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Let G be the symmetric group of degree n. Let ω(G) be the maximal size of a subset S
of G such that 〈x, y〉 = G whenever x, y ∈ S and x �= y and let σ(G) be the minimal size 
of a family of proper subgroups of G whose union is G . We prove that both functions 
σ(G) and ω(G) are asymptotically equal to 1

2

( n
n/2

)
when n is even. This, together with a 

result of S. Blackburn, implies that σ(G)/ω(G) tends to 1 as n → ∞. Moreover, we give 
a lower bound of n/5 on ω(G) which is independent of the classification of finite simple 
groups. We also calculate, for large enough n, the clique number of the graph defined as 
follows: the vertices are the elements of G and two vertices x, y are connected by an edge 
if 〈x, y〉 ≥ An .

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a noncyclic finite group. J.H.E. Cohn in [5] defined σ(G) to be the minimal number k such that G is the union of 
k proper subgroups of G . This invariant has been studied by many authors. In particular, M.J. Tomkinson [17] proved that if 
G is solvable then σ(G) = q + 1, where q is the smallest order of a chief factor of G with more than one complement. In the 
present work we concentrate on the symmetric group Sn of degree n. In two papers [12,8] it was shown that σ(Sn) = 2n−1

for every odd integer n ≥ 3. The determination of σ(Sn) when n is even seems a more difficult task. In case n is divisible by 
6, E. Swartz [16] managed to give a formula for σ(Sn). Apart from this case, the value of σ(Sn) for n even is only known 
for n ≤ 14: see [2,8,14].

Let G be a finite group which can be generated by 2 elements. A subset S of G is called a pairwise generating set if 
every subset of S of size 2 generates G . The maximal size of a pairwise generating set for G is denoted by ω(G). This 
invariant was first introduced by M.W. Liebeck and A. Shalev in [10], where a general lower bound for ω(G) was given for 
G a nonabelian finite simple group: they proved that ω(G) ≥ c · m(G) where c is an absolute positive constant and m(G)

denotes the minimal index of a proper subgroup of G . After some initial results in [12], S.R. Blackburn [3] proved that 
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ω(Sn) = 2n−1 provided that n is odd and sufficiently large. Later, in her Ph.D thesis, L. Stringer [15] studied the small odd 
values of n and showed that ω(Sn) = 2n−1 for every odd integer n at least 17 or belonging to {7, 11, 13}. Moreover, she 
showed that ω(S5) < σ(S5) and that ω(S9) < σ(S9) (see also [8]); the problem of whether ω(S15) = σ(S15) or not is still 
open.

An obvious connection between σ(G) and ω(G) for any noncyclic finite group G is that ω(G) ≤ σ(G). Indeed, every 
proper subgroup of G contains at most one element of any pairwise generating set for G .

Our first result is the following.

Theorem 1. If n is even then σ(Sn) and ω(Sn) are asymptotically equal to 1
2

( n
n/2

)
.

This, together with S. Blackburn’s result mentioned above, implies that the quotient σ(Sn)/ω(Sn) tends to 1 as n tends 
to infinity, without restrictions on the parity of n.

The idea of the proof of Theorem 1 is to show that there exists a set of pairwise generating elements of Sn , consisting 
of n-cycles, one in each imprimitive maximal subgroup of Sn with two blocks of imprimitivity. This gives the lower bound 
in the following chain of inequalities.

1

2

(
n

n/2

)
≤ ω(Sn) ≤ σ(Sn) ≤ 1

2

(
n

n/2

)
+

�n/3�∑
i=1

(
n

i

)
.

The upper bound is obtained noting that Sn is covered by the imprimitive maximal subgroups with 2 blocks and the 
intransitive maximal subgroups stabilizing sets of size at most �n/3�. The result then follows by letting n → ∞.

Let �n be the graph whose vertices are the elements of Sn which are products of exactly three disjoint cycles and there 
is an edge between two of them if they generate a transitive subgroup of Sn . The main combinatorial obstacle to determine 
ω(Sn) and/or σ(Sn) is to determine the clique number of �n .

Our proof of Theorem 1 makes use of results about maximal primitive subgroups of Sn (see Lemma 5) that rely on the 
Classification of Finite Simple Groups (CFSG). However [3] also depends on CFSG.

We remark that, apart from some symmetric groups, the only cases in which the precise value of ω is known are for 
groups of Fitting height at most 2 [11], for certain alternating groups [3] and for certain linear groups [4].

If we allow the pairs of elements of Sn to generate Sn or An (and n is even), then we are able to determine the precise 
size of certain subsets as in our second theorem.

