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aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; bDepartment of Neurofarba,
Sezione di Scienze Farmaceutiche e Nutraceutiche, Universit�a degli Studi di Firenze, Florence, Italy; cDepartment of Pharmaceutical Organic
Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; dPharmacognosy and Pharmaceutical Chemistry Department, College of
Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia

ABSTRACT
We evaluated the hCA (CA, EC 4.2.1.1) inhibitory activity of novel 4-(2-(2-substituted-thio-4-oxoquinazolin-
3(4H)-yl)ethyl)benzenesulfonamides (compounds 2–20) towards the isoforms I, II, IX, and XII. hCA Isoforms
were effectively inhibited by most of new compounds comparable to those of AAZ. Compounds 2 and 4
showed interestingly efficient and selective antitumor (hCA IX and hCA XII) inhibitor activities (KIs; 40.7,
13.0, and 8.0, 10.8 nM, respectively). Compounds 4 and 5 showed selective hCA IX inhibitory activity over
hCA I (SI; 95 and 24), hCA IX/hCA II (SI; 23 and 5.8) and selective hCA XII inhibitory activity over hCA I (SI;
70 and 44), hCA XII/hCA II, (SI; 17 and 10) respectively compared to AAZ. Compounds 12–17, and 19–20
showed selective inhibitory activity towards hCA IX over hCA I and hCA II, with selectivity ranges of
27–195 and 3.2–19, respectively, while compounds 12, 14–17, and 19 exhibited selective inhibition
towards hCA XII over hCA I and hCA II, with selectivity ratios of 48–158 and 5.4–31 respectively, compared
to AAZ. Molecular docking analysis was carried out to investigate the selective interactions among the
most active derivatives, 17 and 20 and hCAs isoenzymes. Compounds 17 and 20, which are highly select-
ive CA IX and XII inhibitors, exhibited excellent interaction within the putative binding site of both
enzymes, comparable to the co-crystallized inhibitors.

HIGHLIGHTS

� Quinazoline-linked ethylbenzenesulfonamides inhibiting CA were synthesised.
� The new molecules potently inhibited the hCA isoforms I, II, IV, and IX.
� Compounds 4 and 5 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors.
� Compounds 4 and 5 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors.
� Compounds 12–17, 19, and 20 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors.
� Compounds 12, 14–17, 19 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors.

GRAPHICAL ABSTRACT

Compounds 4 and 5 are selective hCA IX and XII inhibitors over hCA I (selectivity ratios of 95, 23, and 24,
5.8, respectively) and hCA II (selectivity ratios of 70, 17, and 44, 10 respectively). Compounds 12–17, and
19–20 are selective hCA IX inhibitors over hCA I (selectivity ratios of 27-195) and hCA II (selectivity ratios
of 3.2-19). Compounds 12, 14–17 and 19 are also selective hCA XII inhibitors over hCA I (selectivity ratios
of 48-158) and hCA II (selectivity ratios of 5.4-31).
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1. Introduction

Carbonic anhydrases (CAs; EC 4.2.1.1) constitute the superfamily of
metalloenzymes that catalyse the CO2 hydration and dehydration
reactions. CAs are classified into eight genetically distinct families,
named a-, b-, c-, d-, f-, g-, �- and i-CAs1,2. 15 a-class CA isozymes
have been detected in humans, which are further classified into
four different subsets on the basis of their subcellular localisa-
tion—CA I, II, III, VII, VIII, X, XI, XIIII are cytosolic proteins, CA IV is
a glycosylphosphatidylinositol (GPI)-anchored protein, CA VA and
VB are located in the mitochondrial matrix, CA VI is secreted, and
CA IX, XII and XIV are trans-membrane isoforms1–3. Human CAs
(hCAs) are spread in the human body, and are implicated in a
plethora of essential physiological processes. Therefore, the dysre-
gulated expression and/or activity of the CAs can lead to various
pathological conditions2. CA II is the most physiologically relevant
CA isoform, implicated in various disorders including cerebral
oedema, glaucoma (such as CA XII), and epilepsy. It is conversely
off-target, as CA I, when targeting tumours where CA IX and XII
are overexpressed and represent validated targets to combat the
growth of both primary tumours and metastasis4,5. The high struc-
tural similarities between various CA isoforms necessitate high
selectivity in the design of small-molecule anti-CA drugs for the
treatment of diseases associated with CA dysregulation, to minim-
ise the side effects3. Benzene sulphonamides are one of the best-
known molecules clinically used as CA inhibitors. Additionally,
“SLC-011 (Figure 1), a benzenesulfonamide, is a selective CA IX/XII
inhibitor currently being evaluated in a Phase I trial for the treat-
ment of solid, metastatic tumors”6–10. Sulphonamide derivatives
are not only one of the most preferred CA inhibitor classes9,11–23,
but also important COX-2 inhibitors and antitumor
agents17,19,24–26. The quinazolinone scaffold is also used widely
across medicinal chemistry27–43. (6-Iodo or 7-flouro-2-merqapto-4-
(3H)-quinazolinone3-yl)-benzenesulfonamides (A, Figure 1) have
been shown to potently inhibit CA I, II, IX, and XII44,45. A number
of 2-((3-benzyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio)-N-(4-sulfa-
moylphenethyl)anildes (B, Figure 1) also showed potent inhibitory
activity against different hCA isoforms38. The 2-mercapto-4(3H)-
quinazolinone derivatives containing ethylsulfonamide tail (C,
Figure 1) showed strong inhibitory activity against different hCA
isoforms with low-concentration inhibition constants

