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A B S T R A C T   

The potential ecological envelope of silver fir (Abies alba Mill.) based on its present distribution suggests a high 
suitability for moist rather than warm and dry environments. This contrasts with paleoecological evidence 
reporting its former presence at low elevations under meso-Mediterranean conditions. In this study, we evaluated 
the growth performance of silver fir at low elevation (20–60 m a.s.l.) under meso-Mediterranean climatic con
ditions in Tuscany (central Italy). We conducted a dendroecological analysis on Abies alba trees along a 
geomorphological gradient (from depression to upper slope conditions). Climate-growth relationships were 
assessed by means of correlations, response functions, pointer years, and superposed epoch analysis. 

Silver fir was found to grow and regenerate well in these stands mixed with evergreen (e.g., Quercus ilex L.) 
and thermophilous deciduous Mediterranean tree species (e.g., Q. cerris L.). Summer drought was the most 
growth-influencing factor, with immediate (i.e., current season) negative impacts on tree-ring widths (TRW). No 
significant impacts were observed in the four years following extreme summer droughts, but the TRW series 
(which started between the 1930s and 1950s) showed a growth decline since the mid-1990s that is likely 
drought-related. 

Our results show that, provided there is a sufficiently large soil water holding capacity, silver fir provenances 
exist which are able to withstand Mediterranean summer droughts, can naturally and regularly regenerate in 
these systems, and may even dominate over typical meso-Mediterranean species. As long as annual precipitation 
is not too low (i.e., >850 mm) and summer drought conditions not too extreme (i.e., less than three months), 
silver fir has thus the potential to thrive under warm Mediterranean conditions.   

1. Introduction 

European climate is getting warmer and drier (IPCC 2013) and the 
frequency and intensity of extreme climatic events and related distur
bance regimes are changing (Bowman et al. 2014; Seidl et al. 2014; Seidl 
et al. 2017). This has a potentially large impact on forest dynamics, tree 
species distributions and the survival probability of trees in particular 
(Allen et al. 2010; van Mantgem et al. 2009), eventually affecting 
ecosystem services (Scheffers et al. 2016). 

In a climate change context, adaptive management strategies are 
thus needed to increase forest resistance and resilience and to mitigate 

possible negative impacts (Thurm et al. 2018; Vilà-Cabrera et al. 2018). 
Different strategies to adapt to climate change exist (Hagerman and 
Pelai 2018; Madrigal-González et al. 2017), such as increasing the 
resistance and/or resilience of current forests (i.e. shortening rotation 
periods and reducing mortality risk or decreasing forest stand density; 
Rais et al. 2014; Seidl et al. 2011), regulating tree species mixtures by 
favoring the most suitable ones (Lebourgeois et al. 2013; Pretzsch et al. 
2013), or fostering and introducing more drought-tolerant species 
(Buras and Menzel 2018; Dyderski et al. 2018; Scherrer et al. 2017). 
Developing adaptive strategies based on the selection of suitable tree 
species requires an in-depth understanding of their behavior under the 
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expected climatic and other environmental conditions (Keenan 2015). 
The debate on the potential role of silver fir (Abies alba Mill.) under a 

future European climate is very emblematic in this respect (Vitasse et al. 
2019). The current distribution of silver fir ranges from the Pyrenees to 
the Carpathians and from southern Italy to Poland, mainly following 
mountain ranges (Mauri et al. 2016; Fig. 1). In such ecosystems, it 
represents an important keystone species significantly contributing to 
biodiversity conservation, stand resistance to disturbances such as wind 
and insects in mixtures with Norway spruce (Ott et al. 1997; Rüegg 
2015), as well as to forest ecosystem services, such as timber production 
and protection from gravitative natural hazards (Tinner et al. 2013; Wolf 
2003). 

Yet, there is contrasting evidence regarding its suitability to cope 
with future climate change (Vitasse et al. 2019). Based on its current 
distribution, silver fir is traditionally considered well adapted to moist 
conditions (Bucher 2014) and rather poorly adapted to warm and 
summer drought conditions (Macias et al. 2006; Rigling and Stähli 
2020). As a consequence, the modelled potential ecological envelope 
based on its present distribution suggests a future contraction of its 
range due to climate change, describing the species as widely unsuited in 
a climate-adapted European forestry context (Maiorano et al. 2013; 
Zimmermann et al. 2016). On the contrary, studies based on paleoeco
logical evidence report its former presence at low elevations from 
southern Switzerland to southern Italy, reaching the Mediterranean 
coast of central Italy, featuring summer and annual mean temperatures 
up to 7 ◦C higher than in its actual distribution range (Tinner et al. 
2013). According to this view, the current absence of silver fir under 
such warm conditions is mainly due to the long-lasting human pressure 
since 5000–7000 years ago, which caused the decline of this late- 
successional and strongly fire- and browsing-sensitive species (Carcail
let and Muller 2005; Di Pasquale et al. 2014; Tinner et al. 1999). 
Combining this paleoecological evidence with process-based modelling, 
some authors postulated a greater-than-expected climatic tolerance of 
silver fir, especially in terms of higher temperatures (Henne et al. 2013; 
Henne et al. 2015; Ruosch et al. 2016). 

