of n samples from a finite
set, the first order type of that sequence is its empirical distribution. In principle ,the
Method of Types is suitable for i.i.d. random variables but extensions to other forms
of dependence are possible by considering the more general definition of l-th order
types.

In the rest of the chapter, we let n > 1 be an arbitrarily fixed integer, denoting the
length of the sequences.

Definition 5 The l-th order type of a sequence xn = x1, ..., xn ∈ Xn is defined as the
probability distribution T (l)xn ∈ ∆k

l−1 with

T
(l)
xn (z) =

1

n− l+ 1

n−l+1∑
i=1

1{(xi, ..., xi+l−1) = z} ∀z ∈ Xl. (102)

Given a Markov process {Xt} and an observed sample path x = x1, ..., xn, the appro-
priate type concept is the second order type [31]:

T
(2)
xn (i, j) =

1

n− 1

n−1∑
t=1

1{xt = i, xt+1 = j} ∀(i, j) ∈ X2. (103)

T
(2)
xn can be thought as a matrix of order k× k representing an empirical estimate of

the doublet probability distribution.
The second order type defined by (103) does not ensure the stationarity in the

sense of Definition 4. However, by resorting to the cyclic convention that the (n+ 1)-th
element of the path is always equal to x1, the following stationary second order type
is given:

Ṫ
(2)
xn
4
=
1

n

n∑
t=1

1{xt = i, xt+1 = j} ∀(i, j) ∈ X2, (104)

where xn+1 = x1.
We can see that Ṫ (2)xn can be obtained by applying to T (2)xn the one-to-one function

h : ∆k
2−1 → ∆k

2−1.
In fact,

Ṫ
(2)
xn (ij) = h(T

(2)
xn (ij)) =


(
T
(2)
xn (ij)(n− 1) + 1

)
1
n if i = xn, j = x1

T
(2)
xn (ij)n−1n otherwise.

(105)

In what follows we deal with the type under cyclic convention, Ṫ (2)xn , since it always
satisfies stationarity.
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6.2.1 Second order types as summary statistics

Let us assume Xn = X1, ...,Xn ∈ Xn to be a sample path from a parametric Markov
process which is characterized by a doublet probability distribution whose entries
depend on an unknown parameter (or a vector) θ ∈ Θ. In order to make an inference
on θ, one can assume a model specifying a family of doublet probability distributions

F
4
= {Pθ : θ ∈ Θ}).
The second order type maps the n dimensional sequence onto a matrix of size k×k,

meaning that, depending on the length of the sequence and on the cardinality of the
finite set X, it can be considered a summary statistic. In particular, as already shown
in Section 5.1 for the i.i.d. case, the type represents a sufficient statistic for θ, providing
data reduction and capturing all the relevant information about θ contained in the
sample xn: given two sample paths xn and yn such that T (2)xn = T

(2)
yn , the inference

on θ should be the same whether Xn = xn or Xn = yn.

Proposition 3 (Sufficiency) Let {Xt} be a Markov process taking values in the finite set X
with stationary doublet probability distribution Pθ ∈ ∆k

2−1. Let the initial value of the chain
be X1 = x1. Then the second order type T (2)xn is a sufficient summary statistic for θ.

Proof Let Xn denotes the path {Xt}
n
t=1 and xn denotes an observed sequence

x1, ..., xn. Let us consider the probability of observing xn given the initial value x1

Pr(Xn = xn|X1 = x1, θ) =
n−1∏
t=1

Pr(Xt+1 = xt+1|Xt = xt, θ)

=

n−1∏
t=1

Pθ(xt+1, xt)
pθ(xt)

where pθ is the marginal distribution retrieved from Pθ, Pθ(xt+1, xt) denotes the
element of Pθ corresponding to the pair (xt+1, xt) and pθ(xt) denotes the element of
the vector pθ corresponding to xt. By taking the logarithms we can write

log Pr(Xn = xn|X1 = x1) =

n−1∑
t=1

(
logPθ(xt+1, xt) − logpθ(xt)

)
. (106)

Now consider the first order type for the sequence x1, ...., xn−1:

T
(1)
x (i) =

1

n− 1

n−1∑
t=1

1{xt = i}.

The event {Xt = i} occurs (n− 1) · T (1)xn (i) times and the event {Xt = i,Xt+1 = j} occurs
(n− 1) · T (2)xn (ij) times. Thus, the (106) can be rewritten as follows

log Pr(Xn = xn|X1 = x1, θ) =

=
∑
i∈X

∑
j∈X

(n− 1)T
(2)
xn (ij) logPθ(ij) −

∑
i∈X

(n− 1)T
(1)
xn logpθ(i)

= (n− 1)
(
J(pθ, T (1)xn ) − J(Pθ, T (2)xn )

)
= −(n− 1)

(
Dc(T

(2)
xn ||Pθ) +Hc(T

(2)
xn )

)
, (107)
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where (107) is obtained by adding and subtracting the conditional entropy. It follows
that, according to the Neyman–Fisher factorization theorem, T (2)xn is a sufficient sum-
mary statistic. �

Note that, given X1 = x1 and Xn = xn, the second order type under the cyclic
convention, being a one-to-one function of the type without cyclic convention, is a
sufficient summary statistic for θ as well.

6.3 ABC and large deviations for markov chains

Let xn = x1, ..., xn ∈ Xn be an observed sample path from a parametric stationary
Markov process, whose doublet probability distribution is assumed to be in the fam-

ily F
4
= {Pθ : θ ∈ Θ} ⊆ M(X2). Consider the case in which Pθ is unavailable, or the

following joint probability is computationally demanding:

Pr(Xn = xn|θ) = pθ(x1)

n−1∏
t=1

Pθ(xt+1, xt)
pθ(xt)

.

When a simulator is available, one can resort to ABC methods to derive the following
approximate posterior distributions:

π̃(θ,yn|xn) ∝ π(θ) Pr(Yn = yn|θ)1{d(yn, xn) 6 ε},

π̃(θ|xn) ∝ π(θ)Pr
(
d(yn, xn) 6 ε|θ

)
.

The basic idea behind the method proposed in the previous chapter was to resort to
LDT in order to provide a better estimate for the probability Pr

(
d(yn, xn) 6 ε|θ

)
. As

discussed in the previous chapter, one of the major results in LDT is Sanov’s Theorem,
which establishes the rate function, i.e., a function quantifying the decline of the prob-
ability of rare events at least asymptotically, for sequences of i.i.d. random variables.
The analog of Sanov’s theorem for Markov chains is the Donsker and Varadhan theo-
rem [42], or it can be estabilished by means of an easier counting approach that can be
traced back to Boza [14] and Natarajan [102]. It was also presented as an application
of the method of types by Csiszár [31].

Theorem 10 Let {Xt} be a Markov process taking values in the finite set X, with stationary
doublet probability distribution Pθ ∈ M(X2) and let Xn = X1, ...,Xn. If E ⊆ M(X2), then
for each θ ∈ Θ

lim
n→∞ 1n log Pr(Ṫ (2)Xn ∈ E|θ) = − inf

P∈E
Dc(P||Pθ). (108)

Proof See [102, Th. 1]. �

Exploiting the same arguments as in Chapter 5, one can rely on the second order
type as summary statistic and resort to the conditional relative entropy as measure
of discrepancy between the simulated and the observed data. Accordingly, given an
observed path xn, we can define the following ABC acceptance region

Γε(Ṫ
(2)
xn )

4
= {P ∈ ∆k2−1 : Dc(P||Ṫ (2)xn ) 6 ε}, (109)
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where Pθ ∈ ∆k
2−1 is the true doublet stationary probability distribution. For the sake

of notational simplicity, Γε(Ṫ
(2)
xn ) is referred to as Γε for short.

From Theorem 10 follows that by drawing from the simulator a sample path of
length m, Ym, at each iteration s the acceptance probability can be approximated by

Pr
(
Ṫ
(2)
Ym ∈ Γε|θ

(s)
)
≈ 2−mDc(Γε||P

(s)
θ ). (110)

Note that, since we are assuming that Pθ is not available, in (110) we cannot directly
compute Dc(Γε||Pθ). However, the following theorem establishes the approximation
Dc(Γε||Pθ) ≈ Dc(Γε||Ṫ

(2)
ym ). A proof is presented in Appendix D.2

Theorem 11 Let {Yt} be a Markov process taking values in the finite set X, such that the
stationary doublet probability distribution is Pθ ∈ M(X2) and let Ym = Y1, ...,Ym. Then,
under the measure induced by Pθ

lim
m→∞Dc(Γε||T (2)Ym ) = Dc(Γε||Pθ) a.s. (111)

Accordingly, we define the Markov analogue of the i.i.d. kernel function as follows:

Kε(Ṫ
(2)
ym )

4
=

1 if Dc(Ṫ
(2)
ym ||Ṫ

(2)
xn ) 6 ε

2
−mDc(P

∗||Ṫ
(2)
ym

) if Dc(Ṫ
(2)
ym ||Ṫ

(2)
xn ) > ε

. (112)

It follows that the joint ABC approximate posterior becomes

π̃(θ, Ṫ (2)ym |Ṫ
(2)
xn ) ∝ π(θ)Pθ(Ṫ

(2)
ym )Kε(Ṫ

(2)
ym ) (113)

and the approximate marginal posterior becomes

π̃(θ|Ṫ
(2)
xn ) ∝ π(θ)

∑
Ṫ
(2)
ym
∈T(m,2)

Pθ(Ṫ
(2)
ym )Kε(Ṫ

(2)
ym ), (114)

where T(m, 2), referred to as T for short, is the set of second order types generated
from a Markov chain of length m. This implies that the ABC likelihood is

L̃ε(θ; Ṫ (2)xn ) =
∑
Ṫ
(2)
ym
∈T

Pθ(Ṫ
(2)
ym )Kε(Ṫ

(2)
ym ). (115)

In order to sample from (113), we introduce both an IS and a MCMC scheme
displayed in Algorithm 15 and Algorithm 16, respectively.

Again LDT allows defining a kernel on a non-compact support, thus avoiding the
implicit rejection step in both the sampling schemes.

6.4 experiments

Let us consider a categorical time series {Xt} taking values in the finite set X. Specif-
ically, we consider the Pegram’s operator-based autoregressive AR(1) process dealt
with in [1]. The Pegram’s operator [110], denoted by "∗", is a mixing operator which

106



Algorithm 15 Importance Sampling LD-ABC for Markov Chains

for s = 1, ...,S do
Draw θ(s) ∼ q

Generate y(s) = y
(s)
1 , ...,y(s)m from P(·|θ(s)) and compute Ṫ (2)

y(s)

if Dc(Ṫ
(2)

y(s) ||Ṫ
(2)
xn ) 6 ε then

Set the IS weight for (θ(s), Ṫ (2)
y(s)) to

ωs =
π(θ(s))

q(θ(s))

else

Set the IS weights for (θ(s), Ṫ (2)
y(s)) to ωs = 2

−mD(Γε||Ṫ
(2)

y(s)
)π(θ(s))

q(θ(s))
end if

end for

Algorithm 16 Metropolis-Hastings LD-ABC for Markov Chains

Initialize θ(0) and y(0)

for s = 1, ...,S do
Draw θ∗ ∼ q̃

(
θ(s−1), ·

)
Draw y∗ = y∗1, ...,y∗m from P(·|θ∗) and compute Ṫ (2)y∗

Compute α = min
{
1,

π(θ∗)Kε(Ṫ
(2)
y∗ )q̃

(
θ∗, θ(s−1)

)
π(θ(s−1))Kε(Ṫ

(2)

y(s−1))q̃
(
θ(s−1), θ∗

)}
Draw u ∼ Unif[0, 1]
if u < α then

Assign (θ(s), Ṫ (2)
y(s))← (θ∗, Ṫ (2)y∗ ) with

else
Assign (θ(s), Ṫ (2)

y(s))← (θ(s−1), Ṫ (2)
y(s−1))

end if
end for

mixes two or more random variables. Here we assume that, at each time t, the ran-
dom variable Xt is a mixture of two discrete random variables, the random variable
Xt−1 and the so called innovation term εt:

Xt = (Xt−1, λ) ∗ (εt, 1− λ). (116)

Stated otherwise

Xt =

Xt−1 with probability λ

εt with probability 1− λ.

The mixing weights are λ ∈ [0, 1] and 1 − λ. The innovation term, εt, is a dis-
crete random variable distributed over X according to the probability distribution
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θ
4
= (θ1, ..., θk) ∈ ∆k−1. Accordingly, the Markov chain {Xt} is characterized by the

following transitions probabilities:

Qθ,λ(i, j)
4
= Pr(Xt+1 = i|Xt = j, λ,θ) = λ1{i = j}+ (1− λ)θi.

Let us assume to observe a sample path Xn = X1, ...Xn from the autoregressive
process described above. For the sake of simplicity, we assume that the starting point
of the chain, x1, is fixed. Accordingly, the related likelihood function can be retrieved
as follows:

Pr(X2 = x2, ...,Xn+1 = xn+1|x1, λ,θ)

=

n∏
t=1

Pr(Xt+1 = xt+1|Xt = xt, λ,θ)

=

n∏
t=1

(
λ1{xt+1 = xt}+ (1− λ)θ(xt+1)

)
=

n∏
t=1

(
λ+ (1− λ)θ(xt+1)

)1{xt+1=xt}((1− λ)θ(xt+1))1−1{xt+1=xt}
=

k∏
j=1

(
λ+ (1− λ)θj

)nṪ (2)
x (j,j)(

(1− λ)θj
)n∑

i 6=j
Ṫ
(2)
x (i,j)

= λ
n

k∑
j=1
Ṫ
(2)
x (j,j)

(1− λ)
n

k∑
j=1

∑
i 6=j
Ṫ
(2)
x (i,j) k∏

j=1

(
1+

1− λ

λ
θj

)nṪ (2)
x (j,j)

θ

n
∑
i 6=j
Ṫ
(2)
x (i,j)

j

where θ(xt+1) denotes the the probability of xt+1 according to θ.
In [1], they showed that there is no real gain in implementing a MCMC method

and proposed a standard Importance Sampling for sampling from the posterior dis-
tribution obtained by assuming the following prior distributions:

θ ∼ Dirichlet(α1, ....,αk)

λ ∼ Beta(a,b).

In such a case, the joint posterior distribution becomes

π(λ,θ|xn) ∝ π(λ)π(θ)Pr(X2 = x2, ...,Xn = xn|x1, λ,θ)

≈ π(λ)π(θ)Pr(X2 = x2, ...,Xn+1 = xn+1|x1, λ,θ)

∝
[ k∏
j=1

θ
αj−1
j λa−1(1− λ)b−1

]

×
[
λ
n

k∑
j=1
T
(2)
xn

(j,j)
(1− λ)

n
k∑
j=1

∑
i 6=j
T
(2)
xn

(i,j) k∏
j=1

(
1+

1− λ

λ
θj

)nT (2)
xn

(j,j)

θ

n
∑
i 6=j
T
(2)
xn

(i,j)

j

]

=

[ k∏
j=1

θ

αj+n
∑
i 6=j
T
(2)
xn

(i,j)−1
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It follows that samples from the posterior distribution can be got via a standard
Importance Sampling with importance distributions for θ and λ equal respectively to

Dirichlet
(
α1 +n

∑
i 6=1

Ṫ
(2)
x (i, 1), ...,αk +n

∑
i 6=k

Ṫ
(2)
x (i,k)

)

Beta
(
a+n

k∑
j=1

Ṫ
(2)
x (j, j),b+n

k∑
j=1

∑
i 6=j

Ṫ
(2)
x (i, j)

)
.

Accordingly, the importance weights equal

k∏
j=1

(
1+

1− λ(s)

λ(s)
θ
(s)
j

)nṪ (2)
x (j,j)

∀s ∈ {1, ...,S}

and are easy to compute.
However we note that this simplification arises only with proper prior distributions.

In all the other cases MCMC methods require the computation of the likelihood at
each iteration.

In Section 6.4.1, for the sake of comparing the performances of standard ABC meth-
ods and LD-ABC, we consider the example described above. We test the performance
of our method at work on simulated data by assuming the results provided by the Im-
portance Sampling proposed in [1] as a benchmark. Noting that the size of the second
order type scales quadratically with the cardinality of |X|, we are also interested in
evaluating how this fact affects the quality of the approximation. To this end, we also
compare the performance of LD-ABC with a standard R-ABC using a non-sufficient
lower-dimensional statistic.

In Section 6.4.2 we test both ABC and LD-ABC at work on real data by assuming
non-conjugate prior distributions.

6.4.1 Example 1

In this toy example we consider a simulated time series X60 = X1, ....,X60 taking
values in X = {1, 2, 3}.

We assume the following prior distributions:

(θ1, θ2, θ3) ∼ Dirichlet(1, 1, 1)

λ ∼ Beta(1, 1).

Note that this choice allows implementing the Importance Sampling proposed in [1].
The ABC threshold is choosen as the 0.0001-quantile of the distribution of the

distances between the observed and simulated types, thus setting ε = 0.005. We ran
both the R-ABC and the LD-ABC ( Algorithm 15) with m = 120 and S = 100, 000.
We also ran the Importance Sampling described in [1] with S = 100, 000. Table 8

shows the results of the simulations both in terms of M̂SE and M̂ISE, computed by
averaging over 100 reruns. We can see that LD-ABC outperforms the standard ABC
in terms of point estimates for each of the four parameters. Moreover, our method
leads to M̂ISE’s about ten times smaller then the R-ABC, as also shown in Figure 12.
The figure shows also the posterior distributions approximated by the R-ABC using
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Figure 12: Posterior distributions corresponding tom = 120 and ε = 0.005. Each plot refers to
one of the four parameters of the model. Red lines represent the posterior density
estimates provided via R-ABC. The blue lines represent the estimates provided via
LD-ABC. The dotted red lines are the estimates provided by the R-ABC using the
first order type. The dashed gray lines are the true posterior distributions.

a lower-dimensional summary statistic (dotted red lines): the first order type. As is
apparent, such non-sufficient summary statistic leads to results even worse then the
R-ABC using the second order type.

