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The idea that several small, rather than a single large, habitat areas should hold the 
highest total species richness (the so-called SLOSS debate) brings into question the 
importance of habitat fragmentation to extinction risk. SLOSS studies are generally 
addressed over a short time scale, potentially ignoring the long-term dimension of 
extinction risk. Here, we provide the first long-term evaluation of the role of habitat 
fragmentation in species extinction, focusing on 22 large mammal species that lived 
in Eurasia during the last 200 000 years. By combining species distribution models 
and landscape pattern analysis, we compared temporal dynamics of habitat spatial 
structure between extinct and extant species, estimating the size, number and degree 
of the geographical isolation of their suitable habitat patches. Our results evidenced 
that extinct mammals went through considerable habitat fragmentation during the last 
glacial period and started to fare worse than extant species from about 50 ka. In partic-
ular, our modelling effort constrains the fragmentation of habitats into a narrow time 
window, from 46 to 36 ka ago, surprisingly coinciding with known extinction dates of 
several megafauna species. Landscape spatial structure was the second most important 
driver affecting megafauna extinction risk (ca 38% importance), after body mass (ca 
39%) and followed by dietary preferences (ca 20%). Our results indicate a major role 
played by landscape fragmentation on extinction. Such evidence provides insights on 
what might likely happen in the future, with climate change, habitat loss and fragmen-
tation acting as the main forces exerting their negative effects on biodiversity.

Keywords: habitat fragmentation, landscape metrics, linear mixed models, 
megafauna, species distribution models, species extinction

Introduction

Humans control most of Earth’s net primary productivity (Liu et al. 2019, Ripple et al. 
2019, Williams  et  al. 2020) and are stressing natural habitats to an unprecedented 
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degree, raising extinction rates to the level of mass extinction 
(Ceballos et al. 2015, Andermann et al. 2020). Human pres-
sure also exerts a negative impact on ecosystem functioning, 
depressing ecosystems’ resilience and therefore the chance for 
species to recover when (and if ) human pressure is relieved 
(Lyons et al. 2016, Pimiento et al. 2020). The pervasive pres-
ence of humans is impacting the extension and diversity of 
natural habitats as well, leaving wildlife with little space to 
survive (Newbold  et  al. 2015). In this context, it becomes 
necessary to understand how habitat availability and frag-
mentation will affect the chance of species survival in the 
long term.

Diamond (1975) first proposed on theoretical grounds 
that a single large undisturbed habitat should hold more spe-
cies than several small habitat patches amounting to the same 
total area. This idea attracted enormous interest, generating 
the so-called SLOSS (single large or several small) debate 
(Tjørve 2010). Although elegant and intuitive, Diamond’s 
conjecture received little empirical support, with most stud-
ies pointing to the opposite effect, that is many small patches 
generally hold more species than a single patch of the same 
overall extent (Fahrig  et  al. 2019). Fahrig (2013) proposed 
that species richness in a given place increases with the 
amount of habitat present in the surrounding area, whereas 
the size and isolation of individual habitat patches within 
the area are unimportant. This ‘habitat amount hypothesis’ 
(HAH), then implies that the degree of fragmentation, as well 
as any other habitat geographic configuration characteristics, 
does not affect the chance of species survival. The HAH was 
recently tested in several studies (Fahrig 2020), pushing the 
balance towards the several small sides of the SLOSS debate. 
Apparently, this result holds true for specialist and threatened 
species, suggesting that it is not simply arising from incursion 
by generalist species into small patches, as often suggested. 
Moreover, the result does not change when considering nat-
ural or anthropogenic landscapes (Fahrig 2020). Yet, Saura 
(2021) questioned Fahrig’s findings on methodological 
grounds, proposing evidence for a strong influence of habitat 
spatial structure (i.e. the spatial arrangement of suitable habi-
tat patches) on HAH predictions. Saura (2021) noted that 
habitat fragmentation, while holding the amount of habitat 
constant, negatively affects species richness. The HAH debate 
is intriguing, both because it has no clear-cut explanation and 
because it contrasts with the several studies demonstrating 
large and well-connected habitat patches are beneficial to spe-
cies’ survival (Fahrig 2003, Reed 2004, Blomqvist et al. 2010, 
Haddad et al. 2015, Lino et al. 2019).

