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ABSTRACT   
 
 
In the last few years, the reliability assessment acquired a fundamental role 
in many advanced technology applications.  System downtime and 
unexpected failures massively affect the productivity of a 
system/product/plant. As a consequence, the Reliability, Availability, 
Maintainability, and Safety (RAMS) disciplines, together with diagnostics 
and prognostics tools are becoming more and more essential for several 
application fields, especially in case of complex industrial systems where 
environment, personnel, and equipment safety are mandatory features. 
Several works in recent literature deal with design for reliability methods 
that integrates one or more reliability tasks during the early phase of the 
design. However, all-around Reliability Life Cycle procedures that takes into 
account the complete system life cycle (from design and development to 
actual implementation) are rarely dealt with.  Another fundamental aspect 
that is barely taken into account by recent literature is the importance of 
measurements and data within the context of a reliability life cycle 
approach. Usually, reliability parameters are estimated using probabilistic 
approaches, failure and degradation models, statistical analysis and failure 
data included in handbooks. However, instrumentation and measurements 
technologies could remarkably improve and optimize several different RAMS 
methodologies introducing suitable data analysis in spite of handbook data 
and probabilistic approaches. Trying to fill these gaps, the main aim of this 
work is to extend the classical idea of Design for Reliability introducing an 
innovative data-driven reliability life cycle procedure that integrates 
different RAMS techniques to optimize the reliability of complex industrial 
systems during both design and operational phases. However, it is not 
enough to simply provide a reliability procedure based on a set of different 
techniques without a thorough and structured study of the state-of-the art 
of each method. Therefore, the second aim of this project is the optimization 
of the techniques included in the proposed Reliability Life Cycle in order to 
overcome the major drawbacks highlighted by the literature review of each 
method. Firstly, the work deals with Failure Modes, Effects and Criticality 
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Analysis (FMECA) providing a statistical comparison of the alternative 
approaches found in literature and applying all of them to the risk analysis 
of a real case study (Ventilation system for high-speed trains). Furthermore, 
the work shows how the FMECA could be integrated in the context of a 
data-driven approach. Then, an innovative method to easily and effectively 
estimate a risk threshold is presented and tested using the design of a control 
system for wind turbine as a case study. Reliability Allocation plays a 
central role in the proposed Reliability Life Cycle. In this point of view, this 
work presents an innovative method able to overcomes all the initial 
hypotheses required by the other approaches and test it on three complex 
systems (a numerical example, a sensor unit for railway systems and a 
lubrication system for gas turbines).  The work also presents two test plans 
with the aim of characterize components and equipment by both system 
performance and system reliability point-of-views. The results of the 
experimental measurement campaigns provide significant information to 
improve the RAMS parameters and the electrical and metrological 
performances of the components under analysis (Inertial Measurement Units 
and DC-Dc converters for diagnostic devices). Furthermore, this research 
also proposes a new customized diagnostic-oriented decision-making diagram 
for maintenance management and apply it to maintenance planning of a 
wind turbine. Moreover, a new diagnostic method based on a data-driven 
Condition Monitoring tool is presented to efficiently monitor the health and 
detect damages in the wind turbine by means of measurements of critical 
parameters of the tested system. Finally, the work also deals with data-
driven remaining useful life (RUL) estimation of Lithium-Ion batteries 
proposing a hybrid approach based on both condition monitoring and physic 
degradation model where a state-space estimation is used to generate a big 
dataset for the training of the proposed Recurrent neural Network. The 
application on a real battery dataset proves the superiority of the proposed 
degradation model and the effectiveness of the estimation with respect to 
the state of the art.   
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CHAPTER 1 
 
INTRODUCTION  

 
 
 
 
