
4 |   wileyonlinelibrary.com/journal/jbg J Anim Breed Genet. 2020;137:4–13.© 2019 Blackwell Verlag GmbH

1 |  INTRODUCTION
Improved economic conditions in large part of the world in 
recent decades have led to steady global population growth. 
This growth has been accompanied by increased demand 
for access to high‐value animal proteins, resulting in an in-
creased pressure for the livestock industry to meet this de-
mand. In the near future identifying methods for producing 
more food, using fewer inputs and minimizing environmen-
tal impact while ensuring the welfare of animals will be the 
greatest challenge facing the food animal industry. In this, 
swine could represent an efficient and sustainable approach 
to help meet the global food demand because of their high 
nutritional value, diverse manufacturing capabilities and 
palatability. Livestock profitability is for a large part driven 
by feed costs and in meat‐producing species by the amount 

and quality meat produced (Hoque, Kadowaki, Shibata, 
Oikawa, & Suzuki, 2009). Genomic selection for increased 
feed and growth efficiency has been investigated in swine 
(Jiao, Maltecca, Gray, & Cassady, 2014; Lu et al., 2017) and 
is currently implemented in most commercial populations. 
However, selecting for feed and growth efficiency remains 
costly and slow.

The gut microbial community is a complex system that 
co‐exists inside each living body. Bacteria in the gut have 
substantial influence on host nutritional, physiological and 
immunological processes in various ways. Changes to the 
gut bacteria composition have been proven to be linked to 
health problems in human (Backhed et al., 2004; Barman et 
al., 2008; Collins, Denou, Verdu, & Bercik, 2009; Kassinen 
et al., 2007; Turnbaugh et al., 2006, 2015), as well as health 
and production performance of pigs (Celi et al., 2017; 
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Abstract
The existence of genetic control over the abundance of particular taxa and the link 
of these to energy balance and growth has been documented in model organisms 
and humans as well as several livestock species. Preliminary evidence of the same 
mechanisms is currently under investigation in pigs. Future research should expand 
these results and elicit the extent of genetic control of the gut microbiome population 
in swine and its relationship with growth efficiency. The quest for a more efficient 
pig at the interface between the host and its metagenome rests on the central hypoth-
esis that the gut microbiome is an essential component of the variability of growth in 
all living organisms. Swine do not escape this general rule, and the identification of 
the significance of the interaction between host and its gut microbiota in the growth 
process could be a game‐changer in the achievement of sustainable and efficient 
lean meat production. Standard sampling protocols, sequencing techniques, bioin-
formatic pipelines and methods of analysis will be paramount for the portability of 
results across experiments and populations. Likewise, characterizing and accounting 
for temporal and spatial variability will be a necessary step if microbiome is to be 
utilized routinely as an aid to selection.
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Hermann‐Bank et al., 2015; Kim et al., 2012). Nonetheless, 
the complex interplay between host genetics and the gut mi-
crobiome is yet to be investigated on a large scale, including 
sampling conducted through several stages of the production 
life in swine (Morota, Ventura, Silva, Koyama, & Fernando, 
2019).

The current literature documents a handful of studies in 
humans that have investigated host genetic contribution to 
variation in gut microbiome abundance (Davenport et al., 
2015; Goodrich, Davenport, Clark, & Ley, 2017; Goodrich 
et al., 2014; Polderman et al., 2016; Rothschild et al., 2017; 
Zoetendal & Ak, 2001). Similar efforts are currently under-
way in cattle (Myer, 2017). In pigs, there are only a few pre-
liminary studies aimed at investigating the host role in the 
gut bacteria composition (Crespo‐Piazuelo et al., 2019). This, 
although such knowledge could be crucial in meeting the in-
creasing global demand for quality protein, while improving 
animal health and welfare, in the face of changing environ-
mental conditions.

Investigating the host control of gut microbial composi-
tion presents several challenges, particularly in elucidating 
the genomic architecture of host‐microbiome control and 
identify potential genetic variants influencing the host gut 
bacterial profile. Addressing these questions requires a large 
number of individuals having both genotypes data as well as 
the metagenome sequence of their gut bacteria. The latter 
might impose a limitation on some genome projects due to 
the current cost of sequencing gut bacteria.

In Figure 1 is depicted the overall connection of the dif-
ferent system components influencing the total variability 
of swine growth efficiency. In the next section of the paper, 
we will try to highlight some of the current efforts and chal-
lenges in understanding the connections among all these sys-
tem elements in swine.