One major limitation of SLOSS studies is that they fail to 
capture the potential long-term effects of habitat fragmen-
tation on species persistence by focusing on living wildlife 
and on a short temporal scale (Fahrig 2020). This suggests 
that even if HAH holds true, it does not preclude a detri-
mental effect of habitat fragmentation on species survival in 
the long run. Here, we provide the first long-term analysis 
of the importance of habitat fragmentation (as defined by 
patch size, number and degree of isolation) to species extinc-
tion, using the dense fossil record of Late Pleistocene large 

mammals of Eurasia and fine resolution paleoclimatic data. 
We apply species distribution modelling and landscape 
metrics (i.e. metrics quantifying the amount and the spa-
tial arrangement of habitable patches) to 31 different large 
mammal species that lived in Eurasia during the last 200 000 
years (200 ka). We compare landscape metrics for extinct and 
extant species, to estimate the difference in size, number and 
geographical isolation of habitat patches and their influence 
on extinction risk.

Material and methods

Mammal database

We collected fossil occurrences for 21 extinct and  
10 extant large mammals living in Eurasia during the last  
200 ka, belonging to the orders of Artiodactyla, Carnivora, 
Perissodactyla and Proboscidea. We enriched the fossil mam-
mal occurrence databases published in Raia  et  al. (2009) 
and Carotenuto  et  al. (2016), by adding new records and 
supplementing stratigraphic context and aging of the fos-
sil layers. Radiocarbon dates were calibrated by using the 
'Bchron' R package (Parnell 2016), applying the ‘Intcal20’ 
calibration curve (Reimer et al. 2020). Overall, we obtained 
4651 mammal occurrences distributed over 916 geological 
or fossil layers (Supporting information). For each species 
considered, we collected data on body mass and prevalent 
diet from Lundgren et al. (2021). We considered three cat-
egories of diet: grasses, browse and vertebrate meat. For each 
category, we expressed diet as a rank from 0 to 3 indicating 
an increasing degree of specialization in the consumption of 
each category.

Climatic predictors

Climate variables were generated using a paleoclimate emula-
tor, following the methodology of Holden et al. (2019). The 
approach applies Gaussian process emulation of the singular 
value decomposition of ensembles of runs from the interme-
diate complexity atmosphere-ocean model PLASIM-GENIE 
(Holden et al. 2016) with varied boundary-condition forc-
ing. Spatial fields of monthly temperature and precipitation 
were emulated at 1000-year intervals, driven by time-series of 
scalar boundary-condition forcing of CO2 (Lüthi et al. 2008), 
orbit (Berger and Loutre 1999) and ice-volume (Stap et al. 
2017), and assuming the climate is in quasi-equilibrium. 
Monthly emulated paleoclimate bioclimatic variables at reso-
lution 5° were transformed into anomalies and downscaled 
onto modern observations (CHELSA; Karger et al. 2017) at 
0.5° spatial resolution using bilinear interpolation.

Seventeen of the nineteen bioclimatic variables 
(Karger et al. 2017) were generated, omitting annual mean 
diurnal range (BIO2) and isothermality (BIO3) because the 
diurnal cycle was not simulated. Monthly mean temperature 
anomalies were applied for the maximum temperature of the 
warmest month (BIO5) and the minimum temperature of 
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the coldest month (BIO6), assuming that temporal variabil-
ity within each month is constant through time. Temperature 
anomalies were combined with the modern baselines addi-
tively. Precipitation anomalies were combined with baselines 
using a mixed multiplicative/additive approach (Holden et al. 
2019). Variables were then projected under a Mollweide coor-
dinate reference system and a 50 × 50 km spatial resolution. 
To avoid potential problems of multicollinearity, the full set 
of 17 bioclimatic variables was sub-selected considering a 
variance inflation factor ≤ 5 (Zuur et al. 2010) through the 
‘usdm’ R package (Naimi et al. 2014), retaining the follow-
ing seven predictors: BIO4 (temperature seasonality), BIO5 
(maximum temperature of the warmest month), BIO8 (mean 
temperature of the wettest quarter), BIO13 (precipitation 
of wettest month), BIO14 (precipitation of driest month), 
BIO18 (precipitation of warmest quarter) and precipitation 
of coldest quarter (BIO19).

Species distribution models (SDMs)