This chapter provides a general overview of the themes 
analyzed in this thesis outlining the importance of every topic. 
The aim of this section is to provide enough background 
information so that the reader can understand the context in 
which the research sits. More in detail, this chapter discusses 
the gaps that this research aims to fill. The research questions 
are properly outlined, and the problems addressed by this 
study are extensively explained. The second part of the section 
illustrates the main contributions that this work will provide 
to the body of knowledge. The key element of novelties is 
thoroughly stressed to emphasize the importance of the thesis 
within the context of the RAMS disciplines and more in detail 
within the topic of Instrumentation and Measurements to 
Improve Diagnostics, Prognostic and Reliability.   
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 1.1. Research questions and objectives of the 
work  
Reliability engineering is the discipline of ensuring that a product will be as 
reliable as possible when operated under predetermined and well-defined 
conditions. To put it simple, the function of reliability engineering is to avoid 
failures. In reality, failures are inevitable; a product will fail sooner or later and 
thus, design countermeasures and maintenance operations should be planned 
accordingly.  
Nowadays, the interest in reliability engineering is growing fast worldwide in 
every industrial and technological field since it has grown to cover areas such 
as risk management and maintenance planning. Energy production systems 
such as Oil&Gas, nuclear, wind and solar plants, railway infrastructure, 
aerospace applications, automotive and self-driving vehicles, robotics, 
bioengineering and manufacturing industries are examples of application fields 
which constantly integrates reliability engineering within the 
product/system/plant design cycle. 
 
 

1.1.1.  Design for Reliability  
Reliability engineering is implemented by taking structured and feasible actions 
that maximize reliability and minimize the effects of failures. In general, two 
major steps are necessary to accomplish this objective. The first step of 
reliability engineering should be performed during the design and development 
phases of the product to maximize its reliability performances before the 
production. Parameters such failure rate, probability of failure at fixed time, 
acceptable risk level of a possible failure, safety impact in case of hazardous 
event, reliability to be allocated to each subunit are just few examples of 
reliability requirements that are more and more included in the overall product 
design requirements in every industrial and technological field. This first step 
is usually called Design for Reliability (DfR) and it could be implemented using 
a variety of techniques (reliability prediction, reliability allocation, fault tree 
analysis, failure modes and effects analysis, Weibull analysis, reliability testing 
just to cite a few).  
Design for Reliability is not a new concept, but it has begun to receive a great 
deal of attention in recent years. Specifically, Design for Reliability describes 
the entire set of tools that support product and process design (typically from 
early in the concept stage all the way through to product design and 
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development) to ensure that customer expectations in terms of reliability are 
fully met throughout the life of the product with low overall life-cycle costs.  
In other words, DfR is a systematic, streamlined, concurrent engineering 
program in which reliability engineering is weaved into the total development 
cycle. lt relies on an array of reliability engineering tools along with a proper 
understanding of when and how to use these tools throughout the design cycle 
[1]–[4].  
DfR aims to understand, identify, and prevent underlying failures before the 
devices are built. In designing a product, engineers usually miss the following 
characteristics:  

a. Key failure modes and failure rate of the product. 
b. Key failure modes that may be present in the service environment. 
c. Usable life of the product. 
d. Cost of maintenance required to sustain the inherent reliability. 
e. Availability, and rigorous testing.  

 
Essentially, DfR is a process that ensures that a product, or system, performs 
a specified function within a given environment over the expected lifetime. The 
complexities of today’s technologies make DfR more significant and valuable 
than ever before. Some of these reasons include: 

• Product differentiation: As electronic technologies reach maturity, 
there are fewer opportunities to set products apart from the 
competition through traditional metrics, like price and performance. 

• Reliability assurance: Advanced circuitry, sophisticated power 
requirements, new components, new material technologies and less 
robust parts make ensuring reliability increasingly difficult. 

• Cost control: 70% of a project’s budget is allocated to design. 
• Preserving profits: Products get to market earlier, preventing erosion 

of sales and market share. 
 
