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Abstract
Main conclusion A robust workflow for the identification of miRNAs and their targets in saffron was developed. 
MicroRNA-mediated gene regulation in saffron is potentially involved in several biological processes, including the 
biosynthesis of highly valuable apocarotenoids.

Abstract Saffron (Crocus sativus L.) is the most expensive spice in the world and a major source of apocarotenoids. Even 
though miRNAs (20–24 nt non-coding small RNAs) are important regulators of gene expression at transcriptional and post-
transcriptional levels, their role in saffron has not been thoroughly investigated. As a result, a workflow for computational 
identification of miRNAs and their targets can be useful to uncover the regulatory networks underlying biological processes 
in this valuable plant. The efficiency of several assembly tools such as Trans-ABySS, Trinity, Bridger, rnaSPAdes, and 
EvidentialGene was evaluated based on both reference-based and reference-free metrics using transcriptome data. A reli-
able workflow for computational identification of miRNAs and their targets in saffron was described. The EvidentialGene 
was found to be the most efficient de novo transcriptome assembler for saffron as a complex triploid model, followed by 
the Trinity. In total, 66 miRNAs from 19 different families that target 2880 genes, including several transcription factors 
involved in the flowering transition, were identified. Three of the identified targets were involved in the terpenoids backbone 
biosynthesis. CsCCD and CsUGT genes involved in the apocarotenoids biosynthetic pathway were targeted by csa-miR156g 
and csa-miR156b-3p, revealing a unique post-transcriptional regulation dynamic in saffron. The identified miRNAs and their 
targets add to our understanding of the many biological roles of miRNAs in saffron and shed new light on the control of the 
apocarotenoid biosynthetic pathway in this valuable plant.

Keywords Apocarotenoids · Bioinformatics analysis · Flowering transition · Metabolic engineering · Transcriptome 
assembly

Introduction

Crocus sativus L., also known as saffron, is the most pre-
cious spice in the world (Chib et al. 2020). This species 
spreads from central Europe to western China (Harpke 
et al. 2013). Iran is known as the world's largest producer of 

saffron, and in recent years, more attention has been dedi-
cated to this valuable plant due to its advantages over other 
crops, such as higher price and low water needs (Vahedi 
et al. 2018; Taheri-Dehkordi et al. 2020). The color, flavor, 
and aroma of saffron are attributed to particular apocarot-
enoids named crocin, picrocrocin, and safranal (Tarantilis 
et al. 1995). Increasing demand for saffron's active ingredi-
ents, on the one hand, and its sterile nature (2n = 3x = 24), 
which renders traditional breeding methods ineffective for 
increasing the amounts of its active ingredients, on the other, 
have prompted researchers to turn their attention to the use 
of molecular breeding methods (Taheri-Dehkordi et  al. 
2020). Metabolic engineering is an approach for increasing 
apocarotenoids in saffron. Using this approach necessitates a 
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thorough grasp of the regulatory mechanisms governing the 
apocarotenoid biosynthetic pathway in this plant.

MicroRNAs (miRNAs) are endogenous small non-cod-
ing RNAs (20–24 nucleotides in length) that are thought 
to be the most important post-transcriptional regulators of 
gene expression (Bartel 2018). These molecules are a class 
of important cellular organic molecules that finely modu-
late gene expression in relation to environmental signals 
although their role in plant species such as saffron has been 
scarcely investigated. From their discovery, studies have 
focused on the understanding of their function at the post-
transcriptional regulation stage in response to developmental 
and environmental conditions. Mature miRNAs are obtained 
from longer non-coding pre-miRNAs, through a process of 
multiple cleavage steps, where a complex system of enzymes 
is involved (Kurihara and Watanabe 2010). miRNAs are 
key effectors in gene silencing via hybridization with their 
mRNA targets, having a complementary sequence (Jeong 
et al. 2010). They are widely known in all plant genomes 
and divided into different families with 1–32 loci. Typically, 
members of the same family, miRNAs are characterized by 
identical or very similar mature sequences. Approximately 
20 families are known in the plant kingdom. Among them, 
some miRNAs are in primitive land plants while others have 
been generated through recent evolutionary events (Sunkar 
et al. 2008).

In plants, transcription of miRNA genes (MIR) by RNA 
Polymerase II (Pol II) results in primary miRNA (pri-
miRNA). Pri-miRNAs then fold back to create hairpin struc-
tures that are recognized by a family of enzymes known as 
Dicer-like (DCL). DCL enzymes have different members in 
different plant species, for example, Arabidopsis thaliana 
and grape have four DCL members (Liu et al. 2009). DCL1 
is the member of the family responsible for the cleavage 
of pri-miRNA to precursor miRNA (pre-miRNA). Further 
cleavage of pre-miRNA by DCL1 leads to the release of a 
miRNA/miRNA* duplex (Axtell et al. 2011). The addition 
of a methyl group to the 3′ end of the miRNA/miRNA* 
duplex by Hua Enhancer 1 (HEN1) methyltransferase results 
in its stability (Yu 2005). After the miRNA/miRNA* duplex 
is separated in the cytoplasm, the guide miRNA binds to 
Argonaute (AGO) proteins and integrates into the RNA-
induced silencing complex (RISC) (Budak and Akpinar 
2015). Finally, the fully functional RISC complex can regu-
late gene expression via either target cleavage or transla-
tional inhibition (Wu et al. 2009).

miRNAs have various roles in plant growth and devel-
opment such as regulation of terpenoid (Chen et al. 2020) 
and alkaloids (Verma et al. 2020) biosynthesis, shoot api-
cal meristem (SAM), leaf development, and the flowering 
transition (D’Ario et al. 2017). The number of newly char-
acterized miRNA is enhancing (Fileccia et al. 2017, 2019), 
most of them in the model plant A. thaliana (Kozomara 

and Griffiths-Jones 2014). However, their role is still far 
to be elucidated although many of their families have been 
shown to have a role in plant environmental stress responses 
(Martinelli et al. 2018) such as miR169, a miRNA highly 
conserved across the plant kingdom, linked to plant abiotic 
stress responses (Li et al. 2008). Several plant miRNAomes 
have been studied but the complex networks of regulation 
mechanisms driven by miRNA are far to be fully eluci-
dated (Budak and Akpinar 2015). Recently a miRNAome 
of durum wheat has been characterized for different plant 
organs (Fileccia et al. 2017). The majority of miRNA targets 
are transcription factors (Chow et al. 2016), and they work 
together to form a regulatory network that regulates gene 
expression in a variety of biological processes (Samad et al. 
2017). Previous works dealing with identifying miRNAs and 
their targets were performed in different species (Xin et al. 
2010; Tang et al. 2012). Tissue-specific analysis of miR-
NAs was conducted in wheat (Liu et al. 2015; Agharbaoui 
et al. 2015). Few studies have been performed dealing with 
the annotation and chromosome mapping of key functional 
miRNAs. A strategy for minimizing the annotation of misi-
dentifying TE sequences as miRNAs was proposed (Lucas 
and Budak 2012). Two new scripts, BSUmirPredictor^ 
and BSUmirLocator^, have been generated for enhancing 
miRNA prediction and identification, for genomes char-
acterized by high repetitive genomic sequences (Alptekin 
et al. 2017). These methods allow us to clarify how miRNA 
precursors are distributed in the plant genome and how they 
are present in the transcriptome in relation to the presence 
of transposon elements. Identification of miRNAs in plants 
is mostly accomplished through two methods: small RNA 
sequencing and computational (in silico) analysis. With the 
advent of Next-Generation Sequencing (NGS) technology, 
a massive quantity of genomic and transcriptomic data has 
been generated, which has greatly aided in the computa-
tional identification of miRNAs in plants, particularly those 
lacking a sequenced genome. Computational techniques 
were successfully identified potential miRNAs in a variety 
of plants, including Hypericum spp. (Petijová et al. 2020), 
Citrullus lanatus (Zakeel et al. 2019), and Arundo donax L. 
(Jike et al. 2018). Furthermore, the availability of databases 
for computationally identified miRNAs, such as miRBase 
(Kozomara et al. 2019), has contributed to the identification 
of miRNAs in plants. Furthermore, several reliable crite-
ria for distinguishing miRNAs from other small RNAs and 
avoiding false-positive outcomes through miRNA identifica-
tion have been described (Kurihara and Watanabe 2010).

