
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

A Data-Flow Threads Co-processor
for MPSoC FPGA Clusters

Farnam Khalili Maybodi

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

THIS DISSERTATION IS CARRIED OUT AT THE UNIVERSITY OF SIENA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE E SCIENZE MATEMATICHE (DIISM)

A Data-Flow Threads Co-processor
for MPSoC FPGA Clusters

ACADEMIC DISCIPLINE (SSD): ING-INF/05

Doctoral Candidate:

Farnam Khalili Maybodi

Advisor:

Prof. Roberto Giorgi

Head of the PhD Program:

Prof. Paolo Frasconi

Evaluation Committee:
Prof. Dionisios Pnevmatikatos, The National Technical University of Athens
Prof. Marco D. Santambrogio, The Polytechnic University of Milan

XXXIII ciclo — October 2021

To my parents

i

Acknowledgments
I would first like to thank my advisor, Prof. Roberto Giorgi, for his insight, vision, sup-
port, and scientific guidance over my Ph.D. program, and more for his patience �with
my technical (and non-technical) mistakes. Not to mention his original invitation to
work in the European AXIOM project, without which I would not be where I am to-
day. I am also grateful for being part of this project and working among experts in
computer science and engineering domains, which were very rewarding for me.

I would also like to thank the members of my supervisory committee: Professor
Antonio Prete and Professor Sandro Bartolini, for investing their time and effort and
their helpful comments. Moreover, I am delighted to have Professor Dionisios Pnev-
matikatos and Professor Marco D. Santambrogio as the reviewers for my thesis, and
I am thankful for their valuable feedbacks. Also, I would like to thank the members
of the evaluation committee, Professor Kavi, Professor Pnevmatikatos, and Professor
Stea, for their constructive comments during my public defense.

Marco Procaccini, it has been a pleasure working with you for the past three years;
you are a supporting friend tome despite your computer science skills and knowledge.

I am also thankful for the funding sources that made my Ph.D. work possible, in-
cluding Region Toscana, the University of Florence, and the University of Siena, as well
as the European Commission that partially funds the work presented in this thesis on
AXIOM H2020 (id. 645496), TERAFLUX (id. 249013), HiPEAC (id. 871174).

Last but not least, I wish to thank my parents for their love and encouragement,
without whom I would never have enjoyed so many opportunities. Their support and
sacrifices to bring me and my sister up are priceless, and I cannot thank them enough
for it.

ii

Abstract

Data-Flow Threads (DF-Threads) is an execution model previously proposed
by R. Giorgi [1] that distributes many asynchronous parallel threads in a multi-
core multi-node architecture. These threads carry the input data to be processed,
code pointer, and the output location where to store the results. In this model,
program code is broken down into several threads, each of which is orchestrated
by the Data-Flow Graph (DFG) across the processing elements. Each thread in-
ternally executes in a Control-Flow manner, while the distribution and the data-
dependencies among the threads follow the DFG of the application. This hybrid
setup of the computing execution harnesses fine-grain parallelism of DFG nature
and the advantages of Control-Flow programmability.

This work presents architectural support for the DF-Threads execution model.
For this purpose, we built a custom cluster of MPSoC FPGAs (i.e., AXIOM-board
[2]) to explore the feasibility of the DF-threads model, and to demonstrate bene-
fits or limitations. This thesis, for the first time, shows an implementation of the
DF-Threads execution model on a reconfigurable hardware and proposes a mod-
ular architecture for a multi-node heterogeneous distributed system with network
interconnections. Before implementing the hardware platform design, the model
has been evaluated through our Design Space Exploration (DSE) tool-set in col-
laboration with my research group. Through the DSE, we noticed that this exe-
cution model has the potential to overstep programming models like OpenMPI.
Then, the validated design is gradually migrated into the real-board tool-flow. We
explain our methodology for evaluating an architecture in our DSE environment.
We demonstrate the simplicity and rapidness of our methodology with a driving
example that models a two-way associative cache. In the context of the AXIOM
project, the DSE tool-set helped reduce the development time from days/weeks to
minutes/hours.

We built the micro-architecture on the FPGA instance starting from a minimal-
istic API for supporting DF-Threads execution in previous works. The API allows
us to handle the threads’ lifetime, including creation, distribution, and destruc-
tion. The micro-architecture presented in this thesis is a DF-Threads Co-processor
(DFC) fully implemented on the Programmable Logic (PL) of a Zynq Ultrascale+
FPGA (Xilinx). The proposed DFC is responsible for supporting the scheduling
and distribution of the Data-Flow threads. The latter operations are entirely de-
coupled from the Processing System (PS), which only executes the DF-Threads.
The DFC uses high-speed custom interconnects on the PL, through which it per-
forms load-balancing of the threads between the nodes (the AXIOM boards). The
load-balancing activity is advancing in parallel with the main computation, thus
offloading the processor’s burden for managing the parallel threads. The LBU is
the central part of the DFC, and it is configurable in terms of parameters (e.g., fair-

iii

ness, thresholds of the queues) to reach an optimum point in the total execution
performance of the application.

We evaluate the implemented co-processor performance in managing the DF-
Threads with simple benchmarks to stress the capability to manage many asyn-
chronous threads. To our best knowledge, this is the first time to have two real
nodes running DF-Threads, showing relative scalability matching the simulator’s
results. The results are reasonably alignedwith the results obtained from the COT-
Son simulator and show the co-processor’s capacity tomanage anddistributemany
fine-grain threads in a multi-node heterogeneous architecture for real. Finally, we
measured the essential voltage rails for exploring power consumption when per-
forming high-speed board-to-board communications.

Contents

Contents 1

List of Figures 3

List of Tables 5

Listings 6

1 Introduction 7
1.1 Problem statement . 11
1.2 Goals and challenges . 12
1.3 Contributions . 14
1.4 Thesis outline . 14

2 Background Knowledge 15
2.1 Data-Flow computing models . 15

2.1.1 Static Data-Flow architectures . 16
2.1.2 Dynamic Data-Flow architectures 17
2.1.4 Data-Flow architectures’ general limitations 20
2.1.5 Hybrid Data-Flow/von-Neumann execution models 21
2.1.6 Data-Flow programming languages 22

3 Design Space Exploration (DSE) tool-set 25
3.1 Simulation framework . 26

3.1.1 COTSon simulator . 26
3.1.2 DSE tools . 27
3.1.3 Experiment description . 29
3.1.4 Performance validation . 30

3.2 Operating system impact . 31
3.2.1 Performance variations (Cycles) . 31
3.2.2 Kernel activity . 32

3.3 Final remarks . 33

1

2 CONTENTS

4 Translating Timing Model into High-Level Synthesis (HLS) 35
4.1 Introduction . 35
4.2 High-Level Synthesis (HLS) tools . 37
4.3 Simulator tools . 39
4.4 Methodology . 40

4.4.1 Mapping Architecture to HLS . 42
4.5 Case study . 43

4.5.1 From COTSon to Vivado HLS – a simple example 44
4.6 Generalization to the AXIOM project . 46

4.6.1 The AXIOM board . 48
4.6.2 Validating the AXIOM board against the COTSon simulator . . . 52

4.7 Final remarks . 53

5 FPGA Implementation of DF-Threads Co-processor 55
5.1 Preliminary evaluation . 57
5.2 DF-Threads management . 58
5.3 Introduction to API . 61
5.4 Memory model . 64
5.5 Architecture block diagram . 65

5.5.1 The Decoder . 70
5.5.2 The Load Balancing Unit (LBU) . 72

5.6 Experimental results . 73
5.6.1 Recursive Fibonacci benchmark . 73
5.6.2 Resource utilization . 74
5.6.3 Power consumption analysis . 75

5.7 Final remarks . 77

6 Conclusions and future works 79
6.1 Summary . 79
6.2 Future Work . 81

A Publications 83

B Notation and Acronyms 85

C Vivado Design Blocks 87

Bibliography 91

List of Figures

1.1 48 years of microprocessor trend data . 8
1.2 Architecture of the distributed system based on the AXIOM boards 10

2.1 Manchester Data-Flow architecture . 18

3.1 The COTSon simulator building blocks . 26
3.2 The tool-flow for the MYDSE tool . 28
3.3 The experiment INFOFILE input to MYDSE 29
3.4 The INFOFILE example . 30
3.5 Preliminary comparison of the execution time between the simulator and

the AXIOM-Board . 30
3.6 Performance variation (cycles) with different operating system distribution . 32
3.7 The percentage of kernel cycles for different types of OS while increasing

number of nodes . 32

4.1 Design methodology deployed to FPGA-prototyping 42
4.2 Differences between classical and proposed architecture modeling framework 44
4.3 Example of logic scheme of a two-way set associative cache 45
4.4 Example of timing model of the cache find function 46
4.5 Example of translation of the timingmodel of the LRU (Least RecentlyUsed)

function . 47
4.6 From the COTSon distributed system definition to the AXIOM distributed

system by using the DSE Tools . 48
4.7 The AXIOM board based on an MPSoC Zynq Ultrascale+ 50
4.8 Two AXIOM boards interconnected up to 18-Gbps via inexpensive USB-C

cables . 52
4.9 BMM benchmark - FPGA validation against simulator 53
4.10 Radix-Sort benchmark - FPGA validation against simulator 53

5.1 Comparing normalized execution time gain and speed-up between the DF-
Threads and the OpenMPI . 58

5.2 Proposed scalableDF-Threads architecturemappedon theZynqUltrascale+
based board . 59

3

4 List of Figures

5.3 Distributed SharedMemory (DSM)handling FrameMemories storingproducer-
consumer data of DF-Threads . 65

5.4 Simplified block diagram of the architectural support for the DF-Threads
execution model . 67

5.5 Top view of the "Decoder" module implemented in HLS 70
5.6 Flowchart showing the algorithm of the "Decoder" module 70
5.7 The clock latency of the "Decoder" module 71
5.8 A simple example to show the load balancing querymessage passing across

the AXIOM boards . 73
5.9 Comparing speed-up between the implmeneted DFC and COTSon simula-

tor for different size of the Recursive Fibonacci benchmark running under
the DF-Threads co-processor . 74

5.10 Power consumptionmaximum variations when performingNIC RAWmes-
sages . 76

5.11 Power consumptionmaximumvariationswhenperformingNICRDMAmes-
sages . 77

C.1 The top module of the building blocks for DF-Threads Execution model im-
plemented on the AXIOM board’s MPSoC FPGA 88

C.2 The sub-modules assembling the DF-Threads Co-processor 89

List of Tables

4.1 High-Level Synthesis tools comparison . 38
4.2 Simulator tools comparison . 41
4.3 Comparison of different total DSE time of the classical design workflow for

FPGAs and our proposed workflow . 44

5.1 DF-Thread API in a C like syntax used in software stack of the proposed
MPSoC FPGA cluster . 61

5.2 The Decoder Module: important inputs and outputs description 71
5.3 Resource utilization of the proposedDF-Threads co-processor implemented

on the AXIOM board . 75
5.4 AXIOM board’s power supply rail adopting dedicated power monitors . . . 76

5

Listings

5.1 Lifetime for a DF-Thread in C . 62
5.2 "C" like code for a Recursive Fibonacci example 63
5.3 Transformed code of Recursive Fibonacci C code into the DF-Threads

API code . 63
5.4 The definition of an AXI4-Stream interface in HLS 68
5.5 Reading from an AXI4-Stream FIFO . 68

6

Chapter 1

Introduction

In the early 1940s, von-Neumannproposed a computer architecture, which is stillwidely
used in modern computer organization. Based on this model, instructions are sequen-
tially fetched and decoded by the Central Processing Unit (CPU), and the results are
written back tomemory. The evolution of digital computingwas a significantmilestone
by the emergence of the first microprocessor (the processor structured on a single chip
) by Intel under 4004 in 1971. This chip contained nearly 2300 transistors, and it was
clocked at 740 kHz, executing 92000 instructions per second, while consuming around
0.5 watts. Since then, microprocessors had a massive advancement throughout their
history. Figure 1.1 shows a 48-year of microprocessor trend data in terms of critical
parameters (e.g., Frequency, power consumption, number of transistors) in the micro-
processor evolution.

Single-chip microprocessors performance is directly proportional to the clock fre-
quency, larger cache sizes and more complicated hardware mechanisms such as out-
of-order and pipelining executions. However, there are limitations in improving per-
formance due to the power wall and technology restrictions [3]. The designers moved
the architectures from single-core to multi-core investing more in parallel computing,
while the clock frequency remained constant (Since 2005, trend depicted in Figure 1.1).
These cores typically operate with lower clock frequencies and are less power consum-
ing than the conventional single-core microprocessors. However, in such multi-core
architectures managing the cache data and memory hierarchy between the cores is an
open research topic [4], [5]. We need to rethink execution and programming models
to exploit properly today’s complex multi-core systems ranging from �shared memory
systems to large-scale distributed memory clusters.

For this purpose, many efforts have been carried out in parallel-programming to
exploit the available parallelism of many-core many-nodes computing organizations.
For instance, Message Passing Interface (MPI) [6], OpenMP [7] and Cilk++ [8] for par-
allel execution models adopted in microprocessor, or domain-specific languages such

7

8 CHAPTER 1. INTRODUCTION

as CUDA and Map-Reduce are used in heterogeneous data streaming processing el-
ements such as GPUs. Nonetheless, these techniques did not fully exploit parallel
programming for a wide range of computing challenges (e.g., resource management
challenges, communication bottlenecks, power efficiency) [9]. Moreover, the cost of
synchronization in such parallel programming techniques scales up with the system
size [10].

Figure 1.1: 48-years of microprocessor trend data showing the number of logical cores, typical
power, frequency, single-thread performance and number of transistors [11].

The Data-Flow computing paradigm proposed by Jack Dennis [12], [13] is an alter-
nativemodel for the von-Neumann computingmodel. Thismodel inherently offers the
potential of fine-grain execution and enables exploitations of parallelism while keep-
ing the parallel programming synchronized due to its Data-Flow characteristics. The
Data-Flow execution model is suitable on multi-core and many-node computing orga-
nizations by creating many asynchronous fine-grain threads orchestrated among the
processing elements [14]–[27].

In the Data-Flow execution model, application codes (based on traditional pro-
gramming models such as C) are translated into the Data-Flow Graph (DFG), repre-
senting the same execution graph of the application tasks. In DFGs, each node repre-
sents a function, alternatively, one or a set of instructions in line with the Data-Flow
principle [13]. The data-dependencies between these nodes are represented by the
edges (arcs) between the nodes. Each node’s execution occurs when all of its inputs
are available, in contrast with the von-Neumann models where the execution of an in-

9

struction starts once the program counter is reached to it, regardless the data execution
order.

However, proposed designswith a pureData-Flowmachinewas not totally promis-
ing. (e.g., Explicit Token Store architecture [28], and Manchester Data-Flow Machine
[29]), mainly because of the excessive fine granularity at the instruction level and poor
capability to effectivelymanage the data structures andmemory systems yet respecting
conventional programming languages [30]. To cope with this issue, a possible solution
can be a hybrid design of the von-Neumann and Data-Flow models of computation
[30], [27], [31].

This studymainly focuses on implementing a Data-Flow executionmodel so-called
DF-Threads [1], on a multi-board heterogeneous reconfigurable platform (the AXIOM
board) and validating the performance with a simulator framework (COTSon).

The preliminary work required the development of a methodology and tool-set as
part of the Design-Space Exploration (DSE), which enhances the spent time of hard-
ware prototyping and performance evaluation of the execution model. The AXIOM
project [32]–[36], [2], [37]–[39] aims at building a software/hardware environment suit-
able for heterogeneous embedded system in theCyber-Physical Systems (CPS) domain.
We take this opportunity to test and verify our proposed executionmodel’s functional-
ity for real-world applications covered by the AXIOM project. The proposed design of
the DF-Threads allows offloading the fine-grain threadsmanagement to a co-processor
so-called DF-Threads Co-processor (DFC), which leads to an acceleration of function
execution and thread orchestration among the available multi-core nodes of the orga-
nization. Although the DFC can be implemented in software, we implement it entirely
on the Programmable Logic (PL) part of the FPGA Zynq Ultrascale+ chip of the AX-
IOM board, which reduce the significant processing burden of local ARM cores, which
might be dedicated to the DF-Threads management across the FPGA board cluster.
The AXIOM board has the following key features: i) several low power cores ii) a high
speed reconfigurable interconnect for board-to-board communication; and iii) a user-
friendly programmable environment, which allows us to offload program algorithms
partially into accelerators (on programmable logic) and, at the same time, to distribute
the computation workloads across boards (see Figure 1.2).
During the development of the design, the DF-Threads execution model was previ-
ously validated and evaluated by the Design Space Exploration (DSE) tool-set (named
MYDSE) [40], leading to saving not only the development time but also numerically
evaluate the possible bottlenecks of the proposedmodel before migrating it on the AX-
IOMplatform. Thus, moving an already-validated design from the simulator (COTSon
[41]) in terms of functionality and performance to real hardware facilitates the design
development.

10 CHAPTER 1. INTRODUCTION

Two benchmarks (Matrix Multiplication and Recursive Fibonacci) have been se-
lected to gauge the DF-Threads execution model’s performance. Benchmarks like Ma-
trix Multiplications are frequently used in computational demanding real-life applica-
tions such as Smart Video Surveillance (SVS) [35] and Smart Home Living (SHL) [36].
These applications consume a significant compute power to analyze many scenes from
multiple cameras, e.g., airports, homes, hotels, and shopping malls. We use the Recur-
sive Fibonacci benchmark (a fine-grain algorithm) as a preliminary stress test of our
proposed implemented co-processor on a cluster of FPGAs. We verify and evaluate
the deployed load balancing technique’s performance and the memory management
across the SoC FPGAs with this benchmark.

Core
0

Core
1

Core
m-1

NODE1 / BOARD1

. . .

INTERCONNECTS

PL

PS

AXIOM Board

DF-Threads
Co-processor

Registers

Gigabit
Tranceivers

Core
0

Core
1

Core
m-1

NODE2 / BOARD2

. . .

PL

PS

DF-Threads
Co-processor

Registers

Gigabit
Tranceivers

Core
0

Core
1

Core
m-1

NODEn / BOARDn

. . .

PL

PS

DF-Threads
Co-processor

Registers

Gigabit
Tranceivers

Core
0

Core
1

Core
m-1

NODE3 / BOARD3

. . .

PL

PS

AXIOM Board

DF-Threads
Co-processor

Registers

Gigabit
Tranceivers

AXIOM Board

AXIOM Board

. . .

DDR

DDRDDR

DDR

Figure 1.2: Architecture of the distributed system based on the AXIOM boards. The Dis-
tributed System consists of N Nodes based on an MPSoC, which includes a Processing System
(PS) and Programmable Logic (PL). The nodes of the system are connected through USB-C
cables without the need for an external switch.

1.1. PROBLEM STATEMENT 11

1.1 Problem statement

The trend of computing growth encounters the end of Dennard scaling and a slowed
down Moore’s law while still increasing the number of transistors. It is due to elevat-
ing parallelism exposed by multi-core architectures to achieve high-performance [9].
These cores are based on Control flow processors (von-Neumann), on which paral-
lelism has been applied on different levels; thread-level parallelism (TLP) (program-
mer dependent), data-level parallelism (DLP) (compiler and programmer dependent),
and instruction-level parallelism (ILP) (hardware dependent).

There are several proposed programming models like OpenMP [7], MPI [6], and
Cilk++ [8] to program such multi-core systems. Although these programming models
may facilitate parallel programming, they have synchronization limitations that arise
from waits due to data-dependent long latencies memory accesses. It leads to low
resource utilization and performance inefficiency, mostly in a distributed sharedmem-
ory and multi-core many-node systems [42]. Thus, we need to rethink such program-
ming and execution models to fully exploit parallelism offered by on-chip resources
and achieve a better performance and power efficiency. However, even with full ex-
ploitations of available parallel resources, the overall performance is limited by the
sequential portion of a task, as Amdahl’s revealed [43], [44]. Moreover, real-life appli-
cations running on current multi-core clusters usually exploits up to 10% of the peak
processing power of the system, and encounters CPU starvation [45].

Regardless of the executionmodel, several programmingmodels are proposed that
offer flexibility andhigh-performance capability, such as task-basedprogrammingmod-
els [46]–[48]. These software models take advantage of the offered parallel granularity
of Data-Flow models and improve multi-core architectures source utilization. In these
programmingmodels, the programmer does not deal with the explicit management of
the parallelism, while the scheduler is responsible to implicitly schedule data and com-
putations of tasks. However, the introduced processing power overhead to schedule
and manage the parallel tasks (especially small tasks) significantly affects the overall
performance efficiency of the system.

Data-Flow execution models stand as an alternative to the von-Neumann comput-
ing model [13]. However, the pure Data-Flow architectures have limitations due to
their inability to support the imperative programming languages and data structures.
Moreover, due to some limitations of the Data-Flow execution model, they cannot be
considered an alternative to traditional general-purpose processors (GPPs). For in-
stance, control transfer could be expensive in some Data-Flow models, or the latency
costs of direct data communications can be restrictive [49]. The problems mentioned
above made us rethink alternative solutions to utilize the resources of multi-core ar-
chitectures efficiently.

12 CHAPTER 1. INTRODUCTION

A hybrid model is presented in this work to exploit the full parallelism offered by
heterogeneous multi-core/multi-node, where the threads are scheduled following the
Data-Flow model, and the instructions are executed in a von-Neumann model. In this
model, exploiting parallelism consists of breaking an application code into several DF-
Threads (each of which composed of one or several instructions to be executed in a GPP
core) and coordinating them for their correct execution. This model has a Data-Flow
management co-processor, which controls andmanages the execution of theData-Flow
Threads (DF-Threads) [1]. This co-processor’s main component is the load balancing
unit, which takes care of the asynchronous distribution of the DF-Threads among the
available computing elements (i.e., local cores and remote nodes). Each DF-Threads
executes by a GPP core, while the orchestrations of the DF-Threads among the avail-
able cores are based on the Data-Flow model. This solution offers many advantages
against either pure von-Neumann and pure Data-Flow models.

The advantages of our DF-Threads as listed below:

i) No need for memory consistency due to the Data-Flow graph’s inherent data con-
sistency; this provides a power-efficient and straightforward design that can effec-
tively exploit the processing power of available cores.

ii) Asynchronous execution of fine-grain DF-Threads [50], which provides a great
potential to effectively utilize the parallelism offered by the multi-core multi-node
architecture.

iii) The length of the independent data path is the expression of the granularity of
parallelism. The granularity of the DF-Threads can be adjusted from fine-grain
to coarse-grain; this makes the DF-Threads execution model a flexible computing
model covering the optimum execution of any applications.

iv) The idea is applicable either on software or on hardware (ASIC or FPGA).

1.2 Goals and challenges
Energy efficiency in current and future High-Performance Computing (HPC) systems
is a fundamental challenge that cannot be approached by scaling the number of cores
in a multi-core architecture. Therefore, one possible solution can be heterogeneous ar-
chitectures. Recently, FPGAs have proven to be reliable and energy-efficient platforms,
thanks to their reconfigurable spatial infrastructure. Given the previous motivations,
this thesis focuses on implementing a novel execution model based on the Data-Flow
threads (DF-Threads), [51], [52], on a distributed heterogeneous computing platform.
We show the functionality of the DF-Threads execution model on an MPSoC FPGA

1.2. GOALS AND CHALLENGES 13

Cluster. Furthermore, we study the capability of full exploitation of parallelism in a
multi-core/multi-node heterogeneous architecture.

In this study, we try to show our novel execution model’s functionality on a cluster
of heterogeneous reconfigurable platforms, which offer scalability and the potential to
a better performance and power efficiency [53], [54].

We necessitate the following goals and challenges to have the DF-Threads execution
model running on a distributed heterogeneous reconfigurable system:

• The extension of the DF-Threads API with the integration of the DF-Threads Co-
processor (DFC) as the accelerator implemented besides the CPU.

• Efficiently exploitation of parallelism: theDF-Threads executionmodel distributes
the threads which are ready to be executed across the available nodes in a cluster
ofMPSoC FPGAs (e.g., AXIOMboard). For this goal, we deploy a load-balancing
module, which dynamically orchestrates the DF-Threads across the cluster, with-
out intervening of the user API.

• Performance analysis for the SoC FPGA implemented DFC and validating the
results with the simulator (COTSOn simulator).

For this purpose, thanks to the AXIOM project, we have a scalable, reconfigurable,
and distributed platform as the hardware infrastructure of our proposed execution
model. Our proposed architecture is implemented on the Programmable Logic (PL)
of an SoC FPGA (AXIOM board). The FPGA of the AXIOM board is a heterogeneous
architecture based on a ZynqUltrascale+ composed of Processing System (PS) and Pro-
grammable Logic (PL). PS cores comprise four Cortex A53 ARM cores that allow us to
be suitable for a large set of applications, and the PL is known for its power efficiency
and reconfigurability. It makes it an appropriate choice for being used in the multi-
threads Data-Flow execution models. These models evolve around the data mobility
optimizations and massive exploitations of parallelism among many thousands of DF-
Threads, which offers higher performance and modularity [1], [23], [55], [56].

The DFC comprises a scalable thread scheduler unit that is responsible for the data
synchronization andDF-Threads distribution among the PS cores ofmultiple heteroge-
neous boards, exploiting the computational power of the PS cores only for the execution
of the threads. The design first is verified, and the performance of the DF-Thread exe-
cution model is evaluated through our DSE-tool-set, and COTSon simulator [40], then
migrate the design on the AXIOM ecosystem, which offers a cluster of a heterogeneous
system.

14 CHAPTER 1. INTRODUCTION

1.3 Contributions
These are contributions of this thesis:

1. FPGA prototyping of a preliminary design of DF-Threads execution model. The
design previously was simulated through our design space exploration (DSE)
tool-set [40] in our research group (see Chapter 3).

2. Performance validation of results obtained through the utilization of simulator
(COTSon Simulator) and a real board (The AXIOM board) based on an FPGA
prototypedmodel running a benchmark (i.e., BlockedMatrixMultiplications)[39]
(see Chapter 3).

