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Abstract

Pedestrian detection is a core problem in computer vision due to its cen-
trality to a range of applications such as robotics, video surveillance, and ad-
vanced driving assistance systems. Despite its broad application and interest, it
remains a challenging problem in part due to the vast range of conditions under
which it must be robust. In particular, pedestrian detectors must be robust and
reliable at nighttime and in adverse weather conditions, which are some rea-
sons why thermal andmultispectral approaches have become popular in recent
years. Moreover, thermal imagery offers more privacy-preserving affordances
than visible-spectrum surveillance images. However, pedestrian detection in
the thermal domain remains a non-trivial task with much room for improve-
ment.

Thermal detection helps ameliorate some of the disadvantages of RGB de-
tectors – such as illumination variation and the various complications of detec-
tion at nighttime. However, detection using only thermal imagery still faces nu-
merous challenges, and overall lack of information in thermal images. Thermal
images are typically low-resolution, which in turn leads tomore challenging de-
tection of small pedestrians. Finally, there is a general lack of thermal imagery
for training state-of-the-art detectors for thermal detection. The best pedestrian
detectors available today work in the visible spectrum.

In this thesis, we present three new types of domain adaptation approaches
for pedestrian detection in thermal imagery and demonstrate how we can miti-
gate the above challenges such as privacy-preserving, illumination, lacking ther-
mal data for training, and lacking feature information in thermal images and ad-
vance the state-of-the-art. Our first contribution is two bottom-up domain adapta-
tion approaches. Wefirst show that simple bottom-updomain adaptation strate-
gies with a pre-trained adapter segment can better preserve features from source
domains when doing transfer learning of pre-trainedmodels to the thermal do-
main. In a similar vein, we then show that bottom-up and layer-wise adapta-
tion consistently results in more effective domain transfer. Experimental results
demonstrate efficiency, flexibility, as well as the potential of both bottom-up do-
main adaptation approaches.

Our second contribution, which addresses some limitations of domain adap-
tation to thermal imagery, is an approach based on task-conditioned networks
that simultaneously solve two related tasks. A detection network is augmented
with an auxiliary classificationpipeline, which is taskedwith classifyingwhether
an input image was acquired during the day or at nighttime. The feature rep-
resentation learned to solve this auxiliary classification task is then used to con-
dition convolutional layers in the main detector network. The experimental re-
sults of task-conditioned domain adaptation indicate that task conditioning is
an effective way to balance the trade-off between the effectiveness of thermal
imagery at night and its weaknesses during the day.
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Finally, our third contribution addresses the acute lack of training data for
thermal domain pedestrian detection. We propose an approach using GANs
to generate synthetic thermal imagery as a type of generative data augmenta-
tion. Our experimental results demonstrate that synthetically generated ther-
mal imagery can be used to significantly reduce the need for massive amounts
of annotated thermal pedestrian data.

Pedestrian detection in thermal imagery remains challenging. However, in
this thesis, we have shown that our bottom-up and layer-wise domain adap-
tation methods – especially the proposed task-conditioned network – can lead
to robust pedestrian detection results via using thermal-only representations at
detection time. This shows the potential of our proposed methods not only for
domain adaptation of pedestrian detectors but also for other tasks. Moreover,
our results using generated synthetic thermal images also illustrate the potential
of generative data augmentation for domain adaptation to thermal imagery.
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Chapter 1

Introduction

Pedestrian detection is a core problem in computer vision due to its centrality to a
range of applications such as robotics, video surveillance, and advanced driving as-
sistance systems. Despite its broad application and interest, it remains a challenging
problem in part due to the vast range of conditions under which it must be robust.
In particular, pedestrian detectors must be robust and reliable at nighttime and in
adverse weather conditions, which are some reasons why thermal and multispec-
tral approaches have become popular in recent years. Moreover, thermal imagery
offers more privacy-preserving affordances than visible-spectrum surveillance im-
ages. However, pedestrian detection in the thermal domain remains a non-trivial
task with much room for improvement. This chapter gives an overview of the main
challenges and approaches to pedestrian detection in the visible spectrum, in mul-
tispectral imagery, and using only thermal images.

1.1 Object and Pedestrian Detection
Object detection is one of the most important problems in Computer Vision and its
applications are ubiquitous. In general, object detection is a combination of object
recognition and object localization. The object recognition task is to estimate the likeli-
hood of a semantic object instance in an image (e.g., the likelihood of there being a
dog in an image or not). On the other hand, object localization refers to identifying
and outputting the coordinates of known semantic objects in an input image. Object
detection is the task of detecting and localizing semantic objects of known classes in
images or video.

Object detection is one of the cornerstones of image understanding. It forms
the basis for solving complex or high-level vision tasks such as object tracking, seg-
mentation, image captioning, event detection, activity recognition, and scene un-
derstanding. Object detection supports various range of applications, including
consumer electronics, autonomous driving, robot vision, security, human-computer
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4 Introduction

interaction, content-based image retrieval, intelligent video surveillance, and aug-
mented reality. For a broad survey of deep learning methods for object detection,
please see the review by Liu et al. (2019a).

Object detection methods typically fall into one of two categories: traditional
machine learning-based approaches or deep learning-based approaches. Most of
the early object detection algorithms were based on traditional machine learning-
based techniques and hand-crafted features. There is a vast literature on classical
approaches to object detection using hand-crafted features like SIFT or HOG and
classifiers like Support Vector Machines (SVMs). According to Zou et al. (2019),
the progress in object detection research was slow during 2010-2012 with a small
number of proposed methods as the performance of hand-crafted features became
saturated.

In 2012, however, we saw the resurgence in interest in deep learning, which
pushed the object detection problem to renewed prominence. These new advances
based on were made possible by the combination of a number of factors:

• Deep Learning: The renaissance of deep neural networks (DNNs), in par-
ticular Convolutional Neural Networks (CNNs) which can learn high-level,
end-to-end representations of visual data.

• Big data: More and more data coming from the internet, mobile devices, and
social network created an inexhaustible source of data for learning very large
deep models.

• Dedicated GPUs: Graphics Processing Units (GPUs) significantly reduce the
computational cost of deep learning, which was the final factor in the renewed
interest in Deep Learning.

ManyConvolutionalNeuralNetwork architectures have beenused as themain back-
bone for state-of-the-art methods for object detection, including Region Proposals
Networks (R-CNN) (Girshick et al., 2014), Faster R-CNN (Ren et al., 2015), the
Single Shot MultiBox Detector (SSD) (Liu et al., 2016b), and You Only Look Once
(YOLO) (Redmon and Farhadi, 2018) – to name but a very few.) These network
architectures are used not only as object detectors but also as pre-trained models
for transfer learning or domain adaptation to specific tasks. For example, YOLO
version 2 by Redmon and Farhadi (2017) could detect around 9000 objects and is
used as a pre-trained model for fine-tuning to many particular tasks such as car and
pedestrian detection.

Pedestrian detection is another essential topic in computer vision because of its
centrality in safety and security applications such as video surveillance, autonomous
driving, robotics, criminal investigation, etc. Pedestrian detection has received sig-
nificant attention from the research community over the past two decades with over
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Figure 1.1: Example pedestrian detection results on RGB images from the KAIST
dataset. There are a total of eight pedestrians on the left image, two pedestrians are
occluded by others, and two pedestrians are missed due to insufficient illumination.
There are a total of four pedestrians in the right image, with two of them being
missed.

two thousand publications. According to the survey of Cao et al. (2020), with fewer
than fifty publications on pedestrian detection every year before 2005, interest has
gradually increased to around 300 publications every year for the last three years.

These numbers illustrate that pedestrian detection is still an active research prob-
lem in computer vision. Markit (2019) noted that there were an estimated 240 mil-
lion installed video surveillance camerasworldwide in 2014. The continued need for
detection andobservation of humans in public spaces and the advent of autonomous
driving systems promises to addmanymore cameras. For autonomous driving sys-
tems, detecting pedestrian must to be as accurate as possible. Figure 1.1 gives two
examples of pedestrian detection results on RGB images from the KAISTMultispec-
tral Pedestrian Detection Benchmark dataset (Hwang et al., 2015). The detection
results are from a YOLOv3 detector fine-tuned on the KAIST training set. These
images illustrate, first of all, that despite the sunny conditions there are still many
challenging problems for pedestrian detection. There are a total of eight pedestrians
in the left image, some of them are clearly visible and some are quite difficult to see
– two are occluded by other pedestrians, and two pedestrians are missed due to illu-
mination. Similarly, there are a total of four pedestrians in the right image, however
two are not detected. Despite the significant improvement in pedestrian detection
over the years, there remains a vast array of challenges that must be overcome to
meet real-world application requirements.
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1.2 Challenges of Pedestrian Detection in the Visible
Spectrum

Despite the large number of detectors proposed in recent years, pedestrian detection
in RGB images remains challenging due to the need to detect pedestrians accurately
and quickly. In this section, we briefly discuss some of the challenges of pedestrian
detection in RGB imagery.

1.2.1 Occlusion
Occlusion is one of the most challenging phenomena for pedestrian detection, even
more so because it is also inevitable. There are many types of occlusion relevant
to detection, but we can divide them into two broad categories: object occlusion
and crowd occlusion. Object occlusion refers to pedestrians occluded by other ob-
jects such as vehicles, trees, or occluding accessories such as briefcases or umbrel-
las. Crowd occlusion, on the other hand, refers to pedestrians occluded by other
pedestrians. Detecting occluded pedestrians is challenging because some parts of
the body may be entirely missing when pedestrians are occluded. These missing
visual features lead to severe degradation of pedestrian detectors if it does not han-
dle properly. Occlusion was addressed by several works, for example Ouyang et al.
(2016a) who learned a mutual visibility relationship between occluded pedestrians
to mitigate problems arising from occlusions. Occlusion problems in detectingmul-
tiple persons was addressed by Hadi et al. (2015) with a vision-based model which
used a fusion of depth and thermal images.

To sidestep the occlusion problem, especially when the size of objects is small,
many state-of-the-art pedestrian datasets such as Caltech (Dollar et al., 2009) and
the KAIST Multispectral Pedestrian Detection Benchmark (Hwang et al., 2015) do
not consider large occluded cases as ground-truth for the detection task. Instead,
they filter objects occluded by more than 50% from consideration entirely. Figure
1.2 illustrates the overlap and occlusion between pedestrians, which is the reason
for many false-negative detection results. In this figure there are two pedestrians
occluded by cars in the left and right images, and pedestrians are occluded by other
pedestrians in a group in the middle image.

1.2.2 Varying illumination conditions
In the last decade, the majority of existing RGB detectors work acceptably on high-
quality, reasonably controlledRGB images (Benenson et al., 2014; Zhang et al., 2016).
However, many such detectors fail under illumination changes (e.g. nighttime)
or adverse weather conditions such as rain or fog Li et al. (2018). According to
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Figure 1.2: Examples of occluded pedestrians in the KAIST dataset. Two pedestrians
are occluded by cars in the left and right images, while pedestrians are occluded by
other pedestrians in the middle image.

Figure 1.3: Example of visible image (left) and thermal image (right) at nighttime.
[Image from (Chen et al., 2020)].

Gawande et al. (2020), illumination variation is one of the most challenging prob-
lems for detecting pedestrians. Illumination might change due to lighting condi-
tions, motion of the light source, reflection from bright surfaces, the effect of other
light sources, or different times of the day. Figure 1.3 from Chen et al. (2020) shows
an example of a visible spectrum image (left) and corresponding thermal image
(right) at nighttime.

Figure 1.4 gives additional nighttime examples from the KAIST dataset. These
illustrate the effect of illumination onpedestrian detection. In the left column,we see
examples of insufficient lighting (the first three rows) and one example of too much
light (the last row). It is difficult even for humans to discern all of the pedestrians in
these images. In the corresponding thermal images in the right column of Figure 1.4,
we see that pedestrians are significantly more identifiable.
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(a) RGB Image (b) Thermal Image
Figure 1.4: Examples of pedestrian at nighttimewith insufficient lighting (first three
rows) and too much light (last row). Pedestrians are had even for humans to dis-
cern in the visible spectrum images, while they are significantly more evident in the
corresponding thermal images.
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1.2.3 Privacy preservation

We conclude our discussion of the challenges to pedestrian detection, not with an-
other technological problem, but rather with a societal one. With the total number
of installed video surveillance cameras already at 240 million worldwide in 2014
(Markit, 2019), and the advent of autonomous driving promising to addmanymore
cameras – all detecting and observing humans in public spaces – citizens are natu-
rally concerned that being observed violates their right to privacy. As demonstrated
in Figure 1.3, thermal imagery offers advantages over RGB images, especially at
nighttime. However, given that thermal sensors capture the radiant heat of objects,
thermal imagery can provide clear object silhouettes and textures while offering sig-
nificant privacy-preserving affordances not offered by visible spectrum imagery.

1.3 Pedestrian Detection in Thermal Imagery

Thermal imaging works as follows. All objects emit infrared energy (heat), which
is known as a heat signature. The hotter an object is, the stronger radiation it emits.
The sensor collects infrared radiation from objects in the scene and creates an im-
age based on information about the temperature differences. A thermal camera is
basically a heat sensor capable of detecting tiny temperature differences. Because
objects are rarely exactly the same temperature as others around them, a thermal
camera can image them distinctly in a thermal image. Thermal cameras were orig-
inally designed as a surveillance and night vision tool for the military. The work
in Gade and Moeslund (2013) reviewed a vast array of applications based on ther-
mal cameras such as detecting symptoms of animals without touching, checking
agriculture and food quality, building inspection, gas detection, industrial applica-
tions, fire detection, medical analysis, as well as detection, tracking, and recognition
of humans. According to Gade and Moeslund (2013), based on the wavelength
spectrum of emission and absorption of infrared radiation between visible light and
microwaves (0.7 - 1000 µm), the infrared spectrum can be divided into five spec-
tral regions, including Near-infrared - NIR (0.7-1.4µm), Short-wavelength infrared
- SWIR (1.4-3µm), Mid-wavelength infrared -MWIR (3-8µm), Long-wavelength in-
frared - LWIR (8-15µm), and Far-infrared - FIR (15-1000µm).

Thermal imagery, acquired by an infrared camera, might seem an ideal solution
for the pedestrian detection task. It can solve some of the challenges of detection
in RGB images (illumination variation, occlusion, privacy-preservation) by detect-
ing infrared radiation of objects and generating an image based on that informa-
tion Negied et al. (2015). Here we list a number of advantages pedestrian detection
in thermal imagery has over detection in the visible spectrum.
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1.3.1 Robustness to illumination variation
Because thermal cameras image objects by temperature and not by reflectance of vis-
ible light, thermal images can image pedestrians clearly under a range illumination
conditions. Figure 1.3 fromChen et al. (2020) and figure 1.4 from the KAIST dataset
(Hwang et al., 2015) illustrate examples of pairs of visible and thermal images at
nighttime under insufficient lighting conditions. As we can see, thermal images can
image pedestrians more clearly under insufficient illumination conditions. This is a
crucial advantage for the pedestrian detection, and many works have used thermal
images to compensate for inadequate illumination such as Guan et al. (2018), who
used thermal and visible images in an illumination-aware multispectral DNN to
learn multispectral human-related features under different illumination conditions.
Li et al. (2019) also used thermal and visible images for their Illumination-aware
Faster R-CNN method to perform multispectral pedestrian detection.

1.3.2 Robustness to occlusion
Even if pedestrians occluded by on another or by other thin surfaces, their temper-
ature shape can appear clearly in thermal cameras. Many works have leveraged the
advantages of thermal imagery for handling occlusion in pedestrian detection, such
as Kristoffersen et al. (2016) who handled pedestrian occlusion problem using a
stereo thermal camera, and Chen et al. (2019) who used Faster-RCNN and a region
decomposition network to detect a wider range of pedestrian appearances includ-
ing partial body poses and occlusions in thermal imagery, and Chen et al. (2020)
who proposed an extension to Faster-RCNN for nighttime pedestrian detection in
thermal images to deal with the occlusion problem under challenging illumination.

1.3.3 Privacy-preservation and thermal imagery
Detecting pedestrians using only thermal images is a potential solution for privacy
preservation in video surveillance applications.∗ Figure 1.5 gives an example of
cropped pairs of color and thermal images from the KAIST dataset (Hwang et al.,
2015). As we can see from these examples, even in relatively low-resolution color
images, persons can be readily identified. Meanwhile, thermal images still retain
distinctive image features useful for detection while preserving privacy. Thermal
imagery is privacy-preserving in the sense that person identification is difficult or
impossible. Our approaches are partially motivated by the fact that thermal images
guarantee some balance between security and privacy concerns.

∗Note that all of the detectors we propose in this thesis are thermal-only, which we distinguish
from multispectral detectors that use some combination of visible and thermal spectra and thus are
not privacy-preserving.
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Figure 1.5: Thermal imaging and privacy preservation. Shown are four cropped im-
ages from the KAIST dataset. On the left of each is the RGB image, to the right the
crop from the corresponding thermal image. Note how persons are readily identi-
fiable in visible spectrum images, but not in the corresponding thermal images. Al-
though identity is concealed, there is still enough information in thermal imagery
for detection.

1.4 The State-of-the-art in Pedestrian Detection
The state-of-the-art in pedestrian detection – in terms of both speed and accuracy
– is in the RGB domain. The literature on pedestrian detection is vast and spans
many decades. A complete review of he literature is beyond the scope of this thesis,
but the interested reader should consult the excellent review by Zou et al. (2019)
for a historical perspective, and the review by Liu et al. (2019a) for a treatment of
recent deep learning-based approaches. Here we concentrate on the recent works
most relevant to our contributions.

Today there aremany state-of-the-art RGBdetectorswhich are extremely fast and
accurate – such as YOLObyRedmon and Farhadi (2018), to name just one. However,
without domain adaptation, they completely fail to detect visible (RGB) video at
nighttime or low-resolution images. Figure 1.6 from the website of the YOLOv3
author† shows an example of good detection results by YOLOv3 on the RGB image
(left). Without domain adaptation, the same detector fails to detect any pedestrians
at night (the right image).

1.4.1 Multispectral pedestrian detection
Given the advantages of thermal images, recent works on pedestrian detection have
investigated the use of thermal sensors as a signal complementary to the visible spec-
trum images. Konig et al. (2017) combined three visible channels and a thermal

†https://pjreddie.com/darknet/yolo/

https://pjreddie.com/darknet/yolo/
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(a) Daytime (b) Nighttime
Figure 1.6: Example detection results from the YOLOv3 detector in RGB images. (a)
Good results during the daytime. (b) At night, not a single pedestrian is detected.

channel to detect persons in multispectral videos. Many other state-of-the-art mul-
tispectral methods, such as those proposed by Wagner et al. (2016); Jingjing et al.
(2016), Li et al. (2019), and Li et al. (2018) fused thermal and visible images for
multispectral pedestrian detection. Approaches such as these aim to combine ther-
mal and RGB information in order to obtain the most robust possible pedestrian
detection at any time of the day. Such detectors require both visible spectrum and
thermal images to function. However, this can limit applicability in real applica-
tions due to the cost of deploying multiple aligned sensors (thermal and visible).
Most importantly, using visible spectrum sensors does not offer the same degree of
privacy preservation as using thermal-only images for person detection.

1.4.2 Privacy-preserving person detection
A variety of solutions on how to mitigate privacy problems were discussed in An-
gelini et al. (2019). For example, using Kinect or other depth sensors for privacy-
preservation was considered by Nakashima et al. (2010), while leveraging low reso-
lution video data for privacy-preserving anomaly detection was investigated by An-
gelini et al. (2019). However, most of the mentioned solutions have limited perfor-
mance or high installation costs due to reliance on multiple sensors.