2 |  CURRENT KNOWLEDGE OF 
THE HOST PERFORMANCE AND 
GUT MICROBIOME INTERPLAY

2.1 | Microbiome association with growth 
and performance phenotypes in pigs
The link between microbiome and phenotypes has a rich 
body of literature in humans (Cho & Blaser, 2012; Clemente, 
Ursell, Parfrey, & Knight, 2012; Sandoval‐Motta, Aldana, 
Martínez‐Romero, & Frank, 2015). Gut microbial diversity 
in pigs has been described and well‐characterized from the 
ecological standpoint (Xiao et al., 2018). Nonetheless in 
swine when it comes to the gut microbiome and its associa-
tion with performance, a large portion of the current literature 
has been characterized by relatively focused studies target-
ing the manipulation of specific groups of bacteria in the 
gut at particular times in the animals' lives, often in relation 

to nutrition studies (Hu et al., 2019; Pedersen, Andersen, 
Hermann‐Bank, Stagsted, & Boye, 2015). Fewer studies 
have characterized the influence of gut natural variability of 
microbiome characteristics in relation to growth and carcass 
traits. Park, Kim, Lee, Rhee, and Kim (2013) described the 
gut microbiome in pigs as it relates to meat quality and body 
fat. Yan et al. (2017) reported that microbial transplants from 
pigs to mice alter metabolic profiles of skeletal muscle. Mach 
et al. (2015) and Ramayo‐Caldas et al. (2019) investigated 
the early establishment of the microbiome in pigs and identi-
fied enterotypes related to growth traits in swine, while Xiao 
et al. (2016) reported the potential effect of different micro-
bial profiles on lipid metabolism. Similarly, the impact of dif-
ferent microbial communities has been recently linked to the 
potential for efficient utilization of fibre (Camarinha‐Silva et 
al., 2017; Cheng et al., 2018; McCormack et al., 2019, 2018). 
Relationships between growth and carcass composition with 
specific microbial profiles as well as alpha diversity were 
also reported by Lu et al. (2018).

2.2 | Microbiability heritability and the 
host genomic architecture of the microbiome 
composition in swine
The concept of microbiability was proposed first by Difford, 
Lassen, and Lovendhal (2016) as a way to include the overall 
microbial composition as part of phenotypic variation while 
accounting for the relationships between the hosts and their 
microbial profile. In essence, the idea is that of modelling the 
effect of an individual microbial profile with standard linear 

F I G U R E  1  Systems components influencing the overall 
variability of swine growth efficiency
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mixed model machinery by way of using a microbial “rela-
tionship” matrix obtained from the Operational Taxonomic 
Unit (OTU) abundance for each individual in a similar fash-
ion to the genomic relationship matrix.

Briefly a microbial relationship matrix, O can be obtained 
as O=

1

q
XX

T, where X is a matrix of dimension of n × q, 
where n is the number of animals and q is the number of 
OTU. X can in turn be obtained from S, a matrix of equiva-
lent dimensions n × q. Each element of S, Sjk, represents the 
relative abundance of a particular OTU k in individual j. The 
elements of X can then be calculated as:

where Sk is the vector of the kth column of S.
The predictions of individual effects will then represent 

the overall microbial profile impact for each animal, and the 
ratio of variance explained by the microbial effect over the 
total variance will represent the microbiability of the trait. 
Estimates of microbiability in swine are still scarce in the 
literature. Camarinha‐Silva et al. (2017) identified a sizable 
microbiability component in pigs, of approximately 0.20 av-
eraged across growth and production traits. Similar results 
were found by Lu et al. (2018), in a larger swine crossbred 
population. It is essential to realize that while a microbial 
relationship matrix accounts for individuals' similarities in 
microbial structure, microbiability does not have a genetic in-
terpretation per se as it models an environmental component 
of the overall phenotypic variation for a trait. To investigate 
the extent of host control over the microbial composition, this 
last needs to be considered as the dependent variable. Narrow 
sense heritabilities for different taxa in pigs has been reported 
by several authors (Camarinha‐Silva et al., 2017; Yang et al., 
2016) with estimates ranging from low to moderate (~0.05 to 
0.4), strongly suggesting a partial genetic control of the mi-
crobial gut population in swine. Most of these studies have 
relied on estimates of microbial composition at a single time 
point. Furthermore, estimates have been mostly obtained for 
single taxonomical features (ranging from family to genera). 
Alternatively, Lu et al. (2018), attempted to model the overall 
microbial composition of individuals over time as measured 
by alpha diversity. This measure attempts to describe two key 
aspects of microbial communities in a determined sample by 
summarizing both richness (the overall number of features 
represented) as well as evenness (the overall proportional 
representation of these features. In their work, they obtained 
moderate heritability estimates for alpha diversity ranging 
from ~0.10 to 0.4. Attempts to explicitly model interactions 
between the genetic effect of the hosts and their microbial pro-
file are still lacking. Lu et al. (2018) obtained direct estimates 
of genotype by microbiome for growth and carcass traits, but 