Dendroecological studies highlighting an increase in the average 
annual ring width of silver fir during the warming period from 1990 to 
2010 confirmed the adaptation of the species to higher temperatures 
(Büntgen et al. 2014; Bošěla et al. 2018), suggesting a higher than ex
pected drought tolerance (e.g., Vitali et al. 2017). Other studies, in 
contrast, suggested sensitivity to Mediterranean summer droughts 
(Gazol et al. 2015). Unfortunately, only few and partially outdated 
studies described growth and regeneration dynamics of silver fir stands 
growing under low-elevation Mediterranean conditions (Cesarini 1940; 
Cortini Pedrotti 1967). 

In this paper, we aim to fill this gap by conducting a dendroeco
logical study in a meso-Mediterranean low-elevation silver fir forest that 
is characterized by a steep geomorphological gradient. We particularly 
address the following research questions:  

- Does silver fir develop and regenerate under meso-Mediterranean 
climatic conditions?  

- What are the main climatic factors influencing silver fir radial 
growth?  

- How may the species respond to a climate getting warmer and drier? 

2. Methods 

2.1. Study area and sampling design 

The study area features ca. 12 ha of silver fir-dominated stands 
located at an elevation from 20 to 60 m a.s.l. along the lower part of 
three small valleys extending in the north–south direction in Varramista 
(Tuscany, Central Italy; 43◦39′45′′N, 10◦42′55′′E; Fig. 1) that were 
probably reclaimed at the end of the 18th century (Baroni 1810; Giorgi 
2009). The forests originate from a plantation dating back to the 
beginning of the 19th century or even earlier (Capponi 1882; Cesarini 
1940; Cortini Pedrotti 1967). Although the provenance of the planted 
stock is unknown, the historical and botanical descriptions allow us to 
assume that the trees are Abies alba very likely originating from the 
Apennines (Susmel 1957; Cortini Pedrotti 1967). No originally planted 
trees survived to date and current stands originate from natural regen
eration (Cesarini 1940), presently representing the lowest fir occurrence 
in Tuscany (Municipality of Montopoli in Val d’Arno 2008). In the last 
few decades, silvicultural interventions were limited to the phytosani
tary clearing of fallen and damaged trees after a storm in March 2015, 
which mainly affected the valley bottoms (A. Casarosa 2018, personal 
communication). 

At present, in these stands silver fir grows in mixture with typical 
broadleaved and coniferous Mediterranean species, such as manna ash 
(Fraxinus ornus L.), holm oak (Quercus ilex L.), and the strawberry tree 
(Arbutus unedo L.). Towards the top of the hills, silver fir is increasingly 
substituted by Turkey oak (Quercus cerris L.), sessile oak (Q. petraea 
(Matt.) Lieb.), holm oak, Italian stone pine (Pinus pinea L.), maritime 
pine (P. pinaster Ait.), and other minor species. 

The shrubs and herbaceous layers are heterogeneous and charac
terized by taxa typical of the Abies alba and evergreen and thermophi
lous oak vegetation types, respectively. The list of phanerogamic flora in 
Varramista includes 140 taxa, 65% of them belonging to the geoclimatic 
boreal element, while the Mediterranean species make up only 26% 

Fig. 1. Study area. a) Location of the Varramista study area (white square) with respect to the current distribution of silver fir (grey). Sources: adapted from 
EUFORGEN (2003). b) Silver fir forest stands in Varramista (dark grey area) and location of the assessed macroplots (white dots): (1) Depression, (2) Lower slope, (3) 
Upper slope. 
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(Cortini Pedrotti 1967). A few eastern species (Illyria, Pontus and Eur
asia) are present, summing up to about 5%. The biological spectrum of 
Raunkiær life form types (Raunkiær 1934) shows a prevalence of hemi- 
cryptophytes (H), phanerophytes (P) and geophytes (G) and a low per
centage of therophytes (Th) due to the unsuited temperature and hu
midity conditions of the understory, while chamaephytes (Ch) are in 
general not frequent in forests (P 30%, Ch 6%, H 38% ,G 19%, Th 7%; 
Cortini Pedrotti 1967). 

According to the Tuscan Regional Hydrologic Service (SIR 2019a, 
2019b), annual mean temperature in the study area is 15.3 ◦C, with a 
mean temperature of 6.9 ◦C in the coldest month (January) and 24.5 ◦C 
and 24.4 ◦C in the warmest months (July and August, respectively). 
Annual precipitation amounts to 867 mm, mainly occurring from late 
autumn to early winter. The driest month is July (31.5 mm in average) 
while the wettest is November (114.4 mm). Temperatures are rarely 
below 0 ◦C and it hardly ever snows. These conditions were classified by 
Fratianni and Acquaotta (2017) as hot temperate (Csa after the Köppen- 
Geiger classification), pointing out the importance of summer arid pe
riods, which usually occur between June and August. 

The geology is characterized by sand layers of Pliocenic origin and 
younger continental deposits, with sparsely emerging clay formations 
(Cortini Pedrotti 1967; SGR 2006). Soils are acidic Luvisols and have 
different properties within the investigated area, ranging from the 
presence of an albic horizon in the slopes and stagnic horizon in the 
depressions, indicating water flow from the hilltops towards the mesic 
valley bottoms (Fig. S1; Corongiu et al. 2016; Regione Toscana 2018). 