Here, we studied 2-mercaptoquinazolinone, (C, Figure 1) a
slightly polar and non-selective hCA inhibitor. Because the sulf-
hydryl group has been reported to be associated with various
metabolic and pharmacological problems46–49, we used a 2-mer-
captoquinazolinone scaffold bearing an ethylsulfonamide head
with alkylation of the thione group with a terminal lipophilic moi-
ety, so that it can interact selectively with CA through both,
hydrogen and hydrophobic interactions. Here, we synthesised vari-
ous derivatives of 2-mercaptoquinazolinone (2–20, Figure 1) with
different selectivity criteria for the hCA inhibitors, particularly for
the tumor-associated hCA IX and hCA XII. The role of alkyl sub-
stituent in 2-mercaptoquinazolinone was computationally analysed
and the conserved residues responsible for the target selectivity
were identified.

2. Materials and methods

2.1. Chemistry

Melting points were recorded on a Barnstead 9100 electrothermal
melting point apparatus (UK). IR spectra (KBr) were recorded on a
FT-IR Perkin-Elmer spectrometer (Perkin Elmer Inc., MA). NMR (1H
and 13C NMR) spectra were recorded with Bruker 700MHz

spectrometers (Zurich, Switzerland). Micro-analytical data (C, H, and
N) were obtained using a Perkin-Elmer 240 analyser (Perkin Elmer
Inc., MA) and agreed with the proposed structures within ±0.4% of
the theoretical values. Mass spectra were recorded on a Varian TQ
320 GC/MS/MS mass spectrometer (Varian, Palo Alto, CA). Thione 1
and compounds 8–20 were prepared as described earlier50,51.

2.1.1. General procedure for synthesis of 4-(2-(2-((2-(4-substituted-
phenyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzene-
sulfonamide (2–7)
A mixture of thione 1 (1mmol, 361mg) and potassium carbonate
(3mmol, 415mg) in 6ml acetone were stirred at room tempera-
ture for one hour. Appropriate phenacyl bromide (1mmol) was
added and the reaction mixture was stirred at room temperature
for 9–12 h, filtered, and the crude solid was washed with water,
dried and recrystallized from ethanol (1H & 13C NMR supplemen-
tary material).

4-(2-(4-Oxo-2-((2-oxo-2-phenylethyl)thio)quinazolin-3(4H)-yl)ethyl)ben-
zenesulfonamide (2): m.p 246–247�; 94% yield; IR (KBr, cm�1) �: 3284,
3237 (NH), 1665 (C¼O), 1342, 1151 (O¼S¼O); 1H NMR (700MHz,
DMSO-d6): d 8.14 (t, 2H, J¼ 7.14 and 1.26Hz), 8.04 (dd, 1H, J¼ 7.91
and 1.26Hz), 7.82 (d, 2H, J¼ 8.26Hz), 7.74 (t, 1H, J¼ 7.49Hz), 7.66 (t,
1H, J¼ 16.71 and 6.96Hz), 7.62 (t, 2H, J¼ 7.80 and 7.77Hz), 7.52 (d,
2H, J¼ 8.26Hz), 7.41 (t, 1H, J¼ 7.17Hz), 7.37 (s, 2H), 6.98 (d, 1H,
J¼ 8.12Hz), 4.92 (s, 2H), 4.33 (t, 2H, J¼ 16.25Hz), 3.14 (t, 2H,
J¼ 16.20Hz); 13C NMR (176MHz, DMSO-d6): d 194.04, 160.76, 156.10,
146.92, 143.11, 142.29, 136.90, 135.19, 134.01, 129.67, 129.29, 128.79,
126.92, 126.45, 125.87, 119.08, 45.69, 39.38, 33.67; Ms; m/z (479).

4-(2-(2-((2-(4-Bromophenyl)-2-oxoethyl)thio)-4-oxoquinazolin-
3(4H)-yl)ethyl)benzenesulfonamide (3): m.p 248–248�; 95% yield; IR
(KBr, cm�1) �: 3280, 3236 (NH), 1686 (C¼O), 1340, 1153 (O¼S¼O);
1H NMR (700MHz, DMSO-d6): d 8.07 (d, 2H, J¼ 8.26Hz), 8.04 (d,
1H, J¼ 7.84Hz), 8.85 (d, 2H, J¼ 8.19Hz), 7.81 (d, 2H, J¼ 7.98Hz),
7.68 (t, 1H, J¼ 7.63Hz), 7.52 (d, 2H, J¼ 8.05Hz), 7.41 (d, 1H,
J¼ 7.45Hz), 7.37 (s, 2H), 7.00 (d, 1H, J¼ 8.19Hz), 4.89 (s, 2H), 4.32
(t, 2H, J¼ 16.05Hz), 3.13 (t, 2H, J¼ 16.04Hz); 13C NMR (176MHz,
DMSO-d6): d 193.41, 160.74, 156.02, 146.88, 143.12, 142.27,
135.9266, 135.26, 132.38, 130.81, 129.67, 128.10, 126.93, 126.55,
126.52, 126.45, 125.87, 119.08, 45.72, 39.27, 33.67; Ms; 558.0; Ms;
(m/z; 557, Mþ 2; 559).