for the most part, these were negligible. For meat quality traits 
Khanal, Maltecca, Schwab, Gray, and Tiezzi (2019 submitted) 
instead found significant G × M for fatness marbling colour 
and firmness. Currently, in swine, only few attempts have been 
performed to identify genomic regions controlling microbial 
composition through GWAS on relatively small populations. 
Cheng et al. (2018), identified two potential QTL regions 
controlling the abundance of particular OTUs on chromo-
somes 9 and 10. Crespo‐Piazuelo et al. (2019), identified 52 
single‐nucleotide polymorphisms distributed across 17 ge-
nomic regions associated with the abundance of six genera: 
Akkermansia, CF231, Phascolarctobacterium, Prevotella, 
SMB53, and Streptococcus. Future efforts with larger popula-
tions will provide additional evidence of the direct control of 
the host over either single features of aggregated measures of 
microbial composition.

2.3 | The ability of microbiome to predict 
future performance in pigs
Microbial variability in swine sits at the crossroad of the 
metagenome genomic variability, that of the host, and the 
constraints posed by other environmental factors (man-
agement, diet, but also farm conditions, climate, etc.). 
Attempts to mechanistically elicit the relationships between 
these various components will require a considerable time. 
While the ultimate goal from a breeder's perspective is to 
exploit the host variability in developing and maintaining 
a favourable microbial composition for fast lean growth, 
predictions of phenotypic performance will become criti-
cal as system management tools with the spread of preci-
sion agriculture technology. Microbiome could provide an 
important source of information both as a biomarker of the 
physiological status of an animal, as well as of the environ-
mental condition in which the same animal is performing. 
To date, the literature on the phenotypic predictive power 
of the overall microbial profile in pigs is virtually non‐ex-
istent. Camarinha‐Silva et al. (2017) obtained predictive 
accuracy for growth and carcass traits of approximately 
0.40 (averaged across traits) when employing a microbial 
relationship matrix. Maltecca et al. (2018, 2019) provided 
preliminary evidence of the power of an individual over-
all microbial profile to predict growth and carcass com-
position with the use of machinery employed routinely 
in genomic prediction as well as non‐parametric methods 
achieving good prediction accuracies for fat (~0.50) and 
average daily gain (~0.40) but less favourable for other car-
cass characteristic. A larger amount of data should allow 
in the near future for better predictive power as well as 
the application of more sophisticated models such as ma-
chine learning and deep learning algorithms that could ad-
equately account for the complex dynamics of microbial 
interactions, which are currently ignored for the most part.

Xij =

log (Sjk)− log Sk

sd ( log Sk)
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2.4 | Establishing causality between 
microbial profiles, host genomic make‐up and 
phenotypic performance
In the previous sections, we have looked at the host and mi-
crobiome variability somewhat piecewise. While this is, for 
the most part, a necessary evil of data analysis, it is crucial 
to recognize that a successful approach in integrating micro-
biome information in the attainment of growth efficiency in 
swine would necessarily require a system approach. Thus, in 
order to fully exploit the range of variability generated by 
the host‐guest‐environment system (which we prefer to the 
ecological definition holobiont (Estelle, 2019; Theis et al., 
2016), since this last tend to deemphasize the human inter-
vention part), it will be paramount to establish causal rela-
tionships among all the components of the system.