Despite the importance of miRNAs in regulating several 
processes in plants, the significance of these molecules in 
saffron has yet to be fully explored. Thus, the primary goal 
of this study was to provide a computational strategy for 
identifying miRNAs and their targets using saffron transcrip-
tome data. The efficiency of various de novo transcriptome 
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assembly tools was tested using both reference-based and 
reference-free criteria. To decrease the possibility of false-
positive results, a precise and reliable workflow for identify-
ing miRNAs, their targets, and their functional annotation 
was developed. These findings will help us better understand 
the potential regulatory mechanism (s) involved in apoca-
rotenoids biosynthesis as well as the flowering transition in 
saffron.

Materials and methods

Data acquisition and preprocessing

The meta-analysis was carried out using raw RNA-seq data 
from different saffron floral parts (i.e. stigma, anther, tepal, 
and stamen) (Table 1). Initially, the SRA files were con-
verted to FASTQ format using the SRA Toolkit's (2.10.7) 
fasterq-dump command (Leinonen et al. 2010). FastQC (ver-
sion 0.11.9) was used to check the data quality (https:// www. 
bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/). After initial 
quality assessment, barcode sequences, short (less than 50 
nucleotides in length), and low-quality (Q < 20) sequences 

and adapters were trimmed using Trimmomatic (Version 
0.39) (Bolger et al. 2014).

De novo transcriptome assembly

Four distinct assemblers with varying k-mer indexes, as well 
as EvidentialGene (18 May 07; http:// arthr opods. eugen es. 
org/ Evide ntial Gene), a tool for merging multiple assem-
blies, were used to create the best assembly. Trans-ABySS 
(V2.0.1) (Robertson et al. 2010) and Trinity (v2.10.0) (Grab-
herr et al. 2011) assemblers are based on de Bruijn graphs 
and are designed to deal with RNA-seq data. Bridger (r2014-
12–01) (Chang et al. 2015), on the other hand, relies on 
splicing graphs. This tool provides a novel framework for de 
novo transcriptome assembly and bridges the gap between 
the techniques used in the Cufflinks and Trinity pipelines 
to overcome Trinity restrictions. rnaSPAdes (3.14.1)(Bush-
manova et al. 2019), a genome-based assembler based on 
de Bruijn graphs, was also investigated. The purpose was to 
evaluate the performance of a single-cell genome assembler 
to that of existing assemblers tuned for transcriptome data. 
It should be mentioned that RNA-Seq mode, which uses 
two k-mers, is available starting with version 3.9.0 of this 
software.

Table 1  The four Crocus sativus RNA-Seq data sets used for transcriptome assembly

Read numbers are given in millions

No. Study Run Tissue Protocol Reads Source

No. Length

1 PRJNA562470 SRR10028148 Tepal PE 8.6 250
SRR10028149 8.7 250
SRR10028150 Stigma 14.4 250
SRR10028151 14.5 250
SRR10028156 Anther 15.3 250
SRR10028157 15.6 250

2 PRJNA400472 SRR5985553 Stigma PE 23.0 125 (Tan et al. 2019)
SRR5985554 19.6 125
SRR5985555 16.8 125
SRR5985556 25.0 125
SRR5985557 23.0 125
SRR5985558 15.3 125
SRR5985559 17.8 125
SRR5985560 20.3 125
SRR5985561 21.0 125

3 PRJNA273002 SRR1767300 Tepal PE 24.1 101 (Jain et al. 2016)
SRR1767301 Stamen 19.3 101
SRR1767302 Stigma 22.9 101

4 PRJNA277895 SRR1909702 Whole flower without stigma PE 37.7 72 (Baba et al. 2015)
SRR1910564 Whole flower without stigma 37.7 72
SRR1909704 Stigma 29.5 72
SRR1910567 Stigma 29.5 72

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://arthropods.eugenes.org/EvidentialGene
http://arthropods.eugenes.org/EvidentialGene
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Evaluation of different assemblies

Various metrics were analyzed to compare different assem-
blies and their efficiency. These metrics are divided into 
two basic categories: 1- Reference-based metrics: the num-
ber of reads mapped back to the transcriptome (RMBT), 
Ex90N50, and the average percentage of open reading 
frames (ORF) 2- Reference-free metrics: transcripts larger 
than 1000 bp, BUSCO, and full-length protein-coding tran-
script reconstruction.

Reads mapped back to the transcriptome (RMBT)

The Bowtie2 (Langmead and Salzberg 2012) was used to 
calculate the number of reads that could be mapped back 
to the assembly. This index can provide a basic comprehen-
sion of the quality of a transcriptome assembly; nevertheless, 
additional criteria are required to evaluate the performance 
of each assembler.

Ex90N50

The Ex90N50 was used instead of the Nx statistical index 
using the Trinity toolkit (Grabherr et al. 2011). This modi-
fied index includes information on transcript expression. 
Because short, poorly expressed transcripts can dominate 
a transcriptome assembly, this so-called expression-aware 
statistic makes up for it. Ex90N50 computes the N50 statis-
tic in the usual way, but it is confined to highly expressed 
transcripts, which account for 90% of all normalized data. 
Ex90N50 values were computed using Salmon (v0.11.3) 
(Patro et al. 2017).

The average percentage of open reading frames 
(ORF)

TransRate (Smith-Unna et al. 2016) is a tool for assess-
ing the quality of a de novo transcriptome assembly in the 
absence of a reference. This tool quickly identifies common 
transcriptome assembly issues using only sequenced reads 
and an assembly as input. The average percentage of open 
reading frames (ORFs) was employed in this study.

Transcripts longer than 1000 bp

One of the indications of assembly quality is the length of 
the transcripts. In this study, the number of transcripts longer 
than 1000 bp was calculated using rnaQUAST (v2.0.1) 
(Bushmanova et al. 2016).

BUSCO

To find universal single-copy orthologs, BUSCO v4.0.6 
(Seppey et al. 2019) was employed. This tool detects can-
didate ortholog genes in assemblies and investigates the 
presence and frequency of single-copy orthologs as an 
evaluation criterion. BUSCO gives a quantitative assess-
ment of the completeness of an assembly  in terms of 
expected gene content. The results are divided into four 
categories: (1) complete and single-copy, (2) complete 
and duplicated, (3) fragmented, and (4) missing BUS-
COs. To account for the different isoforms reconstructed 
by the assembly tool, the values of complete single-copy 
and complete duplicated BUSCOs were summed and the 
missing BUSCO values were also taken into account. The 
embryophyta odb10.2019-11-20 database, which com-
prises 1,375 BUSCO groups, was used for the evaluations.

Reconstruction of full‑length protein‑coding 
transcripts

To estimate the number of full-length protein-coding tran-
scripts, Blastx was run against the UniProtKB/Swiss-Prot 
database, followed by the Trinity tool's scripts. For each 
assembly, the number of proteins that had more than 90% 
of their protein length covered by assembled transcripts 
was reported. It should be noted that Blastx was executed 
with the e-value set to 1e-20 and the –max_target_seqs 
parameter set to 1. Setting the maximum number of target 
sequences to one significantly reduced execution time, but 
only the first result that exceeded the e-value criterion was 
reported (Hölzer and Marz 2019).

Calculation of the normalized evaluation score

The normalized evaluation score for each assembly was 
calculated according to Hölzer and Marz (2019). The per-
formance of each assembler ak ∈ {a1,…, a7} on the RNA-
Seq dataset di ∈ {d1} was evaluated using seven selected 
metrics mj ∈ {m1,…, m7}. For each combination of the 
data set di and the metric mj, a vector  vi,j of raw data rr,j

k
 

was assigned to each assembler ak (Eq. 1).

Equation 2 was used to normalize the data in the range 
of (0, 1):

(1)vi,j =
(

r
i,j

1
,… , r

i,j

7

)

.

(2)normalized
(

v
i,j

k

)

=
v
i,j

k
−min vi,j

max vi,j −min vi,j
= n

i,j

k
.