The study design followed the existing geomorphological gradient by 
selecting three macroplots, going from the depression to the lower and 
the upper part of the slopes, respectively (Fig. 1). The valley is quite 
open and all macroplots, including the one in the depression, are rich in 
woody and herbaceous vegetation of meso-Mediterranean character. 
This allows us to exclude any significant micro-climatic effect due to the 
terrain morphology. The east-facing lower slope macroplot is steeper 
than the west-facing upper slope, with an average slope of 25–30◦ and 
10–15◦, respectively (Table 1). Within each macroplot, at least 34 adult, 
dominant and visibly healthy fir trees were selected for coring. In 
addition, three circular plots of 12 m in radius (corresponding to 452 m2 

in area) were placed in each macroplot (i.e., 9 circular plots in all) for 
assessing stand structure, including tree regeneration. 

2.2. Field work 

From each selected dominant silver fir tree, two opposite cores at 1.3 
m height were taken perpendicular to the slope direction using an 
increment borer (3-threaded, 40 cm long with a diameter of 5 mm, 
Haglöf Co.). Each cored tree was georeferenced (x, y coordinate) and 
characterized by measuring diameter at breast height (DBH), height, 
height of the crown base, and crown width (average of the four cardinal 
directions). 

In each circular plot, species, DBH, social position, height, and height 
of the crown base of all trees with DBH > 5 cm were measured. In this 
study we considered as established regeneration (saplings) individuals 
with height > 1.3 m and DBH < 5 cm. Their location, species, stem 
diameter at the ground, and height were recorded. In each plot, the 
number of seedlings (H < 1.3 m) was assessed for each species using a 
square frame (1 × 1 m2) placed at distances of 2, 6 and 10 m from the 
plot center and along the eight cardinal directions, for a total assessed 
area of 24 m2 per circular plot. Species diversity was calculated using the 
Shannon diversity index (Shannon 1948). A selected number (i.e., 49 
individuals for the whole study area) of seedlings and established 
regeneration of silver fir were cut or cored in order to determine the 
germination year. Finally, light transmittance (ratio of photosyntheti
cally active radiation – PAR – reaching the forest floor) through the 
canopy was estimated using a radiation sensor. The measurements were 
carried out in each macroplot, along 8 cardinal directions, at 12:00 a.m. 
during a sunny summer day. Field work took place between October 
2018 and January 2019, except for PAR measurements which were 
carried out between July and August 2019. 

2.3. Dendrochronological analyses 

The tree cores were glued on wood supports, dried and sanded with a 
belt sander using progressively finer grit sizes (150, 320, 600 and 800) in 
order to increase the visibility of the tree rings. Tree-ring widths (TRWs) 
were measured at the WSL research campus in Cadenazzo (Switzerland) 
with a precision of 0.005 mm on a measuring table (DENDROTAB 2003) 
connected to the software T-Tools Win Pro, both produced by WALESCH 
Electronic GmbH. 

The measured tree-ring sequences were imported in the TSAP Win 
Professional software v4.5 (RINNTECH, Heidelberg). The matching of 
the two sequences belonging to the same tree was first visually assessed 
to identify possible measurement errors. The pairs were then averaged 
to get a single TRW series for each tree. The TRW series were cross-dated 
within each macroplot. The quality of this process was evaluated with 
the average inter-series intercorrelation (Cerrato et al. 2018). The TRW 
series were then detrended with a spline function and standardized by 
dividing their values by the corresponding estimates of the spline, 
creating unitless ring-width index (RWI) series that were pre-whitened 
using standard procedures to remove autocorrelation (Cook and Kair
iukstis 1990). 

Next, residual chronologies were calculated for every macroplot by 
averaging the RWI series belonging to the same macroplot. To enhance 
the robustness of the signal, sampling depth for the chronologies was set 
to a minimum of five RWI series. The similarity between chronologies 
was quantified by calculating their Gleichläufigkeit (Buras and Wilmk
ing 2015; Eckstein and Bauch 1969). 

2.4. Climatic data 

Daily precipitation and daily maximum and minimum temperature 
data were retrieved from the San Miniato Cimitero meteorological sta
tion (102 m a.s.l., 43.68403◦N, 10.83152◦E) of the Tuscan Regional 
Hydrologic Service (SIR 2019a, 2019b). This station was chosen as 
reference because it is the closest weather station to Varramista (9.8 km 
away) with long data series for both temperature (since 1951) and 
precipitation (since 1958). The suitability of San Miniato Cimitero as 

Table 1 
Characteristics of macroplots, forest stands, sampled trees and related tree ring- 
width series and chronologies.  

Macroplot position Upper 
slope 

Lower 
slope 

Depression 

Area [ha] 0.38 0.42 0.38 
Aspect W E N 
Elevation [m a.s.l.] 35–60 30–50 25–30 
Mean slope [◦] 10–15 25–30 0–5 
Basal area [m2ha− 1, ±SD] 36.7 ± 5.0 28.6 ± 7.3 35.1 ± 2.7 
Light transmittance [%, ±SD] 3.2 ± 3.9 3.0 ± 4.8 8.9 ± 10.8 
Number of cored trees 38 35 34 
Average DBH of cored trees [cm, 
±SD] 

34.4 ± 9.1 39.3 ± 7.9 49.9 ± 6.8 

Maximum DBH [cm] 55.4 51.8 66.0 
Minimum DBH [cm] 19.3 20.0 37.7 
Average height of cored trees [m, 
±SD] 

