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Abstract. This paper reviews the state of the art of non-stationary sub-
division schemes, which are iterative procedures for generating smooth
objects from discrete data, by repeated level dependent linear refine-
ments. In particular the paper emphasises the potentiality of these schemes
and the wide perspective they open, in comparison with stationary schemes
based on level-independent linear refinements.
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1 Introduction

Subdivision schemes were created originally to design geometrical models (see [4],
[6], [31], [36],) but very soon they were recognised as methods for approximation
(see [5], [37]). They are iterative methods for the generation of sets of points
based on refinement rules that can be easily and efficiently implemented on a
computer.

Since the 90s, subdivision schemes attracted many scientists for both the
simplicity of their basic ideas and the mathematical elegance emerging in their
analysis: they are defined by repeatedly applying simple and local refinement
rules which have been extended to refine other objects such as vectors, matrices,
manifold data, sets of points, curves, nets of functions. Therefore, the domain of
application of subdivision is vast and they emerge in different contexts ranging
from computer animation [32] to motion analysis [59].

The most studied subdivision schemes are linear and stationary (level in-
dependent). A nice aspect of linear subdivision schemes is that many of their
properties can be translated into algebraic properties of Laurent polynomials.
This makes their analysis easy and efficient. Moreover, since these schemes can
be viewed as repeated multiplication by matrices, many analysis tools are based
on linear algebra such as the ”joint spectral radius” of two matrices (see [63]).
Linear subdivision schemes are the subject of this survey paper. First we review
the stationary schemes, and then in more details the non-stationary ones.
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Stationary schemes are characterised by repeatedly applying the same simple
and local refinement rule while the non-stationary (or level dependent) schemes
apply a different rule in each level of refinement. Yet, changing rules with the
levels is not a big difference from an implementation point of view, also in consid-
eration that, realistically, only few subdivision iterations are executed. Contrary,
from a theoretical point of view, non-stationary schemes are certainly more dif-
ficult to analyse. Level-dependent schemes were introduced to augment the class
of limit functions defined through stationary schemes. For example, they allow
the definition of C∞ compactly supported functions like the Rvachev function
(see, e.g. [40]) or exponential B-splines.

This type of limits shows that non-stationary schemes alleviate the limi-
tations of stationary schemes that the smoothness of their limits of minimal
compact support is bounded by the size of that support.

The non-stationary schemes are essentially different from the stationary ones:
non-stationary schemes are able to generate conic sections, or to deal with level-
dependent tension parameters for modifying the shape of a subdivision limit,
while the stationary ones are not. An example of level-dependent subdivision
schemes is given by Hermite schemes that allow to model curves and surfaces
involving their gradient fields. They are interesting both in geometric modelling
and biological imaging ([1], [2], [15],[25], [67]). Additionally, non-stationary sub-
division schemes play a role in the construction of non-stationary wavelet and
framelets whose adaptivity makes them more flexible (see [27], [43], [47], [69],
[14]). Last, but not least, level-dependent rules have the potential to overcome
the standard limitations of subdivision surfaces such as artefacts and low regu-
larity at extraordinary vertices/faces (see [66] for the limitations).

The paper is organised as follows: Section 2 provides a general description of
the subdivision ideas together with classical examples of univariate and bivariate
linear and stationary subdivision schemes. Also, the section presents a short
description of the main subdivision applications and a review of the analysis
tools of stationary linear schemes. Then, in Section 3 non-stationary subdivision
schemes are discussed with emphasis on the motivation for their use. Section 4
is devoted to the analysis tools specific for non-stationary subdivision schemes,
while the closing Section 5 presents open problems in the non-stationary setting.

2 Classical subdivision schemes

Subdivision schemes are efficient iterative methods for generating limit objects
from discrete sets of data: Given D0 -an initial set of data- the procedure itera-
tively defines a sequence of denser and denser sets of data {Dk}k≥0

D0 −→︸︷︷︸
ref. rule

D1 −→︸︷︷︸
ref. rule

D2 · · · −→︸︷︷︸
ref. rule

Dk

by suitable refinemet rules which can be linear or non-linear, level dependent or
level independent, given by a formula or a geometric construction, just to men-
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tion some possibilities. Whenever limk→∞ Dk exists, in a sense to be explained
later, it is the subdivision limit generated by the scheme.

At the early stage of the study of subdivision schemes, the initial set D0

consisted mainly of points, but in the last 30 years, subdivision was extended
to more abstract settings, such as vector fields, manifold valued data, matrices,
sets, curves or nets of functions. Examples of different possibilities are shown in
the next figures after three refinement steps of a point subdivision scheme, a net
subdivision scheme and a mesh subdivision scheme, respectively.

Fig. 1. Example of refinement of real values with limit a bivariate function

Fig. 2. Example of refinement of nets of curves with limit a surface

Fig. 3. Example of refinement of meshes with limit a surface
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2.1 Binary, linear, and stationary subdivision schemes

The classical schemes are binary, linear, and stationary. We start with univariate
schemes refining sequences of real values or of points in Rd. The extension to
the refinement of real values or of points given at the vertices of a regular mesh
is the first step towards the bivariate case, which is of great importance for the
generation of smooth surfaces.

Given a mask consisting of a finite set of real coefficients a = {ai, i ∈ I}, I ⊂
Z, | I | < ∞, the associated linear subdivision operator transforming a sequence
p of points in R into a refined sequence of points in R is

Sa : `(Z)→ `(Z) (Sa(p))i :=
∑
j∈Z

ai−2jpj , j ∈ Z. (1)

The refinement rule (1) encompasses two rules, one for the even indices, and one
for the odd indices

(Sa(p))2i :=
∑
j∈Z

a2jpi−j , (Sa(p))2i+1 :=
∑
j∈Z

a2j+1pi−j , j ∈ Z.

In the following, without loss of generality, we assume that I = {0, . . . , N}, for
some N ∈ N.

The subdivision scheme is simply the repeated application of the subdivision
operator starting from an initial sequence of points p[0]: Input a, p[0]

For k = 0, 1, . . .
p[k+1] := Sap

[k]

(2)

The points in the sequence p[k] = {p[k]i }i∈Z are attached to the parametriza-

tion {t[k]i }i∈Z (t
[k]
i < t

[k]
i+1, i ∈ Z), namely p

[k]
i is attached to the parameter value

t
[k]
i .

The scheme defined in (2), also denoted by Sa, is called convergent if for any
p[0] there exists a continuous function fp[0] , such that

lim
k→∞

sup
i∈Z
| fp[0](t

[k]
i )− p[k]i | = 0, (3)

with fp[0] 6≡ 0 for at leat one initial sequence p[0] 6≡ 0. The limit is also denoted

by S∞a (p[0]). In case the limit function fp[0] is a C` function for any p[0] the

scheme is said to be C`-regular.

We will restrict our attention to non singular subdivision schemes, i.e. con-
vergent schemes such that

S∞(p[0]) ≡ 0 ⇔ p
[0]
i = 0 for all i ∈ Z.



Non-stationary Subdivision Schemes 5

The limit obtained starting with the delta-sequence δ = {δ0,i}i∈Z, φa :=
S∞a (δ), usually called the basic limit function of the scheme, is of great impor-
tance. Indeed, by the linearity of the operator Sa we have that

fp[0] =
∑
j∈Z

p
[0]
j φa(· − j). (4)

Thus, the smoothness of the scheme Sa is the smoothness of its basic limit
function.

