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Abstract. In this paper, the test supersonic ejector with conjugate heat transfer in solid bodies 
has been studied numerically. An extensive numerical campaign by means of open-source SU2 
solver is performed to analyze the fluid dynamics of the ejector flowfield accounting for the heat 
conduction in solids. The fluid domain simulation is carried out by employing compressible 
RANS treatment whilst the heat distribution in solids is predicted by simultaneous solving the 
steady heat conduction equation. The working fluid is R245fa and all simulations are performed 
accounting for real gas properties of the refrigerant. Experimental data against numerical results 
comparison showed close agreement both in terms mass flow rates and static pressure 
distribution along the walls. Within the CFD trials, the most valuable flow parameters at a wall 
vicinity are compared: distribution across the boundary layer of the temperature and the turbulent 
kinetic energy specific dissipation rate, boundary layer displacement and momentum 
thicknesses. A comprehensive analysis of the simulation results cases with adiabatic walls 
against cases with heat permeable walls revealed the actual differences of the flow properties in 
the wall vicinity. However, the ejector performance has not changed noticeably while accounting 
for the heat conduction in solids. 

1. Introduction 
Ejectors are widely used in refrigeration since their ability to utilize low temperature heat to produce 
cooling. As any jet pump, ejector’s design consists of two main parts: motive or primary nozzle and 
diffuser, which combines the mixing chamber and diffuser section. In motive nozzle, the potential 
energy of the primary flow is converted into kinetic energy of the jet (momentum). Further downstream 
in the ejector’s mixing chamber, the supersonic primary flow involves a static secondary flow through 
a turbulent interaction in the free shear layer. The bulk momentum of the mixed flows determines the 
backpressure upper limit value, which the ejector is able to overcome without loss in performance. In 
general, the performance of an ejector is determined as the Entrainment Ratio ‘Er’ (the secondary to the 
primary mass flow rates ratio) and, in “on-design” mode, it doesn’t depend on the discharge pressure 
value while it’s below the critical one. 

In recent years, an interest to the ejectors simulations by employing various commercial and open-
source CFD solvers is greatly increased. However, most of the studies are carried out by assuming 
adiabatic walls, thereby limiting both the numerical results accuracy and the power of applicability of 
any CFD tool. The latter outcome stems from the fact that no other kind of research method lets predict 
forced heat transfer with such a little effort as a CFD modeling. Study in Ref [1] is an exception from 
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the general trend, where authors investigate the heat transfer process within the CO2 two-phase ejector. 
The numerical simulations presented in Ref [1] were carried out with the non-adiabatic inner walls and 
the insulated outer walls of the ejector. The numerical results comparison had led to significant decrease 
in Entrainment ratio (about 15%) for the non-adiabatic wall cases. In despite of such noticeable 
contradiction of numerical results for distinct wall model cases, no subsequent analysis was performed. 
Moreover, assuming insulated outer walls does not make sense in terms of conjugate heat transfer 
modeling because of the fact that such kind of steady state simulation will suffer either from convergence 
issues or will lead to the same adiabatic wall results by the end. 

Fluid mechanics theory for compressible viscous flows unambiguously shows that components of 
the viscous stress tensor act like prevail heat sources within conservation energy equation in the 
boundary layer where the largest velocity gradients take place. As a result, in some particular high Mach 
number flows, the enthalpy difference within boundary layer between adiabatic and real (non-adiabatic) 
walls may cause significant deviation. At that, in a coupled iterative solution it leads to all conservative 
quantities alteration and changes in numerical results accuracy. Therefore, accurate prediction of the 
high-speed flows requires imposing heat permeable walls where conjugate heat transfer through the 
strong boundaries is preferable solution because of CFD solution set-up flexibility. 

The present research builds on work in Ref [2] and extends it in terms of conjugate heat transfer 
modeling by means of the open-source SU2 CFD solver. The major features and capabilities of the open-
source SU2 tool are described in details in Ref [3] whilst the description of the test rig ejector chiller 
and experimental data acquisition is held in Ref [2]. Although most part of the study in Ref [2] is 
concerned to numerical simulations as well, the present research had not set a task to make a comparison 
of the distinct numerical solvers, approaches and the results. The present research aim is to compare the 
ejector‘s performance by means of two distinct numerical modeling approaches: adiabatic and heat 
permeable walls as well as evaluate fluid flow features in the vicinity of solid walls. 