Aside from the privacy-preserving affordances offered by thermal imagery, there
are also technical and economic reasons to prefer thermal-only detection. Because of
this, many recent works do not use visible images but focus only on thermal images
for pedestrian detection (John et al., 2015; Herrmann et al., 2018; Baek et al., 2017;
Devaguptapu et al., 2019; Guo et al., 2019). They typically yield lower performance
than multispectral methods since robust pedestrian detection using thermal-only
data is non-trivial, and there is still potential for improvement. In this thesis, we
also focus on pedestrian detection using only thermal imagery. We focus on how to
leverage the advantages of state-of-the-art detection in RGB images and bring them
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to the thermal domain via domain adaptation.

1.4.3 Domain adaptation

Domain adaptation has a long history for both supervised and unsupervised recog-
nition in computer vision. Domain adaptation attempts to exploit learned knowl-
edge from a source domain in a new target domain. There are many research direc-
tions for domain adaptation to the thermal imagery, such as Long et al. (2015) who
proposed a Deep Adaptation Network to address domain discrepancy with feature
transferability, Masana et al. (2017) who addressed domain transfer and compress-
ibility of deep neural networks. Image-to-image translation using Unified Genera-
tive Adversarial Networks (StarGAN) was used to close the gap between two do-
mains by Choi et al. (2017).

Domain adaptation is more challenging with cross-modality data having signifi-
cantly different distributions (e.g. adapting from the visible to the thermal domain).
In recent years, many works has investigated the feasibility of cross-modality adap-
tation and proposed domain adaptation frameworks to adapt deep learning models
from the source modality to target modality (Dou et al., 2018; Chen et al., 2019).
Ours is a problem of cross-modality adaptation, however we use domain adaptation
in a general sense to mean adapting to a new input distribution (i.e. even if this
involves a change in modality).

One of the most standard approaches for pedestrian detection in the thermal
domain is transfer learningwhich directly fine-tunes a pre-trained model on thermal
domain imagery. In this case the adaptation happens through a backpropagation
signal coming from the loss at the top of the network down to the beginning of
the network where adaptation to new input distribution happens. For this reason,
we refer this method of domain adaptation via transfer learning as top-down domain
adaptation.

This type adaptation, however, results in unacceptable performance. Figure 1.7
shows a detection result using the conventional fine-tuning method and one of our
domain adaptation methods (task-conditioned domain adaptation, see Chapter 5).
As we can see, top-down domain adaptation (left image) yields questionable per-
formance with one true positive detection and many false-negative detections. On
the other hand, with our domain adaptation approach (right image), we can min-
imize the miss-rate of detection. Because of these considerations, in this these we
investigate a range of alternative approaches to adapting RGB pedestrian detectors
to the thermal domain.
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(a) Top-down domain adaptation (b) Task-conditioned domain adaptation
Figure 1.7: Fine-tuning versus task-conditioned domain adaptation. (a) The stan-
dard, top-down approach to domain adaptation using fine-tuning. (b) Our top-
down adaptation approach (Chapter 5). Top-down domain adaptation results in a
detector that misses many pedestrians, while top-down adaptation results in zero
missed and zero false positive detections.

1.5 Contributions of this Thesis

In this thesis we investigate domain adaptation approaches for pedestrian detection
in thermal imagery. Our research spans many types of domain adaptation from
transfer learningmethods to network architecture and data augmentation approach
using a generative adversarial network. The contributions of this thesis are:

1. we propose a bottom-up domain adaptation approach based on a simple net-
work segment that adapts thermal inputs to the feature distribution expected
by an RGB-trained pedestrian detector;

2. we propose a layer-wise domain adaptation approach and show that, by care-
fully controlling the schedule of network adaptation, state-of-the-art detection
results can be obtained using only thermal imagery;

3. we show that thermal detection networks can be task-conditioned by training
them to simultaneously solve the detection and a related classification task,
and then show that such task conditioning significantly improves thermal de-
tection results; and

4. we show how a Generative Adversarial Network can be used to synthesize
thermal images during training in order to automatically augment thermal
data available for training.
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1.6 Organization of this Thesis
The rest of this thesis is organized as follows. In the next chapter, we briefly re-
view related work from the computer vision literature on pedestrian detection and
domain adaptation for both multispectral and thermal-only. In chapter 3 we de-
scribe three top-down domain adaptation techniques and our proposed bottom-up
domain adaptation approach that we apply to the problem of pedestrian detection
in thermal imagery. Next, in chapter 4 we describe our layer-wise domain adap-
tation approach and analyze its performance on two thermal detection datasets.
We present our task-conditioned thermal detection network in chapter 5, which
we show significantly improves domain adaptation in thermal imagery. Finally, a
data augmentation approach using synthetic thermal images generated by GANs
for pedestrian detection is described in chapter 6. We conclude in chapter 7 with a
discussion of our contribution and future research directions.





Chapter 2

Related Work

In this chapter we review work from the recent computer vision literature most rel-
evant to all of our contributions. In each subsequent chapter we only review the
literature most relevant to the content of that chapter.

2.1 Pedestrian Detection in the Visual Spectrum
Pedestrian detection has consistently attracted the attention of the computer vision
research community through the years, and the literature review on it is vast (Be-
nenson et al., 2014). With the advent of deep neural networks, higher and higher
accuracy has been achieved. Computer vision applications and pedestrian detec-
tion have improved significantly in both accuracy and speed, with the detector of
Angelova et al. (2015a) a prime example that is accurate enough to be relied upon
and is fast enough to run on systems with limited computing power. They pro-
posed a Deep Network Cascade for pedestrian detection that runs at about 15 fps.
Detectors based on Convolutional Neural Networks (CNNs) compete for the state-
of-the-art on standard benchmark datasets. For example, Tian et al. (2015) used a
single task-assistant CNN (TA-CNN) to train multiple tasks from multiple sources
to bridge the gaps between different datasets. Their detector is learned by jointly op-
timizing alongwith semantic tasks such as pedestrian and scene attribute detection.
The speed of the proposed model, however, is limited to 5 fps. Along these lines,
the estimation of visibility statuses for multiple pedestrians and recognition of co-
existing pedestrians via a mutual visibility deep model was proposed by Ouyang
et al. (2016a). Their deep learning model was evaluated on four datasets with an
improvement of around 5% - 11% miss rate compared to the SVM method.

A first observation is that Fast/Faster R-CNN have become the predominant ar-
chitectures for state-of-the-art pedestrian detection because of their flexibility. For
example, Li et al. (2017) proposed a Scale-Aware Fast R-CNN model which incor-
porates a large sub-network and a small sub-network into a unified architecture and

17
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implements a divide and conquer strategy. Their method introduces multiple built-
in subnetworks that detect pedestrians with scales from disjoint ranges. With this
strategy, each network detects pedestrians of different sizes and then combines the
results at the end. Similarly, Zhang et al. (2016) proposed combining a Region Pro-
posal Network (RPN) with Boosted Forests (BF) for pedestrian detection based on
Faster R-CNN.

Semantic segmentation has also been shown useful for improving robustness in
pedestrian detection via low-level pixel information. For example, Du et al. (2017)
integrated a pixel-wise semantic segmentation (SS) network into their deep neural
network fusion architecture (F-DNN) as a reinforcement to the pedestrian detection
task. Their network fusion architecture first uses a Single-shot Multi-box Detector
(SSD) trained as an object detector to generate all possible pedestrian candidates
of different sizes. Then, multiple deep neural networks (ResNet-50 and GoogleNet)
are used in parallel for further refinement of these pedestrian candidates. They used
the SS network, trained on the Cityscapes dataset (Cordts et al., 2016) as a parallel
classification network which directly processes input images and produces a binary
mask distinguishing pedestrians from background. Finally, they fused the segmen-
tation mask and the original pedestrian candidates using a confidence score. This
segmentation network improves pedestrian detection results, however the inference
speed is limited at 2.48 seconds per image (around 0.4 fps). In contrast, Brazil
et al. (2017a) proposed a framework that fuses a semantic segmentation network
into shared feature maps for pedestrian detection. They showed that the additional
supervision of the segmentation network is helpful for the downstream pedestrian
detector.

Another example is the high-level semantic features for anchor-free pedestrian
detection proposed by Liu et al. (2019b). They used ResNet-50 to scan for likely
pedestrians in the image. Their detector extracts feature points at different scales
and then fuses these multi-scale feature maps into a single one. Finally, a detection
head consisting of followed by two prediction layers (one for the central location
and the other for the corresponding scale) outputs the detection results. Though
this detector reduces miss rate, it operates at only about 3 fps.

The advantage of these methods is that they demonstrate excellent RGB domain
performance. However, their applicability under varying illumination conditions
is limited. Thus, pedestrian detection is still challenging due to a variety of envi-
ronmental conditions such as changing illumination, occlusion, and other challeng-
ing conditions. This has led the computer vision research community to investigate
multispectral methods.
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2.2 Multispectral Pedestrian Detection
The rapid advances in deep learning in recent years has led to the development
of several detector architectures that have been shown to be general purpose and
adaptable to a range of applications. Some examples include Faster-RCNN by Ren
et al. (2015), SSD by Liu et al. (2016b), and YOLOv3 by Redmon and Farhadi (2018).
Because RGB-based pedestrian detection is limited in challenging conditions such
as dark environments, particularly at night or bad weather conditions, there is a
growing body of research using thermal imagery alone or in combination with vis-
ible imagery for investigating pedestrian detection task. We classify deep learning
approaches exploiting the thermal domain into two categories:

• Multispectral methods which use both visible and thermal images for train-
ing and testing. Such models are typically based on two-stage network archi-
tectures with a backbone such as VGG16 (Simonyan and Zisserman, 2014) or
Faster-RCNN (Ren et al., 2015).

• Single-modality methods which use only thermal or RGB imagery. Single-
modality methods from the literature are mainly based on single-pass net-
works such as SSD (Liu et al., 2016b) or YOLO (Redmon and Farhadi, 2018).
During training, single-modalitymethods can leverage pre-trainedmodels and
perform transfer learning from other domains.

The trade-off between these two groups of methods will be discussed in this and the
next section.

2.2.1 Multispectral datasets
Several multispectral pedestrian detection datasets, which typically consist of pairs
of visible and thermal spectrum images, have been proposed in the literature on
multispectral image and understanding. Some notable, ealy datasets include:

• The LSI Far Infrared Pedestrian dataset by Olmeda et al. (2013) for tracking
and detection consists of 15,224 images of only 164× 129 pixels.

• TheCVC-09 Thermal dataset by Socarras et al. (2013) consists of 5,309 positive
images and 2,115 negative images for training, and 5,763 images for testing.

• TheOSU Thermal Pedestrian dataset by Davis and Keck (2005) contains 284
frames (at 360× 240pixels), multispectralOSU-CTdataset byDavis and Sharma
(2007) for object detection in 2007 with around 17,000 color/thermal frames at
320× 240 pixels.
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Note that these datasets are quite small and contain very low-resolution images cap-
tured in video surveillance scenarios. For more details of datasets published before
2014, please see the review by Ghiass et al. (2014). Below we only discuss recently
collected datasets containing large numbers of high-resolution images.

The KAIST Multispectral Pedestrian Benchmark. Introduced by Hwang et al.
(2015), KAIST is the first well-aligned color-thermal pair dataset for multispectral
pedestrian and is the largest thermal-visible dataset up to 2015. The dataset consists
of 95,328 aligned visible/thermal image pairs (at 640 × 480 pixels) taken from a
vehicle. The dataset is split into 50,172 images for training and 45,156 for testing.
All image pairs are manually annotated with three object classes (person, people,
and cyclist) for a total of 103,128 dense bounding box annotations and 1,182 unique
pedestrians. For training and evaluation, most published results use the reasonable
setting by Dollar et al. (2012) and Hwang et al. (2015) which separates daytime
and nighttime detection evaluation and excludes heavily occluded and small person
instances of fewer than 50 pixels. The final training set contains 19,058 image pairs by
sampling every 2 frames from 50,172 image pairs. The test set consists of 2,252 image
pairs by sampling every 20 frames from 45,156 image pairs. Because the original
annotation of the dataset has many problems, the improved training annotations
by Li et al. (2018) and test annotations from Jingjing et al. (2016) are used. Results
on the KAIST dataset are evaluated in the daytime and nighttime settings using log
averagemiss rate (LAMR) over false positive per image (FPPI) described by (Dollar
et al., 2012).

The CVC-14 Visible-FIR Day-Night Pedestrian Sequence Dataset. Proposed by
Gonzalez Alzate et al. (2016) is a multi-modal dataset (far infrared and visible). It
is smaller than KAIST, but is also design for benchmarking multispectral pedestrian
detection. However, two of the video streams in the CVC-14 dataset are not synchro-
nized (image pairs are not properly aligned). The dataset consists of a total of 8,518
FIR and visible frames recorded during the day and night. Pedestrian bounding
boxes larger than 50 pixels were manually annotated.

The FLIR ThermalDataset was released by the thermal cameramanufacturer FLIR
(FLIR, 2018). It consists of 10,228 color/thermal image pairs with bounding box an-
notations for five classes: person, bicycle, car, dog, and other. These images are split
into 8,862 for training and 1,366 for testing. However, the color and thermal cameras
have different focal lengths and resolutions and are not properly aligned. In order to
compare with the state-of-the-art on this dataset, it is important to follow the bench-
mark procedure described by Devaguptapu et al. (2019). The FLIR dataset aims to
enable the community to create the next generation of safer andmore efficient ADAS
systems using cost-effective thermal cameras.
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2.2.2 Multispectral approaches

The combination of thermal and RGB images has been proposed by many works on
robust pedestrian detection. For example, Xu et al. (2017) used thermal image fea-
tures to improve detection results in visible-spectrum images by proposing a cross-
modality learning framework including a Region Reconstruction Network (RRN)
and Multi-Scale Detection Network (MDN). The RRN is used to learn a non-linear
feature mapping between RGB and thermal image pairs. Then, the learned model
is transferred to a target domain where thermal inputs are no longer available. The
MDN is used for learning an RGB-based pedestrian detector. The advantage of
their strategy is that multispectral data are not employed at test time. This is cru-
cial when deploying the application, as only traditional cameras are needed which
significantly decreases costs. Moreover, no pedestrian annotations are required in
the thermal domain. This greatly reduces human labeling effort and permits the
exploitation of large data collections of RGB-thermal image pairs. However, using
only the RGB image in the testing phase faces the challenges discussed above. The
performance is not comparable with multispectral detectors using both color and
thermal data at test time.

As a starting point for multispectral pedestrian detection research, Hwang et al.
(2015) proposed the KAIST Multispectral Pedestrian Detection Benchmark, one of
the biggest multispectral (thermal-color) datasets for pedestrian detection. They
also investigated an extension of aggregated channel features by combining pairs
of RGB and thermal images and taking advantage of distinct image channels for
improving pedestrian detection and establishing a baseline on the KAIST dataset.
Similarly, Gonzalez Alzate et al. (2016) proposed the combination of a patch-based
detector using Random Forests on Histograms of Oriented Gradients and Local Bi-
nary Patterns for pedestrian detection on the CVC-14 Visible-FIR Day-Night Pedes-
trian Sequence Dataset Gonzalez Alzate et al. (2016).

In order to better exploit the advantages of thermal imagery, multispectral meth-
ods typically use a fusion of visible and thermal features for both training and testing
phases. One of the most naive ways is a fusion using two-branch networks, one for
visible spectrum input and the other for thermal spectrum input. Many works have
investigated several types of fusion for multispectral pedestrian detection. For ex-
ample, Wagner et al. (2016) proposed a deep CNNmodel using two types of fusion
networks to exploit visible and thermal image pairs. The first is an Early Fusion ar-
chitecture, which combines the information of two modalities at a pixel level. The
second is a Late Fusion CNN, which uses separate sub-networks to generate a fea-
ture representation for each branch. An additional fully-connected layer combines
these feature representations for the final detection. Similarly, four different network
fusion approaches (early, halfway, late, and score fusion) for multispectral pedes-
trian detection task were proposed by Jingjing et al. (2016). Early fusion concate-
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nates the feature maps from color and thermal branches immediately after the first
convolutional layer, halfway fusion fuses after the fourth convolutional layer, late fu-
sion fuses by concatenating feature maps at the last fully-connected layer, and score
fusion can be thought of as a cascade of two CNNs. Among the four fusion models,
halfway fusion achieved the best performance.

Because the combination of thermal and visible images works well in two-stage
network architectures, most of the top-performing multispectral pedestrian detec-
tion approaches are based on Fast/Faster R-CNN (Ren et al., 2015) using a VGG16
backbone (Simonyan and Zisserman, 2014). For instance, Konig et al. (2017) de-
tected persons in multispectral video using one thermal and three visible chan-
nels. They combined a fully convolutional Region Proposal Network (RPN) and a
Boosted Decision Trees Classifier (BDT). Starting with individual fusion RPN built
upon VGG16 backbones pre-trained on thermal and RGB images, they fused these
CNNs halfway through to generate deep multispectral features for the RPN. The
proposals are further evaluated using a the BDT to reduce potential false positive de-
tections. Similarly, Faster R-CNN was used by Li et al. (2019) in their Illumination-
aware Faster R-CNN method. Two sub-networks with VGG16 backbones take vis-
ible and thermal images, respectively, as input and generate proposal bounding
boxes. Then, the RPN module computes a fusion weight of the two modalities.

One of themost notablemethods is theMultispectral SimultaneousDetection ap-
proach of Brazil et al. (2017b). This detector uses a Multispectral Proposal Network
(MPN) and a Multispectral Classification Network (MCN). The MPN starts from
two separate VGG16 backbones (one for RGB and one for thermal). The two net-
works are then joined using halfway fusion by concatenating convolutional feature
maps before generating candidate bounding boxes. The MCN architecture is de-
signed similarly to the MPN. The total loss of the whole architecture consists of six-
teen loss terms, including segmentation, classification, and bounding box loss. With
this huge network architecture (and improved training annotations forKAIST), their
results represent the multispectral state-of-the-art on the KAIST dataset.

Fritz et al. (2019) used VGG16 as an RPN backbone to analyze generalization
ability on threemultispectral pedestrian detectiondatasets. They started fromVGG16
networks pre-trained on ImageNet and adapted them to detect in the visible or
infrared spectrum. Halfway fusion was then performed to obtain a multispectral
model for analyzing generalization ability among chosen datasets. Their experi-
mental results showed that the KAIST Multispectral Pedestrian Benchmark is the
best dataset to train well-generalizing multispectral RPNs.

A common assumption in multispectral pedestrian detection is that the color-
thermal image pairs are geometrically aligned. However, the modalities are only
weakly aligned in practice which degrades pedestrian detection performance in two
ways. Firstly, features from different modalities are mismatched in the correspond-



2.2 Multispectral Pedestrian Detection 23

ing positions. Secondly, it can be difficult to cover the objects in bothmodalities with
a single bounding box. Thus, an Aligned Region CNNwas proposed by Zhang et al.
(2019a) to deal with weakly-aligned multispectral data. A Region Feature Align-
ment module captures the positional shift and adaptively aligns the region features
of the two modalities. Then a multi-modal fusion model called an Aligned Region
CNN (AR-CNN) used to performs feature re-weighting that selects more reliable
features and suppresses the others.