Theorem 2. If n is a large enough even integer, then the maximal size of a subset X of Sn with the property that 〈x, y〉 ≥ An whenever 
x, y are two distinct elements of X is 1

2

( n
n/2

) + 2n−2 if n/2 is even and 2n−2 if n/2 is odd.

At the heart of the proof of Theorems 1 and 2 is the Lovász Local Lemma [7]. In this context, the Local Lemma was first 
used by S.R. Blackburn [3] and elaborated on by L. Stringer [15] in her Ph.D thesis.

Our last result does not depend on CFSG via a nice theorem of Eberhard and Virchow [6].

Proposition 1. Both ω(Sn) and ω(An) are at least (1 − o(1))n.

2. The local lemma

Given an event E of a probability space, we denote by P (E) its probability and by E its complement. As usual e denotes 
the base of the natural logarithm.

The following crucial result can be found in [7]. The formulation we use is taken from [1, Corollary 5.1.2] (the “symmetric 
case”).

Theorem 3 (Lovász Local Lemma). Let A1, . . . , An be events in an arbitrary probability space. Let (V , E) be a directed graph, where 
V = {1, . . . , n}, and assume that, for every i ∈ V , the event Ai is mutually independent of the set of events A j such that (i, j) /∈ E. Let 
d be the maximum valency of a vertex of the graph (V , E). If for every i ∈ V

P (Ai) ≤ 1

e(d + 1)

then P (
⋂

i∈V Ai) > 0.

The mutual independence condition mentioned in the Lovász Local Lemma means the following:

P (Ai |
⋂

A j) = P (Ai) ∀i ∈ V , ∀S ⊆ { j ∈ V : (i, j) /∈ E}.

j∈S

2
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3. Proof of Theorems 1 and 2

From now on let n be a large even integer. Let also G := Sn be the symmetric group on n letters. Let An denote the 
alternating group on n letters. We will prove both theorems using the same argument.

Let M (1) be the family of maximal imprimitive subgroups of G with 2 blocks and let �(1) be the set of n-cycles in G . 
Let M (2) be the family of maximal subgroups of G that are either imprimitive with 2 blocks or intransitive of type Sa × Sb
with a and b odd, a �= b, a + b = n, and let �(2) be the set of elements of G that are either n-cycles or elements of cycle 
type (a, b) with a and b odd, a �= b, a + b = n.

Note that

|M (1)| = 1

2

(
n

n/2

)
, |M (2)| =

{ 1
2

( n
n/2

) + 2n−2 if n/2 is even,
2n−2 if n/2 is odd.

Moreover M (2) is a covering of G , meaning that 
⋃

M∈M (2) M = G . To see this, note that the elements whose cycle 
structure consists of cycles all of even length or of exactly two cycles of equal length are covered by the imprimitive 
maximal subgroups with 2 blocks, while the elements that admit in the cycle decomposition a cycle of odd length less than 
n/2 are covered by some intransitive subgroup of type Sa × Sb where a, b are odd and a �= b.

Let S (1) be the set of subsets of � = {1, . . . , n} of size n/2 and containing 1. Let S (2) be the union of S (1) with the 
set of subsets of � of odd size less than n/2. There is a natural bijection S (i) → M (i) , � �→ M� for i = 1, 2. Specifically, if 
|�| = n/2 then M� is the stabilizer of the partition � ∪ (� − �), and if |�| < n/2 then M� is the setwise stabilizer of �.

Define two graphs Q (1) , Q (2) , which both have G as set of vertices. There is an edge between x and y in Q (1) if 
〈x, y〉 = G , and there is an edge between x and y in Q (2) if 〈x, y〉 ≥ An . Note that if {x, y} is an edge of Q (i) , then x and y
do not belong to the same member of M (i) . Since M (2) is a covering of G , this proves that the clique number of Q (2) is at 
most |M (2)|. The third author observed in [12] that σ(G) ≤ |M (1)| + ∑q

i=1

(n
i

)
, where q := �n/3�, and this upper bound is 

asymptotically equal to |M (1)|.
We are left to prove that |M (i)| ≤ ω(Q (i)) for i = 1, 2, where ω(Q (i)) denotes the clique number of Q (i) , that is, the 

maximal number of vertices in a complete subgraph of Q (i) .
For every i ∈ {1, 2} and for every � ∈ S (i) let

C(�) := M� ∩ �(i).