Planta (2021) 254:117 

1 3

Page 5 of 22 117

Finally, an index known as the overall metric score 
(OMS) was considered for each assembly, which is the 
algebraic sum of the normalized values from the preced-
ing phase. The best assembly was the one with the highest 
OMS (the highest possible score = 7).

Computational identification of miRNAs from the 
saffron transcriptome

An in silico pipeline was created to identify conserved 
miRNAs from the saffron transcriptome. The procedure 
and bioinformatics tools used for each step are summarized 
in Fig. 1. To begin, blastx was run against the nr database 
to eliminate protein-coding sequences. Then blastn was 
run against the Rfam 14.3 database (September 2020) to 
remove sequences from other non-coding RNAs. Rfam is 
a collection of structural RNA families that contains both 
non-coding RNA genes and cis-regulatory elements. The 
sequences of all Viridiplantae mature miRNAs were then 
obtained from the miRBase database (Release 22.1). CD-
HIT was used to remove duplicate miRNA sequences from 
the miRBase database. The total number of miRNAs was 
initially 10,051, but after removing all sequences that were 
100% identical, the total number of sequences was decreased 
to 5,645.

Known miRNAs were detected according to Alptekin 
et al. (2017). Two Perl scripts, SUmirFind and SUmirFold 
(Lucas and Budak 2012), as well as a Python script, SUmir-
Predictor v2, were used in this protocol. SUmirFind employs 
blastn with optimized parameters for short sequences and 
assigns equal scores to long mismatched sequences as 
well as small non-mismatched sequences (-task blastn-
short -ungapped -penalty -1 -reward 1). After aligning the 
sequences against known miRNAs, the results are limited 
to candidate miRNAs that have a maximum of two mis-
matches. SUmirFold then sends a 700-nucleotide sequence 
from the candidate sequence containing the mature miRNA 
to UNAFold to generate and evaluate potential pre-miRNA 
secondary structures. SUmirFold selects the structures with 
the minimum free energy (MFE) and discards the remain-
ing sequences. If the pri-miRNA structure meets all of the 
criteria, 20 nucleotides are isolated before and after the 
mature miRNA sequence, and the secondary structure of 
the miRNA is re-examined. The scripts SUmirFind and 
SUmirFold essentially provide evidence for the presence 
of a suitable secondary structure, the precursor miRNA 
(pre-miRNA), which contains a mature miRNA sequence. 
Finally, SUmirPredictor evaluates potentially eligible pre-
cursor sequences based on previously reported miRNA core 
properties (Kurihara and Watanabe 2010), i.e. (i) Potential 
precursors or hairpin structures cannot have multi-loop 
structures above the mature miRNA position, (ii) mature 
miRNA and miRNA* sequences cannot extend to the head 

of the hairpin structure, and (iii) mismatches in the DICER-
LIKE enzyme cleavage regions of mature miRNA and 
miRNA* sequences are not permitted.

Minimal free energy (MFE) is another important char-
acteristic for the evaluation of miRNA secondary structure. 
Lower MFE indicates that the secondary structure is thermo-
dynamically more stable. The pre-miRNA sequences should 
have a highly negative MFE and a minimal free folding 
energy index (MFEI) (Zhang et al. 2006a). The MFE and 
the adjusted minimum folding energy (AMFE) which is the 
MFE of a 100 bp sequence of the predicted pri-miRNAs 
were calculated using Eqs. 3 and 4, respectively.

Phylogenetic and conservation analysis 
of the identified miRNAs

To investigate the phylogenetic relationships of several iden-
tified miRNAs (miR156, miR171, miR319), mature miRNA 
sequences of experimentally validated miRNAs from dicot 
(A. thaliana) and monocot (Zea mays L.)  species, were 
obtained from the miRBase database. Multiple sequence 
alignment and subsequent generation of the phylogenetic 
tree were performed using the ClustalW tool of MEGA X 
(10.2.5) software (Kumar et al. 2018). For generating a phy-
logenetic tree, the maximum likelihood statistical method 
based on the Tamura-Nei model (Tamura and Nei 1993) 
with 1000 boot-strapped replicates was used. WebLogo 
(Crooks 2004) was used to conduct a conservation analysis 
on the identified miRNAs.

Identification of miRNA targets

Three distinct tools that use various algorithms to identify 
miRNA targets were used to search for the targets of pre-
dicted miRNAs and minimize false-positive results. These 
tools include psRNATarget (Dai et al. 2019) using the pre-
defined V2 scoring scheme (2017 release) with default set-
tings, TAPIR (precise mode using the RNAhybrid search 
engine) (Bonnet et al. 2010), and psRobot (Wu et al. 2012). 
psRNATarget is regarded as one of the most reliable and 
accurate tools for determining miRNA targets (Srivastava 
et al. 2014). Along with evaluating multiple target sites in 
an mRNA molecule, this tool considers complementarity 
and accessibility to the target site; thus, a miRNA sequence 
may have more than one identified target (Dai and Zhao 
2011). TAPIR performs alignment based on a penalty score 

(3)MFEI =
AMFE

(G + C)%
,

(4)AMFE =
MFE

Sequence length(bp)
× 100.
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Fig. 1  Workflow of in silico miRNA identification in the transcriptome of Crocus sativus 
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that assesses the number of mismatches, gaps (created by 
bulges and loop structures), and the number of G:U pairs 
in the duplex. psRobot predicts the target using a modified 
Smith–Waterman algorithm with a unique scoring system.

miRNA sequences were used as queries to search 
against C. sativus protein-coding sequences. To reduce 
false-positive results while preserving sensitivity in find-
ing targets, miRNA candidates discovered by at least two 
tools were deemed miRNA targets. Following that, blastx 
(evalue = 5e-10) was used to search the target sequences 
against the UniRef100 database.

Functional annotation, biochemical pathway, 
and network analysis of miRNA targets

The GO terms were retrieved based on UniRef100 identi-
fiers using the UniProt database Retrieve/ID mapping tool 
(https:// www. unipr ot. org) and classified into three subgroups 
included cellular components, molecular function, and bio-
logical processes using WEGO (Ye et al. 2006). The KEGG 
Automatic Annotation Server (KAAS) (Moriya et al. 2007) 
was used to investigate biochemical pathways enriched 
in miRNA targets. The interaction network between the 
identified miRNAs and their targets was constructed using 
Cytoscape 3.8.2 (Shannon 2003). The online version of 
iTAK was used to identify transcription factors among the 
identified miRNA targets (Zheng et al. 2016).

Results

Data quality control and trimming

A total of ~ 460.1 million paired-end reads were downloaded 
from 22 RNA-seq samples of different saffron flower parts, 
with a mean GC content of 45.59 percent. Trimming pro-
duced ~ 412.3 Mb of high-quality (Q < 20) reads for perform-
ing de novo assemblies. In other words, data volume and 
GC content were both reduced by 10.4% and 0.32 percent, 
respectively. Table S1 summarizes the detailed results of the 
trimming process.

Performance of de novo transcriptome assembly 
tools

Four different assemblers (Trinity, Trans-ABySS, rnaS-
PAdes, and Bridger) with different k-mer sizes and a tool for 
merging different assemblies (i.e. EvidentialGene) were used 
to identify the best transcriptome assembly tool for saffron. 
In total, seven de novo transcriptome assemblies were gener-
ated. To compare assembly tools, calculated metrics for each 
assembly were normalized in a (0, 1) range. The normalized 
scores for each assembly tool are summarized in Table 2.