Several top-performingmultispectral pedestrian detectors are built upon anchor-
based detectors. Many anchor boxes are needed during training to ensure sufficient
overlap with most ground-truth boxes. This causes slowdown during training, and
the performance significantly drops when applied to small images. A box-level seg-
mentation learning framework for accurate, real-time multispectral pedestrian de-
tection was proposed by Cao et al. (2019) that eliminates the need for anchor boxes.
They took pairs of aligned visible and thermal images and their input bounding box
annotations.

A common advantage of thesemultispectralmethods is that there aremanyways
to fuse image features and improve results. Because they fuse both visible and ther-
mal images to enrich image representation, they usually leverage two-stage frame-
works suitable for learning combined representations of two inputs. However, since
they are usually based on far more complex network architectures that align modal-
ities at inference time, detection speed usually slows to under 5 fps.

Some approaches emphasize applicability to real-time applications that require
efficient pedestrian detection. These utilize one-stage detectors which are typically
significantly faster than two-stage architectures. For example, a fast single-pass net-
work architecture (YOLOv2 (Redmon and Farhadi, 2017) with pre-trained weights
from the PASCALVOC2007)was used byVandersteegen et al. (2018) formultispec-
tral person detection. The network takes four image channels as input and can detect
at about 80 fps. However, the accuracy on the KAIST dataset is limited, especially on
nighttime images. To improve nighttime detection, Lee et al. (2018) leveraged a de-
convolutional, single-shot multi-box detector (DSSD) proposed by Fu et al. (2017)
to exploit the correlation between visible and thermal features. They proposed the
deep fusion network taking thermal and visible spectrum images as input. Then,
the feature maps are concatenated using halfway fusion before feeding to the DSSD
network. Their results on the KAIST dataset showed that the DSSD with a ResNet-
101 backbone improves miss rate by about 1% - 2% compared to the traditional SSD
network with the VGG16 backbone. Similarly, to balance the trade-off between two-
stage detectors which achieve higher accuracy and one-stage detectors that focus on
fast performance, two Single Shot Detectors (SSDs)were used by Zheng et al. (2019)
in combination with Gated Fusion Units that learn the best combination of feature
maps generated by the two SSD branches.
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Aside from the advantages of the aforementioned multispectral models to make
the most out of both modalities and obtain the state-of-the-art result, there are some
disadvantages to multispectral detection:

• Color-thermal image pairs and their annotations might not always be avail-
able, as they can be prohibitively expensive to collect and require image align-
ment to be completely accurate.

• To obtain well-aligned data from two-cameras systems, the sensors must be
calibrated and synchronized. Estimating intrinsic and extrinsic parameters in
calibration is not an always easy, especially with low-resolution thermal im-
ages mounted on amobile platform. A slight misalignment between color and
thermal imagery can reduce the performance of the detector.

• Multispectral models are typically complex and based on two-branch network
architectures receiving two inputs. This complexity can result in difficulties
with deployment.

• Aside from the technical and economic motivations for preferring thermal-
only sensor deployment over multispectral methods, using visible spectrum
images does not guarantee the same privacy-preserving affordances offered
by thermal-only detectors.

Motivation by these challenges, we focus on improving both performance and speed
for pedestrian detection using only thermal imagery.

2.3 Single-modality Methods for Thermal Imagery
In part because of the disadvantages listed above, some pedestrian approacheswork
in single-modality imagery. Most concentrate on how to best leverage the advan-
tages of detectors trained on other modalities while training a detector that does not
require these extra modalities at inference time.

2.3.1 Pedestrian detection in thermal imagery
There are a few works that, like ours, focus on pedestrian detection using only ther-
mal imagery. An early example is thework by John et al. (2015), which uses adaptive
fuzzy C-means clustering to segment IR images and retrieve candidate pedestrians,
then prunes candidate pedestrians by classifying with CNN. The authors report a
significant reduction in computational complexity compared to the sliding window
approach.
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Thermal images are powerful for detecting pedestrians in conditionswhere color
images fail, such as at night. However, during the day other objects in the sur-
roundings are as warm as or warmer than humans, making them less distinguish-
able. Ghose et al. (2019) addressed the challenge of pedestrian detection in ther-
mal images, especially during the day. They used a Pixel-wise Contextual Attention
network (PiCA-Net) to create saliency maps. Then, Faster R-CNN was trained for
pedestrian detection using the original thermal image and another channel contain-
ing the saliency map.

A few approaches leverage RGB images as data augmentation by performing
RGB to thermal image translation. For instance, many data preprocessing steps
were applied by Herrmann et al. (2018) to make thermal images look more similar
to grayscale-converted RGB images, allowing pre-trained RGB features to be effec-
tive in the thermal domain. Then a fine-tuning step was performed on a pre-trained
SSD300 detector. Recently, the Cycle-GAN was used by Devaguptapu et al. (2019)
as a preprocessing step for image-to-image translation before feeding the input to
Faster-RCNN. Their model consists of two branches. One branch is pre-trained on
large-scale RGB datasets and fine-tuned using a visual RGB input that obtained us-
ing an image-to-image (I2I) translation framework from a given thermal image. The
second branch follows the standard training process on a relatively smaller thermal
dataset. The multi-modal architecture helps to borrow complex high-level features
from the RGB domain to improve object detection in the thermal domain.

The common drawbacks of most of the methods mentioned above are that they
use many complex preprocessing steps or use hand-crafted features. As a conse-
quence, their performance suffers, and speed is still low such as Fuzzy C-means
by John et al. (2015) requires 2.5 seconds per frame (0.4 FPS) and achieves only 34%
miss on KAIST and TPIHOG Baek et al. (2017) needs 40 seconds per frame to reach
only a 56.8% miss rate.

2.3.2 Pedestrian detection in thermal imagery at night
One of the biggest advantages of thermal imagery is the ability to detect pedestrians
at night. Thus, some works approached the pedestrian detection task with thermal
imagery concentrating only on nighttime detection. For example, Heo et al. (2017)
used adaptive Boolean map-based saliency (ABMS) to boost the pedestrian from
the background based on the particular season. They showed that pedestrians have
higher saliency than the background, and theABMS is used as a hardwired kernel in
a saliency feature map combined with YOLOv2 for pedestrian detection. Another
work is the nighttime pedestrian detector proposed by Liu et al. (2016a). Firstly,
the temperature matrix of infrared images is used to extract candidate pedestrians.
Then, the histogram of oriented gradient and intensity (HOGI) feature are extracted
from the infrared image. Finally, theHOGI features are employed to train a classifier
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based on two kinds of machine learning algorithms. Results show that a pedestrian
region of interest (ROI) extraction method based on the temperature of the matrix
can greatly overcome the low infrared image resolution, environmental reflection,
and stability of the device itself.

The work by Baek et al. (2017) proposed to use Thermal Position Intensity His-
togram of Oriented Gradients (TPIHOG) and the Additive Kernel SVM (AKSVM)
for nighttime-only detection in thermal imagery. The proposed TPIHOG includes
detailed information on gradient location; therefore, it has more distinctive power
than the HOG. The AKSVM performed faster and better than the linear SVM in
terms of detection performance.

Most of these approaches are designed with two processing steps with hand-
crafted feature extraction as the first step, limiting their ability to compete with the
state-of-the-art. Moreover, focusing on only night-time (discarding day-time) is not
a full solution for pedestrian detection applications. We focus on both daytime and
nighttime thermal-only detection, but we tackle the problem of transferring knowl-
edge between domains and adapting the learned knowledge from the source do-
main to the new domain. Our domain adaptation approaches are relatively simple
because they are based on the single-stage detector YOLOv3 byRedmon and Farhadi
(2018), which can be optimized end-to-end and retains its real-time performance.

2.4 Domain Adaptation
Domain adaptation has a long history for both supervised and unsupervised recog-
nition in computer vision. Domain adaptation attempts to exploit learned knowl-
edge from a source domain in a new target domain. Kouw (2018) discussed transfer
learning and domain adaptation and how to generalize from a source to a target do-
main, including risk minimization and three special cases of dataset shift. Many
works have investigated domain adaptation techniques to bridge the gap between
domains, such as Long et al. (2015) proposed a Deep Adaptation Network (DAN)
architecture to reduce the domain discrepancy by enhancing the feature transfer-
ability in order to generalize the domain adaptation scenario. The hidden repre-
sentations are embedded into a reproducing kernel Hilbert space, where the mean
embedding of different domain distributions can be explicitly matched. Another
interesting work is Masana et al. (2017) who addressed domain transfer problem
with the compression of DNN, which learned representations in the large source
domain and exploited on a smaller target domain. They focused on compression
algorithms based on low-rank matrix decomposition called Domain Adaptive Low
Rank (DALR) method. They analyzed the activation statistics when compressing
weights by optimally remove the redundancy in the weights. Their experiments
showed that the 6th fully connected layer of VGG19 could be compressed four times
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more with only a minor or no loss in accuracy and significantly improved classifi-
cation results. Their methods allowed for compression down to only 5-20% of the
original number of parameters, with only a minor drop in performance for domain-
transferred networks.

For domain adaptation between thermal and visible domain, an early work in
thermal infrared person detection is that of Herrmann et al. (2018), which uses do-
main adaptation based on feature transformation techniques (inversion, equaliza-
tion, and histogram stretching) to transform thermal images as close as possible to
the color. The translation problem can be seen as two kinds of learning: (1) the su-
pervised learning problem where the network needs to access corresponding pairs
of instances from both domains; and (2) the unsupervised learning problem, where
no such paired instances are available. In order to focus on the latter case, which is
more difficult but at the same time more realistic as acquiring the dataset of paired
images is often difficult in practice, a deep architecture called an Invertible Autoen-
coder (InvAuto) was proposed by Teng et al. (2018). It treats an encoder as an
inverted version of a decoder in order to decrease the trainable parameters of image
translation processing. Similarly, Wang et al. (2018c) proposed a model including a
CycleGAN (Zhu et al., 2017b) to translate thermal facial images into visible images,
and a detector with Pix2Pix to locate important facial landmarks on visible faces
and help the generative network to generate more realistic images that are easier to
be recognized. Their experiments demonstrated that the faces generated have good
visual quality and maintain identity preserving features.

One of the closest methods to one of our is the work of Devaguptapu et al. (2019)
who proposed a “pseudo-multimodal” object detector trained on natural visible im-
age data to improve object detection performance in thermal images. Firstly, they
used the image-to-image translation framework Cycle-GAN (Zhu et al., 2017b) to
automatically generate pseudo-RGB equivalents of a given thermal image. Then, a
Multi-modal Thermal Object Detection Methodology (MMTOD) for object detec-
tion in the thermal image, which consists of two branches of the network, one for
the thermal image input and the other for the RGB input. The positive signal of their
method is they do not need the pairs of image training example for two modalities,
for each thermal image input, they used image-to-image (I2I) translation network to
generate a pseudo-RGB, then two these inputs are passed through a detector which
is Faster R-CNN with Region Proposal Network. Their experimental result on two
datasets FLIR and KAIST dataset outperformed the baseline. However, the result is
still limited compared to state-of-the-art methods, and the speed is only 0.11 second
per image (around 9 FPS).
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2.5 Contributions of this Thesis with Respect to the
State-of-the-art

In all of our approaches, instead of relying onmultispectral inputwe focus on thermal-
only detection using a single-pass detector which is both fast and accurate during
the day and at night. Moreover, we do not approach the thermal domain by learning
cross feature representations between visible and thermal. Instead, we approach the
detection problembypreserving the learned feature representations from the source
RGB domain via a variety of novel adaptation strategies. Our thermal pedestrian
detectors are, to the best of our knowledge, the state-of-the-art in single-modality
pedestrian detection today. Several of our approaches are even competitive with
multispectral detectors despite the fact that we use no visible spectrum imagery at
detection time.



Chapter 3

Bottom-up Domain Adaptation for
Pedestrian Detection in Thermal
Imagery†

In this chapter, we investigate two domain adaptation techniques for fine-tuning a
YOLOv3 detector to perform accurate and robust pedestrian detection using thermal
images. Our approaches are motivated by the fact that thermal imagery is privacy-
preserving in the sense that person identification is difficult or impossible in low-
resolution images. Results on the KAIST dataset show that our approaches perform
comparably to state-of-the-art approaches and outperform the state-of-the-art on
nighttimepedestrian detection, even outperformingmultimodal techniques that use
both thermal and visible spectrum imagery at test time.

3.1 Introduction
Object detection is a classical problem in computer vision, and person and pedes-
trian detection is one of the most important topics for safety and security applica-
tions such as video surveillance, autonomous driving, person re-identification, and
numerous others. The estimate of the total number of installed video surveillance
cameras is significantly increasing. The advent of autonomous driving promises to
add many more cameras, all detecting and observing humans in public spaces.

Recent works on pedestrian detection have investigated the use of thermal imag-
ing sensors as a complementary technology for visible spectrum images (Vander-
steegen et al., 2018). Approaches such as these aim to combine thermal and RGB
image information in order to obtain the most robust possible pedestrian and per-

†Portions of this chapter were published in: M. Kieu, A. D. Bagdanov, M. Bertini, A. Del Bimbo,
“Domain Adaptation for Privacy-preserving Pedestrian Detection in Thermal Imagery.” Proceedings
of the International Conference on Image Analysis and Processing (ICIAP), 2019.
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son detection and any time of the day or night. Such detectors require both visible
spectrum and thermal images to function.

Citizens are naturally concerned that being observed violates their right to pri-
vacy. In this chapter we are interested in investigating the limits of pedestrian detec-
tion using thermal imagery alone. The advantages of thermal imagery in this respect
is shown in figure 1.5, illustrating how thermal images can retain distinctive image
features for pedestrian detection while preserving privacy. Our hypothesis is that
thermal images can guarantee the balance between security and privacy concerns.

The rest of this chapter is organized as follows. In the next section, we briefly
review related work from the computer vision literature on pedestrian detection,
domain adaptation, and thermal imaging. In section 3.3 we describe conventional
top-down domain adaptation approaches for pedestrian detection problem in ther-
mal imagery. Then, in section 3.4 we detail our proposed bottom-up approach to
domain adaptation that we apply to the problem of privacy-preserving person de-
tection. We report on a range of experiments conducted in section 3.5, and conclude
in section 3.6 with a discussion of our contributions.

3.2 Related Work
In this section we review some recent work related to pedestrian detection, domain
adaptation, and computer vision for thermal imagery.
Person and pedestrian detection. The literature, both classical and contemporary,
onpedestrian detection is vast (BenensonRodrigo andBernt, 2014). With the advent
of deep neural networks in recent years, pedestrian detection is achieving higher and
higher accuracy (Angelova et al., 2015b). However, pedestrian detection remains a
challenging task due to occlusion, changing illumination and variation of viewpoint
and background (Ouyang et al., 2016b). Several CNN-based pedestrian detection
methods compete for the state-of-the-art on standard benchmark datasets for pedes-
trian detection as described in section 2. Examples include Pedestrian Detection
aided by Deep Learning Semantic Tasks (Yonglong Tian and Tang, 2014), Scale-
Aware Fast RCNN(Li et al., 2015), LearningMutual Visibility Relationship (Ouyang
et al., 2016b). These state-of-the-art techniques use RGB images as input, while our
goal is to investigate the potential of detection in thermal imagery alone.
Domain adaptation. Domain adaptation has played amain role in both supervised
and unsupervised recognition in computer vision. Domain adaptation attempts to
exploit learned knowledge from the source domain in the target domain. One of our
approaches was inspired by the AdapterNet (Hazan et al., 2018), which proposed
adding a new shallow Convolutional Neural Network (CNN) before the original
model that transforms the input image the target domain before passing through an
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unmodified network trained in the source domain. Several works have tried to miti-
gate the distance between the two domains by applying transformation techniques.
For example, the idea from Herrmann et al. (2018) was to transform infrared data
(thermal domain) as close as possible to the color domain by using feature trans-
formations: inversion, equalization and histogram stretching. A deep architecture,
called Invertible Autoencoder (InvAuto), introduced a method to treat an encoder
as an inverted version of a decoder in order to decrease the trainable parameters of
image translation processing (Teng et al., 2018).
Pedestrian detection exploiting thermal imagery. Several works demonstrate that
using thermal images in combination with RGB images can improve object detec-
tion results. An example is the work by Xu et al. (2017), which suggests a method
based on a cross-modality learning framework focusing only on visible images at
test time. During training time, they use thermal image features to boost visible de-
tection results. Their method has twomain phases: Region Reconstruction Network
(RRN), for learning a non-linear feature mapping between visible and thermal im-
age pairs, and a Multi-Scale Detection Network (MDN) which performs pedestrian
detection from visible images by exploiting the cross-modal representations learned
with RRN.

A variety of recent works leverage two-stage network architectures to investi-
gate the combination of visible and thermal features. Wagner et al. (2016) investi-
gated two types of fusion networks. Another approach is the ACF+T+HOG tech-
nique (Jingjing et al., 2016)which considers four different network fusion approaches
(early, halfway, late, and score fusion). Konig et al. (2017) introduced a combina-
tion Fully Convolutional Region Proposal Networks (RPN) and Boosted Decision
Trees Classifier (BDT) for person detection in multispectral video. Illumination-
aware Faster R-CNN (IAF RCNN) (Li et al., 2019) and Illuminating Pedestrians via
Simultaneous Detection and Segmentation (Brazil et al., 2017b) used the Faster R-
CNN detector to perform pedestrian detection on paired RGB and thermal imagery.
A Fusion architecture network (MSDS-RCNN) including a multispectral proposal
network (MPN) and a multispectral classification network (MCN) was proposed
by Chengyang Li and Tang (2018). This fusion network currently yields the best
results on both visible and thermal image pairs on the KAIST dataset.

In a slightly different direction, the combination of HOG and SVM proposed
by Baek et al. (2017) focused on only nighttime detection. Theirmethod uses a Ther-
mal Position Intensity Histogram of oriented gradient (TPIHOG) and the additive
kernel SVM (AKSVM) for training and testing.

Differing from most of the above works which used two-stage detectors, some
papers utilize a one-stage detector (Lee et al., 2018; Vandersteegen et al., 2018). The
authors of (Lee et al., 2018) used a deconvolutional single shot multi-box detector
(DSSD) to exploit correlation between visible and thermal features for person detec-
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Figure 3.1: The YOLOv3 architecture. k× indicates the repetition of blocks k times.

tion. A fast RGB single-pass network architecture (YOLOv2 (Redmon and Farhadi,
2017)) was adopted by Vandersteegen et al. (2018) for fine-tuning for person detec-
tion.

In this chapter, we investigate the potential of twodomain adaptation approaches
including top-downdomain adaptation andbottom-updomain adaptation for pedes-
trian detection tasks in thermal-only domain. Our extensive experimental results
show that our approaches outperform the state-of-the-art both single modality and
multimodal approaches in night-time on the challenge KAIST dataset.

3.3 Top-down Domain Adaptation Approaches
In this section we describe the approaches to domain adaptation that we will later
evaluate in section 3.5. All of our approaches use the YOLOv3 detector which is
adapted to a target domain through a sequence of domain adaptation steps.