Age estimates for fossil layers come with some uncertainty. 
To account for this, following Raia et al. (2020), we gener-
ated a set of 100 SDM replications for each species. At each 
replication, for each fossil site, the age was drawn from a uni-
form distribution ranging from the minimum to the maxi-
mum age estimate of the site. For each species, any single 
replicate included all the species presences plus 10 000 pseu-
doabsences (Supporting information). The latter was gener-
ated by randomly placing 10 000 background points within 
a minimum convex polygon enclosing all the fossil localities 
where the species was present, and then creating a buffer 
around the polygon with a radius equal to 10% of the maxi-
mum distance between actual fossil occurrences. To account 
for potential sampling biases, pseudoabsences were geo-
graphically placed according to the density of the occurrence 
data, so that there are more pseudoabsences where presences 
are denser (Phillips and Dudík 2008, Syfert  et  al. 2013, 
Dufresne  et  al. 2019). Such an approach prevents placing 
pseudo-absences in regions where no fossil record occurred 
through time, likely identifying areas where fossilization 
potential was low (Fourcade et al. 2018, Guevara et al. 2018, 
Title and Bemmels 2018). We divided the record of each 
species into 1000-years long consecutive time bins (between 
the oldest and the youngest occurrence age for the species) 
and partitioned the 10 000 pseudoabsences proportionally 
to the number of presences per time bin. For each bin, we 
then extracted climate data at each occurrence and pseudo-
absence point, calibrating a single SDM for each species by 
pooling occurrence data across temporal bins. SDMs were 
trained using the maximum entropy modelling algorithm 
implemented in MAXENT ver. 3.3.3k (‘dismo’ R package; 
Phillips et al. 2006). We tested different MAXENT imple-
mentations through the ‘ENMeval’ R package, to find the 
settings that best optimize the trade-off between goodness-
of-fit and overfitting (Muscarella  et  al. 2014). We tested 
regularization values between 0.5 and 4, with 0.5 steps. 
Furthermore, for each of the 100 replicates we tested for the 

following alternative combinations of feature classes in turn: 
linear, linear + quadratic, hinge, linear + quadratic + hinge, 
linear + quadratic + hinge + product and linear + qua-
dratic + hinge + product + threshold (Muscarella et al. 2014). 
Among the resulting 48 combinations, we chose the model 
reporting the lowest Akaike information criterion corrected 
for a small sample size (AICc; Warren and Seifert 2011). The 
selected model was then evaluated using a temporal block 
cross-validation approach, splitting the data into 10 tem-
poral bins of approximately equal length, each in turn held 
out from calibration and used to assess its predictive per-
formance. Block cross-validation approaches proved able to 
assess model transferability, that is, the ability to extrapolate 
predictions into new areas/times (Roberts et al. 2017) and 
to penalize models based on biologically meaningless pre-
dictors (Fourcade et al. 2018). Predictive performance was 
evaluated by calculating the area under the receiver operat-
ing characteristic curve (AUC; Swets 1988) and the Boyce 
index (Hirzel et al. 2006). We dropped SDMs yielding AUC 
values < 0.7. Finally, for each species, SDMs were projected 
between the time intervals including, respectively, the spe-
cies’ oldest and youngest occurrence in the fossil record. 
SDM projections were binarized into presence/absence maps 
according to three threshold schemes (i.e. ‘equalize sensitiv-
ity and specificity,’ ‘maximize TSS,’ and ‘10th percentile 
of predicted probability’; Liu  et  al. 2005), to obtain three 
alternative binary maps for each replicate and time bin. This 
approach allowed us to include in the subsequent analyses 
the effect of using different binarization schemes when pro-
ducing presence/absence maps (below). All the three thresh-
olds were computed by means of the ‘PresenceAbsence’ R 
package (Freeman and Moisen 2008).

For each replicate and time bin projection, we calculated 
a multivariate environmental similarity surface (MESS) to 
identify the extrapolation areas where climate conditions 
are non-analogue to conditions considered in model calibra-
tion (Fitzpatrick and Hargrove 2009, Elith et al. 2011) and 
excluded from the binary maps all the suitable cells occurring 
outside the calibrated predictor space (i.e. showing negative 
MESS values).

We quantified the effect of age (and associated climatic) 
uncertainty on predicted distributions by assessing the con-
sensus among the binary maps from the 100 replicates pro-
duced for a given species/threshold/time interval. Specifically, 
we applied the committee averaging method (Thuiller et al. 
2009; the mean calculated among the binary maps) over the 
100 binarized maps for a given species/threshold/time inter-
val. We calculated the percentage of pixels (geographic cells) 
reporting a value greater than 0.1 and lower than 0.9 (the 
uncertainty range). Cells outside the 0.1–0.9 range are taken 
to represent consistent indication of species presence/absence 
across the replicates. Cells lower than 0.1 refer to pixels where 
the 100 replicated SDMs have a consensus in predicting spe-
cies absence higher than 90%. Cells higher than 0.9 indicate 
the 100 replicated SDMs have a consensus in predicting spe-
cies presence higher than 90%. This calculation was repli-
cated for each species/threshold/time interval, except those 
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SDM replicates achieving an AUC < 0.7 (as done in the 
main analytical framework), then averaging the results along 
the time interval axis.

