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Penalized Hyperbolic-Polynomial Splines

Rosanna Campagnaa, Costanza Contib,∗

aDepartment of Mathematics and Physics, University of Campania “Luigi Vanvitelli”, Italy
bDepartment of Industrial Engineering, DIEF, University of Firenze, Italy

Abstract

With the aim of generalizing P-splines, we here define a special type of penalized splines, called HP-splines,
where polynomial splines are replaced by the richer class of hyperbolic-polynomial splines and a suitably
tailored discrete penalty term is used. Hyperbolic-polynomial splines, important in several applications,
are a natural generalization of polynomial splines consisting of piecewise-defined functions with segments
spanned by ‘atoms’ of type xreαx where r = 0, . . . , ` and α ∈ R. HP-splines, that reduce to P-splines for
α = 0, are more suitable to data with an exponential trend which is frequent in applications.
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1. Introduction

P-splines appeared about twenty years ago with the aim of simplifying the work of O’Sullivan in the
context of penalized splines [1]. Indeed, in 1986 O’Sullivan noticed that by using a cubic B-spline basis,
the familiar measure of roughness given by the integrated squared second derivative, can be expressed as a
quadratic function of the coefficients. P-splines, later introduced by Eilers and Marx [2], go one step further
and, by the help of uniform knots B-splines, discard completely the derivatives and express the roughness
as the sum of squares of differences of the coefficients. Differences are extremely easy to compute and their
generalization to higher orders is straightforward. P-splines are known to be effective and appreciated in
several applications (see, for example, the recent paper [3]). A comprehensive description of P-splines is
given in [4].

The two ingredients of P-splines are polynomial B-splines and discrete difference penalties. B-splines are
well known basis functions of polynomial spline spaces very attractive for modeling and regression. However,
their use requires to deal with the optimal choice of the number and the positions of the knots which is not
an easy task. One possible solution is to use equidistant knots but, in case they are too few, only a limited
control over smoothness and fit is possibile. The key idea of P-splines is to use a relatively large number
of knots and a finite difference penalty on the coefficients of adjacent B-splines. This penalty term has a
connection to the familiar spline penalty based on the integral of the squared second derivative.

The aim of this short paper is to move beyond the P-splines and consider hyperbolic-polynomial penal-
ized splines, HP-splines for short, where polynomial splines are replaced by the richer class of hyperbolic-
polynomial ones. Hyperbolic-polynomial splines, special instance of L-splines, are a natural generalization
of polynomial splines consisting of piecewise-defined functions with segments spanned by ‘atoms’ of type
xreαx where r = 0, . . . , ` and α ∈ R. They are important in several applications ranging from geometric
modeling, to image analysis, passing trough isogeometric analysis and system theory (see, for example,
[5–8]). The derivation of HP-splines is not more complicated than that of P-splines to which they reduce
whenever α = 0. By their nature, they are certainly more suitable to data showing an exponential trend.
Multi-exponential decaying data are very frequent in applications and a continuous description of this type
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of data allows the use of mathematical tools for data analysis such as the Laplace Transform, see for example
[9–11] and reference therein.

The paper is organized as follows: in Section 2, cubic P-splines are briefly reviewed and the idea leading to
their generalization is discussed, based on the notion of penalized regression L-spline which is also presented.
A particular instance of HP-splines and B-splines is considered in Section 3 together with the corresponding
discrete penalty term used for the HP-splines definition. The closing Section 4 provides some numerical
examples to show the effectiveness of HP-splines, particularly for data with an exponential trend.

2. Beyond P-splines

In this section, following Eilers and Marx (see [2, 4] for all details) we briefly review cubic P-splines as
starting point of the new family of splines with penalty we propose in Section 3.