One of the most standard approaches to adaptation of deep models to new do-
mains is fine-tuning. Since fine-tuning typically works by decapitating the original
network and training via backpropagation from the top of the network down to the
bottom, we refer to the use of fine-tuning for domain adaptation as top-down adapta-
tion. The top-down adaptation approaches we consider are based on transfer learn-
ing and use one of the fastest and most accurate detectors available today: YOLOv3
byRedmon and Farhadi (2018), which is pre-trained on ImageNet and subsequently
fine-tuned on the MS COCO dataset by Lin et al. (2014). We adapt the YOLOv3 de-
tector to the new target domain through a sequence of domain adaptation steps.
YOLOv3 is a very deep detection network with 106 layers and three detection heads
for detecting objects at different scales as illustrated in figure 3.1. YOLOv3 uses a
fully-convolutional residual network as its backbone. The network is coarsely struc-
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Figure 3.2: Top-down domain adaptation refers to using fine-tuning to adapt a de-
tector to a new domain (e.g. thermal imagery). Adaptation to the new input distri-
bution happens only via back-propagated loss from the end of the network (at the
top) down to the new input distribution.

tured into five residual groups, each consisting of one or more residual blocks. As
we see in figure 3.1, these five groups include 23 residual blocks, each consisting of
two-convolutional layers with residual connections adding the input of each block
to the output.

We refer to this as top-down adaptation because of the way fine-tuning on the new
domain happens only via back-propagation where the supervision signal comes
from the loss at the end (i.e. the top of the network), down to the new input dis-
tribution. In figure 3.2 we illustrate this top-down adaptation, which refers to the
fine-tuning approach to the new input distribution (thermal domain in our case).
We fine-tune the pre-trained RGB detector to adapt to the new thermal input.

In the descriptions below, we use a notational convention to refer to each tech-
nique that indicates which image modalities are used for training and testing. For
example, the technique reported as TD(VT, T) is Top-Down domain adaptation,
with adaptation on Visible spectrum images, followed by adaptation on Thermal
images, and finally tested on Thermal images. The three top-down domain adapta-
tion approaches we consider are:

• Top-down visible: TD(V, V): This domain adaptation approach directly fine-
tunes YOLOv3 on visible images in the target domain for pedestrian detection.
Testing was performed on visible spectrum images. This experiment mainly
served as the baseline for comparison with single modality techniques on vis-
ible imagery.

• Top-down thermal: TD(T, T): This approach directly fine-tunes YOLOv3 on
only thermal images by duplicating the thermal image three times, once for
each input channel of the RGB-trained detector. Testing was performed only
on thermal imagery (no RGB images are available at test time). This exper-
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iment served as the baseline for the comparison with single modality tech-
niques and domain adaptation in thermal imagery alone.

• Top-down visible/thermal: TD(VT, T): This approach is a variant of the two
top-down approaches described above. First, we adapt YOLOv3 to the visible
spectrum pedestrian detection domain, and then we fine-tune that detector
on thermal imagery. Testing was performed only on thermal images (no RGB
images available). The idea here was to determine if knowledge from the vis-
ible spectrum could be retained and exploited after the final adaptation to the
thermal domain.

3.4 Bottom-up Domain Adaptation: BU(VAT, T)
A hypothesis of ours is that in top-down domain adaptation, as described in the
previous section, early convolutional layers are difficult and slow to adapt to the
new input distribution due to their distance from the backpropagated loss. Here
we propose a type of bottom-up domain adaptation which first trains a bottom-up
adapter segment and then proceeds to fine-tune the detector using a top-down loss.
A conceptual schema of this approach is given in figure 3.3. The main components
of our bottom-up domain adaptation approach are as follows.

3.4.1 Notation
Let fΘ(x) represent the detector (YOLOv3 in our case) parameterized by parame-
ters Θ = {θ1, θ2, . . . , θN}, where θi represents the parameters of the ith layer of the
network. We use the notation Θn:m to denote the parameters of layers n through m
of the network f (so Θ = Θ1:N). Similarly, we use fn:m to represent the forward pass
of the network f from layer n through layer m. We assume f to be pre-trained for
detection in the RGB domain – in our experiments we start from the network TD(V,
V) described above.

3.4.2 Adapter segment training
The first step in bottom-up domain adaptation is to train an adapter segment to mimic
RGB feature activations when given thermal images as input. We create a new net-
work segment f ′ identical to the first m layers of f (i.e. copying the weights of TD(V,
V). Given paired visible/thermal spectrum images (xv, xt) (such as those available
in KAIST), we train the parameters θ′ of f ′ using original detection loss for pedes-
trian detection with thermal images as input. The main idea of the adapter segment
is to intervene an early stage of the RGB-trained detector network and to train this
adapter segment to adapt to the thermal domain. The number of layers of adapter
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Figure 3.3: Bottom-up domain adaptation. Starting from an RGB-trained detector,
an adapter segment is trained to take thermal images as input and produce convolu-
tional features similar to the features of the original network. When the adapter seg-
ment training has converged we reconnect the adapter segment to the RGB-trained
detector for the final fine-tuning.

segment m is a hyperparameter, and in early experiments we found m = 10 to be a
good point of intervention for adapter segment training.

As illustrated in the top of the figure 3.3, the main idea of the Adapter Segment
is to intervene at some early stage of the RGB-trained detector network and to train
a parallel branch that takes only thermal imagery as input and matches as best as
possible the RGB feature maps at the point of intervention. In our implementation,
we decapitate the YOLOv3 network after the first ten convolutional layers and train
a ten-layer adapter segment to match the RGB-network using only thermal images
as input.

The starting point for this approach is the TD(V, V) network described above.
That is, the detector weights we start from are already adapted to the KAIST do-
main on visible images. We then train the adapter segment to adapt to the thermal
image input from the KAIST training set. Thus, VAT indicates adapting on visible do-
main (V) first, then training the adapter segment (A) on thermal domain, and finally
reconnecting the adapter segment for the final fine-tuning on the thermal domain (T).
The adapter segment is the “A” in the “VAT” mnemonic: BU(VAT, T).
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3.4.3 Fine-tuning of entire detector
After adapter segment training has converged,we reconnect the newly trained adapter
segment to the original RGB-trained detector for the final fine-tuning of the whole
detector on thermal images (as illustrated at the bottom of figure 3.3). To do this we
train the final detection network fm+1:N( f ′(xt)) using only thermal images xt and
the original loss of the YOLOv3 network.

3.5 Experimental Results
In this section we report results of experiments we performed to evaluate the per-
formance of adapted detectors for pedestrian detection in thermal imagery. More
importantly, we detail the dataset, evaluation metrics which will be applied in the
next chapters.

To evaluate our proposed approaches to domain adaptation we used a standard
benchmark dataset of RGB/thermal image pairs and standard evaluation prototols.

3.5.1 The KAIST Multispectral Pedestrian Detection Benchmark
All experiments of this thesis were performed on the publicly available KAISTMul-
tispectral Pedestrian Detection Benchmark (Hwang et al., 2015). KAIST is the only
large-scale datasetwithwell-alignedvisible/thermal pairs (Devaguptapu et al., 2019),
and it contains videos captured both during the day and at night. The dataset con-
sists of 95,328 aligned visible-thermal image pairs in total split into 50,172 for train-
ing and 45,156 for testing. The dataset contains 103,128 annotations of 1,182 unique
pedestrians. There are several reasons we choose KAIST dataset as a main dataset
for our experiments, for example: (1) KAIST is one of the largest available well-
aligned visible/thermal image pairs dataset for pedestrian detection task; (2) over
the past four years, it attracted a vast of research and the annotations of the KAIST
dataset have been improved for both training and test set (Jingjing et al., 2016; Li
et al., 2018);

According to the official samplingmethod from the baseline (Hwang et al., 2015)
and the some recent papers (Konig et al., 2017; Vandersteegen et al., 2018), we sam-
pled images to obtain the train set and test set, the sampled procedure will be ex-
plained again as following:

• For test set, we sampled every 20 frames from 45,156 images (this means we
get 1 frame for each 20 frames). Finally, we obtained 2,252 visible/thermal
image pairs for the test set, of which 797 pairs are captured at night and 1,455
pairs at day time.
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Figure 3.4: Example thermal/RGB image pairs from the KAIST dataset.

• For the train set, we also sampled every 2 frames and filtering (e.g occlusion,
the bounding box under 50 pixels) from 50,172 images to obtain 19,058 visi-
ble/thermal pairs.

The train and test annotation was provided publicly by the baseline (Hwang et al.,
2015). Figure 3.4 gives some example thermal/visible image pairs from the KAIST
dataset (Hwang et al., 2015).

3.5.2 Evaluation metrics
For evaluating our proposed methods on KAIST and to compare with the state-
of-the-art, we strictly follow the metrics and the reasonable setting provided by the
KAIST benchmark (Hwang et al., 2015) and the state-of-the-art results (Li et al.,
2018; Vandersteegen et al., 2018; Jingjing et al., 2016; Konig et al., 2017).

We use standard evaluationmetrics for object detection, namely log averagemiss
rate as a function of False Positives Per Image (FPPI). The log-average miss rate is
calculated for thresholds in the range of [10−2, 100] with an Intersection over Union
(IoU) under the reasonable setting (Dollar et al., 2012; Hwang et al., 2015; Jingjing
et al., 2016). The reasonable setting is composed of day-time, night-time, and all (both
day and night time) sets of images. For computing miss rates (MR), an Intersec-
tion over Union (IoU) threshold of 0.5 is used to calculate True Positive (TP), False
Positives (FP) and False Negatives (FN). True Positive (TP) is counted if a detected
bounding box is matched to a ground-truth box with an Intersection of Union (IoU)
of 50% or greater. Unmatched detected and ground truth boxes are considered False
Positives and False Negatives, respectively. The MR is computed by averaging miss
rate (false negative rate) at nine False Positives Per Image (FPPI) rates evenly spaced
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in log-space. The evaluation source code we used from the work by Vanderstee-
gen et al. (2018), which is an updated version of the Matlab code from Dollar et al.
(2012).

3.5.3 Implementation details
We used the YOLOv3 (Redmon and Farhadi, 2018) detector to evaluate our ap-
proach on KAIST. Our detectors were implemented using PyTorch, and we trained
every domain adaptation strategy for 50 epochs with a learning rate 0.0001 and the
Adam optimizer.

3.5.4 Comparative performance analysis
The plots in figure 3.5 show detailed results for our approach and those described
by Vandersteegen et al. (2018) in terms of precision/recall (left column) and log-
average miss rate (right column). The plots also break down results in terms of
time-of-day: first row averaged over all times, second row daytime only, third row
nighttime only.

From the results in figure 3.5 we can make several observations. First of all, for
combined day and night results (first row) multimodal techniques like YOLO_TLV
which exploit both thermal and visible spectrum images at test time are superior to
our domain adaptation approaches which use only thermal imagery. Surprisingly,
however, the gap between bottom-up domain adaptation BU(VAT, V) and YOLO_-
TLV is only about 4% in log-average miss rate, which is quite promising.

The reason thatmultimodal approaches outperformdomain adaptation seems to
be due to the advantage they havewhen detecting during the day. In the second row
of figure 3.5, in fact, we see that the technique exploiting visible spectrum images
during at test time on daytime images outperform all our approaches which only
use thermal imagery.

Or two domain adaptation approaches, both top-down and bottom-up, outper-
form all other techniques when testing at nighttime only (third row of figure 3.5).
Though this is not very surprising, of particular note is the fact that performing do-
main adaptation on to visible images before adapting to thermal input only is bene-
ficial. This can be seen in the difference between TD(VT, T), BU(VAT, T) – both of
which start by fine-tuning YOLOv3 on KAIST visible images – and TD(T, T), which
directly fine-tunes YOLOv3 on thermal images. This seems to indicate that both top-
down and bottom-up domain adaptation are able to retain and exploit some domain
knowledge acquired when training the detector on visible spectrum imagery.

As a final comment, we note that the BU(VAT, T) approach requires significantly
less training time than the others. In only 15 epochs it converged to 84.4% preci-
sion, which is the same result for top-down adaptation after 50 epochs. Bottom-up
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Figure 3.5: Comparative performance analysis. Precision/Recall (left, higher is bet-
ter) and Log-average Miss Rate (right, lower is better) of our method and other
state-of-the-art papers are given. See text for detailed analysis.
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Table 3.1: Log-average Miss Rate (%) on KAIST dataset (lower is better). The
final two columns (V:Visible, T:Thermal) indicate which image modality is used
at test time. Our approaches outperform all single-modality techniques from the
literature, and outperform all methods at night.
Method MR all MR day MR night V T
KAIST baseline (Hwang et al., 2015) 64.76 64.17 63.99 X X
Late Fusion (Wagner et al., 2016) 43.80 46.15 37.00 X X
Halfway Fusion (Jingjing et al., 2016) 36.99 36.84 35.49 X X
RPN+BDT (Konig et al., 2017) 29.83 30.51 27.62 X X
IATDNN+IAMSS (Guan et al., 2018) 26.37 27.29 24.41 X X
YOLO_TLV (Vandersteegen et al., 2018) 31.20 35.10 22.70 X X
DSSD-HC (Lee et al., 2018) 34.32 - - X X
RRN+MDN (Xu et al., 2017) 49.55 47.3 54.78 X
TPIHOG (Baek et al., 2017) - - 57.38 X
SSD300 (Herrmann et al., 2018) 69.81 - - X
Ours: TD(V,V) 33.30 31.70 39.00 X
Ours: TD(T,T) 36.00 40.90 22.40 X
Ours: TD(VT,T) 36.30 42.30 20.40 X
Ours: BU(VAT,T) 35.20 40.00 20.50 X

adaptation seems to be an effective way to accelerate top-down adaptation through
fine-tuning.

In table 3.1 we provide a comparison of our methods and 10 others methods
from the state-of-the-art. Our approaches outperform all other singlemodality tech-
niques (both visible- and thermal-only). Compared to multi-model approaches, we
outperform all of them at nighttime, and comparably on all.

3.5.5 Qualitative evaluation
In figure 3.6 we show some example detection results on the KAIST dataset for our
BU(VAT, T) domain adaptation approach in daytime (first row) and nighttime (sec-
ond row). Note how, even though person identification is impossible in all of the
example images, the detector adapted using bottom-up domain adaptation is able to
detect pedestrians even in the presence of occlusion, scale variation, and changing
illumination conditions.

3.6 Conclusions
In this chapter we investigated the potential of two domain adaptation strategies for
adapting pedestrian detectors to work in the thermal domain. The goal of this work
is to achieve the best possible person detection performance while relying solely on
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Figure 3.6: Qualitative results on the KAIST test set. The first row gives example
detections on daytime images from KAIST, and second row on nighttime images.
Even in the presence of occlusions and scale variations, thermal imagery retains
enough information to effectively perform pedestrian detection – day or night – in
a privacy-preserving way without using any visible imagery at detection time.

thermal spectrum imagery. This is motivated by the privacy-preserving aspects of
thermal images, since persons are difficult, if not impossible, to reliably identify in
thermal images.

Our results indicate that relatively simple domain adaptation schemes can be ef-
fective, and that the resulting detectors can outperformmultimodal approaches (i.e.
those that use thermal and visible images at test time) at nighttime, and can perform
comparably when testing on day night images combined. Moreover, results seem
to indicate that a first adaptation to visible imagery can be useful to acquire domain
knowledge that can then be exploited after final adaptation to thermal domain.





Chapter 4

Layer-wise Domain Adaptation for
Pedestrian Detection in Thermal
Images†

Building on our earlier work on bottom-up domain adaptation (see the previous
Chapter) for privacy-preserving pedestrian detection, we proposed a new type of
bottom-up domain adaptation strategy, which we call layer-wise domain adaptation.
We conducted an extensive experimental evaluation comparing top-downandbottom-
up domain adaptation, as well as layer-wise adaptation onmore datasets. Our layer-
wise domain adaptation approach also includes two steps: first, training an adapter
segment corresponding to initial layers of the RGB-trained detector adapts to the
new input distribution; then, we reconnect the adapter segment to the original RGB-
trained detector for final adaptation with a top-down loss, the main difference is to
train the adapter segment. To the best of our knowledge, our layer-wise domain
adaptation approach outperforms the best-performing single-modality pedestrian
detection results on KAIST, and outperforms the state-of-the-art on FLIR©.

4.1 Introduction
State-of-the-art work on pedestrian detection hasmostly concentrated on usingmul-
tispectral images combining visible and thermal images for training and testing such
as (Wagner et al., 2016; Konig et al., 2017; Guan et al., 2018; Li et al., 2018, 2019).
Only a few single-modality detection works focus only on thermal images (John
et al., 2015; Herrmann et al., 2018; Baek et al., 2017; Devaguptapu et al., 2019; Kieu
et al., 2019). Robust pedestrian detection on only thermal data is a non-trivial task

†Portions of this chapter were published in: M. Kieu, A. D. Bagdanov, M. Bertini, “Bottom-up
and Layer-wise Domain Adaptation for Pedestrian Detection in Thermal Images”, ACM Transactions
on Multimedia, 2020.
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and there is still a large potential to improve the thermal detection performance.
Our previous work probed the limits of pedestrian detection using thermal imagery
alone (Kieu et al., 2019). We investigated three top-down domain adaptation ap-
proaches and proposed a bottom-up domain adaptation approach, which outper-
form state-of-the-art pedestrian detection at nighttime in thermal imagery. Exploit-
ing only thermal data is a fundamental advantage of our work (visible data are not
employed at both training adaptation and the test phase), this is crucial when de-
ploying surveillance systems under a variety of environmental conditions.

In addition to extending our work on bottom-up domain adaptation for thermal
pedestrian detection, in this chapter we focus on improving pedestrian detection re-
sults on thermal-only data by proposing a new, layer-wise domain adaptation strat-
egy which gradually adapts early convolutional layers of a pre-trained detector to
the thermal domain. The main motivation for layer-wise adaptation is that, from
previous work on bottom-up adaptation, we recognized that adaptation of early lay-
ers of the network helped the most to preserve the learned knowledge from the visi-
ble domain which is useful for the adaptation to the thermal domain. Our hypothe-
sis is that if we adapt slowly from the bottomup in a layer-wisemanner, it should im-
prove adaptation. Through extensive experimental evaluation on two datasets and
an analysis and interpretation of the contribution of bottom-up adaptation we show
that, though only exploiting thermal imagery at test time, our domain adaptation
approaches outperform state-of-the-art thermal detectors on the KAIST Multispec-
tral PedestrianDataset (Hwang et al., 2015) andFLIR Starter ThermalDataset (FLIR,
2018). Moreover, our bottom-up and layer-wise adaptation approaches outperform
many state-of-the-artmultispectral detection approaches which exploit both thermal
and visible spectra at test time.

The contributions of this work are:

• We propose a new type of bottom-up domain adaptation which adapts the
pre-trained detector in a layer-wisemanner. The result shows that the relatively
simple bottom-up strategy better preserves learned features from the visible
domain and lead to robust pedestrian detection results in the final detector.

• We give a detailed comparison between three top-down domain adaptation
approaches and our two proposed bottom-up adaptation approaches. Our
experiments show that our bottom-up and layer-wise adaptation approaches
consistently outperform top-down adaptation.

• To the best of our knowledge, we obtain the best detection result on the FLIR©

dataset (FLIR, 2018), and we are also the best detection result on the KAIST
dataset (Hwang et al., 2015) compared to all existing singlemodality approaches.
Moreover, by exploiting only thermal imagery on KAIST dataset, we outper-
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form many the state-of-the-art multispectral pedestrian detectors. which use
both visible and thermal for training and testing.

The rest of this chapter is organized as follows. In the next section, we describe
our proposed approach to domain adaptation thatwe apply to the problemof pedes-
trian detection in thermal imagery. In section 4.3, we report on a range of experi-
ments conducted, and section 4.4 compares our result with state-of-the-art results.
In section 4.5, we conclude with discussion of our contribution and future research
directions.

4.2 Layer-wise Domain Adaptation
This section describes our proposed approaches, which build upon our earlier work
on domain adaptation approaches for pedestrian detection in chapter 3. The goal
of our earlier domain adaptation methods showed that relatively simple domain
adaptation on only thermal image can outperformmany state-of-the-art approaches.
Here we introduce a simple layer-wise technique that significantly boosts perfor-
mance of pedestrian detection in thermal imagery.