3. Translating timing model into the High-Level Synthesis (HLS), and generalizing
the methodology to the AXIOM project (Zynq Ultrascale+ board) [57] (see Chap-
ter 4).

4. Proposing architectural support for the DF-Threads execution model, which is
implemented for the first time as a co-processor (DFC) on a real hardware based
on MPSoC FPGA (Zynq Ultrascale+). The major component of the DFC is the
load balancing unit (LBU), which orchestrates DF-Threads across the available
nodes throughout the cluster (see Chapter 5).

5. Analysis of the power consumption and key performance metrics of the target
platform (Zynq Ultrascale+) for being used in a multi-node computing platform
(board-to-board high speed communication) [58] (see Chapter 5).

1.4 Thesis outline
The work presented in this study is organized as follows: Chapter 2 addresses the re-
lated work to this study. In Chapter 3, the DF-Threads execution model, the Design
Space Exploration (DSE) tool-set, and the COTSon simulators are briefly introduced.
The performance validation of the DF-threads execution model with a preliminary de-
sign on an SoC FPGA based board (AXIOM board) is presented. In Chapter 4, the
methodology adopted to translate the timing model of the architecture into the High-
Level Synthesis (HLS) tool is detailed. The methodology is demonstrated through a
simple case study example consisting of modeling a two-way associative cache. Chap-
ter 5 presents the proposed architectural support for the DF-Threads execution model,
targeting a cluster of SoC FPGAs. The proposed design is implemented on the AXIOM
board, and the analysis of power consumption and important keymetrics is performed.
Chapter 6 concludes this thesis and addresses possible optimizations and directions to
future work.

Chapter 2

Background Knowledge

Nowadays Field Programmable Gate Arrays (FPGAs) have become a promising can-
didate for High-Performance Computing for their offered scalability, reconfigurability
and power efficiency. This study aims to materialize an execution model capable of
parallelizing threads execution across the available computing resourceswhile keeping
the simplicity of the von-Neumann-based execution model. To have this model func-
tioning, we take advantage of the MPSoC FPGA architecture (i.e., Zynq Ultrascale+).
To cover the related work to this study, first, we describe the Data-Flow computing
paradigm proposed by Jack Dennis [13], as an alternative to the von-Neumann model
of execution. Next, we briefly highlight the different types of Data-Flow computing.

2.1 Data-Flow computing models
The Data-Flow computing paradigm is one of the possible alternatives to the von-
Neumann computing paradigm, and a computer architecture based on this model was
presented by J.Dennis [59], [60] and G. Kahn [61] in the early 1970s. In the Data-Flow
model, a computing problem breakdowns into the Data-Flow nodes and arcs of a Data
Flow Graph (DFG) [62], [14]. The nodes represent the program’s instructions, and the
arcs (edges) represent the data-dependencies between the instructions. In this model,
each node becomes executable once the data of all its inputs are available. In this con-
text, the principle of Data-Flow allows the instructions to be executed in parallel, which
offers the potential for increasing the Instruction Level Parallelism (ILP) at the instruc-
tion level [63]. Moreover, the Data-Flow model is one of the major methodologies to
map the high-level languages onto the digital hardware. The Data-Flow model has
been extensively used in many digital computing research areas, including graphics
processing, data warehousing, and digital signal processing, and machine learning
[64], [65].

15

16 CHAPTER 2. BACKGROUND KNOWLEDGE

Data-Flow models can be implemented both in software and hardware. The soft-
ware ones are usually part of runtime libraries or virtual machines [47], [66]–[68]. On
contrary, the hardware implementations ofData-Flowmodel targetsApplication-Specific
Integrated Circuits (ASICs) [69]–[71], or Field Programmable Gate Arrays (FPGAs)
[72]–[75].

Data-Flowexecutionmodels have been reviewed recently [1], [30], [76] as theypromise
an elegant way to efficiently execute threads based on data availability [77], [27], [78].
Notably, the computations can be mostly performed in a producer-consumer manner,
while for mutable shared data, the memory model offered by Data-Flow Threads (DF-
Threads) [1] is enclosing Transactional Memory [79], which is a concurrency control
mechanism for controlling access to shared memory by replacing locks with atomic
execution units.

In this context, the TERAFLUX project [80], [51], [15], [81], [52] accomplished such
Data-Flow modality while extending to multiple nodes which are executing seam-
lessly through an appropriate memory semantic [82], [1]. A compound of consumer-
producer patterns [52], [83] and transactional memory [84], [79] allows a novel combi-
nation of Data-Flow paradigm and transactions to solve the consistency issues across
nodes, where each node is supposed to be cache-coherent like in a classical multi-core.
Additionally, such distributed systems could support fault-tolerance [85], [86], and in
this context, a Data-Flow thread may be re-executed without harming the computing
program since the thread inputs are maintained before scheduling the corresponding
thread. The Data-Flow concept is also extensively used in software as the semantic of
programming language modeling concurrent tasks and using the parallelism offered
by the Data-Flow machine.

There are various levels of computing abstractions, in which the Data-Flow concept
can be deployed from a pure Data-Flow hardware implementation to the Data-Flow
at the instruction level, thread-level, or hybrid Data-Flow architectures [87]. The clas-
sic Data-Flow architectures can be classified into two categories, static Data-Flow and
dynamic Data-Flow. In the following, the variations of this model are highlighted and
addressed.

2.1.1 Static Data-Flow architectures
The static Data-Flow model (The first model proposed by J. Dennis [60]) allows only
one instance of a node to become ready to execute. Moreover, at most only one token
resides on any arc. Indeed, a Data-Flow node can be executed when all of its input
tokens are available, and no tokens reside on any of its output arcs. In this model, the

2.1. DATA-FLOW COMPUTING MODELS 17

memory collection comprises three types of cells, including opcode, destinations ad-
dress(es), and operands. Each functional node in the DFG consists of five pipelined
functional units, which decodes the op code and performs operations, encapsulates
the output packet, and writes back the result tokens to the memory cells. The enable
nodes are inherently detected. However, the graph is static, and every instruction can
be instantiated only one time, which limits the performance of loop iterations and sub-
program invocations. The main factor that is responsible for moving the results from
the processing elements to the memory is a distribution network module. In order to
reduce the overhead of the network, only the acknowledgment signals and boolean to-
kens are exchanged between the processing elements and the memory cells. To avoid
indeterminacy, some extra arcs are dedicated for acknowledgment signals from the
consuming node (the node that asks for input tokens) and producing node (the node
that its output arcs carry valid results). These acknowledgment signals ensure that no
arc will carry more than one token. A token on an acknowledgment arc indicates that
the corresponding data arc is empty. When a node executed the instructions, it asserts
an acknowledge signal to receive the next token (the acknowledge signals follow the
Data-Flow chain of the program).

However, this model suffers from essential issues that are listed below:

• Low performance in loop iterations and re-entrancy [88]

• Considerable network overhead due to the acknowledgments and tokens

• It lacks the general support for programming constructs in imperative program-
ming languages (like recursions and procedure calls)

However, despite the disadvantages of static Data-Flow architectures, some ma-
chines are designed based on the static Data-Flow concept. The most important static
Data-Flow architectures are: Hughes Data Flow Multiprocessor (HDFM) [89], MIT
Data-Flow architecture by J. Dennis [60], [90], DataDrivenMachine1 (DDM1) [91], Lan-
guage Assignation Unique (LAU) system architecture [92], and the TI Distributed Data
Processor (TDDP) [93].

2.1.2 Dynamic Data-Flow architectures
The dynamic Data-Flowmodel solves some of the limitations of static Data-Flow, such
as low performance introduced by one instance execution per time for loop iterations.
Thereby, dynamic Data-Flow supports the concurrent execution of multiple instances
of loop iterations at runtime, which improves the machine’s performance. It is done
by viewing arcs as buffers containingmultiple data items. Dynamic Data-Flowmodels

18 CHAPTER 2. BACKGROUND KNOWLEDGE

are so-called tagged-token Data-Flow models, due to the associated tag with each to-
ken. A tag representing the dynamic instances is assigned to each token to distinguish
among instances of a node to identify the context in which a specific token was gener-
ated. An actor starts firing once all of its input tokens with identical tags are available.
This firing rule in dynamic Data-Flowmodels removes acknowledgment signals, lead-
ing to reduced overhead.

A notable example of dynamic Data-Flow architecture is Manchester Data-Flow
Machine [29], [69]. The achieved performance for this machine is up to 1.2 MIPS (Mil-
lion Instructions Per Seconds). This machine composes of five units organized as a
pipeline ring (see Figure 2.1). These units are listed below:

Switch Unit

Token Queue

Matching UnitNode-Store

Processing Unit

Tokens

Tokens

Token-pair

Inst. packets

Tokens

To Front-endFrom Front-end

Figure 2.1: Manchester data-flow five stage pipeline ring [87].

• I/O Switch: it establishes communications between the host and Data-Flow Pro-
cessor Unit (PU). This switch allows programs and data to be loaded from a host
processor and results to be written back to the host for external inspection.

• Token queue: this is the FIFO (first-in-first-out) queue to smooth out uneven rates
of the traversing tokens throughput across the pipeline ring.

• Matching unit: this contains six pipeline registers, a parallel hash table, and a
16-bit interface to the over-flow unit. Each hash table consists of a 64 Ktoken
memory in addition to a 54-bit tag/destination comparator and interface con-
trol. The matching unit is responsible for collecting tokens with identical tags by
pairing tokens accordingly with the same destination node addresses. Over-flow
takes place when the accessed locations are entirely occupied. In this case, the
non-matched received token is passed to the over-flow unit with the associated
indicator flag.

2.1. DATA-FLOW COMPUTING MODELS 19

• Instruction store (Node Store): this consists of two pipeline registers, a segment
lookup table, and a random-access memory to store instructions of the program.

• ProcessingUnit: it is amicro-programmed, 2-stage pipeline unit that executes the
Data-Flow operations. The first stage moderates the generation of results tokens
with their associated tags, and the second stage comprises 15 functional units to
execute the instructions operations.

There are other machines following the baseline of the dynamic Data-Flow archi-
tectures, such as PIM-D [94], the Tagged-Token Data-Flow Architecture (TDDA) [95],
Distributed Data-Driven Processor (DDDP) [96], and SIGMA-1 [97].

Despite the more parallelism that dynamic Data-Flow offers, it suffers from several
drawbacks [88], [87]. One of these disadvantages is the extra imposed overhead for
matching the tags on tokens. The authors in [69] propose a method to mitigate the
overheads coming from the match process at the expense of the more complex mem-
ory implementations. However, the overhead from matching tokens and prohibitive
costs of associative tag lookups yet introduce a considerable limitation in terms of sil-
icon area, latency, and power efficiency. The shortcomings in implementations of the
dynamic Data-Flow are listed as below [87]:

• Resource allocation is complex

• Matching tokens with associated tags impose a considerable overhead.

• The instruction cycle is not handled efficiently due to non-matching deadlocks

• Data structures are not too easy to be managed by the programmer

• Performance is strongly dependent on the rate at which the matching unit oper-
ates

Explicit Token Store (EST) tries to overcome the associated overheadswith the token
store coming from inefficientmatching process [98]. One of the significant issues in dy-
namicData-Flow architectures is the efficientmatching process. To overcome the ineffi-
ciency coming from the matching of the dynamic Data-Flowmodel, ETS offers a direct
matching. The main idea relies on the dynamic allocation of an independent memory
frame, the so-called activation frame for all tokens generated by code block (e.g., each
activation of a loop iteration or subprogram invocation). These allocated frame stores
are associated with the frame of wait-match storage on each code-block invocations
and hold synchronization information of instructions within the code-block. An off-
set relative to a pointer is associated with the frame through which access to locations
within the activation frame is possible, leading to a fast and explicit addressable mem-
ory, thus eliminates the need for associative memory searches. The runtime performs

20 CHAPTER 2. BACKGROUND KNOWLEDGE

the allocation procedure. The traversing token comprises a continuation pair <FP, IP>
Instruction Pointer (IP) (also called destination instruction), and Frame Pointer (FP) to
activation frame. Typically, an instruction carries an opcode (e.g., ADD), an offset from
the activation frame pointer, where a match will occur, and displacement fields speci-
fying destination instructions that receive the output tokens. Moreover, the number of
the input port of each destinated actor is determined by the displacement fields. Once
the continuation pair arrives by the Processing Element (PE), the instruction is fetched
from the Instruction Memory pointed by IP, then FP with the offset exactly points to a
cell within the wait-match memory. If it was empty, the arrived continuation (token)
should be stored in the Frame Storm; if the slot is full, the partner token is retrieved
then the instruction will be dispatched. A notable examples of using ETS architecture
are Monsoon architecture [70], and Epsilon-2 multiprocessor [71].

2.1.4 Data-Flow architectures’ general limitations
Despite the massively exposed parallelism of Data-Flow architectures, they still suffer
from several issues. One example is that since no concept of a variable exists and data
flows under the tokens among the instructions, arrays and data structures can not be
handled easily as in a control flow machine. Moreover, a sequential code consisting
of loops, structures, arrays, and recursions, still may need several considerations to be
accomplished for the compiler, and programming requires a complex way of thinking
yet. Although the Data-Flow concept works well for traversed variables under the to-
kens, passing a complex data structure and handling it among the nodes may not be
trivial. A data structure type should be passed under the token, and any update to
any cell of structure leads to a new token. Moreover, respecting the single-assignment
rule (values associatedwith variables cannot bemodified) when a token point to a data
structure, the cells of the structure should not be modified. Another general issue in
Data-Flow architecture is an extra overhead due to handling the token per instructions
and fine-grain context switching at each instruction level. The pipeline is not utilized
for the same threads executing instruction when previous instructions are not yet exe-
cuted in the architecture.

In practice, more efficient management of structures and arrays are still missing.
However, there are proposed solutions to mitigate these issue such as direct access
method [99] and indirect access method) [100].

Data-Flow architectures are specialized for functional languages and not welcom-
ing to general programmingmodels widely used in high-performance computing. For
this reason, particular programming languages are needed (see Section 2.1.6), which
produce large DFG to exploit as much as possible the exposed parallelism of the un-
derlying architecture. However, such programming models may have several issues

2.1. DATA-FLOW COMPUTING MODELS 21

�in handling explicit computation states with complex data structures and loops. To
overcome the complexity of data structure, some solutions are proposed as specialized
storage mechanisms such as the I-structure [101], and still respect single-assignment.
However, these modifications complicate the design, directing the data structure to a
non-generic structure. Another issue in such a machine’s programming is its inability
to execute instructions widely used under the memory ordering by imperative lan-
guages (such as C/C++). In general, pure Data-Flow architectures (as discussed in
previous sections) are not welcoming and effectively supporting imperative languages
(e.e., C/C++).

Consequently, the Data-Flow architecture is one solution to exploit parallelism,
coming from the explicit expression concurrency across the Data-Flow graph paths,
thus splitting the execution rather than centralized execution of instructions offered by
the Control-Flow model. However, as far as the granularity of this parallelism intro-
duces difficulties in handling imperative programming concepts and, hence limits the
effectiveness of such machines [102]–[104].

2.1.5 Hybrid Data-Flow/von-Neumann execution models

The hybrid architectures attempt to mitigate shortcoming of classic pure Data-Flow
architectures (e.g., static and dynamic) by combining the concept of Data-Flow with
Control-Flow execution models [105], [30]. These models benefit either the parallelism
and inherent synchronization of Data-Flow and the programming abstraction and sup-
port based on von-Neumann models by combining the abstractions of the Control-
Flow and shared data structures. For example, many hybrid models take advantage
of Data-Flow scheduling techniques and programming based on Control-Flow ap-
proaches. In the hybrid model, a node of a DFG comprises a set of sequentially ex-
ecutable instructions as a so-called thread of instructions. As a result, based on this
feature, the granularity of executable instructionsmay vary fromfine-grain (an instruc-
tion) to coarse-grain (a set of instructions).

A further benefit of hybrid architecture relies on their memory models, still inte-
grating the single-assignment semantic of Data-Flow nature while owns memory con-
sistency of Control-Flow execution. It alleviates the problem of inefficient support of
shared data structures and arrays, thereby managing imperative languages.

A further implementation of DF-Threads [106], [1] discussed in this thesis relies
on the hybrid model, which maps the application into many threads forming a DFG.
These threads among the DFG execute on Control-Flow cores.

22 CHAPTER 2. BACKGROUND KNOWLEDGE

Hybrid models can be classified into a wide range of granularity in several op-
erations, from a single instruction (fine-grain) to a set of instructions (coarse-grain).
The Out-of-Order model [107], which is an extension of the superscalar processors. In
this work, the Data-Flow semantic is deployed into the issue and dispatch stages to
enhance ILP (e.g., local Data-Flow or micro Data-Flow architecture [108], [109]), and
power efficiency. These models exploit more efficient ILP than the pure von-Neumann
models. However, due to the limitation in the silicon area and technology, their paral-
lelism is particularly restricted. As other notable examples of hybrid model, the MIT
Hybrid machine [110], , the EM-4 architecture [111], the Epsilon-2 multiprocessor [71],
theMcGill Data-FlowArchitecture (MDFA) architecture [105], the memory Decoupled
Threaded Architecture (DTA) [112]. A further implementation of hybrid models is:
TRIPS [113] TARTAN [114] and DySER [115], which execute a set of instructions un-
der a block in a Data-Flow semantic, while each block is scheduled in a Control-Flow
way. In contrast, the DF-Threads execution model [1] schedules the blocks of threads
in Data-Flow form and executes each instruction included into the blocks based-on
Control-Flow semantic.

Further examples for hybrid model are Star-T (*T) [116], TAM [117], ADARC [118],
EARTH [101], MT. Monsoon [105], Plebbes [119], SDF [103], DDM [120], Carbon [121],
and Task Superscalar [122].

2.1.6 Data-Flow programming languages
The Data-Flow languages typically use some Data-Flow principles, including single
assignments, based on which values assigned to variables remain unchanged, and lo-
cality of effect, based on which instructions do not have unnecessary data dependen-
cies. Due to scheduling determined from the dependencies, the value of variables does
not change between their use. It is the only way to guarantee the avoidance of the re-
assignment of variables once their value has been assigned. A benefit of the single-
assignment is that the order of statements is irrelevant. There is no circular reference,
and each variable’s creation can occur in any order during the execution. However, in
these languages, the order of the statements is essential when a loop is being defined.
To respect to the single-assignment rule, an imperative syntax is used to determine the
value of the variables on the next iteration of the loop (e.g., next in [123]). A Data-Flow
program does not allow a function to edit its own parameters to guarantee the validity
of data dependencies, which can be avoided by the single-assignment rule. Conse-
quently, Data-Flow programming languages are extensively functional languages us-
ing imperative syntax [124].

Moreover, there are a few Data-Flow programming languages that support recur-
sion instead of loops [125]. Nonetheless, it is important to be noted that the proposed

2.1. DATA-FLOW COMPUTING MODELS 23

DF-Threads [1], [106] can execute either loop and recursions (e.g., Recursive Fibonacci
benchmark).

Value-orientedAlgorithmic Language (VAL) is proposed byMIT [126], and is based
on a textual representation of Data Flow Graph (DFG), and relies on pure functional
language semantics. VAL offers an implicit concurrency, which means that the opera-
tions execute simultaneouslywithout the need for any explicit language notations. The
language uses expression and function-based features, which prohibits the side effects
simplifying the translations to the DFG.

ID (Irvine Data-Flow language) [127], which was proposed by Arvind for the dy-
namicData-Flowarchitecture permits high-level programming language based onblock-
structured, expression-oriented, and single assignment principles. It has an interpreter
to translate and execute the programs for the dynamic Data-Flow machine. The types
of variables are declared implicitly by the values that they carry. Each structure is an
array of elements, which can be accessed through the indices or string values. It uses
two syntaxes to work with data structures, append, select, and new ; append is used to
create a new structure by duplicating the elements of the original structure, and select
is used to read the value of an element of the structure. It uses new to define a new
value associated with an expression.

Data flow Language (DFL) [128], which is based on the Petri nets [129] and nested
relational calculus (NRC) [130] is a graphical workflow language. In this language, a
set of complex data is defined to describe the structured complex values modified by
the workflow. Then, the structure of this data is reflected in the structure of the work-
flow. The language has a formal semantics that is based on the Petri nets and NRC to
support both the control flow and Data-Flow models. They extend the Petri nets to
reorganize the processing tasks, and NRC (it is a query language over complex objects
used in database management) to handle a set of data items such as those that are used
in "for iteration" and "typing system". In DFL, the Data-Flows are constructed in a hi-
erarchical manner, based on a set of refinement rules, and are initiated with a single
token in the input node and terminated with another single token in the output node.
It reflects the result at the output eventually computed in any case, without consider-
ing how the computations proceed.

Streams and Iterations in a Single Assignment (SISAL) is a derivative of the Val
[126]. It is based on texted functional DFL, which was coined by Feo and Cann [131].
The syntax of the language is similar to Pascal and is strongly-typed, with optimized
readability and learning curves. It also provides a micro-tasking ecosystem, which
executes the program based on the Data-Flow model on the conventional single-core
machines. Its compiler can distribute workloads among nodes in an optimized way in

24 CHAPTER 2. BACKGROUND KNOWLEDGE

a fully automaticmanner. The compiler is responsible for sketching theDFG and create
the nodes and arcs before the runtime. In runtime, the nodes are executed in parallel,
and the data from one node to another is forwarded along the Data-Flow chain.

The Textual Data-Flow Language (TDFL) was proposed by Weng [125] as one of
the oldest developed Data-Flow languages. The Data-Flow graph is generated with
data streams in a straightforward manner during the compilation phase. The program
is broken down into a series of modules, each of which comprises a set of statements
that are assignment (based on the single-assignment rule), conditional statements, or
call to other modules. Each module can call itself recursively, respecting the single-
assignment rule while the iteration is not provided directly.

LanguageAssignationUnique (LAU) language is proposed byComputer Structures
Group of ONERA-CERT in France [132] for use in static Data-Flow architecture. It in-
cludes conditional branching and loops that are adapted with the single-assignment
rule through the use of old keywords. It provides explicit parallelism through the ex-
panded keyword specifying concurrent assignment. This language has some specifi-
cations similar to object-oriented languages such as data and operations encapsulation.

LAPSE [133], whichwasderived fromPascal andproposed beingused on theManch-
ester Data-Flow machine [29]. Similar to other DFL (Data flow languages), it is based
on single-assignment semantics and offers conditional evaluation, user-defined data
types, and functions. In contrast with LAU and ID, it does not use any qualification
keywords to distinguish the current and next value of the loop variables in iterations.
Moreover, its compiler assigned the old value of a variable if it has appeared in an
expression, and the next value will be assigned when it appears on the left of an as-
signment. LAPSE offers a single explicit parallel construct similar to LAU language for
all the concurrent assignments.

Lucid [123] is a functional language that enables formal proofs independently of the
area of Data-Flow. It was realized that the iteration has two non-mathematical spec-
ifications, which are transfer and assignment. In this language, statements are sim-
ply axioms that proceed the proof by traditional logical reasoning using a few axioms
and rules of inference for the specific functions defined in Lucid. Lucid programming
is quite similar to a conventional imperative programming language with an assign-
ment, conditionals, and while loops. However, Lucid realizes the assignment state-
ments as equations, and loops are created implicitly by introducing restrictive assign-
ment. Although, it is intended to be designed out of Data-Flow domain, its functional
and single-assignment semantics made it similar to those required for the Data-Flow
architectures.

2.1. DATA-FLOW COMPUTING MODELS 25

Chapter 3

Design Space Exploration (DSE)
tool-set

In order to match the performance request with the design requirement, researchers
more than ever rely on the heterogeneous and domain-specific architectures [134].
Heterogeneous architectures may be composed of thousands of tightly coupled cores
(CPUs and GPUs), residing nearby accelerators, and become more complex than cur-
rent ones [135]. Moreover, modern embedded systems are increasingly based on het-
erogeneous Multi-Processor SoC (MPSoC) architectures to reach better performance
and eneregy efficiency. To cope with the design complexities of such architectures,
Design Space Exploration (DSE) is an important portion of the design flow. DSE and
its automation is a significant part of modern performance evaluation and estimation
methodologies in order to reduce the design complexity, time-to-market, and find the
best compromise among design constraints in respect to the application.

Computer designers, therefore, rely on simulations as part of the DSE work-flow to
perform early-stage design assessments in order to save time and costs. A simulator
not only ensures the functional correctness but also may provide an accurate timing
information.

Evaluation of amulti-core architecture even at the prototype stage is quite challeng-
ing, time-consuming. Moreover, it is not always possible to get the perfect setup, and
hardware prototyping possibly imposes several limitations. In this section, we briefly
highlight these limitations and show the importance of a simulator (like COTSon [41])
when it comes to assess and retrieve keymetrics of a high- performance computer, e.g.,
1000 general purpose cores.

We use COTSon (see Section 3.1.1) to offer a flexible DSE tool-set that easily can
adopt new hardware/software platforms, and support scalability for a multi-node ar-
chitecture. For instance, in order to address the challenges of a 1k-core architecture,
we should be able to have a full-system simulation including Operating System (OS),

27

28 CHAPTER 3. DESIGN SPACE EXPLORATION (DSE) TOOL-SET

application benchmarks, a memory hierarchy and all peripherals as well.

3.1 Simulation framework
Our designed framework, which has been developed in our research group allows us
to modify system parameters such as the number of cores and number of simulated
instances (nodes), which are running in parallel on completely independent guest vir-
tual machines. This framework can support different programming models such as
OpenMPI, Cilk, or Jump [106].

The simulation framework relies on HP-Labs COTSon simulation environment [41]
and on a set of customized tools that are intended to easily setup the experimental en-
vironment, run experiments, extract and analyze the results [40].