4-(2-(2-((2-(4-Chlorophenyl)-2-oxoethyl)thio)-4-oxoquinazolin-
3(4H)-yl)ethyl)benzenesulfonamide (4): m.p 250–251�; 93%
yield; IR (KBr, cm�1) �: 3281, 3239 (NH), 1684 (C¼O), 1345,
1159 (O¼S¼O); 1H NMR (700 MHz, DMSO-d6): d 8.15 (d, 2H,
J¼ 8.43 Hz), 8.04 (d, 1H, J¼ 7.85 Hz), 7.82 (d, 2H, J¼ 8.05 Hz),
7.70 (d, 2H, J¼ 8.40 Hz), 7.67 (d, 1H, J¼ 7.05 Hz), 7.52 (d, 2H,
J¼ 8.05 Hz), 7.41 (t, 1H, J¼ 7.45 Hz), 7.37 (s, 2H), 6.99 (d, 1H,
J¼ 8.19 Hz), 4.89 (s, 2H), 4.32 (t, 2H, J¼ 16.09 Hz), 3.13 (t, 2H,
J¼ 16.06 Hz); 13 C NMR (176 MHz, DMSO-d6): d 193.20, 160.74,
156.03, 146.89, 143.12, 142.28, 138.89, 135.60, 135.25, 130.73,
129.67, 129.43, 126.93, 126.53, 125.86, 119.08, 45.72, 39.28,
33.67; Ms; 514; Ms; (m/z; 513, Mþ 1; 514).

4-(2-(2-((2-(4-Fluorophenyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-
yl)ethyl)benzenesulfonamide (5): m.p 249–250�; 92% yield; IR (KBr,
cm�1) �: 3278, 3238(NH), 1666 (C¼O), 1342, 1152 (O¼S¼O); 1H
NMR (700MHz, DMSO-d6): d 8.23 (dd, 2H, J¼ 13.95 and 2.66Hz),
8.04 (d, 1H, J¼ 7.84Hz), 7 82 (d, 2H, J¼ 8.05Hz), 7.68 (t, 1H,
J¼ 7.63Hz), 7.52 (d, 2H, J¼ 7.98Hz), 7.46 (t, 2H, J¼ 8.71Hz), 7.41
(t, 1H, J¼ 7.49Hz), 7.37 (s, 2H), 6.99 (d, 1H, J¼ 8.12Hz), 4.90 (s,
2H), 4.33 (t, 2H, J¼ 16.09Hz), 3.14 (t, 2H, J¼ 16.06Hz); 13C NMR
(176MHz, DMSO-d6): d 192.73, 166.36, 164.93, 160.7571, 156.07,
146.89, 143.12, 142.28, 135.24, 133.65, 133.64, 131.88, 131.83,
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129.67, 126.92, 126.52, 125.87, 119.08, 116.41, 116.29, 45.70, 39.26,
33.67; Ms; m/z (497).

4-(2-(4-Oxo-2-((2-oxo-2-(p-tolyl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)-
benzenesulfonamide (6): m.p 257–258�; 92% yield; IR (KBr, cm�1) �:
3281, 3237 (NH), 1665 (C¼O), 1339, 1150 (O¼S¼O); 1H NMR
(700MHz, DMSO-d6): d 8.04 (t, 3H, J¼ 7.12 and 4.90Hz), 7.82 (d,
2H, J¼ 7.75Hz), 7.68 (t, 1H, J¼ 7.59Hz), 7.52 (d, 2H, J¼ 7.84Hz),
7.42 (t, 3H, J¼ 7.84 and 10.71Hz), 7.37 (s, 2H), 7.04 (d, 1H,
J¼ 8.19Hz), 4.90 (s, 2H), 4.33 (t, 2H, J¼ 15.79Hz), 3.14 (t, 2H,
J¼ 15.79Hz), 2.44 (s, 3H); 13C NMR (176MHz, DMSO-d6): d 193.40,
160.78, 156.12, 146.94, 144.46, 143.12, 142.30, 135.21, 134.33,

129.83, 129.67, 128.93, 126.91, 126.52, 125.95, 119.09, 45.65, 39.41,
33.67, 21.73; Ms; m/z (493).

4-(2-(4-Oxo-2-((1-oxo-1-phenylpropan-2-yl)thio)quinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (7): m.p 245–246�; 90% yield; IR (KBr, cm�1)
�: 3279, 3237 (NH), 1668 (C¼O), 1347, 1154 (O¼S¼O); 1H NMR
(700MHz, DMSO-d6): d 8.16 (d, 2H, J¼ 7.76Hz), 8.29 (d, 1H,
J¼ 7.85Hz), 7.80 (d, 2H, J¼ 7.84Hz), 7.73 (t, 1H, J¼ 7.31Hz),
7.65–7.61 (m, 3H), 7.84 (d, 2H, J¼ 7.84Hz), 7.39 (t, 1H, J¼ 7.52Hz),
7.37 (s, 2H), 6.78 (d, 1H, J¼ 8.12Hz), 5.75 (q, 1H, J¼ 7.16Hz),
4.29–4.19 (m, 2H), 3.07 (t, 2H, t, J¼ 12.58Hz), 1.57 (d, 3H,
J¼ 7.19Hz); 13C NMR (176MHz, DMSO-d6): d 198.20, 160.67, 155.81,

Figure 1. Structures of AAZ, SLC-0111, A–C, and the designed quinazoline derivatives (2–20) as CAIs.
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146.87, 143.12, 142.23, 135.98, 135.15, 134.01, 129.69, 129.34,
128.95, 126.92, 126.57, 126.48, 125.46, 119.13, 46.23, 45.76, 33.60,
16.44; Ms; 493.00; Ms; m/z (493).