Wehypothesize that the fine-tuning slowly from the bottomof the network should
preserve more knowledge from the original domain. Here we propose a new type
of bottom-up domain adaptation, which we call layer-wise domain adaptation. It
progressively fine-tunes each layer of the network starting from the bottom of the
network. Layer-wise adaptation also includes two stages: first, layer-wise adapta-
tion to adapt slowly to the new input distribution. Then, a final fine-tuning phase
that trains the whole pipeline with a top-down loss. The conceptual schema of our
layer-wise domain adaptation approach is given in figure 4.1.

Layer-wise domain adaptation proceeds as follows:

1. Layer-wise adaptation: We start from the TD(V, V) network described in sec-
tion 3.3 – i.e. from anRGB-trained detector already adapted to the newdomain
in the visible spectrum. Wegradually train the initial layers of theYOLOv3net-
work using thermal images from the training set. As illustrated in the upper
part of figure 4.1, the main idea is to adjust the RGB-trained detector network
to adapt slowly to the thermal input from bottom of the network up to the top.
At epoch i we freeze parameters from the layer 3i + 1 to N while fine-tuning.
That is, at each epoch another three layers are unfrozen until the entire network
is being fine-tuned. In the experiments we denote this approach as BU(VLT,
T), the “L” in the “VLT” signifies training with layer-wise adaptation.

2. Fine-tuning of the entire detector: After adapter segment training has con-
verged, the entire detector trained using end-to-end fine-tuning shown at the
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Figure 4.1: Layer-wise domain adaptation. Instead of adapter segment training, in
layer-wise adaptation we gradually adapt layers during fine-tuning. This is done by
freezing layers during training and progressively unfreezing them. After gradually
including all layers in the training a final fine-tuning of the entire detector pipeline
on thermal images is performed.

bottom of figure 4.1. Note that no RGB images are used and thewhole pipeline
is trained using only thermal images.

We also experimented with a variant of layer-wise adaptation that is more simi-
lar to the bottom-up adaptation strategy described by Kieu et al. (2019). Instead of
gradually unfreezing layers during adaptation, we freeze only the parameters from
the layer 11 to layer N for the first 50 epochs, and then unfreeze them for the re-
maining 50 epochs to fine-tune the entire network. An overview of this bottom-up
strategy is given in figure 4.1. We refer to this bottom-up variant as BU(VAT, T) in
the experimental results.

4.3 Experimental Results

In this section we report on a number of experiments we performed to evaluate our
domain adaptation approaches with respect to the state-of-the-art in single- and
multi-modal detection.
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4.3.1 Datasets
All our approaches are evaluated and compared to the state-of-the-art on two public
datasets: theKAISTmultispectral pedestrian benchmark (Hwang et al., 2015)which
described in section 3.5.1 and the FLIR Starter Thermal Dataset (FLIR, 2018). We
chose this dataset because of its consistent annotation and its use in other work (De-
vaguptapu et al., 2019). More specifically, the two datasets used in our experimental
evaluation are:
TheKAISTdataset. byHwang et al. (2015)was described detail in the section 3.5.1.
However, in this experiment, we used 2 different things comparedwith the previous
chapter in section 3.5.1 as following:

• For the train set, we follow other methods (Li et al., 2018) and other papers,
we sample images every 2 frames from training videos and exclude heavily
occluded instances and small instances under 50 pixels (height of pedestrian
< 50 pixels). The final training set contains 7,601 training images. Noted that,
the number of images of train set is less than in previous chapter cause the
filtering procedure.

• Because the original annotation of KAIST dataset had problematic (Jingjing
et al., 2016). We used the improved annotation of both train set from Li et al.
(2018) and test set from Jingjing et al. (2016).

This modify version of KAIST dataset including the number of train set and im-
proved annotation will be used in this chapter and next chapters.
The FLIR dataset by FLIR (2018)was released by the thermal cameramanufacturer
FLIR.© It consists of 10,228 color/thermal image pairs with bounding box annota-
tions for five classes: person, bicycle, car, dog, and other. These images are split
into 8,862 for training and 1,366 for testing. However, the color and thermal cam-
eras have different focal lengths and resolutions and are not properly aligned. In
order to compare with the state-of-the-art on this dataset, we follow the benchmark
procedure described byDevaguptapu et al. (2019). We evaluate only on thermal im-
ages and three object categories: person (28,151 instances), car (46,692 instances),
and bicycle (4,457 instances). Some example images from the FLIR Starter Thermal
Dataset are given in figure 4.2.

4.3.2 Evaluation metrics
For evaluation, we strictly follow the reasonable setting provided by theKAISTbench-
mark (Hwang et al., 2015). We used the standard precision and log-average miss
rate (MR) evaluation metrics for measuring object detection as defined by Dollar
et al. (2012). To calculate MR a True Positive (TP) is counted if a detected bounding
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Figure 4.2: Examples from FLIR Starter Thermal Dataset

box is matched to a ground-truth box with an Intersection of Union (IoU) of 50%
or greater. Unmatched detected and ground truth boxes are considered False Posi-
tives and False Negatives, respectively. The MR is computed by averaging miss rate
(false negative rate) at nine False Positives Per Image (FPPI) rates evenly spaced in
log-space.

For consistent comparison with the state-of-the-art, we use mean Average Preci-
sion (mAP) on the FLIR dataset, while on the KAIST dataset we plot the MR over
false positive per images and precision over recall curves to compare to the state-
of-the-art. The results from our previous paper (Kieu et al., 2019) trained on the
old annotation and setting from the KAIST baseline (Hwang et al., 2015). In this
paper, we re-experiment all of our methods on the new training annotation, which
provided by Li et al. (2018). The result is significantly improved and comparable
with the state-of-the-art. This confirms the critical role of annotation for training
the deep neural network.

4.3.3 Experimental setup

All of our models were implemented in PyTorch and source code and pretrained
networks are available.∗ Rather than set apart a fixed validation set, at each epoch
we set aside 10% of the training images to use for validation at that epoch. We use
mini-batch stochastic gradient descent (SGD) with momentum of 0.9 and do not
use the learning rate warm-up strategy of original YOLO model. Training begins
with a learning rate of 0.001, and when the training loss no longer decreases and the
validation recall no longer improveswedecrease the rate by a factor of 10. Training is
halted after decreasing the learning rate twice in this way. All models were trained
on a GTX 1080 for a maximum of 50 epochs with a batch size of 8. We keep all
hyperparameters the same as the original settings of the YOLOv3 model (Redmon
and Farhadi, 2018).

∗https://github.com/mrkieumy/YOLOv3_PyTorch

https://github.com/mrkieumy/YOLOv3_PyTorch
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Table 4.1: Comparison with state-of-the-art single-modality approaches in term of
log-average Miss Rate on KAIST dataset (lower is better). Our approaches out-
perform all others in all conditions (day/night/all).

Detector all day night test images
KAIST_RGB (Li et al., 2018) 45.70 36.00 68.30 RGB
RRN+MDN (Xu et al., 2017) 49.55 47.30 54.78 RGB
KAIST_thermal (Li et al., 2018) 35.70 40.40 25.20 thermal
TPIHOG (Baek et al., 2017) - - 57.38 thermal
SSD300 (Herrmann et al., 2018) 69.81 - - thermal
Saliency Maps (Ghose et al., 2019) - 30.40 21.00 thermal
Bottom-up (Kieu et al., 2019) 35.20 40.00 20.50 thermal
Ours: TD(V, V) 34.75 29.77 46.25 RGB
Ours: TD(T, T) 31.10 37.30 16.70 thermal
Ours: TD(VT, T) 30.67 37.42 15.45 thermal
Ours: BU(VAT, T) 26.26 32.84 11.95 thermal
Ours: BU(VLT, T) 25.61 32.69 10.87 thermal

4.4 Comparison with the State-of-the-art

4.4.1 Performance on KAIST

The KAIST multispectral pedestrian benchmark is a challenging dataset with both
nighttime and daytime video described in section 4.3.1. We divide our comparison
between single-modality detectors and multi-modal detectors from the literature.
Noted that in this chapter, we re-experiment all of our previous methods in chap-
ter 3 on the new training annotation, which described in section 4.3.1. The result is
significantly improved and comparable with the state-of-the-art. This confirms the
critical role of annotation for training the deep neural network.
Comparison with other single-modality methods. Table 4.1 compares the per-
formance of our approaches with state-of-the-art single-modality approaches (i.e.
using only thermal or visible imagery) in terms of miss rate (MR). Our approaches
outperform all existing single-modality methods by a large margin in all conditions
(day, night, and all). Our layer-wise adaptation obtains the best result with 25.61%
MR at all and 10.87% MR at nighttime, improving on the current state-of-the-art by
9.59% at all and 9.63% at night. Our BU(VAT, T) approach reaches 26.26% com-
bined day/night MR and 11.95%MR at nighttime and obtains the second best result
compared to the best state-of-the-art of 35.2% MR at all and 20.50% MR at night.
Note that we exploit thermal imagery alone for training domain adaptation, while
some of the state-of-the-art single-modality methods exploit both color and thermal
at training time (Xu et al., 2017; Guan et al., 2018). Among existing single-modality
approaches, our detectors are the best on the KAIST dataset in all conditions.
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Comparison with both single- and multi-modality approaches. Table 4.2 com-
pares our approaches and more than fourteen other single- and multi-modal from
the literature. The last two columns indicate the type of imagery used at test time.
The first group contains results for multispectral detectors using both visible and
thermal imagery for training and testing. The secondgroup contains single-modality
approaches, and our results are in the last group.

We draw a number of conclusions from these results. First of all, from the MR
combined results (all), we note that multimodal techniques like MSDS (Li et al.,
2018) or IATDNN+IAMSS (Guan et al., 2018) are superior to our domain adaptation
approaches. This seems to be due to the advantage they havewhen detecting during
the day and thus exploiting visible imagery. Secondly, our domain adaptation ap-
proaches, both top-down and bottom-up, outperform all other single-modality tech-
niques and many multimodal techniques. Thirdly, looking at the nighttime results,
our bottom-up domain adaptation BU(VLT, V) is the best result with 10.87% MR.
This surpasses the all state-of-the-art approaches in both single- and multi-modal
detection. This demonstrates the potential of our domain adaptation methods to
capture useful information from RGB detectors and adapt them to nighttime.

Of particular note is the fact that performing domain adaptation on visible im-
ages before adapting to thermal input is beneficial. This can be seen in the difference
between BU(VAT, T) and BU(VLT, T) – both of which start by fine-tuning TD(V,
V) on KAIST visible images – and TD(T, T), which directly fine-tunes YOLOv3 on
thermal images. This seems to indicate that both bottom-up domain adaptation
approaches can retain and exploit domain knowledge acquired when training the
detector on visible spectrum imagery. Notably, slow layer-wise adaptation, BU(VLT,
T), helps robust pedestrian detection at night and outperforms other bottom-up
methods.

The plots in figure 4.3 provide a more detailed picture of our approaches and
the state-of-the-art in terms of precision/recall (left column) and log-average miss
rate (right column). The plots also break down results in terms of time-of-day: the
first row averaged over day and night, the second row daytime only, and the third
row nighttime only. The Intersection of Union (IoU) used is the standard 0.5. The
results in the plot are slightly different those originally published because: (1) the
authors of Li et al. (2018) said that the number in their official article is calculated by
the average of 5 runs; and (2) Vandersteegen et al. (2018) used the overlap IoU 0.4
because they said YOLO had trouble with small objects. All results are generated
by their detector result files using the framework provided by Vandersteegen et al.
(2018). The results reported in the original papers are given in table 4.2.

The results from figure 4.3 show that the ranking is similar to that reported in
table 4.2. We are in the top three results during the day and combined (all). We
are also the best results at night. Note that the MSDS result plotted here is higher
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Figure 4.3: Comparative performance analysis. Precision/Recall (left, higher is bet-
ter) and Log-average Miss Rate (right, lower is better) of our method and other
state-of-the-art papers are given. See text for detailed analysis.
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Table 4.2: Log-averageMiss Rate onKAIST dataset (lower is better). The final two
columns (V:Visible, T:Thermal) indicate which image modality is used at test time.
Our approaches outperform all single-modality techniques from the literature, and
outperform all methods at night.
Method MR all MR day MR night V T
ACF+T+THOG (Hwang et al., 2015) 64.76 64.17 63.99 X X
Latefusion (Wagner et al., 2016) 43.80 46.15 37.00 X X
Halfwayfusion (Jingjing et al., 2016) 36.99 36.84 35.49 X X
RPN+BDT (Konig et al., 2017) 29.83 30.51 27.62 X X
IATDNN+IAMSS (Guan et al., 2018) 26.37 27.29 24.41 X X
IAF (Li et al., 2019) 15.73 14.55 18.26 X X
MSDS (Li et al., 2018) 11.63 10.60 13.73 X X
YOLO_TLV (Vandersteegen et al., 2018) 31.20 35.10 22.70 X X
DSSD-HC (Lee et al., 2018) 34.32 - - X X
GFD-SSD (Zheng et al., 2019) 28.00 25.80 30.03 X X
RRN+MDN (Xu et al., 2017) 49.55 47.3 54.78 X
KAIST_RGB (Li et al., 2018) 45.70 36.00 68.30 X
TPIHOG (Baek et al., 2017) - - 57.38 X
SSD300 (Herrmann et al., 2018) 69.81 - - X
KAIST_thermal (Li et al., 2018) 35.70 40.40 25.20 X
Bottom-up (Kieu et al., 2019) 35.20 40.00 20.50 X
Ours: TD(V, V) 34.75 29.77 46.25 X
Ours: TD(T, T) 31.06 37.34 16.69 X
Ours: TD(VT, T) 30.67 37.42 15.45 X
Ours: BU(VAT, T) 26.26 32.84 11.95 X
Ours: BU(VLT, T) 25.61 32.69 10.87 X

Table 4.3: Comparative performance analysis on the FLIR dataset.
Method Bicycle Person Car mAP
Baseline 39.7 54.7 67.6 54.0
MMTOD-UNIT (Devaguptapu et al., 2019) 49.4 64.5 70.8 61.5
Our: TD(T,T) 51.9 75.5 86.9 71.4
Our: BU(AT,T) 56.1 76.1 87.0 73.1
Our: BU(LT,T) 57.4 75.6 86.5 73.2

than numbers in their published paper. Importantly, our domain adaptation ap-
proaches, both top-down and bottom-up adaptation, surpass all other methods at
nighttime and are comparable with the other two multispectral methods for com-
bined day/night (all).
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4.4.2 Performance on FLIR
Table 4.3 compares our approacheswith state-of-the-art on the FLIR Starter Thermal
Dataset (FLIR, 2018). Results on this dataset are measured using average precision
(AP) for each class and the mean Average Precision (mAP) over all classes. Note
that the FLIR dataset has five categories, but the baseline and the state-of-the-art re-
sults reported only three of these: person, car and bicycle. From these results we see
that our approaches, both top-down and bottom-up, outperform the baseline and
the state-of-the-art on all classes and in overall mAP. Our layer-wise adaptation is
the best result with 73.2% mAP, improving on the current state-of-the-art by 11.7%
mAP. Our bottom-up approach BU(AT,T) also obtains 87.0% precision on cars, ad-
vancing the current state-of-the-art by 16.2% average precision.

4.4.3 Qualitative analysis of detector adaptation
In figure 4.4 we plot the average gradient magnitudes of every layer of the network
during the first epoch of fine-tuning for three different adaptation methods: top-
down, bottom-up and layer-wise. These plots show the capacity of the methods
to adapt network weights during adaptation to the new domain. We see from these
plots that the gradientmagnitudes for layer-wise adaptation are highest for all layers
– especially for the early convolutional layers where the network must adapt the
most to the new input domain. The gradient magnitudes for bottom-up adaptation
are also larger than simple fine-tuning (top-down adaptation), which illustrates the
positive effect the adapter network has on domain adaptation.

In order to better understand how layer-wise adaptation improves internal fea-
ture representations for detection in thermal images we used the Gradient weighted
Class Activation Map (Grad-CAM) (Selvaraju et al., 2017) visualization technique
on input images from the KAIST and FLIR datasets for all three adaptation ap-
proaches (top-down, bottom-up, and layer-wise). These visualizations are shown in
figure 4.5. Grad-CAM heatmaps were computed at layer 52 of the adapted YOLOv3
using the backpropagated loss from the medium-scale detection head. We see in
these visualizations that the layer-wise network has learned to attend to more areas
of the image salient to pedestrian detection compared to the bottom-up and top-
down adapted networks. This explains how layer-wise adaptation leads to more
correct positive detections on average.

Figure 4.6 shows detection results on three images by two methods. The first
row gives results of top-down adaptation (TD(VT,T)), and the second row results
of bottom-up adaptation (BU(VAT,T)) on the same images from the KAIST dataset.

As we can see on the figure 4.6, bottom-up adaptation results in more True Positive
bounding box detections than top-down (in the first and the second images). Simi-
larly, Top-down adaptation results in more False Positive detections than the bottom-up
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Figure 4.4: Average gradient magnitudes per layer for each adaptation method dur-
ing first epoch of fine-tuning.
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Figure 4.5: Grad-CAM visualization of feature importance for three adaptation
methods. Red areas indicate which parts of the image contribute most to the fea-
tures used in the detection heads of the adapted networks. Note how feature im-
portance for layer-wise adaptation is spread across more pedestrians compared to
the other two adaptation methods.
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Figure 4.6: The first row gives three frames of detections resulting from top-down
domain adaptation. The second row gives results of bottom-up adaptation on the
same frames. Even thoughperson identification is extremely difficult low-resolution
images, thermal imagery can retain distinctive image features to effectively perform
pedestrian detection, and our bottom-up adaptationmademore True Positive and less
False Positive detection result than top-down adaptation.

adaptation on the last image. This is consistent with with our experimental results
that show bottom-up adaptation is superior to top-down adaptation. We believe this is
because bottom-up adaptation preserves more knowledge which has been learned
from the visible domain before adapting to the thermal domain. Moreover, we note
that the bottom-up adaptation approach requires significantly less training time than
top-down adaptation. In only 15 epochs it converges to about 82.13% precision, which
is a higher than top-down adaptation after 50 epochs. Bottom-up adaptation seems to
be an effective way to accelerate top-down adaptation through fine-tuning. Last but
not least, even though person identification is extremely difficult in low-resolution
thermal images, thermal imagery retains enough information to effectively perform
pedestrian detection in a privacy-preserving way without using any visible spec-
trum imagery at detection time.

Looking at our results on KAIST in the last row of table 4.1 and the table 4.2, we
make some observations:

• Firstly, the technique exploiting visible spectrum images during the day out-
performs all our approaches which only use thermal imagery. This is expected
as the daytime images are similar to visible images than thermal images.
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• Themethods TD(VT, T), BU(VAT, T), and BU(VLT, T), which start fromTD(V,
V), surpass TD(T, T). This shows that the first adaptation on the visible do-
main helps the network adapt better to the final, thermal target domain. This
opens an opportunity to leverage transfer learning from other datasets for ro-
bust pedestrian detection.

• Our best thermal detection networks work extremely well at night, but only
modestly well on daytime imagery. We believe that daytime and nighttime
detection require different features and filters. Thus, there is still plenty of
opportunity for improvement in thermal-only detection results.