3.1.1 COTSon simulator
COTSon simulator [41] is based on the so-called functional-directed approach, where
the functional execution is decoupled from the timing feedback. COTSon simulator
uses the AMD SimNow virtualizer tool, which is proposed by AMD in order to test
and develop their processors and platforms. COTSon executes its functional model
into the SimNow virtual machine, running and testing the execution of the functional
model. A custom interface is provided, in order to facilitate the exchange of the data be-
tween COTSon and the internal state of SimNow. As can be seen in Figure 3.1, COTSon
architecture is made of three main components:

C
O

TSo
n

 C
o

n
tro

l In
terface

Timing Interface

Sampling driver

Timing
Model
1,2…n

Timing
Model
1,2…n

Timing
Model
1,2…,n

Devices

Network
Functional Models,
Congestion, …

Trace Collection,
Profiling, Hooks, …

CPU,
Memory,
Interconnects
Timing-Models

Sampling,
Interleaving, …

Time Synchronization, Simulation Parallelization,
Network Instrumentation, Network Statistics, …

Mediator instance
(Inter-node Network/Switch Model)

Disk, NIC, …

Timing Simulation

SimNow instance
(Node Functional-Model)

Core
1

Core
2

Core
N…

SimNow instance
(Node Functional-Model)

Core
1

Core
2

Core
N…

SimNow instance
(Node Functional-Model)

Core
1

Core
2

Core
N…

Functional Simulation

Figure 3.1: The COTSon simulation framework architecture [40], [136].

3.1. SIMULATION FRAMEWORK 29

1) FUNCTIONALMODELS: it contains the instances of the SimNowvirtualizer, which
executes the functional model based on a configurable x86-64 dynamically translat-
ing instruction-level platform simulator.
In fact, we were able to customize the x86-64 instruction set of SimNow in order
to introduce new instructions for the implementation of the DF-Threads execution
model [52].

2) TIMING MODELS: it implements simulation acceleration techniques, such as dy-
namic sampling, the tracing, profiling and statistics collection. Through the spec-
ification of a timing model for a given component (i.e., L1 cache, networking), we
can model different behaviors. The timing models are decoupled from the func-
tional execution of SimNow, allowing us the flexibility to model different types of
architectural feature.

3) SCRIPTING GLUE: the final part is related to the scripts used to boot/resume/stop
each virtual machine, the setup of the parallel simulation instances of SimNow and
the time synchronization among all the virtual machines.

3.1.2 DSE tools
In order to guarantee a proper scientific methodology for experimentation, we devel-
oped the Design Space and Exploration Tools (DSE Tools) through which is possible
to easily set up the COTSon simulation environment, extract and analyze the results of
the experiments.

The normal tool-flow is based on the next eight steps.

i) GENIMAGE: the SimNow virtual machine needs a hard-drive image, which con-
tains the Operative System to run. The GENIMAGE tool has the goal to create
a customized version of a Linux distribution by other tools like VMBuilder and
Debootstrap [137].

ii) ADD-IMAGE: this tool is preparatory to the GENIMAGE tool and it serves to load
a given hard-drive image and the related virtual machine snapshot.

iii) BOOTSTRAP: it is a preparatory tool to prepare a user-based COTSon installation.
This tool aims at solving the dependencies needed by the tool-set in the host ma-
chine, avoiding the manual installation of them. It requires root permission once
permachine. Moreover, the tool tunes some kernel parameters such as the number
of host memory pages needed by SimNow.

iv) CONFIGURE: it enables multiple users on the host machine to run a configura-
tion of their own simulation setup without the need of system administrator inter-

30 CHAPTER 3. DESIGN SPACE EXPLORATION (DSE) TOOL-SET

vention. In fact, the tool runs completely in user-space, without the need of root
permissions.

MYINSTALL
Hard-Drive

Image

INSTALLATION
DIRECTORY

PACKAGES

e.g.
~/COTSON

EXTERNAL
PACKAGES

(SIMNOW, …)

AUTOMATED
REGRESSION

TESTS

OK/FAIL
REPORT

myinstall.sh

Figure 3.2: TOOLFLOW for the MYINSTALL tool. MYINSTALL prepares the whole environ-
ment for simulation-based Design Space Exploration with a single command. The Configura-
tion File specifies which additional tool or tool-options should be used (e.g., non-public tools,
or tools under NDA) [40].

v) MYINSTALL: the purpose of this tool is to facilitate the installation process of the
simulator and the hard-disk image which contains the pre-selected Operative Sys-
tem that will runs into the SimNow machine (see Figure 3.2). Moreover, MYIN-
STALL allows the choice of the simulation software version, in order to enable
more versions of the simulator to co-exist for regression test.
Finally, the tool performs several regression tests at the end of the installation
phase, in order to verify the software is correctly patched, compiled and installed.
The entire process is completely automatic and it can be easily repeated on multi-
ple and parallel simulation hosts.

vi) MYDSE: we found a substantial need to implement a specific tool, which is able to
easily catch possible failures or errors and, mostly, the automatic management of
experiments in case of a large number of design points to be explored. As depicted
in Figure 3.3, MYDSE relies on a small configuration file, named INFOFILE, which
is described in more details in the subsection 3.1.3.
Also, the tool is able to spread the simulation among multiple hosts and,if neces-
sary, it can use the same binary with different GLIBC library version across the
hosts. This allows us to use different operating systems, with a different version
of the GLIBC library, in different guests. During the experiment, MYDSE controls
the simulation loop, collecting in an ordered way the several files from each sim-
ulation point. Statistics based on user formulas are printed out at the end of each
simulation, in order to provide an overall evaluation of the results. In case of fail-
ures, the tool kills the failed simulation and the related processes after a certain

3.1. SIMULATION FRAMEWORK 31

MYDSE
EXPERIMENT

INFOFILE

SIMULATION.1

TIMER.LOG

SIMULATION.1
OUT

SIMULATION.NSIM

TIMER.LOG

SIMULATION.NSIM
OUT

RAW METRICS RESULTS

Execution Loop check

Figure 3.3: TOOLFLOW for the MYDSE tool. The experiment INFOFILE defines the simula-
tion points and output files generated during each simulation are organized in order to facilitate
their accessing and parsing by the other tools [40].

time, trying the re-execution of the failed simulation automatically. The timeout
is derived by a simulation estimation model (i.e., proportional to the number of
nodes and cores of the system).

vii) GTCOLLECT: once a campaign of experiments has been concluded, we need to
collect, analyze and plot results in a simple way. In this perspective, we can extract
data from experiments with the GTCOLLECT tool (GT stand for Graphic Table
Collect), which prints out the collected data, based on the INFOFILE information
and a LAYOUT text files where the user can specify the relevant output metrics to
select. Furthermore, some additional calculations are performed on the data, such
as the Coefficient of Variation, in order to analyze the correctness of the results.
With the GTCOLLECT tool, we can perform a complete analysis of the raw data
produced by the MYDSE.

viii) GTGRAPH: once the results are collected in the GTCOLLECT format, the GT-
GRAPH tool can produce a graphical view of the data, like Figure 7,8,9.

Additionally, COTSon permits a connection with McPAT [41] to analyze the power
consumption and the temperature of an experiment.

3.1.3 Experiment description
In this section, wewant to introduce the experiment description file, named INFOFILE,
which makes the DSE easy to manage a clear identification of the Design Space. As de-
picted in Figure 3.4, we can describe the experiment through a simple file that uses
"Bash syntax": <variable> = "<string>". Each DSE variable is defined with the prefix
"list", while "<string>" represents a set of value where elements can be separated with

32 CHAPTER 3. DESIGN SPACE EXPLORATION (DSE) TOOL-SET

explabel = “DF-Thread-Exp-v05”
MYLIBC = “2.27”
MYHD = “xenial09”

listmodel = “DF-Thread”
listappi[DF-Thread] = “mmx”
listsize[mmx] = “256+8+i 512+8+i 1024+8+i”

listcores = “12 4 8”
listnodes = “1 2 4 8”
listl2c = “256kB+64+2+WB+true+5+bus 512kB+64+2+WB+true+5+bus”
listtiming = “simple+3M”

Number of Cores

Number of Nodes

Benchmark

Input Size

Image type Execution Model

Figure 3.4: INFOFILE example, which describes a Design Space Exploration experiment [40].

the character "+" (i.e. 256+8+i represent matrix size = 256, block size = 8 and matrix
element type = integer). Moreover, we can define multiple configurations of the archi-
tecture, in order to find the best organization for a given application.

0

5000

10000

15000

20000

25000

30000

35000

216+8+i 432+8+i 864+8+i

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Input Size

AXIOM-BOARD SIMULATOR

Figure 3.5: Preliminary comparison of the execution time between the simulator and the
AXIOM-Board. We used the Matrix Multiply benchmark three different size: 216,432 and 864.

3.1.4 Performance validation

Finally, we validated our results obtained through the utilization of the simulator, com-
paring the execution time (sequential execution) of the Matrix Multiplication Bench-
mark both in simulator and on a real board FPGA based (AXIOM-Board [106], [39],
[32], [2]). As can be seen in Figure 3.5, the results of the simulator and the board are
very close, confirming our performance predictions, despite some architectural differ-
ences.

3.2. OPERATING SYSTEM IMPACT 33

3.2 Operating system impact
In this section, we present the tests performed into a distributed simulation environ-
ment in order to study the influence of several Linux distribution on the performance.
For the comparison, we selected the DF-Threads execution model and the Matrix Mul-
tiplication Benchmark. We analyzed how the execution time differs varying the Op-
erating System. Moreover, we studied key aspects like Kernel Cycles to evaluate the
impact of each distribution on the execution time.

We configured the distributed simulation environment with a node range from 1
to 4 and a core range from 1 to 32. The input sizes used for the Matrix Multiplication
benchmark vary from 64 to 1024.

The operating system are based on the Linux distributionUbuntu like andwe chose
four different kernel versions to perform our tests:

• Karmic: it is the Ubuntu 9.10 LTS version. The distribution focuses on improve-
ments in cloud computing as well as further improvements in boot speed.

• Tfx: it represents the Maverick version of the Ubuntu kernel (version 10.10)

• Trusty (Ubuntu 14.04 LTS): the main improvements were based on increasing the
performance and the maintainability.

• Xenial: It is the Ubuntu 16.04 LTS version

3.2.1 Performance variations (Cycles)

The first comparison between the Linux distribution regards the execution time and
the scalability. We vary the number of nodes (from 1 to 4), keeping fixed the input size
(matrix size=512) and the cores number. As we can see in Figure 3.6, the Trusty dis-
tribution obtains better results, both in execution time and scalability, than the other
releases, outperforming the Xenial version by a factor of 60% in the one node execution.
This variation rises from the different configurations and daemons included in the dis-
tro. Moreover, theKarmic distribution showed a quite similar result as the Trustywhen
we increase the number of nodes, confirming the improvements in cloud computing
and performances made by the Linux development communities. Once we increase
the number of nodes, one interesting effects is also that the total capacity of caches will
increase. Moreover, we observe a reasonable scaling of performance with the number
of nodes.

34 CHAPTER 3. DESIGN SPACE EXPLORATION (DSE) TOOL-SET

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

1 2 4

xenv0,32 karmic64,32 trusty-axmv3,32 tfxv4,32

~6
0

%
 f

as
te

r

Best CaseWorst Case

Nodes

C
yc

le
s

Figure 3.6: Study of the performance variation (cycles) as we vary the number of nodes with
different operating system distribution. In the case of one node, this variation is up to 60% due
to the different types of daemons and configurations included in distros.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4

xenv0,1024

karmic64,1024

trusty-axmv3,1024

tfxv4,1024

K
e

rn
e

l C
yc

le
 P

e
rc

e
n

ta
ge

Nodes

Figure 3.7: The percentage of kernel cycles for different types of OS while increasing number
of nodes. The kernel time may occupy from few percent (1 Node execution) to more than 13%
of the total time (4 Nodes execution based on the DF-Threads execution model).

3.2.2 Kernel activity

Regards to study the influence of the kernel execution time on the total cycles of the ap-
plication, we configured the experiment keeping fixed the L2 cache (256 KiB), varying
the matrix input size (from 64 to 1024), the number of nodes (from 1 to 4) and the OS
distributions. As we can observe in Figure 3.7, the Karmic distribution shows better
results, keeping the percentage of the kernel cycles lower than the others releases in
any configuration. Generally, the kernel impact on the total cycles is proportional to

3.3. FINAL REMARKS 35

the number of nodes, implying that the influence of the kernel is more important for
multi-node configurations.

3.3 Final remarks
We have presented a set of tools for the Design Space Exploration, based on the COT-
Son simulator framework, with the aim of supporting large set of experiments of a
multi-node multi-core platform with full OS execution (e.g., 1,2, and 4 nodes and real
OS activity). Thanks to our tools, we setup the simulation environment in less than ten
minutes, including several regression tests, saving hours in comparison with manual
installation. We can run several experiments by using a simple configuration file, han-
dle possible failures or errors during the simulations. Finally, results are automatically
collected and presented in the desired graphical view.
We showed a validation test against a FPGA platform. The results permitted us to de-
rive information early in the design process.
The DSE tools that we presented in this paper were massively used during two Euro-
pean projects (TERAFLUX and AXIOM), facilitating the exploration of a large design
space and the test of a new execution model (DF-Threads).

Chapter 4

Translating Timing Model into
High-Level Synthesis (HLS)

4.1 Introduction

In recent decades, applications are becoming more and more sophisticated and that
trend may continue in the future [138]–[140]. To cope with the consequent system
design complexity and offer better performance, the design community has moved to-
wards design tools that are more powerful. Today many designs rely on FPGAs [141],
[142], in order to achieve higher throughput and better energy efficiency, since they
offer spatial parallelism on the portion of application characterized by dataflow con-
current execution. FPGAs are becoming more capable to integrate quite large designs
and can implement digital algorithms or other architectures such as soft-processors or
specific accelerators [142]. For the efficient use of FPGAs, it is essential to have an ap-
propriate tool-chain. The tool-chain provides an environment, in which the user can
define, optimize and modify the components of the design, by taking into account the
power, performance, and cost requirements of a particular system and eventually syn-
thesize and configure the FPGA.

The conventional method to implement application code on FPGAs is to write the
code in Hardware Description Language (HDL) (e.g., VHDL or Verilog). Although
working with HDL languages still is the most reliable and detailed way of design-
ing the underlying hardware for accelerators, their use requires advanced expertise
in hardware design as well as remarkable time. The Design Space Exploration (DSE)
and debugging time of FPGAs and the bitstream generation may reach many hours or
days even with powerful workstations. As such, moving an already-validated archi-
tecture to the FPGA’s tool-flow may save significant time and effort and, as a result,
facilitates the design development.

37

38
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

This situation is exacerbated by the interaction with the Operating Systems and by
the presence of multi-core (see Section 3.2). Therefore, the use of full-system simula-
tors in combination with HLS tools permits a more structured design flow. In such
case, a simulator can preliminary validate an architecture and the HLS-to-RTL time is
repeated less times.

Based on the experience of the previous projects like TERAFLUX [81], [51], [52],
ERA [143], [144], AXIOM [141], [36], [37], SARC [145], we choose to rely on the HP-
Labs COTSon simulation infrastructure [41]. The key feature of COTSon that is useful
in HLS design is its “functional-directed” approach, which separates the functional
simulation from the timing one. We can define custom timing models for any com-
ponent of an architecture (e.g., FPGA, CPU, Caches) and validate them through the
functional execution: however, the actual architecture has to be specified by a separate
“timing model” [57]. The latter is what can be migrated in a straightforward way to
HLS.

Moreover, COTSon is a full-system simulator, hence it permits to study the OS im-
pact on the execution and choose the best OS configuration based on the application
requirements [146]; the OS modeling is sometimes not available in other tools (dis-
cussed in section 4.2). In this Chapter, we illustrate the importance of the simulation
in synergistic combination with the Xilinx HLS tool, in order to permit a faster design
environment, while providing a full-system Design Space Exploration (DSE). Addi-
tionally, thanks to our DSE tool-set (MYDSE) [40], [146], we facilitate the extraction of
important metrics, which help investigate the appropriate system design. In order to
illustrate our methodology, we start from a driving example related to design a simple
two-way associative cache system. The methodology is then generalized by consider-
ing the case of the AXIOM project, in which this methodology was actually used to
design and implement a novel Data-Flow architecture [51], [147], [106] through the de-
velopment of our custom AXIOM-Board [141].

This chapter presents our methodology for designing FPGA-based architectures,
which consists in the direct mapping of COTSon “timing models” into the HLS, where
such models are pre-verified via our MYDSE tools: the DSE facilitates prototyping,
timing model analysis, and help save much design time. The DSE tool-set is designed
and developed at our research group. We illustrate a simple driving example based on
the modeling and synthesis of a simple two-way set-associative cache in order to grasp
the details of our methodology. The proposed methodology is used to develope a the
AXIOM platform (funded by the Horizon 2020 - european commission).

Candidate’s contribution on this chapter are:

4.2. HIGH-LEVEL SYNTHESIS (HLS) TOOLS 39

1. Mapping the "timing models" into the HLS.

2. Validating the AXIOM board against the COTSon simulator by running BMM
(Blocked Matrix Multiplication).

4.2 High-Level Synthesis (HLS) tools

Our design and evaluation methodology aims at integrating simulation tools and HLS
tools to ease the hardware acceleration of applications, via customprogrammable logic.
HLS tools improve design productivity as they may provide a high level of abstraction
for developing High-Performance Computing systems. Most typically, these tools al-
low users to generate a RTL representation of a specific algorithm usually written in
C/C++ or SystemC. Several options and features are included in these tools in order
to provide an environment with a set of directives and optimizations that help the
designer meet the overall requirements. In our case, we realized that more design pro-
ductivity could be achieved by identifying in the early stages a candidate architecture
through the use of a simulator. However, the use of a generic simulator may not help
identify the architecture, since often the simulation model is too distant from the ac-
tual architecture or is too much intertwined with the modeling tool [148]–[151]. On
the other hand, the COTSon simulator is using a different approach, called “functional
directed” simulation, in which the functional and timing models are neatly separated
and the first one drives the latter. The similarity of our “timing model” specification
to an actual architecture is an important feature and it is the basis for our mapping to
a HLS specification.

In our research, we used Xilinx Vivado HLS, but other important HLS frameworks
are available and are briefly illustrated in the following; their main features are sum-
marized in Table 4.1 (The format and content of the table is adopted from the PhD
thesis of Dr. Emanuel del Sozzo [152]). LegUp [153] supports C/C++, Pthreads and
OpenMP as programming models for HLS by leveraging the LLVM compiler frame-
work [154], and permits parallel software threads to run onto parallel hardware units.
LegUp can generate customized heterogeneous architectures based on the MIPS soft
processor. Bambu [155] is a modular open-source HLS tool, which aims at the design
of complex heterogeneous platformswith a focus on several trade-offs (like latency ver-
sus resource utilization) as well as partitioning on either hardware or software. GAUT
[156] is devoted to real-time Digital Signal Processing (DSP) applications. It uses Sys-
temC for automatic generation of test-benches for more convenient prototyping and
design space exploration.

40
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

Table 4.1: Key features of discussedHLS tools. For the non-obvious columns, Testbenchmeans
the capability of automatic testbench generation. SW/HW means the support for the Soft-
ware/Hardware co-design environment. Floating Point and Fixed Point are the supported data
types for the arithmetic operations (The format of table is adopted from [152]).

Tool Owner License Input Output Domain Testbench SW/HW Simulation
Floating

Point

Fixed

Point

LegUp
LegUp

Computing
Commercial C, C++ Verilog All Yes Yes HW Yes No

Bambu
Politecnico

di Milano
Academic C

VHDL,

Verilog
All Yes Yes SW, HW Yes No

GAUT
U. Bretagne

Sud
Academic C, C++

VHDL,

SystemC
DSP Yes No HW No Yes

DWARV TU Delft Academic C VHDL All Yes Yes HW Yes Yes

Stratus HLS Cadence Commercial
C, C++,

SystemC

C, C++,

SystemC
All Yes Yes SW, HW Yes Yes

Intel HLS

Compiler
Intel Commercial C, C++, Verilog All No No SW, HW Yes Yes

Vivado HLS Xilinx Commercial

C, C++,

OpenCL,

SystemC

VHDL,

Verilog,

SystemC

All Yes No SW, HW Yes Yes

SDSoC Xilinx Commercial C, C++
VHDL,

Verilog
All No Yes SW, HW Yes Yes

SDAccel Xilinx Commercial
C, C++,

OpenCL

VHDL,

Verilog,

SystemVeril

og

All Yes Yes SW, HW Yes Yes

DWARV [157] supports a wide range of applications like DSP, multimedia, encryp-
tion. The compiler used in DWARV is the CoSy commercial infrastructure [158], which
provides a robust and modular foundation extensible to new optimization directives.
Stratus HLS of Cadence [159] is a powerful commercial tool accepting C/C++ and Sys-
temC and targeting a variety of platforms including FPGAs, ASICs, and SoCs. Thanks
to low power optimization directives, the user can achieve a consistent power reduc-
tion. It gives support for both control flow and data flow designs, and actively applies
constraints to trade-off speed, area, and power consumption. Intel HLS Compiler [160]
accepts ANSI C/C++ and generates RTL for Intel FPGAs, which is integrated into the
Intel Quartus Prime Design Software. Xilinx Vivado HLS tool targets Xilinx FPGAs,
which offers a subset of optimization techniques including loop unrolling, pipelining,
dataflow, data packing, function inline, bit-width reduction for improving the perfor-
mance and the resource utilization.

Xilinx SDSoC is a comprehensive automated development environment for accel-
erating embedded applications [36]. The tool can generate both RTL level and the soft-
ware running on SoC cores for the bare-metal libraries, Linux, FreeRTOS. Xilinx SDAc-
cel [161] aims at accelerating functionalities in data-centers through FPGA resources.
We summarize the key features of aforementioned HLS tools in Table 4.1.

4.3. SIMULATOR TOOLS 41

4.3 Simulator tools
Although some of the HLS tools provide a general Software/Hardware simulation
framework, the possibility of easily evaluating a complex architecture oriented design
(e.g., computer organization: level and size of caches, number of cores/nodes, mem-
ory hierarchy) is still missing. Moreover, before reaching a bug free physical design,
which meets all the design specifications, the debug and development of such designs
by using aforementioned HLS tools may require a significant time and effort despite
all benefits that HLS tools provide to the design community. Consequently, power-
ful design frameworks that simplify the verification of the design and provide an easy
design space exploration are welcome. In this respect, many design frameworks have
emerged to implement efficient hardware in less time and effort. The authors in [162]
propose a framework relying on Vivado HLS to efficiently map processing specifica-
tions expressed in PolyMageDSL to FPGA. Their framework support optimizations for
the memory throughput and parallelization. ReHLS [163] is a framework with auto-
mated source-to-source resource-aware transformation leveraging Vivado HLS tool.
Their framework improves the resource utilization and throughput by identifying the
program inherent regularities that are invisible by HLS tool. FROST [164] is a frame-
work that generates an optimized design for HLS tool. This framework is mainly ap-
propriate for applications based on streaming dataflow architectures like image pro-
cessing kernels.

However, these tools focus on optimizing thewhole application performance, while
we are proposing instead an architecture oriented approach, where the designer can
manipulate and explore the architecture itself, before passing it to the HLS tool-chain.
By using our proposed framework (see Section 4 for more details), we can validate
the design in terms of the functional and timing models, and then define a specific
architecture, while constantly monitoring the selected key performance metrics. The
architecturemodel is specified in C/C++ and, thanks to the decoupling from the simu-
lation details and functional model, it can be easily migrated into the HLS description.
This is illustrated in Sections 4.5 and 4.6. In particular, we leverage the Vivado HLS
tool and on top of it, we build our design space exploration tools relying on COTSon
simulator, which is one of the key components of our framework. In the following, we
highlight relevant features and compare several simulators (Table 4.2), and we contrast
them with our chosen simulator (i.e., COTSon).

SlackSim [148] is a parallel simulator tomodel single-core processors. Simple-Scalar
[149] is a sequential simulator, which supports single-core architectures at user-level.

42
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

GEMS [150] is a virtual-machine based full-systemmulti-core simulator built on top of
the Intel’s Simics virtual-machine. GEMS relies on timing-first simulation approach,
where its timingmodel drives one single instruction at a time. Even thoughGEMSpro-
vides a complete simulation environment, we found that COTSon simulator provides
better performance as we increase the number of modeled cores and nodes. MPTLsim
[151] is a full-system x86-64 multi-core cycle-accurate simulator. In terms of simula-
tion rate, MPTLsim is significantly faster than GEMS. MPTLsim takes advantage of a
real-time hypervisor scheduling technique [164] to build hardware abstractions and
fast-forward execution. However, during the execution of hypervisor, the simulator
components like memory, instructions or I/O are opaque to the user (no statistics is
available). On contrary, for example, COTSon provides an easily configurable and ex-
tensible environment to the users [165] with full detailed statistics. Graphite [166] is
an open-source distributed parallel simulator leveraged the PIN package [44], with the
trace-driven functionalities. COTSon permits full-system simulation from multi-core
to multi-node and the capability of network simulation, which makes COTSon a com-
plete simulation environment. Both COTSon and Graphite permit a large core num-
bers (e.g., 1000 cores) with reasonable speed, but COTSon provides also the modeling
of peripherals like disk and Ethernet card as well. Compared to COTSon, the above
simulators do not express a timing model in a way that can be easily ported to HLS:
COTSon is based on the “functional directed” simulation [41], which means that the
functional part drives the timing part and the two parts are completely separated both
in the coding and during the simulation. The functional model is very fast but does not
include any architectural detail, whilst the timing model is an architectural-complete
description of the system (and, as such, includes also the actual functional behavior, of
course). In this way, once the timing model is defined and the desired level of the key
performance metric (e.g., power or performance) has been reached, the design can be
easily transported to an HLS description as it will be illustrated in the next Sections.

There are other light-weight simulators targeting RISC-V ISA likeWebRISC-V [167],
which is developed by our research group. WebRISC-V is a web-based server-side
RISC-V assembly language Pipelined Datapath simulation environment, which aims
at easing students learning and instructors teaching experience.

4.4 Methodology
In this section, we present our methodology (Figure 1) for developing hardware com-
ponents for a reconfigurable platform, as developed in the context of theAXIOMproject.

First, we define the functional and the timing model of a desired architectural com-
ponent (e.g., a cache system, as described in the section 4.5). Suchmodels are described

4.4. METHODOLOGY 43

Table 4.2: Interesting features of simulators for high performance computing architectures.
For the non-obvious columns, Parallel/Sequential means the simulator core can be executed
either in parallel or sequential by the host processor. Full Systemmeans taking into account all
events, including the OS.