The design for reliability process encompasses a variety of tools and practices 
and describes the overall order of deployment that an organization needs to 
follow in order to design reliability into its products. 
There are many techniques that could be applied during design phase to 
estimate and to improve reliability (and more generally all RAMS) 
performances of the product. A well-defined and standardized procedure that 
takes into account such aspects is currently not available. However, there are 
many different DfR procedures that integrates several RAMS methodologies.  
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The most common methods implemented in DfR processes are: 
• Failure Modes and Effects Analysis  
• Reliability Block Diagram 
• Fault Tree Analysis 
• Physics of Failure 
• Accelerated Test 
• Screening procedures 
• Weibull Analysis 

 
 

1.1.2.  From Design for Reliability to Life Cycle Reliability  
Once a product is deployed and its life cycle is started, the second step of 
reliability engineering could be implemented. Appropriate maintenance 
operations should be initiated to alleviate performance degradation and prolong 
product life. Adequate data-driven reliability evaluation and condition-based 
maintenance operation should be put in practice to optimize the performance 
of the system by a reliability and availability point of view.  
Bearing all these aspects in mind, it is essential to develop and implement 
appropriate and adequate reliability programs that synthesize these individual 
reliability techniques.  
Currently, there are several design for reliability methods available in literature 
that integrates different reliability tasks. However, all-around Reliability Life 
Cycle (RLC) procedures that takes into account the complete system life cycle 
(from design and development to disposal) are seldom available.   
Another fundamental aspect that is barely taken into account by recent 
literature is the importance of measurements and data within the context of a 
reliability life cycle approach. Usually, reliability parameters are estimated 
using probabilistic approaches, failure and degradation models, statistical 
analysis and failure data included in handbooks. However, the size and number 
of available datasets has grown rapidly in the last few years since lots of devices 
are now capable of collect and store more and more information. Mobile devices, 
Internet of Things (IoT) technologies, smart and remote sensing, wireless sensor 
networks and radio-frequency identification (RFID) readers are some examples 
of innovation technologies that allows to acquire enormous amount of data 
about the life cycle of a monitored system/plant.  
In this point of view, instrumentation and measurements technologies could 
remarkably improve the reliability life cycle of a product/system introducing 
suitable data analysis to optimize the reliability tasks.  
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1.1.3.  Objectives of the work  
Trying to fill all the above-mentioned gaps and trying to answer the research 
questions described above, the main objective of this work is to extend the 
classical idea of Design for Reliability introducing an innovative data-driven 
reliability life cycle procedure that integrates different RAMS (Reliability, 
Availability, Maintainability and Safety) techniques to optimize the reliability 
of complex industrial systems during both design and operation phases.  
The proposal of an all-around reliability life cycle procedure aims at identifying 
an optimal solution to manage the RAMS requirements of a complex systems 
during its life cycle regardless the application field. This is the reason why this 
work is not built upon a single case study, but several applications have been 
considered in the different sections of this project.  
Furthermore, it is also extremely important to optimize each single method 
that is included in the overall procedure in order to achieve the best outcomes 
of the methodology and guarantee high RAMS performances of the developed 
system.  
For this reason, the second objective of this work is a thorough and structured 
study of some of the techniques included in the proposed data-driven reliability 
life cycle procedure analyzing the state-of-the art of each method and providing 
one or more improvements to solve the major drawbacks found in literature.  
The RAMS techniques that have been studied and optimized in this work are 
the following: 

• FAILURE MODES AND EFFECTS ANALYSIS (FMEA): the major 
shortcomings of this method have been studied in Section 3. After a 
comprehensive literature review of the alternative FMEAs available in 
literature, the objective of the work is a critical comparison of the 
approaches proposed in literature by a statistic point of view in order 
to evaluate what alternative method provides the most suitable and 
accurate results. After that, another aim of the work is to show how 
FMEA could be integrated in the context of a data-driven approach 
highlighting the importance of measurements to estimate the FMEA 
parameters during product life cycle. 

• RISK THRESHOLD ESTIMATION: the problem of the identification of a 
risk threshold to distinguish negligible failure modes and critical failure 
modes in the context of risk assessment for complex systems is dealt 
with in Section 4. Just few methods are currently available to solve this 
problem, and all of them have severe drawbacks. As a consequence, the 
aim of the research is to propose a RPN (Risk Priority Number) 
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threshold estimation method that could be objective and repeatable, 
easy and practical, accurate and cost-effective.  