• Moreover, as we can see our two bottom-up results, in tables 4.1, 4.2, and 4.3,
the layer-wise adaptation BU(VLT, T) and BU(VAT, T) are always superior
to top-down methods on both datasets. This seems to indicate that a slowly
adaptation from the bottom of the network better preserves visible feature,
which helps maintain robust detection at night.

4.5 Conclusions
In this chapter, we described the potential of the bottom-up domain adaptation ap-
proach for pedestrian detection tasks, and we also proposed an effective layer-wise
domain adaptation strategy for pedestrian detection in thermal imagery. The goal
of our research is to close the performance gap between pedestrian detection ex-
ploiting only thermal imagery and multispectral approaches using both visible and
thermal images for training and testing.

The results on two datasets show that our relatively simple domain adaptation
schemes are effective, and our results outperform all state-of-the-art single-modality
methods on two datasets. Exploiting only on thermal domain, our detectors per-
form comparably with the state-of-the-art and outperform many multispectral ap-
proaches on KAIST. Furthermore, the results reveal that a preliminary adaptation
to visible spectrum images is useful to acquire domain knowledge that can be ex-
ploited after the final adaptation to the thermal domain. As far as we know, ours
result is the best result in thermal imagery on FLIR datasets.



Chapter 5

Task-conditioned Domain Adaptation
in Thermal Imagery†

In the previous two chapters, we showed how bottom-up and layer-wise domain
adaptation help preserve the knowledge from the visible domain when performing
domain adaptation to the thermal domain. The results at nighttime are extremely
good, however, there is still a large gap between detector performance on RGB and
thermal imagery during the day. In this chapter we propose a novel approach to
domain adaptation that significantly improves pedestrian detection performance in
the thermal domain. The key idea behind our technique is to adapt an RGB-trained
detection network to simultaneously solve two related tasks. An auxiliary classifica-
tion task that distinguishes between daytime and nighttime thermal images is added
to the main detection task during domain adaptation. The internal representation
learned to perform this classification task is used to condition a YOLOv3 detector at
multiple points in order to improve its adaptation to the thermal domain. We vali-
date the effectiveness of task-conditioned domain adaptation by comparingwith the
state-of-the-art on the KAISTMultispectral Pedestrian Detection Benchmark. To the
best of our knowledge, our proposed task-conditioned approach achieves the best
single-modality detection results.

5.1 Introduction
Pedestrian detection problem is particularly challenging in many common contexts
such as limited illumination (nighttime) or adverse weather conditions (fog, rain,
dust) (Li et al., 2018; Kieu et al., 2020a). For these reasons, detectors exploiting ther-
mal imagery have been proposed as suitable for robust pedestrian detection (Kieu

†Portions of this chapter were published in: My Kieu, Andrew D. Bagdanov, Marco Bertini, Al-
berto Del Bimbo, “Task-conditioned Domain Adaptation for Pedestrian Detection in Thermal Im-
agery”, Proceedings of the European Conference on Computer Vision (ECCV), 2020.
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et al., 2019, 2020a; Vandersteegen et al., 2018). A growing number ofworks have also
investigatedmultispectral detectors that combine visible and thermal images for ro-
bust pedestrian detection (Wagner et al., 2016; Jingjing et al., 2016; Konig et al., 2017;
Xu et al., 2017; Brazil et al., 2017a; Guan et al., 2018; Li et al., 2018, 2019).

However, multispectral detectors, in order to make the most out of both modali-
ties, typically need to resort to additional (and expensive) annotations, and are usu-
ally based on far more complex network architectures than single-modality meth-
ods (see table 5.3). Moreover, due to the cost of deploying multiple aligned sensors
(thermal and visible) at inference time, multispectralmodels can have limited appli-
cability in real-world applications. Aside from the technical and economic reasons,
the privacy-preserving affordances offered by thermal imagery are also amotivation
for prefering thermal-only detecion (Kieu et al., 2019). Because of this, several recent
works do not use visible images, but focus only on thermal images for pedestrian
detection (John et al., 2015; Herrmann et al., 2018; Baek et al., 2017; Devaguptapu
et al., 2019; Kieu et al., 2019; Guo et al., 2019; Kieu et al., 2020a). They typically yield
lower performance than multispectral detectors since robust pedestrian detection
using only thermal data is nontrivial and there is still potential for improvement.

There are a few task-conditioning approaches, such as conditional generative
models like those based on adversarial networks (Mirza and Osindero, 2014) and
the seminal work by Radford et al. (2015) that proposed architecture guidelines for
training Deep Convolutional GANs. In particular, our approach is inspired by the
general conditioning layer called Feature-wise LinearModulation (FiLM) proposed
by Perez et al. (2017) for conditioning visual reasoning tasks.

In this chapterwe performpedestrian detection on thermal imagery using a task-
conditioned network architecture for domain adaptation. Our key idea is to aug-
ment a detector with an auxiliary network that solves a simpler classification task
and then to exploit the learned representation of this auxiliary network to inject
conditioning parameters into strategically chosen convolutional layers of the main
detection network. Ourmethod is based on the single-stage detector YOLOv3 (Red-
mon and Farhadi, 2018), whose computational efficiency makes it particularly well-
suited to practical applicationswith real-time requirements. We extend the YOLOv3
architecture by integrating conditioning layers to better specialize the network to
deal with day- and nighttime images. We evaluate conditioning of residual groups,
detection heads, and their combination during domain adaptation. The resulting,
adapted network operates entirely in the thermal domain and achieves excellent
performance compared to other single-modality approaches.

The contributions of this work are:

• we propose a novel task-conditioned network architecture based on YOLOv3
(Redmon and Farhadi, 2018) that uses the auxiliary task of day/night classifi-
cation to aid adaptation to the thermal domain;
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• we conduct extensive ablative analyses probing the effectiveness of various
task-conditioning architectures and adaptation schedules;

• to the best of our knowledge, our task-conditioned detection networks out-
perform all single-modality detection approaches on the KAIST Multispectral
Pedestrian Detection Benchmark (Hwang et al., 2015); and

• exploiting only thermal imagery, we outperform many state-of-the-art multi-
spectral pedestrian detectors on the KAIST benchmark at nighttime.

The rest of the chapter is organized as follows. In the next section we describe
our approach to conditioning thermal domain adaptation on the auxiliary task of
day/night discrimination. We report in section 5.3 on an extensive set of experi-
ments performed to evaluate the effectiveness of task-conditioning, and in section 5.4
we compare with state-of-the-art results. In section 5.5 we conclude with a discus-
sion of our contribution.

5.2 Task-conditioned Domain Adaptation
In this section we describe our approach to conditioning a detector during adap-
tation to the thermal domain. Our central idea is that robust pedestrian detection
naturally depends on low-level semantic qualities of input images – for example
whether an image is captured during the day or at night. This auxiliary informa-
tion should be useful for learning representations upon which we can condition
the adaptation internal representations used for the primary detection task. In the
next section we describe the architecture of an auxiliary classification network that
is connected to the main detection network, and in section 5.2.2 we describe the con-
ditioning layers that can be strategically inserted into the network tomodify internal
representation. We describe two alternative conditioning architectures for YOLOv3
in section 5.2.3, and in section 5.2.4 we put everything together into a description of
the combined adaptation loss.

5.2.1 Auxiliary classification network
Let DΘd(x) represent the detector network (YOLOv3 in our case) parameterized by
Θd, and let Fi(x) represent the output of the ith convolutional layer of the detection
network. We define an auxiliary classification network as follows. The output of
an early convolutional layer (e.g., F4(x) as in figure 5.1), is average pooled to form a
feature that is then fed to two fully-connected layers of size C with ReLU activations.
The resulting feature representation is then passed to a final fully connected layer
with a single output and a sigmoid activation. We denote the output of this auxiliary
network AΘa(x).
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During training we use the following loss attached to the output of the auxiliary
network:

La(xi, yi; Θa) = [yi · log f (xi) + (1− yi) · log(1− f (xi))] , (5.1)

where for all training images xi we associate an auxiliary training label yi. Since
we experiment on the KAIST dataset, which distinguishes daytime and nighttime
images in its annotations and evaluation protocol, we define yi = 0 if xi was captured
during the day, and yi = 1 if xi was captured at night. In this case the auxiliary
network has the task of classifying images as daytime or nighttime.

5.2.2 Conditioning layers
Our idea to use the internal, C-dimensional representation learned in the auxiliary
classification network (i.e. the representation after the two fully-connected layers
used for classification) rather than its output. See figure 5.1 for a schematic rep-
resentation of the conditioning process. This representation is task-specific: in our
experiments it is learned to capture the salient information useful for determining
whether an image was captured during the day or at night. At strategic points in
the main detection network we will use this representation to generate condition-
ing parameters that condition a convolutional feature map using the representation
learned by the auxiliary network.

Consider an arbitrary convolutional output Fi(x) of the main detector network
DΘd , and let di be the number of convolutional feature maps in Fi(x). We generate
conditioning parameters γi and βi:

γi = ReLU[W i
γ A(x) + bi

γ]

βi = ReLU[W i
β A(x) + bi

β],

where W i
γ, W i

β ∈ Rdi×C and bi
γ, bi

β ∈ Rdi are the weights and biases, respectively, of
two new fully connected layers of D units added to the network (purple layers in
Figure 5.1). These new layers are responsible for generating the parameters used
for conditioning Fi.

Fi is substituted by the conditioned version:

F′i (x) = ReLU[(1− γi)� Fi(x)⊕ βi],

where� and⊕ are, respectively, the elementwise multiplication and addition oper-
ations broadcasted to cover the spatial dimensions of the feature maps Fi(x). In this
way, the generated γi parameters can scale feature maps independently and the βi
parameters independently translate them.
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Figure 5.1: Conditioning layer and auxiliary classification network. The auxiliary
network learns an internal representation used to solve a classification task. This
representation is then leveraged by conditioning layers to adjust internal convolu-
tional feature maps in the detection network.

5.2.3 Conditioned network architectures

YOLOv3 is a very deep detection network with three detection heads for detecting
objects at different scales (Redmon and Farhadi, 2018). In order to investigate the
effectiveness of conditioning YOLOv3 during domain adaptation, we experimented
with two different strategies for injecting conditioning layers into the network. In
section 5.3.3 we report on a series of ablation experiments performed to evaluate
these different architectural possibilities for conditioning the network.

Conditioning residual groups (TC Res Group). YOLOv3 uses a 52-layer, fully-
convolutional residual network as its backbone. The network is coarsely structured
into five residual groups, each consisting of one or more residual blocks of two-
convolutional layers with residual connections adding the input of each block to
the output.

A natural conditioning point is at each of these residual groups. This strategy is
illustrated in figure 5.2; the figure reports also the size of the layers of the condition-
ing network (C = 1024). After each group of residual blocks, we insert a condition-
ing layer after the last convolutional layer and before the final residual connection of
the group.
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Figure 5.2: TC Res Group: Conditioning residual groups of YOLOv3. The pre-ReLU
activations of the last layer of each convolutional group are modified by parameters
γi and βi. Conditioning is done before the final residual connection of each group.

Conditioning detection heads (TC Det). A natural alternative to conditioning
residual groups is to condition each of the three detection heads branching off of the
YOLOv3 backbone. The intuition here is to condition the network closer to where
the actual detections are being made.

Detection heads in YOLOv3 consist of one convolutional block for the large-
scale detection head, and three convolutional blocks for the other two. We insert
the conditioning layer after the last convolution of these blocks and before the final
1× 1 convolutional layer producing the detection head output. Figure 5.3 gives a
schematic illustration of detection head conditioning architecture, and reports the
size of the layers of the conditioning network (C = 512).

5.2.4 Adaptation loss
The final loss function used for domain adaptation is:

L(xi, yi, yi; ΘD, ΘA) = Ld(xi, yi) + La(xi, yi),

where x is a training thermal image, Ld is the standard detection loss based on the
structured target detections yi, and La is the auxiliary classification loss defined in
equation (5.1).

When we backpropagate error from the auxiliary loss La we are improving the
internal representation of the auxiliary network AΘa , making it better for classifying
day/night. When we backpropagate error from the detection loss, we simultane-
ously improve the generated conditioning parameters (γi, βi) and the internal rep-
resentation in the YOLOv3 backbone. Our intuition is that this adapts feature maps
to be conditionable on based on the representation learned in the auxiliary classifica-
tion network.
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Figure 5.3: TC Det: Conditioning the detection heads of YOLOv3. Feature maps
used for detection are conditioned using the internal representation of the auxiliary
network.

5.3 Experimental Results
In this section we report results of a number of experiments we performed to eval-
uate the effectiveness of task-conditioned domain adaptation. In section 5.3.1 we
describe the characteristics of the KAIST Multispectral Pedestrian Detection bench-
mark, and in section 5.3.3 we present two ablation studies we conducted to evaluate
the various architectural parameters of our approach. In section 5.4 we compare
with state-of-the-art single- and multimodal pedestrian detection approaches.

5.3.1 Dataset and evaluation metrics
Our experiments were conducted on the KAIST Multispectral Pedestrian Bench-
mark dataset (Hwang et al., 2015). KAIST is the only large-scale dataset with well-
aligned visible/thermal pairs (Devaguptapu et al., 2019), and it contains videos cap-
tured both during the day and at night.

The KAIST dataset consists of 95,328 aligned visible/thermal image pairs split
into 50,172 for training and 45,156 for testing. As is common practice, we use the
reasonable setting (Dollar et al., 2012; Hwang et al., 2015; Kieu et al., 2019, 2020a),
and use the improved training annotations from Li et al. (2018) and test annota-
tions from Jingjing et al. (2016). We sample every two frames from training videos
and exclude heavily occluded and small person instances (< 50 pixels). The final
training set contains 7,601 images. The test set contains 2,252 image pairs sampled
every 20 frames. Figure 5.4 shows some example images with our detection results
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Figure 5.4: Examples of KAIST thermal images with detections. The first two
columns are daytime images and the last two are nighttime. The first and the third
rows show detection results without conditioning, and the second and last rows are
detections with our TC Det detector. Blue boxes are true positive detections, green
boxes are false negatives, and red boxes indicate false positives. See section 5.3.3 for
detailed analysis.

on KAIST. The FLIR dataset was not used for this experiment because there are no
state-of-the-art multispectral methods on FLIR dataset for comparison.

We used standard evaluation metrics for object detection, namely miss rate as a
function of False Positives Per Image (FPPI), and log-averagemiss rate for thresholds
in the range of [10−2, 100]. For computing miss rates, an Intersection over Union
(IoU) threshold of 0.5 is used to calculate True Positive (TP), False Positives (FP)
and False Negatives (FN).
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5.3.2 Implementation and training
All of our networks were implemented in PyTorch and source code and pretrained
models are available.∗ During training, at each epoch we set aside 10% of the train-
ing images for validation for that epoch. We use the same hyperparameter settings
of the original YOLOv3 model (Redmon and Farhadi, 2018) and use weights pre-
trained onMSCOCO(Lin et al., 2014) as a starting point. Weuse StochasticGradient
Descent (SGD) with an initial learning rate of 0.0001. When the validation perfor-
mance no longer improves, we reduce the learning rate by a factor of 10. Training is
halted after decreasing the learning rate twice in this way. All models were trained
for a maximum of 50 epochs with a batch size of 8 and input image size 640× 512.
For most cases, training stops at around 30 epochs and requires about 12 hours on
an NVIDIA GTX 1080.

5.3.3 Ablation studies
In this section we report on a series of experiments we conducted to explore the
design space for task-conditioned adaptation of a pretrained YOLOv3 detector to
the thermal domain. We first consider the where-aspect of task-conditioning (i.e. at
which points in the YOLOv3 architecture task-conditioning is most effective), and
then consider the when-aspect of task conditioning by exploring the many possibil-
ities of conditioning adaptation phases.
Comparison of conditioningpoints. YOLOv3 is a very deepnetworkwhichpresents
many options for intervening with conditioning layers. It has 23 residual blocks,
each consisting of two convolutional layers and one residual connection. These 23
residual blocks are organized into five groups as illustrated in figure 5.2. Inspired by
the (Perez et al., 2017), in which the authors demonstrate that conditioning residual
blocks can be effective, we performed an architectural ablation onwhere to condition
the network by considering conditioning of all residual blocks versus conditioning
each residual group. We investigate also conditioning of the three detection heads,
both alone and in combination with residual group conditioning.

The configurations investigated are:

• No Conditioning (direct fine-tuning on thermal): the YOLOv3 network pre-
trained on MSCOCO is directly fine-tuned on KAIST thermal images.

• TC Res Group (conditioning of residual groups): the conditioning scheme
described in section 5.2.3 and illustrated in figure 5.2. We insert conditioning
layers into all residual groups at the final residual block.

∗https://github.com/mrkieumy/task-conditioned

https://github.com/mrkieumy/task-conditioned
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Figure 5.5: Ablation study of different conditioning points. Plots report miss rate as
a function of false positives per image, and log-average miss rates are given in the
legends.

• TC Res All (conditioning of all residual blocks): similar to group condition-
ing, but conditioning all residual blocks of the YOLOv3 network.

• TCDet (conditioning of detection heads): the schemedescribed in section 5.2.3
and illustrated in figure 5.3.

• TC Res Group + Det (conditioned residual groups and detection heads): a
combination of TC Res Group and TC Det.

In figure 5.5 we plot the miss rate as a function of False Positive Per Image (FPPI)
for the five different conditioning options. Note that most of the task-conditioned
networks result in improvement over the No Conditioning network trained with
standard fine-tuning. TC Det performs best overall and performs especially well at
nighttime with a miss rate of only 10.31% – an improvement of 6.38% over the No
Conditioning network.

While conditioning residual groups (TC Res Group) is also effective compared
to fine-tuning, adding more conditioning layers results in worse performance. One
reason for this might be that conditioning layers add parameters to the network,
and depending on the size of the feature maps being conditioned could be leading
to overfitting on the KAIST training set.

In figure 5.4 we give example detections from the TC Det andNo Conditioning
detectors. TCDet yields more true positive and fewer false positive detections with
respect to simple fine-tuning. On daytime images (first two columns of figure 5.4),
the detector without conditioning (top row) produces a number of false positives
and missed detections which TC Det does not. The difference is even more pro-
nounced at nighttime (second two columns of figure 5.4).

This ablation analysis indicates that conditioning only detection layers (TCDet)
is most effective when compared to conditioning of residual blocks – answering the
where of task-conditioning. In all of the following experiments we consider only the
TC Det task-conditioned network.
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Table 5.1: Ablation on adaptation schedules for TC Det. Results are on KAIST in
terms of log-average miss rate (lower is better). NC indicates the modality is used
for adaptation with no conditioning, C indicates the modality is used with condi-
tioning of detection heads, and%indicates the modality is not used during adapta-
tion.

Training Testing Miss Rate
visible thermal visible thermal all day night
NC % ! % 36.67 32.83 45.00
C % ! % 34.73 29.53 46.09
% NC % ! 31.06 37.34 16.69
NC NC % ! 30.50 37.45 15.73
C NC % ! 28.48 35.86 12.97
% C % ! 29.95 38.16 12.61
NC C % ! 28.53 36.59 11.03
C C % ! 27.11 34.81 10.31

Comparison of conditional adaptation schedules. In this set of experiments we
compare the many options of conditioning when adapting a pretrained detector
from the visible to the thermal domain to answer when to condition the network
on the new domain. Starting from a pretrained detector, we can fine-tune (with or
without conditioning) on KAIST RGB images, then fine-tune (again with or with-
out conditioning) on KAIST thermal images. In table 5.1 we give results of an ab-
lation study considering all these possibilities. Adapting first using RGB images,
rather than going directly to thermal, is generally useful. In fact, the best adapta-
tion schedule is to fine-tune a conditioning network on visible spectrum images, and
then fine-tune that conditioned network on thermal imagery – answering the when
of task-conditioning.