23.1 ± 4.8 26.3 ± 4.8 30.5 ± 3.0 

Number of trees used in chronologies 32 30 29 
Average ring width [mm, ±SD] 2.5 ± 1.0 2.7 ± 1.2 3.3 ± 1.5 
Average series length [years, ±SD] 54.3 ± 9.7 61.6 ± 13.1 59.1 ± 12.6 
Oldest measured ring 1943 1931 1930 
Oldest ring used in chronologies 1947 1931 1930 
First year of chronologies 1955 1945 1948 
Average series intercorrelation 0.62 0.64 0.62 

SD = Standard Deviation. 
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reference station was additionally confirmed by the high mean Pearson 
correlation coefficient (r = 0.88) with the data of a rain gauge in Var
ramista, which is operated since 2012 (see Fig. S2 for details). 

Missing precipitation data between 1997 and 1999 and missing 
temperature data in 1955, 1956, 1969, between 1996 and 1999 as well 
as single monthly gaps in precipitation (2000, 2004, and 2010) and 
temperature (2000, 2004, and 2013) were filled by estimates from a 
linear regression with precipitation data from Fattoria Scaletta (22 m a. 
s.l., 43.70739◦N, 10.83063◦E) and temperature data from Orto Botanico 
Lucca (16 m a.s.l., 43.84144◦N, 10.51126◦E). Moreover, precipitation 
data were extended back to 1951 (i.e., by 7 years) using data from 
Pontedera (14 m a.s.l., 43.66522◦N, 10.63120◦E). These weather sta
tions were chosen considering their distance from Varramista and the 
availability of data during the measurement gaps for San Miniato 
Cimitero meteorological station. 

The three-month Standardised Precipitation-Evapotranspiration 
Index (SPEI; Vicente-Serrano et al. 2010) was used as a proxy for 
drought conditions because it considers the role of evapotranspiration 
and temperature and is sensitive to short-term events (Abramopoulos 
et al. 1988; WMO and GWP 2016). Longer periods than three months 
have been shown not to be suitable in the analysis of drought effects on 
silver fir (Toromani et al. 2011), whereas shorter periods would not take 
into account the influence of precipitation and temperature of previous 
months. Estimates of potential evapotranspiration (PET) were calcu
lated with a modified version of the Hargreaves equation (Beguería et al. 
2014; Droogers and Allen 2002; Hargreaves and Samani 1985). 

2.5. Climate-growth relationships 

2.5.1. Correlation and response functions analysis 
For the correlation and response function analysis of the RWI, we 

first detrended the climate series by means of a local regression (Baker 
1990; Cleveland et al. 1992). Monthly precipitation, maximum tem
perature and SPEI data were then related to annual tree growth data 
with a correlation and response function analysis. Maximum tempera
ture was preferred over minimum temperature because of its higher 
correlation with tree growth in other Italian silver fir populations 
(Gentilesca and Todaro 2008; Santini and Martinelli 1991) and the 
ecological assumption that maximum temperatures should be more 
important at this site than the mellow (typically above-zero) minimum 
temperatures. 

Since the growth of the current year may be affected by the previous 
year’s climatic conditions and related carbon and nutrients reserves, the 
time span for the analysis was set from March of the previous year to 
October of the current growing season. The growing season was 
assumed to start in March and end in October. This resulted in a total of 
60 potential predictor variables (i.e., 20 independent parameters for 
three climatic variables). Pearson correlation and response function 
coefficients between variables and chronologies were calculated as 
described by Fritts et al. (1971) and Fritts (1976), differentiating from 
the correlation analysis by taking into account the possible multi
collinearity of climatic variables. This analysis firstly runs a Principal 
Components Analysis and then estimates response coefficients using 
multiple regression (Rozas 2005). 

Significance was tested at the level of p < 0.05 for both correlation 
and response functions, applying a bootstrap technique with 1000 
resampling runs. 

2.5.2. Superposed epoch analysis (SEA) 
The reaction of tree growth to summer droughts was assessed using a 

SEA. Summer drought was quantified by averaging SPEI values between 
June and September, thus expressing summer drought intensity (Tan 
et al. 2015). Years with a value < − 1, indicating moderate to extreme 
drought conditions (McKee et al. 1993), were selected as drought years, 
and the behavior of growth during these drought years and up to four 
years after the drought year was analyzed. Significance was tested using 

the four previous years as well. The growth reaction was quantified from 
scaled values: firstly, the mean chronology value was subtracted from 
the RWIs, and secondly RWIs were divided by their standard deviation. 
Therefore, growth differences are expressed as standard deviation dif
ference. Significance at p < 0.05 of the growth reactions was tested with 
a bootstrap technique with 5000 simulations over the whole site 
chronologies. 

2.5.3. Pointer year analysis 
For the analysis of the relation between extreme growth and climate, 

years with growth extremes (pointer years) were selected from the raw 
tree-ring series. Pointer years were defined at the macroplot level as 
years where at least 75% of the cored trees showed a relative growth 
increase or decrease of at least 20% compared to the average of the 
previous four years. Since similarities in the selected years were high, we 
decided to unify them all in a single dataset. Climatic conditions during 
positive and negative pointer years were analyzed qualitatively and 
compared to mean climatic conditions. 