With the exception of rnaSPAdes, the percentage of 
RMBT ranged from 97.94% (Trinity) to 92.08% (Trans-
ABySS; k-mer = 25). rnaSPAdes had the lowest performance 

Table 2  Results for all selected evaluation metrics

The results for all selected metrics (rows) based on Bowtie 2 (Langmead and Salzberg 2012), Trinity toolkit (Grabherr et al. 2011), rnaQUAST 
(Bushmanova et al. 2016), Transrate (Smith-Unna et al. 2016), and BUSCO (Simão et al. 2015; Waterhouse et al. 2018)utilities for all assembly 
tools (columns) are shown. For each metric, normalized scores (in bold) are displayed in the range between 0 and 1. Next to the normalized 
values, the raw values are given in subscript. The MS of (0,1)-normalized scores is summarized in the last row. The most efficient assembly is 
the one with the highest summarized metric score. Ex90N50 values are calculated in the same way as N50 values, but only for the top 90% most 
highly expressed transcripts, which account for 90% of the total normalized expression data. Complete BUSCOs are calculated as the sum of 
single-copy and duplicated Benchmarking Universal Single-Copy Orthologs

k-mer Trinity Trans-ABySS rnaSPAdes EvidentialGene Bridger

default 25 32 default 25 32

Evaluation metrics
Bowtie 2
1 RMBT 197.94 0.7392.08 0.8895.25 076.15 0.9596.77 0.7993.41 0.8995.48

Trinity
2 Ex90N50 0.381185 0.06701 0602 12150 0.901997 0.962092 0.952069

3 No. of full length transcripts 0.696633 04888 0.245499 0.596387 17421 0.305639 0.446005

rnaQUAST
4 Transcripts ≥ 1,000 bp 0.1451405 0.72128970 032891 0.95159789 1165818 0.90152252 0.94158359

TransRate
5 The average ORF percentage 0.746.16 0.9449.82 0.8548.55 0.0836.83 150.77 035.59 035.56

BUSCO
6 Complete BUSCOs 0.771288 0.061222 0.341248 0.401253 11309 01216 0.321246

7 Missing BUSCOs 0.9350 078 0.4365 0.1773 148 0.1075 0.2770

Summarized metric (0,1)-score 4.61 2.52 2.75 3.19 6.85 3.05 3.81

https://www.uniprot.org
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in this metric (76.15 percent). Assemblies with the long-
est to the shortest Ex90N50 values were as follow: rnaS-
PAdes (2,150 bp), Bridger (k-mer = 25, 2,092 bp), Bridger 
(k-mer = 32, 2069 bp), EvidentialGene (1997 bp), Trinity 
(1185 bp), Trans-ABySS (k-mer = 25, 701 bp), and Trans-
ABySS (k-mer = 32, 602 bp). The number of full-length 
protein-coding transcripts differed significantly between 
assemblies. The EvidentialGene (7421) identified the great-
est number of full-length transcripts, followed by Trinity 
(6633). By reconstructing 4888 transcripts, Trans-ABySS 
k-mer = 25 performed poorly in this index. EvidentialGene 
(165,818) and Trans-ABySS (k-mer = 32; 32,891) had 
the highest and lowest number of transcripts larger than 
1,000 bp, respectively. In terms of average ORF percent-
age, EvidentialGene performed the best (50.77%); how-
ever, Bridger performed the worst (k-mer = 25; 35.59% and 
k-mer = 32; 35.56%).

The number of complete and missing BUSCOs was also 
taken into account to further evaluate the completeness and 
accuracy of the assemblies (Fig. S1). EvidentialGene out-
performed the other assemblers with 1319 complete BUS-
COs out of 1375, and Trinity took second place with 1288 
complete BUSCOs. Bridger had a poor performance in this 
metric (k-mer = 25; 1216). The lowest and the highest num-
ber of missing BUSCOs were observed in EvidentialGene 
(48) and Trans-ABySS (k-mer = 25; 78), respectively.

Although none of the assembly tools outperformed the 
others in all metrics, the EvidentialGene tool, with 6.85 out 
of a possible 7, performed the best, followed by the Trinity 
tool with 4.61 points and the Bridger (k-mer = 32; 3.81). 
Trans-ABySS (k-mer = 25) had the lowest performance, with 
a score of 2.52.

Identification of miRNAs in the saffron 
transcriptome

SUmiRFind was used to search non-protein-coding tran-
scripts of saffron (474,280 transcripts) against 5,645 known 
mature plant miRNAs. In total, 8,030 transcripts with two 
or fewer mismatches were found. The use of SUmirFold to 
examine secondary structure features of candidate miRNAs 
resulted in 175 sequences (2.17%) that were able to form 
hairpin structure and meet the basic criteria for miRNA 
identification (including 20 suspicious stem-loop struc-
tures) (Fig. 2a); Suspicious sequences are miRNA–miRNA* 
duplexes with no mismatch; such sequences may be related 
to inverted repeats or siRNA sequences (Lucas and Budak 
2012).

The resulting sequences were then evaluated by the SUm-
irPredictor script, and 125 miRNAs were entered in the next 
step. Following manual examination of the candidate miR-
NAs to diminish false-positive results and removal of dupli-
cates, 66 miRNAs belonging to 19 families were identified 

based on secondary structure prediction and miRNA anno-
tation criteria (Table 3). The highest frequency of miRNAs 
was found in the miR156 family, followed by miR164, 
miR319, and mir396 (Fig. 2b). To validate the identified 
miRNAs, the characteristics of mature and pre-miRNA 
sequences, as well as pre-miRNA hairpin structures, were 
examined. The length of the identified mature miRNAs was 
between 20 and 23 nt with an average of about 21 nt (Fig. 2c; 
Table 4).

Despite the observed similarity in mature miRNA length, 
pre-miRNA length and sequence were very different. Pre-
miRNAs ranged in length from 99 nucleotides (miR536) to 
211 nucleotides (miR319b), with an average length of 134.5 
nucleotides (median = 126; SD = 29.47) (Fig. 2d).The identi-
fied miRNAs were located at both 5' and 3' strands, with the 
majority (54.55%) found on the 5' strand. MFE and MFEI 
are two other important criteria for determining miRNA-
related secondary structures. In the current study, the MFE 
of pre-miRNAs ranged from − 22.7 to − 89.5 kcal/mol, 
with an average of − 55.76 kcal/mol (median = − 54.25; 
SD = 12.96), and MFEI ranged from − 0.68 to − 1.32 kcal/
mol (median = − 0.91; SD = 0.11) (Fig. 2e).

Conservation and phylogenetic results

In the present study, phylogenetic and conservation analyses 
of several identified miRNAs along with previously reported 
miRNAs were performed. The alignment and conservation 
analyses of miR156, miR171, and miR319 families were 
performed along with experimentally validated miRNAs 
reported for A. thaliana and Z. mays L. using ClustalW and 
WebLogo (Fig. 3). The results showed the conserved nature 
of these miRNAs in different species. Phylogenetic analysis 
showed that these miRNAs are closely related to Z. mays L. 
and A. thaliana. Previous reports have also confirmed the 
conserved nature of pre-miRNAs as well as mature miRNAs 
(Zhang et al. 2006b).

Identification and functional analysis of miRNA 
targets

As shown in Fig. 4, based on the results of psRNATarget, 
TAPIRHybrid, and psRobot, 9537, 2972, and 3377 hypo-
thetical targets were identified for all predicted miRNAs, 
respectively; Of these, 2880 targets were identified by at 
least two tools and were considered as targets of miRNAs 
identified in this study.

Based on the gene ontology (GO) results of the predicted 
targets of miRNAs, 548 unigenes were associated with at 
least one GO term (Fig. 5). In total, 1,056 GO terms were 
classified into 40 functional groups, which are members of 
three basic GO groups called molecular function, cellular 
components, and biological processes. 438 (41.5%) GO 
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terms were related to molecular function, 335 (31.7%) GO 
terms were related to cellular components, and 283 (26.8%) 
GO terms were related to biological processes.