Most classical subdivision schemes are either primal or dual. In the primal
case at each iteration the scheme retains or modifies the ‘old’ points and creates
a ‘new’ point situated in the sequence in between two consecutive ‘old’ ones. In
the dual case, Sa discards all given points after creating two new ones in between
any pair of consecutive ‘old’ points. Algebraically, this is related to the choice
of the parameters to which we attach the points generated by the scheme: the

primal parametrization is such that tki = i 2−k for k ≥ 1 and t
[0]
i = i, i ∈ Z, while

in the dual one t
[k]
i = (i− 1

2 ) 2−k for k ≥ 1 and t
[0]
i = i, i ∈ Z. To unify the primal

and the dual cases, we here consider the parameter values t
[k]
i = (i+ τ) 2−k for

k ≥ 1 and t
[0]
i = i, i ∈ Z and call τ the parametric shift of the scheme. Note

that in view of (1) and the parametrizations of the primal and dual cases, the
support of φa is contained in [0, N ] (see e.g. [40]).

The parameterization is important for example when considering reproduc-
tion capabilities of subdivision schemes, discussed next.

A convergent subdivision scheme Sa with parameter shift τ reproduces a
function space V, if for any g ∈ V, the initial sequence

p[0] := {g(j + τ) ∈ R}j∈Z (5)

guarantees that S∞a (p[0]) ≡ g. Moreover it stepwise reproduces V if at each step
k, the refined sequence p[k] is of the form

p[k] = {g((j + τ) 2−k)}j∈Z, for all k ≥ 1. (6)

From the above it obviously follows that stepwise-V-reproduction implies V-
reproduction in case convergence is guaranteed.

Reproduction of polynomials of degree less or equal to n, namely correspond-
ing to V ≡ Πn, is closely related to the approximation order of the subdivision
scheme Sa. The approximation order measures the rate by which the limit func-
tions generated by Sa (from initial data sampled from a sufficiently smooth
function f) get closer to f as the sampling density tends to zero. In other words,
the approximation order of Sa is the largest exponent r such that for all f ∈ Cr

‖f − S∞a (f [0])(
·
h

)‖∞ ≤ c hr, for f [0] = {f(ih)}i∈Z,

with c a constant independent of h.
It is easy to prove that subdivision schemes that reproduces Πn have approxi-
mation order r = n+ 1 (see the proof in [38] for the 4-point scheme).
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A weaker notion of reproduction is the notion of generation of a function
space V: It guarantees that for any g ∈ V and initial sequence (5)

Sa(p[0]) ∈ V. (7)

The generation of Πn by Sa is a necessary condition for the scheme to be Cn-
regular when φa is L∞-stable (see [40, Theorem 4.16 and (4.20)]), namely when
C1‖b‖L∞ ≤ ‖

∑
α∈Z bαφa(· − α)‖L∞ ≤ C2‖b‖L∞ with C1, C2 positive constants

independent of b = {bα}α∈Z.

Extension of the univariate case to dimensions s ≥ 2 is straightforward when
the topology is that of the regular mesh Zs. Here we consider the case d = 2.

Bivariate linear, stationary and binary subdivision operators for regular meshes
are defined similarly to (1) as

Sa : `(Z2)→ `(Z2) (Sa(p))α =
∑
β∈Z2

aα−2βpβ , α ∈ Z2. (8)

In (8) there are four different refinement rules determined by the parity of the
indices α = (α1, α2) ∈ Z2. Hence, an equivalent form of (8) is

(Sa(p))2α+ε =
∑
β∈Z2

a2β+εpα−β , α ∈ Z2, ε ∈ Ξ2,

where

Ξ2 = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, (9)

is the set of representative indices of a binary scheme. The subdivision limit is
still a linear combination of shifts of its bivariate basic limit function

fp[0] =
∑
β∈Z2

p
[0]
β φa(· − β), for φa := S∞a (δ), (10)

with δ = {δ0,α, α ∈ Z2} a bivariate sequence. The notions of convergence,
regularity, generation, reproduction and approximation order are essentially the
same as in the univariate case.

2.2 Examples of subdivision schemes

A famous example of univariate subdivision scheme is the Chaikin scheme [6]
based on the simple rules

p
[k+1]
2i =

1

4
p
[k]
i−1 +

3

4
p
[k]
i p

[k+1]
2i+1 =

3

4
p
[k]
i +

1

4
p
[k]
i+1, i ∈ Z, (11)

corresponding to the mask

a = {1

4
,

3

4
,

3

4
,

1

4
}. (12)
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Fig. 4. Three steps of the subdivisionin (11) with initial points (in magenta)

Fig. 5. Application of Chaikin scheme to 2D-initial points

Figures 4 and 5 show the application of the rules in (11) to the initial δ-sequence
and the component-wise application of the same rules to 2D initial points. A
‘corner cutting’ effect is evident.

The Chaikin scheme is a quadratic spline subdivision scheme. Indeed, any
degree-n spline with integer knots and smoothness Cn−1 can be obtained as the
limit of a subdivision scheme based on the rules

p
[k+1]
2i =

∑
j∈Z

1

2n

(
n+ 1

2j

)
p
[k]
i−j , p

[k+1]
2i+1 =

∑
j∈Z

1

2n

(
n+ 1

2j + 1

)
p
[k]
i−j , i ∈ Z. (13)

The rules in (13) correspond to the masks

an = { 1

2n

(
n+ 1

i

)
, i = 0, . . . , n}, (14)

and reduce for n = 2 to (11) while (14) reduces to (12). For odd n the schemes
are primal and for even n they are dual.
The regularity, polynomial reproduction and approximation order of spline sub-
division schemes are known to be Cn−1, Π0 and r = 1, respectively. Note that,
placing the masks of the primal spline schemes symmetric relative to the ori-
gin, namely a−i = ai, i = 0, · · · , n+1

2 the schemes produce Π1, hence their
approximation order is r = 2.

Important examples of subdivision schemes are interpolatory schemes where,
for all k, p[k] is contained in p[k+1], so that the limit function is interpolating the
input points. In contrast, the other types of schemes are called approximating.

A popular univariate example is the interpolatory 4-point scheme with rules

p
[k+1]
2i = p

[k]
i , p

[k]
2i+1 = − 1

16
p
[k]
i−2 +

9

16
p
[k]
i−1 +

9

16
p
[k]
i −

1

16
p
[k]
i+1, i ∈ Z, (15)

corresponding to the mask

a = {− 1

16
, 0,

9

16
, 1,

9

16
, 0,− 1

16
}. (16)
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The four point scheme reproduces the polynomial space Π3, is C1 and has
approximation order r = 4. It is a special instance of the family of 4-point
schemes with tension parameter (see [38]) corresponding to w = 1

16 and of the
family of the interpolatory 2n+2-point schemes proposed by Dubuc-Deslauriers
in [33] corresponding to n = 1. The schemes in the latter family (DD-family)
have the refinement rules

p
[k+1]
2i = p

[k]
i , p

[k]
2i+1 =

n∑
j=−n−1

(−1)j(n+ 1)

24n+1(2j + 1)

(
2n+ 1

n

)(
2n+ 1

n+ j + 1

)
p
[k]
i−j , i ∈ Z,

(17)
with mask

an = { (−1)n(n+1)
24n+1(2n+1)

(
2n+1
n

)
, · · · , 0, n+1

24n+1

(
2n+1
n

)(
2n+1
n

)
, 1,

n+1
24n+1

(
2n+1
n

)(
2n
n

)
, 0, · · · , (−1)n(n+1)

24n+1(2n+1)

(
2n+1
n

)
}.