Choose, uniformly and independently, an element g� in each C(�), � ∈ S (i) .
Note that the sets C(�) are pairwise disjoint. If � ∈ S (1) then a simple counting argument shows that |C(�)| =

(2/n)(n/2)!2. If � ∈ S (2) − S (1) then |C(�)| = (|�| − 1)!(n − |�| − 1)!. In particular, we always have

|C(�)| ≥ (2/n)2(n/2)!2. (1)

We define a graph �(i) for i = 1, 2. The vertices are the two element subsets of S (i) . Two distinct vertices v , v ′ are 
connected by an edge if and only if v ∩ v ′ �= ∅. The valency of every vertex of �(i) is 2(|S (i)| − 2) ≤ 2n+1. For every vertex 
v = {�1, �2} of �(i) define E v to be the event “〈g�1 , g�2 〉 �= G” if i = 1, and “〈g�1 , g�2 〉 � An” if i = 2.

We will apply Theorem 3 in the case of the graph �(i) defined above.
Given a vertex v of �(i) , let A be the set of vertices w of �(i) with the property that v ∩ w = ∅. The condition that E v

is independent of the set of events {E w }w∈A , mentioned in Theorem 3, means that

P
(

E v ∩
⋂

w∈A′
E w

)
= P (E v) · P

( ⋂
w∈A′

E w

)
,

for every subset A′ of A. But this is clear since v ∩ (
⋃

w∈A′ w) = ∅ by the definition of �(i) and so the choices of g� with 
� ∈ v are independent of the choices of g� with � ∈ ∪w∈A′ w .

The conclusion of Theorem 3 is that there exists a set S ⊆ G containing precisely one element g� in every C(�), for 
every � ∈ S (i) , such that 〈g�1 , g�2 〉 = G for i = 1 and 〈g�1 , g�2 〉 ≥ An for i = 2, for every g�1 �= g�2 in S . This would 
imply that

ω(Q (i)) ≥ |S| = |S (i)| = |M (i)|
for i ∈ {1, 2}, which is what we need. Note that the fact that |S| = |S (i)| follows from the fact that the sets C(�) are 
pairwise disjoint.

We will repeatedly use Stirling’s inequalities.

Lemma 1. For every positive integer m we have

√
2πm(m/e)m ≤ m! ≤ e

√
m(m/e)m.
3
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For every H ≤ G and � ∈ S (i) define

f�(H) := |C(�) ∩ H|
|C(�)| .

Given d, m > 1 such that n = dm, denote by Wd,m the class of imprimitive maximal subgroups of G isomorphic to Sd � Sm , 
that is, stabilizers of partitions of {1, . . . , n} consisting of m blocks of size d each.

Lemma 2. Let � ∈ S (i) and W ∈Wd,m.

(1) Assume m = 3. If � ∈ S (1) then f�(W ) �= 0 if and only if the intersection of � with each block of W has size n/6, in which case

f�(W ) ≤ (n/6)!6
(n/2)!2 · nO (1) ≤ (1/3)n · nO (1).

If � ∈ S (2) − S (1) then f�(W ) �= 0 only if 3 divides a = |�| and the elements of C(�) permute transitively the 3 blocks of W , 
moreover in this case setting b = n − a, we have

f�(W ) ≤ (a/3)!3 · (b/3)!3
a! · b! · nO (1) ≤ (1/3)n · nO (1).

(2) Assume m = 4. If � ∈ S (1) then f�(W ) �= 0 if and only if � is a union of 2 blocks of W , in which case

f�(W ) ≤ (n/4)!4
(n/2)!2 · nO (1) ≤ (1/2)n · nO (1).

If � ∈ S (2) −S (1) then f�(W ) �= 0 only if a = |�| = n/4 and � is a block of W , moreover in this case setting b = n −a = 3n/4, 
we have

f�(W ) ≤ (b/3)!3
b! · nO (1) ≤ (1/3)3n/4 · nO (1).

Note that (1/3)3/4 < 1/2.

Proof. The first inequality in each statement follows from bounding |C(�) ∩ H | and |C(�)| separately, recalling that the 
members of S (2) − S (1) have odd size. Let k be any constant positive integer and x a positive integer divisible by k. Using 
Lemma 1 we deduce that

(x/k)!k
x! ≤ ekxk/2(x/(ke))x

(x/e)x
= (1/k)x · ek · xk/2.

The second inequality in each statement of the lemma follows from this observation. This concludes the proof. �
Lemma 3 (Lemma 4 of [3]). Let n be a positive integer. Let M be a fixed subgroup of G. Let g be a fixed element of G, and suppose that 
g is an n-cycle, or that g is an (s, n − s)-cycle for some integer s such that 1 ≤ s ≤ n/2. Then g is contained in at most n2 conjugates 
of M in G.