• RELIABILITY ALLOCATION (RA): the state of the art of RA methods 
presented in Section 5 shows that all the approaches available in 
literature to allocate reliability performances to components and 
subunits require two initial assumptions: functional series configuration 
of the system architecture and exponential failure distribution of each 
component making up the system. Bearing these limitations in mind, 
the objective of this work is to propose a general high-level RA 
procedure that will allow designers to overcome the initial hypothesis 
and consequently apply each allocation method available in literature 
also to redundant complex systems that includes component 
characterized by Weibull, Lognormal, Gamma or any other failure 
distribution.  

• ENVIRONMENTAL STRESS SCREENING (ESS): two ESS-based test plans 
are presented in Section 6 with the aim of characterize components and 
equipment by both system performance and system reliability point-of-
views. In this context, the major objective of the work is to present how 
an effective ESS test plan could be used during design phase to 
characterize the performances of the developed system under harsh 
operating contexts typical of the real scenarios in which the system will 
be installed. The results of the experimental measurement campaigns 
provide significant information to improve the RAMS parameters of 
the system under analysis.  

• CONDITION MONITORING (CM) AND CONDITION-BASED MAINTENANCE 

(CBM): the importance of CM and CBM during the system life cycle 
are shown in Section 7. The scope of the research is to reduce 
subjectivity in maintenance task selection with respect to the current 
international standard that regulate this issue. Furthermore, the 
procedure aims at reducing cost by optimizing maintenance decisions 
and by making the projects more cost-efficient and cost-effective. 
Moreover, the work also aims at proposing a new diagnostic method 
based on a data-driven condition monitoring system to efficiently 
monitor the health and detect damages in the system by means of 
measurements of critical parameters. 

• REMAINING USEFUL LIFE (RUL): Section 8 deals with data-driven RUL 
estimation. The aim of this work is to introduce a hybrid approach 
based on both condition monitoring and physic degradation model to 
improve the accuracy and precision of RUL estimation for Lithium-Ion 
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batteries by means of Artificial Intelligence (AI) tools such Recurrent 
Neural Network (RNN) trained by innovative degradation models and 
hybrid approaches.  

  
Simultaneously, another objective of this works is to spread the idea of 
components and systems characterized by a non-constant failure rate to the 
product complete life cycle, taking this aspect into consideration in the various 
RAMS methods included in the proposed Reliability Life Cycle.  
Furthermore, the proposed approach aims at integrates data-driven 
methodologies within the classical concepts of reliability estimation to improve 
the RAMS assessment based on real data in spite of handbooks data and 
reliability models.  
An overview of the major objectives of this work is represented in Fig. 1.1 
emphasizing the four different aspects: introduction of a Reliability Life Cycle, 
optimization of RAMS methods, non-constant failure rate assumption extended 
to the complete procedure and data-driven methodologies to improve RAMS 
performances.  
 

 
Fig. 1.1. Overview of the major objectives of this work. 
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1.2.  List of major contributions  
This subsection aims at illustrates the key element of novelties and the major 
contributions to the body of knowledge brought by this work. Hereinafter is 
reported a list of all the novel concepts introduced in this thesis and in the 
international publications (both conferences and peer-reviewed journals) related 
to it: 

• Introduction of an all-around data-driven reliability life cycle 
procedure that extend the concept of the classical Design for 
Reliability methods supporting by a reliability point of view the 
complete life cycle of a complex industrial system, from design and 
development up to installation, operation, maintenance and disposal. 

• Definition of an innovative accurate, well-structured data-driven 
procedure that integrates different reliability tasks that are usually 
performed on its own (see Section 9) to optimize the RAMS 
parameters of the system under analysis.  

• Integration of safety requirements and SIL evaluation within the 
concept of a broadened DfR that is not usually taken into account by 
literature.  

• Development of a critical analysis of alternative RPNs by a statistical 
point of view to emphasize the best solution carrying out a Failure 
Modes, Effects and Criticality Analysis.  

• Proposal of measurements integration within the context of a FMECA 
assessment during product life cycle. 

• Introduction of an innovative approach based on a statistical analysis 
and a boxplot to separate negligible and critical failure modes as the 
outcome of a FMECA. The proposed methodology is an easy, 
practical and repeatable solution which represents the optimal trade-
off between cost and risk reduction level suffering no subjectivity in 
threshold definition. 