(18)

It is easy to conclude from (17), that the scheme is based on n + 1 points
corresponding to the n+ 1 consecutive integer parameters on each side of i+ 1

2 .
The DD 2(n+ 1)-point scheme reproduces the polynomial space Π2n+1 and

has approximation order r = 2n+ 2.

Figures 6 and 7 show the application of the rules in (15) to the δ initial
sequence and the component-wise application of the same rules to the same
2D-initial points as in Figure 5. The ‘interpolation’ effect is evident.

Fig. 6. Three steps of the scheme with rules (15) with initial points δ (in magenta)

Fig. 7. One application of the 4-point scheme to 2D-initial points

In the bivariate setting, two well known approximating subdivision schemes
are the Doo-Sabin scheme and the Loop scheme. In the regular situation, namely
when the meshes are 2−kZ2, k ≥ 0, the first one is a tensor product of the
Chaikin scheme while the second one is associated with the three direction box-
splines defined by the directions (1, 0), (0, 1), (1, 1) repeated twice. The masks
of these two schemes are respectively given in terms of the matrices as
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a =


1
16

3
16

3
16

1
16

3
16

9
16

9
16

3
16

3
16

9
16

9
16

3
16

1
16

3
16

3
16

1
16

 and a =


0 0 1

16
1
8

1
16

0 1
8

3
8

3
8

1
8

1
16

3
8

5
8

3
8

1
16

1
8

3
8

3
8

1
8 0

1
16

1
8

1
16 0 0

 . (19)

Figures 8 and 9 show the first and the second iteration of the rules based on
the masks in (19) to the initial δ-sequence.

A bivariate interpolatory subdivision scheme related to the four point scheme
is the butterfly scheme. The mask of the butterfly scheme is

a =



0 0 0 0 − 1
16 −

1
16 0

0 0 − 1
16 0 2

16 0 − 1
16

0 − 1
16

2
16

8
16

8
16

2
16 −

1
16

0 0 8
16 1 8

16 0 0

− 1
16

2
16

8
16

8
16

2
16 −

1
16 0

− 1
16 0 2

16 0 − 1
16 0 0

0 − 1
16 −

1
16 0 0 0 0


. (20)

Fig. 8. Second and third iteration of Doo-Sabin scheme applied to the bivariate δ

Figure 10 shows the first and the second iteration of the Butterfly scheme ap-
plied to the bivariate δ. More complicated examples of interpolatory subdivision
schemes can be found in [26], for example.

2.3 Main applications

Subdivision schemes have a vast variety of applications. The most known is cer-
tainly in geometric modelling and computer aided geometric design (CAGD)
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Fig. 9. Second and third iteration of Loop scheme applied to the bivariate δ

Fig. 10. Second and third iteration of the Butterfly scheme applied to the initial se-
quence δ

where they are used for the design of smooth curves and smooth surfaces of ar-
bitrary topology. As already mentioned, other applications include construction
of refinable functions, multiresolution and wavelets, image analysis through the
generation of active contours and active surfaces, computer animation, isogeo-
metric analysis and multigrid.

In the next two subsections we will briefly sketch the first two domains of
application while application to image analysis is the subject of Section 3.3.

Geometric modelling and CAGD. In the examples of Section 2.2 univariate
subdivision schemes generate curves from an initial set of 2D points. Passing
from curves to surfaces the setup becomes much more complicated since the
topological relations between the data are richer than in the curve case (i.e.,
in the univariate case). In the surface case, a subdivision scheme deals with
refinement of meshes consisting of vertices, faces and edges. The vertices are
points in 3D, the edges are pairs of vertices, and the faces are cyclic sets of
edges (see Figure 11).

Therefore, each subdivision scheme for surface generation in based on two
refinement rules. A topological refinement rule describing the modification of
the connectivity of the mesh iwith the added vertices and geometric refinement
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rules that describe where the new vertices, are located in 3D. In a mesh faces

Fig. 11. A schematical representation of a mesh

and vertices are classified by the so-called vertex and face valence: The valence
of a face counts the number of edges that delimit it whereas the valence of
a vertex is the number of edges incident to it. Quadrilateral meshes consist
of faces with valence 4 and regular vertices are of valence 4. In a triangular
mesh all faces are triangles, and the regular vertices have valence 6. In a mesh
with most faces and vertices of valence 4, the rest of the faces and vertices are
the irregular ones. Similarly, in a mesh with most faces triangles and vertices of
valence 6, the rest of the faces and vertices are the irregular ones. A mesh/region
is called a regular mesh/region where all vertices and faces are regular. Non-
regular vertices/faces are extraordinary and a mesh containing them is said to
be irregular. It is important to note that irregular meshes are necessary for the
generation of surfaces of arbitrary topology.

The presence of an irregular element requires the definition of specific rules
depending on the valence of the irregular element. The Doo-Sabin scheme and
the Loop scheme provide rules for irregular vertices as well as the Catmull-Clark
scheme (a tensor product cubic spline scheme in irregular regions). For details
about subdivision schemes for surfaces we refer to the books [66], [70].

Generation of refinable functions and wavelets. The link between subdivi-
sion schemes and wavelets is in the refinability property of basic limit functions.
Indeed, any φa = S∞a (δ) is refinable namely it satisfies the refinement equation

φa =
∑
α∈Zs

aαφa(2 · −α), s ∈ {1, 2}, (21)

with {aα}α∈Zs the elements of the mask a. Equation (21) follows from (Saδ)α =
aα, α ∈ Zs and from (4) and (10) for s = 1, 2, respectively.

The equation (21) is the crucial ingredient to generate multiresolution analy-
sis and wavelets even if, in most cases, the explicit expression of φa is unknown.
Nevertheless, several numerical procedures are possible for its computation. For
example, in the univariate case (s = 1) using the refinement equation (21) k-
times we easily see that

φa =
∑
i∈Z

a
[k]
i φa(2k · −i), where a[0] := a and a[`] := Saa[`−1], ` = 1, · · · , k.
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Therefore, the computation of φa at the dyadic points j2−k, j ∈ Z is simply
the convolution of the sequence a[k] with values of φa. Note that φa(i) 6= 0 only
for i = 1, . . . N − 1 since the support of φa is contained in [0, N ] assuming that
a = {a0, . . . , aN})and φa is continuous. Therefore, for v = [φa(1), . . . , φa(N−1)],
we have

Av = v, with Ai,j = a2i−j , i, j = 1, . . . , N − 1.

An alternative method for the computation of φa is the so called cascade algo-
rithm, involving the repeated application of the operator Ta,

Tag =
∑
α∈Zs

aαg(2 · −α), s ∈ {1, 2}.

Choosing as initial ‘guess’ any continuous compactly supported function ψ0

satisfying
∑
α∈Zs ψ0(x − 1) ≡ 1, the cascade algorithm generates the sequence

{ψk}k≥0 by repeated application of Ta, namly ψk+1 = Taψk, k ≥ 0, and it
converges to φa.

We remark that the operator Ta is adjoint of Sa in the following sense:∑
α∈Zs

(Sa(p))αf(2 · −α) =
∑
α∈Zs

pα(Ta(f)(· − α),

for any continuous and compactly supported function f and for any finitely
supported sequence p.