The following lemma is a consequence of [3, Theorem 3].

Lemma 4. Let d ≥ 2, m ≥ 5 be integers such that n = dm. Then

|Sd � Sm| = d!mm! ≤ (n/5e)n · nO (1).

From now on i will be 1 or 2.
Let H (i) be the family of all maximal subgroups of G outside M (i) . Write H (i) = ⋃5

j=1 H j where H1 is the family of 
intransitive maximal subgroups of G outside M (i) , H2 is the family of primitive maximal subgroups of G , H j is the family 
of imprimitive maximal subgroups of G with j blocks for j ∈ {3, 4} and H5 is the family of imprimitive maximal subgroups 
of G with at least 5 blocks. Let J := {1, 2, 3, 4, 5}. For j ∈ J and v = {�1, �2} ∈ V (�(i)), let E j

v be the event “g�1 , g�2 both 
belong to some H ∈ H j ”, so that P (E v) ≤ ∑

j∈ J P (E j
v).

We will prove that

∑
P (E j

v) ≤ 1

2n+3
,

j∈ J

4
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which for sufficiently large n is smaller than 1
e(d+1)

.
Let [H] denote the G-conjugacy class of a subgroup H of G . Let m�([H]) be the number of different conjugates of H

that contain a fixed element of C(�). By Lemma 3, m�([H]) ≤ n2 always.
If H ∈ M (i) then at least one of f�1 (H) and f�2 (H) is 0 for �1 �= �2. Therefore in the computation of P (E v) we restrict 

our attention to the maximal subgroups of G outside M (i) .
In the following sum we let [H] vary in the set of conjugacy classes of elements of H j with j ∈ J . We have

P (E j
v) ≤

∑
[H]

∑
K∈[H]

f�1(K ) · f�2(K )

=
∑
[H]

∑
K∈[H]

|C(�1) ∩ K |
|C(�1)| f�2(K )

=
∑
[H]

∑
K∈[H]

∑
g∈C(�1)∩K

1

|C(�1)| f�2(K )

=
∑
[H]

∑
g∈C(�1)

1

|C(�1)|
∑

K∈[H]
g∈K

f�2(K )

≤
∑
[H]

∑
g∈C(�1)

1

|C(�1)| · m�1([H]) · max
K∈[H] f�2(K )

=
∑
[H]

m�1([H]) · max
K∈[H] f�2(K ).

For v = {�1, �2} let cv, j be the number of conjugacy classes of subgroups in H j such that there exists H in such a class 
such that H ∩ C(�1) �= ∅ and H ∩ C(�2) �= ∅. We deduce that

P (E j
v) ≤ cv, j · min

{i1,i2}={1,2}

⎛
⎜⎝ max

H∈H j
K∈[H]

(
m�i1

([H]) · f�i2
(K )

)
⎞
⎟⎠ . (2)

For v = {�1, �2} denote by sv, j the number of members of H j intersecting both C(�1) and C(�2) non-trivially. Then

P (E j
v) ≤

∑
H∈H j

f�1(H) · f�2(H) ≤ sv, j · max
H∈H j

(
f�1(H) · f�2(H)

)
. (3)

We will use inequality (2) if j �= 4 or (|�1|, |�2|) �= (n/2, n/2) and we will use inequality (3) if j = 4 and (|�1|, |�2|) =
(n/2, n/2).

Lemma 5. Let v = {�1, �2} be a vertex of �(i) and let j ∈ J . Then cv,2 ≤ n (for n large enough) and cv, j ≤ 1 for j ∈ {3, 4}. Moreover 
cv,5 ≤ 2

√
n. If (|�1|, |�2|) = (n/2, n/2) then sv,4 ≤ 1.

Proof. By [9], cv,2 ≤ n for n large enough. We remark that this is the only point where we use CFSG. cv,5 is at most the 
number of positive divisors of n less than n, and this is at most 2

√
n. If j ∈ {3, 4}, then H j is a single conjugacy class of 

subgroups of G , therefore cv, j ≤ 1.
Assume now that (|�1|, |�2|) = (n/2, n/2), so that both C(�1) and C(�2) consist of n-cycles. We will prove that sv,4 ≤ 1. 