• Unlike the other methods available in literature, the proposed RPN 
threshold estimation methodology introduces the ALARP (As Low 
As Reasonably Practicable) concept as intermediate level between 
negligible and critical failure modes.  

• Proposal of an innovative reliability allocation methodology that 
overcomes the initial hypothesis of functional series configuration 
required by every other method that has been found in recent 
literature.  

• Integration of the reliability allocation method within the concept of 
DfR together with accelerated life test to overcome also the second 
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hypothesis required by all the allocation approaches available in 
literature (i.e. the exponential failure distribution). Adequate 
accelerated test plans can be performed right after the allocation 
procedure on the most critical components to allow extension of the 
methodology also to failure distributions other than the exponential 
one (e.g. 2-parameter Weibull, 3-parameter Weibull, Lognormal, 
Gaussian, Gamma, etc).  

• Proposal of both a suitable testbed and customized Environmental 
Stress Screening test plan for performance and reliability analysis of 
Inertial Measurement Units (IMU) under vibration and temperature 
conditions. 

• Characterization of DC-DC converters under harsh environmental 
conditions including cold temperature, high temperature, high 
humidity levels and wideband random vibrations by means of a 
customized Reliability Stress Screening test plan.  

• Introduction of an innovative diagnostic-oriented decision-making 
diagram within the concept of maintenance planning to decrease 
subjectivity of task selection and to improve the reliability and 
availability performances of the complex industrial system under 
analysis using data coming from monitoring and diagnostic units.  

• Proposal of a data-driven condition monitoring tool to detect damages 
in a wind turbine by means of measurements of critical parameters.  

• Use of a hybrid approach which integrates condition monitoring and 
physical degradation model to enhance the condition-based 
maintenance of Lithium-Ion batteries.  

• Integration of an Artificial Intelligence estimation method with a state 
space estimation to evaluate the Remaining Useful Life of Lithium-
Ion batteries. The state space estimation allows to generate a big 
dataset used for the training of an Echo State Network accurately 
customized introducing additional deep layers (used to ensure an 
accurate estimation of nonlinear trends) and a genetic algorithm (used 
to optimize the performance of the neural network).  

• Introduction of a single exponential degradation model for Lithium-
Ion batteries which is an alternative to the widely known empirical 
double exponential model. The proposed model provided comparable 
results with lower parameters and lower complexity ensuring the same 
accuracy. 
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1.3.  Impact of measurements within this work  
Although measurements and data are used to improve every step of the 
proposed reliability life cycle procedure, their major impact could be 
summarized as: 

• DURING PRODUCT DESIGN: Introduction of a system characterization 
by a reliability point of view using different testing procedures such 
as Environmental and Reliability Stress Screening. These methods 
allow to evaluate the reliability performance by adequate 
experimental measurements setup used to simulate the real operating 
conditions of the system during its life cycle. Recent literature does 
not adequately consider how the actual operating conditions can affect 
the performance and reliability of a system. This kind of analysis is 
called context-awareness assessment because it considers the real 
scenario in which the system is operating, which could be 
characterized by the presence of significant temperature, humidity, 
vibrations, mechanical shocks and so on. Take all these stress sources 
into account during the system design by means of adequate 
measurements setup allow to achieve a considerable improvement of 
the system reliability estimation.  

• DURING PRODUCT OPERATION: design of adequate condition-based 
maintenance and prognostic analysis which uses data coming from 
suitable diagnostic units to precisely estimate the Remaining Useful 
Life (RUL) of the system and consequently to plan the required 
maintenance operation based on the actual health state of the system. 
This will allow to save Operation&Maintenance (O&M) cost, to 
optimize system productivity and availability and to minimize the 
system downtime.   
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CHAPTER 2 
 
SYSTEMS UNDER ANALYSIS  

 
 
 
 