Landscape temporal dynamics

Geographic areas represented by contiguous presence data 
(cells scored as ‘1’) and entirely surrounded by absence cells 
(i.e. scored as ‘0’) represent a habitat patch. To retrieve infor-
mation about aggregation, shape and subdivision of patches, 
as well as to evaluate their degree of fragmentation in each 
time bin, we calculated the following six landscape metrics 
using the ‘landscapemetrics’ R package (Hesselbarth  et  al. 
2019): total patch area, number of patches, mean patch area, 
mean Euclidean nearest-neighbour distance, aggregation 
index and division index. The number of patches represents a 
simple measure of the fragmentation extent, while the mean 
patch area gives information about how the habitat patches 
of a particular landscape are growing or merging over time 
(McGarigal et al. 2012). Division index yields the probability 
that two randomly selected cells are not located in the same 
patch. Mean Euclidean nearest-neighbour distance accounts 
for the number of highly isolated patches, whereas aggrega-
tion index evaluates the frequency with which patch pairs 
occur side-by-side in the landscape (McGarigal et al. 2012, 
Zatelli et al. 2019). We selected these metrics as they can be 
successfully used to compare fragmentation among differ-
ent landscapes and, in our case, different time bins (He et al. 
2000, Cornejo-Denman et al. 2020). These metrics were cal-
culated for each species in each 1 ka time bin (limited to the 
temporal range of the species fossils), each replicated date and 
binarization threshold, combining all the results in a single 
dataset. The outcomes were used to describe the temporal 
dynamics of habitat patch configuration during the last 200 
ka by fitting linear mixed models (LMMs), where each of 
the landscape metrics was used as the response variable and 
the time (in kilo years, from 200 to 2 ka), as the explanatory 
variable. Response variables were first transformed using a 
logarithmic transformation to improve normality. In addi-
tion, since we were interested in testing for different tempo-
ral dynamics of spatial patch configuration for extinct and 
extant species, LMMs were fitted putting the ‘time’ explana-
tory variable in interaction with the species status (i.e. extinct 
or extant). This setup allowed LMMs to fit two different 
landscape metric-versus-time relationships for extinct and  
extant species.

As we did not have an a priori expectation about the shape 
of the relationship between landscape metrics and time, we 
accounted for possible non-linear patterns by fitting LMMs 
with linear, linear + quadratic and linear + quadratic + cubic 
relationships. To avoid overly complex or overfitted models, 
LMMs including quadratic and cubic terms were compared 
with linear terms using AIC. To account for differences in 
metric values among the different species, replicated data-
sets and binarization thresholds, we included such factors 
as random effects in LMMs, allowing the models to vary 
their intercepts accordingly. Models’ goodness-of-fit was 

assessed by calculating the conditional coefficient of deter-
mination for LMM (R2; Nakagawa and Schielzeth 2013). 
Furthermore, we evaluated the LMMs’ predictive accuracy 
by calculating Pearson’s correlation coefficient between 
observed and predicted values of the outcome under a five-
fold cross-validation scheme. All the statistical analyses 
were run by using the ‘lme4’, ‘MuMIn’ and ‘performance’  
R packages.

To assess the relative contribution of the landscape metrics 
and functional traits (body mass and diet, Koch and Barnosky 
2006, Galetti et al. 2017) in discriminating between extinct 
and extant species, we ran a Random Forest classification 
model (RF; Breiman 2001) using the ‘caret’ R package 
(Kuhn 2018). In this model, we used the status of each spe-
cies (‘extinct’ versus ‘extant’) as the response variable, while 
the landscape metrics, body mass, diet, time in kilo-years, 
replicated datasets and binarization thresholds were included 
as explanatory variables. Before entering the RF model, the 
six landscape metrics were checked for multicollinearity (i.e. 
VIF ≤ 5; Zuur  et  al. 2010), retaining aggregation index, 
mean patch area, mean Euclidean nearest-neighbor distance, 
number of patches and division index. We evaluated the 
RF model’s ability to correctly classify a species as extinct or 
extant according to the abovementioned covariates by cal-
culating the AUC under a five-fold cross-validation scheme. 
In particular, we optimally tuned RF settings by testing for 
different combinations of the number of variables randomly 
selected at each node, depth of the classification trees created 
by the algorithm and splitting rule parameters (Gini index 
and ExtraTrees algorithm). All RF candidate models were run 
allowing a maximum of 1000 trees. Once optimally tuned, 
the RF model was used to quantify the relative importance of 
each covariate, expressed as the mean decrease accuracy (i.e. 
how much accuracy the model loses by excluding each vari-
able in turn, Kuhn 2018). We cumulated the mean decrease 
in accuracy across variables in four macro-categories: land-
scape metrics, diet, mass and other effects (i.e. time in kilo-
years, replicated datasets and binarization thresholds). In 
addition, we generated partial dependence plots according 
to Greenwell (2017), to depict the shape of the relationship 
between each explanatory variable and the probability of a 
given species being classified as ‘extinct’ while holding the 
values of other variables constant.