Simulator
Parallel/

Sequential

Single-core/

Multi-core

Full

System
Simulation methodology

COTSon Parallel Multi-core yes Decoupled- functional first

GEMS Sequential Multi-core yes Decoupled – timing first

Graphite Parallel Multi-core no Not-Decoupled – trace driven

SimpleScalar Sequential Single-core no Not-decoupled – execution driven

MPTLsim Sequential Multi-core no Not-decoupled – timing first

SlackSim Parallel Single-core no Not- decoupled – timing first

by using C/C++ (two orange blocks in the top left part of Figure 4.1). These models
are then embedded in the COTSon simulator, which is managed in turn by theMYDSE
tools in order to perform the design space exploration [146],[41]. The latter are a collec-
tion of different tools, which provide a fast and convenient environment to simulate,
debug, optimize and analyze the functional and timingmodel of a specific architecture
and to select the candidate design to be migrated to the HLS (top part of Figure 4.1).
The detailed discussion regarding the MYDSE tools and COTSon simulator is carried
out in Section 3.

Afterwards, we manually migrate a validated architecture specification from COT-
Son to Vivado HLS tool (bottom part of Figure 1), where the user can apply the specific
directives defined in the timingmodel of COTSon into the VivadoHLS. This is possible
due to the close syntax of the architecture specification in COTSon and Vivado HLS.
Our framework has the purpose of reducing the total DSE time to define an architec-
ture (as input to Vivado HLS itself). We do not aim to define a precise RTL, but simply
to select an architecture suitable as input to Vivado HLS (see 4.2).

Finally, we pass the generated bitstream by Vivado to the XGENIMAGE, which is
a tool that assembles all needed software including drivers, applications, libraries and
packages in order to generate the operating system full image to be booted on the AX-
IOM board. In Figure 4.1, we highlight in green the existing (untouched) tools, in blue
we highlight the research tools that we developed from scratch or that we modified
(like COTSon). In our case, part of the process involves the design of the FPGA board
(the AXIOM board). An important capability of the board is also to provide fast and

44
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

XSCHEDULE
TIMING

(C)

XSCHEDULE
BEHAVIOUR

(C++) APPS +
INPUTS

+
COTSON

+
MYDSE

GTCOLLECT
+

GTGRAPH

MEASUREMENTS
DB

SIMULATOR-BASED DESIGN FEEDBACK LOOP (RAPID PROTOTYPING)

KPIs
MET

?

NO

YES

XSCHEDULE
TIMING

(C for HLS)
XILINX

VIVADO
XGENIMAGE

APPS,INPUTS
DRIVERS

LIBRARIES
PACKAGES

SD-IMAGE

ACTUAL HARDWARE/SOFTWARE PROTOTYPING

USB-C
CABLEEXISTING

DRIVERS
LIBRARIES
PACKAGES

RESEARCH
MODELS

RESEARCH
TOOLS

EXISTING
TOOLS

AXIOM
BOARD

Figure 4.1: The design and test methodology of the AXIOM involved a mix of simulation (via
the COTSon simulator and other custom tools) and FPGA-prototyping (via our customAXIOM
board and hardware synthesis tools (like Vivado HLS) [39].

inexpensive clusterization. The simulator allowed us to model exactly this situation, in
which the threads are distributed across several boards, through a specific execution
model (called DF-Threads). To that extent, the AXIOM board [39] has been designed
to include a soft-IP for the routing of data (via RDMA custommessages) and the FPGA
transceivers are directly connected to USB-C receptacles, so that four channels at about
18Gbps are available for simple and inexpensive connection of up to 255 boards, with-
out the need of an external switch [37].

4.4.1 Mapping Architecture to HLS

High-Level Synthesis (HLS) aims at enhancing design productivity via facilitating the
translation from the algorithmic level to RTL (Register Transfer Level) [168], [169]. In
current state-of-the-art, given an application written in a language like C/C++ or Sys-
temC, an HLS tool particularly performs a set of successive tasks to generate the cor-
responding Register Transfer Level (RTL, for example, VHDL or Verilog) description
suitable for a reconfigurable platform, such as an FPGA [169] (Figure 4.2 - left). This
workflow typically involves the following steps:

4.5. CASE STUDY 45

1. Compiling the C/C++/SystemC code to formal models, which are intermediate
representations based on control flow graph and data flow graph.

2. Scheduling each operation in the generated graph to the appropriate clock-cycles.
Operationswithout data dependencies could be performed in parallel, if there are
enough hardware resources during the desired cycle.

3. Allocating available resources (LUTs, BRAMS, FFs, DSPs and so on) in regards
to the design constraints. For instance to enhance the parallelism, different re-
sources could be statistically allocated at the same cycle without any resource
contention.

4. Binding each operation to the corresponding functional units, binding the vari-
ables and constants to the available storage units as well as data paths to data
buses.

5. Generating the RTL (i.e., VHDL or Verilog).

All these operations continue to be performed in our proposed framework, but the
designer would like to avoid excessive iterations through them, since they may require
manyhours of computing processing or evenmore, depending on the complexity of the
design, even on powerful workstations andwith not so big designs. However, COTSon
and MYDSE tools (illustrated above) act like a “front-end” to the HLS tool, as outlined
in Figure 4.2. We use HLS also for defining a specific architecture to accelerate the ap-
plication. Our tools allow the designer to explore possible options for the architecture,
without going to the synthesis step: only when the simulation phase has successfully
selected an architecture (output of the blue block in Figure 4.2), the model will be man-
ually translated by the programmer as an input to the HLS synthesis tools. Doing this
step automatically is out of the scope of this work.

A comparison of the total time of the DSE loops between our framework (Figure
4.2 - right) and HLS (Figure 4.2 - left) is reported here for different benchmarks (Table
4.3). For example, a Blocked Matrix Multiplication benchmark (matrix size 864, and
block size 8), and a Fibonacci benchmark (order of up to 35) are executed based on our
DF-Thread execution model (Data-Flow model). As a result, thanks to our framework,
we were able to reduce the required time in validating and developing the architec-
ture compared with solely HLS workflow, through which applying any changes in the
source codes may require many hours for the synthesis process.

4.5 Case study
In this section, first wewant to explain ourworkflowby using a simple andwell-known
driving example, i.e., the design of a two-way set associative cache in a reconfigurable

46
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

Application
Specification in
C/C++/SystemC

HLS classical workflow

* Same tool-chain

Optimization
Directives

User
constraints,

Library,

Formal
Model

dGCC/G++
Compiler

Allocation

Scheduling

Binding

RTL Generation

GTCOLLECT
GTGRAPH

COTSON

MYDSE

Proposed workflow

MYINSTALL

DSE Cycle
In Minutes!

DSE Cycle
In Hours!

Application
Specification in
C/C++/SystemC

*

*

VHDL/Verilog

Optimization
Directives

User
constraint,

Library,

Formal
Model

dGCC/G++

Compiler

Allocation
Scheduling

Binding

RTL Generation

Architecture
description in C/C++

VHDL/Verilog

*

Figure 4.2: Differences between classical and proposed architecture modelling framework.
Workflows to generate VHDL/Verilog hardware description language from the application
specification written in C/C++. On the left, a typical workflow of existing HLS tools. On the
right, we leverage the HLS tool, and on top of it, we build our framework to simulate and vali-
date the design specification [57].

Table 4.3: Comparison of different total DSE time of the classical design workflow for FPGAs
(Figure 4.2 - left) and our proposed methodology (Figure 4.2 - right).

Application HLS+Synthesis Our Framework

2-Way Cache 3:50 Hours 5 Seconds

Blocked Matrix Multiplication

(DF-Threads, matrix size = 864, block size=8, integer)
4:25 Hours 8 Seconds

Fibonacci (DF-threads, N=35) 1:40 Hours 8 Seconds

hardware platform through our methodology. Afterwards, we will illustrate the more
powerful capabilities of our framework for a more complex example, which is the de-
sign of the AXIOM hardware/software platform. In both cases, first we design the
architecture in the COTSon simulator, then we test its correct functioning and achieve
the desired design goals. Finally, we migrate the timing description of the desired ar-
chitecture into the Xilinx HLS tools.

4.6. GENERALIZATION TO THE AXIOM PROJECT 47

4.5.1 From COTSon to Vivado HLS – a simple example
In COTSon, the architecture is defined by detailing its “timingmodel”. A timingmodel
is a formal specification that defines a custom behavior of a specific architectural or
micro-architectural component, in other terms the timing model defines the architec-
ture itself [41], [40]. The timing model in the COTSon simulator is specified by using
C/C++. The designer defines the storage by using C/C++ variables (more often struc-
tured variables). The timing model behavior is specified by explicating into C/C++
statements the steps performed by the control part and associating them with the es-
timated latency, which can be defined through our DSE configuration files (in a lua
file formate [57]) easily. After defining the model, we can simulate and measure the
performance of it. This is illustrated in Figure 4.3, and discussed in the following.

Let us assume here that we wish to design a simple two-way set-associative cache:
we show how it is possible to define the timing model of a simple implementation of
it in COTSon and then how we can map it in HLS. We start here from a conceptual
description of such cache, as shown in Figure 4.3. In particular, for each way of the
cache, we need to store the “line” of the cache, i.e., the following information:

1. Valid bit or V-bit (1 bit): used to check the validity of the indexed data;

2. Modify bit or M-bit (1 bit): used to track if data has been modified;

3. LRU bits or U-bits (e.g., 1 bit in this case): used to identify the Least Recently
Used data between the two cache ways;

4. Tag (e.g., 25 bits): used to validate the selected data of the cache;

5. Data (e.g., 512 bits, 64 bytes, or 16 words): contains the (useful) data.

The data structures to store this information in COTSon is given by the “Line” struc-
ture, which is shown in Figure 4.4 (left side).

When we want to read or write data, which are stored in a byte address (X in Fig-
ure 4.3), we check if the data are already present into the cache. The cache controller
implements the algorithm to find the data in the cache. Although not visible in the
left part of Figure 4.3, there is a control part also for identifying the LRU block. We
can implement this control in COTSon by using the two functions (shown in the right
part): one named “find” (Figure 4.4), which is a simple linear search, and the other one
named “find_lru” (Figure 4.5).

4.6 Generalization to the AXIOM project
The aimof theAXIOMprojectwas to define a software/hardware architecture configu-
ration, to build scalable embedded systems, which could allow a distributed computa-

48
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

XT XS

X=address

31 7 6 5 2 1 0

25 1 XO
4

V0 M0 U0 TAG0 DATA0 V1 M1 U1 TAG1 DATA1

WAY-0 WAY-1

H

Decoded Multiplexer
(2 a 1)

25

Multiplexer
(16 to 1)

512

D

32

512

4

25

512

M=Modify bit
U=LRU bits () )(log 2 A

// basic cache-find implementation
cacheLine* cache_find (uint64_t address) {

cacheLine * xs=NULL;
uint64_t tag = cache.group_id(address); // get the tag
xs = cache[address]; // get the set (xs)
for (int i=0; i< i<num_ways; i++) {

if (xs->tag ==tag && xs->v_bit == 1) {
t_hit = cache.latency_hit(); //COTSon only
return xs[i];

}
}
t_miss = cache.latency_miss(); //COTSon only
return NULL; //null pointer (i.e., miss)

}

// implementation of the least recently used policy
cacheLine* cache_find_lru (uint64_t address) {

cacheLine* xs = cache[address];
cacheLine* last_lru = xs[0];
int i=0;
for (++i; i<num_ways; ++i){

if (xs[i]->u_bits < last_lru->u_bits) last_lru = xs[i];
}
t_lru = cache.latency_lru(); //COTSon only
return last_lru;

}

typedef struct {
uint64_t tag;
bool v_bit, m_bit;
uint64_t u_bits;

} cacheLine;

COTSon cache_line.h

COTSon cache_impl.cpp

From cache
architecture
to COTSon
timing model

FSM
Cache

Controller

Figure 4.3: Example of logic scheme of a two-way set associative cache. Given the byte address
X on 32 bits, in this example, the cache indexes four 64-byte blocks (2 words in 2 sets). This
implies that the last 6 bits are needed to select a byte inside the block, the first 25 bits of the
address (XT) is used for the tag comparison and the remaining 1 bit (Xs) is used for the cache
set indexing. The cache hit (signal H) is set if the tag of the X is present in the cache at the
specified index and if the valid bit is equal to one [57].

tion across several boards by using a transparent scalable method like the DF-Threads
[1], [147], [106].

An essential contribution of the AXIOM was the fabrication of an SBC board (AX-
IOMboard) based on FPGAand embedded processor, e.g. ZynqUltrascale+ [170]. and
its features are: i) a high speed reconfigurable interconnect for board-to-board commu-
nication; and ii) a user-friendly programmable environment, which allows us both to
off-load partly program algorithms into accelerators (on programmable logic) and, at
the same time, to distribute the computation workloads across boards via Data-Flow-
Threads, a novel execution model [1], [50], [106] and iii) the possibility of deploying
an open-source tool-chain based upon easy to program concept like OmpSs [171], an
OpenMP extension [172], [173].

In order to achieve this goal, we rely on Remote Direct Memory Access (RDMA) ca-
pabilities [174] and a full operating system to interact with the OS scheduler, memory

4.6. GENERALIZATION TO THE AXIOM PROJECT 49

// basic cache-find implementation
cacheLine* cache_find (uint64_t address) {

cacheLine * xs=NULL;
uint64_t tag = cache.group_id(address); // get the tag
xs = cache[address]; // get the set (xs)
for (int i=0; i< i<num_ways; i++){

if (xs->tag ==tag && xs->v_bit == 1) {
t_hit = cache.latency_hit(); //COTSon only
return xs[i];

}
}
t_miss = cache.latency_miss(); //COTSon only
return NULL; //null pointer (i.e., miss)

}

typedef struct {
uint64_t tag;
bool v_bit, m_bit;
uint64_t u_bits;

} cacheLine;

COTSon cache_line.h

COTSon cache_impl.cpp (“find” function)

Vivado HLS cache_line.h

typedef struct {
uint64 tag;
uint1 v_bit, m_bit;
uint64 u_bits;

} cacheLine;

// basic cache-find implementation
cacheLine* cache_find (uint64 address) {

cacheLine* xs=NULL;
// get the tag
uint64 tag=cache.group_id(address);
// get the set (xs)
xs = cache.main(address);
for (int i=0; i<num_ways; i++) {

if (xs[i]->tag == tag && xs[i]->v_bit == 1) {
return xs[i];

}
}
return NULL; //null pointer (i.e., miss)

}

Vivado HLS cache_impl.cpp

From COTSON to
Vivado HLS

Figure 4.4: Example of timing model of the cache find function, which is translated from the
COTSon to the Vivado HLS. The implementation of this function for the both COTSon (left)
and Vivado HLS (right) environments is shown in the bottom part of the figure [57].

// implementation of the least recently used policy
cacheLine* cache_find_lru (uint64_t address) {

cacheLine* xs = cache[address];
cacheLine* last_lru = xs[0]; //get LRU-line
int i=0;
for (++i; i<num_ways; ++i){

if (xs[i]->u_bits < last_lru->u_bits) last_lru = xs[i];
}
t_lru = cache.latency_lru(); //COTSon only
return last_lru;

}

COTSon cache_impl.cpp (“LRU” function) Vivado HLS cache_impl.cpp

From COTSON to Vivado HLS

// implementation of the least recently used policy
cacheLine* cache_find_lru (uint64 address) {

cacheLine* xs = cache.main(address);
cacheLine* last_lru = xs[0]; //get LRU-line
int i=0;
for (++i; i < num_ways; i++) {

if (xs[i]->u_bits < last_lru->u_bits) last_lru =xs[i];
}
return last_lru;

}

Figure 4.5: Example of translation of the timing model of the LRU (Least Recently Used) func-
tion from the COTSon (left side) to the Vivado HLS (right side) [57].

management and other system resources. Following our methodology, we included
the effects of all these features thanks to the COTSon+MYDSE full-system simulation
framework. We will present in the next subsection the results that we were able to ob-
tain through this preliminary DSE phase reasonably quickly.

After the desired software and hardware architecture was selected in the simula-
tion framework, we started the migration to the physical hardware: we had clear that
we needed at least the following features:

1. Possibility to exchange rapidly data frames via RDMA across several boards: this

50
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

could be implemented in hardware thanks to the FPGA high-speed transceivers;

2. Possibility to accelerate portions of the application on the Programmable Logic
(PL), not only on one board but also on multiple FPGA boards: this could be
implemented by providing appropriate network-interface IPs in the FPGA.

PL

Core
0

Core
1

Core
m-1

NODE1 / BOARD1

. . .

PL

Core
0

Core
1

Core
m-1

NODEn / BOARDn

. . .

PS

PS

AXIOM Board

INTERCONNECTS

SimNow Node1

Core
0

Core
1

Core
m-1. . .

COTSon MEDIATOR

DSE
Architecture
Translation

PL – COTSon Timing Model

PS - COTSon Timing Model

Core
0

Core
1

Core
m-1. . .

PL – COTSon Timing Model

PS - COTSon Timing Model

SimNow Noden

AXIOM Distributed SystemAXIOM Evaluation Platform

Figure 4.6: From the COTSonDistributed System definition to the AXIOMDistributed System
by using the DSE Tools. The Processing System (PS), the Programmable Logic (PL) and the
Interconnects of the AXIOM Board are simulated and evaluated into the COTSon framework
with the definition of the respective timing models [57].

In this way, we preselected the basic features of the AXIOM board (Figure 4.6 - left)
through the COTSon framework and the MYDSE tool-set (addressed in Section 3.1.2.
Then, once the DSE was completed, we migrated the final architecture specification
with the VivadoHLS tool into theAXIOMDistributed Environment (Figure 4.6 - right).

The DF-Threads execution model is a promising approach for achieving the full
parallelism offered by a multi-core and multi-node systems, by introducing a new ex-
ecution model, which internally represents an application as a direct graph named
Data-Flow graph. Each node of the graph is an execution block of the application and
a block can execute only when its inputs are available [1].

4.6. GENERALIZATION TO THE AXIOM PROJECT 51

4.6.1 The AXIOM board

With the fast improvements in science, technology, and engineering, designers are
gradually redefining the capabilities of computing systems aroundus to improve the so
called “Embedded Intelligence” or “Smart Things”. In fact, both “things” and people
are becoming nodes of the same network, creating aCyber Physical domain [175]. CPSs
operate through intelligent interfaces to communicate viaweb and socialmedia and in-
teract with the environment. In our daily life, CPSs devices provide us with efficiency,
flexibility such as in the case of smartphones, smart home and assisted/autonomous
driving. Therefore, the growing number of applications have created a huge fragmen-
tation in hardware platforms and software tools. Also, some of the main challenges in
designing aCPS architecture are datamanagement, proper software-hardware integra-
tion, real-timemanagement and hardware specialization. By building upon successful
examples of design-for-simplicity, like in the case of Arduino[176] and UDOO[177],
the AXIOM platform (Agile, eXtensible, fast I/O Module) [32], [33], [35], [34], [2], [36],
[37], [178] aims to provide a complete and general software development suite for eas-
ily mapping applications into multi-board processing systems.

According to known roadmaps for future systems, the crucial problems for a broader
deployment of scalable embedded systems are easy programmability, and inexpensive
ways to build a system based on the simpler components. The AXIOM project has de-
fined a simple but powerful architecture that can possibly be deployed in CPS, since it
includes not only the conventional embedded components but also the possibility to
easily build CPS by using one, two or more boards, without changing programming
model.

A Single Board Computer (SBC), named “AXIOM-Board”, has been developed at
the beginning of the 2017, (Figure 4.7), to build up aheterogeneous system,which could
be able to combine ARM cores and enough programmable logic (FPGA) for significant
acceleration, providing a platform that can be suitable for wide range of scenarios like
Artificial Intelligence, Smart Home Living, Smart Video Surveillance, just to name a
few.

In this paper, we will draw some conclusions of the main achievements of the AX-
IOM project, such as the programming model, based on a modified version of OmpSs
[66] and theData-FlowThreads (DF-Threads) executionmodel [106], [1], [23], [83], [52],
[147], [50], [145], [179], [81], [180], [15]. We describe the fast link interconnect, named
“AXIOM-Link”, through which is possible to connect multiple boards using inexpen-
sive cables, such as USB-C ones, while reaching up to 18-Gbps for each channel.

For the sake of completeness, we briefly recall here the main capabilities of our

52
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

SoC FPGA +
four 64-bit

ARMs

Four high-speed
interfaces that use USB-C

receptacle

Arduino
Socket

Figure 4.7: The AXIOM board based on an MPSoC Zynq Ultrascale+ (ZU9EG platform, ex-
pandable DDR4 memory up to 32 GiB, with four 2-lane 10Gbps gigabit transceivers that use
USB-C cables, and an Arduino socket [39].

platform: the Xilinx ZU9EG platform [170] includes four 64-bit quad ARMCortex-A53
General Purpose Processors (GPPs) working at a frequency of up to 1.5GHz; 32KB L1
Cache and 1MB L2 Cache. It can support several activities such as the OS (or sys-
tem tasks) and whenever there is a sequential task that invokes Instruction Level Par-
allelism (ILP) rather than other forms of acceleration. Moreover, a Dual-Core ARM
Cortex-R5 processing unit specialized for Real-Time tasks, working at a frequency of
up to 600MHz; 32KB L1 Cache and 128KB of tightly coupled memory for each core.

The processors are encapsulated as part of the processing system (PS) as well as
general-purpose interfaces such as two UART, two full-duplex SPI, and two full CAN
2.0B-compliant CAN, two USB, four 10/100/1000 tri-speed Ethernet, two I2C, ARM
Mali-400 GPU, a Display Port, DDR4 Controller, 17-channel 10-bit ADC, and up to 128
GPIOs.

Furthermore, the PL covers up to approximately 300K LUTs, 32 Mb Block-RAMs,
up to 2,520 DSP slices, and up to 24 bidirectional gigabit transceivers with a maximum

4.6. GENERALIZATION TO THE AXIOM PROJECT 53

of 16.3 Gbps throughput. These transceivers are exposed to the physical world through
theUSB-C receptacle (using a customAXIOMprotocol, not theUSB-C protocol), which
is easier to be used due to its two-fold rotationally-symmetrical connector. Moreover,
the board has a 250MHz trace port, which has also been used in other projects such as
the H2020 HERCULES project [181].

One of the main goals of the AXIOM project was to design the hardware/software
layers for multi-core, multi-board and heterogeneous system that has been envisioned
by the project partners in order to fulfill the needs of future Cyber-Physical Systems
(CPS). In this respect, the partners (BSC, EVIDENCE, FORTH, HERTA, SECO, Uni-
versity of Siena, VIMAR) identified use case scenarios, analyzed the AXIOM concept
against possible exploitation paths, evaluated the AXIOM board to assess its capabil-
ities. The inferred information has been translated into the definition of the AXIOM
architecture (i.e., the need for an SoC with high-speed interconnects and FPGA), its
external interface and its functional requirements.

For instance, modular scalability is enabled by a high throughput and low latency
interconnect and the possibility to interface the applications directly to such high speed
interconnect via reconfigurable hardware. Moreover, theArduinoUNO socket permits
the use of a large set of tested so-called “shield” containing, e.g., relays, sensors and ac-
tuators. The Arduino software AVR-binary compatibility is ensured by a custom AVR
soft-IP. This led to the choice of using the Xilinx MP-SoC Zynq Ultrascale+ (ZU9EG)
platform [170]. Also, this choice opens the possibility to reach a design that is capa-
ble of being interfaced to the physical world and be used in smart applications where
critical operation could be offloaded to the FPGA. The FPGA also provides a greater
energy efficiency compared to executing the same function in software [182] and an
appropriate substrate for the integration of our key features by providing customized
and reconfigurable acceleration.

Therefore the design of the AXIOM hardware and software has been driven by the
following pillars:

1. MP-SoC FPGA, i.e., The combination of large Programmable Logic (PL) with the
ARM-based General Purpose Processors (GPPs), to support the Operating Sys-
tem (OS) and for running tasks that make little sense on the other accelerators,

2. Open-source software stack for a broader adoption,

3. Lower-Level Thread Scheduler for a higher predictability,

4. High-speed, inexpensive interconnects managed by an efficient Network Inter-
face Card (NIC) [174],

54
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

5. Efficient interfaces for the Cyber-Physical world, such as Arduino [176] connec-
tors (to be able to interface with sensors and actuators), USB, Ethernet.

4.6.2 Validating the AXIOM board against the COTSon simulator
Figure 4.8 shows our evaluation setup of twoAXIOMboards interconnected via USB-C
cables, without the need of an external switch. By using synergistically our framework
and Vivado tool-chain, we synthesized DF-Thread execution model on Programmable
Logic (PL).

USB-C Cable
(custom lossless protocol)

4 high-speed
ports

(direct access to
FPGA

transceivers)

2 AXIOM-boards
in a cluster

Figure 4.8: Two AXIOM boards interconnected up to 18-Gbps via inexpensive USB-C cables.
The AXIOM board is based on a Xilinx Zynq Ultrascale + ZU9EG platform, four high-speed
ports (up to 18-Gbps), an Arduino socket, and DDR4 extensible up to 32 GiB. As can be seen
from the picturewedo not need any external switch but just two simpleUSB-C cables to connect
the two systems [57].

An important step in the design is tomake sure that the design in the physical board
is matching the system that was modeled in the COTSon simulator. As an example, we
show in Figure 4.9 and 4.10 the execution time in the case of the BMMandRADIX-SORT
benchmarks respectively, when running on the simulator and on the AXIOM board,
while we vary the input data size. The timing are matching closely, thus confirming
the validity of our approach. We scaled the inputs in such a way that the number of
operations doubles from left to right (input size). In Figure 4.9), we have the BMM
benchmark, where the input size represents the size of the square matrices, which are
used in the multiplication. In Figure 4.10), we have the Radix-Sort benchmark, where
the input size represents the size of the list to be sorted.