We can attribute to regression coefficients, that is, the 
change in the y variable given a change in the x variable, a 
causal meaning (Gianola & Sorensen, 2004; Valente et al., 
2013; Valente, Rosa, Gianola, Wu, & Weigel, 2007). When 
investigating the impact of (gut) microbiome on a particular 
phenotype, in a causal framework, we would be interested in 
inferring whether a given change in microbiome composition 
causally affects the phenotype (e.g., an increase in the rela-
tive abundance of an OTU will result in a decrease in backfat 
depth). In a Microbiome‐Wide Association Study (MWAS) 
context, we could obtain spurious OTU effects if a model that 
ignores host genotype is used. Particularly, there would be 
cases where a given host genomic variant impacts the OTU 
abundance, which in turns affects the phenotype. Conversely, 
in a GWAS, markers significance obtained ignoring potential 
microbial effects could be spurious for the same biological 
reason (Valente et al., 2013; Leal‐Gutiérrez et al., 2018).

Structural equation models have been proposed to esti-
mate effects under complex causal structures (de los Campos, 
Gianola, Boettcher, & Moroni, 2006; de Maturana et al., 
2010; Tiezzi, Valente, Cassandro, & Maltecca, 2009; Varona, 
Sorensen, & Thompson, 2016). A schematic representation 
of the possible relationships in a causal network between 
G (the host genotype), M (the microbiome composition), E 
(the environment) and P (the phenotype) is reported in the 
directed acyclic graphs of Figure 2.

The direct effect of G on P (α) determines the proportion 
of phenotypic variability attributable to the host (heritabil-
ity). The effect of G on M (β) determines what can then be 
interpreted as the heritable portion of M. The joint effect of 
G on M and P represent the genetic correlation between the 
microbiome composition and the phenotype. The effect of M 
on P (γ) determines the microbiability. Finally, the effect of 
E on P (εp) and the effect of E on M (εm) can be considered 
exogenous effects as for example management and diet, re-
spectively. If we ignore interactions among these terms, we 
can see that the total contribution of G on P can be direct (α) 

or mediated by M (β*γ). In the case where β*γ is larger than 
α, any inference made in the use of host genomic markers 
should be made with caution: the impact of G on P could 
vanish if β is altered by external intervention for example 
by insurgence of disease and/or the use pre/pro/antibiotics. 
This could have strong repercussions in selection, where the 
breeding strategy is solely based on the estimate of α.

In addition, there could be other scenarios that an ani-
mal breeder should evaluate. In the case were α > 0, β = 0 
and γ  >  0, there is no impact of host genome on microbi-
ome composition and G and M play independent roles. When 
the general model used in animal breeding (P = αG+εp) is 
enhanced with microbiome information (P = αG+γM + εp), 
there could be a reduction of the εp component, as a portion 
of this will likely be absorbed by γM. The reduction of εp 
could in turn have a positive impact on breeding value esti-
mation and accuracy of prediction, by reducing residual error 
and increasing the power to model systematic variability. In 
the case, instead, where the inclusion of γM decreases the 
impact of αG, the breeders should pay particular attention to 
the β effect, since the collinearity between G and M could be 
due to an impact of G on M (provided that M cannot affect the 
expression of G, which will be discussed later).

In the case where α > 0, β > 0 and γ = 0, a genetic cor-
relation between P and M could be estimated. This is the 
case where the host genome can affect both the phenotype 
(directly) and the microbiome composition. A mis‐specified 
model (e.g. P = γM+εp) could estimate the γ effect, but this 
model would not allow any inference on the biological nature 
of such impact of M on P. In this case, an intervention on the 
microbiome composition (i.e., change in diet, use of pre/pro/
antibiotics) would not lead the expected change in P, since 
such γ effect is spurious but is the host genome to drive P and 
M, simultaneously.

The cases reported above are over‐simplified, and reality 
will undoubtably span a variety of different scenarios. Well‐
balanced experiments will therefore be necessary for the 
estimation of meaningful causal effects. Carefully designed 
experiments and appropriate modelling though are only the 

F I G U R E  2  Acyclic graphs picturing the possible interplay 
between the host genotype (G), the gut microbiome (M), the 
environmental components (Ex) and the phenotype (P) in an animal 
breeding context
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first ingredients necessary in establishing causality. For ex-
ample, in the schematic example provided above, if we as-
sumed that M cannot impact (the effect of) G, while we know 
that intestinal microbiome can alter gene expression directly 
or by epigenetic modifications (Aleksandrova, Romero‐
Mosquera, & Hernandez, 2017; Bultman, 2017), we would 
be again lacking a key component to allow interpretability 
of the system. Gene expression and epigenetic modifications 
would in this case be missing layers in the causal network 
proposed and the way in which M can alter the impact of G 
could be misconstrued. In addition, there could be covariance 
between εp and εm, which could also make the estimation of 
the other parameters more difficult. Finally, there could be in-
teractions among all components in the system (as in the case 
of G × M). We could imagine cases where G can control the 
contribution of M to P, with different genotypes having dif-
ferent responses to the changes in microbiome composition. 
At the same time, M could play a different role conditionally 
on G, that is, the presence (or abundance) of a relative species 
could have a different impact depending on the host geno-
type. The use of full, balanced experimental designs will be 
pivotal in estimating the effect of such interactions.