Results

Among the species considered, 22 had at least one SDM 
with AUC > 0.7 (Supporting information for more details). 
Overall, SDMs for these 22 species reached fair predictive 
performances (sensu Swets 1988), with Megaloceros giganteus 
reporting the lowest AUC values (0.702, SD = 0.002), and 
Equus hydruntinus showing the highest (0.796, SD = 0.017; 
Supporting information). As for Boyce index, Lynx pardinus 
achieved the lowest values (0.438, SD = 0.138), while Cervus 
elaphus reported the highest (0.894, SD = 0.015; Supporting 
information). The percentage of geographic cells within the 
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uncertainty range averaged over all species was some 8%, 
indicating the effect of age uncertainty on SDMs to be rather 
marginal (Supporting information).

For all landscape metrics, LMMs including linear, qua-
dratic and cubic relationships had the lowest AICc. Such 
models achieved a high goodness-of-fit, with conditional R2 
values ranging between 0.369 for mean Euclidean nearest-
neighbour distance to 0.828 for total patch area (Table 1). 
Predictive accuracy was high for all the LMMs, with correla-
tion values between 0.539 (SD = 0.004) for mean Euclidean 
nearest-neighbour distance and 0.889 (SD = 0.001) for total 
patch area (Table 1).

Aggregation index, mean patch area and total patch area 
exhibited similar patterns in their temporal dynamics, though 
reporting different magnitudes between extinct and extant 
species. For extinct species, there was a substantial decline 
in the value of these three metrics between 200 and 150 ka 
(Fig. 1), followed by a turning point and significant upward 
concavity (significant cubic term; Table 2) that led to subse-
quent increasing trends centered around 70 ka (Fig. 1). After 
that time, the curves for these three metrics showed another 
turning point with a significant downward concavity (signifi-
cant quadratic term, Table 2, Fig. 1), significantly decreas-
ing towards the present time (significant linear terms; Table 
2). Temporal dynamics of mean patch area and total patch 
area for extant species showed opposite shapes compared to 
extinct species (Fig. 1, Table 2). Aggregation index showed 
rather constant temporal dynamics for extant species, report-
ing a single downward concavity around 120 ka (quadratic 
term is significant, while cubic term is not; Table 2).

Number of patches for extinct species steeply increased 
between 200 and 100 ka (Fig. 1), when it exhibits a single 
downward concavity (quadratic term is significant, while 
cubic term is not; Table 2), followed by a monotonic decrease 
(significant linear term; Table 2). The number of patches for 
extant species showed less pronounced temporal fluctuations 

than extinct ones, reporting a slight upward concavity around 
180 ka, a significant downward concavity around 80 ka (sig-
nificant quadratic coefficient; Table 2) and a subsequent 
moderate decline towards the present (significant linear term; 
Table 2, Fig. 1). Mean Euclidean nearest-neighbour distance 
and division index shared similar temporal trends. For the 
extinct group, both these metrics showed a steep decrease up 
to ca 120 and 80 ka, respectively, where they reach significant 
tipping points and upward concavities (significant quadratic 
coefficients; Table 2). Subsequently, the two metrics increase 
again (linear terms are significant; Table 2), though this final 
trend is more pronounced in the division index (Fig. 1). As 
for extant species, mean Euclidean nearest-neighbour dis-
tance and division index showed very similar patterns, with 
a first upward concavity around 150 ka (Table 2, Fig. 1), a 
second downward concavity around 50 ka (Table 2, Fig. 1) 
and a final decrease towards the present (Table 2, Fig. 1).

We used the LMM equations to calculate the last inter-
section points between extinct and extant polynomials. 
Calculating this point is useful to understand when, in time, 
the paths of landscape metrics diverged between extant and 
extinct mammals. We found that mean and total patch area, 
division index and mean patch distance took different direc-
tions in extant as compared to extinct species during the 
40–30 ka time span. Division index and mean patch distance 
increased in extinct species from that moment towards the 
present, whereas the opposite took place for extant taxa. The 
number of patches and aggregation index started to decrease 
at roughly the same time for all species, yet the decrease was 
much steeper for extinct species.