4.7. FINAL REMARKS 55

128

512

2048

8192

200 252 320 400 504

EX
EC

U
TI

O
N

 T
IM

E
(s

)

Input Size

BMM benchmark validation

AXIOM-board COTSon

Figure 4.9: Validation of the execution time of the simulator against the AXIOM-Board. the
Blocked Matrix Multiplication (BMM with different sizes (weak scaling). The results on the
actual board match closely the simulations .

128

512

2048

8192

360000 686000 1310000 2510000 4800000

EX
EC

U
TI

O
N

 T
IM

E
(s

)

Input Size

RADIX benchmark validation
AXIOM-board
COTSon

Figure 4.10: Validation of the execution time of the simulator against the AXIOM-Board.
Radix-Sort benchmarks with different sizes (weak scaling). The results on the actual board
match closely the simulations.

4.7 Final remarks

In this chapter, we presented our workflow in developing an architecture that could
be controlled by the designer in order to match the desired key performance metrics.
We found that it is very convenient to use synergistically the Xilinx HLS tools and the
COTSon+MYDSE framework in order to select a candidate architecture instead of de-
veloping everything just with the HLS tools.

Thanks to the “functional-directed” approach of the COTSon simulator, we can de-

56
CHAPTER 4. TRANSLATING TIMING MODEL INTO HIGH-LEVEL SYNTHESIS

(HLS)

fine the architecture of any architectural components (i.e., a cache) for an early DSE and
migrate toHLS only the selected architecture. OurDSE tool-set facilitates themodeling
of architectural components in the earlier stages of the design. We have modified the
classical HLS tool-flow, by inserting a modeling phase with an appropriate simulation
framework, which can facilitate the architecture definition and reduce significantly the
developing time.

Wedescribed the simple example of defining a two-way set associative cache through
the timing model of COTSon. After, we illustrated the code migration from COTSon to
Xilinx HLS tool, showing that the timing description made in the COTSon simulator
is conveniently close to the final HLS description of our architecture. However, syn-
thesizing of the HLS description of the cache design in Vivado HLS takes about four
hours on a powerful workstation, while we were able to simulate it in COTSon in a few
seconds.

By using the workflow presented in this paper, we were able to successfully proto-
type a preliminarydesign of ourDataflowprogrammingmodel (called theDF-Threads)
for a reconfigurable hardware platform leading to theAXIOMsoftware/hardware plat-
form, a real system that includes the AXIOM board and a full software stack of more
than onemillion lines of codemade available as open-source (https://git.axiom-project.eu/).

Chapter 5

FPGA Implementation of DF-Threads
Co-processor

Programmable logic for the digital computing ecosystem was introduced back in the
early 1960s to enhance the speed and power efficiency [183]. Thanks to the continual
improvement in Very Large Scale Integration (VLSI) architecture design, FPGAs have
undergone many million gate computing platforms, which offer reconfigurability and
spatial programming logic ecosystem. Recently, this goes beyond and makes FPGA
generations to be integrated with logic blocks, embedded high-throughput memory,
fast routing switch bars, and more recently, microprocessors all on one single chip, so-
called. System on a Chip (SoC) [170].

FPGAs are widely used in prototyping Embedded Computers. They more recently
have become a significant component as the accelerators in theHigh-PerformanceCom-
puting (HPC) and Cyber-Physical Systems (CPS) field, since they undertake tasks with
higher reliability, reconfigurability, and energy efficiency [184]. Reconfigurable logic
like FPGAspropose outstandingways to boost specific functions but need enough tools
in order to moderate the complicated programming [16], [185], [184].

Considering reconfigurable computingplatformbased onFPGAs,manyworks have
offered solutions to address the issues of dynamic allocation of tasks for general-purpose-
multi-core processors [180], or reconfigurable logic [186]. Nevertheless, these approaches
have been effectively investigated only on single and multi-core superscalar architec-
tures [187].

Modern FPGAs propose a dense area of logic building blocks, which lead to en-
hancedperformance over power consumption that is also plausiblewith computational
ASIC and the reconfigurability. FPGAs are suitable alternative for ASICs for reducing
the time-to-market and those applications in which frequent update is necessitated.

57

58 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

Nowadays, FPGAs have established themselves in numerous applications, including
aerospace and defense systems, Digital Signal Processing (DSP), Artificial Intelligence
(AI), automotive, computer hardware emulation, and many others. In this section, we
focus on literature addressing FPGAs in the context of high-performance computing.

In this perspective, to speed-up the parallel computing performance leveraging FP-
GAs, we need to consider two critical factors: available resources and scalability. The
first increases each year with the addition of embedded high-speed memories (e.g.,
ultra RAMs), DSP blocks, and fast microprocessors. However, the demand for pro-
grammable resources is much higher as more complex systems are being deployed
in high-performance computing. A well-known solution is to exploit parallelism in
multiple FPGA platforms for a distributed system. In this ecosystem, logic reconfig-
urability, board-to-board communication, and design structuring become significantly
sophisticated as the number of FPGA boards employed is increased. For instance, for
CPU-FPGA heterogeneous systems, there can be many configurations, such as net-
work topology, to construct an FPGA cluster. In such a system, sustained data transfer
throughput between FPGA memory and CPU memory on a remote node is one of the
important factors to decide a topology of the cluster. The study for clusters with a large
number of FPGAs has not yet been fully investigated. Enhancements applied to sys-
temswith a small number of FPGAs are not plausible in systemswithmany devices. In
general, factors like cost of system debugging, costs and challenges for data communi-
cation path, and concerning the clock distribution scheme, and reconfiguration among
the boards are issues to be reviewed in such systems. Researchers yet to investigate
the properties and applications for a cost-effective massive FPGA cluster framework
for the given factors. Our research group to build a low-cost and easy to be intercon-
nected (i.e., with USB-C cables) cluster of SoC FPGAs has proposed the Gluon board
[188].

In the context of the AXIOM project [32], [178], [36], [37] it was realized that there is
an extreme fragmentation of both devices and tools for embedded processing. Specif-
ically, when more complicated functionalities are required, the entire system must be
revised, and a new tool-chain must be adopted. Thus, our goal was to permit the pro-
grammers to deploy the device with a possible standard and open-source tool-chain
based on a full Linux OS software distribution. However, scaling the performance
of a computing system while retaining easy programmability is still on the headlines
[189]. Additionally, tool-chains require to be integrated with suitable high-level syn-
thesis tools in order to have a higher control of the programmable logic [190], [191].

Multi-processor system-on-chips (MPSoCs) are currentlywell-adopted, but the han-
dling of many threads is still a source of many inefficiencies. Their management must

5.1. PRELIMINARY EVALUATION 59

consider the order of execution, scheduling and the OS impact on threads executions
(see Section 3.2). This aspect begins to be serious as the entire system grows in com-
plexity, memory hierarchies, interconnects, and distributed resources. In this thesis,
we propose to reduce such inefficiencies by using an efficient execution model named
DF-Threads [1], [50], [106]. We explore the energy consumption of the AXIOM board
for distributing DF-Threads across the AXIOM boards through a custom of board-to-
board message types.

The work presented in this chapter has taken advantage of the recent growth in the
number of parallel hardware components in recentMPSoC architectures (i.e., Zynq Ul-
trascale+). This model exploits all these resources efficiently compared to the conven-
tional (i.e., von-Neumann) models and preserving the simplicity of the conventional
programming models. Each block of threads in the proposed model comprises a set of
sequential instructions that facilitate programmability while preserving the benefits of
fine-grain parallelism coming from the Data-Flow distribution of blocks.

We choose the AXIOM board to build a cluster of MPSoC FPGAs as the hardware
infrastructure to materialize the novel DF-Threads execution model. This chapter de-
scribes the proposed and implemented architecture in detail and evaluates its func-
tionality and performance with the Recursive Fibonacci benchmark as a preliminary
test for stressing the DF-Threads management.

5.1 Preliminary evaluation
In our research group, the proposed architectural support for DF-Threads execution
has been verified and evaluated through the HP Labs COTSon Simulator [41], which
allows us to find the best architecture setup of the heterogeneous multi-board plat-
form (i.e., the AXIOM board). We used COTSon to define new hardware and software
platforms easily and evaluate the scalability for heterogeneousmulti-node architecture
before spending time in real hardware implementation.

OpenMPI was selected for the programmingmodel reference to provide a fair eval-
uation compared to our proposedprogramming and executionmodel (i.e., DF-Threads).
OpenMPI is widely used in multi-node clusters to provide a parallel programming
ecosystem. COTSon simulator can model the main components depicted in Figure 1.2.
The DF-Threads Co-processor (DFC) is modeled into the COTSon simulator, and as a
reference benchmark verifying the feasibility of supporting DF-Threads, a BlockedMa-
trix Multiplication (BMM) [192] is chosen, that is widely used as the kernel in recent
smart applications such as machine learning.

60 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

As can be seen in Figure 5.1, the execution time improves, increasing the number of
nodes/cores better than the OpenMPI. The normalized execution time gain is derived
from the division of the execution time of the base-line, which is the OpenMPI, over
the execution time of the DF-Threads.

0

0.5

1

1.5

2

2.5

3

1N 2N 8N

NUMBER OF NODES

Normalized Execution Time Gain

OpenMPI DF-Threads

(
𝑇𝑂𝑝𝑒𝑛𝑀𝑃𝐼

𝑇𝐷𝐹−𝑇ℎ𝑟𝑒𝑎𝑑𝑠
)

0

5

10

15

20

25

30

1N 2N 8N
Sp

ee
d

u
p

NUMBER OF NODES

Speed Up DF-Threads vs OpenMPI
(baseline 1N)

OpenMPI DF-Threads

Figure 5.1: Comparing normalized execution time gains and speedup between theDF-Threads
and the OpenMPI programming model running a Blocked Matrix Multiplication (BMM) with
the block size of 8 and matrix size of 864 under the COTSon simulator [106]. The normalized
execution time gain shows the execution time obtained from the OpenMPI as the base-line over
the execution time of the DF-Threads.

The results presented in Figure 5.1 show that the DF-Threads execution model pro-
vides efficient scalability increasing cores/node counts. By adopting the DF-threads
in the embedded domain (our target hardware platform), the system can be scaled-up
by merely providing more computational nodes. These results motivated us to have a
further implementation of simulated architecture on real-world hardware (the AXIOM
board), through which we were able to prove the functionality and performance of the
proposed DF-Threads Co-processor (DFC).

5.2 DF-Threads management
Recently, there has been an enormous exertion to move forward general programming
models with thread management such as Cilk, OpenMPI. But in most of these models,
synchronization and distribution of data between cores/nodes need to be managed
manually by programmers and imposes an extra effort [171].

Instead, DF-Threads execution model proposes better scalability by re-managing
the distribution of threads based upon the Data-Flow paradigm [1], [193]. It has ca-
pability of distributing the DF-Threads in a multi-node system. In order to have an
efficient and scalable execution and movement of threads across the AXIOM board,

5.2. DF-THREADS MANAGEMENT 61

a low-level fine-grain data distribution technique based upon the DataFlow-Threads
(DF-Threads) [1], [50], [106] modality has been adopted. DF-Threads make it possible
to perform a more predictable real-time execution since a thread’s input data is made
available before the thread execution, so the time to execute a thread can be estimated
very precisely.

In particular, the DF-Threads execution model relies on multi-threading, on which
dynamic Data-Flow principles are applied to shape a Data-Flow graph (DFG) among
threads and to exploit Control-Flow execution inside a thread efficiently. Moreover,
fetching the instructions ready to execute is deterministic (when all inputs of the thread
are available), whichmakes it near to optimal since theDF-Threadsmanagement sched-
ules the life-time of each thread and knows which thread will be executed at any time.
Starting from the proposed DF-Threads [1], in this study, we design DF-Threads Co-
processor (DFC) providing the scheduling and management of the threads for het-
erogenous multi-node systems. DFC relies on the Load Balancing Unit (LBU) to man-
age the DF-Threads distribution either locally or remotely. The LBU distributes the
thread to other boards when local resources finish, by dispatching appropriate packet
descriptors to the Network Interface Controller (NIC) [174] to bypass the software
stack.

Figure 5.2 shows the block designs exploited to materialize and map the DFC on
the PL part of the ZynqU+ platforms as an individual soft IP. DF-Threads Co-processor
(DFC) is tightly coupled (i.e., based on the AXI Stream protocol and proper buffering)
to the NIC [174] module to be able to transceive appropriate messages in order to dis-
tribute the workloads among the network. Since the DFC is offloaded on the PL, all
overheads regarding the thread management are reduced. In order to avoid the over-
heads and costs of proprietary existing communication protocols a NIC [174], which
was implemented during the AXIOM project, has been adopted. It permits to achieve
an efficient and scalable program execution and a seamless interconnection of systems
spanning multiple boards [178]. Such connectivity permits users to expand and scale-
up their system by easily interconnecting more boards flexibly and low-costly, without
the need for particular expensive cables, connectors, or external switches.

AXIOM board has four bi-directional links providing different network topologies
such as ring, torus and 2D-mesh, etc. The AXIOM routing algorithm is based on the
store-and-forward packet transmission with Virtual Circuits (VCs). A discovery pro-
cess is initiated at power-up by themaster node to fill up the routing tables by dedicated
node IDs. As such, all the packets will be transceived through the physical links based
on corresponding information stored in the routing table.

62 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

Zynq Ultrascale+ board

DDR
Memory

PS

A53
Core 0

A53
Core 3

A53
Core 2

A53
Core 1

DDR
Controller

GPU

PL

High Speed
Transceivers

NICDF-Thread
Co-Processor

Core Switch

Zynq
U+ Board

To other boards N S W E

Zynq
U+ Board

Zynq
U+ Board

Zynq
U+ Board

Other boards

Other boards

N

EW

S

Figure 5.2: Proposed scalable DF-Threads architecturemapped on the ZynqUltrascale+ based
board like AXIOM board (left side). The detailed bock designs for each node (board) are de-
picted at the right side. The proposed DF-Threads scheduler is completely designed on PL
(dotted circle). U+: Ultrascale+, PS: Processing System, PL: Programmable Logic, NIC: Net-
work Interface Card [174].

Some functions cannot be performed in software as they have an execution over-
head, which is too large. The DF-Threads Scheduler serves to offload the management
of the thread descriptors either locally or across the boards. thread descriptors are
meta-data that are specific for each DF-Threads, such as Frame Pointers (FPs), Intstruc-
tion Pointers (IPs), and Synchronizaion Counters (SCs), which specify that when a
thread can be executed. The DF-Threads that become ready to execute are stored in a
queue so-called DF-Threads Ready Queue (DFRQ) (See Section 5.5). The central com-
ponent of the DFC, DF-Threads Scheduler (DFS), coordinates the asynchronous execu-
tion of threads under the Data-Flow Graph (DFG) of producer and consumer threads.
The DFC is responsible formanaging the threads descriptors, fromwhen aDF-Threads
is born, executed, and finally destructed. DFS knows when a DF-Thread is ready to be
executed by tracking the SC values when a new input is available. When all the inputs
become available, the DF-Thread is stored into the DFRQ and is ready to be executed.
During the life of a DF-Thread, only those that are ready to execute are allowed to be
distributed; otherwise, they stored locally.

5.3. INTRODUCTION TO API 63

5.3 Introduction to API
TheDF-Threads execution is based on the producer-consumer semantic, throughwhich
a DF-Thread (consumer) is allowed to execute only when all its inputs are produced by
other DF-Thread(s) (producers). A combination of hardware/software is deployed hi-
erarchically to manage the DFC entirely implemented on the PL. At the top level (API
level, not the programmer), a set of instructions are used to decide the life-time of
each DF-Thread, and how the outputs know the address of the other threads inputs.
Classical Data-Flow architectures were proved to be inefficient in terms of support-
ing data structures and procedural calls [194]. Our DF-Threads is proved to provide
more efficient support for a full range of language features (e.g., arrays, data structures)
[147], [82], [179]. The life-time of a DF-Threads is determined through four API calls
[147], which are reported in Table 5.1.

Table 5.1: DF-Thread APU in a C like syntax used in software stack of the proposed MPSoC
FPGA cluster. Uint64_t and uint8_t are fixed width types as defined here, for exemplification
here., but Can be overloaded with any base type of a, e.g., 64-bit machine (The table partially is
adopted from the [1].

API Instruction Description

void* df-schedule(void* ip, uint64_t sz, uint8_t sc);

A data frame with the size of “sz”, and “sc” number of inputs

will be allocated, and the start address of it will be returned as

“Frame Pointer (FP)” . “ip” is the Instruciton Pointer to the

pointer of where the function instruction is located. The DF-

Threads will not be executed until its “sc” becomes “0” (all

its inputs are available).

void* df-load(); Loads the data from the (itself) input frame

void* df-write(void* fp, uint64_t val);

fp (frame pointer) points to where the data “val” is stored. It

is assumed that writes are snooped by the architecture (in

particular by the DF-Threads co-processor - DFC), so that,

for every input that is written, the “sc” of the DF-Threads to

which the “fp” points is decremented.

void* df-clear(void* fp);

Frees memory pointer to by “fp”, and clear the Data Frame

associated to the DF-Thread. The DFC tracks the deallocated

memory.

Void* df-decrease(void* tfp, uint8_t sc_n)

For the frame pointed by “tfp” , which is a pointer to the

target frame, its stored “sc” field into the metadata part of the

frame will be decreased by the value of “sc_n”.

This API is the interface between the co-processor located on the PL and the com-
piler and run-time system building run-time libraries. This API providesmore flexibil-
ity to be adopted for our MPSoC FPGA cluster. Programmers can access memory re-

64 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

gions with specific allocating semantics after scheduling a DF-Threads via df-schedule
function. Allocation of all required frames is done before running the application, and
the DFC creates a list of FPs (Frame Pointers). For each DF-Thread a portion of mem-
ory is associated so-called frame-data. Each frame-data consists of two sub-regions
namedmeta-data-region and data-region. Calling df-schedule, dequeues an available
FP from the allocated list, and performs filling the meta-data of the frame. The DFC
handles either locally and remotely (in a distributedmanner), themeta-data (also called
continuations: like ip, sc, sz), and the information about the core or node onwhere the
thread is born, or running. ip is the instruction pointer of associated operation to the
frame, sc is the synchronization counter which counts the number of available inputs
by the producer, and sz is the size of the frame in bytes.

As described in Table 5.1, a DF-Thread lifetime is determined via a light-weight
API. For the simplicity of the easier mapping of a generic program code, DF-Threads
are considered to be simple C functions without the need to use the entire stack for
passing parameters (token like or continuations), additionally to Data-Flow paradigm
[195]. Listing 5.1 illustrates the creation (or scheduling) of a DF-Thread with explicit
management of the input frame (where input data is stored). Starting from this API,
an opcode is assigned to each of the DFC instructions, which are passed to the DFC
through the registers resided between the PS and the PL (See Figure 5.4). The API
communicates the DFC through a well-optimized and specialized linux device driver,
which maps the DFC device tree including registers into the kernel-space.

1 /* This code is a C like code that examplificates
2 how a DF-Thread life -time is created.*/
3 void df-thread (uint64_t *fp){
4 df -load();
5 //<statement_1 >;
6 //<statement_2 >;
7 //.
8 //.
9 //<statement_n >;
10 df -clear(fp);
11 }

Listing 5.1: Lifetime for a DF-Thread in C

memorymodel Two listing codes are provided to present how a user code can be trans-
formed into the code using DF-Threads API. Listing 5.2 shows simplified Recursive
Fibonacci in C code, and Listing 5.3 presents the DF-Threads API used to manage the
life-time of the DF-Threads. In Listing 5.2, there are twomain operations; fibo and add,
two of which are translated into two separate functions deploying DF-Threads API. In
this case, the df-schedule determines how many inputs the next instances will receive.

5.3. INTRODUCTION TO API 65

The df-write writes the frames inputs of the next instances. Once all inputs of the
target DF-Thread (written into its associated target frame-data) have been produced
and written, the sc of target frame becomes zero, which means that target DF-Thread
is ready to fire (executable). Finally, the current DF-Thread (running) is done, and its
occupied meta-data into the shared memory should be cleared, which is performed
through the df-clear(fp). Thanks to the proposed API, the use of a standard compiler
(e.g., GCC) is possible for producing the binary for the target platform (e.g., x86, and
AArch64).

1 /* This code is a C like code of
2 a Recursive Fibonacci */
3 int fibo (int n) {
4 if (n <= 1) return n;
5 return fibo(n-1)+fibo(n-2);
6 }

Listing 5.2: "C" like code for a Recursive Fibonacci example

1 /* How a DF -Thread life -time is created
2 for a Recursive Fibonacci function.*/
3 void fibo(void) { // DF-Thread Fibonacci
4 uint64_t* myfp =(uint64_t *) df-load();
5 int n = myfp [1];
6 if (n <= 1) {
7 df -write(myfp[0],n);
8 }else {
9 uint64_t* tfib1 = df -schedule (&fibo ,2);
10 uint64_t* tfib2 = df -schedule (&fibo ,2);
11 df -write(tfib1 [1], n-1);
12 df -write(tfib2 [1], n-2);
13 uint64_t* tadd = df-schedule (&adder ,3);
14 df -write(tadd[0], &myfp [0]);
15 df -write(tfib1 [0], tadd +1));
16 df -write(tfib2 [0], tadd +2);
17 }
18 df_clear ();
19 }
20 void adder(void) {
21 uint64_t* myfp =(uint64_t *)df -load();
22 uint64_t f1 = myfp [1];
23 uint64_t f2 = myfp [2];
24 df -write(myfp[0],f1+f2);
25 df -clear();
26 }

66 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

Listing 5.3: Transformed code of Recursive Fibonacci C code into the DF-Threads API
code

5.4 Memory model
ADistributed Shared Memory (DSM) is deployed to provide remote memory accesses
needed by the producer and consumer threads executing on different nodes (boards).
A Global Address Space (GAS) [51] is defined for all nodes, for each of which has as-
signed a fixed portion of the address space.

The need for traditional data coherency is not requested thanks to the single-assignment
rule inherited toData-Flownature for producer-consumermanner. For theDF-Threads
execution, various memory types are articulated in shared and non-shared portions to
store the programs’ data and meta-data. This model enables the implementation of
four types of a distributed shared-memory system (even in non-coherent cases) in the
context of producer-consumer as briefly described in the following [1].

• N-to-1: In this model, there are N DF-Threads producing N outputs that will be
later consumed by only one DF-Thread. To implement this pattern, a portion of
the distributed shared memory is allocated so-called a Frame Memory (FM).

• 1-to-1: This pattern is used for "self commutation," which means that the DF-
thread is using a large portion of dynamically allocated private memory. It is
called Private Memory (PM).

• N-to-N : There areNproducing output DF-Threads, that N other DF-Threadswill
consume their result. The atomic transactions between a distributed sharedmem-
ory cells are required. The mechanism is handled through a region in memory,
so-called Transactional Memory (TM) [79], [84], [196]–[198].

• 1-to-N : It happens when a DF-Thread produce a result for multiple locations of
the memory possibly consumed by multiple DF-Threads. The communication is
managed through the FM, as a typical case, when several consumers consume an
array. This case is managed by distributing pointers for the element located in
another shared portion, so-called Owner Writable Memory (OWM).

In this Chapter, we rely on the N-to-1 memory for the current implementation of
theDFC, as depicted in Figure 5.3. The othermemory types have not been yet exploited
on our proposed distributed hardware architecture based on the Zynq Ultrascale+ and

5.5. ARCHITECTURE BLOCK DIAGRAM 67

are considered to be used for this study’s future work.

The Distributed Shared Memory (DSM) presented in Figure 5.3 allows us to access
any producer-consumer DF-Threads across the network. An allocator assigns a fixed
portion of the shared memory as Frame Memory (FM) to each node, which can access
to FM of each other remotely. Each FM consists of two regions: Meta-data Region,
where the thread descriptors are stored, andData Region, where the associated input-
s/outputs frame data are resided.

Node 1 Memory

FRAME 1

Master Node Remote Node

FRAME 1 FRAME 1

FRAME 2 FRAME 2 FRAME 2

Node 1

region

Node 2 Memory Node n Memory

Node 2

region

Node n

region

Data

Frame Memory

Meta-data

FP

Data Region

Meta-data

Region

FRAME 3FRAME 3 FRAME 3

Figure 5.3: The deployed Distributed Shared Memory (DSM) region, showing the associated
FrameMemory (FM) allocated for each DF-Threads. The allocator for each node in the network
dedicates a separate portion of the memory, which is accessible by other remote nodes. Each
FM comprise to regions: Meta-data and Data, to where is pointed by the Frame Pointer (FP).
Meta-data is a tiny portion storing the DF-Threads continuation meta-data.

5.5 Architecture block diagram

In this section, we briefly explain the design of the DF-Threads Co-processor (DFC)
fully implemented on the Programmable Logic (PL) of an MPSoC FPGA (e.g., The AX-
IOM board) (See Figure 5.4). The detailed explanation of each block IPs is currently
under the publication. The design is connected to the Processing System (PS) through
the AXI HPM (High-Performance Master) port with the 128-bit data width. This inter-
face is based on the AMBA AXI4 protocol and is made suitable for high-performance
communications. It provides separate address channels supporting burst transactions

68 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

and issuing multiple outstanding addresses with out of order responses.

AnAXI Interconnect IP (Courtesy of Xilinx IP libraries) splits the 128-bit data width
into the 64-bit data width between two modules: the DFC and the customized System
Timer, which is used to measure the performance keymetrics of the system. The direct
communication between the DFC and the cores resided in PS is made through a set of
AXI-lite memory-mapped registers implemented on the PL.

The API of the DF-Threads execution model passes its arguments (i.e., opcode, ar-
gument1, and argument2) through a set of Registers resided on the PL. Most of the
important configuration of the co-processor is parameterized. Registers is intended
to be used to initialize and set reconfigurable parameters of the essential �constituent
sub-modules. For example, the size of the frame into the memory that is associated
with each DF-Threads can be configured through the Registers, or the masks, pend-
ing and clear registers of the IRQ Handler module (Interrupt Handler). The IRQ han-
dler takes care of the exceptions and interrupts coming from the local FIFOs, and sub-
modules, which finally performs a logical "AND" on all its inputs producing a one-
bit interrupt signal connected to the PS. The received instructions from the PS is de-
coded through theDecoder, which is also a splitter of streams of instructions into their
corresponding Finite State Machines (FSMs). Notably, all PL sub-modules interfaces
are based on the AXI4-Stream protocol with 64-bit data width, which provides proper
high-performance communication. AXI4-Stream is a point-to-point efficient interface
for high-speed interconnections without the use of AXI addresses. Each AXI4-Stream
performs in a single unidirectional data channel (Data-Flow path), including hand-
shake side-channels.

