Errata to: The algebra of slice functions

Original Citation:
Errata to: The algebra of slice functions / Ghiloni, Riccardo; Perotti, Alessandro; Stoppato, Caterina. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 376:(2023), pp. 3007-3010. [10.1090/tran/8574]

Availability:
This version is available at: 2158/1246758 since: 2023-03-13T09:30:22Z

Published version:
DOI: 10.1090/tran/8574

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:
Riccardo Ghiloni, Alessandro Perotti, Caterina Stoppato

Errata to “The algebra of slice functions”
Transactions of the American Mathematical Society
DOI: 10.1090/tran/8574

Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a “Recently Published Article” before being placed in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an issue.
ERRATA TO: THE ALGEBRA OF SLICE FUNCTIONS

RICCARDO GHILONI, ALESSANDRO PEROTTI, AND CATERINA STOPPATO

Abstract. We correct the statement and proof of [4, Proposition 4.10] and straighten out [4, Example 4.13] accordingly. We take this chance to correct a sentence within [4, Examples 1.13].

This note corrects a few errors in the article [4]. The first correction concerns a single sentence within [4, Examples 1.13, page 4736]: we must add to the sentence “The set \mathcal{Z} is the intersection of \mathcal{J} with the hyperplane $q_0 = 0$” the words “minus $\mathbb{R} + \epsilon \text{Im}(\mathbb{H})$.” For a proof of this fact, see [3, page 5513].

The second correction originates from [2, Remark 6.3]. We propose a new statement and proof of [4, Proposition 4.10]. In \mathbb{R}_3, let us adopt the notation $\omega_\pm := \frac{1}{2}(1 \pm i_{123})$. We recall that $\omega_+ \omega_- = 0 = \omega_- \omega_+$. We notice that $\omega_+^2 = \omega_-^2 = 1$, and that $\omega_+ - \omega_- = i_{123}$. As a consequence, $\mathbb{R}_3 = \omega_+ \mathbb{R}_2 + \omega_- \mathbb{R}_2$.

Proposition 4.10. If $A = \mathbb{R}_3$, if $f \in S(\Omega)$ and if $x \in \Omega \setminus \mathbb{R}$, then one of the following happens:

1. $V(f) \cap S_x = \emptyset$;
2. $V(f) \cap S_x = \{y\}, f_+(x) \in C_A^+$ and $y = \text{Re}(x) - f_+(x)f_+(x)^{-1}$;
3. $V(f) \cap S_x$ is not empty and $f_+(x) \in \omega_+ \mathbb{R}_2^*$; for all $y \in V(f) \cap S_x$, it holds $V(f) \cap S_x = \{\omega_+ y + \omega_- z : z \in S_x \cap \mathbb{R}_2\}$;
4. $V(f) \supseteq S_x$ and $f_+(x) = 0$.

In each of the aforementioned cases, respectively,

1. S_x does not intersect $V(f^c)$ nor $V(N(f))$;
2. $S_x \subseteq V(N(f))$ and $V(f^c) \cap S_x = \{f_+(x)^{-1} y f_+(x)\}$;
3. $S_x \subseteq V(f^c)$ and $V(f^c) \cap S_x = \{h^{-1} y h : y \in V(f) \cap S_x\}$, where $h \in \mathbb{R}_2^*$ is such that $f_+(x) = \omega_+ h$;
4. S_x is included both in $V(f^c)$ and in $V(N(f))$.

Proof. Let us assume $S_x = \alpha + \beta S_{R_3}$, whence $f(\alpha + \beta I) = a_1 + I a_2$ for each $I \in S_{R_3}$, where $a_1 = f_+(x), a_2 = \beta f_+(x)$. We can apply [4, Theorem 4.1], taking into account the following facts: \mathbb{R}_3 is nonsingular; \mathbb{R}_3 is compatible; C_A^+ is \mathbb{R}_3 minus the set $\omega_+ \mathbb{R}_2^* \cup \omega_- \mathbb{R}_2^*$ of its zero divisors. We derive the following properties.