2.6. Statistical analyses 

Crossdating was carried out using the software COFECHA (Holmes 
1983). The R package dplR v1.7.1 (Bunn 2008, 2010; Bunn et al. 2020) 
was used to calculate detrended series and site chronologies and to 
conduct the SEA. SPEI and potential evapotranspiration (PET) were 
calculated with the R package SPEI v1.7 (Beguería et al. 2014; Vicente- 
Serrano et al. 2010). Correlation and response function analysis was 
made with the R package treeclim v2.0.5.1 (Zang and Biondi 2015); 
pointer years were selected with the R package pointRes v1.1.3 (van der 
Maaten-Theunissen et al. 2015). All analyses except for crossdating were 
performed using R v4.0.3 (R Core Team 2020). 

3. Results 

3.1. Stand structure 

The average length of the TRW series ranges from 54.3 (±9.7, upper 
slope macroplot) to 61.6 (±13.1) years (lower slope macroplot), with a 
maximum value of 89 years (Table 1). The average height of dominant 
trees in the macroplots confirms the existence of a gradient in growing 
conditions (Figure S3). 

The three macroplots feature distinctly different basal area, with the 
lower slope macroplot having the lowest value of 28.6 (±7.3) m2 ha− 1, 
the depression 35.1 (±2.7) m2 ha− 1, and the upper slope the highest 
with 36.7 (±5.0) m2 ha− 1. Silver fir accounts for 99.7% of the basal area 
in the depression, 82.0% in the lower slope and 71.4% on the upper 
slope. Deciduous species contribute with a relative basal area of 10.9% 
in the lower slope, despite their absence from DBH classes >30 cm 
(Fig. 2), and 18.7% in the upper slope (58.0% of which were >30 cm 
DBH), respectively. 

In every macroplot, the highest tree density is found in the lowest 
DBH class, i.e. below 5 cm, where shrubs and small trees are present. 
Silver fir regularly regenerates in all macroplots (Fig. S4). Species di
versity is lower in the depression macroplot and in high DBH classes 
(Table 2), while the relative amount of silver fir increases with DBH, 
becoming the most frequent species starting from a DBH of 10 cm. 

The macroplot in the depression has an overall lower tree density 
(Fig. S5), is characterized by a one-layered structure of silver fir only and 
no trees between 10 and 20 cm DBH, and displays with 8.9% the highest 
fraction of photosynthetically active radiation reaching the forest floor, 
which is more than twice as much as in the upper (3.2%) and lower slope 
(3.0%) macroplot, respectively (Table 1). At the established regenera
tion class (individuals below 5 cm DBH), the Shannon index is highest in 
the depression (Table 2), where deciduous species such as manna ash 
(Fraxinus ornus L.) prevail over evergreens. The two slope macroplots 
show a very similar species structure, with the relative amount of silver 
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fir increasing monotonically with DBH, and Mediterranean evergreens 
and English holly (Ilex aquifolium L.) in particular dominating the 
established regeneration stage. This pattern changes to a higher amount 
of deciduous species, such as sweet chestnut (Castanea sativa Mill.) and 
Turkey oak (Quercus cerris L.) for larger DBH values (Fig. S4). 

In terms of seedlings (i.e., trees < 1.3 m in height) in the depression 
macroplot, the density of silver fir is twice as high compared to the slope 
macroplots (Fig. 3). Along the macroplot gradient, seedlings of decidu
ous species are highly significantly more frequent in the two slope 
macroplots, whereas Mediterranean evergreens are significantly denser 
in the upper slope macroplot only, compared to the depression. 

3.2. Climate and dendroecological analyses 

3.2.1. Recent climate evolution in the study area 
The 1951–1990 time series of annual precipitation and temperature 

shows no clear increasing or decreasing trends in inter- and intra-annual 
variability (Fig. 4). Starting in 1990, temperatures tend to increase, in 
the 2010s reaching a mean decadal value more than 1 ◦C higher 

compared to the 1970s, whereas precipitation tends to be lower. As a 
consequence, SPEI has been decreasing since ca. 1990. 

3.2.2. Tree-ring width series 
The overall average annual ring width is 2.8 (±1.5) mm, ranging 

from 2.5 (±1.0) mm in the upper slope macroplot, across 2.7 (±1.2) mm 
on the lower slope macroplot, to 3.3 (±1.5) mm in the depression 
macroplot (Table 1). At the macroplot level, the tree-ring series show 
very similar patterns (Fig. 5), with a first phase until about 1980 that is 
characterized by a slightly decreasing growth trend. Between 1980 and 
2000, TRWs experienced an increase in all three macroplots, before 
decreasing again. 

Average series intercorrelations range from 0.62 to 0.64, whereas 
Gleichläufigkeit values are 79.4% between upper slope and lower slope 
chronologies, 81.0% between upper slope and depression, and 81.4% 
between lower slope and depression, respectively. Similarly, the site 
chronologies show synchronous peaks, although at different magnitudes 
(Figure S7). 

3.2.3. Climatic response functions 
Significant correlation coefficients are mostly found in the period 

between May and September of the current growing season (Fig. 6), 
even though the previous year’s conditions yield significant correlations 
as well, with differences between the climate variables, as follows. 

Temperature features significant negative correlations with TRW for 
at least three months during the growing season of the current year in all 
macroplots and for November of the previous year. Previous summer 
precipitation has a somewhat negative influence on TRW, contrary to 
current summer, whose influence is distinctly positive for at least two 
months across all macroplots. This is also highlighted by the highest 
response function coefficient in the upper slope macroplot for current 
June. 