Consider the regression of m data points (xi, yi), i = 1, . . . ,m, x1 < · · · < xm, on a cubic spline space
defined on the interval [a, b] with a = x1 and b = xm. Assume the cubic spline space Sn, of dimension n, is
spanned by n polynomial cubic B-splines Bj , j = 1, . . . , n based on the uniform set of knots {ξ−1, . . . , ξn+2}
with ξ2 ≡ a and ξn−1 ≡ b. The starting point is the minimization of the least squares objective function
based on the familiar measure of roughness, given by the integrated squared second derivative,

M(a1, . . . , an) =

m∑
i=1

wi

yi − n∑
j=1

ajBj(xi)

2

+ λ

∫
b

a

 n∑
j=1

ajB
′′

j (x)

2

dx. (1)

The minimization is done with respect to the splines coefficients a = (a1, . . . , an) while (w1, . . . , wm) are non
zero weights and λ is a regularization parameter. By taking into consideration that the second derivative of
a cubic B-spline is a linear combination of linear B-splines and combining the uniformity of the knots with
the B-splines locality, it is easy to see that∑

j∈Z
ajB

′′

j (x) =
∑
j∈Z

(∆2a)jbj(x), where (∆2a)j = aj − 2aj−1 + aj−2, j ∈ Z,

while bj denotes a linear B-spline. From above, applying a certain level of approximation (e.g. disregarding
the integral contribution) one arrives at the penalized least squares objective function charactering the
P-splines

P (a1, . . . , an) =

m∑
i=1

wi

yi − n∑
j=1

ajBj(xi)

2

+ λ

n∑
j=3

(
(∆2a)j

)2

, (2)

where the minimization is done, again, with respect to the splines coefficients a = (a1, . . . , an). Of course,
the problem in (1) is different from the problem in (2).

Our goal is to extend the P-splines idea to the L-splines, a generalization of polynomial splines related
to a linear differential operator. Following [12], the definition of L-splines is recalled below.

Definition 2.1 (L-spline). For a given partition of [a, b], Ξ := {a = ξ1 < · · · < ξN = b}, the L-spline

related to an order-` linear differential operator of type L` := D` +
∑`−1
j=0 cjDj and to the partition Ξ, is a

function s ∈ C`−2[a, b] such that L` s = 0 in every interval (ξi, ξi+1), i = 1, . . . , N − 1. The corresponding
spline space is a linear space of dimension `+N − 2 denoted as SL`,Ξ.

We continue with the definition of penalized regression L-spline on the space

Hd[a, b] := {u ∈ Cd−1[a, b], u(d−1) absolutely continuous, u(d) ∈ L2[a, b]}.
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Definition 2.2 (Penalized regression L−spline). Given the data points (xi, yi), i = 1, . . . ,m, x1 < · · · < xm,
let a = x1 and b = xm. Let Ξ := {a = ξ1 < ξ2 · · · < ξN = b} be a given knot partition of [a, b], and Ld an
order-d linear differential operator with formally adjoint L∗d. The penalized regression L-spline, related to
the differential operator L2d := L∗dLd of order 2d, is the solution of the minimization problem

min
u∈SL2d,Ξ∩Hd[a,b]

m∑
i=1

wi (yi − u(xi))
2

+ λ

∫ b

a

(Ldu(x))
2
dx, (3)

with (w1, . . . , wm) non zero weights and λ a regularization parameter.

Remark 2.1. We observe that, if we search for the solution of (3) in Hd[a, b], without any restriction to
the spline space SL2d,Ξ, the minimum is obtained when the knots ξk, k = 1, . . . , N coincide with the data
xi, i = 1, . . . ,m (see [13], for example). But, since here we are interested in the regression of m data, with
N < m, the minimum needs to be searched in the splines space SL2d,Ξ to which we restrict our attention.
Nevertheless, a more general study of (3) (existence, uniqueness and solution characterization) is important
and in fact under the authors’ attention.