For the current implementation of the memory model, the address space of the
off-chip DDR memory of the AXIOM board is divided into two parts: Global Mem-
ory (GM) region, where the distributed shared Frame Memory (FM) resided, and the
DF-Threads Ready Queue (DFRQ) region, where the DF-Threads that are ready to be
executed are located. A Memory Management Unit is specialized to handle the data
exchange between the PL sub-modules and the PS DDR. This unit provides multiple
access (WR/RD) between the PL sub-modules and the PS-DDR through the slaveHigh-
Performance Coherent (HPC) port, which is based on the AXI4 interface.

A round-robin arbitration policy for Memory Management Unit is selected to arbi-
trate among multiple input requests from different processes inside the PL. The Load
BalancingUnit (LBU) performs the distribution ofDF-Threads among the remote nodes
through the NIC TX (RX) Controllers, which compose (interpret) the sent (received)
descriptors to (from) the NIC module [174]. A unique ID so-called "Node ID" (NID) is

5.5. ARCHITECTURE BLOCK DIAGRAM 69

Load
Balancer

Unit
(LBU)

Control
Registers

Decrease
FSM

Instruction
Registers

DF-Threads support on the PL

128-bit

MPSoC

HPM

Status
Registers

HPC

IRQ

DDR

Global Memory
Region

RxCmd
TxCmdGM Data

Mover TxData
RxData

RxCmd
TxCmd

TxData
RxData

DFRQ
Data

Mover

AXI LITE

opcode

IRQ Registers

Fetch
FSM

DF Threads
Ready Queue

RX RAW FIFO

RX RDMA FIFO

TX RAW FIFO

TX RDMA FIFO

arg1
arg2

64-bit

IRQ Handler

Decoder

AXI LITE
INTERCONNECT

To System
Timer

DMA management

DF-Thread
Scheduler

(DFS)

NIC
Controller

Registers

Figure 5.4: Simplified block diagram of the architectural support for the DF-Threads Co-
processor (DFC) fully implemented on the PL of an MPSoC FPGA platform (e.g., the AX-
IOM board). NIC: Network Interface Controller, DMA: Direct Memory Access, HPC: High-
Performance Coherent, HPM: High-Performance Master.

assigned to each node of the network that is obtained from the NIC module. The NID
aims to identify the source and destination (producer and consumer) of the traversing
DF-Threads.

The tool that is used to develop these modules is Xilinx High-Level Synthesis (HLS)
tool, VivadoDesign Integrator tool. The Xilinx Petalinux 2016.3 is deployed to generate
the Board Support Packages, including device tree, Linux kernel, and First Stage Boot
Loader (FSBL). As described in Figure 4.1, the XGENIMAGE tool, which is awrapper of
the Bootstrap tool is used to generate the bootable image dumped into amicro SD card.

The Xilinx Vivado HLS tool allows us to use a higher level of abstraction written in
C/C++. Therefore, we decided to use C++ to benefit from some useful C++ libraries
(like data streaming support). Thanks to the HLS directives/pragma option, we were
able to optimize the designed IPs in terms of the clock cycle latency and the resource
utilization for our target platform (i.e., Zynq Ultrascale+). Moreover, We used Xilinx
System Development Kit (SDK) to test the functionality of the entire. PL design as
a co-processor for PS before running the design under the Petalinux. It allows us to
eliminate the time consuming work-flow of BSP and OS image generation while yet
workwith the designed PLmodules from the bare-metal stand-alone software libraries
provided by the Xilinx SDK.

70 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

We adopted the following methodology for each HLS IP modules separately. Dur-
ing the development of the HLS IPs, we first implemented the preliminary draft of the
module in C++ and then compiled it to generate the output RTL.We analyzed the clock
cycle latency and intervals of the generated RTL by applying timing constraints to the
design (clock period equal to 6.5 ns). With a further investigation on some modules,
we noticed that the best directive that can be deployed notably is PIPELINE, enhancing
both the clock cycle latency and initiation interval. We wrote a basic program running
under the SDK environment to test and debug during the PL design development. Fur-
thermore, three Xilinx ILA (Integrated Logic Analyzer) IPs are attached to the DFC on
the PL to probe the crucial signals of the design involved in the performance keymetric
definitions.

The AXI4-Stream interface is the main data stream interface that is used for the
high-speed data paths. In each HLS module, the desired interfaces have appeared
as AXI4-Stream ports by defining specific directives through the specialized pragmas.
The definition of input in HLS based on an AXI4-Stream interface is shown in Listing
5.4). Moreover, the interface of all the used FIFOs is based on the AXI4-Stream with
64-bit data width. The utilized HLS IPs specifically use data streaming libraries (hls_-
stream.h) provided by HLS to facilitate the interfacing based on the AXI4-Stream. For
instance, reading from an "AXI4-Stream FIFO" is shown in Listing 5.5).

1 #include <ap_int.h>
2 #include <hls_stream.h>
3 typedef ap_uint <64> uint64;
4 struct axi4_stream64_t{
5 uint64 data;
6 uint1 last;
7 };
8 void hls_module (stream <axi4_stream64_t > &input) {
9 #pragma HLS INTERFACE axis off port = input
10 }

Listing 5.4: The definition of an AXI4-Stream interface in HLS

1 struct axi4_stream64_t{
2 uint64 data;
3 uint1 last;
4 };
5 axi4_stream64_t stream_buffer;
6 void hls_module (stream <axi4_stream64_t > &input) {
7
8 //<statement_0 >
9 //<statement_1 >
10 //.
11 if(!input.empty()){

5.5. ARCHITECTURE BLOCK DIAGRAM 71

12 stream_buffer = input.read();
13 }
14 //.
15 //<statement_n >
16 }

Listing 5.5: Reading from an AXI4-Stream FIFO

72 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

5.5.1 The Decoder
We select one component (The "Decoder" module) of the DFC as an example, and de-
scribe it in this sub-section to show that how we have implemented the IP modules.
This block is a Multiplexer, controlled by the "op_code" (it is defined as an input) spec-
ifying a particular operation of the DFC. The "Decoder" splits out the received "arg1"
and "arg2", which are the arguments of DFC instructions, receiving from the "Instruc-
tions Registers." The algorithm flowchart presenting the operations carried out by the
"Decoder" is drawn in Figure 5.6. As can be seen in Figure 5.4, the "Decoder" module
decodes the received "op_code" and provides the arguments for the operations per-
formed by the corresponding Finite State Machines (FSMs), including schedule, de-
crease, fetch, and clear.

Figure 5.5: Top view of the Decoder module designed in HLS.

START

Schedule
Opcode

received?

NO Decrease
Opcode

received?

Clear
Opcode

received?

NO Fetch
Opcode

received?

NO NO

YES

Write
Decrease FIFO

Write
Schedule FIFO

YES

Send Clear
request to
Clear FSM

YES

Fetch request to
Fetch FSM

YES

Figure 5.6: Flowchart showing the algorithm of Decoder module written in HLS.

Figure 5.5 shows the top view of the "Decoder" module implemented in HLS. The
description for essential inputs and outputs are provided in Table 5.2. Moreover, the
timing diagram of the input and output signals of "Decoder" module is derived by the
ILA (Integrated Logic Analyzer) and is depicted in Figure 5.7, which shows a latency
of three clock cycles. The plot is prepared through the WAVEDROM tool [199]. The

5.5. ARCHITECTURE BLOCK DIAGRAM 73

design is optimized in such a way that it only consumes two PL clock cycles to gener-
ate the outputs.

Table 5.2: Input and output signals of the Decoder module briefly described.

IO name Type Description

op_code_V[63:0] IN
The received unique “opcode” dedicated for each instruction (schedule, decrease, fetch,

clear) from the “Instruction Registers”.

arg1_V[63:0] IN

The first argument received from the “Instruction Registers”. The composed fields of this

64-bit input varies in different instructions. For instance, in “df-schedule” API, the first

argument is an “Instruction Pointer (IP)” .

arg2_V[63:0] IN The second argument of the desired instruction received from the “Instruction Registers”

decoder_rst_V[0:0] IN The active high signal to reset the internal FSM of the module including all variables.

schedule_fifo_occupancy_V[8:0] IN
The number of bytes occupied by the “schedule FIFO” . “Decoder” module uses this data to

stop writing to the “schedule FIFO”, when reaches to a certain level of occupied bytes.

decrease_fifp_occupancy_V[8:0] IN
The number of bytes occupied by the “decrease FIFO” . “Decoder” module uses this data to

stop writing to the “decrease FIFO”, when reaches to a certain level of occupied bytes.

schedule_fifo_wr[63:0] OUT The AXI4-Stream channel to the “schedule FIFO”

decrease_fifo_wr[63:0] OUT The AXI4-Stream channel to the “decrease FIFO”

clear_req[0:0] OUT The clear request to the “clear FSM”

fetch_req[0:0] OUT The fetch request to the “fetch FSM”

schedule_counter_V[7:0] OUT For measurement usage: it counts each “df-schedule” instruction.

decrease_counter_V[7:0] OUT For measurement usage: it counts each “df-decrease” instruction.

Three Cycles

Figure 5.7: The timing diagram of the input and output signals of the Decoder module.

74 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

5.5.2 The Load Balancing Unit (LBU)

The efficient distribution and scheduling of tasks in a distributed system is yet a com-
promising effort and open research topic [200]. A well-known and practical method of
this kind of parallel computation is "work-stealing" [201], in which processors require
stealing computational tasks from other processors. In the full software version of such
schedulers, if the problem’s granularity is not big enough, the overhead arising from
the distributing task, and the communication is comparable and reduces the efficiency
of the processing power [202]. In this section, we present a dynamic Load Balancing
Unit (LBU) fully implemented on the Programmable Logic (PL) of a Xilinx Zynq Ul-
trascale+ board (AXIOM board)[39], [58]. In contrary to work-stealing policy, the LBU
performs dynamic load balancing based on a semi-work-stealingmethod, where a light
handshake mechanism is established in a producer-consumer manner to distribute the
DF-Threads across the nodes.

In this implementation, the distribution of the DF-Threads is dicoupled from the
execution of DF-Threads by offloading the communication patterns and load balanc-
ing, which eases the processor’s burden. Each DF-Threads executes in sequential on
the cores located into PS. Certain instructions to be executed are associated with the
memory regions so-calledData Frame, which their executions initiate once all of its in-
puts are available. The inputs can be provided by other DF-Threads executing locally
or remotely. Instruction pointers of those frames that are ready to be executed (FPs)
are stored in a circular buffer called Dataflow-Threads Ready Queue (DFRQ).

The LBU is responsible for distributing the Frame Pointers (FPs) associated with
the ready DF-Threads to available remote nodes. The load balancing algorithm differs
from the pure work-stealing, the stealer node, that asks for the DF-Threads will get
the available threads only when the overloaded node permits the threads migration.
Those nodes in which their DFRQ is "Almost Empty" send an "LB-QUERY" message to
their neighbors. This message will be propagated through the cluster until one node
has a DFRQ with the "Almost Full" flag enabled. This node sends an ACK message to
the node requesting for threads, and then the requester node will accept the available
DF-Threads by an ACCEPTmessage (See Figure 5.8). Finally, the node which provides
DF-Threads will perform an RDMA (Remote Direct Memory Access) [178] to migrate a
certain number of FPs to the requester node. The number of migrated FPs, and DFRQ
thresholds (Almost Empty, Almost Full) are set through the "Registers" dedicated to
this module.

5.6. EXPERIMENTAL RESULTS 75

N1 DFRQ :

Almost Full

N2 DFRQ:

Almost Empty

N7 DFRQ :

Almost Full

N8 DFRQ :

Almost Full

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
N7 DFRQ :

Almost Empty

1 2 3 4

LB-QUERRY(REQ,1)

LB
-Q

U
ER

R
Y(R

EQ
,1

)

T1
LB

-Q
U

ER
R

Y (R
EQ

,2
)

LB
-Q

U
ER

R
Y (R

EQ
,2

)

T0

T2
LB

-R
ES

P
 (

N
A

C
K

)

T2

LB
-R

ES
P

 (
A

C
K

)
T3

LB
-R

ES
P

 (
N

A
C

K
)

T3

LB-RESP (ACK) T4
T5 LB-QUERRY (ACCEPTED_1)

LB-QUERRY(ACCEPTED,1)T6

T0

Figure 5.8: A simple example to show the load balancing query message passing among the
AXIOM boards. DFRQ: DF-Threads Ready Queue, LB-ACK: Load Balancing Acknowledge-
ment, LB-NACK: Load Balancing Negative Acknowledgement.

5.6 Experimental results

5.6.1 Recursive Fibonacci benchmark

We use a Recursive-Fibonacci benchmark on the two nodes (the AXIOM boards) as the
initial exploration and to stress the capability of managing many threads of our pro-
posed implemented DFC. The main function of the benchmark is FIB(n,th), in which
"n" is the size of Fibonacci and "th" is a threshold stopping the generation of the parallel
recursive calls. Different input size with a constant threshold has been evaluated. The
Load Balancing Unit (LBU) parameter has been set appropriately for each of the input
sets, following the total required DF-Threads in respect to the input size.

The presented result in Figure 5.9 proves the implemented DFC proper functional-
ity and a reasonable degree of scalability. The result of the proposed DFC on two-node
is convincingly aligned with the results obtained in the COTSon simulator, confirming
that the LBU properly distributes a set of manyDF-Threads across themulti-boardMP-
SoC FPGAs. As shown in Figure 5.9, an increase in the input size increases the number
of generated DF-Threads, and consequently, the speedup increases due to the more ef-
ficient exploitation of parallelism. In this experiment, the threshold of Fibonacci is kept
constant while the input size is being increased for creating different size of parallelism
providing a fair evaluation in terms of speedup. Moreover, the threshold and the max-

76 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

imum number of the migrated DF-Threads by the LBU is kept constant to adapt with
the simulator experiments, and observe its functionality in respect with different in-
put size. The experiment shows that the LBU is performed more efficiently for a larger
input size. It is worthwhile to mention that it the first time that the DF-Threads execu-
tion model is implemented on a real multi-board hardware platform, and the results
are valid compared with the results of the COTSon simulator.

1.26

1.45
1.51

1.2

1.49 1.54

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIB(18+10)
101 DF-Threads

FIB(19+10)
164 DF-Threads

FIB(20+10)
 266 DF-Threads

Speedup DF-Threads Two-node (2N)

MPSoC FPGA COTSon Simulator

Figure 5.9: Comparing speedup of the Recursive Fibonacci benchmark with different input
sizes (e.g., FIB(20+10), 20 is the input size and 10 is the threshold (i.e., where the generation of
the parallel recursive calls will be stopped) running under the DF-Threads co-processor on two
nodes (real implementation against COTSon simulator). The number of DF-Threads that are
generated are shown below each FIB examples.

5.6.2 Resource utilization
The resource utilization of the implemented DFC is derived from the Vivado 2016.3
after the placement and routing phase (it is reported in Table 5.3). It should be noted
that the utilization for Block RAM tiles is mainly due to the intermediate buffers used
internally between the various modules (e.g., between the Memory Management Unit
and the PL sub-modules). We decided to optimize the implemented HLS IPs in such
a way to keep the size of utilized BRAM tiles as low as possible. Almost no BRAM
tiles have been utilised for the DFC assembled sub-modules excluding the LBU, where
two table (one for the TX path, and the other for the RX path) are used for storing the
status of the LB-QUERRY. As can be seen in Table 5.3, the total utilization of the DFC
is nearly 11%, which makes it a flexible IP module to be easily ported in smaller FPGA
platforms in terms of the size of the CLBs.

5.6. EXPERIMENTAL RESULTS 77

Table 5.3: Resource utilization of the proposedDF-Threads co-processor fully implemented on
the PL (the AXIOM board). CLB: Configurable Logic Blocks. CLB: Configurable Logic Block,
LUT: Look Up Table.

PL Module
CLB

LUTs

CLB

Registers
CLB

LUT as

Logic

LUT as

Memory

LUT as Flip

Flop pairs

Block RAM

Tile

Registers 1399 1805 419 1399 0 548 0

Decoder 231 211 83 231 0 45 0

DF-Threads Scheduler 899 1790 347 899 0 346 0

DMA Management 1752 2120 423 1654 98 784 0

NIC Controller 1108 1458 276 1108 0 620 0

Load Balancing Unit 1484 1957 356 1484 0 393 2

Total 30985 43094 7164 28724 2261 14171 64.5

Available 274080 548160 34260 274080 144000 274080 912

Utilization (%) 11.3 7.86 20.91 10.48 1.57 5.17 7.072

5.6.3 Power consumption analysis

A reliable and precise method to measure and monitor the power consumption of the
system is necessary in order to enable optimization towards the energy efficiency. Ad-
ditionally, the ability to estimate power consumption in a design is mandatory for ef-
ficient part selection and system reliability. Referring to the AXIOM board, there are
specifically dedicated eight INA219 power monitor integrated circuits to monitor the
crucial power rails of the board, and are reported by Table 5.4. These INA219 ICs com-
municate with the FPGA through an I2C bus connected to the PS, and more detailed
information on the INA219 can be found in [203].

In order to extract power values for the crucial rails of the board, we performed the
experiments while DFS issues the RAW and RDMA messages of 1000M length in 10
cycles. The duration of the test was 240s with 200ms sampling time. Essentially, the to-
tal power consumption of the board remained between 1W and 1.6W (sum of the seven
crucial power rails). Figure 5.10 and 5.11 illustrates the maximum power variations for
the crucial voltage rails during RAW and RDMA transactions respectively.

As can be seen from Figure 5.10 and 5.11, theMGTAVTT voltage rail has the highest
power consumption since the gigabit transceivers’ termination circuits with 1.2V sup-
ply voltage sink larger amount of current. The average power consumption in client
mode has 10.15% larger value in comparison with server mode due to an extra pro-
cessing effort to re-compose the acknowledge message and send it back to the server.
Moreover, since in our DFS implementation we did not utilize any access to the PL
DDR (we access to the PS DDR), the average power consumption for the 1V2_DDR_PL
voltage rail remained below 5.5mW.

78 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

Table 5.4: AXIOM board’s power supply rail adopting dedicated power monitors.

Power supply rail Nominal Voltage [V] Description

VCC_INTFP 0.85 PS full-power domain supply voltage

VCCINT 0.85 PS internal power supply

INTFP_DDR 0.85 PS DDR controller and PHY supply voltage

1V2_DDR_PS 1.2 PS DDR supply

1.2V_DDR_PL 1.2 PL DDR supply

MGTAVCC 0.9 Analog supply voltage for GTH transceiver

MGTAVTT 1.2
Analog supply voltage for GTH transceiver termination

circuits

512, 29%

315, 18%

8, 1%190, 11%
10, 1%

55, 3%

650, 37%

Crucial Power (RAW for Client)

VCC_INFTP VCC_INT INTFP_DDR 1V2_DDR_PS

1V2_DRR_PL MGTAVCC MGTAVTT

533, 33%

327, 20%

6, 0%
192, 12%

12, 1%

63, 4%

500, 30%

Crucial Power (RAW for Server)

VCC_INFTP VCC_INT INTFP_DDR 1V2_DDR_PS

1V2_DRR_PL MGTAVCC MGTAVTT

Total Power = 1.74W Total Power = 1.62W

Figure 5.10: Power consumption budget for the Client board (left) and the Server board (right)
when NIC RAWmessages are issuing.

Finally, comparing power consumption between RAW and RDMA message, the
RDMA message type consumes in average 9.7% less than the RAW message types.
This arises from the extra dedicated logics to deal with data of RAW messages while
for RDMAmessages, the data are efficiently moved to the PS DDR by using the Xilinx
Data Mover soft IP.

5.7. FINAL REMARKS 79

Total Power = 1.63W Total Power = 1.501W

533, 33%

327, 20%
6, 0%

192, 12%

12, 1%

63, 4%

500, 30%

Crucial Power (RDMA for Client)

VCC_INFTP VCC_INT INTFP_DDR 1V2_DDR_PS

1V2_DRR_PL MGTAVCC MGTAVTT

478, 32%

327, 22%

3, 0%

164, 11%

7, 0%

49, 3%

473, 32%

Crucial Power (RDMA for Server)

VCC_INFTP VCC_INT INTFP_DDR 1V2_DDR_PS

1V2_DRR_PL MGTAVCC MGTAVTT

Figure 5.11: Power consumption budget for the Client board (left) and the Server board (right)
when NIC RDMAmessages are issuing.

5.7 Final remarks
This chapter presented a scalable implementation of the DF-Threads execution model
deployed on a heterogeneous distributed system composed of the AXIOM boards. We
proposed a DF-Threads co-processor (DFC), which permits efficient scalability across
the boards by using a load balancing protocol. Finally, we analyzed some power mea-
surements in the context of the AXIOM project as well.

We briefly described the DFC hardware implementation on an MPSoC FPGA (the
AXIOMboard). Starting froma light-weight programmingmodel handlingDF-Threads
life-time previously proposed by our research group, we were able to build the micro-
architecture of the DFC on the FPGA instance. A Recursive Fibonacci benchmark has
been chosen as a preliminary test to validate the implemented DFC proper function-
ality compared with the COTSon simulator, and also for stressing the thread manage-
ment of the DFC.

The implemented design is in an early stage and it can be optimized to reach a bet-
ter performance. For instance, we noticed that there is a latency between the PL sub-
modules and the "DFRQ Region" into the PS DDR. As future work, to cope with this
issue, we need to deploy hybrid regions between the PS DDR and the PL BRAMS for
storing the Frame Pointer (FP) of those DF-Threads that are ready to execute. As such,
the memory accesses will significantly decrease due to the available local data for the
PL DF-Thread Scheduler and Load-Balancing unit boosting the overall performance of

80 CHAPTER 5. FPGA IMPLEMENTATION OF DF-THREADS CO-PROCESSOR

the DFC. In order to be able to optimize the efficiency of the board, we explored the
energy consumption of the critical voltage rails while transceiving is performed across
the nodes by the DF-Threads DFC.

Chapter 6

Conclusions and future works

This study aims at exploring an alternative solution for exploiting the scalability and
parallelization of heterogeneous multi-node architectures, where efficient exploitation
of exposed parallelism is yet a challenging effort [204]. Several causes are affecting an
efficient execution, such as synchronization waits and memory latencies. The Data-
Flow threads (DF-Threads) execution model offers exploited parallelism of the avail-
able on-chip resources by schedulingmany parallel fine-grain threads and distributing
them across processing elements of a multi-node system [50], [1], [106].

6.1 Summary
The work, which is presented in this thesis is divided into three sections. First, (in
Chapter 3) we present our Design Space Exploration (DSE) tool-sets [40], [146]. The
DSE is one of the principal phases of the design development before digging into the
hardware prototyping of our novel DF-Threads executionmodel. This tool-set was also
used during the TERAFLUX project [51] to design and evaluate complex architectures
for High-Performance Computing (HPC) with 1000 general-purpose cores. Thanks to
these tools, architectures can be analyzed in different aspects, including using various
types of programming models (e.g., CILK++, OpenMPI), Operating System impact, or
execution models (i.e., Data-Flow and von-Neumann models).

The DF-Threads execution model is adopted targeting a distributed heterogeneous
multi-node architecture offered by the AXIOM board. The AXIOM board is a single-
board computer (SBC) based on a Zynq Ultrascale+ FPGA, and it is capable of being
interconnected with high-speed (up to 18 Gbps) inexpensive cables (i.e., the USB3 ca-
bles). A preliminary design of the DF-Threads execution model, which was previously
modeled through the DSE tool-sets, was validated on the AXIOM board.

As a further implementation of the proposed DF-Threads, a methodology has been

81

82 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

deployed to translate the already verifiedmodel through theDSE tool-sets andCOTSon
simulator to the AXIOM board (in Chapter 4). The COTSon timing model is gradually
migrated into the High-Level Synthesis (HLS) tool. The performance of the migrated
design is validated and aligned with the outcome of the COTSon simulator. Thanks
to this validation, the COTSon simulator allows us to rapidly explore the design space
before mapping it on real-world hardware. A further study is carried out to explore
the operating system’s impact on the performance, thanks to the COTSon simulator,
which offers a full system simulator. It has been shown that the percentage of the ker-
nel overheads can reach up to 60% of the total execution time, comparing four different
Linux Distributions (See Section 3.2).

In Chapter 5, the memory model deployed for the cluster of SoC FPGA board (AX-
IOMboard) is described. Themodel is based on the distributed sharedmemory (DSM)
model, in which a specific portion of the shared memory has been allocated to each
node. The proposed building blocks of the co-processor, implemented on the Pro-
grammable Logic (PL) of the SoC FPGA, is presented. One of the critical building
blocks of this architecture is the Load Balancing Unit (LBU) module, through which
the DF-Threads are distributed across the nodes of the cluster. The load balancer is de-
signed specifically for Data-Flow-Threads (DF-Threads) and can support multi-node
computing architectures. The LBU is highly parallelized with separate queues and
FSMs dedicated for each TX and RX path to the custom network interface leading to
the efficient management of DF-Threads.

We relied on the Recursive Fibonacci benchmark to study the performance of the
implemented DFC module in managing and distributing the DF-Threads. The results
show the proposed DF-Threads functionality and its capacity to distribute andmanage
many fine-grain threads across a two-node setup of the AXIOM board cluster. For the
first time in this study, we present the feasibility of the DF-Threads execution model
on the MPSoC FPGA platforms connected through the high-speed network interface
cards. As shown in Section 5.6.1, the achieved results are reasonably aligned with the
results obtained from the COTSon simulator. Finally, the power consumption of the es-
sential voltage rails of the board was explored. This measurement is carried out when
the LBU asks RAW and Remote Direct Memory Access (RDMA) messages to the Net-
work Interface Card (NIC) [174] module, which is also utilized on the Programmable
Logic (PL).