Fig. 2. Tree density distribution per macroplot, species group and DBH class. The white column refers to the established regeneration (height > 1.3 m and DBH < 5 
cm). Note that the y-axis has a logarithmic scale. 

Table 2 
Shannon index values (±SD) in the different macroplots and stand layers.   

Established regeneration Lower main layer Upper main layer 

Upper slope 1.32 (±0.38) 1.52 ± (0.15) 0.55 (±0.51) 
Lower slope 1.33 (±0.05) 1.36 ± (0.33) 0.52 (±0.14) 
Depression 1.53 (±0.35) 0.00 0.00 (±0.00) 

Established regeneration = DBH < 5.0 cm and height > 1.3 m. 
Lower main layer = DBH > 5.0 cm and < 15.0 cm. 
Upper main layer = DBH > 15.0 cm. 
Please note that the Shannon index of the lower main layer in the depression has 
no standard deviation due to the presence of only one tree. 
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Three-month SPEI shows positive and very high correlation co
efficients during three to five months of the current summer. In contrast, 
previous summer SPEI is negatively correlated with growth, although a 
moving response analysis reveals that this influence was higher between 
1970 and 2000 than at present (Fig. 7). The SPEI correlation and 
response coefficients reflect the patterns of the precipitation values, 
while they tend to be opposite to the coefficients calculated for 
temperature. 

As a general trend, the upper slope macroplot shows a higher number 

of large coefficients and significant values than the other macroplots, 
whereas the lower slope is least sensitive to the climate of the current 
summer season (Fig. S8). 

The years selected as drought years (i.e., with summer SPEI values <
− 1) are 1957, 1958, 2003, 2006, 2009, 2011, and 2017. The Superposed 
Epoch Analysis (SEA) indicates a significant growth decrease (p < 0.01) 
during the drought years, but no significant consequences in the 
following years, irrespective of the macroplot (Fig. 7). The average ring- 
width index (RWI) in these drought years is 0.82 in the depression, 0.84 
along the lower slope and 0.86 on the upper slope, respectively (Fig. S7). 

Selected negative pointer years based on growth deviations are 1946, 
1948, 1955, 1958, 2009, 2011, 2015, and 2017, while positive pointer 
years are 1953, 1956, 1963, 1984, 1991, 1996, and 2014. In general, the 
negative pointer years have below-average yearly mean SPEI values 
(-0.62). In particular, monthly values between May and November are 
lower than 0.75 in negative pointer years, reaching a minimum of − 1.32 
and − 1.31 in June and July, respectively. In positive pointer years, the 
average SPEI is 0.62, with a maximum in February (1.13) and values 
from 0.66 to 0.79 between June and November. 

In negative pointer years, climate is characterized by a mean tem
perature of 15.9 ◦C and a mean precipitation sum of 683 mm. Pointer- 
year temperature is thus comparable with the overall mean tempera
ture in Varramista, but annual precipitation is more than 20% lower 
than the average. In negative pointer years, monthly precipitation 
exceeded the threshold of 100 mm in December only, i.e. outside the 
vegetation period, and reached the lowest value in July, with less than 
20 mm. February and March were wetter than average, while summer 
and autumn were drier. In these years, the dry period starts almost two 
months earlier with respect to a standard season (when it usually spans 
from late June to August) and extends from May to August, which is 
more than twice as long as the average duration of a usual dry season. 

Positive pointer years featured a mean annual precipitation of 1041 
mm (i.e., 20% higher than the average) and a number of very moist 
months with rainfall exceeding 100 mm (i.e., January, September, 
October, and November). In these years, spring was wet and the dry 
period was only half as long with respect to the overall mean (e.g., dry 
July only). In addition, mean temperature amounted to 14.8 ◦C, i.e. 1.1 
◦C lower than during negative pointer years. 

4. Discussion 

4.1. Stand structure and regeneration dynamics 

In Varramista, silver fir grows and regenerates together with Medi
terranean species such as holm oak (Q. ilex L.) as well as thermophilous 

Fig. 3. Seedling density per macroplot and species group. Vertical bars represent the 95% confidence interval; * = p < 0.05, ** = p < 0.01, *** = p < 0.001. For 
details on tree species grouping, please refer to Table S6. 

Fig. 4. Meteorological time series (1951–2018) for Varramista. (a) mean 
annual precipitation (SIR 2019b), (b) mean annual temperature (SIR 2019a), 
(c) mean annual three-month SPEI. The horizontal lines represent the average 
values of the entire series. 
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deciduous species such as Turkey oak (Q. cerris L.). This confirms the 
suitability of the species for such environmental conditions as reported 
by several palynological studies and models (Bellini et al. 2009; Di 
Pasquale et al. 2014; Tinner et al. 2013). 

Nevertheless, regeneration capacity and growth performance of sil
ver fir clearly follow a geomorphological gradient. In comparison to the 
slope macroplots, in the depression the stand structure is nearly single- 

layered and features a higher silver fir density in the seedling class 
(Fig. 3) and at DBH values above 40 cm (Fig. 2). Although no detailed 
information exists on the effective impact of the 2015 windstorm, which 
was concentrated on the stands of the valley bottom, we can assume that 
the event highly influenced the stand structure of the depression mac
roplot, which was open enough to allow for the development of rather 
light-demanding deciduous species, such as manna ash (Fraxinus ornus 

Fig. 5. Tree-ring-width (TRW) series of the cored trees in each macroplot. (a) upper slope, (b) lower slope, (c) depression. The black lines represent the TRW average 
series of the macroplot, whereas the dashed grey lines report the sampling depth. 