Now, if {φ1, . . . φn}, n = 2d+N − 2, are bell-shaped compactly supported basis functions for the spline
space SL2d,Ξ defined in Definition 2.1, the problem in (3) can be written as

min
a1,...,an

m∑
i=1

wi

yi − n∑
j=1

ajφj(xi)

2

+ λ

∫
b

a

 n∑
j=1

ajLdφj(x)

2

dx. (4)

In order to get a simple and discrete penalty term, the idea is now to substitute the operator Ld with
a discretization based on the grid points Ξ, through a difference operator denoted by ∆Ξ

d . By using the
uniformity of the knots, we apply a summation by parts argument which interchanges the discrete difference
operator ∆Ξ

d from the basis function to the basis coefficients and arrive, still disregarding the integrals, at
the simplified formulation

min
a1,...,an

m∑
i=1

wi

yi − n∑
j=1

ajφj(xi)

2

+ λ

n∑
j=1

(
∆Ξ
d aj

)2

. (5)

3. Hyperbolic-polynomial P-splines

Exponential-polynomial splines are a natural generalization of polynomial splines important in several
applications ranging from geometric modelling to image analysis passing trough isogeometric analysis and
system theory. They are piecewise-defined functions consisting of segments belonging to the null space of a
differential operator L` = (D + αI)`, where α ∈ C, D is the first derivative operator and I is the identity
operator. In case α ∈ R, they are called hyperbolic-polynomial splines. Certainly, further generalizations
of the notion of spline are available. For example, splines with exponential-polynomial segments involving
different α or splines with segments belonging to spaces of different dimension (see the classical book [14]
or the more recent paper [15]). But, the study of this type of splines is out of scope of this short paper.

It is a well established fact that spline applications often require the use of spline bases with specific
properties. For example, polynomial B-splines possess non negativity, compactness of the support, minimal
support with respect to degree and smoothness, stability (see, e.g., the celebrated book [16]). The latter
properties, among others, make them essential building blocks in many contexts, including approximation
theory, numerical differentiation and integration, signal and image processing, computer-aided design and
computer graphics (see [8] and [17]). Similarly to the polynomial case, the exponential polynomial spline
space is spanned by ‘bell-shaped’ compactly supported bases. These bell-shaped functions enjoy several
properties of polynomial B-splines and are usually called B-spline-like functions or generalized B-splines
(see [18] and references therein). Here, we are interested in a particular hyperbolic-polynomial spline model
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defined, for α ∈ R, by the composition of the differential operator L2 = (D + αI)2 and its adjoint L∗2 =
(D − αI)2, whose action on regular functions is

L2u := u
′′

+ 2αu
′
+ α2 u, L∗2u = u

′′
− 2αu

′
+ α2 u, α ∈ R. (6)

Their composition is identical with the 4th order differential operator L∗2 L2v = v(iv)−2α2 v
′′

+α4 v, α ∈ R.
The null spaces of L2 and L∗2 L2 are, respectively, the following two-dimensional and four-dimensional spaces

E2 := span{e−αx, x e−αx}, E4 := span{eαx, x eαx, e−αx, x e−αx}, α ∈ R, (7)

that are Chebyshev spaces on the real line [12]. Note that for α→ 0 the spaces E2,E4 reduce to {1, x} and
{1, x, x2, x3}, respectively. For the corresponding spline space SL∗2L2,Ξ with knots Ξ := {a = ξ1 < · · · < ξn =
b} and dimension n+ 2, generalized B-splines are constructed and investigated in [9]. They have a compact
support identified by 5 consecutive knots, are C2-regular, and with segments in the space E4. As detailed in
[9, Section 3.1], their construction is possible by expressing the segments in terms of proper Bernstein-like
local bases and imposing regularity conditions at the knots in order to guarantee a global C2-regularity. An
example of an hyperbolic-polynomial B-spline with uniform knots is given in Figure 1 (bottom) where the
knots are denoted as ‘∗’ and where the bell-shaped graph and the locality of the support are evident.