2.2. CA inhibition

The hCA I, II, IX, and XII isoenzyme inhibition assays were per-
formed according to the reported method using the SX.18MV-R
stopped-flow instrument (Applied Photophysics, Oxford, UK)52–54.
All CA isoforms were recombinant isoforms obtained in-house, as
reported earlier55,56.

2.3. Molecular docking method

The molecular docking protocol was conducted according to the
reported methods28,32,33,41–43,57–64 using MOE 2008.10 from the
Chemical Computing Group Inc65. The crystal structures of CA-IX
(PDB ID: 5FL4) and CA-XII (PDB ID: 1JCZ) were obtained from the
protein data bank66,67.

3. Results and discussion

3.1. Chemistry

4-(2-(4-Oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)benzene-
sulfonamide (1) was obtained via the reaction of 4-(2-isothiocya-
natoethyl)benzenesulfonamide, triethylamine and 2-aminobenzoic
acid in boiling ethanol50,51 (Scheme 1). Stirring of compound 1
with potassium carbonate in acetone and different phenacyl bro-
mides produced the corresponding 4-(2-(2-((2-(4-substituted-phe-
nyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfo-
namides 2–7 with 90–95% yield. Various spectroscopic studies
were conducted to validate the structures of the newly synthes-
ised compounds, 2–7. The target compounds, 2–6, were validated

by the diminishing of the thioamidic proton (NH–C¼S) at
13.03 ppm and that of the thione moiety (NH–C¼S) at
175.29 ppm, as well as by the presence of the phenacyl carbonyl
group (SCH2COAr) at 194.04–192.73 ppm, with singlet peaks at
4.92–4.89 ppm and 39.41–39.26 ppm due to the phenacyl
(SCH2COAr) moiety, in the 1H and 13C NMR spectra, respectively.
Additionally, 4-(2-(4-oxo-2-((1-oxo-1-phenylpropan-2-yl)thio)quina-
zolin-3(4H)-yl)ethyl)benzenesulfonamide (7) was confirmed by
presence of the carbonyl group of (S(CH)CH3COAr) at 198.20 ppm
in the 13C NMR spectrum, as well as by the quartette
(S(CH)CH3COAr) and doublet (S(CH)CH3COAr) peaks at 5.75 and
1.57 ppm respectively in the 1H NMR spectrum, together with the
characteristic peaks (S(CH)CH3COAr) at 46.23 and (S(CH)CH3COAr)
at 16.44 ppm in the 13C NMR spectrum. The ethylbenzenesulfona-
mide amino group (NH2) (in compounds 2–7) was long-estab-
lished by the presence of a typical singlet peak at 7.37 ppm in the
1H NMR spectrum. The tails of aliphatic ethylbenzenesulfonamide
moiety were fixed by triplet peaks at 4.33–4.32 and 3.15–3.12 ppm
in the 1H NMR spectrum and distinctive peaks at 45.72–45.65 and
33.67 ppm in 13C NMR spectrum, respectively. 2-Substituted mer-
capto-4(3H)-quinazolinones (8–20) were prepared in 90–96% yield
by mixing compound 1 and 2-chloro-N-substitutedamide in acet-
one at room temperature in the presence of potassium
carbonate51.

3.2. CA inhibitory activity

The CA inhibitory activity of 4-(2-(2-(substituted-thio)-4(3H)-quina-
zolinon-3-yl)ethyl)benzenesulfonamides (compounds 2–20)
towards hCA I, II, IV, and IX isoforms was measured and compared
to acetazolamide (AAZ), a typical sulphonamide inhibitor. hCA I
was effectively inhibited by compounds 2 and 4–13 with the
inhibition-constant (KI) values ranging from 114.5–938.3 nM (AAZ:
KI ¼ 250.0 nM). Compounds 3 and 16 showed moderate activity
with KI values of 1447.0 and 1697.0 nM, respectively, while