2. Numerical model 
The numerical fluid model in this study is based on compressible RANS solver whilst the single heat 
equation is utilized for solving temperature distribution in solid bodies. At that, the standard approach 
is used in which the heat fluxes from the fluid domain are exposed to the solid boundaries through 
prescribed interface pairs. The governing equation for conservation of mass, radial momentum, axial 
momentum and total energy of the fluid domain in 2D axisymmetric form can be written as,  
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, where 𝜇௘௙௙ and 𝑘௘௙௙ stands for the effective viscosity and effective thermal conductivity, k is the turbulent 
kinetic energy, 𝜌 is the density, T is the temperature, 𝑝 is the pressure and the total energy per unit volume 𝐸௧ is 
calculated as  

𝐸௧ = 𝜌൫𝑒 + 0.5(𝑣௥
ଶ + 𝑣௭

ଶ)൯.                                                                 (2) 



HMTHSF 2021
Journal of Physics: Conference Series 2088 (2021) 012004

IOP Publishing
doi:10.1088/1742-6596/2088/1/012004

3

As can be seen, all conservative equations in (1) resembles the planar two-dimensional form while 
the right-hand side part distinguishes the extra terms which are concerned to axisymmetric form only. 
The eddy viscosity is obtained by employing the standard Menter’s k-ω SST turbulence model expressed 
in axisymmetric form as well. Throughout all the simulations, modified Peng-Robinson equation of state 
is used. In order to get more accurate and consistent with the R245fa refrigerant thermodynamic 
properties, authors altered the built-in implementation of the Peng-Robinson equation of state by 
deliberately getting rid of using the specific heat ratio within the SU2 solver code routine. At that, the 
implementation of the cubic pressure-explicit equation of state is extracted from open-source library 
CoolProp [4], wherein the exact formulation is presented in Ref [5]. The corresponding fixes in the SU2 
solver code made it possible to use a spatially variable value of the specific heat capacities, which had 
a positive effect not only on the accuracy of determining the thermodynamic properties of the fluid but 
on the solution convergence as well. Laminar viscosity is defined by imposing Sutherland’s model 
(𝜇௥௘௙ = 1.703𝑒 − 5,  𝑇௥௘௙ = 490.7, 𝑆 = 405), whilst constant Prandtl treatment (Pr = 0.71) for the 
thermal conductivity is employed in numerical solution procedures. Both of the transport models are 
quite well fitted within the possible temperature range throughout all the simulations.  

Inlet boundary conditions of the fluid domain are set by assigning total pressures and temperatures, 
static pressure condition is set for the diffuser discharge outlet. Solid body’s boundaries, which are not 
in direct contact with the fluid domain, are set by imposing the proper heat fluxes towards the 
environment. 

Convective fluxes in (1) are solved by means of classic Roe upwind scheme in conjunction with 
limiting the proper minimum convective eigenvalue (entropy correction is 0.02). In order to achieve 
second order upwind accuracy, the MUSCL reconstruction is employed with Venkatakrishnan-Wang 
slope limiter to suppress spurious oscillations at the shock regions. Spatial gradient are solved by means 
of the Green-Gauss node based method, whilst the FGMRES linear solver with ILU preconditioner is 
utilized to solve overall Euler implicit time discretization. 

All the domains (fluid and solids) are discretized by means of structured grid and distinguished by 
imposing the proper interfaces between each other. At that, the grid properly resolves the boundary layer 
by adjusting the first cell layer height to make sure that the wall Y+ value < 1.0 along the solid walls 
and at least 30 cells are placed until boundary layer edge is reached. 

In order to get more insight into boundary layer development features, the comprehensive post-
process analysis is carried out throughout the present research. In fact, boundary layer displacement and 
momentum thicknesses along the nozzle and diffuser walls are evaluated. In general, displacement 
thickness defines the mass flow rate deficit that the real flow undergoes because of viscosity and it 
measures the hypothetical wall shift along the surface normal that is required to compensate such mass 
flow rate deficit. Momentum thickness has the similar definition except the fact that is related to 
momentum flow rate. The exact formulations of these two tools are the following: 
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, where δ is the displacement thickness, θ is the momentum thickness, h denotes the distance from the 
surface to the boundary layer edge, 𝜌௛ and 𝑣௛ are the flow density and free stream velocity at the 
boundary layer edge respectively, while 𝜌 and 𝑣 are the flow density and velocity perpendicular to 
surface normal at the wall distance dy. In present study, definite integrals (3) are solved numerically and 
the boundary layer edge is determined by employing a threshold value of the gradient of the turbulent 
kinetic energy specific dissipation rate (omega). It should be noted, that the exact threshold magnitude 
of ‘omega gradient’ is case dependent and requires additional calculations in advance. 

3. Results and discussion 
At first, ejector flowfield is simulated with adiabatic walls. After the proper convergence is reached and 
all the validation steps (mass flow rates comparison and static pressure distribution matching) against 
the experimental data are successfully met, the next simulation is launched by including the solid 
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domains and imposing the heat transfer through contacting surfaces. Such kind of approach lets run 
conjugate heat transfer modeling task from the already converged case of the fluid simulation, which 
significantly reduces the overall solution time.   

A detailed numerical post process campaign has been carried throughout the present research in terms 
of results comparison for adiabatic and heat permeable (conjugate heat transfer) ejector cases. The 
description and explanation of the major exposed tools and features are presented hereafter. However, 
it must be admitted that the performance of the investigated ejector practically does not change when 
the conjugate heat transfer through solid walls is taking into account. In fact, there is a decrease in the 
secondary mass flow rate by 0.1%, but such a tiny drop appears to contradict with the results given in 
Ref [1]. 