Fig. 6. Correlation and response functions co
efficients for temperature, precipitation, and three- 
months SPEI monthly data for each macroplot. Bars 
show correlation coefficients and dots represent 
response coefficients. Dark grey bars refer to signifi
cant values, light grey bars to non-significant ones. 
Months of the current year are in capital letters, 
months of the previous year in lowercase. The analysis 
covers the period 1953–2018 for the upper and lower 
slope macroplots and 1955–2018 for the depression 
macroplot.   
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L.). 
For the highest DBH classes, silver fir densities tend to decrease 

(Fig. 2) and species diversity increases (Table 2) from the depression 
towards the slope macroplots, in particular the macroplot on the upper 
slope, which has a multi-layered structure and includes deciduous tree 
species that have a DBH larger than 30 cm, such as sweet chestnut and 
Turkey oak. The differences between the upper and lower slope mac
roplots may be due not only to their position on the slope but also to 
their aspect. In fact, west-facing slopes have been shown to usually host 
more dry-adapted vegetation communities than east-facing ones (Bennie 
et al. 2008). In the established regeneration stage, the dominance of 
Mediterranean evergreens in the slope macroplots mostly refers to the 
high densities of the shade-tolerant English holly (Ilex aquifolium L.), 
which was favored by the lower light transmittance of these stands. 

The observed differences in stand structure and tree growth as a 
function of geomorphology are in line with previous studies on the 
susceptibility of the species when growing at low elevations under 
Mediterranean climate conditions (Henne et al. 2013; Henne et al. 2015; 
Tinner et al. 2013). In our case, however, Turkey oak played a much 
more prominent role than holm oak, which may be related to the broad 
use of Q. cerris for coppice management in this climatic zone (Fabbio and 
Cutini 2017). 

4.2. Trends in tree-ring growth 

The long-term mean tree-ring widths in Varramista are comparable 
for similar time spans with the growth rates of silver fir in sub- 
Mediterranean and Mediterranean thermophilous mixed oak forests (e. 
g., Battipaglia et al. 2009; Lebourgeois et al. 2010; Mazza et al. 2014) as 
well as in the range of European beech and beech-fir forests of western, 
central and southeastern Europe, where annual precipitation rates are 
almost twice as high as in Varramista (i.e., 1500 mm/year; Fig. 8 and 
Fig. S9; Bijak 2010; Lebourgeois et al. 2010; Toromani et al. 2011; van 
der Maaten-Theunissen et al. 2013). In Varramista, mean TRWs in the 
depression macroplot and in the upper slope macroplot, which can be 
assumed to be most exposed to drought, do not substantially differ from 
the growth performance of silver fir in the Black Forest (van der Maaten- 

Theunissen et al. 2013), which is considered to represent a well-suited 
mesic environment for the species. 

Furthermore, the observed multi-annual (e.g., decadal) TRW trends 
in Varramista are in line with corresponding data at the continental level 
(Gazol et al. 2015; Vitasse et al. 2019), although with different magni
tudes along the geomorphological gradient. In particular and rather 
unexpectedly, silver fir growing on the upper slope responds less 
sensitively to dry years. 

The Varramista stands feature a decrease in TRWs from the early 
1950s until the middle of the 1980s. Similar trends are reported from 
Central Europe (Germany and Poland in particular; Bošěla et al. 2014; 
Büntgen et al. 2014; Elling et al. 2009; Łuszczyńska et al. 2018; Uhl et al. 
2013) to the Apennines in the Italian Peninsula (Clauser 1981; Clauser 
and Gellini 1986) and are usually ascribed to air pollution-induced stress 
due to high atmospheric SO2 and NOx concentrations. 

Starting from the 1980s, the TRW trends in Varramista followed 
again the general European pattern, i.e. the reduction in SO2 and ni
trogen oxides (NOx) emissions (Bošěla et al. 2014; Łuszczyńska et al. 
2018) combined with climate warming (Büntgen et al. 2014) allowed 
silver fir to recover and to considerably increase its growth rate until the 
end of the 1990s. A partial exception to this general growth release after 
1980 is represented by silver fir stands in southern Italy and in the 
Pyrenees, where drier local climates combined with frequent drought 
events counterbalanced the positive effects of increased air quality 
(Büntgen et al. 2014). 

A generalized increase in summer drought frequency and intensity as 
revealed by the SPEI values of the last 20 years in Varramista caused a 
TRW reduction starting at the beginning of the present century. This is in 
line with what is reported at the European scale (Bošěla et al. 2018; EEA 
2017; Gazol et al. 2016). In this context, Lebourgeois et al. (2010) 
emphasized the importance of soil water holding capacity for buffering 
the negative consequences of increasing summer drought intensities and 
frequencies for silver fir stands at low elevation. 