Another interesting feature is the variability of the estimates. Looking at Figure 13

we can see that the approximation of the cdf’s is highly variable when relying on
the standard ABC, while the LD-ABC exhibits narrow intervals. This result is caused
by the serious sample degeneracy leading the R-ABC to an average ÊSS equal to
just 11. Hence, in this example is apparent that LD-ABC is able to mitigate sample
degeneracy leading to ÊSS equal to 4, 619 and to less variable estimates.

Table 8: Squared errors and integrated squared errors averaged over 100 reruns. Each column
contains results for one of the parameters of the model both for LD-ABC and R-ABC.

m = 120, ε = 0.005

θ1 θ2 θ3 λ

M̂SEmean
LD 4.56 · 10−4 0.76 · 10−4 1.66 · 10−4 1.54 · 10−4

R 13.59 · 10−4 16.35 · 10−4 8.99 · 10−4 6.63 · 10−4

M̂SEvar
LD 0.21 · 10−4 0.24 · 10−4 0.12 · 10−4 0.12 · 10−4

R 0.64 · 10−4 0.59 · 10−4 0.54 · 10−4 0.06 · 10−4

M̂ISE
LD 0.0780 0.028 0.0274 0.1922

R 0.2575 0.3162 0.3679 1.0681
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Figure 13: Posterior cumulative density functions for θ1, θ2, θ3 and λ. Each plot shows in
blue the output of LD-ABC, in red the output of R-ABC and in black the true cdf.
99% intervals over 100 rerun of each algorithm are also represented.

6.4.2 Example 2

In this example we consider the same model in Example 1 but assuming different
prior distributions. In such a case, the evaluation of the likelihood function is needed
at each iteration to implement a MCMC. To avoid this computational effort and can
resort to ABC methods.

We test both LD-ABC and R-ABC on real-world data reported in [146]. The dataset
consists of a collection of categorical time series of infant sleep status in an EEG
study. Infant sleep states are categorized into six possible states: 1. quiet sleep-trace
alternant; 2. quiet sleep-high voltage; 3. indeterminate sleep; 4. active sleep-low volt-
age; 5. active sleep-mixed; 6. awake. Here we consider as observed data x1, ...., x120
one of the 24 reported time series, represented in Figure 14. We drop the status awake
as never observed in the time series and merge the other status in 1. quite sleep;
2. indeterminate sleep; 3. active sleep.

We assume two logistic normal distributions [2] as prior distributions. Specifically,
we assume θ ∼ LogisticNormal(µθ,Σ) and λ ∼ LogisticNormal(µλ,σ2) with

µθ = (0, 0) Σ =

[
1.45 0

0 1.45

]
µλ = 0 σ2 = 1.

Note that assuming a logistic normal distribution over the simplex corresponds to
assume a multivariate normal distribution for a random variable Z ∈ Rd whose
additive logistic transformation maps the d-dimensional random variable to a (d+ 1)-
dimensional vector in the simplex ∆d.

We run both the algorithms for S = 1, 000, 000 iterations both with ε = 0.05 and
ε = 0.01. Table 9 displays the ÊSS’s. We can see that with a low threshold (0.01)
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Figure 14: Observed time series x120 = x1, ..., x120.

Table 9: ÊSS achieved by R-ABC and LD-ABC after S = 1, 000, 000 iterations with ε = 0.01
and ε = 0.05

ÊSS

ε = 0.01 ε = 0.05

LD 22 785 115 140

R 3 2 290

the R-ABC accepts only three parameter proposals. It follows that the resulting sam-
ple is inadequate to approximate the posterior distributions. On the other hand, the
LD-ABC provides an adequate sample size in both cases ( ε = 0.05 and ε = 0.01).
This is also apparent looking at Figure 15. The posterior distributions approximated
by LD-ABC with the two different thresholds (solid and dashed blue lines) are quite
similar while R-ABC is strongly affected by the choice of the threshold. Thus, we can
conclude that also in this example our method mitigates the sample degeneracy prob-
lem by increasing the ESS and possibly improves the approximation of the posterior
distributions relaying on a larger sample.
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Figure 15: Approximate posterior distributions of each parameter with S = 1, 000, 000, ε =

0.01 (solid lines) and ε = 0.05 (dashed lines).
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Part III

S I M U L AT E D I N F E R E N C E F O R L E A R N I N G F R O M
A N O N Y M I Z E D D ATA

"Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less."

— Marie Curie





7
I N T R O D U C T I O N

In this part of the thesis we consider the problem of learning from data anonymized
through group-based anonymization scheme, which is a popular approach to data
publishing. This method aims at protecting the privacy of the individuals involved in
a dataset, by releasing an obfuscated version of the original data, where the exact cor-
respondence between individuals and attribute values is hidden. When publishing
data about individuals, one must balance the learner’s utility against the risk posed
by an attacker, potentially targeting individuals in the dataset. We consider two class
of group-based anonymization schemes, the horizontal and vertical schemes, and pro-
pose a unified Bayesian model of group-based schemes and a related MCMC method
to learn the population parameters from an anonymized table. This allows one to
analyse the risk for any individual in the dataset to be linked to a specific sensitive
value, when the attacker knows the individual’s nonsensitive attributes, beyond what
is implied for the general population. We call this relative threat analysis. We illustrate
the results obtained with the proposed methodology on a real-world dataset.

Furthermore, we consider ABC methods as an alternative strategy for inferring the
population parameters from obfuscated data. We define a generative model reproduc-
ing the stochastic process leading to the observation of an anonymized dataset, thus
enabling inference via ABC. Finally, we test the method proposed in Chapter 5 at
work on an example of anonymized table.

structure of part iii In Chapter 8 we introduce the problem of learning from
anonymized tables and the relative threats approach. In particular, in Section 8.2 we
propose a unified formal definition of vertical and horizontal schemes. Based on that,
measures of (relative) privacy threats and utility are introduced in Section 8.4. In Sec-
tion 8.5, we study a MCMC algorithm to learn the population parameters posterior
distributions and the attacker’s probability distribution learned from the anonymized
data. In Section 8.6, we illustrate the results of an experiment conducted on a real-
world dataset. A few concluding remarks and perspectives for future research are
reported in Section 8.7. In Chapter 9 we introduce ABC methods as an alternative
for learning population parameters from anonymized data. In Section 9.2 we test
LD-ABC at work on an obfuscated table. Some technical material has been confined
to Appendix E.
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8
R E L AT I V E P R I VA C Y T H R E AT S A N D L E A R N I N G F R O M
A N O N Y M I Z E D D ATA

We consider a scenario where datasets containing personal microdata are released in
anonymized form. The goal here is to enable the computation of general population
characteristics with reasonable accuracy, at the same time preventing leakage of sen-
sitive information about individuals in the dataset. The Database of Genotype and
Phenotype [89], the U.K. Biobank [106] and the UCI Machine Learning repository
[75] are well-known examples of repositories providing this type of datasets.

Anonymized datasets always have "personal identifiable information", such as
names, ssns and phone numbers, removed. At the same time, they include infor-
mation derived from nonsensitive (say, gender, zip code, age, nationality) as well
as sensitive (say, disease, income) attributes. Certain combinations of nonsensitive
attributes, like 〈gender, date of birth, zip code〉, may be used to uniquely identify a
significant fraction of the individuals in a population, thus forming so-called quasi-
identifiers. For a given target individual, the victim, an attacker might easily obtain
this piece of information (e.g. from personal web pages, social networks etc.), use it
to identify him/her within a dataset and learn the corresponding sensitive attributes.
This attack was famously demonstrated by L. Sweeney, who identified Massachusetts’
Governor Weld medical record within the Group Insurance Commission (gic) dataset
[147]. Note that identity disclosure, that is the precise identification of an individual’s
record in a dataset, is not necessary to arrive at a privacy breach: depending on
the dataset, an attacker might infer the victim’s sensitive information, or even a few
highly probable candidate values for it, without identity disclosure involved. This
more general type of threat, sensitive attribute disclosure, is the one we focus on here1.

In an attempt to mitigate such threats for privacy, regulatory bodies mandate com-
plex, often baroque syntactic constraints on the published data. As an example, here
is an excerpt from the hipaa safe harbour deidentification standard [153], which pre-
scribes a list of 18 identifiers that should be removed or obfuscated, such as

all geographic subdivisions smaller than a state, including street address, city,
county, precinct, ZIP code, and their equivalent geocodes, except for the initial
three digits of the ZIP code if, according to the current publicly available data
from the Bureau of the Census: (1) the geographic unit formed by combining all
ZIP codes with the same three initial digits contains more than 20,000 people; and
(2) the initial three digits of a ZIP code for all such geographic units containing
20,000 or fewer people is changed to 000.

There exists a large body of research, mainly in Computer Science, on syntactic
methods. In particular, group-based anonymization techniques have been systemati-
cally investigated, starting with L. Sweeney’s proposal of k-anonymity [147], followed

1 Depending on the nature of the dataset, the mere membership disclosure, i.e. revealing that an individual
is present in a dataset, may also be considered as a privacy breach: think of data about individuals
who in the past have been involved in some form of felony. We will not discuss membership disclosure
privacy breaches in this thesis.
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Table 10: A table (top) anonymized according to 2-anonymity via local recoding (bottom-left)
and Anatomy (bottom-right).

ID Nat. ZIP Dis.

1 Malaysia 45501 Heart

2 Japan 45502 Flu

3 Japan 55503 Flu

4 Japan 55504 Stomach

5 China 66601 HIV

6 Japan 66601 Diabetes

7 India 77701 Flu

8 Malaysia 77701 Heart

a) Original table

ID Nat. ZIP Dis.

1 {M, J} 4550* Heart

2 {M, J} 4550* Flu

3 Japan 5550* Flu

4 Japan 5550* Stomach

5 {C, J} 66601 HIV

6 {C, J} 66601 Diabetes

7 {I, M} 77701 Flu

8 {I, M} 77701 Heart

b) 2-anonymity via local recoding

GID Nat. ZIP Dis.

1 Japan 45502 Heart

1 Malaysia 45501 Flu

2 Japan 55504 Flu

2 Japan 55503 Stomach

3 Japan 66601 HIV

3 China 66601 Diabetes

4 Malaysia 77701 Flu

4 India 77701 Heart

c) Anatomy

by its variants, like `-diversity [87] and Anatomy [158]. In group-based methods, the
anonymized – or obfuscated – version of a table is obtained by partitioning the set of
records into groups, which are then processed to enforce certain properties. The ratio-
nale is that, even knowing that an individual belongs to a group of the anonymized
table, it should not be possible for an attacker to link that individual to a specific sen-
sitive value in the group. Two examples of group based anonymization are in Table
10, adapted from [157]. The topmost, original table collects medical data from eight
individuals; here Disease is considered as the only sensitive attribute. The central table
is a 2-anonymous, 2-diverse table: within each group the nonsensitive attribute val-
ues have been generalized following group-specific rules (local recoding) so as to make
them indistinguishable; moreover, each group features 2 distinct sensitive values. In
general, each group in a k-anonymous table consists of at least k records, which are
indistinguishable when projected on the nonsensitive attributes; `-diversity addition-
ally requires the presence in each group of at least ` distinct sensitive values, with
approximately the same frequency. This is an example of horizontal scheme. Table 10

(c) is an example of application of the Anatomy scheme: within each group, the non-
sensitive part of the rows are vertically and randomly permuted, thus breaking the
link between sensitive and nonsensitive values. Again, the table is 2-diverse.

In recent years, the effectiveness of syntactic anonymization methods has been
questioned, as offering weak guarantees against attackers with strong background
knowledge – very precise contextual information about their victims. Differential pri-

120



vacy [45], which promises protection in the face of arbitrary background knowledge,
while valuable in the release of summary statistics, still appears not of much use
when it comes to data publishing (see the following section). As a matter of fact,
release of syntactically anonymized tables appears to be the most widespread data
publishing practice, with quite effective tool support (see e.g. [113]).

Here, discounting the risk posed by attackers with strong background knowledge,
we pose the problem in relative terms: given that whatever is learned about the general
population from an anonymized dataset represents legitimate and useful information
("smoke is associated with cancer"), one should prevent an attacker from drawing
conclusions about specific individuals in the table ("almost certainly the target indi-
vidual has cancer"): in other words, learning sensitive information for an individual
in the dataset, beyond what is implied for the general population. To see what is at
stake here, consider dataset (b) in Table 10. Suppose that the attacker’s victim is a
Malaysian living at zip code 45501, and known to belong to the original table. The
victim’s record must therefore be in the first group of the anonymized table. The
attacker may reason that, with the exception of the first group, a Japanese is never
connected to Heart Disease; this hint can become a strong evidence in a larger, real-
world table. Then the attacker can link with high probability the Malaysian victim in
the first group to Heart Disease. In this attack, the attacker combines knowledge of
the nonsensitive attributes of the victim (Malaysian, zip code 45501) with the group
structure and the knowledge learned from the anonymized table.

We propose a unified probabilistic model to reason about such forms of leakage.
In doing so, we clearly distinguish the position of the learner from that of the at-
tacker: the resulting notion is called relative privacy threat. In our proposal, both the
learner and the attacker activities are modeled as forms of Bayesian inference: the
acquired knowledge is represented as a joint posterior probability distribution over
the sensitive and nonsensitive values, given the anonymized table and, in the case
of the attacker, knowledge of the victim’s presence in the table. A comparison be-
tween these two distributions determines what we call relative privacy threat. Since
posterior distributions are in general impossible to express analytically, we also put
forward a MCMC method to practically estimate such posteriors. We also illustrate
the results of applying our method to the Adult dataset from the UCI Machine Learn-
ing repository [75], a common benchmark in anonymization research.

8.1 related works

Sweeney’s k-anonymity [147] is among the most popular proposals aiming at a sys-
tematic treatment of syntactic anonymization of microdata. The underlying idea is
that every individual in the released dataset should be hidden in a "crowds of k".
Over the years, k-anonymity has proven to provide weak guarantees against attack-
ers who know much about their victims, that is have a strong background knowledge.
For example, an attacker may know from sources other than the released data that
his victim does not suffer from certain diseases, thus ruling out all possibilities but
one in the victims’s group. Additional constraints may be enforced in order to mit-
igate those attacks, like `-diversity [87] and t-closeness [80]. Differential Privacy [45]
promises protection in the face of arbitrary background knowledge. In its basic, inter-
active version, this means that, when querying a database via a differentially private
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mechanism, one will get approximately the same answers, whether the data of any
specific individual is included or not in the database. This is typically achieved by
injecting controlled levels of noise in the reported answer, e.g. Laplacian noise. Dif-
ferential Privacy is very effective when applied to certain summary statistics, such as
histograms. However, it raises a number of difficulties when applied to table publish-
ing: in concrete cases, the level of noise necessary to guarantee an acceptable degree
of privacy would destroy utility [34, 35, 135]. Moreover, due to correlation phenom-
ena, it appears that Differential Privacy cannot in general be used to control evidence
about the participation of individuals in a database [12, 74]. In fact, the no-free-lunch
theorem of Kifer and Machanavajjhala [74] implies that it is impossible to guarantee
both privacy and utility, without making assumptions about how the data have been
generated (e.g., independence assumptions). Clifton and Tassa [25] critically review
issues and criticisms involved in both syntactic methods and Differential Privacy, con-
cluding that both have their place, in Privacy Preserving– Data Publishing and Data
Mining, respectively. Both approaches have issues that call for further research. A few
proposals involve blending the two approaches, with the goal to achieve both strong
privacy guarantees and utility, see e.g. [81].

A major source of inspiration for our work has been Kifer’s [73]. The main point
of [73] is to demonstrate a pitfall of the random worlds model, where the attacker
is assumed to assign equal probability to all cleartext tables compatible with the
given anonymized one. Kifer shows that a Bayesian attacker willing to learn from the
released table can draw sharper inferences than those possible in the random worlds
model. In particular, Kifer shows that it is possible to extract from (anatomized) `-
diverse tables belief probabilities greater than 1/`, by means of the so-called deFinetti
attack. While pinpointing a deficiency of the random worlds model, it is questionable
if this should be considered an attack, or just a legitimate learning strategy. Quoting
[25] on the deFinetti attack:

The question is whether the inference of a general behavior of the popula-
tion in order to draw belief probabilities on individuals in that population
constitutes a breach of privacy (...). To answer this question positively for
an attack on privacy, the success of the attack when launched against
records that are part of the table should be significantly higher than its
success against records that are not part of the table. We are not aware of
such a comparison for the deFinetti attack.

It is this very issue that we tackle in the present chapter. Specifically, our main contri-
bution here is to put forward a concept of relative privacy threat, as a means to assess
the risks implied by publishing tables anonymized via group-based methods. To this
end, we introduce: (a) a unified probabilistic model for group-based schemes; (b) rig-
orous characterizations of the learner and the attacker’s inference, based on Bayesian
reasoning; and, (c) a related MCMC method, which generalizes and systematizes that
proposed in [73].

Very recently, partly inspired by differential privacy, a few authors have considered
what might be called a relative or differential approach to assessing privacy threats,
in conjunction with some notion of learning or inference from the anonymized data.
Especially relevant to our work is differential inference, introduced in a recent paper
by Kassem et al. [72]. These authors make a clear distinction between two different
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types of information that can be inferred from anonymized data: learning of "public"
information, concerning the population, should be considered as legitimate; on the
contrary, leakage of "private" information about individuals should be prevented. To
make this distinction formal, given a dataset, they compare two probability distri-
butions that can be machine-learned from two distinct training sets: one including
and one excluding a target individual. An attack exists if there is a significant differ-
ence between the two distributions, measured e.g. in terms of Earth Moving Distance.
While similar in spirit to ours, this approach is conceptually and technically different
from what we do here. Indeed, in our case the attacker explicitly takes advantage of
the extra piece of information concerning the presence of the victim in the dataset to
attack the target individual, which leads to a more direct notion of privacy breach.
Moreover, in [72] a Bayesian approach to inference is not clearly posed, so the ob-
tained results lack a semantic foundation, and strongly depend on the adopted learn-
ing algorithm. Pyrgelis et al. [117] use Machine Learning for membership inference
on aggregated location data, building a binary classifier that can be used to predict
if a target user is part of the aggregate data or not. A similar goal is pursued in [101].
Again, a clear semantic foundation of these methods is lacking, and the obtained re-
sults can be validated only empirically. In a similar vein, Bichsel et al. [10] and Ding
et al. [41] have proposed statistical techniques to detect privacy violations, but they
only apply to differential privacy. Other works, such as [64] and [90], have just con-
sidered the problem of how to effectively learn from anonymized datasets, but not of
how to characterize legitimate, as opposed to non-legitimate, inference.