The major molecular functions associated with the 
predicted targets were "binding," "catalytic activity," and 
"transporter activity," which corresponded to miRNAs' 
major role in the control of transcription cascades by target-
ing transcription factors (Nazarov et al. 2013). The main 
targets in the category of cellular components were "cell 
section," "cell," and "organelle," while the main targets in 
the category of biological processes were "cellular process", 
"metabolic process", and "biological regulation".

miRNAs involved in the biosynthesis of terpenoids

The analysis of biochemical pathways using the KAAS 
showed that 770 miRNA targets are involved in 266 meta-
bolic pathways. Three miRNA targets were found in one of 
the major pathways involved in the metabolism of apoca-
rotenoids, known as “terpenoid backbone biosynthesis” 

(ko00900). Four identified miRNAs (csa-miR444b, csa-
miR2275-3p, csa-miR2275c, csa-miR169o-3p) could con-
trol the biosynthesis of terpenoids by regulating the expres-
sion of enzymes involved in this pathway.

miRNA targets involved in the biosynthesis 
of apocarotenoids

Using strict criteria for miRNA target identification, two 
potential miRNA targets in the apocarotenoids biosynthetic 
pathway were discovered. According to the results, csa-
miR156g and csa-miR156b-3p could regulate the expres-
sion of Carotenoid cleavage dioxygenase (CCD) and UDP-
glucosyltransferase (UGT ), respectively (Fig. 6).

miRNAs involved in flowering transition 
through regulation of transcription factors

miRNAs have been found to target 227 transcription fac-
tors (TFs) from 27 different families. The results indicated 

Fig. 2  a Stem–loop structures of a number of predicted mi-RNAs. 
Mature miRNA and miRNA* are identified by brackets, b number 
of identified miRNAs of each family, c frequency of mature miRNA 

length, d frequency of pre-miRNA length, e frequency of MFEI range 
of pre-miRNAs
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Table 3  Identified pri-miRNAs in the saffron transcriptome

Predicted primary miRNA Mature miRNA sequence Mature miRNA 
length (bp)

Number of mismatches 
with conserved miRNA

miRbase hit

csa-miR156 CUG ACA GAA GAG AGU GAG CAC 21 0 ama-miR156
csa-miR156a UGA CAG AAG AGA GUG AGC ACC 21 1 bna-miR156a
csa-miR156a-3p UGC UCA CUU CUC UUG CUG UCAG 22 1 vca-miR156a-3p
csa-miR156b-3p GCU CAC UUC UCU UGC UGU CAGCU 23 2 csi-miR156b-3p
csa-miR156c AUG ACA GAA GAG AGA GAG CAC 21 2 smo-miR156c
csa-miR156e-3p GCU CUC UGC UCU CUC UGU CAUC 22 1 zma-miR156e-3p
csa-miR156f AUG ACA GAA GAG AGA GAG CACA 22 1 gma-miR156f
csa-miR156f-5p AUG ACA GAA GAG AGA GAG CAC 21 1 csi-miR156f-5p
csa-miR156g ACA GAA GAG AGA GAG CAC AG 20 1 gma-miR156g
csa-miR156i CAG AAG AGA GAG AGC ACA GC 20 2 cas-miR156i
csa-miR156j GCU GAC AGA AGA GAG UGA GCAC 22 1 cme-miR156j
csa-miR156j-3p UGC UCU CUG CUC UCU CUG UCAUC 23 1 zma-miR156j-3p
csa-miR156k-3p GCU CAC UUC UCU UGC UGU CAGC 22 2 zma-miR156k-3p
csa-miR160e UGC CUG GCU CCC UGG AUG CCAUC 23 1 mes-miR160e
csa-miR160e CUG CCU GGC UCC CUG GAU GCC 21 1 pab-miR160e
csa-miR160g UGC CUG GCU CCC UGG AUG CCA 21 0 lus-miR160g
csa-miR162a UAG AUA AAC CUC UGC AUC CAG 21 1 hpe-miR162a
csa-miR162b UCG AUA AAC CGC UGC AUC CAG 21 2 osa-miR162b
csa-miR162b-5p UGG AUG CAG CGG UUU AUC GAUC 22 2 ath-miR162b-5p
csa-miR164a-3p CAU GUG CCU AUC UUC UCC ACC 21 2 bdi-miR164a-3p
csa-miR164b-3p AUG UGC CUA UCU UCU CCA CC 20 1 zma-miR164b-3p
csa-miR164c UGG AGA AGC AGG GCA CGU GCA 21 1 osa-miR164c
csa-miR164c-5p UGG AGA AGC AGG GCA CGU GCA 21 1 ath-miR164c-5p
csa-miR164e UGG AGA AGC AGG GCA CGU GUA 21 2 osa-miR164e
csa-miR164h-5p UGG AGA AGC AGG GCA CGU GUA 21 1 zma-miR164h-5p
csa-miR167b-3p AGA CCA UGU UGC AGU UUC AUC 21 1 vca-miR167b-3p
csa-miR167c-5p GAA GCU GCC AGC AUG AUC UUA 21 2 ath-miR167c-5p
csa-miR167j UGA AGC UGC CAG CAU GAU CUUA 22 0 mdm-miR167j
csa-miR168-5p UCG CUU GGU GCA GGU CGG GAAC 22 0 lja-miR168-5p
csa-miR168b UCG CUU GGU GCA GGU CGG GAA 21 2 pab-miR168b
csa-miR168b-3p CCC GCC UUG CAU CAA CUG AAU 21 1 vca-miR168b-3p
csa-miR168b-3p CCC GCC UUG CAU CAA CUG AA 20 1 zma-miR168b-3p
csa-miR168c-5p UCG CUU GGU GCA GGU CGG GAA 21 1 bra-miR168c-5p
csa-miR169o-3p GGG AGG UCU UCU UGG CUC GC 20 2 zma-miR169o-3p
csa-miR171a UGA GCC GCG CCA AUA UCA CGC 21 2 gma-miR171a
csa-miR171b-3p UUG AGC CGC GCC AAU AUC ACG 21 1 ath-miR171b-3p
csa-miR2275-3p UUU GGU UUC CUC CAA UAU CUCG 22 0 tae-miR2275-3p
csa-miR2275a UUC GAU UUC CUC CAA CAU CUCA 22 1 aof-miR2275a
csa-miR2275b-3p UUC AAU UUC CUC UAA UAU CUCA 22 1 zma-miR2275b-3p
csa-miR2275c UUU GAU UUC CUC CAA UAU CUCA 22 0 aof-miR2275c
csa-miR319 GUU GGA CUG AAG GGA GCU CC 20 1 cpa-miR319
csa-miR319b UUG GAC UGA AGG GAG CUC CAA 21 2 ath-miR319b
csa-miR319c GUU GGA CUG AAG GGA GCU CCA 21 2 cas-miR319c
csa-miR319c-3p UUG GAC UUA AGG GAG CUC CCA 21 1 mtr-miR319c-3p
csa-miR319d UUG GAC UGA AGG GAG CUC CA 20 2 pab-miR319d
csa-miR319p GGU UGG ACU GAA GGG AGC UCC 21 2 gma-miR319p
csa-miR394b UUG GCA UUC UGU CCA CCU CC 20 1 pab-miR394b
csa-miR394c UUG GCA UUC UGU CCA CCU CCAU 22 0 mes-miR394c
csa-miR396 UUC CAC GGC UUU CUU GAA CU 20 1 smo-miR396
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that the majority of TFs belonged to SBP, MYB, GRAS, 
NAC, and Trihelix families, respectively (Fig. S2a). Sev-
enteen miRNA families were found to be capable of target-
ing TFs, with miR156 being the most abundant (24.23%), 
followed by miR319 (12.78%) and miR169 (10.13%). 
MiR827 and miR168 had the lowest number of members 
(Fig. S2b).

Several miRNAs are identified to be involved in flower-
ing transition through the regulation of TFs. For instance, 
SBP (SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE; SPL or SBP) domain proteins were identified as 
one of the most abundant targets of the miR156 family. 
Also, TCP transcription factors were identified as one of 
the miR319 targets. GRAS TFs were identified as one of 
the targets of miR171. Another group of TFs was bZIP 
which was identified as a target of miR396 and miR2275.

Construction of miRNA‑mRNA network

The miRNA-mRNA interaction network was constructed 
in Cytoscape 3.8.2 using 66 identified miRNAs and 1187 
mRNA targets (Fig. 7). The results showed that, among all 
miRNAs, miR156 and miR169 had the most connections 
with targets, with 344 and 135 connections, respectively. 
There were 14 targets co-regulated by 16 different miRNA 
families. The most common families were miR156 and 
miR169, which shared four targets with other miRNA 
families.