 
Figure 1. Temperature distribution comparison across the suction and 
mixing chambers 

The most remarkable qualitative results are presented in Figure 1, 2 in which the temperature field 
distribution of the adiabatic walls case (uppermost part from the ejector centerline) and conjugate heat 
transfer case is compared. The integer values on the Figure 1 indicate the fluid domain (1), the solid 
nozzle domain (2) and the solid diffuser domain (3). All three domains are simultaneously solved by 
multizone SU2 iterative solution.  

One may notice that the inlet part of the solid diffuser (#3 in Figure 1) is heated a little bit relatively 
to the secondary fluid flow (#2 in Figure 1). This phenomenon can be explained by the heat conduction 
and this process is evident while analyzing Figure 2, where the temperature of the metal in the shock 
vicinity and the flow temperature just behind the shock are identical. However, the flow temperature 
ahead of the shock deviates from the solid body temperature at the same cross section, where the solid 
diffuser is much hotter because of heat flux directed backward. 

Figure 3 represents the comparison of temperature and turbulent kinetic energy specific dissipation rate 
(Omega) distribution along the nozzle wall and averaged by integration across the boundary layer height. 
As can be seen from the Fig.3, the averaged boundary layer temperature is slightly displaced downward 
in CHT modeling case. In general, these temperature differences have not exceed 2 degrees downstream 
of the nozzle throat, however, the temperature differences on the solid surfaces itself may exceed 18 
degrees. 

Figure 2. Temperature distribution comparison across the entire ejector: uppermost - adiabatic walls, 
bottom – conjugate heat transfer 
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Figure 3. Averaged temperature and TKE specific 
dissipation rate across the boundary layer 

  
Figure 4 represents the distribution of the boundary layer displacement and momentum thicknesses 
along the nozzle wall for two distinct cases: adiabatic walls and conjugate heat transfer model (CHT). 
The boundary layer analysis along the nozzle wall revealed that mass flow deficit, which is concerned 
to displacement thickness, decreases onto 1% in CHT case, whilst the momentum flux deficit increases 
up to 2%. Such contradicting results have physical explanation. A decrease in the mass flux deficit in 
the CHT case is largely associated with the density augmentation near the solid walls, while a velocity 
drop across the boundary layer causes an increase in the momentum deficit. Anyway, the overall 
differences between both of cases (adiabatic and CHT) are too negligible to have an impact on 
downstream flows mixing or ejector performance.  
 

Figure 4. Boundary layer displacement and 
momentum thicknesses along the nozzle wall 

Figure 5. Boundary layer displacement and 
momentum thicknesses along the diffuser wall in 
the shock vicinity 

Boundary layer along the diffuser wall is evaluated throughout present numerical research as well. It is 
noticeable that averaged temperature across the boundary layer height in the diffuser suction chamber 
is greater on 5 degrees for the CHT case, while in the mixing chamber the temperatures as well as 
displacement and momentum thicknesses are almost identical downstream of both the CHT and 
adiabatic cases. However, there is a remarkable boundary layer feature along the diffuser wall in the 
secondary shock vicinity. The shock is caused by the adverse pressure gradient and induces the boundary 
layer separation with the subsequent flow recirculation zone behind the shock. Figure 5 represents the 
boundary layer displacement and momentum thicknesses along the diffuser wall in the shock vicinity 
for two distinct cases: CHT and adiabatic walls. As can be seen from the Fig.5, the boundary layer 
separation onset is shifted upstream and it literally means that momentum loss caused by the viscous 
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forces is greater for the CHT modeling case. At the same time, the actual differences in flow behavior 
between distinguished CHT and adiabatic walls models is negligible.  

4. Conclusions: 
The study presents the numerical results comparison obtained on supersonic ejector for refrigeration 
with two distinct models: adiabatic walls and conjugate heat transfer. All the simulation cases are carried 
out by means of open-source SU2 solver and it’s turned out that taking into account the heat transfer 
through solid wall have negligible impact on overall ejector performance. Moreover, the general tools 
developed and implemented in SU2 code throughout the present study to estimate local boundary layer 
flow features (boundary layer displacement and momentum thicknesses) revealed that there is no major 
differences between both of distinct cases. Definitely, this outcome cannot be carried over to all ejector 
designs and operation modes. Thus, it is likely that at higher speed flows (with a higher degree of flow 
expansion in the primary nozzles), viscous stresses in the boundary layer will prevail, and in such a case, 
it will cause the ejector performance alteration. However, it’s well known that flows interaction within 
the mixing layer as well as the shock train located downstream and caused by the adverse pressure 
gradient are the main sources of ejector’s performance losses. Thereby, all the CFD treatments and 
efforts within ejector in the scope of the boundary layer model calibrating will fail until the most 
important domain regions (away from the solid surfaces) is not fully consistent with the actual fluid 
dynamics. 
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