6.2. FUTURE WORK 83

6.2 Future Work
After a further analysis made during the evaluation of the implemented DF-Threads
co-processor, we noticed that there are some rooms for further design improvements.
Figure 5.9 shows relatively good scalability of the model and the proper functionality.
However, we need to evaluate it with more cores (up to four are available on a Zynq
Ultrascale+ FPGA) and more real nodes (e.g., four, eight boards) interconnected.

The number of benchmarks used to evaluate the design is limited in this study due
to the limitation in implemented memory model, which is only the N-to-1 model (See
Section 5.4). There is a need to expand the memory model’s implementation to other
types, such as 1-to-N relying on a memory semantic so-called Own Writable Memory
(OWM), allowing us to have other realistic benchmarks as the Matrix Multiplication.

Furthermore, software load balancers will provide enough performance as long as
the number of threads is big enough compared to the load balancing overhead. To
mitigate this overhead, delegating load balancing to an accelerator will improve the
performance of such architectures. To draw a comparison and measure the overhead
of the software based load balancing unit, a LBU will be emulated into the simulator.

Finally, we realized that there are a plenty of rooms for optimizing the PL sub-
modules implementation, such as a hybrid DFRQ region between the PL and the PS
DDR, or cache injection technique for passing the readyDF-Threads into the cache from
the PL through the Accelerator Coherent Port (ACP) port of the PS, instead of passing
through the PS-PLHigh-PerformanceMaster interfaces (HPM).Moreover, we desire to
employ an open-source RISCV processor soft IP replaced as the PS system to eliminate
the critical path and introduced delay between the PS and the PL.

Appendix A

Publications

This study appeared in several conference papers, workshops and journals. They are
listed in the following subsections.

Journal papers
1. R. Giorgi, F. Khalili, M. Procaccini, “Translating Timing into an Architecture:

The Synergy of COTSon and HLS (Domain Expertise—Designing a Computer
Architecture via HLS)”, International Journal of Reconfigurable Computing, Hindawi,
2019. High level synthesis (HSL) designs and algorithms, IPs integrations, and
FPGA implementations.:

Peer reviewed conference papers
1. R. Giorgi, M. Procaccini, F. Khalili, “AXIOM: A scalable, efficient and reconfig-

urable embedded platform”,Design, Automation & Test in Europe Conference & Ex-
hibition (DATE), pages:480–485, 2019. FPGA implementation of the DF-Threads
execution engine.

2. R. Giorgi, M. Procaccini, F. Khalili, “A design space exploration tool set for fu-
ture 1k-core high-performance computers”, Proceedings of the Rapid Simulation and
Performance Evaluation: Methods and Tools, pages:1–6, 2019. Validation outcomes
of the simulator against the equivalent FPGA-based design.

3. R. Giorgi, M. Procaccini, F. Khalili, “Analyzing the impact of operating system
activity of different linux distributions in a distributed environment”, 2019 27th
Euromicro International Conference on Parallel, Distributed andNetwork-Based Process-
ing (PDP), pages:422–429, 2019. Simulator discussions and feature comparison.

4. R. Giorgi, M. Procaccini, F. Khalili, “Energy efficiency exploration on the zynq ul-
trascale+”, 2018 30th International Conference on Microelectronics (ICM), pages:48–

85

86 APPENDIX A. PUBLICATIONS

54, 2018. Demonstration of possible DF-Thread architecture on a cluster of
Zynq Ultrascale+, power consumption measurements.

Workshops and Summer schools
1. A. Sahebi, F. Khalili, G. Mariotti, M. Procaccini, and R. Giorgi, “Gluon-B: a Mod-

ular Board for FPGA Clusters”, 5th Italian Workshop on Embedded Systems- IWES,
presentation, 2021. Programmable Logic.

2. F. Khalili, R. Giorgi, “A Dynamic Load Balancer for a Cluster of FPGA SoCs”,
HiPEAC Summer School - ACACES, pages:23–26, 2020. Proposing, design, and
implementation.

3. F. Khalili, and R. Giorgi, “A DF-Threads Scheduler Co-Processor for a Cluster of
FPGASoCs”,HiPEAC, Student Poster Session, 2019. design and implementation
of the load balancing unit.

4. F. Khalili, R. Giorgi, “A Soft-IP for Performance Measuring of the Zynq Ultra-
scale+ CPU/FPGA interface”,HiPEAC Summer School - ACACES, pages:5–8, 2019.
Proposing, design, and implementation.

5. F. Khalili, M. Procaccini, R. Giorgi, “Reconfigurable logic interface architecture
for cpu-fpga accelerators”, HiPEAC Summer School - ACACES, pages:13–16, 2018.
Proposing, design and implementation.

6. M. Procaccini, F. Khalili, R. Giorgi, “An FPGA-Based Scalable Hardware Sched-
uler ForData-FlowModels”,HiPEACSummer School - ACACES, pages:12–15, 2018.
FPGA Prototyping.

7. M. Procaccini, F. Khalili, R. Giorgi, “An FPGA-based Scalable Hardware Sched-
uler for Data-FlowModels”, 3rd Italian Workshop on Embedded Systems- IWES, pre-
sentation, 2018. Systematic design.

Appendix B

Notation and Acronyms

AI Artificial Intelligence GM Global Memory

API Application Programming Interface GPP General Purpose Processor

ASIC Application Specific Integrated Circuit GPU Graphic Processing Unit

AXIOM Agile eXtensible Input Output Module HDFM Hughes Data Flow Multiprocessor

BMM Matrix Multiplication HDL Hardware Description Language

CPS Cyber-Physical System HLS High Level Synthesis

CPU Central Processing Unit HPC High Performance Computing

DDDP Distributed Data-Driven Processor HPCP High-Performance Coherent Port

DDM1 Data Driven Machine1 HPM High-Performance Master

DDR Double Data Rate ID Irvine Dataflow langugage

DFC DF-Threads Co-processor ILA Integrated Logic Analyzer

DFG Data-Flow Graph ILP Instruction Level Parallelism

DFL Data flow Language IP Instruction Pointer

DFRQ DF-Threads Ready Queue IPs Intellectual Properties

DF-Threads Data-Flow Threads LAU Language Assignation Unique

DLP Data Level Parallelism LBU Load Balancer Unit

DMA Direct Memory Access LUT Look Up Table

DSE Design Space Exploration MDFA McGill Dataflow Architecture

DSM Distributed Shared Memory MPI Message Passing Interface

DSP Digital Signal Processing MPSoC Multi-Processor System on Chip

DTS Distributed Thread Scheduler NIC Network Interface Card

ETS Explicit Token Store NOC Network on Chip

FF Flip-flop OS Operating System

FIFO First-In, First-Out OWM Owner Writable Memory

FP Frame Pointer PCI Peripheral Component Interconnect

FPGA Field Programmable Gate Array PE Processing Element

FSM Finite State Machine PGAS Partitioned Global Address Space

87

88 APPENDIX B. NOTATION AND ACRONYMS

PL Programmable Logic SISAL
Streams and Iterations in a Single

Assignment

PS Processing System SVS Smart Video Surveillance

PU Processor Unit TCAM Ternary Content-Addressable Memories

RAM Random Access Memory TDDA Tagged-Token Dataflow Architecture

RDMA Remote Direct Memory Access TDDP TI Distributed Data Processor

RFIB Recursive Fibonacci TDFL Textual Data-Flow Language

RTL Register Transfer Level TLP Thread Level Parallelism

SBC Single Board Computer VAL Value-oriented Algorithmic Language

SBDT Software Briged Data Transfer VC Virtual Circuits

SHL Smart Home Living VLSI Very Large Scale Integration

Appendix C

Vivado Design Blocks

The building blocks of the architectural support for the DF-Threads execution model,
including theDFC,NIC, and the PS is shown in Figure C.1 implemented on theAXIOM
board’s MPSoC FPGA (Zynq Ultrascale+). The sub-modules assembling the DFC is
depicted in Figure C.2.

89

90 APPENDIX C. VIVADO DESIGN BLOCKS

P
S

D
FC

N
IC

Figure C.1: The main building blocks of the MPSoC FPGA design on the Zynq Ultrascale+
supporting the DF-Threads executionmodel: DF-Threads Co-Processor (DFC), Processing Sys-
tem (PS), ad Network Interface Card (NIC) [174].

91

N
IC

 C
o

n
tr

o
lle

r

D
M

A

M
an

ag
em

en
t

D
FS

LB
U

R
eg

is
te

rs

Figure C.2: DF-Threads Co-Processor (DFC) fully implemented on the PL. DFS: DF-Threads
Scheduler, LBU: Load Balancing Unit.

Bibliography

[1] R. Giorgi and P. Faraboschi. An Introduction to DF-Threads and their Execution Model. In Pro-
ceedings of IEEE International Symposium on Computer Architecture and High Performance Computing
Workshop, pages 60–65, Paris, France, 2014.

[2] R. Giorgi. AXIOM: A 64-bit reconfigurable hardware/software platform for scalable embedded
computing. In Proceedings of IEEEMediterranean Conference on Embedded Computing (MECO), pages
113–116, Bar, Montenegro, 2017.

[3] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Elsevier,
2011.

[4] Hanan Shukur, Subhi Zeebaree, Rizgar Zebari, OmarAhmed, LailanHaji, andDildarAbdulqader.
Cache coherence protocols in distributed systems. Journal of Applied Science and Technology Trends,
1(3):92–97, 2020.

[5] Julie Dumas, Eric Guthmuller, César Fuguet Tortolero, and Frédéric Pétrot. Trace-driven explo-
ration of sharing set management strategies for cache coherence in manycores. In 2017 15th IEEE
International New Circuits and Systems Conference (NEWCAS), pages 77–80. IEEE, 2017.

[6] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum, and Argonne Distinguished
Fellow Emeritus Ewing Lusk. Using MPI: portable parallel programming with the message-passing
interface, volume 1. MIT press, 1999.

[7] ARB OpenMP. Openmp application program interface version 4.0, 2013.

[8] Charles E Leiserson. The cilk++ concurrency platform. The Journal of Supercomputing, 51(3):244–
257, 2010.

[9] Samuel H Fuller and Lynette I Millett. The Future of Computing Performance: Game Over or Next
Level? National Academy Press, 2011.

[10] Wesley M Johnston, JR Paul Hanna, and Richard J Millar. Advances in dataflow programming
languages. ACM computing surveys (CSUR), 36(1):1–34, 2004.

[11] 48 years of microprocessor trend data. https://github.com/karlrupp/
microprocessor-trend-data. Accessed: 2020-12-20.

[12] J. Dennis and DavidMisunas. A preliminary architecture for a basic data flow processor. In ISCA,
1974.

[13] Jack B Dennis. Data flow supercomputers. IEEE computer, 13(11):48–56, 1980.

93

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data

94 BIBLIOGRAPHY

[14] Krishna M. Kavi, Bill P. Buckles, and U. Narayan Bhat. A formal definition of data flow graph
models. IEEE Transaction on Computers, pages 940–948, 1986.

[15] A. Mondelli, N. Ho, A. Scionti, M. Solinas, A. Portero, and R. Giorgi. Dataflow Support in x86-64
Multicore Architectures through Small Hardware Extensions. In Proceedings of IEEE Euromicro
Conference on Digital System Design (DSD), pages 526–529, Madeira, Portugal, 2015.

[16] Walid A. Najjar, Edward A. Lee, and Guang R. Gao. Advances in the dataflow computational
model. Parallel Comput., 25(13-14):1907–1929, December 1999.

[17] Leandro AJ Marzulo, Tiago AO Alves, Felipe MG França, and Vítor Santos Costa. Couillard:
Parallel programming via coarse-grained Data-Flow compilation. Parallel Computing, 40(10):661–
680, 2014.

[18] Cor Meenderinck and Ben Juurlink. Nexus: Hardware support for task-based programming.
In Proceedings of IEEE Euromicro Conference on Digital System Design (DSD), pages 442–445, Oulu,
Finland, 2011.

[19] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. Maps: Mapping concurrent dataflow
applications to heterogeneous mpsocs. IEEE Transactions on Industrial Informatics, 9(1):527–545,
2013.

[20] Richard Townsend, Martha A Kim, and Stephen A Edwards. From functional programs to
pipelined dataflow circuits. In Proceedings of the ACM International Conference on Compiler Con-
struction, pages 76–86, Austin TX, USA, 2017.

[21] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: a functional data-parallel IR for
high-performance GPU code generation. In Proceedings of IEEE International Symposium on Code
Generation and Optimization (CGO), pages 74–85, Austin TX, USA, 2017.

[22] Sebastian Ertel, Justus Adam, and Jeronimo Castrillon. Supporting Fine-grained Dataflow Paral-
lelism in Big Data Systems. In Proceedings of the ACM InternationalWorkshop on ProgrammingModels
and Applications for Multicores and Manycores, pages 41–50, Vienna, Austria, 2018.

[23] L. Verdoscia and R. Giorgi. A Data-Flow Soft-Core Processor for Accelerating Scientific Calcula-
tion on FPGAs. Mathematical Problems in Engineering, 2016(1):1–21, 2016.

[24] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar Fey. Hpx: A
task based programming model in a global address space. In Proceedings of the ACM International
Conference on Partitioned Global Address Space Programming Models, page 6, Eugene, USA, 2014.

[25] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R Gao. Using a codelet
program execution model for exascale machines: position paper. In Proceedings of the ACM Inter-
national Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era, pages 64–69, San
Jose California, USA, 2011.

[26] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Tar-
geting distributed systems in fastflow. In European Conference on Parallel Processing, pages 47–56.
Springer, 2012.

[27] GeorgeMatheou and Paraskevas Evripidou. Data-driven concurrency for high performance com-
puting. ACM Trans. Archit. Code Optim., 14(4):53:1–53:26, December 2017.

BIBLIOGRAPHY 95

[28] David E Culler and Gregory M Papadopoulos. The explicit token store. Journal of Parallel and
Distributed Computing, 10(4):289–308, 1990.

[29] John R Gurd. The manchester dataflowmachine. Computer Physics Communications, 37(1-3):49–62,
1985.

[30] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez, and Y. Etsion. Hybrid dataflow/von-
neumann architectures. IEEE Trans. on Parallel and Distrib. Systems, 25(6):1489–1509, June 2014.

[31] R. Giorgi, Z. Popovic, and N. Puzovic. DTA-C: A Decoupled multi-Threaded Architecture for
CMP Systems. In Proceedings of IEEE International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 263–270, Gramado, Brasil, 2007.

[32] Theodoropoulos et al. The AXIOM platform for next-generation cyber physical systems. ELSE-
VIER Microprocessors and Microsystems, pages 540–555, 2017.

[33] R. Giorgi. Scalable Embedded Systems: Towards the Convergence of High-Performance and Em-
bedded Computing. In Proceedings of International Conference on Embedded and Ubiquitous Comput-
ing (EUC), Porto, Portugal, 2015.

[34] C. Alvarez et al. The AXIOM software layers. In Proceedings of IEEE Euromicro Conference of Digital
System Design (DSD), pages 117–124, Madeira, Portugal, 2015.

[35] C. Alvarez et al. The AXIOM Software Layers. ELSEVIER Microprocessors and Microsystems, 47,
Part B:262–277, 2016.

[36] R. Giorgi, N. Bettin, P. Gai, X. Martorell, and A. Rizzo. AXIOM: A Flexible Platform for the Smart
Home, pages 57–74. Springer, 2016.

[37] D. Theodoropoulos et al. The AXIOM project (Agile, eXtensible, fast I/OModule). In Proceedings
of International Conference on Embedded Computer Systems: Architecture, MOdeling and Simulation
(SAMOS), pages 262–269, Samos, Greece, 2015.

[38] Antonio Filgueras, Miquel Vidal, Marc Mateu, Daniel Jiménez-González, Carlos Alvarez, Xavier
Martorell, Eduard Ayguadé, Dimitrios Theodoropoulos, Dionisios Pnevmatikatos, Paolo Gai,
et al. The AXIOM project: Iot on heterogeneous embedded platforms. IEEE Design & Test, 2019.

[39] R. Giorgi, F. Khalili, and M. Procaccini. AXIOM: A Scalable, Efficient and Reconfigurable Em-
bedded Platform. In Proceedings of IEEE Design, Automation and Test in Europe (DATE), pages 1–6,
Florence, Italy, 2019.

[40] R. Giorgi, F. Khalili, and M. Procaccini. A Design Space Exploration Tool Set for Future 1K-core
High-Performance Computers. In Proceedings of ACM Rapid Simulation and Performance Evaluation:
Methods and Tools (RAPIDO), pages 1–6, Manchester, UK, 2019.

[41] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, MatteoMonchiero, and Daniel Ortega. Cotson:
infrastructure for full system simulation. ACM SIGOPS Operating Systems Review, 43(1):52–61,
2009.

[42] AsimYarKhan and JackDongarra. Lightweight superscalar task execution in distributedmemory.
2014.

96 BIBLIOGRAPHY

[43] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, pages 483–485,
1967.

[44] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31(5):532–533, 1988.

[45] Peter Kogge. Next-generation supercomputers. IEEE Spectrum, February, 2011.

[46] Pieter Bellens, Josep M Perez, Rosa M Badia, and Jesus Labarta. Cellss: a programming model for
the cell be architecture. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing, pages
86–es, 2006.

[47] Josep M Perez, Rosa M Badia, and Jesus Labarta. A dependency-aware task-based programming
environment for multi-core architectures. In 2008 IEEE International Conference on Cluster Comput-
ing, pages 142–151. IEEE, 2008.

[48] Martin C Rinard and Monica S Lam. The design, implementation, and evaluation of jade. ACM
Transactions on Programming Languages and Systems (TOPLAS), 20(3):483–545, 1998.

[49] Mihai Budiu, PedroVArtigas, and SethCopenGoldstein. Dataflow: A complement to superscalar.
In IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.,
pages 177–186. IEEE, 2005.

[50] R. Giorgi andA. Scionti. A scalable thread scheduling co-processor based on data-flow principles.
ELSEVIER Future Generation Computer Systems, 53:100–108, 2015.

[51] R. Giorgi, R. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi, B. Fechner, G. Gao, A. Garbade,
R. Gayatri, S. Girbal, D. Goodman, B. Khan, S. Koliaï, J. Landwehr, N. Lê Minh, F. Li, M. Lujàn,
A. Mendelson, L. Morin, N. Navarro, T. Patejko, A. Pop, P. Trancoso, T. Ungerer, I. Watson, S. Weis,
S. Zuckerman, and M. Valero. TERAFLUX: Harnessing dataflow in next generation teradevices.
ELSEVIER Microprocessors and Microsystems, 38(8, Part B):976–990, 2014.

[52] N.Ho et al. Simulating aMulti-core x86-64ArchitecturewithHardware ISAExtension Supporting
a Data-Flow ExecutionModel. In Proceeding of IEEE International Conference on Artificial Intelligence,
Modelling and Simulation (AIMS), pages 264–269, Madrid, Spain, 2014.

[53] Wenao Xie, Chun Zhang, Yuanhang Zhang, Chuanbo Hu, Hanjun Jiang, and Zhihua Wang. An
energy-efficient fpga-based embedded system for cnn application. In 2018 IEEE International Con-
ference on Electron Devices and Solid State Circuits (EDSSC), pages 1–2. IEEE, 2018.

[54] Francois Abel, Jagath Weerasinghe, Christoph Hagleitner, Beat Weiss, and Stephan Paredes. An
fpga platform for hyperscalers. In 2017 IEEE 25th Annual Symposium on High-Performance Intercon-
nects (HOTI), pages 29–32. IEEE, 2017.

[55] K. Stavrou et al. Programming abstractions and toolchain for dataflow multithreading architec-
tures. In Proceedings of IEEE International Symposium on Parallel and Distributed Computing (ISPDC),
pages 107–114, Lisbon, Portugal, 2009.

[56] L. Verdoscia, R. Vaccaro, and R. Giorgi. A Clockless Computing System based on the Static
Dataflow Paradigm. In Proceedings of IEEE International Workshop on Data-Flow Execution Models
for Extreme Scale Computing (DFM), pages 30–37, Edmonton, Canada, 2014.

BIBLIOGRAPHY 97

[57] Roberto Giorgi, Farnam Khalili, and Marco Procaccini. Translating Timing into an Architecture:
The Synergy of COTSon and HLS (Domain Expertise—Designing a Computer Architecture via
HLS). International Journal of Reconfigurable Computing, 2019.

[58] R. Giorgi, F. Khalili, and M. Procaccini. Energy efficiency exploration on the zynq ultrascale+. In
Proceedings of IEEE International Conference on Microelectronics (ICM), pages 52–55, Sousse, Tunisia,
2018.

[59] Jack B Dennis. First version of a data flow procedure language. In Programming Symposium, pages
362–376. Springer, 1974.

[60] Jack B Dennis and David P Misunas. A preliminary architecture for a basic data-flow processor.
In Proceedings of the 2nd annual symposium on Computer architecture, pages 126–132, 1974.

[61] KAHN Gilles. The semantics of a simple language for parallel programming. Information process-
ing, 74:471–475, 1974.

[62] Alan L Davis and Robert M Keller. Data flow program graphs. 1982.

[63] SS Thakkar. Selected reprints on dataflow and reduction architectures. 1987.

[64] Christoph Boden, Andrea Spina, Tilmann Rabl, and Volker Markl. Benchmarking data flow sys-
tems for scalable machine learning. In Proceedings of the 4th ACM SIGMODWorkshop on Algorithms
and Systems for MapReduce and Beyond, pages 1–10, 2017.

[65] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankaralingam. Stream-
dataflow acceleration. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 416–429. IEEE, 2017.

[66] AlejandroDuran, EduardAyguadé, RosaMBadia, Jesús Labarta, LuisMartinell, XavierMartorell,
and Judit Planas. Ompss: a proposal for programming heterogeneous multi-core architectures.
Parallel processing letters, 21(02):173–193, 2011.

[67] Christopher Lauderdale,MarkGlines, Jihui Zhao, Alex Spiotta, andRishi Khan. Swarm: Aunified
framework for parallel-for, task dataflow, and distributed graph traversal. ET International Inc.,
Newark, USA, 2013.

[68] Samer Arandi, George Michael, Paraskevas Evripidou, and Costas Kyriacou. Combining compile
and run-time dependency resolution in data-driven multithreading. In 2011 First Workshop on
Data-Flow Execution Models for Extreme Scale Computing, pages 45–52. IEEE, 2011.

[69] John R. Gurd, Chris C. Kirkham, and Ian Watson. The manchester prototype dataflow computer.
Communications of the ACM, 28(1):34–52, 1985.

[70] Gregory M Papadopoulos and David E Culler. Monsoon: an explicit token-store architecture.
ACM SIGARCH Computer Architecture News, 18(2SI):82–91, 1990.

[71] V Gerald Grafe and Jamie E Hoch. The epsilon-2 multiprocessor system. Journal of Parallel and
Distributed Computing, 10(4):309–318, 1990.

[72] Davor Capalija and Tarek S Abdelrahman. Microarchitecture of a coarse-grain out-of-order su-
perscalar processor. IEEE Transactions on Parallel and Distributed Systems, 24(2):392–405, 2012.

98 BIBLIOGRAPHY

[73] Chao Wang, Xi Li, Junneng Zhang, Peng Chen, Yunji Chen, Xuehai Zhou, and Ray CC Cheung.
Architecture support for task out-of-order execution in mpsocs. IEEE Transactions on Computers,
64(5):1296–1310, 2014.

[74] Abhishek Kumar Jain, Xiangwei Li, Suhaib A Fahmy, and Douglas L Maskell. Adapting the dyser
architecture with dsp blocks as an overlay for the xilinx zynq. ACM SIGARCH Computer Architec-
ture News, 43(4):28–33, 2016.

[75] Oliver Pell, Oskar Mencer, Kuen Hung Tsoi, and Wayne Luk. Maximum performance computing
with dataflow engines. InHigh-performance computing using FPGAs, pages 747–774. Springer, 2013.

[76] Daniel Orozco, Elkin Garcia, Robert Pavel, Jaime Arteaga, and Guang Gao. The design and imple-
mentation of tideflow: Adataflow-inspired executionmodel for parallel loops and task pipelining.
International Journal of Parallel Programming, 44(2):278–307, 2016.

[77] Samer Arandi, George Matheou, Costas Kyriacou, and Paraskevas Evripidou. Data-driven thread
execution on heterogeneous processors. International Journal of Parallel Programming, 46(2):198–224,
Apr 2018.

[78] George Matheou and Paraskevas Evripidou. Architectural support for data-driven execution.
ACM Trans. Archit. Code Optim., 11(4):52:1–52:25, January 2015.

[79] R. Giorgi. Transactionalmemory on a dataflow architecture for accelerating haskell.WSEASTrans.
Computers, 14:546–558, 2015.

[80] M. Solinas, M. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi, B. Fechner, G. Gao, A. Gar-
bade, S. Girbal, D. Goodman, B. Khan, S. Koliaï, F. Li, M. Lujàn, A. Mendelson, L. Morin,
N. Navarro, A. Pop, P. Trancoso, T. Ungerer, M. Valero, S. Weis, S. Zuckerman, and R. Giorgi.
The TERAFLUX project: Exploiting the dataflow paradigm in next generation teradevices. In Pro-
ceedings of IEEE Euromicro Conference on Digital System Design (DSD), pages 272–279, Santander,
Spain, 2013.

[81] A. Portero, Z. Yu, and R. Giorgi. TERAFLUX: Exploiting Tera-device Computing Challenges. EL-
SEVIER, 7:146–147, 2011.

[82] R. Giorgi. TERAFLUX: Exploiting Dataflow Parallelism in Teradevices. In Proceedings of ACM
Computing Frontiers, pages 303–304, Cagliari, Italy, 2012.

[83] N. Ho et al. Enhancing an x86_64 Multi-Core Architecture with Data-Flow Execution Support. In
Proceedings of ACM Computing Frontiers, pages 1–2, Ischia, Italy, 2015.