On the side of the random worlds model, Chi-Wing Wong et al. [157] show how
information on the population extracted from the anonymized table – in the authors’
words, the foreground knowledge – can be leveraged by the attacker to violate the
privacy of target individuals. The underlying reasoning, though, is based on the ran-
dom worlds model, hence is conceptually and computationally very different from
the Bayesian model adopted in the present chapter. Bewong et al. [9] assess relative
privacy threat for transactional data by a suitable extension of the notion of t-closeness,
which is based on comparing the relative frequency of the victim’s sensitive attribute
in the whole table with that in the victim’s group. Here the underlying assumption
is that the attacker’s prior knowledge about sensitive attributes matches the public
knowledge, and that the observed sensitive attributes frequencies provide good esti-
mates both for the public knowledge and the attacker’s belief. Our proposal yields
more sophisticated estimates via a Bayesian inferential procedure. Moreover, in our
scenario the assumption on the attacker’s knowledge is relaxed requiring only the
knowledge of the victim’s presence in whatever group of the table.

A concept very different from the previously discussed proposals is Rubin’s multi-
ple imputation approach [130], by which only tables of synthetic data, generated sam-
pling from a predictive distribution learned from the original table, are released.
This avoids syntactic masking/obfuscation, whose analysis requires customized al-
gorithms on the part of the learner, and leaves to the data producer the burden of
synthesis. Note that this task can be nontrivial and raises a number of difficulties
concerning the availability of auxiliary variables for non-sampled units, see [119]. In
Rubin’s view, synthetic data overcome all privacy concerns, in that no real individ-
ual’s data is actually released. However, this position has been questioned, on the
grounds that information about participants may leak through the chain: original ta-
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ble → posterior parameters → synthetic tables. In particular, Machanavajjhala et al.
[88] study Differential Privacy of synthetic categorical data. They show that the re-
lease of such data can be made differentially private, at the cost of introducing very
powerful priors. However, such priors can lead to a serious distortion in whatever
is learned from the data, thus compromising utility. In fact, [138] argues that, in con-
crete cases, the required pseudo sample size hyperparameter could be larger than the
size of the table. Experimental studies [21, 22] appear to confirm that such distorting
priors are indeed necessary for released synthetic data to provide acceptable guaran-
tees, in the sense of Differential Privacy. See [138] for a recent survey of results about
synthetic data release and privacy.

In [107], Park and Jitkrittum propose a strategy for allowing posterior inference
obaying to Differential Privacy requirments by means of ABC. Specifically, their pro-
posal, the ABCDP mechanism, produces samples from an approximated posterior
distribution obeying to the notion of Differential Privacy. The key idea is that the
ABC threshold, ε, is related to the privacy guarantees in the posterior samples. In
order to obtain the smallest privacy loss, despite the repeated use of the data ( in the
typical comparison step in ABC), they rely on Renyi Differential Privacy [99]. Further
considerations about the connection between ABC and data anonymization are in
Chapter 9.

8.2 group based anonymization schemes

A dataset consists of a collection of rows, where each row corresponds to an individ-
ual. Formally, let R and S, ranged over by r and s respectively, be finite non-empty
sets of nonsensitive and sensitive values, respectively. A row is a pair (s, r) ∈ S× R.
There might be more than one sensitive and nonsensitive characteristic, so s and r
can be thought of as vectors.

A group-based anonymization algorithm A is an algorithm that takes a multiset of
rows as input and yields an obfuscated table as output, according to the scheme

multiset of rows −→ cleartext table −→ obfuscated table.

Formally, fix N > 1. Given a multiset of N rows, d = {|(s1, r1), ..., (sN, rN)|}, A will first
arrange d into a sequence of groups, x = g1, ...,gk, the cleartext table. Each group in
turn is a sequence of ni rows, gi = (si,1, ri,1), ..., (si,ni , ri,ni), where ni can vary from
group to group. Note that both the number of groups, k > 1, and the number of rows
in each group, ni, depend in general on the original multiset d as well as on proper-
ties of the considered algorithm – such as ensuring k-anonymity and `-diversity (see
below). The obfuscated table is then obtained as a sequence x∗ = g∗1, ...,g∗k, where the
obfuscation of each group gi is a pair g∗i = (mi, li). Here, each mi = si,1, ..., si,ni is
the sequence of sensitive values occurring in gi; each li, called generalized nonsensitive
value, is one of the following:

• for horizontal schemes, a superset of gi’s nonsensitive values: li ⊇ {ri,1, ..., ri,ni};

• for vertical schemes, the multiset of gi’s nonsensitive values: li = {|ri,1, ..., ri,ni |}.

Note that the generalized nonsensitive values in vertical schemes include all and
only the values, with multiplicities, found in the corresponding original group. On
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the other hand, generalized nonsensitive values in horizontal schemes may include
additional values, thus generating a superset. What values enter the superset depends
on the adopted technique, e.g., micro-aggregation, generalization or suppression; in
any case this makes the rows in each group indistinguishable when projected onto
the nonsensitive attributes. For example, each of 45501, 45502 is generalized to the
superset 4550∗ = {45500, 45501, ..., 45509} in the first group of Table 10 (b).

Sometimes it will be notationally convenient to ignore the group structure of
x altogether, and regard the cleartext table x simply as a sequence of rows,
(s1, r1), (s2, r2), ..., (s1, sN). Each row (sj, rj) is then uniquely identified within the
table x by its index 1 6 j 6 N.

An instance of horizontal schemes is k-anonymity [147]: in a k-anonymous table,
each group consists of at least k> 1 rows, where the different nonsensitive values
appearing within each group have been generalized so as to make them indistin-
guishable. In the most general case, different occurrences of the same nonsensitive
value might be generalized in different ways, depending on their position (index)
within the table x: this is the case of local recoding. Alternatively, each occurrence of
a nonsensitive value is generalized in the same way, independently of its position:
this is the case of global recoding. Further conditions may be imposed on the resulting
anonymized table, such as `-diversity, requiring that at least ` > 1 distinct values of
the sensitive attribute appear in each group. Table 10 (bottom-left) shows an example
of k= 2-anonymous and ` = 2-diverse table: in each group the nonsensitive values are
indistinguishable and two different sensitive values (diseases) appear in each group.

An instance of vertical schemes is Anatomy [158]: within each group, the link be-
tween the sensitive and nonsensitive values is hidden by randomly permuting one
of the two parts, for example the nonsensitive one. As a consequence, an anatomized
table may be seen as consisting of two sub-tables: a sensitive and a nonsensitive one.
Table 10 (c) shows an example of anatomized table: in the nonsensitive sub-table, the
reference to the corresponding sensitive values is lost; only the multiset of nonsensi-
tive values appears for each group.

Remark 5 (disjointness) Some anonymization schemes enforce the following dis-
jointness property on the obfuscated table x∗:

Any two generalized nonsensitive values in x∗ are disjoint: i 6= j implies
li ∩ lj = ∅.

We need not assume this property in our treatment – although assuming it may be
computationally useful in practice (see Section 8.3).

For ease of reference, we provide a summary of the notation that will be used
throughout the chapter in Table 11.

8.3 a unified probabilistic model

We provide a unified probabilistic model for reasoning on group-based schemes. We
first introduce the random variables of the model together with their joint density
function. On top of these variables, we then define the probability distributions on
S × R that formalize the learner and the attacker knowledge, given the obfuscated
table.
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Table 11: Summary of notation.

Symbol Description Symbol Description

A attacker β θR|S hyperparameters

α θS hyperparameters δ nonsensitive freq.

γ sensitive freq. g∗i obfuscated group i

gi group i GTA global threat level

ETV emp. total variation k number of groups

I evaluator (ideal) k min size of groups s

li group i nonsens. values L learner

` min n. of sens. val. mi group i sens. values

N n. of rows in the table θ parameters of R,S

θR|s parameters of R|s θS parameters of S

R nonsensitive r.v. S sensitive r.v.

x clear text table x∗ obfuscated table

Ti rel. threat level TV total variation

RF rel. faithfulness level v victim

8.3.1 Random variables

The model consists of the following random variables.

• θ, taking values in the set of full support probability distributions Θ over S×R,
is the joint probability distribution of the sensitive and nonsensitive attributes
in the population.

• X = G1, ...,Gk, taking values in the set of cleartext tables X. Each group
Gi is in turn a sequence of ni > 1 consecutive rows in X, Gi =

(Si,1,Ri,1), ..., (Si,ni ,Ri,ni). The number of groups k is not fixed, but depends
on the anonymization scheme and the specific tuples composing X.

• X∗ = G∗1, ...,G∗k, taking values in the set of obfuscated tables X∗.

We assume that the above three random variables form a Markov chain:

θ −→ X −→ X∗ . (117)

In other words, uncertainty on X is driven by θ, and X∗ solely depends on the table
X and the underlying obfuscation algorithm. As a result, X∗ ⊥⊥ θ | X. Equivalently,
the joint probability density function f(·, ·, ·) of these variables can be factorized as
follows, where θ, x, x∗ range over Θ, X and X∗, respectively:

f(θ, x, x∗) = f(θ)f(x|θ)f(x∗|x) . (118)

Additionally, we shall assume the following:
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• θ ∈ Θ is encoded as a pair θ = (θS, θR|S) where θR|S = {θR|s : s ∈ S}. Here,
θS are the parameters of a full support categorical distribution over S, and, for
each s ∈ S, θR|s are the parameters of a full support categorical distribution
over R. For each (s, r) ∈ S×R

f(s, r|θ) = f(s|θ) · f(r|θR|s).

We also posit that the θS and the θR|s’s are chosen independently, accord-
ing to Dirichlet distributions of hyperparameters α = (α1, ...,α|S|) and βs =

(βs1, ...,βs
|R|

), respectively. In other words

f(θ) = Dir(θS |α) ·
∏
s∈S

Dir(θR|s |β
s) . (119)

The hyperparameters α and β may incorporate prior (background) knowledge
on the population, if this is available. Otherwise, a uniformative prior can be
chosen setting αi = βsj = 1 for each i, s, j. When r ∈ R is a tuple of attributes,
we shall assume conditional independence of those attributes given s, so that
the joint probability of r|s can be determined by factorization 2.

• The N individual rows composing the table x, say (s1, r1), ..., (sN, rN), are as-
sumed to be drawn i.i.d. according to f(·|θ). Equivalently

f(x|θ) = f(s1, r1|θ) · · · f(sN, rN|θ) . (120)

Instances of the above model can be obtained by specifying an anonymization mech-
anism A. In particular, the distribution f(x∗|x) only depends on the obfuscation al-
gorithm that is adopted, say obf(x). In the important special case obf(x) acts as a
deterministic function on tables, f(x∗|x) = 1 if and only if obf(x) = x∗, otherwise
f(x∗|x) = 0.

8.3.2 Learner and attacker knowledge

We shall denote by pL the probability distribution over S × R that can be learned
given the anonymized table x∗. This distribution we take to be the average of f(s, r|θ)
with respect to the density f(θ|X∗ = x∗). Formally, for each (s, r) ∈ S×R:

pL(s, r|x∗)
4
= Eθ∼f(θ|x∗)[f(s, r|θ)] =

∫
Θ

f(s, r|θ)f(θ|x∗)dθ. (121)

Of course, we can condition pL on any given r and obtain the conditional probability
pL(s|r, x∗). Equivalently, we can compute

pL(s|r, x∗)
4
= Eθ∼f(θ|x∗)[f(s|r, θ)] =

∫
Θ

f(s|r, θ)f(θ|x∗)dθ. (122)

In particular, one can read off this distribution on a victim’s nonsensitive attribute,
say rv, and obtain the corresponding distribution on S.

2 This assumption in some context may be strong. In the next chapter we introduce an ABC method
which allows overcoming it.
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We shall assume the attacker knows the values of X∗ = x∗ and the nonsensitive
value rv of a target individual, the victim; moreover the attacker knows the victim is an
individual in the table. Accordingly, in what follows we fix once and for all x∗ and
rv: these are the values observed by the attacker. Given knowledge of a victim’s
nonsensitive attribute rv and knowledge that the victim is actually in the table X, we
can define the attacker’s distribution on S as follows.

Let us introduce in the above model a new random variable V , identifying the index
of the victim within the cleartext table X. We posit that V is uniformly distributed on
{1, . . . ,N}, and independent from θ,X,X∗. Recalling that each row (Sj,Rj) is identified
within X by a unique index j, we can define the attacker’s probability distribution on
S, after seeing x∗ and rv, as follows, where it is assumed that f(RV = rv, x∗) > 0, that
is the observed victim’s rv is compatible with x∗:

pA(s|rv, x∗)
4
= f(SV = s | RV = rv, x∗) . (123)

The following crucial lemma provides us with a characterization of the above prob-
ability distribution that is only based on a selection of the marginals Rj given x∗. This
will be the basis for actually computing pA(s|rv, x∗). Note that, on the right-hand
side, only those rows whose sensitive value - known from x∗ - is s contribute to the
summation. A proof of the lemma is given in Appendix E.1.

Lemma 8.3.1 Let X = (Sj,Rj)j∈1...N. Let sj be the sensitive value in the j-th entry of x∗.
Let rv and x∗ such that f(RV = rv, x∗) > 0. Then

pA(s|rv, x∗) ∝
∑
j :sj=s

f(Rj = rv | x
∗) . (124)

Note that the disjointness of generalized nonsensitive values of the groups can
make the computation of (124) more efficient, restricting the summation on the right-
hand side to a unique group.

Example 1. In order to illustrate the difference between the learner’s and the at-
tacker’s inference, we reconsider the toy example at the beginning of this chapter.
Let x∗ be the 2-anonymous, 2-diverse Table 10(b). Assume the attacker’s victim is the
first individual of the original dataset, who is from Malaysia(=M) and lives in the
ZIP code 45501 area, hence rv = (M, 45501). Table 12 shows the belief probabilities
of the learner, pL(s|rv, x∗), and of the attacker, pA(s|rv, x∗), for the victim’s disease s.
We also include the random worlds model probabilities, pRW(s|rv, x∗), which are just
proportional to the frequency of each sensitive value within the victim’s group. Note
that the learner and the attacker distributions have the same mode, but the attacker
is more confident about his prediction of the victim’s disease. The random worlds
model produces a multi-modal solution.

As to the computation of the probabilities in Table 12, a routine application of the
equations (118) – (124) shows that pL and pA reduce to the expressions (125) and
(126) below, given in terms of the model’s density (118). The crucial point here is that
the adversary knows the group his victim is in, i.e., the first two lines of x∗ in the
example. Below, s ∈ S; for j = 1, 2, sj denotes the sensitive value of the j-th row, while
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Table 12: Posterior distributions of diseases for a victim with rv = (M, 45501), for the
anonymized x∗ in Table 10(b). NB: figures affected by rounding errors.

.

Heart Flu Stomach HIV Diabetes

pL(s|rv, x∗) 0.343 0.317 0.113 0.114 0.113

pA(s|rv, x∗) 0.580 0.420 0 0 0

pRW(s|rv, x∗) 0.500 0.500 0 0 0

x is a cleartext table, from which x−j is obtained by removing (sj, rv). It is assumed
that the obfuscation algorithm A is deterministic, so that f(x∗|x) ∈ {0, 1}.

pL(s|rv, x∗) ∝
∫
Θ
f(θ)f(s, rv|θ)

∑
x:A(x)=x∗

f(x|θ) dθ (125)

pA(sj|rv, x∗) ∝
∫
Θ
f(θ)f(sj, rv|θ)

∑
x−j:A(x)=x∗

f(x|θ) dθ . (126)

Unfortunately, the analytic computation of the above integrals, even for the consid-
ered toy example, is a daunting task. For instance, the summation in (125) has as
many terms as x∗-compatible tables x, that is 6.4× 105 for Example 1 – although the
resulting expression can be somewhat simplified using the independence assumption
(120). Accordingly, the figures in Table 12 have been computed resorting to simulation
techniques, see Section 8.5.

An alternative, more intuitive description of the inference process is as follows. The
learner and the attacker first learn the parameters θ given x∗, that is they evaluate
f(θDis|x

∗), f(θZIP|s|x
∗) and f(θNat|s|x

∗), for all s ∈ S. Due to the uncertainty on the
ZIP code and/or Nationality, learning θ takes the form of a mixture (this is akin to
learning with soft evidence, see Corradi et al. [26]). After that, the learner, ignoring
the victim is in the table, predicts the probability of rv, pL(rv|s, x∗), for all s, by us-
ing a mixture of Multinomial-Dirichlet. The attacker, on the other hand, while still
basing his prediction pA(rv|s, x∗) on the parameter learning outlined above, restricts
his attention to the first two lines of x∗, thus realizing that s ∈ {Heart, Flu}. Then,
by Bayes theorem, and adopting the relative frequencies of the diseases in x∗ as an
approximation of f(s|x∗), the posterior probability of the diseases for the victim can
be computed.

Remark 6 (attacker’s inference and forensic identification) The attacker’s inference
is strongly reminiscent of two famous settings in forensic science: the Island Problem
(IP) and the The Data Base Search Problem (DBS), see e.g. [3, 36] and more recently
[142]. In an island with N inhabitants a crime is committed; a characteristic of the
criminal (e.g. a DNA trait) is found on the crime scene. It is known that the island’s
inhabitants posses this characteristic independently with probability p. It is assumed
the existence of exactly one culprit C in the island. In IP, one island’s inhabitant I, the
suspect, is found to have the given characteristic, while the others are not tested. An
investigator is interested in the probability that I = C.