Discussion

Recent advances in experimental and computational tech-
nologies have led to a breakthrough in discovering the 
role of miRNAs. In particular, the advent of NGS has 
revolutionized miRNAs discovery, and as a result, many 
new miRNAs have been discovered recently. miRNAs 
are regarded as the major regulators of gene expression 
at the transcriptional or post-transcriptional level in dif-
ferent organisms (Bartel 2018). Moreover, a miRNA can 
participate in the regulation of multiple genes or mRNAs 
in a wide variety of plant growth and developmental 
stages (Dehury et al. 2013) that makes them a versatile 
tool for metabolic engineering, crop improvement, etc. 
(Sabzehzari and Naghavi 2019).

In the present study, an in silico approach was adopted 
for the identification of miRNAs in the saffron transcrip-
tome. Because there was no saffron reference genome 
available at the time of the analyses, a de novo transcrip-
tome assembly that could be a fair representation of all 
samples had to be created first. So, for this purpose, seven 
transcriptome assemblies were created using four different 
assembly tools and a tool for merging different assemblies. 
For determining the quality of a genome or transcriptome 
assembly, evaluation criteria are essential; however, opin-
ions differ on which evaluation criteria are best for de novo 
assembling (Hölzer and Marz 2019). Our study included 
22 RNA-seq samples of saffron flower and for evaluation 
of the assemblies both biological/reference-based (RMBT, 

Table 3  (continued)

Predicted primary miRNA Mature miRNA sequence Mature miRNA 
length (bp)

Number of mismatches 
with conserved miRNA

miRbase hit

csa-miR396a UUC CAC AGC UUU CUU GAA CUG 21 1 mdm-miR396a
csa-miR396b-5p UUC CAC AGC UUU CUU GAA CUG 21 1 ath-miR396b-5p
csa-miR396e UUC CAC GGC UUU CUU GAA CUG 21 0 cme-miR396e
csa-miR396e UUC CAC AGC UUU CUU GAA CUGG 22 1 gma-miR396e
csa-miR396f UCC CAC GUC UGU CUU GAA CUU 21 2 pab-miR396f
csa-miR399b UGC CAA AGG AGA GUU GCC CUA 21 0 cme-miR399b
csa-miR399b-5p AGG GCU UCU CUC CUU UGG CAG 21 0 csi-miR399b-5p
csa-miR399f GGC AGC UCU CCU UUG GCA AG 20 1 pab-miR399f
csa-miR399g AGG GCU UCU CUC CUU UGG CAGG 22 1 cme-miR399g
csa-miR444b UGU AGU UGC UGC CUC AAG CUU 21 1 bdi-miR444b
csa-miR529d AGA AGA GAG AGA GCA CAG CCC 21 0 ppt-miR529d
csa-miR535-3p GUG CUC UCU CUC GUU GUC AUC 21 1 vca-miR535-3p
csa-miR535a UGA CAA CGA GAG AGA GCA CGC 21 1 mes-miR535a
csa-miR535d AUG ACA ACG AGA GAG AGC ACG 21 2 mes-miR535d
csa-miR536 UCG UGC CAC GCU GUG UGC GUU 21 1 aof-miR536
csa-miR7505b ACA GUU UUA GAA ACC AUC CCU 21 2 gra-miR7505b
csa-miR827 UUA GAU GAU CAU CAA CAA ACA 21 1 nta-miR827
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Table 4  Characteristics of 
pre-miRNAs identified in the 
Saffron transcriptome

Identified miRNAs pre-miRNA 
length

Position of hair-
pin structure

Pre-miRNA 
MFE (Kcal/mol)

Pre-
miRNA 
GC%

Pre-miRNA MFEI
(Kcal/mol)

csa-miR156 124 5'  − 50 46.77  − 0.86
csa-miR156a 126 5'  − 50 45.24  − 0.88
csa-miR156a-3p 124 3'  − 50 45.97  − 0.88
csa-miR156b-3p 128 3'  − 50 46.09  − 0.85
csa-miR156c 127 5'  − 55.7 49.61  − 0.88
csa-miR156e-3p 129 3'  − 55.8 49.61  − 0.87
csa-miR156f 127 5'  − 55.7 49.61  − 0.88
csa-miR156f-5p 127 5'  − 55.7 49.61  − 0.88
csa-miR156g 125 5'  − 54.8 48.80  − 0.90
csa-miR156i 123 5'  − 54.6 48.78  − 0.91
csa-miR156j 126 5'  − 50 46.03  − 0.86
csa-miR156j-3p 129 3'  − 55.8 49.61  − 0.87
csa-miR156k-3p 126 3'  − 50 45.24  − 0.88
csa-miR160e 124 5'  − 57.6 49.19  − 0.94
csa-miR160e 122 3'  − 57.6 47.54  − 0.99
csa-miR160g 124 5'  − 57.6 49.19  − 0.94
csa-miR162a 137 5'  − 43.6 42.34  − 0.75
csa-miR162b 137 3'  − 46.9 43.07  − 0.79
csa-miR162b-5p 135 3'  − 43.6 43.70  − 0.74
csa-miR164a-3p 180 5'  − 66.7 40.56  − 0.91
csa-miR164b-3p 180 3'  − 66.7 40.56  − 0.91
csa-miR164c 180 3'  − 66.7 40.56  − 0.91
csa-miR164c-5p 180 5'  − 66.7 40.56  − 0.91
csa-miR164e 133 5'  − 50.9 46.62  − 0.82
csa-miR164h-5p 133 5'  − 52.3 46.62  − 0.84
csa-miR167b-3p 136 5'  − 50.8 41.18  − 0.91
csa-miR167c-5p 130 3'  − 48.4 40.77  − 0.91
csa-miR167j 136 5'  − 50.8 41.18  − 0.91
csa-miR168-5p 110 5'  − 50.7 55.45  − 0.83
csa-miR168b 110 5'  − 50.7 55.45  − 0.83
csa-miR168b-3p 110 5'  − 50.7 55.45  − 0.83
csa-miR168b-3p 108 3'  − 50.7 56.48  − 0.83
csa-miR168c-5p 110 5'  − 50.7 44.45  − 0.83
csa-miR169o-3p 125 5'  − 45.2 49.60  − 0.73
csa-miR171a 125 3'  − 55.1 56  − 0.79
csa-miR171b-3p 123 3'  − 54.3 55.28  − 0.80
csa-miR2275-3p 110 3'  − 34.8 33.64  − 0.94
csa-miR2275a 100 3'  − 39 44  − 0.89
csa-miR2275b-3p 100 3'  − 22.7 33  − 0.69
csa-miR2275c 109 3'  − 32 31.19  − 0.94
csa-miR319 207 3'  − 88.6 46.38  − 0.92
csa-miR319b 211 3'  − 89.5 46.46  − 0.91
csa-miR319c 209 3'  − 88.6 46.41  − 0.91
csa-miR319c-3p 109 3'  − 39.7 36.70  − 0.99
csa-miR319d 209 3'  − 88.6 46.41  − 0.91
csa-miR319p 207 3'  − 88.6 46.38  − 0.92
csa-miR394b 106 5'  − 51.2 50.49  − 0.98
csa-miR394c 103 5'  − 51.2 50.49  − 0.98
csa-miR396 180 5'  − 70 35.56  − 1.09
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Table 4  (continued) Identified miRNAs pre-miRNA 
length

Position of hair-
pin structure

Pre-miRNA 
MFE (Kcal/mol)

Pre-
miRNA 
GC%

Pre-miRNA MFEI
(Kcal/mol)

csa-miR396a 129 5'  − 60.5 51.16  − 0.92
csa-miR396b-5p 129 5'  − 60.5 51.16  − 0.92
csa-miR396e 180 5'  − 70 35.56  − 1.09
csa-miR396e 129 5'  − 60.5 51.16  − 0.92
csa-miR396f 180 5'  − 61.1 35.56  − 0.95
csa-miR399b 126 3'  − 60.2 49.21  − 0.97
csa-miR399b-5p 124 5'  − 59.8 49.19  − 0.98
csa-miR399f 126 5'  − 54.2 48.41  − 0.89
csa-miR399g 124 5'  − 59.8 49.19  − 0.98
csa-miR444b 133 3'  − 73.8 42.11  − 1.32
csa-miR529d 121 5'  − 54.6 49.59  − 0.91
csa-miR535-3p 121 3'  − 45.7 55.37  − 0.68
csa-miR535a 116 5'  − 52.2 55.17  − 0.82
csa-miR535d 118 5'  − 52.2 54.24  − 0.82
csa-miR536 99 3'  − 60.1 59.60  − 1.02
csa-miR7505b 130 3'  − 47 36.92  − 0.98
csa-miR827 107 3'  − 40.3 29.91  − 1.26

Fig. 3  a Conservation analysis, b multiple sequence alignment, and c phylogenetic analysis of mature miRNAs of csa-miRNA families and those 
of Arabidopsis thaliana and Zea mays L. 
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Ex90N50, and the average percentage of ORFs) and sta-
tistical criteria without the need for reference (transcripts 
longer than 1000 bp, BUSCO, and reconstruction of full-
length protein-coding transcripts) were used. Overall, a 
workflow for miRNA identification in saffron was devel-
oped, which can be applied to other non-model species 
as well.