We can also calculate the Fourier transform φ̂a. Indeed, taking the Fourier
transform of the refinement equation (21) we find

φ̂a(ξ) = Ha(
ξ

2
)φ̂a(

ξ

2
), (22)

where Ha(ξ) = 1
2s

∑
α∈Zs

a`e
2πi `ξ is a trigonometric polynomial, due to the finite

support of the mask a. By repeated application of (22), we arrive at

φ̂a(ξ) =

∞∏
k=1

Ha(
ξ

2k
). (23)

Orthonormal wavelets are derived from refinable functions whose integer shifts
are orthonormal. Such refinable functions are defined by subdivision schemes
with masks having special properties. These masks are closely related to masks
of interpolating schemes. In particular the mask of the DD family are related to
Daubechies orthonormal wavelets of compact support [28].

2.4 Analysis tools

In this section we shortly review analysis tools for linear stationary subdivi-
sion schemes. As it can be observed in this section, in spite of the simplicity
of the subdivision idea, analyzing convergence and regularity can be difficult.
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Indeed, even if the linearity of the operators allow for the use of linear algebra,
e.g. joint spectral radius or eigen-analysis, these problems can be NP hard. On
the contrary, the analysis of polynomial reproduction, approximation order and
smoothing factors are based on elementary algebraic tools and are much simpler.

Certainly, an advantage of the uniform framework (i.e. dealing with uni-
formly distributed data) characterising ‘classical’ subdivision schemes, is that we
can make use of standard mathematical tools of signal processing (e.g. discrete-
time Fourier transform and z-transform) which simplify all formulations and
derivations considerably. Indeed, a special role is played by the subdivision sym-
bol, the Laurent polynomial with coefficients the elements of the mask a, i.e.

A(z) =
∑
α∈Zs

aαzα, z ∈ Cs \ {0}, s = {1, 2}. (24)

With the symbols the kth subdivision step reads as

P [k+1](z) = A(z)P [k](z2), where P [k](z) =
∑
α∈Zs

p[k]α zα, k ≥ 0.

Polynomial generation and reproduction translate into algebraic conditions on
the subdivision symbol and its derivatives at the points of

Ξ ′s = {e−iπ ε, ε ∈ Ξs} ≡ {−1, 1}s, s ∈ {1, 2}. (25)

With the help of the auxiliary polynomials

q0(z) := 1, qj(z) :=

s∏
i=1

ji−1∏
`i=0

(zi − `i), j ∈ Ns0, s ∈ {1, 2}, (26)

the polynomial generation/reproduction results are stated in the following propo-
sition (see [9] for details). To state the proposition, we introduce the notion of a
non-singular subdivision scheme, which is a scheme that generates zero limits if
and only if the initial data is a zero sequence.

Proposition 1. [9, Theorem 2.6] Let Sa be a bivariate convergent and non-
singular subdivision scheme with mask a and symbol A(z). It generates polyno-
mials of degree up to n, n ∈ N0, if and only if

A(1s) = 2s,
(
DjA

)
(ε) = 0 for ε ∈ Ξ ′s \ 1s, |j| ≤ n , (27)

where Dj is the j-th directional derivative (j ∈ Zs) and 1s = (1, · · · , 1) ∈ Zs.
Moreover, for a given parameter shift τ ∈ Rs, it reproduces polynomials of

degree up to k if and only if(
DjA

)
(1s) = 2sqj(τ ) and

(
DjA

)
(ε) = 0 for ε ∈ Ξ ′s \ 1s, |j| ≤ n .

Also, Πn-reproduction implies approximation order n+ 1.
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We remark that the algebraic conditions (27) are also called sum rules of
order n or zero-conditions (see e.g. [48]) and [19], respectively).

Still of algebraic type is the investigation of existence of ‘difference schemes’
and ‘smoothing factors’ useful for the smoothness analysis of the basic limit
functions. In the univariate setting (s = 1), a symbol contains k smoothing
factors if there exists a Laurent polynomial B(z) such that

A(z) =

(
1 + z

2

)k
B(z),

The regularity of the scheme Sa is at least k, if the scheme associate with the
symbol B(z) is convergent. A scheme Sa is convergent if and only if its symbol has
the form A(z) = (1+z)B(z) and the scheme Sb with symbol B(z) is contractive.
A sufficient condition for that is (see e.g. [40])

max{
∑
i ∈Z
|b2i|,

∑
i ∈Z
|b2i+1|} < 1.

In the bivariate situation, the construction of a difference scheme and the link be-

tween smoothing factors and smoothness of the limit is definitely more involved
(see, [13], for example). To simplify, we can say that the existence of tensor-
product type smoothing factors such as (1 + z1)(1 + z2), (1 + z1)(1 + z1z2) or
(1+z2)(1+z1z2) plus contractivity of the difference scheme implies C1-regularity.
For details we refer again to [40].

An apparently different approach to convergence and regularity analysis of
subdivision schemes is given by the so called ‘JSR approach’. Essentially, we
associate to the binary scheme 2s matrices constructed from the subdivision
mask and the reproduced space of polynomials. Then, we compute their joint
spectral radius (JSR) whose magnitude indicates the Hölder regularity of the
scheme as explained in [8]. The JSR of a collection of matrices extends the
classical notion of spectral radius of a matrix in the following sense.

Definition 1. Given a finite collection of square matrices M, the JSR is

ρ(M) := lim
m→∞

max
M1,...,Mm∈M

∥∥∥∥∥∥
m∏
j=1

Mj

∥∥∥∥∥∥
1/m

.

First introduced by Rota and Strang in 1960 [63], the JSR was almost forgotten,
and then rediscovered in 1992 by Daubechies and Lagarias [29] in the context of
the analysis of refinable functions. In general, unfortunately, even the numerical
approximation of the JSR is a very challenging task making the JSR approach
not always applicable. But, recently, an algorithm for the computation of the
JSR has been proposed in [46] (see also [54], for a different approach) and a
Matlab code is now available in [53]. We also observe that even if the difference
schemes approach and the JSR approach appear to be intrinsically different,
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they characterize the subdivision regularity in terms of the same quantity. As
demonstrated in [7] the two approaches differ only by the numerical schemes
they provide for the estimation of the same quantity.

A completely different approach for estimating the regularity of Sa is by
its Fourier transform. Indeed, the equality (23) can be used to determine the
regularity of the basic limit function φa (i.e. of the subdivision scheme Sa), by
estimating the decay of its Fourier transform. The latter approach is the one
used by many authors (see [28], [35], for example).

Remark 1. The analysis tools presented in this section apply to regular regions
or away from irregular elements. In case of meshes containing irregular ver-
tices/faces a different approach to the analysis of subdivision scheme is needed.
The appropriate tool to analyze the regularity of the generated limits in the
vicinity of an irregular element involves the so called characteristic map and
the spectral analysis of the local subdivision matrix. For all details we refer the
interested reader to [60], [65], [68] and references therein.

3 Motivation for non-stationary subdivision schemes

From the previous section we easily understand that the subdivision idea can
also be implemented in a level dependent way, that is to say by using different
masks at different iterations. Indeed, at level k, the operator Sa in (2) can be
replaced by Sa[k] leading to the non-stationary variant of subdivision Input {a[k]}k≥0, p[0]

For k = 0, 1, · · ·
p[k+1] := Sa[k]p[k]

(28)

Compared with the stationary ones, non-stationary subdivision schemes are not
more complicated. Changing coefficients level by level is not a crucial imple-
mentation matter, considering that in practice, only few iterations are executed.
Also, the definition of convergence and regularity as in (3) is not affected by the
level dependence of the rules. Nevertheless, non-stationary subdivision schemes
have different properties and enrich the class of subdivision limit functions. For
example, applied to 2D-points they can generate circles, ellipses, or other conics.
Also, they allow the user to modify the shape of a subdivision limit by the help
of level-dependent tension parameters. In the univariate case, they can generate
exponential B-splines [39], C∞ functions with compact support as the Rvachev-
type function [40], or B-spline like functions with higher smoothness relative to
the support size, [11], [16].