When we cast this scenario in our framework, the individuals in the table play the
role of the inhabitants (including the culprit), while rv plays the role of the character-
istic found on the crime scene, matching that of the suspect. In other words - perhaps
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ironically - our framework’s victim plays here the role of the suspect S, while our at-
tacker is essentially the investigator. Letting S = {0, 1} (innocent/guilty) and R = {0, 1}
(characteristic absent/present), the investigator’s information is then summarized by
an obfuscated horizontal table x∗ of N rows with as many groups, where exactly one
row, say the j-th, has Sj = 1 and R∗j = Rj = 1 (the culprit), while for i 6= j, Si = 0 and
R∗i = ∗ (N− 1 innocent inhabitants). Recalling that the variable V in our framework
represents the suspect’s index within the table, the probability that I = C is

Pr(V = j|RV = 1, x∗) = Pr(SV = 1|RV = 1, x∗)

= pA(s = 1|rv = 1, x∗) .

Then applying (124), we find

pA(s = 1|rv = 1, x∗) =
f(Rj = 1|x

∗)

f(Rj = 1|x∗) + (N− 1)f(Ri 6=j = 1|x∗)

=
1

1+ (N− 1)f(Ri 6=j = 1|x∗)
. (127)

For ease of comparison with the classical IP and DBS settings, rather than relying
on a learning procedure, we just assume here f(Ri = 1|x∗) = p for i 6= j, so that (127)
simplifies to

pA(s = 1|rv = 1, x∗) =
1

1+ (N− 1)p
(128)

which is the classical result known from the literature.
In DBS, the indicted exhibiting rv is found after testing 1 6 k < N individuals that
do not exhibit rv. This means the table x∗ consists now of k rows (s, r) = (0, 0) (the
k innocent, tested inhabitants not exhibiting rv), one row (s, r) = (1, 1) (the culprit)
and N− 1− k rows (s, r∗) = (0, ∗) (the N− 1− k innocent, non-tested inhabitants).
Accordingly, (127) becomes (letting j = k+ 1, and possibly after rearranging indices):

pA(s = 1|rv = 1, x∗) = (129)
f(Rk+1 = 1|x∗)

f(Rk+1 = 1|x∗) + kf(Ri∈{1,k} = 1|x
∗) + (N− 1− k)f(Ri>k+1 = 1|x∗)

.

Letting f(Ri = 1|x∗) = p for i > k+ 1, equation (129) becomes

pA(s = 1|rv = 1, x∗) =
1

1+ (N− 1− k)p

which again is the classical result known from the literature. Finally note that our
methodology also covers the possibility to learn about the probability of the charac-
teristic, f(Ri = 1|x∗), but here we have only stressed how the attacker strategy solves
the IP and DBS forensic problems. Uncertainty about population parameters and
identification has been considered in [20].

We now briefly discuss an extension of our framework to the more general case where
the attacker has only partial information about his victim’s nonsensitive attributes.
For a typical application, think of a dataset where R and S are individuals’ genetic
profiles and diseases, respectively, with an adversary knowing only a partial DNA
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profile of his victim; e.g., only the alleles at a few loci. Formally, fix a nonempty set
Y and let g : R → Y be a (typically non-injective) function, modeling the attacker’s
observation of the victim’s nonsensitive attribute. With the above introduced notation,
consider the random variable Y

4
= g(RV). It is natural to extend definition (123) as

follows, where g(rv) = yv ∈ Y and f(Y = yv, x∗) > 0:

pA(s|yv, x∗)
4
= f(SV = s | Y = yv, x∗) . (130)

It is a simple matter to check that (124) becomes the following, where g−1(y) ⊆ R

denotes the counter-image of y according to g:

pA(s|rv, x∗) ∝
∑
j :sj=s

f(Rj ∈ g−1(yv) | x
∗) . (131)

Also note that one has f(Rj ∈ g−1(yv) | x
∗) =

∑
r∈g−1(yv)

f(Rj = r | x∗). An extension
to the case of partial and noisy observations can be modeled similarly, by letting
Y = g(RV ,E), where E is a random variable representing an independent source of
noise. We leave the details of this extension for future work.

8.4 measures of privacy threat and utility

We are now set to define the measures of privacy threat and utility we are after. We
will do so from the point of view of a person or entity, the evaluator, who:

(a) has got a copy of the cleartext table x, and can build an obfuscated version x∗

of it;

(b) must decide whether to release x∗ or not, weighing the privacy threats and the
utility implied by this act.

The evaluator clearly distinguishes the position of the learner from that of the attacker.
The learner is interested in learning from x∗ the characteristics of the general popu-
lation, via pL. The attacker is interested in learning from x∗ the sensitive value of a
target individual, the victim, via pA. The last probability distribution is derived by
exploiting the additional piece of information that the victim is an individual known
to be in the original table, of whom the attacker gets to know the nonsensitive values.
As pointed out in [100], information about the victim’s nonsensitive attributes can
be easily gathered from other sources such as personal blogs and social networks.
These assumptions about the attacker’s knowledge allow a comparison between the
risks of a sensitive attribute disclosure for an individual who is part of the table and for
individuals who are not. The evaluator adopts the following relative, or differential,
point of view:

a situation where, for some individual, pA conveys much more informa-
tion than that conveyed by pL (learner’s legitimate inference on general
population), must be deemed as a privacy threat.

Generally speaking, the evaluator should refrain from publishing x∗ if, for some in-
dividual, the level of relative privacy threat exceeds a predefined threshold. Concern-
ing the definition of the level of threat, the evaluator adopts the following Bayesian
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decision-theoretic point of view. Whatever distribution p is adopted to guess the
victim’s sensitive value, the attacker is faced with some utility function. Here, we
consider a simple 0-1 utility function for the attacker, yielding 1 if the sensitive at-
tribute is guessed correctly and 0 otherwise. The resulting attacker’s expected utility
is maximized by the Bayes act, i.e., by choosing s = argmaxs ′∈S p(s

′), and equals p(s).
The above discussion leads to the following definitions. Note that we consider threat
measures both for individual rows and for the overall table. For each threatened row,
the relative threat index Ti says how many times the probability of correctly guess-
ing the secret is increased by the attacker’s activity, i.e., by exploiting the knowledge
of the victim’s presence in the table. At a global, table-wise level, the evaluator also
considers the fraction GTA of rows threatened by the attacker.

Definition 6 (privacy threat) We define the following privacy threat measures.

• Let q be a full support distribution on S and (s, r) be a row in x. We say (s, r) is
threatened under q if q(s) = maxs ′ q(s ′), and that its threat level under q is q(s).

• For a row (s, r) in x that is threatened by pA(·|r, x∗), its relative threat level is

Ti(s, r, x, x∗)
4
=

pA(s|r, x∗)
pL(s|r, x∗)

. (132)

• Let NA(x, x∗) be the number of rows (s, r) in x threatened by pA(·|r, x∗). The global
threat level GTA(t, x∗) is the fraction of rows that are threatened, that is

GTA(x, x∗)
4
=

NA(x, x∗)
N

. (133)

Similarly, we denote by GTL(x, x∗) the fraction of rows (s, r) in x that are threatened
under pL(·|r, x∗).

• As a measure of how better the attacker performs than learner at a global level, we
introduce relative global threat:

RGTA(x, x∗)
4
= max{0, GTA(x, x∗) − GTL(x, x∗)} . (134)

Remark 7 (setting a threshold for Ti) A difficult issue is how to set an acceptable
threshold for the relative threat level Ti. This is conceptually very similar to the ques-
tion of how to set the level of ε in differential privacy: its proponents have always
maintained that the setting of ε is a policy question, not a technical one. Much de-
pends on the application at hand. For instance, when the US Census Bureau adopted
differential privacy, this task was delegated to a committee (the Data Stewardship
Executive Policy committee, DSEP); details on the operations of this committee can
be found in [51, Sect.3.1]. We think that similar considerations apply when setting the
threshold of Ti. For instance, an evaluator might consider the distribution of the Ti
values in the dataset (see Figure 17a–17h in Section 8.6) and then choose a percentile
as a cutoff. This is reminiscent of the strategy for tuning the tolerance threshold in
ABC methods. See also the introductory part of Chapter 9 for a discussion of the
connection between these two thresholds.
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The evaluator is also interested in the potential utility conveyed by an anonymized
table for a learner. Note that the learner’s utility is distinct from the attacker’s one.
Indeed, the learner’s interest is to make inferences that are as close as possible to the
ones that could be done using the cleartext table. Accordingly, obfuscated tables that
are faithful to the original table are the most useful. This leads us to compare two
distributions on the population: the distribution learned from the anonymized table,
pL, and the ideal (I) distribution, pI, one can learn from the cleartext table x. The latter
is formally defined as the expectation3 of f(s, r|θ) under the posterior density f(θ|x).
Explicitly, for each (s, r)

pI(s, r|x)
4
=

∫
Θ

f(s, r|θ)f(θ|x) dθ . (135)

Note that the posterior density f(θ|x) is in turn a Dirichlet density (see next section)
and therefore a simple closed form of the above expression exists, based on the fre-
quencies of the pairs (s, r) in x. In particular, recalling the αs,βsr notation for the
prior hyperparameters introduced in Section 8.3, let α0 =

∑
s αs and βs0 =

∑
r β
s
r,

and γs(x) and δsr(x) denote the frequency counts of s and (s, r), respectively, in x.
Then we have

pI(s, r|x) =
αs + γs(x)

α0 +N
· β
s
r + δ

s
r(x)

βs0 + γs(x)
. (136)

The comparison between pL and pI can be based on some form of distance between
distributions. One possibility is to rely on total variation (a.k.a. statistical) distance.
Recall that, for discrete distributions q,q ′ defined on the same space X, the total
variation distance is defined as

TV(q,q ′)
4
= sup

A⊆X
|q(A) − q ′(A)| =

1

2

∑
x

|q(x) − q ′(x)| .

Note that TV(q,q ′) ∈ [0, 1]. The total variation distance is a quite conservative notion
of diversity since it based on the event that shows the largest difference between
distributions. This allows evaluating the greatest error made by a learner when using
pL in place of pI.

Definition 7 (faithfulness) The relative faithfulness level of x∗ w.r.t. x is defined as

RF(x, x∗)
4
= 1− TV

(
pI(·| x) , pL(·| x∗)

)
.

Remark 8 In practice, the total variation of two high-dimensional distributions might
be very hard to compute. Pragmatically, we note that forM large enough, TV(q,q ′) =
1
2Ex∼q(x)[|1−

q ′(x)
q(x) |] ≈

1
2M

∑M
i=1 |1−

q ′(xi)
q(xi)

|, where the xi are drawn i.i.d. according
to q(x). Then a Monte Carlo estimate of the total variation is the empirical total vari-
ation defined below, where (si, ri), for i = 1, ...,M, are generated i.i.d. according to
pI(·, ·| x):

ETV(x, x∗)
4
=

1

2M

M∑
i=1

∣∣∣∣1− pL(si, ri | x∗)
pI(si, ri | x)

∣∣∣∣ . (137)

3 Another sensible choice would be taking pI(s, r| x) = f(s, r|θMAP), where θMAP = argmaxθ f(θ|x) is the
maximum a posteriori distribution given x. This choice would lead to essentially the same results.
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Remark 9 (ideal knowledge vs. attacker’s knowledge) The following scenario is
meant to further clarify the extra power afforded to the attacker, by the mere knowl-
edge that his victim is in the table. Consider a trivial anonymization mechanism that
simply releases the cleartext table, that is x∗ = x. As pL = pI in this case, it would be
tempting to conclude that the attacker cannot do better than the learner, hence there
is no relative risk involved. However, this conclusion is wrong: for instance, pI(·|rv, x)
can fail to predict the vicitim’s correct sensitive value if this value is rare, as we show
below.

For the sake of simplicity, consider the case where the observed victim’s nonsensi-
tive attribute rv occurs just once in x in a row (s0, rv). Also assume a noninformative
Dirichlet prior, that is, in the notation of Section 8.3, set the hyperparameters to
αs = βsr = 1 for each s ∈ S, r ∈ R. Then, simple calculations based on (136) and
the attacker’s distribution characterization (124), show the following. Here for each
s ∈ S, γs = γs(x) denotes the frequency count of s in x, and c a suitable normalizing
constant:

pI(s|rv, x) =


1+γs
|R|+γs

c if s 6= s0
2(1+γs0)

|R|+γs0
c if s = s0

(138)

pA(s|rv, x∗) =

{
0 if s 6= s0
1 if s = s0 .

As far as the target individual (s0, rv) ∈ x is concerned, we see that while pA predicts
s0 with certainty, predictions based on pL = pI will be blatantly wrong, if there are
values s 6= s0 that occur very frequently in x, while s0 is rare, andN is large compared
to |R|. To make an extreme numeric case, consider |S| = 2, |R| = 1, 000 and γs0 = 1

in a table x of N = 106 rows: plugging these values in (138) yields pL(s0|rv, x∗) =

pI(s0|rv, t) ≈ 0.004, hence a relative threat for (s0, rv) of 1/pL(s0|rv, x∗) ≈ 250.

8.5 learning from the obfuscated table by mcmc

Estimating the privacy threat and faithfulness measures defined in the previous sec-
tion, for specific tables x and x∗, implies being able to compute the distributions (121),
(122) and (124). Unfortunately, these distributions, unlike (135), are not available in
closed form, since f(θ|X∗ = x∗) = f(θ|x∗) cannot be derived analytically. Indeed,
in order to do so, one should integrate f(θ, x|x∗) with respect to the density f(x|x∗),
which appears not to be feasible.

To circumvent this difficulty, we will introduce a Gibbs sampler, defining a Markov
chain {Zi}i>0, with Zi = (θi,Xi), converging to the density

f(θ = θ,X = x|x∗) =

f
(
θ = θ, S1 = s1,R1 = r1, ...,SN = sN,RN = rN | x∗

)
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(note that the sensitive values sj in X are in fact fixed and known, given x∗). General
results (see Chapter 2) ensure that, if θ0, θ1, ... are the samples drawn from the θ-
marginal of such a chain, then for each (s, r) ∈ S×R

1

M

M∑
`=0

f(s, r|θ`)→
∫
Θ

f(s, r|θ)f(θ|x∗)dθ = pL(s, r|x∗) (139)

1

M

M∑
`=0

f(s|r, θ`)→
∫
Θ

f(s|r, θ)f(θ|x∗)dθ = pL(s|r, x∗) (140)

almost surely as M −→ +∞. Therefore, by selecting an appropriately large M, one
can build approximations of pL(s, r|x∗) and pL(s|r, x∗) using the arithmetical means
on the left-hand side of (139) and (140), respectively. Moreover, for each index 1 6 j 6
N, using samples drawn from the Rj-marginals of the same chain, one can build an
estimate of f(Rj = rj| x∗). Consequently, using (124) (resp. (131), in the case of partial
observation) one can estimate pA(s|rv, x∗) (resp. pA(s|yv, x∗)) for any given rv (resp.
yv).

In the rest of the section, we will first introduce MCMC for this problem and then
show its convergence. We will then discuss details of the sampling procedures for
each of the two possible schemes, horizontal and vertical.

8.5.1 Definition and convergence of the Gibbs sampler

Simply stated, our problem is sampling from the marginals of the following target
density function, where x∗ = g∗1, ...,g∗k and x = g1, ...,gk (note that the number of
groups k is known and fixed, given x∗),

f(θ, x|x∗) . (141)

Note that the rj’s of interest, for 1 6 j 6 N, are the elements of the groups gi’s, for
1 6 i 6 k. The Gibbs scheme allows for some freedom as to the blocking of variables.
Here we consider k+ 1 blocks, coinciding with θ and g1, ...,gk. This is natural as, in
the considered schemes, (Ri,Si) ⊥⊥ (Rj,Sj)|θ, x∗ for (Ri,Si) and (Rj,Sj) occurring in
distinct groups. Formally, let z0 = θ0, x0 (with x0 = g01, ...,g0k) denote any initial state
satisfying f(θ0, x0|x∗) > 0. Given a state at step h, zh = θh, xh (xh = gh1 , ...,ghk ), one

lets zh+1
4
= θh+1, xh+1, where xh+1 = gh+11 , ...,gh+1k and

θh+1 is drawn from f(θ|xh, x∗) (142)

gh+1i is drawn from f(g|θh+1,gh+11 , ...,gh+1i−1 ,ghi+1, ...,ghk , x∗)

(1 6 i 6 k). (143)

Running this chain presupposes we know how to sample from the full conditional
distributions on the right-hand side of (142) and (143). In particular, there are several
possible approaches to sample from g. In this subsection we provide a general discus-
sion about convergence, postponing the details of sampling from the full conditionals
to the next subsection.

Let us denote by x−i
4
= g1, ...,gi−1,gi+1, ...,gk the table obtained by removing the

i-th group gi from x. The following relations for the full conditionals of interest can
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be readily checked, relying on the conditional independencies of the model (118) and
(120) (we presuppose that in each case the conditioning event has nonzero probabil-
ity)

f(θ|x, x∗) = f(θ|x) (144)

f(g|θ, x−i, x∗) ∝ f(g|θ)f(x∗|g, x−i) (1 6 i 6 k). (145)

As we shall see, each of the above two relations enables sampling from the densities
on the left-hand side. Indeed, (144) is a posterior Dirichlet distribution, from which
effective sampling can be easily performed (see next subsection). A straightforward
implementation of (145) in a Rejection Sampling (RS) perspective is as follows: draw g

according to f(g|θ) and accept it with probability f(x∗|g, x−i) = f(x∗|x). Here, f(x∗|x)
is just the probability that the obfuscation algorithm returns x∗ as output when given
x = g, x−i as input 4. Actually, to make sampling from the rhs of (145) effective,
further assumptions will be introduced (see next subsection). Note that, since the
sensitive values are fixed in x and known from the given x∗, sampling g in (145) is
actually equivalent to sampling the nonsensitive values of the group.

In addition to (145), to simplify our discussion about convergence, we shall hence-
forth assume that, for each group index 1 6 i 6 k, the set of instances of the i-th
group that are compatible with x∗ does not depend on the rest of the table, x−i. That
is, we assume that for each i (1 6 i 6 k):

{g : f(x∗|g, x−i) > 0} = {g : f(x∗|g, x
′
−i) > 0} ∀ x−i and x

′
−i

4
= Gi . (146)

For instance, (146) holds true if the anonymization algorithm ensures x∗ is indepen-
dent from xi−1 given a i-th group g: x∗ ⊥⊥ x−i |g.