- If $f_+(x) = 0$ then one of the following holds:

\[2010\text{ Mathematics Subject Classification.} \text{ Primary 30G35, Secondary 17D05, 32A30, 30C15.} \]

Acknowledgements. This work was partly supported by GNSAGA of INdAM, by the INdAM project “Hypercomplex function theory and applications” and by the PRIN 2017 project “Real and Complex Manifolds” of the Italian Ministry of Education (MIUR). The third author is also supported by Finanziamento Premiale FOE 2014 “Splines for accUrate NumeRics: adaptIve models for Simulation Environments” of MIUR.
• If \(f'_s(x) \) is a right zero divisor then one of the following holds:
 - \(S_x \) intersects \(V(f) \) at least one point \(y = \alpha + \beta u \) and the intersection is the set of all \(y' = \alpha + \beta v \in S_x \) such that \((v - u)f'_s(x) = 0 \). Moreover, \(S_x \subseteq V(N(f)) \).
 - \(S_x \) does not intersect \(V(f) \).

We now observe that, when \(f'_s(x) \) is a right zero divisor then one of the following holds:
 - \(S_x \) intersects \(V(f) \) at least one point \(y = \alpha + \beta u \) and the intersection is the set of all \(y' = \alpha + \beta v \in S_x \) such that \((v - u)f'_s(x) = 0 \). Moreover, \(S_x \subseteq V(N(f)) \).
 - \(S_x \) does not intersect \(V(f) \).

- \(S_x \) is included in \(V(f), V(f^c), V(N(f)) \) and \(V(N(f^c)) \).
- \(S_x \) does not intersect \(V(f), V(f^c) \) nor \(V(N(f)) \).

We now observe that, when \(S_x \) is not included in \(V(N(f)) \), then it does not intersect \(V(N(f)) \). Suppose, indeed, \(N(f)(\alpha + \beta I) = n(a_1) - n(a_2) + I t(a_1 a_2) \) to vanish for some \(I \in S_{R_2}. \) Since the functions \(n, t : R_3 \to R_3 \) take values in the center \(\mathbb{R} + e_{123} \mathbb{R} \) of the algebra, there exist \(a, b, c, d \in \mathbb{R} \) such that \(n(a_1) - n(a_2) = a + e_{123} b \) and \(t(a_1 a_2^2) = c + e_{123} d \), whence \(a + e_{123} b = -I(c + e_{123} d) \). By squaring, we obtain \(a^2 + b^2 + 2 e_{123} a b = -c^2 - d^2 - 2 e_{123} c d \), whence \(a^2 + b^2 = -c^2 - d^2 \). It follows that \(a = b = c = d = 0 \) and that \(n(a_1) - n(a_2) = t(a_1 a_2^2) = 0 \). As a consequence, \(S_x \) is included in \(V(N(f)) \).

We are left with studying in detail the case when \(a_2 = \beta f'_s(x) \) is a right zero divisor. We recall that, in \(R_3 \), both the set of left zero divisors and the set of right zero divisors coincide with \(\omega \mathbb{R}^2 \cup \omega - \mathbb{R}^2 \). We suppose henceforth that \(a_2 = \omega \pm h \) with \(h \in \mathbb{R}^2 \).

We first assume \(y = \alpha + \beta u \in V(f) \cap S_x \). We will prove that \(V(f) \cap S_x = \{ \omega \pm y + \omega \pm z : z \in S_x \cap R_2 \} \) by solving the equation \((v - u) a_2 = 0 \) or, equivalently, \((v - u) a_2 = 0 \) for \(v \in S_{R_2} \). This equation is equivalent to \(v - u = \omega \pm k \) for some \(k \in R_2 \). We remark that \(\omega \pm u = \omega \pm u \pm \) for appropriate \(u \in R_2 \). Thus,

\[
v = u + \omega v k = \omega u + \omega v + \omega k = \omega u + \omega v + \omega (u v + k)
\]

for some \(k \in R_2 \). Equivalently, \(v = \omega \pm u \pm + \omega \pm u' = \omega \pm u + \omega \pm u' \) for some \(u' \in R_2 \).

Such a \(v \) belongs to \(S_{R_2} \) if and only if,

\[
0 = t(v) = \omega \pm t(u) + \omega \pm t(u') = \omega \pm t(u'),
\]

\[
1 = n(v) = \omega \pm n(u) + \omega \pm n(u') = \omega \pm + \omega \pm n(u'),
\]

where we took into account the fact that \(t(u) = 0 \) and \(n(u) = 1 \). Thus, \(v \) belongs to \(S_{R_2} \) if and only if \(t(u') = 0, n(u') = 1 \), i.e., \(u' \in S_{R_2} \). It follows that the solutions of \((v - u) a_2 = 0 \) in \(S_{R_2} \) are exactly the Clifford numbers \(v = \omega \pm u + \omega \pm u' \) with \(u' \in S_{R_2} \). This proves that the elements of \(V(f) \cap S_x \) are the points \(\alpha + \beta v = \omega \pm (\alpha + \beta u) + \omega \pm (\alpha + \beta u') = \omega \pm y + \omega \pm z \) with \(z \in S_x \cap R_2 \).