The RF model achieved an excellent ability to discrimi-
nate between extant and extinct species (AUC = 0.998; 
Supporting information). Ranking of variable importance 
showed a predominant role of body mass (mean decrease 
accuracy = 38.91%), followed by landscape metrics, which 
contributed to 37.77% collectively, diet (19.53%) and then 

Table 1. Results of AIC analysis for three competing models. Table reports AIC, conditional R2 and accuracy (with associated standard devia-
tion) values. The models are estimated for each landscape metric separately.

Metric Relationship AIC Conditional R2 Accuracy

Aggregation index Linear −815 511.0642 0.7064 0.7806 (0.004)
Linear + quadratic −816 352.5136 0.7071 0.7812 (0.005)
Linear + quadratic + cubic −817 311.1986 0.7078 0.7821 (0.002)

Mean patch area Linear 302 423.3057 0.7415 0.8094 (0.003)
Linear + quadratic 301 276.0860 0.7420 0.8102 (0.003)
Linear + quadratic + cubic 300 280.2434 0.7426 0.8109 (0.003)

Total patch area Linear 305 014.2171 0.8255 0.8878 (0.003)
Linear + quadratic 300 889.6698 0.8286 0.8894 (0.001)
Linear + quadratic + cubic 300 091.3539 0.8289 0.8897 (0.001)

Mean patch distance Linear −130 544.8501 0.3679 0.5382 (0.007)
Linear + quadratic −130 949.5449 0.3697 0.5391 (0.005)
Linear + quadratic + cubic −131 302.4571 0.3699 0.5399 (0.004)

Number of patches Linear 72 200.3817 0.6941 0.8088 (0.004)
Linear + quadratic 70 173.0404 0.6984 0.8102 (0.003)
Linear + quadratic + cubic 70 134.0096 0.6987 0.8102 (0.003)

Division index Linear 175 984.8104 0.5241 0.6803 (0.007)
Linear + quadratic 174 614.6971 0.5223 0.6820 (0.003)
Linear + quadratic + cubic 174 214.7835 0.5232 0.6825 (0.006)
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additional effects (2.60%). Partial dependence plots showed 
the probability of being classified as ‘extinct’ to decrease 
towards higher values of aggregation index and mean patch 
area (Fig. 2). Moreover, extinction probability increases 
towards higher values of mean patch distance, number of 
patches, division index and body mass (Fig. 2). As for diet, 
the probability of being classified as ‘extinct’ is higher for 
species exhibiting a more specialized diet (i.e. strict grazers, 
browsers or carnivores; Fig. 2).

Discussion

The imprint of humans on wildlife has gone through a 
long history, tracing back to the Late Pleistocene, when 
Homo sapiens started to colonize the world biota outside 
its African homeland, contributing to a massive extinction 
crisis affecting large mammals worldwide (Rule et al. 2012, 
Sandom et al. 2014, Berti and Svenning 2020). The effect of 
H. sapiens on its mammalian preys and competitors is more 
apparent where species were naïve to the new super-preda-
tor, that is in the Americas and Oceania, whilst the signa-
ture of human effects is milder in Africa and Eurasia (where 
megafauna species and H. sapiens had been in contact much 

longer) and possibly superseded by the contemporary effects 
of intense global climate change there (Cooper et al. 2015, 
Carotenuto et al. 2016, Di Febbraro et al. 2017). Current, 
large-scale investigations on Pleistocene ecosystems and 
their evolution are common for North America (Tóth et al. 
2019, Seersholm et al. 2020) and Oceania (Rule et al. 2012, 
Hocknull et al. 2020) but rare for Eurasia, despite the high-
quality fossil record. Eurasia thus offers the unique oppor-
tunity to test the effect of geographic habitat structure on 
species survival. Here we grasp this opportunity by using 
SDMs to model habitat patches size, number and isolation 
overtime for 22 large mammal species, including both extinct 
and extant taxa. This modelling effort indicates that extinct 
mammals went through considerable deterioration of habitat 
geographic structure during the last glacial period and started 
to fare worse than extant species from about 50 ka (Fig. 3, 
Supporting information). Late Pleistocene Eurasian large 
mammals had their best survival conditions when several 
well-connected habitat patches were available, which allowed 
maintenance of healthy metapopulation structures (Hanski 
and Mononen 2011, Englund et al. 2020). For now-extinct 
species, the degree of connection among patches started to 
deteriorate noticeably during the 46–36 ka interval (Fig. 1–3, 
Supporting information). Although this figure is derived 