Let z = (θ,g1, ...,gk) denote a generic state of this Markov chain. Under the as-
sumption (146), the support of the target density f(z|x∗) is the product space

Z
4
= Θ× G1 × · · · × Gk . (147)

By this, we mean that {z : f(z|x∗) > 0 } = Z. This is a consequence of: (a) the fact
that Dirichlet only considers full support distributions; and (b) equation (145), taking
into account the assumption (146). Let Z0,Z1, ... denote the Markov chain defined
by the sampler over Z and denote by κ(·|·) its conditional kernel density over Z.
Slightly abusing notation, let us still indicate by f(·|x∗) the probability distribution
over Z induced by the density f(z|x∗). Convergence in distribution follows from the
following proposition, which is an instance of general results dealt with in Section
2.3.3.1.

Proposition 4 (convergence) Assume (146). For each (measurable) set A ⊆ Z such that
f(A|x∗) > 0 and each z0 ∈ Z, we have κ(Z1 ∈ A|Z0 = z0) > 0. As a consequence, the
Markov chain {Zi}i>0 is irreducible and aperiodic, and its stationary density is f(z|x∗) in
(141).

4 A similar reasoning applies in the likelihood-free method proposed in Chapter 9.
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Proof Let us assume that (146) holds and that Z is the product space defined in
(147). It follows that both (144) and (145) are well-defined for each z ∈ Z. Thus, being
κ(·|·) the product among the full conditional distributions, from the Fubini’s theorem
follows that

∫
A

κ(z|Z0 = z0)dz > 0. �

8.5.2 Sampling from the full conditionals

Let us consider (144) first. It is a standard fact that the posterior of the Dirichlet distri-
bution f(θ|x), given theN i.i.d. observations x drawn from the categorical distribution
f(·|θ), is still a Dirichlet, where the hyperparameters have been updated as follows.
Denote by γ(x) = (γ1, ...,γ|S|) the vector of the frequency counts γi of each si in x.
Similarly, given s, denote by δs(x) = (δs1, ..., δs

|R|
) the vector of the frequency counts

δi of the pairs (ri, s), for each ri, in x. Then, for each θ = (θS, θR|S), we have

f(θ|x) = Dir(θS | α+ γ(x)) ·
∏
s∈S

Dir(θR|s | β
s + δs(x)) . (148)

Let us now discuss (145). In what follows, for the sake of notation we shall write
a generic i-th group as gi = (s1, r1), ..., (sn, rn) (thus avoiding double subscripts),
and let g∗i = (mi, li) denote the corresponding obfuscated group in x∗. As already
observed, given an obfuscated i-th group g∗i = (li,mi), when sampling a i-th group
g from (145), one actually needs to generate only the nonsensitive values of g, which
are constrained by li, as the sensitive ones are already fixed by the sequence mi.
In what follows, to make sampling from (145) effective, will shall work under the
following assumptions, which are stronger than (146).

(a) Deterministic obfuscation function: for each x and x∗, f(x∗|x) is either 0 or 1.

(b) For each 1 6 i 6 k, letting g∗i = (li,mi), with mi = s1, ..., sn, the i-th obfuscated
group in x∗, the following holds true:

Horizontal schemes

Gi={g = (s1, r1), ..., (sn, rn) : r` ∈ li for 1 6 ` 6 n } (149)

Vertical schemes

Gi={g = (s1, ri1), ..., (sn, rin) : for ri1 , ..., rin a permutation of li}. (150)

Assumption (a) is realistic in practice. In horizontal schemes, assumption (b) makes
the considered sets Gi’s possibly larger than the real ones, that is li ⊃ {r1, ..., rn}.
This happens, for instance, if in certain groups the zip code is constrained to just,
say, two values, while the generalized code "5013*" allows for all values in the set
{50130, . . . , 50139}. We will not attempt here a formal analysis of this assumption. In
some cases, such as in schemes based on global recoding, this assumption is realistic.
Otherwise, we only note that the support Z of the resulting Markov chain may be
(slightly) larger than the one that would be obtained not assuming (149) or (150).
Heuristically, this leads one to sampling from a more dispersed density than the
target one. At least, the resulting distributions can be taken to represent a lower
bound of what the attacker can actually learn.
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Figure 16: Sampling from f(g|θ, x−i, x∗) (g ∈ Gi) for horizontal schemes, across all the groups.

Under assumptions (a) and (b) above, for each 1 6 i 6 k, it holds that g ∈ Gi if and
only if f(x∗|g, x−i) = 1. Therefore sampling according to the right-hand side of (145)
reduces to the following:

draw g ∈ Gi with probability ∝ f(g|θ) (1 6 i 6 k). (151)

We discuss now how to implement (151) effectively. This will achieve sampling from
the full conditionals (145) without resorting to a presumably inefficient RS method.
We deal with the two cases, horizontal and vertical, separately.

horizontal schemes In order to generate g = (r1, s1), ..., (rn, sn) ∈ Gi, for each
` = 1, ..,n, we draw r` ∈ li with probability∝ f(r`|s`, θ). Explicitly, (145) now becomes

f(g|θ, x−i, x∗) =


0 if g /∈ Gi∏n
`=1

f(r`|s`, θ)∑
r∈li f(r|s`, θ)

if g ∈ Gi
(152)

thus satisfying (151). Note that this is equivalent to sampling each row independently.
The sampling process of f(g|θ, x−i, x∗) for horizontal schemes across all the groups
of the table is illustrated graphically in Fig. 16.

vertical schemes Let li = {| r1, ..., rn |}. We have that g ∈ Gi if and only if
g = (s1, ri1), ..., (sn, rin), for some permutation (ri`)16`6n of r1, ..., rn. Here, sam-
pling the nonsensitive values of g row by row would involve to gradually reduce the
sample space. A sampling procedure along these lines is possible, but nontrivial, see
Appendix E.2. Another possibility is to resort to ABC methods as shown in Chapter
9.

Here we discuss a more straightforward sampling procedure, based on generating
gi ∈ Gi in a single shot. We adopt a single-iteration Metropolis within Gibbs scheme.
Essentially, this consists in running a Metropolis method that targets the distribution
∝ f(g|θ) with support Gi, for one iteration 5. Specifically, let us write the current value
of the i-th group in the Gibbs Markov chain as ghi . The Metropolis step consists in

5 Note that here we only assume that the obfuscation function is such that f(x∗|x) represents a multiplica-
tive constant in (145). Thus, in Anatomy the assumption that the obfuscation function is deterministic,
i.e., Assumption (a), is slightly relaxed.
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drawing g ∈ Gi according to a proposal distribution J(g|ghi ) and accepting it, that is
letting gh+1i = g, with probability

ε
4
= min

{
1,
f(g|θ)J(ghi |g)

f(ghi |θ)J(g|g
h
i )

}
(153)

while keeping gh+1i = ghi with probability 1 − ε. The resulting MCMC method is
an example of the MwG introduced in Section 2.3.4 As to the proposal distribution
J(g|ghi ), a possibility is generating g ∈ Gi via a pure random permutation of the n
nonsensitive values in li; or just to swap the nonsensitive values of two randomly
chosen positions in ghi . In both cases, the proposal is symmetric, and (153) simpli-
fies accordingly as follows, where r1, ..., rn is the sequence of sensitive values in the
poposed g:

ε = min
{
1,
∏n
`=1 f(r`|s`, θ)∏n
`=1 f(r

h
` |s`, θ)

}
.

8.6 experiments

We have put a proof-of-concept implementation of our method at work on a subset of
the Adult dataset extracted by Barry Becker from the 1994 US Census database and
available from the UCI machine learning repository [75]. This is a common bench-
mark for experiments on anonymization [114]. In particular, we have focused on the
subset of 5692 rows also considered by the authors of [114], with the following cate-
gorical attributes: sex, age, race, marital status, education, native country, workclass, salary
class, occupation, with occupation (14 values) considered as the only sensitive attribute.
We consider the case in which both the learner and the attacker have no prior infor-
mation about the phenomena in the general population and assume non-informative
prior distributions (with all the hyperparameters equal to 1). We will discuss imple-
mentation and results details separately for vertical and horizontal schemes. We will
then briefly discuss convergence issues of the employed MCMC method.

8.6.1 Horizontal schemes: k-anonymity

Using the arx anonymization tool [113] we obtained two different k-anonymous ver-
sions of the considered dataset, enjoying respectively k-anonymity and `-diversity6

for k = ` = 4 and k = ` = 6. The average size of the groups was respectively of 38

rows (k = ` = 4) and of 355 rows (k = ` = 6).
The results we have obtained are summarized in Table 13. For reference, we in-

clude the following information in the last two lines: baseline accuracy, the fraction
of rows correctly classified using the empirical distribution obtained from the fre-
quencies of the sensitive values in the anonymized table, i.e., the fraction of the most
frequent sensitive value; and ideal accuracy, the fraction of tuples threatened under pI.
As a further element of comparison, we also consider an attacker whose reasoning is
based on the random worlds models, and include in the table GTRW, the fraction of

6 Recall that `-diversity requires at least ` distinct values of the sensitive attribute in each group.
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Table 13: Summary of threat and faithfulness measures for anonymization according to k-
anonymity and `- diversity.

Group size and diversity

k = ` = 4 k = ` = 6

Global threat level under pA GTA 0.2930 0.2994

Global threat level under pL GTL 0.2681 0.2756

Global threat level under pRW GTRW 0.2131 0.2890

Relative global threat RGTA 0.0249 0.0232

Empirical relative faithfulness level RF 0.3106 0.3011

Absolute error under pA ABSA 9795.58 9699.09

Absolute error under pRW ABSRW 9980.35 9451.53

Baseline accuracy 0.1656

Ideal accuracy 0.3534

rows correctly classified assuming all tables compatible with x∗ equally likely. Like
in [73], we compute ABSA and ABSRW, the absolute error under the distribution de-
rived under pA and under the random worlds distribution pRW, respectively. ABS is

defined as
N∑
i=1

∑
s∈S

|1{si = s}−p(s|ri, x∗)|, where p(·) might be either of pA(·) or pRW(·).

Note that, since the considered anonymized tables do not enjoy disjointness between
groups (see Remark 5), also in the random worlds perspective the probability of each
sensitive attribute may well be > 1/`. In our experiments, when ` = 4 the attacker
outperforms random worlds classification, while when a more powerful obfuscation
is adopted the two results are quite similar.

The remaining rows in Table 13 consider the privacy threats and faithfulness mea-
sures introduced in Section 8.4. As a general comment, small variations of ` and/or k
do not produce dramatic changes. The faithfulness level is stable, but does not reach
a satisfactory level. The attacker is anyway in a position to correctly classify the sensi-
tive attribute of individuals in the table ≈ 2.3− 2.5% more often than the learner. We
found the maximum value of TiA for the threatened rows is about 13.8, meaning the
attacker can be up to ≈14 times more confident than the learner about the guessed
value.

A more informative summary of our analysis is provided by the scatter plots and
histograms of Figure 17. The scatter plots are obtained from the threat levels under
pL and under pA. The number of rows (s, r) in which pA(s|r, x∗) > pL(s|r, x∗) roughly
equals those in which pA(s|r, x∗) 6 pL(s|r, x∗), although globally the attacker has a
slight advantage in terms of number of threatened rows. In Figure 17 we also report
the empirical distribution log2 TiA for tuples threatened under pA and under pL.
We also have evidence of positive skewness, as shown by the value of γ (the third
standardized moments of the empirical distributions). Recalling that log2 TiA = 1

means pA(s|r, x∗) = 2pL(s|r, x∗), the histograms show that pA(s|r, x∗) is often more
than twice pL(s|r, x∗) leading to a log2 TiA > 1. In particular, when k = ` = 4, log2 TiA

is at least 1 for ≈ 6% of the individuals threatened under pA, meaning ≈ 0.6% of
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Table 14: Summary of threat and faithfulness measures for anonymization according to
Anatomy.

Group size and diversity

` = 4 ` = 6

Global threat level under pA GTA 0.3273 0.2396

Global threat level under pL GTL 0.2653 0.2136

Global threat level under pRW GTRW 0.1669 0.1689

Relative global threat RGTA 0.0620 0.0260

Empirical relative faithfulness level RF 0.6493 0.5341

Absolute error under pA ABSA 8391.66 9276.25

Absolute error under pRW ABSRW 9471.94 9889.07

Baseline accuracy 0.1656

Ideal accuracy 0.3534

the whole table. Conversely, log2 TiA is close to 0 for most of the rows in which
pA(s|r, x∗) 6 pL(s|r, x∗).

8.6.2 Vertical schemes: Anatomy

Using a freely available anonymization tool [118], we have obtained two anatomized
versions of the considered dataset, with groups of size ` = 4 and ` = 6, respectively.
The resulting tables also enjoy `-diversity. The results we have obtained are summa-
rized in Table 14. Concerning the random worlds approach, we note the following.
Anatomy partitions the tables in groups all of size `. Therefore, although disjointness
is not satisfied, just as in the horizontal case, the sensitive attribute frequencies equal
1/` in each group. This implies that the probability of a sensitive value depends on
how many groups contain the victim’s nonsensitive attributes and on their frequen-
cies in each group, leading often to multimodal distributions. We assume that a guess
may be obtained randomly choosing between the equally likely sensitive attributes.
Accordingly, the fractions of threatened rows, GTRW, are averaged over 500 different
sampling. Here, it is apparent that the our attacker is able to classify better than the
random worlds scenario. We note that, as ` increases from 4 to 6, the fraction of rows
threatened under the distributions derived by the learner (GTL) and by the attacker
(GTA) decreases significantly. Moreover, as ` grows both the relative threat RGTA

and the faithfulness level RF decrease, which implies a trade-off between privacy
and the utility conveyed by the table.

Again, for a more informative summary of our analysis, we look at scatter plots
and histograms, displayed in Figure 18, where we compare pA and pL on threatened
rows. It is apparent here that the attacker is more confident than the learner in the
majority of the cases, even when focusing on the rows threatened under pL. This is
in contrast with the horizontal case, where the attacker exhibits smaller threat levels
on the rows threatened under pL (Figure 17, (d) and (h)). As far as the histograms
are concerned, an even greater skewness than the horizontal case is evident here. In
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particular, the attacker can be up to ≈ 287 times more confident then the learner,
being the maximum TiA about 286.19. Moreover, when ` = 4, the individuals with
log2 TiA > 1 are ≈ 26% of the rows threatened under pA (≈ 8% of the whole table).
This means that there are 483 individuals in the dataset for which the threat level
under pA is at least twice as much the threat level under pL.

8.6.3 Discussion

Comparing the horizontal and the vertical cases for the considered dataset, the fol-
lowing considerations are in order.

• In the horizontal case, we have a situation of low faithfulness and low privacy
threat, irrespective of the value of k and `. Indeed, in both cases the average
group size is well above k, and this has a negative effect on the inference ca-
pabilities of both the learner and the attacker. The slight numerical differences
observed between the cases k = ` = 4 and k = ` = 6 are basically an artifact
of the anonymization tool. Yet, in relative terms, one can observe a significant
increase in the number of tuples threatened by the attacker, over the learner.

• In the vertical case, one obtains a greater faithfulness at the price of a greater
privacy threat. This difference from the horizontal case is partly explained by
the smaller group size, which now coincides with `. Now moving from ` = 4

to ` = 6 has a tangible negative impact on the inference capabilities of both
the learner and the attacker. In relative terms, one can observe an even more
marked increase of the number of tuples threatened by the attacker, over the
learner.

The above considerations partly depend on both the original dataset and the details
of the employed anonymization tool.

8.6.4 Assessing MCMC convergence

For each of the considered anonymized datasets, we ran a MCMC as introduced in
Section 8.5 for M = 100, 000 runs. The convergence of each chain to the stationary
distribution was assessed via a method based on comparing sub-sequences of the
sample sequences with one another. More precisely, as for the population parameters
distribution (148), we used the method proposed by Geweke [59] described in Section
2.3.5

After a burn-in of 50,000 iterations, we compared the last 25,000 samples against 5

blocks of of 5,000 consecutive samples each, taken starting from the 50,000-th iteration.
We found that all the distributions θR|S produced a test statistic within two standard
deviations from zero, thus providing evidence of convergence.

As for the distribution of the cleartext table, f(x|θ, x∗), we used the procedure de-
signed for categorical distributions by Deonovich and Smith (see Section 2.3.5). After
a burn-in of 50,000 observations, we compared 5 sub-sequences of 10,000 consecu-
tive samples each. For the vertical scheme, we assessed the convergence for each
row of the table, thereby demonstrating the stationary of f(x|θ, x∗). For the horizon-
tal scheme, some of the rows did not exhibit evidence of convergence. However, we
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found that, starting with several independent chains, very similar results in terms of
the proposed assessment measures were obtained.

In the vertical case, within the Metropolis step both the pure random permutation
and the swap group generation strategies (Section 8.5.2) were experimented. The ob-
tained results are consistent; however, the pure random permutation strategy shows a
much higher rate of rejection, suggesting that the swap strategy should be preferred.

8.7 conclusions

We have put forward a notion of relative privacy threat that applies to group-based
anonymization schemes. Our proposal is based on a rigorous characterization of the
learner’s and of the attacker’s inference, in a unified Bayesian model of group-based
schemes. A related MCMC algorithm for posterior parameters estimation has also
been introduced. Experiments conducted on the well-known Adult dataset [75] have
been illustrated.