[84] R. Giorgi. Accelerating haskell on a dataflow architecture: a case study including transactional
memory. In Proc. Int.l Conf. on Computer Eng. and Applications, pages 91–100, Dubai, UAE, Feb.
2015.

[85] S.Weis, A. Garbade, J. Wolf, B. Fechner, A.Mendelson, R. Giorgi, and T. Ungerer. A fault detection
and recovery architecture for a teradevice dataflow system. In Proc. IEEE Int.l Workshop on Data-
Flow Execution Models for Extreme Scale Computing (DFM), pages 38–44, Oct. 2011.

[86] S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi, and T. Ungerer. Architectural support
for fault tolerance in a teradevice dataflow system. Springer Int.l Journal of Parallel Programming,
44(2):208–232, Apr 2016.

BIBLIOGRAPHY 99

[87] Ali R Hurson and Krishna M Kavi. Dataflow computers: Their history and future. Wiley Encyclo-
pedia of Computer Science and Engineering, 2007.

[88] Ben Lee and Ali R Hurson. Dataflow architectures and multithreading. Computer, 27(8):27–39,
1994.

[89] Rex Vedder and Dennis Finn. The Hughes data flow multiprocessor: Architecture for efficient
signal and data processing. ACM SIGARCH Computer Architecture News, 13(3):324–332, 1985.

[90] Jack BDennis. The varieties of data flow computers. InAdvanced computer architecture, pages 51–60.
1986.

[91] Alan LDavis. The architecture and systemmethod ofDDM1: A recursively structured data driven
machine. In Proceedings of the Symposium on Computer Architecture, pages 210–215, Palo Alto, CA,
USA, 1978.

[92] A Plas, D Comte, O Gelly, and JC Syre. LAU system architecture: A parallel data driven processor
based on single assignment. InProceedings of the International Conference on Parallel Processing, pages
293–302, Enslow,Philip H., 1976.

[93] Merrill Cornish. The ti data flow architectures- the power of concurrency for avionics. Challenge
of the’80 s, pages 19–25, 1979.

[94] Noriyoshi Ito, Masatoshi Sato, Eiji Kuno, and Kazuaki Rokusawa. The architecture and prelim-
inary evaluation results of the experimental parallel inference machine PIM-D. ACM SIGARCH
Computer Architecture News, 14(2):149–156, 1986.

[95] Vinod Kathail. A multiple processor data flowmachine that supports generalized procedures. In
Proceedings of the 8th annual symposium on Computer Architecture, pages 291–302, 1981.

[96] Masasuke Kishi, Hiroshi Yasuhara, and Yasusuke Kawamura. Dddp-a distributed data driven
processor. In Proceedings of the 10th annual international symposium on Computer architecture, pages
236–242, 1983.

[97] Toshio Shimada, Kei Hiraki, Kenji Nishida, and Satoshi Sekiguchi. Evaluation of a prototype data
flow processor of the sigma-1 for scientific computations. ACM SIGARCH Computer Architecture
News, 14(2):226–234, 1986.

[98] David E Culler and Gregory M Papadopoulos. The explicit token store. Journal of Parallel and
Distributed Computing, 10(4):289–308, 1990.

[99] J-L Gaudiot and Y-H Wei. Token relabeling in a tagged token data-flow architecture. IEEE Trans-
actions on Computers, 38(9):1225–1239, 1989.

[100] William B Ackerman. A structure processing facility for data flow computers. In Proc. of, pages
166–172, 1978.

[101] Herbert HJ Hum, Olivier Maquelin, Kevin B Theobald, Xinmin Tian, Xinan Tang, Guang R Gao,
Phil Cupryk, Nasser Elmasri, Laurie J Hendren, Alberto Jimenez, et al. A design study of the earth
multiprocessor. In PACT, volume 95, pages 59–68. Citeseer, 1995.

[102] Arthur H Veen. Dataflow machine architecture. ACM Computing Surveys (CSUR), 18(4):365–396,
1986.

100 BIBLIOGRAPHY

[103] K. M. Kavi, R. Giorgi, and J. Arul. Scheduled dataflow: Execution paradigm, architecture, and
performance evaluation. IEEE Trans. Computers, 50(8):834–846, Aug. 2001.

[104] Vason P Srini. An architectural comparison of dataflow systems. Data Flow Computing: Theory and
Practice, page 101, 1992.

[105] Gregory M Papadopoulos and Kenneth R Traub. Multithreading: A revisionist view of dataflow
architectures. In Proceedings of the 18th annual international symposium on Computer architecture,
pages 342–351, 1991.

[106] R. Giorgi. Scalable Embedded Computing through Reconfigurable Hardware: comparing DF-
Threads, Cilk, OpenMPI and Jump. ELSEVIER Microprocessors and Microsystems, 63, 2018.

[107] Yale N Patt, Wen-mei Hwu, and Michael Shebanow. HPS, a newmicroarchitecture: rationale and
introduction. ACM SIGMICRO Newsletter, 16(4):103–108, 1985.

[108] Jurij Silc, Borut Robic, and Theo Ungerer. Asynchrony in parallel computing: From dataflow to
multithreading. Journal of Parallel and Distributed Computing Practices, 1(1):3–30, 1998.

[109] Jurij Silc, Borut Robic, and Theo Ungerer. Processor architecture: from dataflow to superscalar and
beyond. Springer Science & Business Media, 2012.

[110] Robert A Iannucci. Toward a dataflow/von neumann hybrid architecture. ACM SIGARCH Com-
puter Architecture News, 16(2):131–140, 1988.

[111] Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, Yoshinori Yamaguchi, and Yasuhito Koumura.
Thread-based programming for the em-4 hybrid dataflow machine. ACM SIGARCH Computer
Architecture News, 20(2):146–155, 1992.

[112] R. Giorgi. Memory decoupled architectures and related issues guest editor’s introduction. IEEE
TCCA Newsletter, pages 2–4, Jan. 2001.

[113] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk Huh,
Doug Burger, Stephen W Keckler, and Charles R Moore. Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture. In Proceedings of International Symposium on Computer Architec-
ture (ISCA), pages 422–433, San Diego CA, USA, 2003. IEEE.

[114] Mahim Mishra, Timothy J Callahan, Tiberiu Chelcea, Girish Venkataramani, Seth C Goldstein,
and Mihai Budiu. Tartan: evaluating spatial computation for whole program execution. ACM
SIGARCH Computer Architecture News, 34(5):163–174, 2006.

[115] VenkatramanGovindaraju, Chen-HanHo, andKarthikeyan Sankaralingam. Dynamically special-
ized datapaths for energy efficient computing. In Proceedings of International Symposium on High
Performance Computer Architecture (HPCA), pages 503–514, San Antoni, USA, 2011. IEEE.

[116] Rishiyur S Nikhil and Gregory M Papadopoulos. T: A multithreaded massively parallel architec-
ture. ACM SIGARCH Computer Architecture News, 20(2):156–167, 1992.

[117] David E. Culler, Seth Copen Goldstein, Klaus E. Schauser, and Thorsten Voneicken. TAM-a com-
piler controlled threaded abstract machine. Journal of Parallel and Distributed Computing, 18(3):347–
370, 1993.

BIBLIOGRAPHY 101

[118] Justin Strohschneider and Klaus Waldschmidt. Adarc: A fine grain dataflow architecture with
associative communication network. In Proceedings of Euromicro Conference. System Architecture and
Integration, pages 445–450, Liverpool,UK, 1994. IEEE.

[119] Lucas Roh and Walid A Najjar. Design of storage hierarchy in multithreaded architectures. In
Proceedings of IEEE International Symposium on Microarchitecture, pages 271–278, Michigan, USA,
1995. IEEE.

[120] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Data-driven multithreading using
conventional microprocessors. IEEE Transactions on Parallel and Distributed Systems, 17(10):1176–
1188, 2006.

[121] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: Architectural support for
fine-grained parallelism on chip multiprocessors. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, pages 162–173, New York, NY, USA, 2007. ACM.

[122] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M Badia, Eduard Ayguade,
Jesus Labarta, and Mateo Valero. Task superscalar: An out-of-order task pipeline. In Proceedings
of IEEE International Symposium on Microarchitecture, pages 89–100, Atlanta,USA, 2010. IEEE.

[123] Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language with iteration.
Communications of the ACM, 20(7):519–526, 1977.

[124] Simon F Wail and David Abramson. Can dataflow machines be programmed with an imperative
language. Advanced Topics in Dataflow Computing and Multithreading, pages 229–265, 1995.

[125] Kung-SongWeng. Stream-oriented computation in recursive data flow schemas. Massachusetts Institute
of Technology. Project MAC, 1975.

[126] James R McGraw. The val language: Description and analysis. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(1):44–82, 1982.

[127] Rishiyur S Nikhil, PR Fenstermacher, JE Hicks, and RP Johnson. Id world reference manual. CSG
Memo, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA (April
1987), 1987.

[128] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz, and Jan Van den Bussche.
Dfl: A dataflow language based on petri nets and nested relational calculus. Information Systems,
33(3):261–284, 2008.

[129] James L Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252, 1977.

[130] MarkARoth, Herry FKorth, andAbraham Silberschatz. Extended algebra and calculus for nested
relational databases. ACM Transactions on Database Systems (TODS), 13(4):389–417, 1988.

[131] Jean-Luc Gaudiot, Tom DeBoni, John Feo, Wim Böhm, Walid Najjar, and Patrick Miller. The sisal
project: real world functional programming. In Compiler optimizations for scalable parallel systems,
pages 45–72. Springer, 2001.

[132] D Comte, G Durrieu, O Gelly, A Plas, and JC Syre. Parallelism, control and synchronization
expression in a single assignment language. ACM SIGPLAN Notices, 13(1):25–33, 1978.

102 BIBLIOGRAPHY

[133] John R Gurd, John RW Glauert, and Chris C Kirkham. Generation of dataflow graphical object
code for the lapse programming language. In International Conference on Parallel Processing, pages
155–168. Springer, 1981.

[134] David Patterson. 50 years of computer architecture: From the mainframe cpu to the domain-
specific tpu and the open risc-v instruction set. In Solid-State Circuits Conference-(ISSCC), 2018
IEEE International, pages 27–31. IEEE, 2018.

[135] Shekhar Borkar andAndrewAChien. The future of microprocessors. Communications of the ACM,
54(5):67–77, 2011.

[136] R. Giorgi. Exploring Future Many-Core Architectures: The TERAFLUX Evaluation Framework.
In Advances in Computers, Advances in Computers, pages 33–72. Elsevier, 2017.

[137] Debootstrap website. https://wiki.debian.org/Debootstrap.

[138] Sparsh Mittal and Jeffrey S Vetter. A survey of cpu-gpu heterogeneous computing techniques.
ACM Computing Surveys (CSUR), 47(4):1–35, 2015.

[139] Federico Angiolini, Jianjiang Ceng, Rainer Leupers, Federico Ferrari, Cesare Ferri, and Luca
Benini. An integrated open framework for heterogeneous mpsoc design space exploration. In
Proceedings of the Design Automation & Test in Europe Conference, volume 1, pages 1–6. IEEE, 2006.

[140] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and Parthasarathy Ranganathan. Heteroge-
neous chip multiprocessors. Computer, 38(11):32–38, 2005.

[141] Dimitris Theodoropoulos, Somnath Mazumdar, Eduard Ayguade, Nicola Bettin, Javier Bueno,
Sara Ermini, Antonio Filgueras, Daniel Jiménez-González, Carlos Álvarez Martínez, Xavier Mar-
torell, et al. The AXIOM platform for next-generation cyber physical systems. Microprocessors and
Microsystems, 52:540–555, 2017.

[142] RobDimond, Sébastien Racaniere, andOliver Pell. Accelerating large-scale hpc applications using
fpgas. In 2011 IEEE 20th Symposium on Computer Arithmetic, pages 191–192. IEEE, 2011.

[143] S. Wong, L. Carro, M. Rutzig, D. MottaMatos, R. Giorgi, N. Puzovic, S. Kaxiras, M. Cintra, G. Des-
oli, P. Gai, S. Mckee, and A. Zaks. ERA–Embedded Reconfigurable Architectures, pages 239–259.
Springer New York, 2011.

[144] S. Wong, A. Brandon, F. Anjam, R. Seedorf, R. Giorgi, Z. Yu, N. Puzovic, S. A. McKee, Magnus
Sjaelander, and Georgios Keramidas. Early Results from ERA – Embedded Reconfigurable Ar-
chitectures. In Proceedings of IEEE International Conference on Industrial Informatics (INDIN), pages
816–822, Lisbon, Portugal, 2011.

[145] R. Giorgi, Z. Popovic, and N. Puzovic. Implementing Fine/Medium Grained TLP Support in a
Many-Core Architecture. In Proceedings of International Workshop on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pages 78–87, Samos, Greece, 2009. Springer.

[146] R. Giorgi, F. Khalili, andM. Procaccini. Analyzing the impact of operating system activity of differ-
ent linux distributions in a distributed environment. In Proceedings of IEEE Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, pages 422–429, Pavia, Italy, 2019.

BIBLIOGRAPHY 103

[147] R. Giorgi. Exploring Dataflow-based Thread Level Parallelism in Cyber-physical Systems. In
Proceedings of ACM International Conference on Computing Frontiers, pages 295–300, Como, Italy,
2016.

[148] Jianwei Chen, Murali Annavaram, and Michel Dubois. Slacksim: a platform for parallel simula-
tions of cmps on cmps. ACM SIGARCH Computer Architecture News, 37(2):20–29, 2009.

[149] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for computer system
modeling. Computer, 35(2):59–67, 2002.

[150] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R Marty, Min Xu, Alaa R
Alameldeen, Kevin E Moore, Mark D Hill, and David A Wood. Multifacet’s general execution-
driven multiprocessor simulator (gems) toolset. ACM SIGARCH Computer Architecture News,
33(4):92–99, 2005.

[151] Hui Zeng, Matt Yourst, Kanad Ghose, and Dmitry Ponomarev. Mptlsim: a simulator for x86
multicore processors. In 2009 46th ACM/IEEE Design Automation Conference, pages 226–231. IEEE,
2009.

[152] Emanuele Del Sozzo. On How to Effectively Target FPGAs from domain specific tools. PhD Thesis
published by the Politecnico diMilano, dipartimento di elettronica, informazione e bioingegneria,
2019.

[153] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H Ander-
son, Stephen Brown, and Tomasz Czajkowski. Legup: high-level synthesis for fpga-based pro-
cessor/accelerator systems. In Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, pages 33–36, 2011.

[154] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &
transformation. In International Symposium on Code Generation and Optimization, 2004. CGO 2004.,
pages 75–86. IEEE, 2004.

[155] Christian Pilato and Fabrizio Ferrandi. Bambu: Amodular framework for the high level synthesis
of memory-intensive applications. In 2013 23rd International Conference on Field programmable Logic
and Applications, pages 1–4. IEEE, 2013.

[156] Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric Senn, and Eric Martin.
Gaut: A high-level synthesis tool for dsp applications. In High-Level Synthesis, pages 147–169.
Springer, 2008.

[157] Yana Yankova, Georgi Kuzmanov, Koen Bertels, Georgi Gaydadjiev, Yi Lu, and Stamatis Vassil-
iadis. Dwarv: Delftworkbench automated reconfigurable vhdl generator. In 2007 International
Conference on Field Programmable Logic and Applications, pages 697–701. IEEE, 2007.

[158] Ace cosy. http://www.ace.nl. Accessed: 2019-09-30.

[159] Cadence stratus high-level synthesis. https://www.cadence.com/content/
cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/
stratus-high-level-synthesis.html. Accessed: 2020-12-20.

[160] Intel high level synthesis compiler. https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/hls-compiler.html. Accessed: 2020-12-20.

http://www.ace.nl
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

104 BIBLIOGRAPHY

[161] Sdaccel: Enabling hardware-accelerated software. https://www.xilinx.com/products/
design-tools/software-zone/sdaccel.html. Accessed: 2020-12-20.

[162] Nitin Chugh, Vinay Vasista, Suresh Purini, andUday Bondhugula. A dsl compiler for accelerating
image processing pipelines on fpgas. In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, pages 327–338, 2016.

[163] Atieh Lotfi and Rajesh K Gupta. Rehls: resource-aware program transformation workflow for
high-level synthesis. In 2017 IEEE International Conference on Computer Design (ICCD), pages 533–
536. IEEE, 2017.

[164] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen: Towards real-time hypervi-
sor scheduling in xen. In 2011 Proceedings of the Ninth ACM International Conference on Embedded
Software (EMSOFT), pages 39–48. IEEE, 2011.

[165] Antoni Portero, Alberto Scionti, ZhibinYu, Paolo Faraboschi, CarolineConcatto, Luigi Carro, Arne
Garbade, Sebastian Weis, Theo Ungerer, and Roberto Giorgi. Simulating the future kilo-x86-64
core processors and their infrastructure. In Proceedings of the 45th Annual Simulation Symposium,
pages 1–7, 2012.

[166] Jason EMiller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan Beckmann, Christo-
pher Celio, Jonathan Eastep, and Anant Agarwal. Graphite: A distributed parallel simulator for
multicores. In HPCA-16 2010 The Sixteenth International Symposium on High-Performance Computer
Architecture, pages 1–12. IEEE, 2010.

[167] Roberto Giorgi and Gianfranco Mariotti. Webrisc-v: A web-based education-oriented risc-v
pipeline simulation environment. In Proceedings of the Workshop on Computer Architecture Educa-
tion, pages 1–6, 2019.

[168] SkylerWindh, XiaoyinMa, Robert J Halstead, Prerna Budhkar, Zabdiel Luna, OmarHussaini, and
Walid A Najjar. High-level language tools for reconfigurable computing. Proceedings of the IEEE,
103(3):390–408, 2015.

[169] Daniel D Gajski, Nikil D Dutt, Allen CHWu, and Steve YL Lin. High—Level Synthesis: Introduction
to Chip and System Design. Springer Science & Business Media, 2012.

[170] Xilinx Inc. Xilinx UltraScale Architecture.

[171] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. Badia, E. Ayguade, and J. Labarta.
Productive cluster programming with OmpSs. Euro-Par Parallel Processing, pages 555–566, 2011.

[172] L. Dagum and R. Menon. Openmp: An industry standard api for shared-memory programming.
In IEEE International Conference on Computational Science and Engineering, pages 46–55, Jan 1998.

[173] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta. Running OpenMP applications
efficiently on an everything-shared SDSM. In Proceedings of IPDPS, pages 35–42, 2004.

[174] Vasileios Amourgianos Lorentzos. Efficient network interface design for low cost distributed systems.
Master thesis published from the Technical University of Crete, 2017.

[175] Eva Geisberger and Manfred Broy. Living in a networked world: Integrated research agenda Cyber-
Physical Systems (agendaCPS). Herbert Utz Verlag, 2015.

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

BIBLIOGRAPHY 105

[176] Massimo Banzi. Getting Started with Arduino. Make Books - O’Reilly Media, Sebastopol, CA, 2008.

[177] A. Rizzo, G. Burresi, F. Montefoschi, M. Caporali, and R. Giorgi. Making IoT with UDOO. Inter-
action Design and Architecture(s), 1(30):95–112, 2016.

[178] R. Giorgi, S. Mazumdar, S. Viola, P. Gai, S. Garzarella, B. Morelli, D. Pnevmatikatos, D. Theodor-
opoulos, C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-Gonzalez, and X. Martorell.
Modeling multi-board communication in the AXIOM cyber-physical system. Ada User Journal,
37(4):228–235, December 2016.

[179] R. Giorgi, Z. Popovic, and N. Puzovic. Exploiting DMA to enable non-blocking execution in de-
coupled threaded architecture. In Proc. IEEE Int.l Symp. on Parallel and Distributed Processing -
MTAAP Multi-Threading Architectures and APplications, pages 2197–2204, Rome, Italy, May 2009.
IEEE.

[180] A. Portero et al. Simulating the Future kilo-x86-64 core Processors and their Infrastructure. In
Proceedings of Annual Simulation Symposium (ANSS), pages 62–67, Orlando, FL, 2012.

[181] Hercules2020. https://hercules2020.eu.

[182] Lech Józwiak. Embedded computing technology for highly-demanding cyber-physical systems.
IFAC-PapersOnLine, 48(4):19 – 30, 2015. 13th IFAC and IEEE Conference on Programmable Devices
and Embedded Systems.

[183] Ian Grout. Digital systems design with FPGAs and CPLDs. Elsevier, 2011.

[184] V. Milutinovic, J. Salom, N. Trifunovic, and R. Giorgi. Guide to DataFlow Supercomputing Basic
Concepts, Case Studies, and a Detailed Example Postscript, pages 125–125. Springer, Berlin, DE, Apr
2015.

[185] SkylerWindh, XiaoyinMa, Robert J Halstead, Prerna Budhkar, Zabdiel Luna, OmarHussaini, and
Walid A Najjar. High-level language tools for reconfigurable computing. Proceedings of the IEEE,
103(3):390–408, 2015.

[186] J.A. Clemente, V. Rana, D. Sciuto, I. Beretta, and D. Atienza. A hybrid mapping-scheduling tech-
nique for dynamically reconfigurable hardware. In Field Programmable Logic and Applications (FPL),
pages 177–180, Sept 2011.

[187] W.Ahmed,M. Shafique, L. Bauer, and J.H. Karlsruhe. Adaptive resourcemanagement for simulta-
neous multitasking in mixed-grained reconfigurable multi-core processors. In Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2011 Proc. of the 9th Int’l Conference on, pages 365–374,
Oct 2011.

[188] Amin Sahebi and Roberto Giorgi. Gluon, the high-speed inexpensive and easy interconnect solu-
tion.

[189] S. Wesner, L. Schubert, R. Badia, A. Rubio, P. Paolucci, and R. Giorgi. Special section on terascale
computing. ELSEVIER Future Generation Computer Systems, 53:88–89, July 2015.

[190] João M. P. Cardoso, Tiago Carvalho, José Gabriel F. Coutinho, Ricardo Nobre, Razvan Nane, Pe-
dro C. Diniz, Zlatko Petrov, Wayne Luk, and Koen Bertels. Controlling a complete hardware syn-
thesis toolchain with LARA aspects. Microprocessors andMicrosystems - Embedded Hardware Design,
37(8-C):1073–1089, 2013.

106 BIBLIOGRAPHY

[191] JoãoM. P. Cardoso, JoséG. F. Coutinho, TiagoCarvalho, PedroC.Diniz, Zlatko Petrov,Wayne Luk,
and Fernando Gonçalves. Performance-driven instrumentation and mapping strategies using the
lara aspect-oriented programming approach. Software: Practice and Experience, pages n/a–n/a,
2014.

[192] L. Verdoscia, R. Vaccaro, and R. Giorgi. A matrix multiplier case study for an evaluation of a
configurable dataflow-machine. In ACM CF’15 - LP-EMS, pages 1–6, 2015.

[193] Yao Wu, Long Zheng, Brian Heilig, and Guang R Gao. HAMR: A dataflow-based real-time in-
memory cluster computing engine. The International Journal of High Performance Computing Appli-
cations, 31(5):361–374, 2017.

[194] John Sargeant and Chris C Kirkham. Stored data structures on the manchester dataflowmachine.
ACM SIGARCH Computer Architecture News, 14(2):235–242, 1986.

[195] Roberto Giorgi and Marco Procaccini. Bridging a Data-Flow Execution Model to a Lightweight
Programming Model. Dublin, Ireland, 2019. in press.

[196] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support for lock-free
data structures. In Proceedings of the 20th annual international symposium on computer architecture,
pages 289–300, 1993.

[197] Lance Hammond, Vicky Wong, Mike Chen, Brian D Carlstrom, John D Davis, Ben Hertzberg,
Manohar K Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Transactional
memory coherence and consistency. ACM SIGARCH Computer Architecture News, 32(2):102, 2004.

[198] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based software transac-
tional memory. IEEE Transactions on Parallel and Distributed Systems, 21(12):1793–1807, 2010.

[199] WAVEDEOM Gitub. https://github.com/wavedrom/wavedrom/blob/master/LICENSE.

[200] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In
Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures, pages
1–12, New York, NY, USA, 2000. Association for Computing Machinery.

[201] David Chase and Yossi Lev. Dynamic circularwork-stealing deque. In Proceedings of the Seventeenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages 21–28, New York, NY,
USA, 2005. Association for Computing Machinery.

[202] Andreas Merkel and Frank Bellosa. Balancing power consumption in multiprocessor systems.
ACM SIGOPS Operating Systems Review, 40(4):403–414, 2006.

[203] http://www.ti.com/lit/ds/symlink/ina219.pdf, December 2015.

[204] Max Grossman, Mauricio Breternitz, and Vivek Sarkar. Hadoopcl: Mapreduce on distributed
heterogeneous platforms through seamless integration of hadoop and opencl. In 2013 IEEE Inter-
national Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, pages 1918–1927.
IEEE, 2013.

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Problem statement
	Goals and challenges
	Contributions
	Thesis outline

	Background Knowledge
	Data-Flow computing models
	Static Data-Flow architectures
	Dynamic Data-Flow architectures
	Data-Flow architectures' general limitations
	Hybrid Data-Flow/von-Neumann execution models
	Data-Flow programming languages

	Design Space Exploration (DSE) tool-set
	Simulation framework
	COTSon simulator
	DSE tools
	Experiment description
	Performance validation

	Operating system impact
	Performance variations (Cycles)
	 Kernel activity

	Final remarks

	Translating Timing Model into High-Level Synthesis (HLS)
	Introduction
	High-Level Synthesis (HLS) tools
	Simulator tools
	Methodology
	Mapping Architecture to HLS

	Case study
	From COTSon to Vivado HLS – a simple example

	Generalization to the AXIOM project
	The AXIOM board
	Validating the AXIOM board against the COTSon simulator

	Final remarks

	FPGA Implementation of DF-Threads Co-processor
	Preliminary evaluation
	DF-Threads management
	Introduction to API
	Memory model
	Architecture block diagram
	The Decoder
	The Load Balancing Unit (LBU)

	Experimental results
	Recursive Fibonacci benchmark
	Resource utilization
	Power consumption analysis

	Final remarks

	Conclusions and future works
	Summary
	Future Work

	Publications
	Notation and Acronyms
	Vivado Design Blocks
	Bibliography