We continue by discussing the new family of hyperbolic-polynomial penalized splines, named HP-splines,
we propose. The starting point is given by the data points (xi, yi), i = 1, . . . ,m. From them we set a = x1,

b = xm and construct the uniform knots Ξ := {a = ξ1 < ξ2 · · · < ξn = b}, ξi = a+ (b−a)
n−1 (i− 1), i = 1, . . . , n

with fixed grid size h = (b−a)
n−1 . Then, we consider the difference operator ∆h,α

2 defined as

∆h,α
2 u = eαhu(x+ h)− 2u(x) + e−αhu(x− h), x ∈ [a, b], α, h ∈ R,

whose corresponding null space is, again, E2 in (7) while E4 is the null space of ∆h,α
2 (∆h,−α

2 ). As basis
functions for SL∗2L2,Ξ we consider {B0, . . . , Bn+1} as in [9, Section 3.1] whose construction requires the
uniform left and right extra knots ξ` = ξ1 − `h, ` = 1, 2, 3, ξn+` = ξn + `h, ` = 1, 2, 3, respectively.

With these ingredients, we repeat the argument in Section 2 and substitute
∑n+1
j=0 ajL2Bj(x) in (4) with

n+1∑
j=0

aj∆
h,α
2 Bj(x) =

n+1∑
j=0

aj
(
eαhBj(x+ h)− 2Bj(x) + e−αhBj(x− h)

)
.

Due to the uniformity of the knots, it follows Bj(x − `h) = Bj+`(x) so that, with the convention B−1 =
Bn+2 ≡ 0, it is

n+1∑
j=0

aj∆
h,α
2 Bj(x) =

n+1∑
j=0

aj
(
eαhBj−1(x)− 2Bj(x) + e−αhBj+1(x)

)
.

Therefore, applying the difference operator to the sequence of real values a = (aj)j=0,...,n+1 as

(∆h,α
2 a)0 = eαha1 − 2a0, (∆h,α

2 a)j = eαhaj+1 − 2aj + e−αhaj−1, (∆h,α
2 a)n+1 = −2an+1 + e−αhan,

taking into consideration the local support of each basis function Bj and that

n+1∑
j=0

aj∆
h,α
2 Bj(x) =

n+1∑
j=0

(∆h,α
2 a)jBj(x),

we end up with our new proposal of discrete penalty term analogue of the penalty term in (2), to which
it reduces when α = 0. To summarize, the HP-spline is defined as a solution to the penalized least square
problem

min
a0,...,an+1

E(a0, . . . , an+1) = min
a0,...,an+1

m∑
i=1

wi

yi − n+1∑
j=0

ajBj(xi)

2

+ λ

n+1∑
j=0

(
(∆h,α

2 a)j

)2

, (8)
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where the minimum is with respect to the exponential polynomial B-splines coefficients a = (aj)
n+1
j=0 ,

(w1, . . . , wm) are non-zero weights, and λ is a regularization parameter. It is easy to see that the prob-
lem in (8) is equivalent to solve the linear system

BTWy =
(
BTWB + λ(Dh,α

2 )TDh,α
2

)
a, (9)

where y ∈ Rm, a ∈ R(n+2), B ∈ Rm×(n+2), W ∈ Rm×m and Dh,α
2 ∈ Rn×(n+2), with

Dh,α
2 =



−2 eαh 0 · · · 0
e−αh −2 eαh · · · 0

...
. . .

. . .
. . .

...
...

... e−αh −2 eαh

...
...

... e−αh −2


, B := (Bj(xi))

j=1,...,n
i=1,...,m W := (diag(wi))i=1,...,m

The band structure of the matrix BT , inherited by the B-spline locality, is shown in Figure 1 (top).
We conclude by observing that, as well-known, the linear system in (9) may suffer from numerical instability
issues for relatively large values of the parameter α. This fact is shortly discussed in the next section.