4.3. Climate-growth relationships 

The correlation and response functions analysis confirmed the high 
sensitivity in terms of annual ring width of lowland silver fir to water 
shortage and summer drought in particular. Therefore, longer-than- 
usual season aridity starting in May usually results in negative pointer 
years. A severe and early-starting water shortage period may in fact 
significantly restrict the available time for sustained growth, which in 
silver fir mostly occurs in early summer (Aussenac 2002; Lebourgeois 
2007; Santini and Martinelli 1991). For the same reason, wet spring 
years allow silver fir to continuously foster the growth rates, which 
eventually results in positive pointer years (Cailleret et al. 2013). 

The key limiting factor for tree-ring growth in silver fir at low 
elevation is thus summer drought, whereas with increasing elevation the 
main growth-regulating factors are winter and spring temperatures 
(Lebourgeois et al. 2013; Rolland et al. 1999; van der Maaten- 
Theunissen et al. 2013; Vitali et al. 2018). 

Surprisingly, no negative impact or even a slight positive impact of 
previous-year drought conditions on TRWs has been observed in Var
ramista, especially during the growth release phase in the 1980s (Vitali 
et al. 2017). This lack of negative influence of dry summers on the 
growth in the next season contrasts with the immediate and mid-term 
negative post-drought growth reactions reported by other authors 
(Battipaglia et al. 2009; Macias et al. 2006; van der Maaten-Theunissen 
and Bouriaud 2012). According to Guicherd (1994), such mid-term 
negative reactions are due to the trait of silver fir to suspend drought- 
induced stomatal closure even during short and weak rainfall events, 
which possibly leads to water stress and lack of reserves for the next 
growing period (Toromani et al. 2011). In some cases, severe droughts 
and related decreases in water availability are even reported to have 
caused silver fir dieback, e.g. in the Pyrenees (Camarero et al. 2011; 
Hernández et al. 2019), in southern France (Cailleret et al. 2013) and in 

Fig. 7. Deviation from the mean growth in years with extreme summer 
droughts (0) and in the four following years (1–4). Dark grey bars refer to 
significant values (i.e., **p < 0.01), light grey bars to non-significant ones (i.e., 
p > 0.05). 
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Switzerland (Rigling and Stähli 2020). There is no information on past 
dieback events in Varramista, however. Nevertheless, large diebacks 
following drought periods cannot be excluded, even if today the stands 
do not seem to have experienced any. Furthermore, the analyzed silver 
fir individuals are relatively young (ca. 60 years) and their response to 
climatic stress may feature an age-dependent component, as found for 
other coniferous tree species (e.g., Carrer and Urbinati 2004; Carrer 
2011, Wu et al. 2018). 

Clearly, the provenance of silver fir influences its response to drought 
(Matias et al. 2016; Mihai et al. 2021), as well as local adaptations of 
trees growing under frequent drought stress, which may to some extent 
buffer the negative consequences of water shortage (Csillery et al. 

2020a; Csillery et al. 2020b; Nourtier et al. 2012). The study case of 
Varramista provides however the opportunity to further analyze this 
issue. 

Lastly, the question remains open whether the high winter temper
atures in Varramista may allow silver fir to restore part of the summer 
drought-induced missing reserves through a reactivation of the photo
synthetic activity and the accumulation of carbon before the start of the 
next growing season (Carrer et al. 2010; Guehl et al. 1985; Kozlowski 
et al. 1991), as recently highlighted in different evergreen species of 
Mediterranean and temperate environments (Saarinen et al. 2011; 
Zhang et al. 2017). To elucidate this, ecophysiological measurements for 
several years would need to be made. 

Fig. 8. Mean tree-ring widths of Silver fir for the period after 1900 AD and under different climate conditions (mean annual precipitation and temperature) and in 
different forest types. Point size represents the mean TRW of the series, the grey-scale color refers to the vegetation type following Lang (1994). The crossed point 
represents the depression macroplot of Varramista. 
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5. Conclusions 

Our dendroecological investigation on meso-Mediterranean silver fir 
stands in Varramista confirms the potential of the species to thrive at the 
warm edge of its distribution, reaching similar growth performance as in 
Central Europe, in spite of substantially higher temperatures and much 
lower summer precipitation sums. The silver fir stands in Varramista 
follow the general long-term (decadal) growth trends of most European 
silver fir populations, including a continuous reduction of tree-ring 
width over the last ca. 25 years as a consequence of increasing water 
stress. 

The most limiting factor for silver fir growth under these conditions 
is summer water shortage, but not temperature. We propose that in 
Varramista soils have a sufficient water holding capacity, allowing the 
local population of silver fir to not only overcome the typical and strong 
Mediterranean summer drought lasting at least two months, but also to 
regularly regenerate naturally and to successfully compete with meso- 
Mediterranean species such as Quercus ilex and Q. cerris. 

The potential climatic envelope of silver fir should be extended to 
warm Mediterranean conditions, provided a sufficient annual precipi
tation (i.e., 850 mm) and the absence of extreme (i.e., three and more 
months lasting) summer droughts. In the face of ongoing climate 
change, future research should focus on the genetics and the prove
nances of existing crypto-Mediterranean silver fir occurrences, such as 
the Varramista stands, and on their physiological adaptation mecha
nisms to summer drought in particular (e.g., growth performance, 
cambial activity and reserve use capacity under drought-stress during 
the growing season). Our study suggests that silver fir may have a bright 
future also under warmer and partially drier conditions in central 
Europe. 
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