Figure 1. The relationship between landscape metrics (logged values) and time fitted by LMMs, plotted for extinct (blue line) and extant 
species (orange line). The vertical orange band highlights the Eemian period (120–100 ka), while light blue band highlights the Last Glacial 
Maximum period (26–18 ka).
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from modelling based on inferred climatic preferences and 
must therefore be interpreted with caution, it is intriguing to 
note how this period of time nicely coincides with moments 
of megafauna extinction or strong population decline. In 
fact, the best radiometric estimates for the extinction date 
of Homo neanderthalensis (at 40 ka, Higham et al. 2014) the 
giant rhino Elasmotherium sibiricum (Kosintsev et al. 2019) 
the camel Camelus knoblochi, the giant deer Sinomegaceros 
yabei, the narrow-nosed rhino Stephanorhinus hemitoechus, 
the antelope Spiroceros kiakhtensis and the Asian straight-
tusked elephant Palaeoloxodon naumanni are all concentrated 
in the narrow 45–37 ka interval (Stuart and Lister 2012). 
Mitochondrial DNA and population demographics suggest 
the cave bear Ursus spelaeus suffered a dramatic population 

decline starting at 50 ka (Mondanaro et al. 2019). The same 
rapid decline in exactly the same time interval pertains to the 
Eurasian populations of cave lion Panthera leo spelaea (Stuart 
and Lister 2011), and cave hyena Crocuta crocuta spelaea 
(Stuart and Lister 2014). Our modelling results indicate that 
mean patch area and total area for the extinct species dwindle 
later than the number of patches and their degree of aggrega-
tion, and that the average distance between patches differs 
the most between extinct and extant species. These results 
indicate that extinct species begun their path to extinction 
by losing occupied territories and splitting into increasingly 
more isolated patches almost in coincidence to human arrival 
in Eurasia (Hublin  et  al. 2020, Weber  et  al. 2020). Albeit 
our data do not allow testing whether modern humans or 

Table 2. Summary of statistics for the optimal linear mixed models as indicated by the Akaike information criterion. For each model, slope 
(‘Estimate’), standard error (‘SE’) and p-value referred to both extinct and extant group are reported.

Metric Status Estimate SE p-value

Aggregation index intercept 4.363 0.042 <0.001
poly(time, 3)1 0.811 0.085 <0.001
poly(time, 3)2 −0.683 0.079 <0.001
poly(time, 3)3 −0.027 0.079 0.737
poly(time, 3)1:statusextint 2.413 0.113 <0.001
poly(time, 3)2:statusextint −2.223 0.118 <0.001
poly(time, 3)3:statusextint 3.694 0.119 <0.001

Mean patch area intercept 15.945 0.311 <0.001
poly(time, 3)1 8.604 0.548 <0.001
poly(time, 3)2 −4.165 0.509 <0.001
poly(time, 3)3 −9.689 0.510 <0.001
poly(time, 3)1:statusextint 16.826 0.730 <0.001
poly(time, 3)2:statusextint −19.025 0.757 <0.001
poly(time, 3)3:statusextint 19.308 0.764 <0.001

Total parch area intercept 19.939 0.385 <0.001
poly(time, 3)1 10.029 0.548 <0.001
poly(time, 3)2 −9.216 0.509 <0.001
poly(time, 3)3 −7.484 0.510 <0.001
poly(time, 3)1:statusextint 18.771 0.730 <0.001
poly(time, 3)2:statusextint −40.518 0.757 <0.001
poly(time, 3)3:statusextint 18.494 0.764 <0.001

Mean patch distance intercept 12.183 0.061 <0.001
poly(time, 3)1 −3.028 0.267 <0.001
poly(time, 3)2 1.315 0.248 <0.001
poly(time, 3)3 3.791 0.248 <0.001
poly(time, 3)1:statusextint −3.237 0.356 <0.001
poly(time, 3)2:statusextint 7.836 0.369 <0.001
poly(time, 3)3:statusextint 4.165 0.372 <0.001

Number of patches intercept 3.993 0.107 <0.001
poly(time, 3)1 1.421 0.373 <0.001
poly(time, 3)2 −5.050 0.347 <0.001
poly(time, 3)3 2.206 0.347 <0.001
poly(time, 3)1:statusextint 1.946 0.497 <0.001
poly(time, 3)2:statusextint −21.494 0.516 <0.001
poly(time, 3)3:statusextint −0.813 0.521 0.118