4. Numerical examples

This section is to show HP-splines in action on two different types of data sets. The tests are carried out
with a MATLAB R© R2020b software available to the authors. In all tests W is the identity matrix of order
m. The first test considers the benchmark Motorcycle Data of 94 data (see [19]). The associated HP-spline
(black ‘−’ ) and P-spline (magenta ‘:’ ), derived for n = 40, α = 0.3 and λ = 0.5 (with α and λ empirically
driven by the data and selected in order to get a visually inspected agreement with them), are in Figure 2
with the data. Figure 3 show HP-splines with the same α and λ, for n ∈ {15, 20, 25, 30, 35, 40, 45, 50}. We
see that only n = 15 and n = 20 grant a solution outside the 95% Bayesian confidence region, represented
in the figure. As expected, without any prior information about the modelling problem, HP-spline behaves
similarly to P-spline.

Figure 1: BT structure and B-spline Figure 2: HP-(‘−’ ) vs P-(‘:’ ) splines Figure 3: 95% confidence band

The second test is related to a synthetic and noisy data set of m = 40 random points in [−1.5, 1.5], and
the corresponding evaluations of the exponential function

f(x) = 10−5(e7x − xe−7x), x ∈ [−1.5, 1.5],

affected by absolute Gaussian noise with zero mean and standard deviation σ (specified in the figure cap-
tions). The associated HP-spline (black ‘−’ ), derived for α = 3, and the P-spline (magenta ‘:’ ), are both
shown in all Figures 4-12 together with the data (displayed as ‘∗’ ) and the knots (displayed as ‘�’ ). In this
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test α is computed in run time, by a best fitting algorithm based on two steps: first we consider a function
in the space E4 modelled by 5 free parameters, with α included; then the free parameters are defined by
a nonlinear least-squares regression, through the MATLAB function nlinfit. Comparison of Figures 4–6
(where n = 15 and λ = 0.1) with Figures 7-9 (where n = 20 and λ = 0.1), is to stress the impact of the
spline space dimension in capturing the ‘details’ while comparison of Figures 7–9 with Figures 10–12 (where
n = 20 and λ = 1) is to stress the effects of the smoothing parameter. All tests confirm the validity of the
HP-spline model that better captures the exponential data behavior.

Figure 4: σ = 5 · 10−2 Figure 5: σ = 10−1 Figure 6: σ = 5 · 10−1

Figure 7: σ = 5 · 10−2 Figure 8: σ = 10−1 Figure 9: σ = 5 · 10−1

Figure 10: σ = 5 · 10−2 Figure 11: σ = 10−1 Figure 12: σ = 5 · 10−1

We conclude this section with Table 1 showing the two-norm condition number of the matrix in (9), µ2.
Our analysis considers α ≤ 30 and shows that µ2, though increasing with m and n, is kept under control.
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n = 20, m = 40
α µ2

0.01 4.1198e+02
0.1 4.1009e+02
0.5 4.0167e+02

1 3.9159e+02
5 3.3055e+02

10 3.2733e+02
20 2.4643e+03
30 2.0949e+05

n = 30, m = 50
α µ2

0.01 1.2550e+03
0.1 1.2474e+03
0.5 1.2170e+03

1 1.1798e+03
5 9.1205e+02

10 6.5452e+02
20 4.7666e+02
30 1.3383e+03

n = 50, m = 80
α µ2

0.01 1.4209e+04
0.1 1.4191e+04
0.5 1.3616e+04

1 1.2933e+04
5 8.6432e+03

10 5.3498e+03
20 2.2882e+03
30 1.2283e+03

Table 1: Condition number of the matrix in (9) for different values of m, n and α.

5. Conclusions

In this work, we propose a penalized hyperbolic-polynomial spline with a discrete penalty term suitable
to model data showing an exponential trend, a frequent scenario in applications. The spline expansion is
made through local hyperbolic-polynomial B-splines granting boundedness of the linear system to be solved.
Both the B-splines and the discrete penalty term, reduce to the ones of P-spline for α = 0. Theoretical
investigation of HP-spline properties, including the issues mentioned in Remark 2.1, as well as dynamic
selection strategy of the parameter α, certainly deserve more attention and are presently under investigation.
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