2.5 | Integrating microbiome information 
in the selection process
Causal inference would provide a roadmap for the interpreta-
tion of microbiome contributions to livestock phenotypes. As 
a result, economic selection indices could be adjusted in light 
of such contribution. Given the breeding goal P, in the case 
where M can account for some systematic variance (currently 
pushed to the residual) breeders could leverage such reduc-
tion of environmental variance for improving the accuracy 
of the host breeding value, provided that the contribution of 
M can be controlled. For example, pre/probiotics could shift 
the microbiome composition towards an optimum, forcing 
the variance due of M to approach 0. Since such variance is 
normally reported in the denominator of the ratio to calculate 
heritability (for explicit modelling in γ or implicit modelling 
in εp), such heritability will increase and would consequently 
lead to a larger genetic progress.

In the case, instead, of the absence of the γ effect and 
strong genetic correlation between P and M, the (gut) mi-
crobiome composition could be included among the traits in 
the selection index, as predictor of the breeding goal at the 
genetic level. This could increase the payoff for traits rela-
tively expensive to measure such as feed efficiency. Lastly, 
in the case of strong (genetic) association between the breed-
ing goal and some microbial features, and large heritability 
of these features' abundance, indirect selection could also be 
effectively performed. Breeders could then produce breeding 
value predictions for the microbial features of interest, which 
will be then weighted into a selection index.

3 |  TECHNOLOGICAL 
CONSIDERATIONS

3.1 | Faecal versus intestinal samples
In the investigation of the potential use of microbial infor-
mation for management and selection purposes, most of the 
research looking at pig gut microbiome has relied on faecal 
samples for logistical reasons as well as for ease of collec-
tion. While this is approach is unescapable in commercial 
settings (intestinal samples can currently only be collected 
by sacrificing the individual, although promising non‐inva-
sive alternatives based on ingestive osmotic pills have been 
proposed (Nejad et al., 2018)), it is important to be aware 
that the microbial profile of the intestinal tract of swine is 
variegated and rich, with different niches and taxonomical 
abundance in different parts of the digestive tract. To date, 
only a handful of studies have investigated this variabil-
ity and particularly the relationship among the microbial 
community of different intestinal tracts and performance 
traits. Crespo‐Piazuelo et al. (2018), characterized the mi-
crobial composition of five distinct part of the intestinal 
tract in Iberian pigs, highlighting how colon and small in-
testine presented two distinct microbial profiles and how 
colon samples (the ones closer to the faecal proxy) were 
more similar among individuals compared to other regions. 
Similar results were also reported by other authors (Kelly 
et al., 2017; Yang et al., 2015; Zhao et al., 2001). Future 
research aimed at understanding microbial variability as a 
tool for swine selection should pay particular attention at 
understanding the correlation between microbial profiles at 
different parts of the digestive tract with specific emphasis 
on designs that would allow disentagling of breed and fa-
miliar effects.

3.2 | 16S ribosomal RNA versus whole‐
genome sequencing versus genotyping 
by sequencing
There are two common next‐generation sequencing ap-
proaches in obtaining microbial profiles in living organisms 
and specifically in swine. The first is the targeted sequenc-
ing of the 16 ribosomal region RNA gene. In this approach, 
DNA is extracted, and a target variable region of the small 
ribosomal subunit RNA gene is amplified. After this first 
step, sequences are clustered through bioinformatics into 
OTU or amplicon sequence variants (ASV). The technol-
ogy relies on the fact that the 16s rRNA gene is conserved 
among bacteria as well as containing a hypervariable re-
gion that can be used to reliably taxonomically resolve 
each OTU (Franzén et al., 2015). This is currently the lead-
ing technology in studies of moderate to large sample size 
in swine, due to its versatility as well as its affordability. 
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Nonetheless, the achievable resolution is lower than what 
obtainable with whole‐genome sequencing (WGS), which 
instead does not target a specific gene but the whole micro-
bial genome, thus in principle allowing to capture a more 
substantial portion of the available microbial community 
at a more granular level. In this case, the bioinformatics 
is more involved since the taxonomical assignment is per-
formed through alignment to a reference genome. This in 
the past was more problematic given the lack of character-
ized bacterial genomes, but current efforts in providing a 
better characterization of pigs microbial genomes (Xiao et 
al., 2018) are making this technology increasingly appeal-
ing. The largest limitation remains, in this case, its cost, 
which makes its application prohibitive for routine col-
lection and selection purposes. The constant decrease in 
sequencing costs and the employment of long‐read technol-
ogy could nonetheless make this approach more affordable 
(Dilthey, Jain, Koren, & Phillippy, 2019). A third approach 
involving a reduced representation through genotyping by 
sequencing was proposed recently by Hess et al. (2018) 
in ruminants and could be potentially ported to the swine 
community providing intermediate resolution at a fraction 
of the costs of WGS.