Division index intercept −0.622 0.150 0.035
poly(time, 3)1 −2.691 0.444 <0.001
poly(time, 3)2 3.448 0.413 <0.001
poly(time, 3)3 7.151 0.413 <0.001
poly(time, 3)1:statusextint −6.780 0.592 <0.001
poly(time, 3)2:statusextint 19.673 0.614 <0.001
poly(time, 3)3:statusextint −6.305 0.619 <0.001
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climate change were the most important cause of increased 
habitat fragmentation for the extinct species, the fossil record 
suggests that the extinction wave must have initiated at 
northern latitudes. Most extinct megafauna persisted in the 
Mediterranean area, and in the far East, before extinction, 
abandoning northernmost habitats first (e.g. cave hyaena, 
Stuart and Lister 2014; cave lion, Stuart and Lister 2011; 
cave bear, Mondanaro et al. 2019; Neanderthals, Fabre et al. 
2009). In fact, the presence of glacial refugia and cryptic 
northern refugia may have only increased habitat patchi-
ness for the Eurasian megafauna as a whole (Hewitt 2000, 
Bhagwat and Willis 2008) and testifies to this progressive 
retreat from the north. Extant species instead resisted this 

retraction or else showed similar retraction patterns but were 
able to survive the glacial period, and their landscape metrics 
all indicated a higher degree of habitat connectivity after the 
last glacial maximum.

The importance of habitat fragmentation to species sur-
vival is confirmed by the random forest models. Landscape 
metrics collectively explain 38% of the probability to classify 
a species as extinct or extant, a notable figure considering that 
the corresponding figure for body mass, which is the single 
best-known factor characterizing the megafauna extinction 
is just 3–4 times higher than individual landscape metric. 
Among individual landscape metrics, changes in the number 
of patches and their division index increased the chance of 

Figure 2. Partial dependency plots derived from RF model. On the y axis (not to the same scale) the probability to be classified as ‘extinct’. 
Smoothed response curves are represented in cyan. The coloured points depicted in the third row represent the different rank of  
diet category.
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extinction by as much as 10% each, pointing to a pervasive 
effect of the degree of fragmentation on species survival. Total 
patch area was collinear to mean patch area and therefore 
excluded from the model. Yet, the importance of mean patch 
area to the likelihood of classifying a species as extinct is half 
as important as the number of patches and division index. 
This suggests that fragmentation is more important to sur-
vival than the total amount of habitat.

The classification of species into dietary categories suggests 
that the feeding habits had some influence on megafauna 
extinction. We do not have sufficient data on carnivores to 
trust the results for these species, yet for herbivores, grazing 
species were more affected than those feeding on browse or 
mixed diet. This correlates well to the notion that by the end of 
the Pleistocene the so-called mammoth steppe, a widespread 
habitat extending from central Europe to the Kamchatka 
started to vanish together with its habitat specialists, such 

as the mammoth or the woolly rhino (Zimov  et  al. 2012, 
Yeakel et al. 2013). Browse specialists, like the straight-tusked 
elephant and hippopotamus, were similarly affected by the 
disappearance of forested areas around 70 ka, which might 
have been responsible for their extinction at that time and 
might explain the apparent trend for increasing extinction 
risk with an increased amount of browse in the diet (Fig. 2).

There is strong evidence that fragmentation increases 
extinction risk in individual species (Safi and Kerth 2004, 
Wang et al. 2014, Lino et al. 2019). Our study does not con-
tradict the habitat amount hypothesis (HAH), posing that 
the total available habitat size matters more than its frag-
mentation to species diversity. Yet, our data strongly suggest 
that on a long temporal scale, the positive metapopulation 
feedback and the possibility to survive via habitat tracking  
reaching refugia matters more to biodiversity than habitat 
size per se.

Figure 3. Habitat suitability maps for Rangifer tarandus and Ursus spelaeus over four consecutive time intervals. The R codes to reproduce 
these figures for all species over all time intervals are available as Supporting information.



1628

Climate change is one of the main forces that will exert 
its effects on biodiversity in the coming years (Warren et al. 
2018), and we highlight its role in determining habitat frag-
mentation in the last 200 ka. Our results show that patterns 
of habitat fragmentation through time differ considerably 
between extinct and extant Eurasian megafauna, unveiling a 
possible pathway of rapid species decline at ca 50 ka. Species 
can adapt to some level of climate change through dispersal, 
phenotypic plasticity and evolutionary adaptation (Diniz-
Filho  et  al. 2019), but most species risk facing shrinkage 
in their niche under high levels of change (Di Marco et al. 
2021). The current velocity of climate change (Loarie et al. 
2009) means megafauna in other continents (such as Africa) 
might face similar risk to that faced by Eurasian species in 
the Late Pleistocene, and even remaining species in Eurasia 
might be at risk. The scale of the problem means that achiev-
ing bold climate mitigation targets, such as those established 
under the Paris agreement, is paramount to reducing the risk 
of losing some of the most iconic mammals that have sur-
vived to the present day. Even so, active conservation inter-
ventions, such as habitat restoration, the creation of habitat 
corridors and species translocation, will likely be necessary 
for some species.
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