The algebraic formalism associated with non-stationary schemes is as in the
stationary situation. The only difference is that now we deal with a sequence of
symbols

A[k](z) =
∑
α∈Zs

a[k]α zα, k ≥ 0, z ∈ Cs \ {0}, s = {1, 2}. (29)
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Thus, the k-th subdivision step can be written as

P [k+1](z) = A[k](z)P [k](z2), with P [k](z) =
∑
α∈Zs

p[k]α zα, k ≥ 0.

The discussion on the use of the corresponding algebraic tools as well as of other
associated tools like the JSR is postponed to Section 4. Here, we mention that
in case the non-stationarity is characterized by the cyclic repetition of ` different
masks the scheme is actually stationary with 2`-arity rather than 2. Indeed, for
any k = r · `, r > 0 we can consider ` steps simultaneously, and obtain

P [k+`](z) = Ã(z)P [k](z2
`

), where Ã(z) := A[`−1](z)A[`−2](z2) · · · A[0](z2
`−1

),

implying that Ã(z) is the symbol of an arity-2` scheme that multiply by 2` the
number of points at each step (see e.g.,[21]).

In the non-stationary case, when using the sequence of masks starting not
with a[0] but with any a[m], m > 0, we get different results according to the
starting mask a[m], where m varies from 0 to ∞. The subdivision scheme in this
case is  Input {a[k]}k≥0, p[0]

For k = 0, 1, 2, · · ·
p[k+1] := Sa[m+k]p[k]

(30)

From the above we understand that in the level dependent case we have no
longer a unique basic limit function but rather a sequence of basic limit functions
{φm, m ≥ 0} each defined as

φm = lim
k→∞

Sa[k+m] · · ·Sa[m]δ, (31)

where δ is the sequence with value 1 at the origin, and zero on Zs \ {0}. Due to
linearity and uniformity of the operators, the sequence of basic limit functions
satisfies a system of ‘generalized’ refinement equations,

φm =
∑
α∈Zs

a[m]
α φm+1(2 · −α), m ≥ 0. (32)

The system of generalized refinement equations (32) is the base to the generation
of non-stationary multiresolution and non-stationary wavelets [3], [43].

The next subsections show the capabilities of level-dependent schemes in ap-
plications, e.g., in geometric design and in approximation [50], [52], in biological
imaging [30], [67] and in the generation of non-stationary wavelets [14], [43], [69].

3.1 Reproduction of conics and quadrics and use of level dependent
tension parameters in CAGD

It is well known that B-spline curves and surfaces are central tools in computer-
aided geometric design but also in computer graphics, due to the properties of
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B-splines, which guarantee, for example, that the B-spline curves/surfaces are
in the convex hull of their control polygons/meshes. B-splines, unfortunately,
are not capable to reproduce in an exact way conic sections which are needed
very often. This is why different B-spline generalizations, like NURBS, have been
proposed. The rational nature of NURBS is the reason why it is difficult to inte-
grate or differentiate them. With NURBS it is possible to exactly represent conic
sections but not all transcendental curves. Therefore, researchers have started to
consider ‘generalized B-splines’ that is bell-shaped functions piecewise defined
with segments in other spaces than rational polynomials. By selecting spaces of
trigonometric or hyperbolic functions, for example, with generalized B-splines
it is possible to represent polynomial curves, conic sections or transcendental
curves. What is relevant to this paper is that several instances of generalized
B-splines with integer knots can be see as limit functions of non-stationary sub-
division schemes.

The computation of limit surfaces by a subdivision scheme is much simpler
than the modelling of surfaces with NURBS (B-splines) since, in the latter case,
the complete surface consists of NURB (B-splines) patches with geometric con-
tinuity between the patches. For details on connecting smoothly patches see [57,
Chapter 13].

Note that meshes for modelling surfaces of arbitrary topology have irregular
regions, and the refinement rules have to be adapted to the vicinity of irregular
elements.

As an example we can consider the following non-stationary subdivision
scheme generating exponential splines with segments in

span{eθ t, e−θ t, teθ t, te−θ t}, θ ∈ R ∪ iR,

with θ a parameter to be chosen by the user (see [15] and [22]). These exponential
splines are a special instance of L-splines (see [64]). The refinement rules are

p
[k+1]
2i =

1

2(v[k] + 1)2
p
[k]
i−1 +

4(v[k])2 + 2

2(v[k] + 1)2
p
[k]
i +

1

2(v[k] + 1)2
p
[k]
i+1,

p
[k+1]
2i+1 =

2v[k]

(v[k] + 1)2
p
[k]
i +

2v[k]

(v[k] + 1)2
p
[k]
i+1,

(33)

where the non-stationary parameter v[k] is defined as

v[k] =
1

2

(
ei

θ

2k+1 + e−i
θ

2k+1

)
=

√
1 + v[k−1]

2
, k ≥ 0, v[−1] = cos(θ) > −1.

The effect of the parameter θ on the exponential B-spline shape obtained
when starting the subdivision process from the δ sequence is illustrated in Figure
12.

We remark that the above scheme is only generating exponential-polynomial
spaces but is not reproducing them. Yet, in [20] , [23], [41] and [56], exponential-
polynomials reproducing schemes are provided. In the first two references, these
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Fig. 12. Basic limit functions for the scheme in (33) with θ ∈ {i, 3i, 5i, 7i} (left) and θ ∈
{3, 2.5, 2, 0} (right) (from lower to taller functions). Initial control polygon represented
by a dashed line.

schemes are shown to generate conics, cardiod, lemniscate, astroid or nephroid
as shown in Figure 13.

Fig. 13. Subdivision limit curves (full lines) and the initial control polygons (dashed
line) connecting points from a circle, a nephroid a lemniscate and a quadrifolium.

Similarly, bivariate non-stationary schemes reproducing quadrics are defined
and investigated for example in [45], [49], [50], [55]. Since the corresponding
refinement rules, in particular in case of extraordinary points, are non-trivial,
we here simply present some of the pictures from [55] in Figure 14.

To conclude this section, we shortly discuss how non-stationary tension pa-
rameters and level dependent rules can influence the shape of the subdivision
limits. Let us consider the interpolatory non-stationary scheme with the first
two odd rules

p
[k+1]
2i+1 =

1

2
p
[k]
i−1 +

1

2
p
[k]
i , k = 0, 1, i ∈ Z, (34)

and then, for k > 1, for ω[k] chosen at random from the interval [ 3
64 ,

1
16 ], the odd

rules are given by

p
[k]
2i+1 = −ω[k]p

[k]
i−2+(

1

2
+ω[k])p

[k]
i−1+(

1

2
+ω[k])p

[k]
i −ω

[k]p
[k]
i+1, k ≥ 2, i ∈ Z. (35)

As shown in [11] by a JSR approach, the scheme based on (34) and (35) is
C1-convergent with Hölder exponent α ≥ − log2

3
8 ≈ 1.4150 and its basic limit

function is supported in [− 3
2 ,

3
2 ] while in the classical four point case the scheme

is known to be C1-convergent with Hölder exponent 2− ε for any ε > 0 and the
support is [−3, 3] (see [33]). Figure 3.1 compares the two basic limit functions.