Scheme 1. Synthesis of the designed quinazoline derivatives (2–20).
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compounds 14–15 and 17–20 showed weak activity with KI val-
ues ranging from 2048–5467 nM. Compounds 5, 8, 9, 11, 12, and
20 were verified to be effective hCA II inhibitors, with KI values of
25.4–95.4 nM (AAZ: KI ¼ 12.0 nM). Compounds 2, 3, 4, 6, 7, 10, 14,
and 16 showed modest hCA II inhibitory activity with KI values
ranging between 116.2 and 266.1 nM, whereas compounds 13
and 15 showed a weak inhibitory activity with KI values of 304.6
and 1099.0 nM, respectively. Compounds 2–17 and 20 displayed
potent hCA IX inhibitory activity with KI values ranging from 8.0
to 100.4 nM, which were greater than or nearly identical to that of
AAZ (KI ¼ 25.0 nM), whereas compounds 18 and 19 showed mod-
est hCA IX inhibitory activity with KI values ranging between 256.4
and 145.1 nM, respectively. 4-(2-(2-(Substituted-thio)-4(3H)-quina-
zolinon-3-yl)ethyl)benzenesulfonamide derivatives 2, 4, 5, 8, 9, 11,
12, 13, 14, 16 and 17 showed potent hCA XII inhibitory activity
with KI values of 2.4–49.1 nM compared to AAZ (KI ¼ 5.7 nM),
whereas compounds 3, 6, 7, 10, 15, 18, 19, and 20 exerted mod-
erate hCA XII inhibitory activities with KI values of 59.7–113.4 nM
(Table 1). On the other hand, the selectivity factor is critical goal
to increase the value of the new synthesised compounds. New
compounds, such as 2 and 4 showed characteristic effective and
selective antitumor (hCA IX and hCA XII) carbonic anhydrase
inhibitory activity with KI values (compound 2; 40.7 and 13.0 nM)
and KI values (compound 4; 8.0, and 10.8 nM) compared with AAZ
(KI values of 25 and 5.7 respectively). 4-(2-(2-((2-(4-Substituted-
phenyl)-2-oxoethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesul-
fonamides (compounds 2–7) showed high selectivity in the

inhibition of hCA IX over hCA I and hCA II (in the range of
15.0–95.0 and 2.3–23.0, respectively), as well as selectivity in the
inhibition of hCA XII over hCA I and hCA II (in the range of
5.5–70.0 and 2.5–17.0, respectively) (Table 1).

Compounds 4 and 5 showed high selectivity in the inhibition of
hCA IX over hCA I and hCA II, with selectivity ratios of 95.0 and 23.0,
respectively for compound 4, and those of 24.0 and 5.8, respectively,
for compound 5, compared with AAZ selectivity ratios of 10.0 and
0.5, respectively. Additionally, compounds 4 and 5 showed selective
inhibition of hCA XII over hCA I and hCA II with selectivity ratios of
70.0 and 17.0, respectively, for compound 4, and 44.0 and 10.0,
respectively, for compound 5, compared with AAZ selectivity ratios
of 44.0 and 2.1, respectively. N-(substituted)-2-((4-oxo-3-(4-sulfamoyl-
phenethyl)-3,4-dihydroquinazolin-2-yl)thio)amides (compounds 8–20)
showed high selectivity in the inhibition of hCA IX over hCA I and
hCA II, with selectivity ratios in the range 3.3–195.0 and 0.7–8.3
respectively, compared with AAZ selectivity ratios of 10.0 and 0.5
respectively, and that of hCA XII over hCA I and hCA II, respectively
with selectivity ratios in the range 11.0–158.0 and 1.8–31.0, com-
pared with AAZ selectivity ratios of 44.0 and 2.1 respectively.
Compounds 12–17, and 19–20 showed selective inhibition of hCA
IX over hCA I and hCA II, with selectivity ratios of 23.0–195.0 and
3.2–19.0, respectively, compared with AAZ selectivity ratios of 10.0
and 0.5. Additionally, Compounds 12, 14–17, and 19 showed select-
ive inhibition of hCA XII over hCA I and hCA II, with selectivity ratios
of 48.0–158.0 and 5.4–31.0, respectively, compared with AAZ selectiv-
ity ratios of 44.0 and 2.1 respectively.

Table 1. Inhibition data of hCA isoforms hCA I, II, IX and XII for sulphonamides using AAZ as standard drug.

Comps R R1
KI (nM)

a Selectivity analysis

hCA I hCA II hCA IX hCA XII hCA I/IX hCA I/XII hCA II/IX hCA II/XII

1 – – 31.5 0.62 – 0.59 – 53.12 – 1.05
2 COPh H 592.7 140.8 40.7 13.0 15 46 3.5 11
3 CO(4-Br-Ph) H 1447 174.7 75.2 69.6 19 21 2.3 2.5
4 CO(4-Cl-Ph) H 758.7 186.6 8.0 10.8 95 70 23 17
5 CO(4-F-Ph) H 399.5 95.4 16.5 9.1 24 44 5.8 10
6 CO(4-CH3-Ph) H 471.0 116.2 25.1 85.1 19 5.5 4.6 1.4
7 CO(4-Br-Ph) CH3 978.3 202.6 63.2 76.8 15 13 3.2 2.6
8 CONH2 H 114.5 25.4 34.5 2.4 3.3 48 0.7 11
9 CONHPh H 459.7 69.7 27.3 38.4 17 12 2.6 1.8
10 CONH(4-Br-Ph) H 697.1 119.3 64.9 61.0 11 11 1.8 2
11 CONH(4-Cl-Ph) H 726.4 92.0 66.8 31.6 11 23 1.4 2.9
12 CONH(4-F-Ph) H 548.6 87.6 12.7 8.7 43 63 6.9 10
13 CONH(4-CH3-Ph) H 878.1 304.6 37.4 45.2 23 19 8.1 6.7
14 CONH(4-OCH3-Ph) H 2567 266.1 84.0 49.1 31 52 3.2 5.4
15 CONH(4-OC2H5-Ph) H 3654 684.2 35.9 59.7 102 61 19 11
16 CONH(4-COCH3-Ph) H 1697 200.1 24.1 22.5 70 75 8.3 8.9
17 CONH(3,4,5-tri-OCH3-Ph) H 2672 519.4 100.4 16.9 27 158 5.2 31
18 CONH(4-F-Bn) H 2048 975.4 256.4 113.4 8 18 3.8 8.6
19 CONH(3,4-diOCH3-Bn) H 5467 1099 145.1 97.3 38 56 7.6 11
20 CONH(4-Cl-Ph) CH3 3628 75.4 18.6 66.7 195 54 4.1 1.1
AAZ – 250.0 12.0 25.0 5.7 10 44 0.5 2.1
aMean from 3 different assays, obtained using a stopped flow technique (errors were in the range of ±5–10% of the reported values).
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3.3. Structure-activity relationship (SAR) analysis

Several synthesised quinazolinone derivatives (compounds 2–20)
were potent inhibitors of the hCA isoforms.