Visualizing the effects of conditioning. Figure 5.6 illustrates the effect condition-
ing has on the feature maps of YOLOv3. The heatmaps in this figure were generated
by averaging the convolutional feature maps input to the medium-scale detection
head of YOLOv3 and superimposing this on the original thermal image. The third
column is the average feature map of a non-conditioned thermal detector (TD), and
the fourth and fifth columns are, respectively, the average feature maps before and
after conditioning.

From the heatmaps in figure 5.6 we note that pedestrians show more contrast
with the background in the task-conditioned feature maps for both daytime and
nighttime. Also, the thermal detector without conditioning misses several pedes-
trians and produces one false positive at nighttime, while TC Det correctly detects
these and does not produce false positive detections. Task-conditioning also helps
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Figure 5.6: The effects of conditioning during daytime and nighttime. The first two
columns show results for a thermal detector without conditioning and with condi-
tioning. Blue boxes are true positive detections, green boxes are false negatives, and
red boxes indicate false positives. See text detailed analysis.

eliminate one false positive in the daytime image.
Speed analysis. We also test the inference speed to compare between models.
The average inference time for YOLOv3 is 28.57 milliseconds per image (∼35 FPS).
Our TC Det network requires 33.17 milliseconds per image (∼30 FPS), and TC Res
Group 35.01 milliseconds per image (∼29 FPS). Thus, task conditioning does not
significantly increase the complexity of the network – in fact our TC Det network
requires less than fivemillisecondsmore for single-image inference compared to the
original YOLOv3 detector.

5.4 Comparison with the State-of-the-art
In this section we compare our approaches with the state-of-the-art on KAIST. Since
our approach focuses on detection only in thermal images at test time, we first com-
pare with state-of-the-art single-modality detectors using only visible or only ther-
mal images. Then, we compare our approaches with state-of-the-art multispectral
detectors using both visible and thermal images.

5.4.1 Comparison with single-modality detectors.
Table 5.2 compares our approacheswith the single-modality detectors using thermal-
only or visible-only at training and testing time. TC Visible indicates the results of
the second row in table 5.1, while TC Thermal and TC Det are the seventh and the
last row in table 5.1, respectively. We can see that TC Det obtains the best results
with a missrate of 27.11% in all modalities and 10.31% missrate at nighttime. Our
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Table 5.2: Comparison with state-of-the-art single-modality approaches on KAIST
in term of log-average miss rate (lower is better). Best results highlighted in
underlined bold, second best in bold.
Detectors MR all MR day MR night Test images
FasterRCNN-C (Jingjing et al., 2016) 48.59 42.51 64.39 RGB
RRN+MDN (Xu et al., 2017) 49.55 47.30 54.78 RGB
FasterRCNN-T (Jingjing et al., 2016) 47.59 50.13 40.93 thermal
TPIHOG (Baek et al., 2017) - - 57.38 thermal
SSD300 (Herrmann et al., 2018) 69.81 - - thermal
Saliency Maps (Ghose et al., 2019) - 30.40 21.00 thermal
VGG16-two-stage (Guo et al., 2019) 46.30 53.37 31.63 thermal
ResNet101-two-stage (Guo et al., 2019) 42.65 49.59 26.70 thermal
Bottom-up (Kieu et al., 2019) 35.20 40.00 20.50 thermal
Ours TC Visible 34.73 29.53 46.09 RGB
Ours TC Thermal 28.53 36.59 11.03 thermal
Ours TC Det 27.11 34.81 10.31 thermal

results outperform all existing single-modalitymethods by a largemargin in all con-
ditions (day, night, and all). To the best our knowledge, our detectors outperform
all state-of-the-art single-modality approaches on KAIST dataset.

5.4.2 Comparison with multimodal detectors.
Table 5.3 compares our detectorswith state-of-the-artmultimodal approaches. Ours
Thermal indicates for the result from the third row in table 5.1. Some multispec-
tral methods using both visible and thermal images for training and testing such as
MSDS (Li et al., 2018), IAF (Li et al., 2019) or IATDNN+IAMSS (Guan et al., 2018)
are superior in terms of combinedday/nightmiss rate (all). This is due to the advan-
tage they have in exploiting both visible and thermal imagery, affecting in particular
pedestrian detection during the day. In fact, the authors of MSDS (Li et al., 2018)
proposed a set of manually “sanitized” annotations for KAIST that correct problems
in the original annotations and their sanitized results at night-time (indicated by *)
are better than the original results due to misalignment correction. Another key
difference is that most state-of-the-art multispectral approaches use more complex,
two-stage detection architectures like Faster RCNN (last column of table 5.3). Note,
however, that TC Det result surpassed many multimodal techniques, and performs
the best results at night.

We note that recent advances in the state-of-the-art on KAIST have been made
by augmenting and/or correcting the original dataset annotations. For example,
the authors of AR-CNN (Zhang et al., 2019b) completely re-annotated the KAIST
dataset, correcting localization errors, adding relationships, and labeling unpaired
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Table 5.3: Comparison with state-of-the-art multimodal approaches in terms of log-
averagemiss rate onKAIST dataset (lower is better). All approaches use both visible
and thermal at training and test time, while ours use only thermal imagery for test-
ing. Results forMethods indicatedwith * were computed using detections provided
by the authors. Best results highlighted in underlined bold, second best in bold.
Method MR all MR day MR night Detector Architecture
KAIST baseline (Hwang et al., 2015) 64.76 64.17 63.99 ACF
Late Fusion (Wagner et al., 2016) 43.80 46.15 37.00 RCNN
Halfway Fusion (Jingjing et al., 2016) 36.99 36.84 35.49 Faster R-CNN
RPN+BDT (Konig et al., 2017) 29.83 30.51 27.62 VGG-16 + BF
IATDNN+IAMSS (Guan et al., 2018) 26.37 27.29 24.41 VGG-16 + RPN
IAF R-CNN* Li et al. (2019) 20.95 21.85 18.96 Faster R-CNN
MSDS-RCNN (Li et al., 2018) 11.63 10.60 13.73 VGG-16 + RPN
MSDS sanitized* (Li et al., 2018) 10.89 12.22 7.82 VGG-16 + RPN
YOLO_TLV(Vandersteegen et al., 2018) 31.20 35.10 22.70 YOLOv2
DSSD-HC (Lee et al., 2018) 34.32 - - DSSD
GFD-SSD (Zheng et al., 2019) 28.00 25.80 30.03 SSD
Ours Thermal 31.06 37.34 16.69 YOLOv3
Ours TC Res Group 28.69 34.95 14.97 YOLOv3
Ours TC Det 27.11 34.81 10.31 YOLOv3

objects, resulting in significantly improved performance. Use of additional man-
ual annotations, however, renders their results impossible to compare with those of
other approaches and are thus excluded from our comparison.

5.5 Conclusions
In this chapter we proposed a task-conditioned architecture for adapting visible-
spectrumdetectors to the thermal domain. Our approach exploits the internal learned
representation of an auxiliary day/night classification network to inject conditioning
parameters at strategic points in the detector network. Our experiments demon-
strate that task-based conditioning of the YOLOv3 detection network can signifi-
cantly improve thermal-only pedestrian detection performance.

Task-conditioned networks preserve the efficiency of the single-shot YOLOv3 ar-
chitecture and perform respectably even compared to some multispectral detectors.
However, they are outperformed by more complex, two-stage multispectral detec-
tors such as MSDS (Li et al., 2018). We think, however, that our task-conditioning
approach can also be fruitfully applied to such detectors by conditioning both region
proposal and classification subnetworks.



Chapter 6

Generative synthesized thermal
imagery for Domain Adaptation†

In this chapter, we propose amethod for improving pedestrian detection in the ther-
mal domain using two stages: first, a generative data augmentation approach is
used, then a domain adaptationmethod using generated data adapts an RGB pedes-
trian detector. Our model, based on the Least-Squares Generative Adversarial Net-
work, is trained to synthesize realistic thermal versions of input RGB images which
are then used to augment the limited amount of labeled thermal pedestrian images
available for training. We apply our generative data augmentation strategy in or-
der to adapt a pre-trained YOLOv3 pedestrian detector to detect pedestrians in the
thermal domain.

Experimental results demonstrate the effectiveness of our approach: using less
than 50% of available real thermal training data, and relying on synthesized data
generated by ourmodel in the domain adaptation phase, our detector achieves state-
of-the-art results on the KAISTMultispectral Pedestrian Detection Benchmark; even
if more real thermal data is available adding GAN generated images to the training
data results in improved performance, thus showing that these images act as an
effective form of data augmentation. To the best of our knowledge, our detector
achieves the best single-modality detection results on KAIST with respect to the
state-of-the-art.

6.1 Introduction
Detectors based on thermal imagery have garnered attention recently as a means to
mitigate the sensitivity of visible spectrum imagery to scene-incidental imaging con-

†Portions of this chapter were published in: M. Kieu, L. Berlincioni, L. Galteri, M. Bertini, A. D.
Bagdanov, and A. Del Bimbo, “Robust pedestrian detection in thermal imagery using synthesized
images.” Proceedings of the International Conference on Pattern Recognition (ICPR), 2020.
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Figure 6.1: System overview: the vis2therm GAN generates fake thermal images
from visible data; a mixture of real and fake thermal images along with related
bounding boxes of objects are used to train an object detector, that is then tested
on images from thermal cameras.

ditions (Kieu et al., 2019;Herrmann et al., 2018; Baek et al., 2017). However, thermal-
only detectors typically yield lower performance than multispectral detectors since
robust pedestrian detection using only thermal data is extremely challenging. A key
performance-limiting factor is the relative lack of annotated thermal imagery avail-
able for training state-of-the-art models. Thermal pedestrian datasets are few, and
– compared to visible-spectrum datasets – have orders of magnitude fewer anno-
tated instances; for instance the Caltech Pedestrian Dataset (Dollar et al., 2012) has
350,000 annotations in the visible domain, while KAIST Multispectral Pedestrian
dataset (Hwang et al., 2015) has ∼ 51, 000 annotations and FLIR ADAS Dataset
(FLIR, 2018) has ∼ 28, 000. Scaling thermal-only detection to the levels of robust-
ness and accuracy demanded by real-world applications is thus extremely difficult
due to this poverty of annotated data.

Motivated by these challenges, in this chapter we propose to use a generative al-
gorithm to perform data augmentation that can enrich thermal pedestrian datasets
for training deep detector architectures. Our approach is based on a Least-Squares
Generative Adversarial Network (LSGAN) (Mao et al., 2016) trained to synthesize
thermal pedestrian images from RGB inputs. We investigate the best approaches to
exploit these generated images during training, i.e. studying how to mix real ther-
mal images with synthesized ones in order to effectively augment the training set.
Experimental results indicate that our trained LSGAN is able to learn to translate
RGB pedestrian images to useful thermal versions so that even using ∼ 50% syn-
thetic images results in state-of-the-art pedestrian detection at nighttime and overall
day/nighttime. This suggests that the approach can be extended to other domains in
which thermal training data is scarce but is possible to effectively exploit the abun-
dance of RGB imagery to adapt it to the thermal domain.

The contributions of this chapter are:
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• we propose a novel generative model based on the Least-Squares Generative
Adversarial Network (LSGAN) (Mao et al., 2016) that is able to synthesize
thermal imagery from RGB;

• we propose amixed real/synthetic training domain adaptation procedure that
mixes real thermal imagery with thermal images synthesized from unlabeled
RGB pedestrian images using our LSGAN and uses this augmented training
set to adapt the YOLOv3 (Redmon and Farhadi, 2017) detector;

• we conduct extensive ablation study to probe the effectiveness of our approach
and a variety of mixing proportions of real and synthesized imagery; and

• we conduct an extensive set of experiments comparing our approach to the
state-of-the-art, and to the best of our knowledge our thermal-only detector
outperforms all state-of-the-art single-modality detection approaches on the
KAISTMultispectral Pedestrian Detection Benchmark (Hwang et al., 2015) by
a large margin.

The rest of this chapter is organized as follows. In the next section, we review
the scientific literature related to our proposed approach. In section 6.3 we describe
our generativemodel used to synthesize thermal images and our training procedure
used to adapt a YOLOv3 pedestrian detector to the thermal domain. We report in
section 6.4 on an extensive set of experiments performed to evaluate the effectiveness
of thermal pedestrian detection using our approach, and in section 6.5 we conclude
with a discussion of our contribution.

6.2 Related Work
The problem of pedestrian detection in thermal imagery has attracted much atten-
tion from the research community over the years due to the advantages of thermal
cameras in many real-world and critical applications.

6.2.1 Pedestrian detection in thermal imagery
Thanks to the reduction of costs and availability of multispectral cameras over the
past few years, there are numerous recent works exploiting thermal images in com-
bination with visible images for robust pedestrian detections as described in sec-
tion 2 such as (Wagner et al., 2016) and (Jingjing et al., 2016) investigated many
types of fusion of thermal and visible images; Konig et al. (2017) and Vanderstee-
gen et al. (2018) composed RGB and thermal channel for multispectral pedestrian
detection task; Xu et al. (2017) and Zhang et al. (2019a) learned the cross-modality
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framework for multispectral task; Li et al. (2018) and Li et al. (2019) combined vis-
ible and thermal for two-branch network for investigating multispectral pedestrian
detection task. In contrast, many recent works have investigated pedestrian detec-
tion using thermal (IR) imagery only. For example, John et al. (2015) used Adaptive
fuzzyC-means for IR image segmentation and aCNN for pedestrian detection. Baek
et al. (2017) proposed a combination of Thermal Position IntensityHistogramofOri-
ented Gradients (TPIHOG) and the additive kernel SVM (AKSVM) for nighttime-
only detection in thermal imagery. Thermal images augmentedwith saliencymaps,
used as attention mechanism, have been used by Ghose et al. (2019).

The idea of performing several video preprocessing steps to make thermal im-
ages look more similar to grayscale images converted from RGB was investigated
in (Herrmann et al., 2018), who then applied a pretrained and fine-tuned SSDdetec-
tor. Recently, Cao et al. (2019) designed dual-pass fusion block (DFB) and channel-
wise enhance module (CEM) to improve the one-stage detector RefineDet, and pro-
posed their ThermalDet detector for pedestrian detection in thermal imagery. An-
other recent single-modalityworkwas the Bottom-upDomainAdaptation approach
proposed in (Kieu et al., 2019) for pedestrian detection in thermal imagery. We also
focus on the thermal-only detection problem. However, our approach is distinct in
that we concentrate on domain adaptation via data augmentation during training
using synthetic thermal data which is generated by a generative model trained on
unlabeled data.

6.2.2 Spectrum transfer between visible and thermal
The generation of RGB images from the thermal images has been approached as a
grayscale colorization task in several previous works such as (Limmer and Lensch,
2016) where deep multiscale CNNs are used along with classical computer vision
post processing techniques over near infrared images. In (Berg et al., 2018) a CNN
is used with a more sophisticated objective function in order to tackle misalignment
issues between the two visible and thermalmodalities. In (Dong et al., 2018) instead
an encoder-decoder architecture is applied for performing colorization.

Most recentworks, however, rely heavily on generativemodels to perform image-
to-image translation between visible and thermal. As defined in (Isola et al., 2017),
the image-to-image translation problem is the task of translating one visual represen-
tation of a scene into another.

GenerativeAdversarialNetworks (GANs), introduced byGoodfellowet al. (2014),
are one the most significant recent improvements in the field of generative models
and have been extensively used for image-to-image translation. The key feature of
these models is the competitive min/max game between two networks. GANs have
been successfully applied in many computer vision tasks such as super resolution
(Galteri et al., 2017; Ledig et al., 2017; Wang et al., 2018b), style transferZhu et al.
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(2017b), image in painting (Yeh et al., 2016) and domain adaptation (Hoffman et al.,
2018).

Both Suarez et al. (2018) and Mehri and Sappa (2019) use GANs architectures
to perform infrared and grayscale colorization. In (Suarez et al., 2018) a DCGAN
with one seperate generator per channel is used, while in (Mehri and Sappa, 2019)
an improved GAN (Zhu et al., 2017b) is proposed. Zhang et al. (2019) leverage
multiple streams of polarimetric images to synthesize photo-realistic visible images
of faces preserving discriminative features. In (Perera et al., 2017) a multi-image
to image generative framework is presented, and one of the proposed settings is
infrared and grayscale colorization. The use of these frameworks to perform data
augmentation in order to improve the performance of a seperate classifier has been
studied in multiple previous works such as (Antoniou et al., 2018) in which they
focus on improving one-shot learning, in (Bowles et al., 2018) where segmentation
of medical images is enhanced by GAN augmented data.

In this chapter we focus on the opposite task: mapping RGB images to the in-
frared spectrum. The closest related works are (Wang et al., 2019; Zhang et al., 2019;
Guo et al., 2019; Kniaz et al., 2019), as they all employ generative models to trans-
late images from the visible to the thermal spectrum. A modified Cycle-GAN (Zhu
et al., 2017b) is used in (Wang et al., 2019), where the performance of drone de-
tection in the thermal spectrum is improved using augmented data coming from a
visible to thermal GAN framework, and also in (Guo et al., 2019), where a pedes-
trian detector is trained on augmented thermal data. Also in (Wang et al., 2019) a
modified version is proposedwhich changing the loss with a perceptual texture loss
term. In (Zhang et al., 2019), both pix2pix (Isola et al., 2017) and Cycle-GAN are
used to generate thermal images to train an object tracker in the thermal domain;
experiments show that images generated with pix2pix are of higher quality, since
this approach operates on paired thermal/RGB data.

Kniaz et al. (2019) presented a framework for cross-modality color to thermal
person re-identification. The generative model in this work is tasked with the gen-
eration of multiple thermal versions of the visible input image, which is then used
to match with real thermal gallery set. Here the proposed architecture is a variation
of (Zhu et al., 2017a), a multimodal image-to-image translation framework com-
posed of multiple networks: cVAE-GAN from Larsen et al. (2016) and cLR-GAN
from Chen et al. (2016) which are jointly optimized in a hybrid model in order to
cover complementary tasks. One of the major contributions of Zhu et al. (2017a)
is the ability to model the distribution of different correct outputs corresponding to
the same input.

In our approach we instead rely on a different architecture that combines ele-
ments from (Mao et al., 2016) and (Wang et al., 2018b), as further detailed in Sec-
tion 6.3.2. The ESRGAN architecture proposed by Wang et al. (2018b) focuses on
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the super-resolution problem and improved over the previous state-of-the-art (Ledig
et al., 2017) by introducing the Residual-in-Residual Dense Block, removing the
Batch-Normalization layers, and changing the perceptual loss term.

6.3 Generative Data Augmentation for Thermal
Domain Adaptation

In this section we describe the two main components of our proposed approach.
Our thermal pedestrian detector based on YOLOv3 (Redmon and Farhadi, 2018) is
described in the next section, and our generative model which produces fake ther-
mal images from available RGB images is described in section 6.3.2. An extensive
series of experimental results are reported on in section 6.4.3.

6.3.1 Object detection in thermal images
We use YOLOv3 as our base pedestrian detector (Redmon and Farhadi, 2018). Fol-
lowing the Domain Adaptation approach described in (Kieu et al., 2019), we first
adapt YOLOv3 in the visible domain by directly fine-tuning it on the visible spec-
trum images from the KAIST dataset (Hwang et al., 2015). Then, we use this detec-
tor as a starting point for training a thermal detector using a range of mixtures of
real and GAN-generated thermal images. Figure 3.1 illustrates the original YOLOv3
architecture with thermal image as input and the output of the model at three de-
tection scales.