The last example shows that with a non-stationary interpolatory scheme it
is possible to obtain a C1 basic limit function of smaller support than in the
stationary interpolatory case.
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Fig. 14. First line: initial meshes. Second line: results obtained by applying 5 steps of
the non-stationary scheme in [55].
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Fig. 15. Basic limit function of the 4-point scheme (red, dashed line), and of the scheme
(34)-(35) (blue, solid line).

3.2 Non-stationary wavelets and non-stationary interpolatory
subdivision schemes

The construction of stationary orthonormal wavelets of compact support is
closely related to the DD-family of subdivision schemes. Such a Daubechies
wavelet is generated by the integer shifts of a refinable function, which is the basic
limit function of a subdivision scheme. The mask of this scheme is derived from
the mask of a corresponding DD-scheme, by taking an ‘almost square root’ of the
symbol of the DD-scheme. This is possible since the symbols of the DD-schemes
are non-negative on the unit circle (when z is replaced by exp(iθ), 0 ≤ θ < 2π)
[28]. This construction has two analogues in the non-stationary setting.

The first analogoue is derived from interpolatory schemes that reproduce
spaces of exponential polynomials of finite dimension. In [41] non-stationary
interpolatory schemes reproducing spaces of 2n exponentials are shown to con-
verge and their smoothness is shown to be at least as that of the stationary DD-
scheme reproducing all polynomials of degree less than 2n. In [69] non-stationary
wavelets are constructed from non-stationary interpolatory subdivision schemes
by a similar procedure as in the stationary case, without a proof that this is in-
deed possible. These wavelets were already used in the analysis of signals that are
better approximated by exponentials rather than by polynomials, such as signals
that have their energy concentrated around specific frequencies. For example in
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neurophysiology, such wavelets are well-suited for the analysis of exponential
pulses, corresponding to different neurons. Proofs that the above construction is
possible are given in [43]. Also given, are proofs showing that the smoothness of
the non-stationary wavelets related to spaces of real exponential polynomials is
at least that of the corresponding stationary wavelets.

The second analogue is derived from non-stationary interpolatory subdivision
schemes with masks of growing support. A simple example is the sequence of
masks of the DD-schemes (17), with n the subdivision level (see Section 4.3).
Following the construction in the stationary case, the basic limit function of
the non-stationary scheme with masks ‘almost square root’ of the masks of the
DD-schemes, is the ‘father’ wavelet. These wavelets, which are C∞ compactly
supported, are suitable for representing very smooth functions [14].

3.3 Image segmentation: active contours and active surfaces

This section describes the use of non-stationary subdivision schemes in biolog-
ical imaging and relies on the work done by the group of M. Unser at EPFL,
Switzerland. Active contours or snakes, are tools for the segmentation of biomed-
ical images. They consist of an initial curve that progresses towards the boundary
of the object of interest guided by the minimization of an appropriate energy
term. Relevant to our discussion is that subdivision schemes can also be used to
describe a contour by the iterative application of refinement rules staring from
an initial finite set of control points. The discrete nature of the initial represen-
tation is convenient in practice. It implicitly yields a continuously defined model
whose properties depend on the used subdivision scheme: its approximation or-
der, its capability of reproducing circular, elliptical, or polynomial shapes, its
interpolating or approximating nature. In particular, the capability of modelling
‘roundish’ objects is facilitated by non-stationary schemes.

Therefore, as an alternative to the traditional approaches, in [2] subdivision
schemes are used to model a curve driven by a small set of ‘master’ points,
called control points, and a set of ‘slave’ points (generated by a specific subdivi-
sion scheme) that describe the curve. The advantages of the use of subdivision
schemes are their simplicity of implementation and their multiresolution nature,
so that the contour of a shape can be represented at varying resolutions and re-
sult into a snake be optimized in a coarse-to-fine fashion. Based on similar ideas

is the use of subdivision for the generation of active surfaces, also called 3D de-
formable models used for the extraction of volumetric structures. They consist
of deformable surfaces that, starting from an initial user-provided configuration,
evolve toward the boundary of the 3D object. The deformation can be manual
or automatic. Certainly, a reasonable deformable model must depend on a small
number of control points (to reduce the complexity of the deformation and to
improves robustness), and must reproduce or approximate ellipsoids. In [1] the
authors propose a 3D deformable model obtained by applying a tailored non-
stationary subdivision scheme to a suitable coarse mesh with few control points.
The approach presents several advantages: First, surfaces of arbitrary topologi-
cal type can be handled; second, by simple modifications of the control points,
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easy and localized interactions can be achieved; third, the implementation is
easy and cheap in virtue of the discrete nature of the scheme.

4 Analysis tools for non-stationary subdivision schemes

In this section we consider analysis tools of non-stationary schemes and highlight
similarities and differences with the stationary case.

4.1 Masks of fixed support

First we consider analysis tools of non-stationary schemes for the case that all
the masks {a[k]}k≥0 have bounded support {0, ..., N} for some positive integer
N , which is the more common and studied situation. In this case the methods of
analysis are related to the analysis of stationary cases via the notion of asymp-
totic similarity and asymptotic equivalence. We start by introducing the notion
of asymptotic equivalence. (see [39])

Definition 2. Let ` ∈ N. The non-stationary schemes {Sa[k]}k≥0 and {Sb[k]}k≥0
are said asymptotically equivalent of order ` if they satisfy

∞∑
k=0

2k`‖Sa[k] − Sb[k]‖∞ <∞, (36)

where ‖Sa[k]‖∞ := maxε∈Ξs
{∑

α∈Zs |a[k](2α+ ε)|
}

and Ξs := {0, 1}s.

Under an additional technical assumption on the schemes {Sa[k]}k≥0 and
{Sb[k]}k≥0, the regularity of {Sa[k]}k≥0 can be deduced from the known regularity
of the asymptotically equivalent scheme {Sb[k]}k≥0 with the method in [39]. Yet,
in [39] only the convergence of non-stationary schemes is derived by asymptotic
equivalence of order ` = 0 to a stationary scheme. The asymptotic equivalence
of order ` ≥ 1 is too strong for analyzing smoothness. For that the notion of
smoothing factors is introduced there.

Definition 3. Let the Laurent polynomials {A[k](z)}k≥0 be of the form

A[k](z) =
1

2
(1 + rkz

λ)B[k](z), k ≥ K ≥ 0, λ ∈ Ns0. (37)

The factors { 12 (1 + rkz
λ)}k≥K are termed ‘smoothing factors’ if

rk = 2η2
−k

(1 + εk) with η ∈ R and

∞∑
k=K

|εk|2k <∞.

Theorem 1. [39, Theorem 10] In the notation of Definition 3, if {B[k](z)}k≥0
corresponds to a Cm(Rs) non-stationary subdivision scheme then the basic limit
functions of the non-stationary scheme with symbols {A[k](z)}k≥0 and their di-
rectional derivative in direction λ are also Cm smooth in Rs.
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A direct consequence of Theorem 1 (see the remark below the statement of
[39, Theorem 10]) is:

Corollary 1. Let {A[k](z) =
∏s
i=1

1
2 (1 + rk,iz

λ
i )B(z)}k≥0 with s smoothing fac-

tors. If the stationary scheme corresponding to B(z) is Cm(Rs) and if λ1, · · · , λs
are linearly independent vectors, then the basic limit functions of the non-stationary
scheme corresponding to {A[k](z)}k≥0 is Cm+1 smooth in Rs.