3.3.1. SAR analysis of hCA I inhibition
SAR analysis of hCA I inhibition indicated revealed several key fea-
tures. (1) 4–(2-(4-Oxo-2-((2-oxo-2-phenylethyl)thio)quinazolin-3(4H)-
yl)ethyl)benzenesulfonamide (2), with a KI value of 592.7 nM, was
more potent than 4-(2-(2-((1-(4-substituted-phenyl)-1-oxopropan-2-
yl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides 3–4 and
4-(2-(4-oxo-2-((1-oxo-1-phenylpropan-2-yl)thio)quinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide 7, with KI values of 758.7–1447nM, but
less potent than 4-(2-(2-((1-(4-flouro/4-methyl-phenyl)-1-oxopropan-
2-yl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide 5 and
6 with KI values of 399.5–471.0 nM. (2) Unsubstituted-N-acetamide
8 (KI value ¼ 114.5 nM) was more active than the corresponding N-
phenylacetamide 9 (KI value ¼ 459.7 nM. (3) Substitution of the
phenyl ring of N-phenylacetamide 9 (KI value ¼ 459.7 nM) resulted
in substituted-N-phenylacetamides 10–17 and N-phenylpropana-
mide 20 with significantly decreased CA inhibitory activity (KI values
¼ 548.6–3654nM). (4) The hCA I inhibitory activity of N-(4-fluoro-
phenyl)-2-((4-oxo-3-(4-sulfamoylphenethyl)-3,4-dihydroquinazolin-2-
yl)thio)acetamide (12), with a KI value of 548.6 nM, was more stron-
ger than the corresponding N-(4-fluorobenzyl)-2-((4-oxo-3-(4-sulfa-
moylphenethyl)-3,4-dihydroquinazolin-2-yl)thio)acetamide (18) KI of
2048 nM. (5) hCA I inhibition of N-acetamide 11, with a KI value of
726.4 nM, was more powerful than the corresponding N-propana-
mide 20 with a KI value of 3628 nM.

3.3.2. SAR analysis for hCA II inhibition
The SAR analysis for hCA II inhibition revealed several key fea-
tures. (1) 4-(2-(2-((1-(4-Fluorophenyl/4-methylphenyl)-1-oxopropan-
2-yl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides 5
and 6 with KI values of 95.4–116.2 nM were more effective than
unsubstituted phenyl and other substituted phenyl derivatives,
such as compounds 2–4 and 7 with KI values of 140.8–202.6 nM.
(2) hCA II inhibition of 2-((2-oxo-2-phenylethyl)thio)quinazolinone
2, with a KI value of 140.8 mM, was stronger than the correspond-
ing 2-((1-oxo-1-phenylpropan-2-yl)thio)quinazolinone 7 with a KI
value of 202.6 nM. (3) N-Phenylacetamide 9 with a KI value of
69.7 nM was less potent than unsubstituted-N-acetamide 8 (KI
value ¼ 25.4 nM). (4) Substitution of the phenyl ring of N-phenyla-
cetamide 9 (KI; 69.7 nM) resulted in substituted-N-phenylaceta-
mides 10–17 and N-phenylpropanamide 20 with considerably
diminished CA II inhibitory activity (KI values of 75.4–684.2 nM); (5)
The hCA II inhibitory effect of N-acetamide 11 (KI value ¼ 92nM)
was less potent than the corresponding N-propanamide 20 (KI
value ¼ 75.4 nM). (6) The hCA II inhibitory activity of N-(4-fluorophe-
nyl)acetamide 12, with a KI value of 87.6nM, was stronger than the
corresponding N-(4-fluorobenzyl)acetamide 18 (KI of 2048nM).

3.3.3. SAR analysis of hCA IX inhibition
SAR analysis of hCA IX inhibition revealed several key factors. (1)
The 2-((2-oxo-2-phenylethyl)thio)quinazolinone 2, with a KI value
of 40.7 nM, was more potent than 2-((1-oxo-1-phenylpropan-2-
yl)thio)quinazolinone 7 with KI value of 63.2 nM. (2) The induction
of the activating group, such as the 4-methyl group on the phenyl
ring of compound 2 (KI value ¼ 40.7 nM) led to compound 6,
with an increased hCA IX inhibitory activity (KI value ¼ 25.1 nM).
(3) The introduction of the deactivating group on phenyl ring of

compound 2, such as the 4-bromo group, resulted in compound
3 with diminished hCA IX inhibition activity (KI value of 75.2 nM);
in contrast, the introduction of 4-fluoro/4-chloro groups produced
compounds 4–5 with boosted the inhibitory potency of the hCA
IX (KI values of 8.0–16.5 nM). (4) N-propanamide 20, with a KI
value of 18.6 nM, was powerful than the corresponding N-aceta-
mide 11 with a KI value of 66.8 nM. (5) The introduction of activat-
ing/deactivating groups on the phenyl ring of compound 2 (KI
value ¼ 27.3 nM) yielded compounds 10–17 with reduced inhibi-
tory activity (KI values ¼ 35.9–100.4 nM), except for compounds
12 and 16, which had improved hCA IX inhibitory potency (KI val-
ues ¼ 12.7–24.1 nM). (6) Substitution of the phenyl group of com-
pound 12 (KI value ¼ 12.7 nM) with a benzyl moiety resulted in
compound 18, which had significantly reduced hCA IX inhibitory
activity (KI value ¼ 256.4 nM).