3.3 | OTU versus ASV
One of the first steps in any microbiome census is describing 
the “features” of the community that are to be enumerated. 
For many years, the molecular OTU concept, borrowed from 
traditional numerical taxonomy, has informed researchers 
about how such features are defined in surveys relying on 
markers such as the bacterial 16S rRNA gene. These OTUs, 
each consist of a cluster of nucleotide sequences that share 
some degree of similarity. The exact strategy by which OTUs 
are defined varies from study to study in terms of the identity 
cut‐offs, clustering algorithms, reference databases, and fil-
tering strategies employed. However, there is accumulating 
evidence that regardless of the strategy by which OTUs are 
defined, this paradigm has significant shortcomings that limit 
the utility of OTU‐based analyses (Callahan, McMurdie, & 
Holmes, 2017). These include: (a) poor resolution (OTUs 
often group together sequences from disparate organisms), 
(b) an inability to easily compare results across studies, (c) 
reliance in some cases on frequently changing reference da-
tabases, and (d) the need to define an arbitrary dissimilarity 
threshold.

Recent advances now allow error to be controlled suffi-
ciently such that a new feature definition, called the ASV, can 
supplant traditional OTUs as the minimal unit of microbiome 
analyses. ASVs are directly resolved from Illumina‐scale 
amplicon data using algorithms that attempt to directly infer 
biological sequences as they exist prior to the introduction of 
amplification and sequencing errors (Callahan et al., 2016; 

Needham, Sachdeva, & Fuhrman, 2014). This inference is ac-
complished in a de novo manner, so that unlike OTUs, which 
are generated by clustering sequences on the basis of simi-
larity thresholds for ASV, there is no need to set a similarity 
cut‐off. The result is a set of features (ASVs) that are distin-
guishable from one another in a census by as little as a single 
nucleotide. This superior feature resolution allows for better 
discrimination of closely related taxa, improved differentia-
tion of organisms that may have distinct biological proper-
ties, and the identification of more informative biomarkers in 
marker gene analyses. Several studies also indicate that ASV 
methods achieve sensitivity and specificity as good or better 
than OTU methods, while at the same time provide better 
discriminating ecological patterns (Needham et al., 2014). 
Importantly, because ASVs are defined as exact sequence 
variants rather than clusters of different sequences, they are 
also far more amenable to consistent labelling and compari-
son across studies.

This consistent labelling of features will allow in the 
future to perform more powerful meta‐analyses, test the re-
producibility of the results and make predictions about bio-
markers identified here in a way that would not be possible 
with traditional OTUs.