Our analysis emphasizes the risks posed by the mere fact that an attacker can look
up a released anonymized table. This prompts an obvious alternative: release the
parameters of the posterior distribution learned from the cleartext table (pI, in our
notation). This may not always be possible, or be a good idea, for several reasons.
First, certain organizations must release datasets as part of their mission, e.g. census
bureaus. Second, especially in the case of high-dimensional data, the computation of
the posterior is feasible only assuming suitable conditional independencies, whereby
potentially important correlations are lost; see [25] and references therein. Third, pa-
rameters release itself is not exempt from risks for privacy. In particular, although
differentially private release of the parameters is possible [40], it seems that quite
strong priors are necessary to obtain acceptable guarantees; see [138, Ch.6] and ref-
erences therein. An attempt of releasing differentially private posterior distributions
by resorting to ABC will be discussed in the next chapter. However, further research
is called for an understanding of the circumstances under which data and/or param-
eters release can be done safely.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17: Results for k-anonymity. Top (` = k = 6): scatter plots of pL vs pA for tuples threat-
ened under pA (a), and under pL (c); (b) and (d) are the histograms of log2 TiA for
these two cases. Bottom: same for ` = k = 4. The skewness value (γ) represents
the third standardized moment of the empirical distribution. Dark red areas show
where the attacker performs better than the learner.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 18: Results for Anatomy. Top (` = 6): scatter plots of pL vs pA for tuples threatened
under pA (a), and under pL (c); (b) and (d) are the histograms of log2 TiA for these
two cases. Bottom: same for ` = 4. The skewness value (γ) represents the third
standardized moment of the empirical distribution. Dark red areas show where
the attacker performs better than the learner.
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9
A P P R O X I M AT E B AY E S I A N I N F E R E N C E F R O M A N O N Y M I Z E D
D ATA : A B C V S L D - A B C

In the previous chapter we provided a MCMC method for sampling from the poste-
rior distribution of the population parameters, θ, both in the horizontal and vertical
scheme case. We noted that Systematic scan Gibbs sampler does not apply when the
table is anonymized resorting to Anatomy. Accordingly, we proposed both a MwG al-
gorithm and a Random scan Gibbs sampler (in Appendix E.2). As already mentioned,
ABC represents an alternative solution.

Very recently a new research line investigating the relations between data
anonymization and ABC has been developing. The directions investigated are mainly
two: 1) setting up strategies for providing posterior distributions obeying to Differen-
tial Privacy requirements by means of ABC algorithms; 2) defining ABC methods for
learning population characteristics from anonymized data.

As regards the first point, a proposal comes from Park and Jitkrittum in [107].
Here the key idea is that the ABC tolerance level is related to the Differential privacy
budget. More specifically, they provide a way of getting samples from the posterior
distribution by defining a framework in which two entities exist: a data owner and
a modeler. In this framework their ABCDP is performed in two steps: a non private
step and a private step. In the non private step the modeler gets samples from the
parameters prior distribution and simulates pseudo-data giving those parameters as
input to a simulator. In the second step the data owner takes the pairs of parame-
ters and simulated data and returns a set of binary indicators determining whether
pseudo-data are resembling the original data. Taking the binary indicators from the
data owner, the modeler is able to convert samples from the prior into samples from
the posterior distribution.

In [61], Gong investigates the property of a posterior distribution derived via ABC
starting from Differential Private data. He proves that a proper ABC algorithm, con-
ditional on obfuscated data, provides samples from the exact posterior distribution of
the parameters given the non-obfuscated data, i.e., no approximations occur thanks
to the tolerance parameter ε. A likelihood-based strategy for inference is also dis-
cussed. This latter, in the same vein of the MCMC method proposed in the previous
chapter, is based on a data augmentation strategy relaying on the introduction of the
complete data as latent variable.

Here, we discuss how to properly define a generative model producing tables
anonymized according to Anatomy and enabling an ABC implementation also in the
group-based setting. Furthermore, we test LD-ABC at work on a subset of the dataset
analysed in the previous chapter. The MwG introduced in Section 8.5.2 provides us a
benchmark for the comparison between LD-ABC and standard ABC methods.
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9.1 learning from obfuscated data via ABC

Let us assume that our aim is learning population parameters θ from a table ob-
fuscated resorting to Anatomy, thus assuming an honest learner point of view. The
computation of the distribution in (121) implies the ability of sampling from the pos-
terior distribution1

π(θ|x∗) ∝ π(θ)f(x∗|θ) = π(θ)L(θ; x∗).

However, there is no tractable analytical expression for the likelihood L(θ; x∗).
In Chapter 8 this problem is circumvented by defining a MCMC scheme for sam-

pling from the joint posterior π(θ, x|x∗) on an augmented space. Here, we present an
alternative solution based on ABC. Specifically, we define the following generative
model providing tables anonymized according to Anatomy:

1. Generate a table of n i.i.d. rows (s, r) ∈ S×R distributed according to the vector
θ given as input;

2. Partition the table into k groups of dimension {ni}
k
i=1;

3. Randomly permute the nonsensitive attribute values r1, ..., rni within each
group gi.

Here n is the number of rows and k the number of groups in the observed
anonymized table x∗, while ni is the number of rows in g∗i .

By resorting to the above described generative model one is able to get samples
from f(·|θ) despite the unavailability of its analytical form. This allows considering
complex relations among the sensitive and nonsensitive characteristics and relaxing
the assumption of conditional independence among the nonsensitive attributes in the
previous chapter.

The output of ABC algorithms will be a sample from the approximate joint poste-
rior distribution π̃(θ,y∗|x∗). Note that, as discussed in Chapter 3, also ABC methods
are based on a data augmentation strategy relying on the introduction of the simu-
lated obfuscated dataset y∗. Accordingly, the main differences between MCMC and
ABC strategies are that 1) in the MCMC method the instrumental variable is the clear-
text table x, while in the ABC method is the simulated obfuscated table y∗; 2) the
MCMC method provides samples from the true posterior distribution while the ABC
method gets samples from an approximate posterior distribution.

9.2 comparing ABC and LD-ABC

For the sake of evaluating the performances of the LD-ABC method, we tested both
R-ABC and LD-ABC at work on an obfuscated table x∗ obtained by anonymizing a
subset of the Adult dataset (5692 rows) where we take race (four possible values) as
a sensitive attribute and workclass (four possible values) as the nonsensitive attribute.
The resulting anonymized table is composed of k = 1, 423 groups, with ni = 4

for each group gi. Note that in order to apply the method proposed in Chapter
5, the m simulated rows in each dataset y∗ must satisfy the assumptions of Sanov’s

1 Note that in the previous chapter we let f(·) denotes all the probability distributions. Here we adopt the
same notation as in Chapter 5 denoting by π(·) the pdf over the parameter space Θ.
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MEAN INTEGRATED SQUARED ERRORS

Gov. Self-empl. Priv. Without-pay

R 0.6372 0.9185 16.3660 0.1477

LD 0.4147 0.5814 7.3125 0.106

ÊSS

R 16 704

LD 35 231

Table 15: The leftmost table shows the Squared errors integrated over the 3-simplex and
averaged over 100 reruns of ABC. Each column corresponds to an element of{
θR|s : s ∈ {Governament, Self-employed, Private, Without-pay}

}
. The rightmost

table shows the Effective Sample Sizes acheved by R-ABC and LD-ABC averaged
over 100 reruns.

theorem, i.e., they must be independent and identically distributed. Recalling that the
m pairs (s, r)’s are generated independently and that the permutation is completely
at random, we conjecture that the i.i.d. assumption is satisfied. We have positively
verified this assumption empirically via the permutation test based on the periodicity
test statistic described in the National Institute of Standards and Technology Special
Publication 800-90B [152].

Here we assume, as in Chapter 8, that θS an the θR|s’s are independently dis-
tributed according to non-informative Dirichlet prior distributions. Note that, despite
the ABC strategy allows relaxing most of the assumptions needed in the previous
chapter, here we still assume all of them in order to take the output of the MwG
algorithm as benchmark. The output of ABC is a sample from the approximate joint
posterior distribution π̃(θR|S, Ty∗ |Tx∗), since the sensitive part is not changed by the
anonymization algorithm and the posterior distribution for θS exists in closed form
2.

We consider the output of 100, 000 MCMC runs as a reference, in order to compute
the M̂SE’s and M̂ISE’s and thus comparing the accuracy of LD-ABC and R-ABC. The
posterior means derived via MCMC are displayed in Appendix E.3 (Table 18). Results
with m = 100 and ε = 1 are displayed in Tables 16 and 15.

In terms of point estimations the performance of LD-ABC and R-ABC are quite sim-
ilar. Nevertheless, the M̂SE’s achieved by LD-ABC are almost always smaller than the
ones achieved by R-ABC. Concerning the approximations of the multivariate poste-
rior distributions, looking at the M̂ISE we can conclude that LD-ABC outperforms
R-ABC (see Table 15). Moreover, by focusing on the improvement in efficiency we
note that the value of ÊSS for LD-ABC is more than twice that for R-ABC.

2 The posterior distribution of θs is simply a Dirichlet distribution where the parameters are updated by
the frequency counts of each s ∈ S, as shown in Section 8.5.2.
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Table 16: Squared errors averaged over 100 reruns of ABC. Each column corresponds to an
element of

{
θR|s : s ∈ {Governament, Self-employed, Private, Without-pay}

}
.

MEAN SQUARED ERRORS

Government Self-emp Private Without-pay

White
LD 1.997 · 10−3 3.121 · 10−3 3.958 · 10−2 1.088 · 10−6

R 3.141 · 10−3 5.056 · 10−3 7.893 · 10−2 2.343 · 10−6

Asian-Pac-Islander
LD 2.976 · 10−4 3.908 · 10−4 6.109 · 10−3 8.338 · 10−7

R 4.576 · 10−4 6.416 · 10−4 1.147 · 10−2 1.902 · 10−6

Black
LD 3.489 · 10−6 1.194 · 10−5 3.555 · 10−4 1.212 · 10−6

R 2.410 · 10−6 2.628 · 10−6 1.782 · 10−3 2.651 · 10−6

Other
LD 6.701 · 10−4 1.078 · 10−3 1.039 · 10−2 1.02 · 10−6

R 1.241 · 10−3 2.038 · 10−3 1.733 · 10−2 2.353 · 10−6
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Part IV

C O N C L U S I O N S , D I S C U S S I O N A N D F U T U R E R E S E A R C H

"Doubt is the origin of wisdom."

— René Descartes





D I S C U S S I O N A N D C O N C L U S I O N S

Models involving several latent variables and nuisance parameters allows a compre-
hensive representation of complex phenomena, however, in such a case, the inference
on the parameters of interest is characterized by a high computational complexity. In
fact, the marginalization w.r.t. latent variables and nuisance parameters require the
computation of demanding integrals (or summations) on high-dimensional spaces.

Monte Carlo (MC) methods represent a well-known approach to avoid such com-
plex computations and conduct Bayesian inference via simulations. We have reviewed
the most important families of MC methods providing, either formally or informally,
comparisons among them. Furthermore, we have highlighted that, apart from the
standard MC integration, all the MC methods provide samples from the posterior
distribution resorting to easy-to-sample proposal distributions. Obviously, sampling
directly from the target distribution, when it is possible, provides more efficient MC
estimators. However, in most cases, drawing samples from the target is infeasible and
the choice of the proposal distribution strongly affects the efficiency of the resulting
estimators. We have shown that the evaluation of the efficiency of an algorithm can
be based on the effective sample size (ESS), which compares the variability of the es-
timator based on the actual sampling procedure with that based on direct sampling
from the target. A low value of ESS is indicative of sample degeneracy. The problem
of sample degeneracy is the focus of the thesis. We have emphasized that it arises
when the involved proposal distribution is far from the target and that it becomes
more serious in the likelihood-free framework, from Random Weights Importance
Sampling to all approximate Bayesian computation (ABC) sampling schemes.

In Part II we have proposed a way of addressing sample degeneracy in ABC meth-
ods. Our proposal consists in the definition of a convenient kernel function which
allows taking into account the probability of rare events via large deviations theory
(LDT). By relying on the Method of Types formulation of LDT we have also overcome
the difficulty of selecting the summary statistics summarizing data via their empiri-
cal distributions. The proposed kernel function has been involved both in an IS and
MCMC sampling scheme. Being defined on a non-compact support, it avoids any
implicit or explicit rejection step thus increasing the ESS and improving the mixing
of the Markov chain built by the MCMC-ABC algorithm. Moreover, we have shown
through several examples that the resulting approximate likelihood, assuming posi-
tive values also for "poor" parameter proposals, leads to a better approximation of
the posterior density in the tail areas. We have also provided formal guarantees of
the improvement induced by our method as well as of the convergence of our ABC
approximate likelihood to the true likelihood.

In Part III we have dealt with an application to a real-world problem in the frame-
work of data anonymization. In particular, we have considered data anonymized via
group-based anonymization schemes. We have adopted the point of view of an eval-
uator interested in publishing data in an obfuscated form preserving their utility and,
at the same time, protecting the privacy of the involved individuals. We have put for-
ward a notion of relative privacy threat that applies to group-based anonymization
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schemes. To rigorously characterize the learner’s and attacker’s inference, we have
defined a unified Bayesian probabilistic model. To perform Bayesian simulated infer-
ence, we have proposed a MCMC method relying on the introduction in the model
of a high-dimensional auxiliary random variable: the cleartext table. Finally, we have
shown that ABC represents a valid alternative for conducting inference from data
anonymized resorting to Anatomy. In particular we have emphasized that the ABC
approach relies on the introduction of an auxiliary random variable as well. Specif-
ically, it consider as auxiliary variables the simulated obfuscated data, i.e., pseudo
data, rather then the cleartext tables. Furthermore, we tested the LD-ABC methodol-
ogy at work on anonymized data.

limitations and future research In the literature, a variety of methods for
performing Bayesian inference via simulations are available. Here, we have focused
on the most important sampling schemes, both in a standard framework and in a
likelihood-free framework. However, we have not covered more sophisticated algo-
rithms such as Sequential Monte Carlo methods (see [143] among others), Adaptive
Markov Chain Monte Carlo and Gradient-Based Markov Chain Monte Carlo tech-
niques (see e.g. [16, Ch. 4-5]). In the literature ABC sequential and adaptive methods
have been proposed as well. We speculate that the LD-ABC method can be com-
bined with them by adopting sampling schemes such as Population Monte Carlo [7]
and Sequential Monte Carlo [37], rather than the involved IS-ABC and MCMC-ABC.
Furthermore, we have only considered the case of a uniform kernel for the pairs in
the acceptance region but other kernels can be introduced, e.g., a Gaussian kernel.
This would imply a discrimination among the pairs in the acceptance region leading
to different importance weights or to an improved mixing of the chain built by the
MCMC.

Even though the developments proposed in this thesis deal with a relevant prob-
lem and offer a novel perspective on ABC methods, its applicability at the moment
is restricted to i.i.d. discrete random variables or finite state Markov Chains. Further
research is needed to deepening LDT in order to extend the proposed method to
other forms of dependence and possibly to the continuous setting. Moreover, fur-
ther developments are called in to provide an automatic way of selecting the two
tuning parameters, m and ε. However, in the last part of the thesis, we have shown
the utility of LD-ABC to address real world problems. The application of ABC to
data anonymized employing Anatomy allows relaxing several assumptions needed
to implement MCMC methods (e.g., conditional independence of the nonsensitive
attribute, the assumption that the obfuscation function is deterministic, etc.). Finally,
it proceeds on a modern research line offering scope for further developments.
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A
I N E Q U A L I T I E S A N D C O N V E R G E N C E

a.1 laws of large numbers

Theorem 12 (Strong law of large numbers) Let Y1, Y2, ... be a sequence of independent
random variables, each having the same finite mean µ. Then

Pr
(

lim
n→∞ Y1 + ... + Yn

n
= µ

)
= 1

Proof For a proof see [127, Ch 5 Th. 5.4.4] among others. In Appendix D is given
a proof of a Method of Types formulation of the Law of Large Numbers, both for
sequences of i.i.d random variables and finite state Markov chains. �

a.2 central limit theorem

Theorem 13 (Central limit theorem) Let Y1, Y2, ... be a sequence of independent random
variables with mean, µ, and finite variance σ2. Denoted by Ȳ the sample mean Y1+...+Yn

n , then
as n→∞

√
n(Ȳ − µ)

d−→ N(0,σ2)

meaning that
(Ȳ − µ)
σ√
n

converges in distribution to a standard normal distribution.

Proof See e.g. [127, Ch 11 Th. 11.2.2] �

a.3 inequalities

Theorem 14 (Jensen’s Inequality) Let Y be a real valued random variable on Y ⊆ R. If
h(·) is convex function on Y, then

E[h(Y)] > h
(
E[Y]

)
provided both expectations exist.

For a strictly convex function h(·), equality holds iff E[Y] = Y almost surely.

Proof See e.g. [78, Ch 3 Prop. 3.5.1]. �
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B
A P P R O X I M AT E M E T H O D S

Let us consider the random variable X distributed according to p(·) and assume that
we are able to derive both Ep[X] = µX and Varp[X] = σ2X. Suppose that we are
interest in deriving the expected value and the variance of the random variable

Y = g(X).

When the function g(·) is non-linear one can resort to the so called Delta Method (see
[124]). Such method proceeds by a linearisation carried out through a Taylor series
expansion. Accordingly,

Y = g(X) ≈ g(µX) + (X− µX)
dg(µX)

dX
(154)

where dg(µX)
dX denotes the first derivative evaluated at µX. Thus, being Y approxi-

mated as a linear function of X one can simply take the expectation and the variance
in (154).

Now consider two random variables X ∼ p and Y ∼ f and assume that we are able
to compute

Ep[X] = µX Varp[X] = σ
2
X

Ef[Y] = µY Varf[Y] = σ
2
Y .

The expected value and the variance of

Z = g(X, Y)

can be computed by resorting to the Taylor expansion:

Z ≈ g(µX,µY) + (X− µX)
dg(µX,µY)

dX
+ (Y − µY)

dg(µX,µY)
dY

.

Thus,

Var[Z] ≈ σ2X
(
dg(µX,µY)

dX

)2
+σ2Y

(
dg(µX,µY)

dY

)2
+ 2σXY

(
dg(µX,µY)

dX

dg(µX,µY)
dY

)
.

(155)

In order to derive a good approximation for E[Z] one can resort to the second order
Taylor expansion

Z ≈g(µX,µY) + (X− µX)
dg(µX,µY)

dX
+ (Y − µY)

dg(µX,µY)
dY

+
1

2
(X− µX)

2d
2g(µX,µY)
dX2

+
1

2
(Y − µY)

2d
2g(µX,µY)
dY2

+ (X− µX)(Y − µY)
d2g(µX,µY)

dXY

and compute

E[Z] ≈ g(µX,µY) +
1

2
σ2X
d2g(µX,µY)

dX2
+
1

2
σ2Y
d2g(µX,µY)

dY2
+σXY

d2g(µX,µY)
dXY

. (156)
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b.0.1 Expectation and Variance of a Ratio

Let us consider
Z = g(X, Y) =

Y

X
.