3.3.4. SAR analysis for hCA XII inhibition
SAR analysis for hCA XII inhibition revealed several key factors. (1)
2-((2-Oxo-2-phenylethyl)thio)quinazolinone 2, with a KI value of
13.0 nM, was more potent than 2-((1-oxo-1-phenylpropan-2-yl)th-
io)quinazolinone 7 with a KI value of 76.8 nM. (2) The introduction
of a chloro/fluoro group at the phenyl ring, such as in compounds
4 and 5 (KI values ¼ 9.1–10.8 nM), improved the hCA XII inhibition
activity and was similar to that of compound 2 (KI value ¼
13.0 nM). (3) The unsubstituted N-acetamide, compound 8, (KI
value ¼ 2.4 nM) resulted in more powerful hCA XII inhibition than
N-substituted amides, compounds 9–20, (KI values ¼
8.7–113.4 nM). (4) hCA XII inhibition of N-acetamide 11, with a KI
value of 31.6 nM, was more powerful than that of the correspond-
ing N-propanamide 20 with a KI value of 66.7 nM. (5) The substitu-
tion of the phenyl group of N-(4-fluorophenyl)acetamide 12 (KI
value of 8.7 nM) with a benzyl moiety resulted in the N-(4-fluoro-
benzyl)acetamide 18, with sharply reduced CA inhibitory activity
(KI value ¼ 113.4 nM).

3.4. Molecular docking

3.4.1. Molecular docking of compounds 17 and 20 with CA IX and
CA XII isoenzymes
To further investigate the interactions between the selected active
compounds 17 and 20 with the hCAs targets, we performed docking
simulations into the binding pockets of the hCA isoforms, IX and XII,
using the MOE Suite65 (data are summarised in Figures 2 and 3).

Both the compounds 17 and 20 were shown to directly interact
with the zinc ion of CA IX and CA XII isoenzymes, via the sulphona-
mide anion of the active sites of both enzymes. However, the con-
tributions of the quinazoline scaffold and the terminal bulky
thioether fragments interaction are different, based on the CA iso-
form. In CA IX, the quinazoline ring of compound 20 interacts with
the Gln71 residue through a stable hydrogen bond, and gets
accommodated in the hydrophobic pocket lined by the Val121,
Val130, Leu134, and Leu91 residues, thereby stabilising the binding
(Figure 2, lower panel). In addition, the terminal p-chlorobenzamide
fragment formed a hydrophobic interaction with the Leu91 residue
(Figure 2, lower panel). In contrast, compound 17 was shown to
bind similarly to the pocket of CA IX, except the unfavourable
orientation of the quinazoline carbonyl moiety of compound 17
towards the hydrophobic pocket formed by Leu91 residue in CA IX
(Figure 2, upper panel). Also, the benzamide core showed a polar-
nonpolar interaction with the Leu91 and Thr73 residues, as the
bulky side chain causes steric hindrance, inducing conformational
changes in the bulky thioether tail and the quinazoline groups
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(Figure 2, upper panel). These differences in the binding of com-
pounds 17 and 20 could be responsible for the observed differen-
ces in the KI values of the two compounds for CA IX.

Results also showed different interactions between CA XII and
compounds 17 and 20 (Figure 3). The carbonyl group on the quina-
zoline ring in compound 17 was stabilised by direct hydrogen bond-
ing with the target residue Ser132 of CA XII (Figure 3, upper panel).
In addition, the Lys67 residue showed favourable hydrophobic bind-
ing to the quinazoline core of compound 17. The trimethoxybenza-
mide group of compound 17 was accommodated in the polar
pocket of CA XII that included Ser132 and Thr133 residues (Figure 3,
upper panel). The placement of compound 20 within the CA XII
pocket was not favoured, particularly because the quinazoline ring of
compound 20 was trapped between the polar pocket of CA lined by
the Ser135, Gln92, and Ser132 residues (Figure 3, lower panel).
Therefore, this interaction causes an energetically unfavourable
change in the terminal benzamide and quinazoline scaffold of com-
pound 20, which could be responsible for the decreased inhibitory
activity of compound 20 (Figure 3, lower panel).