We consider the following training regimes for thermal detectors:

• Real-Thermal detector: We directly fine-tune the detector on all available real
thermal images.

• Synthesized-Thermal detector: We directly fine-tune the detector on all the
GAN-generated thermal images (synthesized images).

• Combined-Thermal detector: We combine all available real images and all
the synthesized images into a combined training set and then we fine-tune the
detector on it. Note that the number of images in this combined set is double
that used for the Real-Thermal and Synthesized-Thermal detectors.

• Mixed-Thermal detectors: We mix real images and synthesized images with
a proportion varying from 10% to 90%; in total we have 9mixed sets of images.
For example, themixed set 1 has 10% real images and 90% synthesized images.
Note that the number of images used to train these detectors is the same as
those used for Real-Thermal and Synthesized-Thermal detectors.
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(a) Generator architecture (b) Discriminator architecture
Figure 6.2: Our LSGAN architecture. (a) is the proposed generator, and (b) the
discriminator architecture composed ofmultiple Residual-in-Residual Dense Blocks
and multiscale CNN.

For all experiments we evaluate performance on the KAIST test set of real thermal
images.

6.3.2 Visible to thermal GAN

Our model is an LSGAN trained with both Adversarial and Perceptual losses. The
Least Squares GAN (LSGAN) (Mao et al., 2016, 2017) improves on the standard
GAN model by changing the loss function from a cross-entropy to a squared dis-
tance. It is comparatively more stable and easier to train. The Generator G architec-
ture is built using the Residual in Residual Dense Block (RRDB) as the fundamental
unit (see Figure 6.4). As in (Lim et al., 2017), we remove the batch normalization
layer from the traditional Conv-BN-LReLU triplet. After the initial down-sampling
convolutions five RRDB blocks are stacked in sequence as shown in Figure 6.2(a).
Each RRDB block is composed of 4 Dense Blocks. Each Dense Block has a growth
rate of k = 32 and contains five consecutive pairs of convolutional layers followed
by a leaky rectified linear unit (LReLU) whose outputs are concatenated as shown
in Figure 6.3.
Dense Blocks. DenseNets, introduced in (Huang et al., 2016), improve the infor-
mation flow between layers by adding direct connections between a layer and all
subsequent layers. By using this connectivity pattern the lth layer receives the fea-
ture maps coming from all the preceding l − 1 layers as shown in Fig. 6.3. This
dense connection strategy is realized by feeding as input the concatenation of ev-
ery preceding layer output. DenseNets provide advantages both from a memory
consumption and a vanishing gradient standpoint.
Residual in Residual Block. The composition of Residual Networks (He et al.,
2016) andDenseNets is the Residual in ResidualDense block (RRDB), as introduced
in (Wang et al., 2018b). A single RRDB is composed of multiple Dense blocks con-
nected in a residual fashion, and is shown in Fig. 6.4. Finally, the output of the RRDB
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Figure 6.3: Dense Blocks. Arcs represent the concatenation between the output of a
layer and one of its subsequent layers.

Figure 6.4: Residual in Residual Dense Block. The output of Dense Blocks are scaled
by β and summed back to their input.

chain is followed by multiple upscale-Conv-ReLU blocks to scale the image back to
input size.

Inspired by (Wang et al., 2018a; Durugkar et al., 2016; Karnewar andWang, 2020)
successful application ofmulti scale architectureswe use amulti-scale discriminator
D, shown in Figure 6.2(b), that makes no use of dense connectivity patterns. It is
composed of five convolutional layers, each of them using a 4 × 4 convolutional
kernel with stride 2 and followed by LReLU activation function. The number of
featuremaps is doubled as depth increases starting from 64. For each of themultiple
scales, a single 1× 1 convolutional filter is used as final output layer. Finally, the
different outputs of every scale is evaluated independently.

Training. We trained the model as a Least Squares Generative Adversarial Net-
work (LSGAN) with a perceptual loss. The discriminator D is trained as a standard
LSGAN Discriminator:

LDLSGAN =
1
2

Ex∼pdata(x)[(D(x)− reallabel)
2]

+
1
2

Ez∼p(z)[(D(G(z))− f akelabel)
2].
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The generator loss is composed of three terms:

LGAdv =
1
2

Ez∼p(z)[(D(G(z))− f akelabel)
2] (6.1)

LGMAE = |realimg − f akeimg| (6.2)
LGPerceptual = (φk(realimg)− φk( f akeimg))

2, (6.3)

which are summed together:

LGLSGAN = LGAdv + LGMAE + LGPerceptual (6.4)

Perceptual loss. Perceptual loss functions (Johnson et al., 2016) aim to provide a
better measure for similarity compared to metrics such as the PSNR (Peak Signal to
Noise Ratio) and SSIM (Structural Similarity Index). They have been shown use-
ful for super-resolution and style-transfer tasks. Our perceptual loss architecture
consists of two networks:

• Transformation Network T

• Loss Network φ

The Loss Network φ is pretrained as a classifier. When training the transforma-
tion network T, the loss network φ is used as a feature extractor and the distance
between the target and the generated image in this feature space is used as a loss
function for T. The main motivation behind perceptual loss functions lies in the in-
tuition that computing distances in the high dimensional manifold extracted from a
well-trained classifier should result in a better estimate compared to any pixel-space
distance measure. As shown in Dosovitskiy and Brox (2016), pixel-space metrics
can lead to minima that corresponds to blurry results. In this work, since our goal
is to detect pedestrians, we use the pretrained YOLOv3 detector as a transformation
network T to drive the generation of images. Equation (6.3) is a perceptual loss de-
fined as the squared distance between the outputs φk of the kth layer of a pretrained
YOLOv3 network for a real and a generated input. We trained the φ network on
KAIST for detection in a thermal images. We choose the last convolutional layer of
YOLOv3 as representation of the input image in the high dimensional space learned
by the classifier. Note that the loss network φ at this stage acts as a feature extractor
and its weights are frozen.

6.4 Experimental Results
In this section we report on a range of experiments conducted to evaluate the ef-
fectiveness of our approach to thermal domain adaptation for pedestrian detection.
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We first describe the dataset and evaluation metrics used, then in Section 6.4.2 give
a qualitative evaluation of the performance of our GAN in generating thermal im-
agery from RGB input. In Section 6.4.3 we perform an ablative analysis of the use of
synthetically generated thermal imagery for data augmentation, and in Section 6.4.4
give a comparison with the state-of-the-art.

6.4.1 Dataset, metrics, and experimental setup

Dataset. All of our experiments were conducted on the KAISTMultispectral Pedes-
trian Benchmark dataset (Hwang et al., 2015). KAIST is a large-scale dataset with
well-aligned visible/thermal pairs (Devaguptapu et al., 2019), and it contains videos
captured both during the day and at night. KAIST dataset consists of 95,328 image
pairs split into 50,172 for training and 45,156 for testing. We follow the standard
sampling procedure in (Hwang et al., 2015; Jingjing et al., 2016; Li et al., 2018), we
sample every two frames from training videos and exclude heavily occluded and
small person instances (< 50 pixels). The final training set contains 7,601 images.
The test set contains 2,252 image pairs sampled every 20 frames. For training and
testing, we use the improved training annotations from Li et al. (2018) and test an-
notations from Jingjing et al. (2016). We also do not use the FLIR dataset for the
experiment because the visible-thermal image pairs are not well aligned.

Performance metrics. As is common practice to compare with the state-of-the-
art, we used standard evaluation metrics for object detection, namely miss rate as a
function of False Positives Per Image (FPPI), and log-averagemiss rate for thresholds
in the range of [10−2, 100] with an Intersection over Union (IoU) threshold of 0.5
under the reasonable setting (Dollar et al., 2012; Hwang et al., 2015; Jingjing et al.,
2016; Li et al., 2018; Kieu et al., 2020b). The reasonable setting is composed of day-
time, night-time, and all (both day and night time) sets of images. Figure 6.5 shows
some example images with our detection results on KAIST dataset.

Fine-tuning. All of our detectors were implemented using PyTorch. During fine-
tuning to adapt to the thermal domain, at each epochwe set aside 10%of the training
images for validation for that epoch. We trained every detector using Stochastic
Gradient Descent with the same procedure and hyperparameters: image size 640×
512, batch size of 4, We set an initial learning rate of 0.001 if the training set contains
50% or more real images, otherwise we use a learning rate of 0.0001. During fine-
tuning, we reduce the learning rate by a factor of 10 every 3 epochs, and training is
halted after 10 epochs.
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Figure 6.5: Examples of KAIST thermal images with detections. The first row is
daytime images and the second is nighttime. The first and the second column are
detection result on synthetic-only and real-only training, respectively. The third and
the last column are combining all and mixed 90% proportion, respectively. Blue
boxes are true positive detections, green boxes are false negatives, and red boxes
indicate false positives. See section 6.4.4 for detailed analysis.

6.4.2 GAN results

The GAN framework for the visible to thermal transformation was trained on pairs of
RGB-LWIR frames from the original training split of the KAIST dataset. In Figure 6.6
we show some examples detections using the detector trained with 20% sythesized
images and 80% real images on two kinds of images. The first row shows detection
results on generated images without Perceptual Loss LGPerceptual , and the second row
gives detection results on generated images by our model trained with LGPerceptual .
The use of the LGPerceptual seems to result in more true positive (blue boxes) detection
results, as well fewer false negative (green boxes).

6.4.3 Ablation study

In this section, we report on a series of experiments we conducted to explore the
many options available when using GAN generated images (synthesized images)
and thermal images (real images) for training the detectors described in Section 6.3.1.
Initial experiments with simple augmentation strategies resulted in worse results
than the conventional fine-tuning model. Rather than investigating how much syn-
thetic images contribute to improving detection results, we focus on the potential of
using fewer real thermal images with a small portion of synthesized thermal ones.
This would be extremely useful for exploiting existing data on new domains where
data is scarce.



82 Generative synthesized thermal imagery

Figure 6.6: Example detections using the detector trained with 80% real images and
20% synthesized images. The first row shows detection results with the perceptual
loss, while the second row is without perceptual loss. Blue boxes are true positive
detections, green boxes are false negatives, and red boxes indicate false positives

Table 6.1: Ablation study on varying quantities of GAN-generated images. Results
are on KAIST in terms of log-average miss rate (lower is better). Best results high-
lighted in underlined bold, second best in bold.

Mixture Miss Rate (%)
Real (%) Synthetic (%) all day night

Synthesized 0 100 45.88 54.37 26.04
10 90 44.90 54.24 22.79
20 80 41.21 51.04 18.92
30 70 35.32 44.44 16.35
40 60 34.78 43.45 14.53

Mixed 50 50 33.90 41.97 14.64
60 40 31.50 39.83 12.33
70 30 32.29 41.68 12.42
80 20 25.88 33.01 11.12
90 10 25.62 31.86 12.92

Real 100 0 28.46 36.32 11.97
Combined all all 34.29 41.93 16.80
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Table 6.2: Comparison with state-of-the-art single-modality approaches on KAIST
Thermal in term of log-average miss rate (lower is better). Best results highlighted
in underlined bold, second best in bold.

Detectors MR all MR day MR night
KAIST baseline (Hwang et al., 2015) 64.76 64.17 63.99
FasterRCNN (Jingjing et al., 2016) 47.59 50.13 40.93
TPIHOG (Baek et al., 2017) - - 57.38
SSD300 (Herrmann et al., 2018) 69.81 - -
Saliency + KAIST (Ghose et al., 2019) - 39.40 40.50
R3-Net Saliency + KAIST (Ghose et al., 2019) - 30.40 21.00
VGG16-two-stage (Guo et al., 2019) 46.30 53.37 31.63
ResNet101-two-stage (Guo et al., 2019) 42.65 49.59 26.70
Bottom-up (Kieu et al., 2019) 35.20 40.00 20.50
OursMixed 40_60 34.78 43.45 14.53
OursMixed 80_20 25.88 33.01 11.12
OursMixed 90_10 25.62 31.86 12.92

Thus, we use the conventional fine-tuning result as a baseline for comparison
with various mixing strategies of GAN-generated thermal images. In table 6.1 we
present results of an ablation study considering all these possibilities. From these
resultswe first note thatmixing in a smallproportion of synthesized images (Mixed)
rather than training on a all available real and synthesized images (Combined) is
generally useful. In fact, the best mixture proportion is 90% real images with 10%
percent synthesized images with 25.62% miss rate the “all" setting, and the second
best is theMixed of 80% and 20% with 11.12% miss rate in nighttime – an improve-
ment of 5.68%over theCombinedusing all available data. Note that evenwith fewer
than 50% real images our detector achieves results are comparable with state-of-the-
art methods. Moreover, observe that mixing more than 50% real images results in
improvement over the detector that combining all available real and synthesized im-
ages. The result reveals that the small portion of GAN synthesized images is useful
for augmentation approach, but it must be consider based on the testing data such
as the real test set was conducted on the test phase, thus theMixed and Real results
are better a little than the Combined result.

6.4.4 Comparison with the state-of-the-art
Table 6.2 compares our results with the state-of-the-art single modality approaches
which are mostly trained and tested only on thermal images of KAIST dataset (ex-
cept the KAIST baseline (Hwang et al., 2015) that is a multispectral method), some
othermodels also used visible images for transfer learning such as (Kieu et al., 2019).
We leveraged unlabeled RGB images of train set for generating synthetic thermal im-
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ages, then we used this thermal data as augmentation for training; of course, testing
was conducted on real thermal images of the test set. Results are compared in terms
of log average miss rate (lower score is better). We can see that our approaches
obtained the best results with 25.62% of missrate at “all" and 11.12% of missrate
at “nighttime" – an improvement of 9.38% over the second state-of-the-art results.
Moreover, our results outperform all existing the state-of-the-art methods by a large
margin in both “night-time" and “all". The results of R3-Net Saliency (Ghose et al.,
2019) are a little better than ours in day time due to the advantages of their pro-
posed pixel-level “saliency” annotation set with manually annotated 1,702 images
from training and 369 from testing set, and their extraction of deep saliency maps
by R3-Net for augmenting thermal images of both training and testing.

Several different backbones have been used by the methods reported in the ta-
ble, from VGG16 to Faster RCNN. Our backbone is the conventional YOLOv3 detec-
tor, and as fine tuning procedure we followed our previous approach of Kieu et al.
(2019). The improvements that allowed to surpass the second-best state-of-the-art
detector onKAIST (bottom-up (Kieu et al., 2019)) are: 1) the newdata annotation as
described in section 6.4.1; 2) the domain adaptationmethod of Kieu et al. (2019) and
the experimentation with hyperparameter setting reported in section 6.4.1. More-
over, with the proposed generated synthesized thermal images with LSGAN and
the mixed training procedure, we achieve state-of-the-art performance for both all
(day and night) and nighttime.

It is expected that detection in thermal images at nighttime will always be bet-
ter than daytime results because of the low contrast between pedestrians and back-
ground during the day, as noted in (Ghose et al., 2019).

In Figure 6.5 we show some example detections from four detectors (synthet-
ics, real, combination and mixed90). From these examples we see that the mixed of
90% real images with 10% synthesized images yields more true positive and fewer
false positive detections with respect to others. Not surprisingly, synthesized de-
tector (the first column) produces a higher number of false positives and missed
detections than real detector (the second column). The difference is even more
pronounced at nighttime (second row of figure 6.5). The mixed scale 90% real with
10% synthesized images for training (the last columns) makes more true positive
and less false positive than the real detector.

6.5 Conclusions
In this chapter we proposed a novel GAN architecture, based on LSGAN, to trans-
form visible spectrum images in thermal spectrum ones. We also proposed a novel
training procedure that mixes real and synthesized images to adapt the YOLOv3
detector for detection in the thermal domain. Extensive experimental validation
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shows that our method outperforms state-of-the-art single-modality detectors for
pedestrian detection on the KAIST dataset.

Our experiments show that that even using only 50% of available real thermal
images it is possible to obtain results that are comparable with state-of-the-art meth-
ods trained using 100% real thermal images. This suggests that images generated
with our proposed GAN are beneficial and may help to adapt visible spectrum de-
tectors to operate in thermal spectrum in domains suffering from a lack of training
data.





Chapter 7

Conclusions

In this dissertation we proposed four domain adaptation approaches for pedes-
trian detection in thermal imagery which our detectors outperform state-of-the-art,
single-modality methods and are comparable with the best multispectral detectors
on the KAIST Multispectral Pedestrian Benchmark.

To summarize the contributions of this work:

• InChapter 3weproposed a bottom-updomain adaptation approach for pedes-
trian detection in thermal imagery and compared it with three top-down do-
main adaptation approaches based on fine-tuning. Our adaptation strategy
is motivated by the fact that a thermal-only detectors better preserve privacy
compared to visible spectrum or multispectral detectors. Our result promised
the potential of bottom-up domain adaptation and the outcome of our work
became the best paper award at the international conference on image analysis
and processing.

• InChapter 4 by extending the advantages of our bottom-up adaptationmethod,
we proposed a layer-wise domain adaptation approach which was validated
on challenging thermal pedestrian detection datasets. The results reveal that a
preliminary adaptation to visible spectrum images is useful to acquire domain
knowledge that can be exploited after the final adaptation to the thermal do-
main. Exploiting only thermal domain, our results perform comparably with
the state-of-the-art and outperformmanymultispectral approaches on KAIST.
As far as we know, ours is the best performing detector on thermal imagery
from the FLIR dataset.

• In chapter 5 we proposed a task-conditioned network for domain adaptation
which simultaneously solves two related tasks. The resulting detector is fast
and robust in the thermal domain. Our task-conditioned detection network
(TC-Det) achieves state-of-the-art results on the KAIST dataset. Our analysis
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shows that task-conditioned networks exploit the internal learned representa-
tion of an auxiliary day/night classification sub-network to inject conditioning
parameters at strategic points in the main detector network, and significantly
improves pedestrian detection results on the KAIST dataset.

• In chapter 6 generative data augmentation method for thermal domain adap-
tation which includes two stages: first, a Least-Squares Generative Adversar-
ial Network is trained to synthesize realistic thermal versions of input RGB
images which are then used to augment the limited amount of labeled ther-
mal pedestrian images available for training. Then, we apply our generative
data augmentation strategies in order to adapt a pre-trained RGB detector to
detection in the thermal-only domain. By mixing a small portion of synthetic
thermal data with real images, our detectors can achieve the best state-of-the-
art single-modality results on the KAIST dataset. This suggests that images
generated with our proposed GAN are beneficial and may help to adapt vis-
ible spectrum detectors to operate in thermal spectrum in domains suffering
from a lack of training data.

Pedestrian detection is a problem that requires both high accuracy and real-time
performance. There is still a trade-off between speed and accuracy. The best state-
of-the-art, single-modality results with real-time speed (>24 FPS) still incur miss
rate of about 10% – a number that must be improved for autonomous driving ap-
plications, for example. Multimodel methods can reach around 8% - 9% miss rate,
however the speed is quite slow (<20 FPS). Closing the gap between multispec-
tral pedestrian detectors and single-modality detectors in thermal imagery is a non-
trivial task. There is still enormous potential to improve pedestrian detection re-
sults by using multispectral data to exploit only one domain. In particular, balanc-
ing the results between daytime and nighttime is crucial for single-modalitymodels.
Thermal imagery is inherently privacy-preserving, andwe believe that thermal-only
pedestrian detection has significant potential for the future if this balance can be
found and the gap between single- and multi-modal detection closed.
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