In [42], the condition of asymptotical equivalence is weaken, in the univariate
case, by requiring that the j-th derivatives of the symbols of the non-stationary
scheme {Sa[k]}k≥0 satisfy

|DjA[k](−1)| ≤ C2−(`+1−j)k, j = 0, . . . , `, ` ≥ 0, C ≥ 0. (38)

Moreover, they assume that the non-stationary scheme is asymptotically equiv-
alent (of order 0) to some stationary scheme. The conditions in (38) are a gen-
eralization of the so-called sum rules in (27). In the stationary case, sum rules
are known to be necessary for smoothness of subdivision (see e.g [5]), and also
sufficient if the basic limit function of the scheme is L∞-stable (see e.g. [40]).

In the spirit of (38) approximate sum rules are defined in [10]. They are a gen-
eralization of the notion of sum rules.

Definition 4. Let ` ≥ 0. The sequence of symbols {A[k](z)}k≥0 satisfies approx-
imate sum rules of order `+ 1, if

µk := |A[k](1s)− 2s| and δk := max
|η|≤`

max
ε∈Ξ′\{1s}

|2−k|η|DηA[k](ε)| (39)

satisfy
∞∑
k=0

µk <∞ and

∞∑
k=0

m k` δk <∞ . (40)

Note that if the sequences {µk}k≥0 and {δk}k≥0 (called sum rule defects) are
zero sequences, the corresponding non-stationary symbols satisfy sum rules of
order `+ 1.

We continue by introducing a weaker relation than asymptotical equivalence
termed asymptotic similarity (generalization of the one given in [17]) relating the
properties of non-stationary subdivision schemes to the corresponding properties
of certain stationary schemes.

Definition 5. [10] For the mask sequence {a[k]}k≥0 we denote by L the set of
masks which are accumulation points of this sequence,

a ∈ L, if ∃{kn, n ∈ N} such that lim
n→∞

a[kn] = a .

Definition 6. Two non-stationary schemes {Sa[k]}k≥0 and {Sb[k]}k≥0 are called
asymptotically similar, if the corresponding sets of accumulation points coincide.
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We already observed in Section 2.4 that in the stationary case, the rate of con-
vergence of the corresponding subdivision scheme Sa and the Hölder regularity
of the subdivision limits, can be given in terms of the joint spectral radius of the
collection of certain matrices derived from the subdivision mask a and linked
to the order of sum rules satisfied by the associated symbol A(z) (see also [54],
[62]).

In the non-stationary setting the joint spectral radius has no straightforward
generalization and is not directly applicable. Hence, in [10] a link between the
stationary and non-stationary settings is established based on the sets of ac-
cumulation points L of {a[k]}k≥0, and sufficient conditions for C`−convergence
and Hölder regularity of non-stationary schemes are provided. As in the level in-
dependent case, each mask in the set L determines a set of transition matrices.
The restrictions of all these transition matrices to a certain finite dimensional
difference subspace (denoted by V`) is denoted by TL|V` . Theorem 2 states that
C`−convergence and Hölder regularity of non-stationary schemes is obtained via
the joint spectral radius ρL of the collection of matrices TL|V` .

Theorem 2. [10, Theorem 2] Let ` ∈ N and let {δk}k≥0 be defined in (39).
Assume that the symbols of {Sa(k)}k≥0 satisfy approximate sum rules of order
`+1 and that ρL := ρ (TL|V`) < 2−`. Then the non-stationary scheme {Sa[k]}k≥0
is C`−convergent and the Hölder exponent α of its limit functions satisfies

α ≥ min
{
− log2 ρL , − lim sup

k→∞

log2 δk
k

}
.

In the univariate case more results are available. In [24] and also in [15],
the link between approximate sum rules, generation/reproduction of exponen-
tial polynomials and approximation order is investigated, in the univariate case.
In fact, the authors show that the property of reproducing N exponential poly-
nomials implies approximate sum rules of order N and even approximation or-
der N if asymptotic similarity to a convergent stationary scheme is assumed.
Moreover, under asymptotic similarity to a convergent stationary scheme and
reproduction of one exponential polynomial, the property of generating N expo-
nential polynomials implies approximate sum rules of order N . The property of
generating exponential polynomials guarantees the existence of difference opera-
tors exactly as in the stationary case. Moreover, approximate sum rules of order
N and asymptotic similarity to a stationary CN−1 subdivision scheme provide
sufficient conditions for CN−1 regularity of non-stationary subdivision schemes.

These results are stated in the next theorems where for Λ ⊂ C and Γ (Λ) =
{ν(λ) : λ ∈ Λ} ⊂ N0, the space EPΓ (Λ),Λ, is defined as

EPΓ (Λ),Λ := {xjeλx : j = 0, . . . , ν(λ)− 1, λ ∈ Λ, ν(λ) ∈ Γ (Λ)}, (41)

and denoted as EPΓ,Λ, for short. Obviously, its dimension is

dim (EPΓ,Λ) =
∑
λ∈Λ

ν(λ).
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Theorem 3. [24, Theorem 10] Let {A[k](z)}k≥0 be the Laurent polynomials as-
sociated with a univariate non-stationary scheme which reproduces a space of
univariate exponential polynomials EPΓ,Λ. If dim (EPΓ,Λ) = N , then, for any
` = 0, · · · , N − 1, we have

|A[k](1)− 2| = O(2−kN ),

∣∣∣∣ d`dz` A[k](−1)

∣∣∣∣ = O(2−k(N−`)), k →∞. (42)

Theorem 4. [24, Theorem 13] Let {A[k](z)}k≥0 be the Laurent polynomials
associated with a non-stationary subdivision scheme which generates the ex-
ponential polynomials space EPΓ,Λ of dimension N , and reproduces one f ∈
EPΓ,Λ. Moreover, let limk→∞ a[k] = a with Sa a convergent stationary subdivi-
sion scheme. Then, for any ` = 0, · · · , N − 1, we have

|A[k](1)− 2| = O(2−k),

∣∣∣∣ d`dz`A[k](−1)

∣∣∣∣ = O(2−k(N−`)), k →∞. (43)

Theorem 5. [15, Theorem 4.3] Assume that a convergent non-stationary scheme
reproduces the exponential polynomials in the N -dimensional space EPΓ,Λ. As-
sume further that limk→∞ a[k] = a with Sa a convergent stationary scheme.
Then, for any initial data of the form f [0] := {f(2−mi)}i∈Z for an integer m ≥ 0
with f ∈W γ

∞(R), γ ∈ N, the approximation error is bounded by

‖gf [0] − f‖∞ ≤ cf2−min(γ,N)m , (44)

with cf > 0 denoting a constant depending on f but not on m.

Extension of Theorems 3, 4 to the multivariate setting is still to be done. Some
extension of Theorem 5 is in [55].

To conclude we recall the conditions non-stationary schemes need to satisfy
to generate and reproduce (in the sense of (7) and (6)) exponential-polynomial
functions, that is functions in the space

EPΓ,Λ := {xγeλ·x : γ ∈ Γ, λ ∈ Λ}, Γ ⊂ Ns0, Λ ⊂ Cs.

In fact, both generation and reproduction of exponential-polynomials can still
be characterised in terms of algebraic conditions involving the parameter values

{t[k]α = 2−k(α+ τ ), }α∈Zs , with τ = (τ1, τ2) in case s = 2.