3.4.2. Molecular orbital analyses
According to the frontier molecular orbital theory, HOMO and
LUMO are the most important orbitals found in a molecule, as they
can affect its biological activity, the molecular reactivity, the ionisa-
tion and the electron affinity68–70. The molecular orbital analysis of
the representative compounds 4, 17, and 20 (Figure 4) as an active

and selective derivatives was done by exploring their structure-
selectivity relationship. The electron transition from HOMO to
LUMO occurs freely when the energy gap is small. The HOMO-
LUMO energy gap for the compounds 4, 17, and 20 was calculated
to be �0.3125, �0.2834, and �0.28949eV, respectively. The nega-
tive energy values are indicative of a stable structure and confirm
the eventual charge transfer interactions. The distributions and
energy levels of the HOMO-LUMO orbitals computed for the above-
mentioned compounds are represented in Figure 4. HOMO and
LUMO orbitals are mainly delocalised in the carbon and nitrogen of
the quinazoline scaffolds and the sulphur ether atoms in the active
compound 4. While they are mainly delocalised in the S-linker of
the benzamide moiety, ring substituents in the compounds 17 and
20 reverse their interactions with the enzyme isoforms. These
results indicate that the affinity of the selective compounds for the
CA IX and CA XII binding sites could be because of the involvement
of the thioether moiety, and that the quinazoline moiety could
mostly provide the structural basis and the lipophilic function, con-
tributing strongly to their selectivity. In addition, the low HOMO-
LOMO energy gap suggests that the molecules have high stability
and are in their lowest energy conformation.

4. Conclusion

The CA inhibitory activity of 4-(2-(2-(substituted-thio)-4(3H)-quina-
zolinon-3-yl)ethyl)benzenesulfonamides (compounds 2–20)

Figure 2. Docking modes of active compounds 17 and 20 in the binding pockets of CA isoenzyme IX (PDB 5FL4). Predicted binding mode of compounds 17 (2D and
3D in upper panel), and 20 (2D and 3D in lower panel) with the hCA-IX target.
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towards the hCA I, II, IV, and IX isoforms was assessed and com-
pared with acetazolamide (AAZ), a typical sulphonamide inhibitor.
Of the different hCA isoforms, hCA I was effectively inhibited by
the compounds 2 and 4–13, with inhibition constant (KI) values in
the range of 114.5–938.3 nM (AAZ: KI value of 250.0 nM), while
compounds 3 and 14–20 showed moderate to weak CA inhibitory

activity with KI values of 1447.0–5467 nM. Compounds 5, 8, 9, 11,
12, and 20 were revealed to be effective hCA II inhibitors, with KI
values of 25.4–95.4 nM (AAZ: KI value of 12.0 nM). Compounds 2,
3, 4, 6, 7, 10, 13, 14, 15, and 16 showed modest to weak hCA II
inhibitory activity with KI values ranging between 116.2 and
1099.0 nM. Compounds 2–17 and 20 displayed potent hCA IX

Figure 3. Docking modes of the active compounds 17 and 20 in the binding pockets of CA isoenzyme XII (PDB 1JCZ). Predicted binding mode of compounds 17 (2D
and 3D in upper panel) and 20 (2D and 3D in lower panel) with hCA-XII target.

Figure 4. Molecular orbital spatial distribution and localisation for the HOMO and LUMO of three representative compounds, 4 (left panel), 17 (middle panel), and 20
(right panel).

740 A. S. EL-AZAB



inhibitory activity with KI values ranging from 8.0 to 100.4 nM
compared to AAZ (KI value of 25.0 nM), whereas compounds 18
and 19 showed modest hCA IX inhibitory activity with KI values
ranging between 256.4 and 145.1 nM, respectively.
Ethylbenzenesulfonamide derivatives, 2, 4, 5, 8, 9, 11, 12, 13, 14,
16, and 17 showed potent hCA XII inhibitory activities with KI val-
ues of 2.4–49.1 nM compared to AAZ (KI value of 5.7 nM), whereas
compounds 3, 6, 7, 10, 15, 18, 19, and 20 showed moderate hCA
XII inhibitory activities with KI values of 59.7–113.4 nM.
Compounds 2 and 4 showed characteristic effective and selective
antitumor (hCA IX and hCA XII) carbonic anhydrase inhibitory
activity with KI values (compound 2; 40.7 and 13.0 nM) and KI val-
ues (compound 4; 8.0, 10.8 nM). Compounds 2–7 showed high
selectivity ratios for the inhibition of hCA IX over hCA I (15.0–95.0)
and hCA IX over hCA II (2.3–23.0), while selectivity ratios of hCA
XII over hCA I (5.5–70.0) and hCA XII over hCA II (1.4–17.0).
Compounds 4 and 5 displayed selective inhibitory activity towards
hCA IX over hCA I with selectivity ratios of 95.0 and 24.0 respect-
ively, and hCA IX over hCA II with selectivity ratios of 23.0 and 5.8
respectively, as well as, selective inhibitory activity for hCA XII
over hCA I and hCA XII over hCA II (selectivity ratios of 70.0, 44.0
and 17.0, 10.0, respectively). Compounds 12–17, and 19–20 exhib-
ited selective inhibitory activities towards hCA IX over hCA I and
hCA IX over hCA II (selectivity ratios of 23.0–195.0 and 3.2–19.0,
respectively). In addition, compounds 8, 12, 14–17, and 19
showed selective inhibitory activity towards hCA XII over hCA I
and hCA XII over hCA II (selectivity ratios of 48.0–158.0 and
5.4–31.0, respectively). Docking study of the selective derivatives,
compounds 17 and 20, with the hCAs revealed consistent interac-
tions, particularly selectivity-oriented hydrophobic and aromatic
interactions through the S-alkyl substituent.
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