Comparison of the findings with those of other studies 
confirms that different assembly tools generate signifi-
cantly different assemblies (Li et al. 2008). Thus, it is cru-
cial to compare those assemblies using different evaluation 
criteria and select the most accurate and complete assem-
bly for downstream analyses. Initially, the values obtained 
for each index were normalized, and the sum of the nor-
malized values of different indices for each assembly 
(OMS) was used as a criterion for comparing the efficiency 
of assemblies. Even though none of the assembly tools 
had the highest scores across all metrics, EvidentialGene 

outperformed the others. Trinity and Bridger (k-mer = 32) 
were ranked second and third, respectively, with Trans-
ABySS (k-mer = 25) performing the worst. In general, if 
a large percentage of the transcripts can be mapped back 
to the assembly, it can be considered accurate and com-
plete; thus, RMBT is a measure of assembly completeness 
for de novo assembled transcripts (Moreton et al. 2014). 
A higher percentage of RMBT indicates a more efficient 
assembly. Except for rnaSPAdes, the RMBT percentage 
for all assemblies was greater than 92 percent. In this 
study, the percentage of RMBT was higher than in previ-
ous studies. For example, the RMBT percentage in almond 
(Prunus dulcis Mill.) and pistachio (Pistacia vera L.) was 
reported to be 83.68% and 89.93%, respectively (Mousavi 
et  al. 2014; Moazzzam Jazi et  al. 2017). Ex90N50 is 
another commonly used metric for comparing the perfor-
mance of different assemblies. It indicates that 90% of 
the normalized expression data is assembled on contigs 

Fig. 4  a Venn diagram depict-
ing the number of miRNA 
targets identified by various 
tools, b gene ontology chart of 
miRNA targets predicted in the 
saffron transcriptome
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of length N50. There was a significant difference in per-
formance between the best (2,150 bp for rnaSPAdes) and 
worst (602 bp for Trans-ABySS, k-mer = 32) assemblies. 
EvidentialGene performed admirably in the reconstruction 
of full-length transcripts, reconstructing 7,421 transcripts. 
Previous studies have also reported on the use of this eval-
uation metric (Nakashima et al. 2014; Chopra et al. 2014). 
EvidentialGene outperformed other assemblies in the case 
of Transcripts ≥ 1,000  bp. EvidentialGene and Trans-
ABySS (k-mer = 25) were very similar in that they both 
contained roughly half of the ORFs. BUSCO is another 
metric that can be used as a reference for determining the 
completeness of an assembly. It will scan a database of 
single-copy ortholog genes with a high degree of con-
servation. It examines the transcriptome assembly to see 
whether each BUSCO group is complete, duplicated, frag-
mented, or missing. The most complete BUSCOs (1,309) 
were found in EvidentialGene, which takes advantage of 
merging different assemblies. This finding is consistent 
with that of Mamrot et al. (2017) who also reported better 
performance of merging assembly tools. Furthermore, Evi-
dentialGene had the lowest number of missing BUSCOs, 
indicating its efficiency in assembling transcriptomes. In 
summary, each assembler uses a different algorithm and 
can only identify a limited number of distinct transcripts 
(He et al. 2015). As a result, it may be useful to merge dif-
ferent assemblies produced by different assembly tools in 
order to reconstruct a more comprehensive transcriptome 

as a reference; however, the downside to this approach 
is that it is time-consuming and complicated.

De novo transcriptome assembly has previously been 
performed in the Crocus species. Several assemblers are 
used in some studies. Jain et al. (2016), for example, inves-
tigated the transcriptome of various saffron organs such as 
stigma, petals, leaves, and corms using various assembly 
tools such as Trinity, Oases, Velvet, ABySS, SOAPdenovo, 
and CLC Genomics Workbench; after examining indices 
such as average contig length, N50, and the number of 
created contigs, Oases was finally introduced as the best 
assembler. However, in most studies, only one assembler 
is used; for example, Hu et al. (2020) used the Trinity tool 
to investigate the transcriptome changes of saffron stigmas 
during the flowering transition. In another study, Ahrazem 
et al. (2019) used Trinity as the only assembly tool for 
stigma RNA-Seq to investigate the pathway of crocin bio-
synthesis in three Crocus species: C. ancyrensis, C. cart-
wrightianus, and C. sativus. More information on which 
metrics best predict de novo transcriptome assembly qual-
ity will undoubtedly aid in the development of protocols 
for producing high-quality assemblies. Taken together, 
EvidentialGene demonstrated the highest efficiency for de 
novo transcriptome assembly in saffron; thus, it appears 
that using the tools for merging different assemblies will 
help in achieving a more complete assembly, which will 
aid in increasing the accuracy of downstream analysis. 
However, if resources are limited and only one assembly 

Fig. 5  Gene ontology chart of 
miRNA targets predicted in the 
saffron transcriptome



 Planta (2021) 254:117

1 3

117 Page 16 of 22

Fig. 6  A diagram of the apocarotenoids biosynthesis pathway
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tool is available, the Trinity is recommended as it was the 
second best performing assembly.

An in silico workflow was developed in this study to iden-
tify miRNAs based on saffron flower transcriptome. Follow-
ing the removal of protein-coding and non-coding RNAs 
(other than miRNAs) from the generated transcriptome, 
primary miRNA sequences were identified using a homol-
ogy-based search against known plant miRNAs. To reduce 
the possibility of false-positive results, the homology search 
was made as strict as possible. Finally, 66 miRNAs from 19 
families were identified using secondary structure predic-
tion and miRNA annotation criteria. All of the identified 
miRNAs were found on the stem of the stem-loop structure. 
The length of pre-miRNAs varied greatly, with an average of 
134.5 nt. These findings are consistent with those of Barozai 
et al. (2012), who discovered variation in the length of pre-
miRNAs. The majority (57.58%) of mature miRNAs had a 
length of 21 nt followed by 22 nt (22.73%), 20 nt (15.15%), 
and 23 nt (4.55%). These findings were also consistent with 
previous research because many mature plant miRNAs have 
19–24 nt and are skewed toward 21 nt (Kurihara and Wata-
nabe 2010; Kurtoglu et al. 2014). The MFE values were 
highly negative (mean = − 55.76 kcal/mol), owing to the 
stable secondary structure of pre-miRNAs in comparison 
to other noncoding RNAs (Bonnet et al. 2004). Further-
more, pre-miRNAs had an average MFEI of −0.9 kcal/mol, 
compared to 0.64 for tRNAs, 0.59 for rRNAs, and 0.65 
for mRNAs (Zhang et al. 2006c). The MFE values were 
extremely negative (mean = − 55.76 kcal/mol), owing to the 
stable secondary structure of pre-miRNAs in comparison 
to other noncoding RNAs (Bonnet et al. 2004). Further-
more, pre-miRNAs had an average MFEI of − 0.9 kcal/mol, 
compared to 0.64 for tRNAs, 0.59 for rRNAs, and 0.65 for 
mRNAs (Zhang et al. 2006a). As a result, the identified miR-
NAs are almost certainly true miRNAs.