Let H be an imprimitive maximal subgroup of G isomorphic to Sn/4 � S4. The two sets H ∩ C(�1) and H ∩ C(�2) are both 
non-empty only if the four imprimitivity blocks of H are exactly: �1 ∩ �2, �1 − �2, �2 − �1 and � − (�1 ∪ �2), in which 
case |�1 ∩ �2| = n/4. This implies the result. �

We will bound each P (E j
v ). Note that P (E1

v) = 0 in all cases, since no intransitive subgroup contains n-cycles and the 
only intransitive maximal subgroups containing elements of cycle type (a, b) with a, b odd are the ones belonging to M (2) .

(i) j = 2. By a result of Praeger and Saxl [13], the order of any member of H2 is at most 4n . By Lemmas 3, 5, inequalities 
(1) and (2),

P (E2
v) ≤ n3 · max

H∈H2
f�2(K ) ≤ n3 · 4n

(2/n)2(n/2)!2 .
K∈[H]

5
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(ii) j = 3. By Lemmas 2, 3, 5 and inequality (2),

P (E3
v) ≤ n2 · max

H∈H3
K∈[H]

f�2(K ) ≤ (1/3)n · nO (1).

(iii) j = 4. If (|�1|, |�2|) �= (n/2, n/2) then, without loss of generality, we may assume |�2| �= n/2. In this case, by Lem-
mas 2, 3, 5 and inequality (2),

P (E4
v) ≤ n2 · max

H∈H4
K∈[H]

f�2(K ) ≤ (1/3)3n/4 · nO (1).

Assume now that (|�1|, |�2|) = (n/2, n/2). Since sv,4 ≤ 1 by Lemma 5, we have

P (E4
v) ≤ max

H∈H4
( f�1(H) · f�2(H)) ≤ (1/4)n · nO (1),

by inequality (3) and Lemma 2.
(iv) j = 5. Fix H ∈ H5. Then, by Lemma 4, inequality (1) and Lemma 1,

f�(H) ≤ |H|
|C(�)| ≤ (n/5e)n · nO (1)

(n/2)!2 ≤ (n/5e)n · nO (1)

(n/2e)n
= (2/5)n · nO (1).

The set H5 contains at most 2
√

n classes of subgroups. For every H ∈ H5, we have m�1 ([H]) ≤ n2 by Lemma 3, hence

P (E5
v) ≤ 2

√
n · n2 · max

H∈H5
K∈[H]

f�2(K ) ≤ (2/5)n · nO (1),

by inequality (2).

Combining everything, we deduce that

P (E v) ≤
∑
j∈ J

P (E j
v) ≤ (1/3)3n/4 · nO (1),

which is smaller than 2−n−3 for every large enough n.

4. Proof of Proposition 1

Eberhard and Virchow [6, Theorem 1.1] proved, without CFSG, that for every ε > 0 the probability p(n) that a random 
pair of elements from Sn generates Sn or An is

1 − 1

n
+ 
(n−2+ε),

for every sufficiently large n. The same asymptotic formula holds [6, Theorem 1.2] for the probability a(n) that a random 
pair of elements from An generates An . Let b(n) be the probability that a random pair of elements from Sn \ An generates 
Sn . Let c(n) be the probability that a random element from An and a random element from Sn \ An generate Sn . Observe 
that b(n) = c(n) since 〈x, y〉 = 〈xy−1, y〉 where x and y are in Sn \ An . Since

p(n) = a(n) + b(n) + 2c(n)

4
,

it follows that b(n) = (4p(n) − a(n))/3. Fix ε > 0. We have universal positive constants c1 and c2 by [6] such that 1 − n−1 −
c1n−2+ε is smaller than both p(n) and a(n) and a(n) < 1 − n−1 + c2n−2+ε . Thus 1 − n−1 − (1/3)(4c1 + c2)n−2+ε < b(n).

Following Liebeck and Shalev [10], define graphs A(n) and B(n) with vertex sets An and Sn \ An respectively such that 
there is an edge between vertices x and y if and only if x and y generate An in the first case and Sn in the second case. 
The largest size of a complete subgraph in A(n) is ω(An) and the largest size of a complete subgraph in B(n) is at most 
ω(Sn).

Turán’s [18] theorem states that a simple graph on m vertices which does not contain a complete subgraph of size r + 1
has at most (1 − 1

r )m2

2 edges. We apply this theorem to the graphs A(n) and B(n) with m = n!/2 vertices. Consider the 
graph A(n). (The argument for the case of B(n) is the same.) Let r := ω(An). Since An is not a cyclic group, observe that 
A(n) has more than (1 − 1

n − c1n−2+ε)m2

2 edges. It follows that

(
1 − 1

n
− c1n−2+ε

)m2

2
<

(
1 − 1

r

)m2

2
,

giving r > n − c1nε = (1 − o(1))n.
6
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