By computing the following derivatives

dg(µX,µY)
dX

= −
µY

µ2X

dg(µX,µY)
dY

=
1

µX

d2g(µX,µY)
dX2

=
2µY

µ3X

d2g(µX,µY)
dY2

= 0

d2g(µX,µY)
dXY

= −
1

µ2X

one can approximate E[Z] and Var[Z] respectively from (156) and (155):

E[Z] ≈ µY
µX

+ σ2X
µY

µ3X
−
σXY
µX

,

Var[Z] ≈ σ2X
µ2Y
µ4X

+
σ2Y
µ2X

− 2σXY
µY

µ3X
. (157)
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C
M A R K O V C H A I N S

A Markov chain is a sequence of random variables, {Xt}, such that the probability
distribution of each Xt ∈ X depends only on the state attained by Xt−1, for each t.
Depending on the space on which is defined the parameter t, a Markov process can
be classified as a discrete or continuous time stochastic process. Moreover, the Markov
chain is defined as a finite state Markov chain when X is a finite set, otherwise is
defined as infinite state Markov chain. According to the nature of the Markov Chains
described in Section 2.3 and in Chapter 6, throughout this chapter we restrict our at-
tention to discrete time Markov chains, firstly focusing on the finite case. The infinite
case is also mentioned. For further details we refer the reader to [50, Ch. 4], [127, Ch.
8].

c.1 definitions and main properties

Definition 8 A finite state and discrete time Markov chain is a stochastic process {Xt}t∈N

with each Xt assuming values in the finite set X and such that

Pr(Xt+1 = j|Xt = i,Xt−1 = xt−1...,X0 = x0) = Pr(Xt+1 = j|Xt = i)

= p
(t)
ij ∀h ∈N

A typical example of Markov chain is represented by the random walk. A random walk
is a stochastic process generated by a sequence of random variables {Xt}∈N satisfying
the following equality:

Xt+1 = Xt + εt (158)

where εt ⊥⊥ Xt,Xt−1, ...,X0.
Accordingly,

Xt+1 ⊥⊥ Xt−1|Xt.

A Markov Chain is characterized by a) a state space, say X; b) an initial probabil-
ity distribution over X, p(0); c) a transition kernel1 – i.e. the conditional probabilities
Xt+1|Xt for each pair (Xt,Xt+1) ∈ X2.

Definition 9 Let {Xt}t∈N be a Markov chain assuming values in the finite set X with car-
dinality |X| = k. The transition matrix at time t, Q(t), is the k × k stochastic matrix
composed by entries

q
(t)
ij

4
= Pr(Xt+1 = j|Xt = i) ∀(i, j) ∈ X2.

Each entry of the transition matrix, q(t)ij , represents a transition probability –i.e. the
probability of going from the state i to the state j. It follows that the transition matrix
is a stochastic matrix, meaning that

1 An alternative characterization is based on the doublet probability distribution as in Section 6.1.
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1. q(t)ij ∈ [0, 1] ∀(i, j) ∈ X2

2.
k∑
j=1

q
(t)
ij = 1.

The Markov chain is said to be stationary or homogeneous when the transition proba-
bilities do not depend on the parameter t.

Definition 10 Let {Xt}t∈N be an homogeneous finite state Markov chain. Then,

Q(t1) = Q(t2) ∀(t1, t2) ∈N×N

For the sake of an easier notation, in the homogeneous case we shortly denote the
transition matrix as Q and its entries as qij.

Let us denote as p(t) = (p
(t)
1 , ...,p(t)k ) the probability distribution over the set of

possible states of the chain at time t. In particular, p(0) denotes the initial probability
distribution. From the low of total probability follows that the probability distribution
of Xt+1 is retrieved as

p(t+1) = p(t)Q(t). (159)

Note that p(t) can be in turn retrieved as p(t) = p(t−1)Q(t−1), thus (159) becomes

p(t+1) = p(t−1)Q(t−1)Q(t).

Going backwards, the probability distribution at the (t+ r)-th step is

p(t+r) = p(t)Q(t)...Q(t+r−1). (160)

Equation (160) is known as Chapman - Kolmogorov equation. Since in the homoge-
neous case Q(t) = ... = Q(t+r−1) = Q, the (160) becomes

p(t+r) = p(t)Qr

where Qr is the r-th power of the transition matrix composed by entries qrij =

Pr(Xt+r = j|Xt = i).

c.2 classification of states

Let us consider an homogeneous discrete time Markov chain defined on X. The state
space X (finite or infinite) can be classified according to two possible partitions of X:

X = A∪P (161)

= R0 ∪R+ ∪ T (162)

In (161) we denote as A the set of aperiodic states and as P the set of periodic states.
Each possible state in X is said to be periodic or aperiodic depending on the value
assumed by its period. The period is defined as follows.
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Definition 11 (Period) For each state i ∈ X, the period d(i) is defined as the greatest
common divisor (gcd) of the set

{t > 1 : qtii > 0}. (163)

The state i is periodic if d(i) > 1 and aperiodic if d(i) = 1.

Thus, a strictly positive probability of remaining in a state i ∈ X – i.e. q1ii > 0 –
implies that the above-defined gcd equals 1 and represents a sufficient condition for
the aperiodicity. However, such condition is not necessary since the gcd can be equal
to 1 also when q1ii = 0 (e.g. when the set in (163) contains only prime numbers).

Another possible classification of states follows from the partition in (162), where
T, R+, R0 represent the set of transient, positive recurrent and null recurrent states,
respectively. Let us denote as fti the probability that the first return to a given state,
say i, occurs after t steps. The probability that a return to i does occur, at whatever
time, is defined as

fi =

∞∑
t=1

fti ∀i ∈ X.

Accordingly, each state i ∈ X is defined as

transient iff fi < 1;

recurrent iff fi = 1.

Let Ti be the random variable representing the time at which the first return to i
occurs. Its expected value E(Ti|X0 = i) allows for discriminating between positive
and null recurrent states. In fact, the state i is classified as

positive recurrent iff E(Ti|X0 = i) < +∞;

null recurrent iff E(Ti|X0 = i) = +∞.

Note that recurrent states can be periodic or aperiodic since the two classifications
derive from different partitions of X.

Given a pair of states (i, j) ∈ X2 we say that j is accessible from i, written i → j, if
there is a direct path from i to j meaning that

∃t ∈N : Pr(Xt = j|X0 = i) = qtij > 0.

States i and j communicate, written i↔ j, if j is accessible from i and viceversa.

Definition 12 (Classes of states) A class of states, C, is a non-empty subset of X.
A class C is said to be a closed class if

qij = 0 ∀i ∈ C and ∀j ∈ X \ C

or to be irreducible class if
i↔ j ∀(i, j) ∈ C2.

Theorem 15 For any Markov chain {Xt} all the states in the same irreducible class have
the same period.
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Proof Let (i, j) ∈ C2 be a pair of states in the irreducible class C. Then i↔ j meaning
that there exist some r and s such that Pr(Xt+r = j|Xt = i) and Pr(Xt+s = i|Xt = j).
It follows that there exists a path of length r+ s going from i to j and back to i. Thus,
according to Definition 11, r+ s must be divisible by d(i). Let h be any integer such
that qhjj > 0. Since there is a path of length r+ h+ s going from i to j, then again to
j and then back to i (see Figure 19), r+ h+ s must be divisible by d(i) and thus h is
divisible by d(i). Since this holds true for any h such that qhjj > 0, d(j) is divisible by
d(i). Reversing the roles of i and j, d(i) is also divisible by d(j) so d(i) = d(j). �

i

j

Figure 19: Representation of the r+ h+ s steps path between i and j.

Theorem 16 Let C be an irreducible class. The states of the Markov chain in C are all tran-
sient or all recurrent.

Proof Let us consider (i, j) ∈ C2. Suppose that i is a transient state. Thus, there exists
a state k : i → k,k 9 i. Being j → i and i → k, there exists a path such that j → k. If
k→ j, it would exists a path going from k to j and then from j to i, thus contradicting
the hypothesis. It follows that must be k 9 j, meaning that j is a transient state (see
Figure 20). �

k
i

j

Figure 20: Representation of two transient states (i, j) ∈ C.

A Markov chain {Xt}t∈N assuming values in X is irreducible when X corresponds
to an unique irreducible class, meaning that each state in X communicates with each
other. Hence, given an irreducible Markov chain its states are all periodic or aperiodic
and all transient or recurrent. In particular, considering a finite state Markov chain,
all its states are positive recurrent (see [127, Th. 8.4.9]).

Definition 13 (Ergodic Markov chain) A Markov chain is said to be ergodic when it is
aperiodic, irreducible and positive recurrent.

From Definition 13 follows that for an irreducible finite state Markov chain, the ape-
riodicity is a necessary and sufficient condition under which the chain is ergodic.
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Finite Infinite

Reducible Irreducible Reducible Irreducible

Po
si

ti
ve

one or infinite one infinite or none one ore more

N
ot

po
s.

one or infinite \\ infinite or none none

Table 17: Conditions for the existence and uniqueness of the stationary distribution.

c.3 the stationary distribution

Definition 14 Let {Xt}t∈N be a Markov chain taking values in X and let Q be its transi-
tion matrix. A probability distribution over X, π = (π1, ...πk), is said to be the stationary
distribution when

π = πQ.

Generally speaking, a Markov chain may or may not admit a stationary distribution.
Furthermore, when a stationary distribution exists it may or may not be unique. A
finite states Markov chain always admits at least one stationary distribution and the
irreducibility of the chain ensures the uniqueness. As regards infinite states Markov
chains, the stationary distribution may not exists.

Table 17 summarizes some important results about the conditions for the existence
and uniqueness of the stationary distribution.

Definition 15 (Asymptotic distribution) Let {Xt}t∈N to be a Markov chain taking values
in X with transition kernel Q. The asymptotic distribution for that chain is the unique
stationary distribution π satisfying

lim
n→+∞p(0)Q(n) = π (164)

for each distribution p(0) over X.

Theorem 17 (Ergodic theorem) Let {Xt}t∈N be a Markov chain with transition kernel Q.
If {Xt}t∈N is ergodic, the following asymptotic distribution exists

π = (πi = 1/E[Ti|X0 = i])i∈X.

Furthermore, as n goes to +∞ the transition matrixQn tends to a matrix in which each rows
equals π.

On one side the irreducibility ensures the existence of the stationary distribution for
a recurrent positive Markov chain. On the other side the aperiodicity implies that the
probability of each state does not depends on the initial state.

In any case, the reversibility of the chain is a sufficient condition for the stationarity
of the chain.
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Definition 16 (Reversibility) Let π be a probability distribution over X. The distribution
π is said to be reversible if the following detailed balance equation is satisfied:

πiqij = πjqji ∀(i, j) ∈ X2 (165)

The detailed balance condition in (165) implies the stationarity being∑
i∈X

πiqij =
∑
i∈X

πjqji = πj
∑
i∈X

qji.

If the transition matrix is a doubly stochastic matrix – i.e. a squared matrix in which
each row and column sum to one – we obtain∑

i∈S
πjqji = πj.

c.4 some useful concepts about continuous state markov chains

In the previous section we dealt with Markov chains taking values in a finite set. Let
us consider the case in which each random variable Xt is defined on a continuous
space X ⊆ R. In such cases the Markov property can be reformulated as follows

fXt+1|Xt,...,X0(y|x, ..., x0) = fXt+1|Xt(y|x)

where f(·) denotes a probability density function. Moreover the transition matrix is
replaced by a transition density function q(·, ·) such that∫

X

q(xt, xt+1)dxt+1 = 1.

Thus, the probability density function for the random variable Xt+1 is retrieved as

fXt+1(y) =

∫
X

fXt(x)q(x,y)dx.

The two partitions of the state space in (161) and (162) are also valid in the
continuous-state case. However, in the continuous setting another important prop-
erty is the Harris recurrence.

Definition 17 (Harris recurrence) Let us denote as ηA the number of times the chain visits
the measurable set A ⊂ X. The set A ⊂ X is said Harris recurrent if Pr(ηA = ∞) = 1

for all x ∈ A. The chain {Xt}t∈N is said Harris recurrent if it is irreducible and every
measurable set A ⊂ X is Harris recurrent.
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d.1 theorems and proofs in chapter 5

Proposition 5 Let Xn = X1, ...,Xn be a sequence of i.i.d. random variables distributed over
X according to P and let Txn denotes its type. Then

Pr(Xn = xn) = 2n
(
−D(Txn ||P)−H(Txn)

)
. (166)

Proof

Pr(Xn = xn) =

n∏
i=1

Pr(Xi = xi)

=
∏
r∈X

P(r)nTxn(r)

=
∏
r∈X

2nTxn(r) logP(r)

=
∏
r∈X

2n(Txn(r) logP(r)−Txn(r) logTxn(r)+Txn(r) logTxn(r))

= 2
n
∑
r∈X

(−Txn(r) log
Txn (r)

P(r) +Txn(r) logTxn(r))

= 2n(−D(Txn ||P)−H(Txn)).

�

In what follows, we will make use of a few basic notions and facts about the Method
of Types and information projections, for which we refer the reader to [33, Ch.1].

The simplex of the distributions over X, seen a subset ∆|X|−1 ⊆ R|X|, inherits the
standard topology from R|X|. W.r.t. this topology, the function D(P||Q) is lower semi-
continuous in the pair of arguments (P,Q), and continuous at (P,Q) whenever Q has

full support, that is whenever supp(Q)
4
= {r ∈ X : Q(r) > 0} = X. Convergence to

Q in KL divergence, D(Qn||Q) → 0, implies convergence in the standard topology,
Qn → Q. As a function of P, D(P||Q) is strictly convex, and continuous whenever
Q is full support. Hence for any convex and closed set E ⊆ ∆|X|−1 the information
projection of Q onto E, P∗ = argminP∈ED(P||Q), exists and is unique. The following
is a fundamental result about information projections. The support of E is defined as

supp(E)
4
=
⋃
P∈E supp(P).

Theorem 18 (Pythagorean inequality, [33] Th.3.1) Let E be a closed and convex set and
Q be full support. Let P∗ = argminP∈ED(P||Q). Then supp(P∗) = supp(E). Moreover, for
each P ∈ E, D(P||Q) > D(P||P∗) +D(P∗||Q).

Proof of Theorem 5 (see [27, Ch 11.2.1 ]:) Let us consider a δ-typical set of probability
distributions defined as follows:

Bδ(Pθ)
4
= {P ∈ ∆|X|−1 : D(P||Pθ) 6 δ}.
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The probability that a sequence Xn leads to a non-typical type can be bounded as
follows:

Pr
(
TXn /∈ Bδ(Pθ)

)
=

∑
P∈Tm∩BCδ

Pr
(
TXn = P|θ)

6
∑

P∈Tm∩BCδ

2−nD(P||Pθ) (167)

6
∑

P∈Tm∩BCδ

2−nδ

6 (n+ 1)|X|2−nδ (168)

= 2−n(δ−|X|
log(n+1)

n )

where (167) and (168) follow from the bounds for the probability of the type class and
the size of Tm, respectively (see [27, Th. 11.1.4] and [27, Th. 11.1.1] ). Accordingly,

Pr
(
D(TXn ||Pθ) 6 δ|θ

)
= 1− Pr

(
TXn /∈ Bδ(Pθ

)
> 1− 2−n(δ−|X|

log(n+1)
n ).

Moreover, summing over n

∞∑
n=1

Pr
(
D(TXn ||Pθ) > δ|θ) >∞.

Thus, applying the Borel-Cantelli lemma [127, Th. 3.4.2] to the event {D(TXn ||Pθ) > δ}

follows that
Pr
(
D(TXn ||Pθ) > δ i.o. |θ

)
= 0

where "i.o." is read as " infinitely often". Since this holds for every δ > 0 under Pr(·|θ),
as n→ +∞, D(TXn ||Pθ)→ 0 with probability 1. �

Proof of Theorem 7: Fix an infinite sequence τ ∈ Y∞, τ = (y1,y2,y3, ...). For each
m > 1, let Tym(τ), Tym for short, denote the type of the first m symbols of τ, the
sequence (y1, ...,ym). Assume τ is such that Tym → Pθ as m→ +∞. Note that, since
Pθ is full support, this implies that for all sufficiently large m, Tym is full support as
well. Define P∗ and, for any such sufficiently large m, P∗m as follows:

P∗
4
= argmin

P∈Bε
D(P||Pθ) and P∗m

4
= argmin

P∈Bε
D(P||Tym).

Note that as Tym is full support and Bε = {P : D(P||Txn) 6 ε} is convex and closed,
the projection P∗m exists and is unique. Moreover, as Txn is by assumption full sup-
port, it is easily seen that supp(Bε) = X: hence, by the first part of Theorem 18, the
projection P∗m is full support as well.

As Bε is closed and D(·||Pθ) is continuous, P∗ ∈ Bε. We can now apply the
Pythagorean Inequality, considering P∗m as a projection and P∗ ∈ E = Bε, and ob-
tain

D(P∗||Tym) > D(P∗||P∗m) +D(P∗m||Tym) . (169)
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As Pθ is assumed to be full support, D(·||·) as a function of its second argument is
continuous at Pθ, hence

lim
m→∞D(P∗||Tym) = D(P∗||Pθ) . (170)

Assuming {P∗m} converges, let P∗∗
4
= limm→∞ P∗m, where clearly P∗∗ ∈ Bε; if {P∗m}

does not converge, we can equivalently take any convergent subsequence of it. Taking
lim inf on both sides of (169), and exploiting (170) on the left-hand side, and lower
semi-continuity on the right-hand side, we can write

D(P∗||Pθ) = lim
m→∞D(P∗||Tym)

> lim inf
m→∞ (D(P∗||P∗m) +D(P∗m||Tym) )

> lim inf
m→∞ D(P∗||P∗m) + lim inf

m→∞ D(P∗m||Tym)

> D(P∗||P∗∗) +D(P∗∗||Pθ) .