The conditions are in terms of the symbols {A[k](z)}k≥0 evaluated at

Vk = {(v1, . . . , vs)T : vj = εje
−(2−(k+1)λj), λ = (λ1, . . . , λs) ∈ Λ, ε ∈ {−1, 1}s },

and are collected in the following Theorem (taken from [12]) with the notation
vτ = vτ11 · · · vτss for γ = (γ1, . . . , γs ∈ Ns0. There a non-singular scheme is a
scheme generating limits identically equal to zero, only from zero initial data.’
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Theorem 6. [12, Theorem 4.7] A non-singular subdivision scheme {Sa[k]}k≥0
reproduces EPΓ,Λ if and only if there exists a parameter τ ∈ Rs such that for
all v ∈ Vk, k ≥ 0, γ ∈ Γ ⊂ N0,

vγDγA[k](v) =

{
2 · vτqγ(τ ), for all v corresponding to ε = 1s,
0, otherwise,

(45)

where qγ is the polynomial of degree |γ|, γ ∈ Ns0, given by

q0(z) := 1, qj(z1, . . . , zs) :=

s∏
i=1

γi−1∏
`i=0

(zi − `i), γ = (γ1, . . . , γs). (46)

4.2 Non-stationary schemes with extraordinary vertices/faces

The analysis of a level-dependent subdivision scheme in the neighborhood of an
irregular vertex/face is very challenging. The main difficulties are due to the fact
that any approach based on the spectral analysis of the subdivision matrix and
on the study of the characteristic map is not applicable. Indeed, no general tools
to analyze non-stationary subdivision schemes at irregular vertices/faces were
available till very recently. The only contributions to this analysis are the very
recent paper [18] and the work of Jena et al. in [49], where a specific scheme is
considered. In [18] a general procedure to check if a non-stationary subdivision
scheme is convergent in the neighborhood of an extraordinary vertex/face is
given. Moreover, sufficient conditions for the limit surface to be tangent plane
continuous at the limit point of an extraordinary vertex/face are also given in
that paper. Below we report both results.

We recall that the problem of extraordinary points occurs in the generation
of surfaces that is in the case s = 2 and that we can restrict our analysis to
meshes with a single extraordinary element surrounded by ordinary vertices (see
[65]).

At each step, in the neighborhood of an irregular vertex/face, a subdivision
algorithm relating the vertices of the k-th level mesh with those of the next level
k+ 1, can be conveniently encoded in the rows of a local subdivision matrix Mk

whose dimension depends on the valency of the vertex. If the scheme is level-
independent each step of the subdivision algorithm can be conveniently encoded
in the rows of one local subdivision matrix M . The dimension of this matrix
depends on the valency of the extraordinary vertex, too.

Theorem 7. [18, Theorem 4.1] Let S be a non-singular, non-stationary sub-
division scheme whose action in an irregular region is described by a matrix
sequence {Mk}k≥0. Let S be also rotationally symmetric. Moreover, let S̄ be a
rotationally symmetric, stationary subdivision scheme associated with the matrix
M in the same irregular region. If,

(i) S̄ is convergent both in regular and irregular regions,
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(ii) S is asymptotically equivalent to S̄ in regular region,
(iii) in the irregular regions, for all k ≥ 0, the matrices Mk and M satisfy

‖Mk −M‖∞ ≤ C
σk

with C a constant (0 < C <∞) and σ > 1,

then, for all initial data the non-stationary subdivision scheme S is convergent,
both in regular regions and in the irregular one.

To understand the next result we recall from [18] that the iterated refinement
of a surface subdivision scheme in the neighborhood of an irregular element
generates a sequence of surface rings {Rk}k≥1 corresponding to regular points
which covers all of the surface except for the ‘central’ point which is the limit
of the extraordinary vertex or face.

Theorem 8. [18, Theorem 4.2] Let S be as in Theorem 7. Assume in the regular
patch ring Rk+1 the action of S is described by a vector Φk+1(u, v) consisting
of all the basic limit functions of S whose support intersect Rk+1. Moreover, let
S̄ be as in Theorem 7 associated with a matrix M in the same irregular region.
Under the conditions:

(i) S̄ is C1-convergent in regular regions and its symbol A(z) contains the factor
(1 + z1)(1 + z2);

(ii) in regular regions S is defined by the symbols {A(k)(z)}k≥0 where each A(k)(z)
contains the factor (1 + z1)(1 + z2);

(iii) in regular regions S is asymptotically equivalent of order 1 to S̄;
(iv) the eigenvalues of M are λ0 = 1, 0 < λ1 < 1, and the rest have absolute

value less than λ1;
(v) in the irregular regions, for all k ≥ 0, the matrices Mk and M satisfy,
‖Mk −M‖∞ ≤ C

σk
with C some constant (0 < C <∞) and σ > 1

λ1
> 1;

(vi) the entries of Φk+1(u, v) sum up to 1;

the surface generated by S is normal continuous.

4.3 Masks of growing support

This section is devoted to a short description of non-stationary univariate sub-
division schemes based on masks with growing supports. This is an important
example of the potential strength of non-stationary schemes, since it allows for
the generation of basic limit functions with high regularity and small support.
For details concerning the analysis of these types of schemes and some of their
applications we refer the reader to [14] and [34]. The analysis of smoothness of
the schemes in these papers is based on the growing number of smoothing factors
in their symbols and on Fourier analysis. The application is the generation of
C∞ multiresolution analysis with high approximation order and the generation
of C∞ compactly supported wavelets [14], [44].

The most famous example of a subdivision scheme of this type is given by
the one based on the masks in (14) with n the subdivision level. As shown in
[34], the basic limit function φ0 is the Rvachev’s up-function which is C∞ and
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Fig. 16. Three steps of the scheme with masks (14) with n the subdivision level (initial
points in magenta).

supported on [0, 2], [58]. The first three steps of this scheme are depicted in the
next Figure 16.

A similar example of C∞ compactly-supported basic limit functions can be
obtained if each A[k](z) is a product of k smoothing factors (see Definition 3).
In this example the support is also [0, 2].

Another nice example is given by the interpolatory non-stationary scheme
based on the masks (18) again with n the subdivision level (see [14], [34], [44]).
The basic limit function φ0 is a function which is C∞ and supported in [−3, 3].
The first three steps of this scheme are shown in Figure 17.

Fig. 17. Three steps of the scheme with masks (18) with n the subdivision level (initial
points in magenta).

5 Open problems in non-stationary subdivision

This closing section provides a short overview of open problems -specifically for
non-stationary subdivision schemes- that are important to consider in the near
future. Yet, due to space reasons, it will not be a detailed description as the one
in the recent paper [61] related to the stationary case. Topics are listed in order
of difficulty, with respect to the authors’ point of view.

– Bivariate results: from Section 4.1 it is evident that many results on con-
vergence/regularity and approximation order are available in the univariate
case only. Their extension to the bivariate setting is important. Also, con-
struction of bivariate non-stationary interpolatory subdivision schemes and
wavelets based on them is a topic that deserves further study;

– Applications: exponential reproducing non-stationary schemes cou ld be used
more extensively in image processing and highly smooth wavelets, as in [14],
could be applied to real-world problems where the analysed functions are of
high smoothness;
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– Artefacts and unexpected behaviour of subdivision curves/surfaces: it would
be important to better investigate the use of non-stationary tension param-
eters to tune and control subdivision surfaces;

– New tools for analysis of non-stationary schemes: we believe that to escape
from the notions of asymptotic similarity or asymptotic equivalence would
give a great impulse to non-stationary schemes;

– Increase the smoothness at extraordinary vertices of subdivision surfaces:
we suppose that the possibility of changing the rule coefficients with the
iterations can be crucial to overcome the limitation of stationary schemes
that are limited to C1-smoothness at extraordinary vertices. The key idea
for increasing the smoothness, is to allow the involvement of more and more
points, i.e. the use of masks of growing support (see Section 4.3).
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