Under the same assumption \(y = \alpha + \beta u \in V(f) \cap S_x \), not only \(S_x \subseteq V(N(f)) \) as we already stated; it also holds \(y' := h^{-1} y' h \in V(f^c) \cap S_x \). To prove this fact, we first observe that \(y' \) belongs to \(S_x \) by [4, Remark 1.16]: indeed, \(h \in C_{S_x} \). We then observe that \(f(y) = a_1 + u a_2 = 0 \) implies \(a_1 = -u a_2 \), whence \(f'(y') = a_1^2 - h^{-1} u a_2^2 = a_1^2 - h^{-1} u h \omega k = a_1^2 - h^{-1} u h = a_1^2 u - a_1^2 u = 0 \). Taking into account the equalities \(f = (f^c)^c \) and \(\beta(f^c)'(x) = a_2^2 \), we conclude that \(V(f^c) \cap S_x = \{ h^{-1} y' h : y \in V(f) \cap S_x \} \).

Now let us assume, instead, \(V(f) \cap S_x = \emptyset \). We remark that \(V(f^c) \cap S_x = \emptyset \): if \(f^c \) had a zero in \(S_x \), then \((f^c)^c = f \) would have a zero in \(S_x \) by what we already
proved. We conclude the proof by checking that $V(N(f)) \cap S_a = \emptyset$. Suppose by contradiction $V(N(f)) \cap S_a \neq \emptyset$, whence $S_a \subseteq V(N(f))$. Then $n(a_1) = n(a_2)$ and $t(a_1 a_2^*) = 0$. The fact that $n(a_1) = n(a_2) = \omega_a n(h)$ implies that $a_1 = \omega_a k$, with $k \in \mathbb{R}_2^2$ having $n(k) = n(h)$. Since $1 = n(k)n(h)^{-1} = n(kh^{-1})$ and $0 = t(a_1 a_2^*) = \omega_2 t(kh^+ c) = \omega_2 t(kh^{-1} n(h))$, if we set $w := -kh^{-1}$, then $n(w) = 1$ and $t(w) = 0$. Thus, $w \in S_{R^2}$ and $f(\alpha + \beta w) = \omega_2 k + w\omega_2 h = \omega_2 (k + wh) = 0$, which contradicts the hypothesis $V(f) \cap S_a = \emptyset$. \hfill \qed

Consequently, we apply a third correction. Namely, we modify [4, Example 4.13] as follows.

Example 4.13. Let $A = \mathbb{R}_3$ and let $f(x) = (e_1 - \frac{\text{Im}(x)}{\text{Im}(x^2)}) \omega_-$. Then f is slice regular in $Q_A \setminus \mathbb{R}$ and f is constant in C^+_I for each $I \in S_{\mathbb{R}_2}$. By direct computation, $f(e_1) = 0$ and $f'_1(e_1) = -\omega_-$. By Proposition 4.10, it holds

$$V(f) = \bigcup_{u \in S_{\mathbb{R}_2}} C_{-e_1 + \omega_+ u}^+.$$

For instance, $C_{e_1}^+, C_{e_2}^+$ are both included in $V(f)$ because $\omega_- e_1 + \omega_+ e_1 = e_1$ and $\omega_- e_1 + \omega_+ (-e_1) = (\omega_- - \omega_+) e_1 = -e_1 e_1 = -e_1^2 e_2 = e_2 e_3 = e_{23}$. An example of $g \in SR(Q_A \setminus \mathbb{R})$ with the same zero set as f, but which is not constant along the half-slices C^+_I, can be constructed following [1] and letting $g(x) = x \cdot f(x) = x f(x)$.

We take this chance to point out that [5, Example 9.6] must be corrected along the same lines. This is done in [2, Example 6.6], with an approach that is slightly different from ours.

References

Dipartimento di Matematica, Università di Trento, Via Sommarive 14, I-38123 Povo Trento, Italy

Email address: riccardo.ghiloni@unitn.it

Dipartimento di Matematica, Università di Trento, Via Sommarive 14, I-38123 Povo Trento, Italy

Email address: alessandro.perotti@unitn.it

Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, I-50134 Firenze, Italy

Email address: caterina.stoppato@unifi.it