Plant miRNAs share a high degree of sequence similarity 
and are conserved in both precursor and mature sequences 
across distantly related taxa (Zhang et al. 2006a). A homol-
ogy-based search was performed to determine the phyloge-
netic relationship of the identified csa-miRNAs to those of 
experimentally validated miRNAs from other species. The 
observed variation in miRNA sequence may allow them to 
target different miRNAs (Roy et al. 2020). The results of 
phylogenetic and conservation analysis support previous 
researchers' findings that miRNAs are conserved across spe-
cies (Zhang et al. 2006c; Barozai et al. 2012).

miRNAs are thought to be the most important regula-
tors of gene expression at both the transcriptional and 
post-transcriptional levels (Catalanotto et al. 2016). These 
molecules bind to complementary sites on target mRNAs 
and suppress expression by inhibiting mRNA translation or 
cleavage (Fahlgren and Carrington 2010). Thus, identifying 
miRNA targets using in silico analysis is a straightforward 

method. In the current study, three different tools were used 
to identify the target of miRNAs with high reliability, reduce 
false-positive results, and maintain sensitivity, as previously 
described. The targets identified by at least two tools were 
considered as possible targets of the identified miRNAs. The 
identified targets were found in a wide range of biological 
and metabolic processes. Four miRNAs (csa-miR444b, csa-
miR2275-3p, csa-miR2275c, csa-miR169o-3p) have been 
identified as being directly involved in the biosynthesis of 
terpenoids. Terpenoids are a large class of plant chemicals 
that contain at least 40,000 different compounds that play 
various roles in plant growth and development (Tholl 2015). 
All terpenoids are made up of isopentenyl diphosphate (IPP) 
and dimethylallyl diphosphate (DMAPP) (Kubeczka 2020). 
IPP and DMAPP are produced in plants via two distinct 
pathways known as the mevalonic acid (MVA) and methyl-
erythritol phosphate (MEP) pathways. The five-carbon prod-
ucts of the MEP pathway, in particular, are preferred for the 
biosynthesis of a variety of products, including carotenoids 
and their derivatives (e.g. apocarotenoids) (Tholl 2015). 
Since previous studies found that miRNAs play a role in the 
regulation of the terpenoid backbone biosynthesis pathway 
in Persicaria minor (Samad et al. 2019), Panax notoginseng 
(Wei et al. 2015), and Ginkgo biloba (Ye et al. 2020), it 
appears that miRNAs may also play a role in the regulation 
of the MEP pathway in saffron.

Despite their importance, the main source of apocarot-
enoids is the extraction from the saffron plant, which is 
expensive. So researchers are attempting to produce these 
compounds in various organisms (e.g., bacteria, yeast, etc.) 
via metabolic engineering. As a result, their biosynthesis 
pathway has received much attention, and the enzymes 
involved in this pathway have been extensively studied. 
However, there has been little research into its regulatory 
mechanisms (Liu et  al. 2020). To our knowledge, only 
one study on the regulators of the apocarotenoids pathway 
has been published, and the role of a transcription factor 
(CsULT1) has been reported (Ashraf et al. 2015), but no 
reports on the role of miRNAs in the regulation of this path-
way have been published to date.

One of the most important findings of this study was 
the identification of two miRNAs (csa-miR156g and csa-
miR156b-3p) that may control the biosynthesis of apocarote-
noids, as CCD and UGT enzymes were identified as miRNA 
targets. These enzymes are required for the biosynthesis of 
crocin, picrocrocin, and safranal, the three main compounds 
found in saffron. The first step in the biosynthesis of apoca-
rotenoids is the cleavage of carotenoids by CCD enzymes. 
CCD catalyzes the conversion of zeaxanthin to crocetin dial-
dehyde and 3-hydroxyl-ß-cyclocitral, whereas UGT converts 
picrocrocin to crocin and crocetin to picrocrocin (Tan et al. 
2019). Glycosylation of carotenoids by the UGT enzyme 
results in stable and water-soluble apocarotenoids (Liu et al. 
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2020). As a result, the current findings of the potential roles 
of miRNAs would undoubtedly help to further understand 
the regulatory mechanisms of apocarotenoids biosynthesis 
in the context of metabolic engineering. These miRNAs 
contribute to our understanding of potential regulators of 
this pathway, which could be used to increase the amount of 
effective components of saffron via metabolic engineering.

Due to the importance of higher flower production in 
saffron and the processes underlying flowering transition, 
attention has recently been focused on the flowering con-
trol mechanisms in this valuable plant, because the saffron 
industry's sustainable development is dependent on the qual-
ity and quantity of stigmas (Hu et al. 2020). Thus, studying 
the molecular mechanisms of flowering transition in saf-
fron is critical for resolving these issues. Based on previous 
research on the role of miRNAs in plant flowering control 
(Schwab et al. 2005; Jung et al. 2011), and the lack of such 
research in saffron, an attempt was made to investigate sev-
eral identified miRNAs that may be related to the flower-
ing transition in saffron. Hu et al. (2020) proposed a model 
for flowering transition in saffron that included several TFs 
involved in this process. Surprisingly, the transcription fac-
tors SPL, TCP, and bZIP were identified as miRNA targets 
in the current study. SPL transcription factors, also known 
as floral activators (Gandikota et al. 2007), were identified 
as csa-miR156 targets. It has also been reported that miR156 
regulates SPL3 expression in A. thaliana via transcript cleav-
age and translational inhibition (Gandikota et al. 2007). SPL 
genes are found in plants as part of a multigene family. A. 
thaliana, for example, has 16 SPL genes. Many SPL genes 
play critical roles in plant growth processes such as veg-
etative phase change, somatic embryogenesis, anthocyanin 
biosynthesis, gibberellin (GA) biosynthesis and signaling, 
and plant stress response (Wang et al. 2018). Overexpres-
sion of miR156 in transgenic Populus x canadensis reduced 
the expression of miR156-targeted SPL genes, resulting in a 
prolongation of the juvenile phase (Wang et al. 2011). This 
finding suggests that the role of miR156/SPL in the vegeta-
tive growth stages of annual herbaceous plants and peren-
nial trees is well protected (Li et al. 2018). TCP transcrip-
tion factors were also found to be targeted by csa-miR319. 
This TF family has a conserved basic helix–loop–helix 
domain that is important for DNA binding or protein–pro-
tein interactions (Cubas et al. 1999). During plant develop-
ment, gibberellin interacts with the miR319/TCP module in 
addition to the miR156/SPL module. According to reports, 
the miR319/TCP module regulates flowering time. Excess 
miR319 accumulation in Arabidopsis negatively regulates 
TCP class II genes, including TCP4, resulting in a late 

flowering phenotype. Plants with miR319-resistant TCP 
variants or overexpressed TCPs, on the other hand, flower 
earlier (Sarvepalli and Nath 2011). TCP4 targets of miR319 
have been shown to bind to the CONSTANS (CO) promoter, 
inducing expression and positively regulating the flowering 
period (Liu et al. 2017). However, miR319-regulated TCP 
genes can also suppress target genes at specific developmen-
tal stages (Burko et al. 2013).

Conclusions

In the current study, an in silico workflow was developed 
for identifying miRNAs in saffron using transcriptome data. 
The efficiency of various de novo transcriptome assembly 
tools was evaluated and EvidentialGene was introduced as 
the most efficient tool for transcriptome assembly in this 
plant. A total of 66 miRNAs were discovered, representing 
19 distinct miRNA families. The targets of saffron miRNAs 
were found to be involved in several processes. Four miR-
NAs have been identified as being involved in the terpenoids 
backbone biosynthesis. The apocarotenoids biosynthetic 
pathway enzymes CCD and UGT were also recognized 
as potential miRNA targets. A number of TFs were also 
discovered to be miRNA targets involved in the flowering 
transition. Because there is no evidence of species-specific 
identification of miRNAs in saffron, the number of miRNAs 
and their targets may be greater than the number estimated 
in this study. The current findings highlight the importance 
of miRNAs and their targets in regulating various biological 
processes in saffron and, in particular, improve our under-
standing of the control mechanisms of the apocarotenoids 
biosynthesis pathway in this precious plant.
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