Summing up

D(P∗||Pθ) > D(P∗||P∗∗) +D(P∗∗||Pθ) . (171)

Recalling that P∗ is the information projection of Pθ onto Bε, that P∗∗ ∈ Bε and that
D(·||·) is nonnegative, the only possibility for (171) to hold is that D(P∗||P∗∗) = 0,
which implies P∗ = P∗∗. In other words

lim
m→∞P∗m = P∗ . (172)

This way, we have shown that (P∗m, Tym)→ (P∗,Pθ). Under D(·||·) this limit becomes,
by continuity at (P∗,Pθ):

lim
m→∞D(P∗m||Tym) = D(P∗||Pθ) . (173)

We have shown that (173) holds true for any sequence τ ∈ X∞ such that Tym =

Tym(τ) → Pθ. Now let Pr(·|θ) be the probability measure on Y∞ induced by Pθ. The
LLN (Theorem 5) says that, under Pr(·|θ), the set of such τ’s has probability 1. Hence
(173) under Pr(·|θ) holds with probability 1, that is, almost surely. �

Recall that, for each Q and δ > 0, Bδ(Q) ⊆ ∆|X|−1 denotes the ball of radius δ
centered at Q:

Bδ(Q)
4
= {P : D(P||Q) 6 δ} .

Lemma D.1.1 Let E ⊆ ∆|X|−1 be a convex and closed set. Let Q ∈ ∆|X|−1 be such that
γ
4
= D(E||Q) > 0. Then for each 0 < γ ′ < γ there is δ > 0 such that for each Q ′ ∈ Bδ(Q)

one has D(E||Q ′) > γ ′.

Proof The fact that E is closed and convex ensures that the projection D(E||Q) exists
and is finite. Consider the strictly descending chain of balls of radius δn = 1/n

centered at Q: Bδ1(Q) ⊇ Bδ2(Q) ⊇ · · · ⊇ Bδn(Q) ⊇ · · · . By contradiction, assume
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that there exists 0 < γ ′ < γ such that for each δ > 0, there is Q ′ ∈ Bδ(Q) such that
D(E||Q ′n) < γ

′. In particular, we then have that

for each n > 1 there is Q ′n ∈ Bδn(Q) s.t. D(E||Q ′n) < γ
′. (174)

We can therefore assume without loss of generality that

lim
n→∞D(E||Q ′n) < γ

′. (175)

(if not, we can anyway extract from {D(E||Q ′n)} a subsequence with the desired prop-
erty). On the other hand, being limn→∞D(Q ′n||Q) = 0, we have limn→∞Q ′n = Q.
Being D(·||·) lower semi-continuous, we obtain

lim inf
n→∞ D(E||Q ′n) > D(E||Q) = γ > γ ′. (176)

But this contradicts (174). �

Proof of Proposition 2: Let us consider ÊSS : RS → R as a function of S vari-
ables, ÊSS(x1, ..., xS), defined for nonnegative reals xi’s, not all zero, representing
the weights. The partial derivative of ÊSS w.r.t. xi has the form

∂

∂xi
ÊSS(x1, ..., xS) = C ·

∑
j6=i

(x2j − xixj)

for a function C that is > 0 in the domain of definition of ÊSS. Therefore, ∂
∂xi
ÊSS is

nonnegative when evaluated at any point (x1, ..., xS) in the domain of ÊSS with the
following property: for each j 6= i s.t. xj > 0, one has 0 6 xi 6 xj. If additionally at
least one j 6= i exists s.t. xj > xi, then ∂

∂xi
ÊSS is strictly positive.

An execution of the IS algorithm consists of S > 1 independent iterations of the
main loop: let us denote byωs and ρs the unnormalized weights (82) generated using
the LD-ABC and IS-ABC kernel functions, respectively, at iteration s = 1, ...,S, and
by ω = (ω1, ...,ωS) and ρ = (ρ1, ..., ρS) the resulting sequences. By definition, the
set of indices s = 1, ...,S can be partitioned into three subsets: the subset A where
ρs = ωs > 0, the subset B where ρs = 0 and ωs > 0, and the subset C where
ρs = ωs = 0. Moreover, for each s ∈ A and s ′ ∈ B,ωs > ωs ′ . For notational simplicity,
assume A = {1, ...,h}, B = {h+ 1, ...,S ′} and C = {S ′+ 1, ...,S}, for some 0 6 h 6 S ′ 6 S.
Also assume, again only for notational simplicity, that ωh+1 > ωh+2 > · · · .

If S ′ = 0, then h = 0 and by definition ÊSSLD = ÊSSIS = 0, hence assume S ′ > 0.
If h = S, then S ′ = S and ω = ρ, hence the inequality in the statement again holds
trivially as equality. Consider now a case where 0 < h < S, that is ω 6= ρ. For each

i = h + 1, ...,S ′, consider a point ρi(x)
4
= (ω1, ...,ωi−1, x, 0, ...0), with 0 6 x 6 ωi.

The fact that 0 6 x 6 ωj for each j < i, and moreover that ω1 > xi, by the above
considerations entails the strict positivity of ∂

∂xi
ÊSS when evaluated at ρi(x), for

0 6 x 6 ωi. Therefore, considering i = h+ 1, ...,S ′ in turn, we have:

ÊSSIS = ÊSS(ω1, ...,ωh, 0, .., 0)

< ÊSS(ω1, ...,ωh,ωh+1, 0, .., 0)

< · · ·

< ÊSS(ω1, ...,ωh,ωh+1, ...,ωS ′ , 0, ..., 0)

= ÊSSLD .

�
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d.2 theorems and proofs in chapter 6

Let X = {1, ..., |X|} be a non-empty finite set. We recall that capital letters P and P ′

denotes doublet probability distributions in the probability simplex ∆|X|2−1. The
corresponding marginal distributions are denoted by p = (p1, ...,p|X|) and p′ =

(p ′1, ...,p ′
|X|

) with p,p′ ∈ ∆|X|−1. Q and Q ′ denote the stochastic matrices whose
elements are retrieved as Q(ij) = P(ij)/pi and Q ′(ij) = P ′(ij)/p ′i. Pθ and pθ de-
note a doublet probability distribution over X2 parametrized according to θ and the
corresponding marginal distribution over X.

The simplex of the distributions over X2, seen a subset ∆|X|2−1 ⊆ R|X|2 , inher-
its the standard topology from R|X|2 . W.r.t. this topology, the function Dc(P||P ′) is

continuous at (P,P ′) whenever P ′ has full support, that is whenever supp(P ′)
4
=

{(i, j) ∈ X2 : P ′(ij) > 0} = X2. Convergence to P ′ in conditional relative entropy,
Dc(P

′
n||P

′) → 0, implies the convergence of the conditional distribution in standard
topology, Q ′n → Q ′. As a function of P, Dc(P||P ′) is strictly convex, and continu-
ous whenever P ′ is full support. Hence for any convex and closed set E ⊆ ∆|X|2−1,
P∗ = argminP∈EDc(P||P

′) exists and is unique. The support of E is defined as

supp(E)
4
=
⋃
P∈E supp(P).

In what follows we extend to the second order types some important results about
the first order type reported in [27]. Throughout this section we assume the cyclic
convention.

Theorem 19 (Pythagorean inequality in conditional relative entropy) Let E be a
closed and convex set and P ′ be full support. Let P∗ = argminP∈EDc(P||P

′). Then
supp(P∗) = supp(E). Moreover, for each P ∈ E, Dc(P||P ′) > Dc(P||P∗) +Dc(P∗||P ′).

Proof Consider P ∈ E and the following convex combination

Pλ(ij) = λP(ij) + (1− λ)P∗(ij) ∀(ij) ∈ X2. (177)

Note that Pλ → P∗ as λ → 0 and , since E is convex, Pλ ∈ E for all λ ∈ [0, 1]. Since
Dc(P ∗ ||P ′) is the minimum along the path from P∗ to P, the derivative of Dc(Pλ||P ′)
must be non-negative at λ = 0.

Let us denote the conditional relative

dDλc
dλ

=
∑
i∈X

∑
j∈X

[
P(ij) − P∗(ij)

]
log

Pλ(ij)

pλ(i)Q ′(ij)
(178)

+
∑
i∈X

∑
j∈X

[(
P(ij) − P∗(ij)

)
−Qλ(ij)

(
pi − p

∗
i

)]
(179)

where pλ(i) =
∑
j∈X

Pλ(ij) and Qλ(ij) = Pλ(ij)/pλ(i).
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By noting that the second term in (179) equals 0, the derivative evaluated at λ = 0

equals

0 6
dDλc
dλ

|λ=0 =
∑
i∈X

∑
j∈X

[
P(ij) − P∗(ij)

]
log

P∗(ij)

p∗(i)Q ′(ij)
(180)

=
∑
i∈X

∑
j∈X

P(ij) log
P∗(ij)

p∗(i)Q ′(ij)
−Dc(P

∗||P ′)

=
∑
i∈X

∑
j∈X

P(ij) log
P(ij)

p(i)Q ′(ij)

P∗(ij)p(i)

p∗(i)P(ij)
−Dc(P

∗||P ′)

= Dc(P||P
′) −Dc(P||P

∗) −Dc(P
∗||P ′).

It follows that

Dc(P||P
′) > Dc(P||P

∗) +Dc(P
∗||P ′). (181)

Moreover, the inequality (180) rules out the contingency that supp(P∗) ⊂ supp(P)
since it would imply that as λ → 0 the derivative dDλc

dλ → −∞. Since this holds for
each P ∈ E, supp(P∗) = supp(E). �

Theorem 20 Let T(n, 2) ⊆ ∆|X|2−1 denote the set of the second order n-types.

|T(n, 2)| 6 (n+ 1)|X|2 .

Proof This theorem is the analogue of [27, Th. 11.1.1] for second order types. As in
[27, Th. 11.1.1], this result follows from the fact that the type has |X|2 components
and the numerator of each component can assume n+ 1 values. �

Definition 18 (Type class) Let T ∈ T(n, 2) denotes the second order type of a markovian
sequence of length n. Its type class, denoted by C(T), is the following set of sequences of
length n

C(T)
4
= {xn ∈ Xn : T

(2)
xn = T }

Lemma D.2.1 ( Lemma 3 from [102]) Let us consider a sample path Xn = X1, ...,Xn from
a Markov process with stationary doublet probability distribution Pθ. Let us denote by xn =

x1, ..., xn a realization from that sample path with second order type T (2)xn . Assume that α =

min
i∈X

pθ(i) and β = min
(ij)∈X2

Pθ(ij). Then

1. Pr(Xn = xn|θ) =
pθ(x1)

Pθ(xn, x1)
2−n[Dc(T

(2)
xn

||Pθ)+Hc(T
(2)
xn

)]

2. n−|X|(n+ 1)−|X|2 2nHc(T
(2)
xn

) 6 |C(T
(2)
xn )| 6 |X| 2nHc(T

(2)
xn

)

3. n−|X|(n+ 1)−|X|2 α2−nDc(T
(2)
xn

||Pθ) 6 Pr(T (2)Xn = T
(2)
xn |θ) 6 |X|

β 2
−nDc(T

(2)
xn

||Pθ).

Theorem 21 (Law of Large Numbers for Finite state Markov Chains) Let Xn =

X1, ...,Xn be a sample path from a Markov process with doublet probability distribution Pθ.
Then ∀δ > 0:

Pr
(
Dc(T

(2)
Xn ||Pθ) 6 δ|θ

)
> 1− 2−n(δ−|X|2 log n+1n ) (182)

Moreover, under Pr(·|θ), as n→∞, Dc(T
(2)
Xn ||Pθ)→ 0 with probability 1.
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Proof Let us consider a δ-typical set of doublet probability distributions defined as
follows:

Γδ(Pθ)
4
= {P ∈ ∆|X|2−1 : Dc(P||Pθ) 6 δ}.

The probability that a sequence Xn leads to a non-typical second order type can be
bounded as follows:

Pr(T (2)Xn /∈ Γδ(Pθ)) =
∑

P∈T(n,2)∩ΓCδ

Pr(T (2)Xn = P|θ)

6
∑

P∈T(n,2)∩ΓCδ

|X|

β
2−nDc(P||Pθ) (183)

6 (n+ 1)|X|22−nδ (184)

= 2−n(δ−|X|2 log n+1n ).

where (183) and (184) follows from Lemma D.2.1 3) and Theorem 20. Accordingly

Pr
(
Dc(T

(2)
Xn ||Pθ) 6 δ|θ

)
= 1− Pr(T (2)Xn /∈ Γδ(Pθ))

> 1− 2−n(δ−|X|2 log n+1n ).

Moreover, summing over n

∞∑
n=1

Pr
(
Dc(T

(2)
Xn ||Pθ) > δ|θ

)
<∞.

Thus, applying the Borel-Cantelli lemma [127, Th. 3.4.2 ] to the event {Dc(T
(2)
Xn ||Pθ) >

δ} follows that
Pr
(
Dc(T

(2)
Xn ||Pθ) > δ i.o.|θ

)
= 0.

Since this holds for every δ > 0 under Pr(·|θ), as n → +∞, Dc(T
(2)
Xn ||Pθ) → 0 with

probability 1.
�

Proof of Theorem 11: The proof follows the same arguments as the proof of Theo-
rem 7, mutatis mutandis. �
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d.3 additional results from the experiments

d.3.1 Example 2: mixture of binomial distributions

Figure 21: Posterior cumulative density functions for θ2. Each plot shows in blue the output
of LD-ABC, in red the output of R-ABC and in black the true cumulative density
function for a pair (m, ε). For θ1 < 0.5 both the cumulative density functions equal
to 0. The 90% intervals over 100 rerun of each algorithm are also shown.
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Figure 22: Posterior cumulative density functions for λ. Each plot shows in blue the output
of LD-ABC, in red the output of R-ABC and in black the true cumulative density
function for a pair (m, ε). For λ > 0.5 both the cumulative density functions equal
1. The 90% intervals over 100 rerun of each algorithm are also shown.
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e.1 proofs

Proof of Lemma 8.3.1: We first characterize the probability f(V = j|RV = rv, x∗), for
an arbitrary j ∈ {1, ...,N}. Bayes theorem yields

f(V = j|RV = rv, x∗) ∝ f(RV = rv|V = j, x∗)f(V = j|x∗)

= f(Rj = rv|V = j, x∗)f(V = j|x∗)

∝ f(Rj = rv|V = j, x∗) (185)

= f(Rj = rv|x
∗) (186)

where (185) follows from f(V = j|x∗) = f(V = j) = 1/N (independence of V), and
(186) follows because, as easily checked, for any fixed j, independence of Rj and V is
preserved by conditioning on x∗. Now we have, for every s ∈ S

pA(s|rv, x∗) = (187)

= f(SV = s | RV = rv, x∗)

=
∑
j

f(SV = s,V = j|RV = rv, x∗)

=
∑
j

f(SV = s|V = j,RV = rv, x∗)f(V = j|RV = rv, x∗)

=
∑
j

f(Sj = s|V = j,Rj = rv, x∗)f(V = j|RV = rv, x∗)

=
∑
j :sj=s

f(Sj = s|V = j,Rj = rv, x∗)f(V = j|RV = rv, x∗) (188)

=
∑
j :sj=s

f(V = j|RV = rv, x∗) (189)

∝
∑
j :sj=s

f(Rj = rv|x
∗) . (190)

where (188) and (189) follow from the fact that, for sj 6= s, f(Sj = s, x∗) = 0, while for sj = s
obviously f(Sj = s|V = j,Rj = rv, x∗) = 1. Finally, (190) follows from (186).

Note that in (190) each term on the RHS actually is the joint probability f(Rj = rv,Sj = s|x∗),
being sj = s embedded in the range of the summation. �

e.2 an alternative group sampling method for vertical schemes

We consider the following method for sampling g ∈ Gi. Draw n values ri` , ` = 1, ...,n,
as follows:

1. draw ri1 from li according to a distribution ∝ f(r|s1, θ);

2. draw ri2 from li \ {| ri1 |} according to a distribution ∝ f(r|s2, θ);
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Figure 23: Sampling from ψ(g|θ, x∗) for vertical schemes.

...

n. draw rin from li \ {| ri1 , ..., rin−1 |} according to a distribution ∝ f(r|sn, θ).

For a multiset l ′, let σ(l ′|s`, θ)
4
=
∑
r in l ′ f(r|s`, θ) denote the probability of extracting

some element appearing in l ′ (disregarding multiplicities) according to f(·|s`, θ). Us-
ing this notation, the probability of returning exactly the sequence ri1 , ..., rin , hence
g = (s1, ri1), ..., (sn, rin) ∈ Gi, as a result of the above n drawings, can be written as

ψ(g|θ, x∗)
4
=

f(ri1 |s1, θ)
σ(li|s1, θ)

·
f(ri2 |s2, θ)

σ(li \ {| ri1 |}|s2, θ)
· · ·
f(rin |sn, θ)
f(rin |sn, θ)

=

∏n
`=1 f(ri` |s`, θ)
ν(g|θ)

where we denote by ν(g|θ) the denominator of the expression on the rhs of
4
= above.

The sampling process of ψ(g|θ, x∗) for vertical schemes across all the groups of the
table is illustrated in Figure 23. We note that ψ(g|θ, x∗) is dependent on the chosen
ordering of the sensitive values s1, ..., sn, which may invalidate condition (151). A
possible solution could be to sweep the order of sampling according to the Random
scan Gibbs sampler scheme described in Section 2.3.3.

e.3 additional results from experiments
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Table 18: Posterior means via MCMC. Each column corresponds to the
vector of posterior means for an element of

{
θR|s : s ∈

{Governament, Self-employed, Private, Without-pay}
}

.

Posterior Means

Gov. Self-emp Private Without-pay

White
R 0.3991 0.3854 0.3859 0.2507

MCMC 0.249 0.2494 0.2505 0.2501

LD 0.3909 0.3774 0.3805 0.2389

Asian-Pac-Islander
R 0.1968 0.2015 0.1918 0.2507

MCMC 0.2512 0.2495 0.2501 0.2501

LD 0.1999 0.2041 0.1938 0.2530

Black
R 0.2428 0.2375 0.2527 0.2486

MCMC 0.2502 0.2519 0.2492 0.2496

LD 0.2438 0.2389 0.2505 0.2492

Other
R 0.1613 0.1756 0.1696 0.2500

MCMC 0.2496 0.2492 0.2501 0.2502

LD 0.1654 0.1796 0.1727 0.2438
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