4 |  EXPERIMENTAL DESIGN 
CONSIDERATIONS

4.1 | Temporal and spatial variation
Changes in individual microbiome composition over time 
have been reported by several authors (Lu et al., 2018; 
Mach et al., 2015). Most of the published work in swine 
has focused on individual and group variation but for the 
most part, has ignored the influence of time and physical 
location along with interactions among individuals in shap-
ing the microbial communities. While microbial communi-
ties have now been ecologically characterized over a wide 
range of geographical and environmental conditions (Xiao 
et al., 2018) a systematic attempt to model this influence in 
commercial settings and more importantly to understand its 
evolution and implications for selection and management 
purposes is currently missing. As an example, in Figure 3, 
is reported the effect of time and space in the similarity 
of microbiome composition across an experiment. In the 
figure are depicted three confusion matrices obtained with 
a random forest model representing each a specific census 
time point for the microbiome in an experimental design of 
crossbred swine reported elsewhere (Lu et al., 2018). Each 
box of the three matrices represents a replicate, the combi-
nation of a room‐barn (Rep 1–6). The larger red squares rep-
resent different (adjacent) barns. Rooms within barn were 
filled sequentially during the experiment (so Rep1 would 
be first room first barn Rep2 s room first barn etc.). Each 
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confusion matrix reports the ability to correctly classify a 
sample as belonging to a particular replicate; a perfect clas-
sifier would have 1 on the diagonal and 0 elsewhere. In the 
figure, it is possible to see that as time passes rooms within 
a barn become more similar (higher misclassification rate) 
and also that the two barns used for the experiment tend to 
become two distinct environments and individuals within 
these units will resemble more microbially than others. The 
experiment, in this case, was not set up to disentangle time 
and spatial effects, so that these can only be interpreted as 
suggestive arguments, but it seems logical to expect that 
microbial populations will be affected by both space and 
time. As standard machinery exists for the modelling of 
this kind of effects, future research experiment should pay 
particular attention in designing trials that would allow ac-
counting for it effectively.

5 |  FUTURE OUTLOOK

The ratio of genomic variability existing in the metagenome 
compared with the host is high (approximately 9:1), mak-
ing it simpler and faster to manipulate. Evidence exists that 
the metagenome can be influenced and shaped by external 
interventions (diet, management, supplementation), mak-
ing de‐facto the “selection” of the gut ecosystem possible. 
Conversely though, if the host genetic component of micro-
biome composition is sizable, neglecting it might signifi-
cantly hamper the efficacy of gut ecosystem manipulation in 
achieving efficient lean growth.

The overall effect of the host‐guest genomic make‐up 
could instead be exploited in conjunction with diet and man-
agement to achieve efficient individuals at a faster pace in 
different environments.

The ability to maintain a healthy gut microbiota composi-
tion would be crucial in understanding an individual's energy 

homeostasis as well as the ability of an individual to effi-
ciently grow over a broad spectrum of diet conditions. This is 
particularly important since it has been shown that feed effi-
ciency in swine has a sizeable G × E component and individ-
uals efficient on high‐energy diets often lose their advantage 
on low energy rations (Knap & Wang, 2012). Currently, there 
is insufficient knowledge on the extent of genomic control of 
microbiota composition in swine. The quantification of the 
importance of microbiome composition for efficient growth 
could dramatically change the industry's strategies for manip-
ulation of microbiome through both breeding and diet. For the 
industry, this could be accomplished by adding microbiome 
composition as part of the breeding objective or by directly 
manipulating the microbiome to be deployed in populations 
under selection through diet or other artificial means. The 
potential benefit of exploiting both microbiome and host ge-
netic variation in the quest to improve efficiency by lowering 
feed costs while simultaneously reducing the environmental 
impact and improving the wellbeing of individual pigs could 
be game‐changing. The information presented in previous 
sections suggest that there is considerable variability in the 
amount of predictive power for growth and carcass traits that 
microbial populations provide at different sampling times. 
The following are what we believe some important points for 
future efforts aimed at including microbial variability in the 
attainment of efficiency in pigs.

If metagenomic information is to be employed in the at-
tainment of efficient growth under commercial conditions, a 
low number of reliably predictive sampling time points need 
to be identified to justify the investment in this technology 
and maximize its economic return. To date, no studies of siz-
able magnitude have characterized the evolution of microbial 
communities in growing pigs. This should be an important 
area for future research.

Currently, most of the tools employed in characteriz-
ing microbial populations are inherited from the microbial 

F I G U R E  3  Changes in microbial similarity over space and time
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ecology scientific community. In this respect, they provide 
a wealth of information but often lack ease of interpretation 
and portability. Future research should strive to characterize 
and summarize the critical parameters of the longitudinal mi-
crobiome development in swine. This, in turn, will allow us 
to easily summarize, compare and contrast microbial compo-
sition across a variety of factors (e.g., sex, breed, age, fam-
ily), in order to efficiently rank individuals for growth and to 
reduce the amount of information needing to be stored and 
included in predictive models.

Currently, one of the largest limitations of metagenomic 
studies is the inability to transfer results from different exper-
iments due to the limitation of microbial sequence clustering 
as well as a large proportion of completely disconnected de-
signs. Future research should seek to harmonize protocols for 
data and tissue collection sampling times as well as collect 
the sample of the largest genomic pool as well as the widest 
environmental conditions.
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