 
This chapter provides a brief description of the complex 
systems taken as case study in the various sections of this 
work. In particular, six different systems have been used to 
test the performances of the methodologies introduced in 
the other chapters and included in the proposed Reliability 
Life Cycle. The chapter describes the basic features of a 
wind turbine (with specific reference to the control system 
and the yaw unit), an HVAC unit for railway applications, 
an Inertial Measurement Unit for automotive and low-cost 
aeronautical applications, a lithium-ion battery, a 
lubrication system for gas turbines and a customized self-
made DC-DC converter. 
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2.1.  Wind Turbine  
Wind energy is one of many renewable energy sources that offer an alternative 
to burning fossil fuels [5] and is now one of the most widely used sources of 
renewable energy [6]. Wind energy is popular because of the lower investment 
cost and well-developed technology compared to the other renewable energy 
sources [7]. In compliance with WindEurope, (i.e. the Association for Wind 
Energy in Europe), the European Union (EU) is moving toward renewable 
energy sources, with hundreds of billions invested in renewable energy 
development and many new installations [8].  
The inevitable power fluctuations represent one of the greatest drawbacks of 
wind energy, as they introduce serious technical challenges into the electric 
power grid, such as power system quality and reliability, system protection, 
and power flow control [7]. Moreover, compared to other electricity generation 
systems, wind turbines (WTs) have relatively higher failure rates because of 
the harsher operation conditions and higher maintenance costs due to their 
relative inaccessibility [9]. These are the reasons why WTs have been taken as 
cases study in this work.  
A wind turbine (WT) is a device that converts the wind's kinetic energy into 
electrical energy. It has evolved from generating a few kilowatts in the 1980s to 
several megawatts today [10], [11]. WTs are generally placed together (wind 
farm) to produce electricity. The international standard IEC 61400 define 
Horizontal-axis wind turbine (HAWT) as a wind turbine system whose rotor 
axis is substantially parallel to the wind flow [12]. HAWT have the main rotor 
shaft and electrical generator at the top of a tower within an enclosure called 
nacelle. The nacelle, and consequently the rotor, must be pointed toward the 
wind direction to maximize the WT productivity.  
A wind turbine must grasp the mechanical energy from wind and convert it to 
electrical energy. So, it has both mechanical components and electrical 
components. The main components making up a wind turbine are illustrated 
in Fig. 2.1. 
By a mechanical point of view, a WT primarily consists of a tower, a nacelle, 
a rotor (i.e. a hub and three blades), and a foundation. The blades are connected 
to a central hub, which rotates with them. The whole assembly is called rotor. 
The rotor is mechanically isolated from the rest of the turbine that does not 
rotate with wind. The blades and hub rotate the main shaft, which goes inside 
an enclosed space on the top of the tower. This enclosed space is called the 
nacelle. The nacelle houses the gearbox, generator, and all the other necessary 
components such as heat exchangers, coolers and heaters, other motors and 
gears and so on.  
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Fig. 2.1. Main components included in the Wind Turbine under analysis. 

 
By an electrical/electronic point of view, the major components of a WT are 
the generator and the transformer. There are many other electrical components 
for various functions, such as motors for yaw motion, motors for blade pitch 
motion, motors for oil circulation pumps, space heaters for winter time warming 
inside the nacelle, lighting, various sensors, UPS, I/O board and a central 
processor or a PLC.  
The nacelle of the WT represents the intermediate part between the rotor and 
the tower. It does not rotate with the rotor, but it must rotate with respect to 
the tower. This rotating motion, called yaw, is necessary for directing the 
turbine toward the wind stream. This motion is provided by the yaw system, 
which comprises yaw motors and a yaw gears [13], [14].  
The yaw system is a key concern in new wind turbine installation since wind 
direction is a highly unstable physical quantity, as highlighted in Fig. 2.2. The 
graph shows the wind direction measured by an anemometer located on a 2 
MW Spanish onshore wind turbine during one day of operation. Moving the 
WT towards the wind direction is mandatory to maximize the energy 
production [15].  
Fig. 2.3 shows the yaw axis and the direction of the movement obtained with 
the yaw system. 
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Fig. 2.2. Wind direction acquired by the control system of a 2 MW Spanish onshore 

WT during one day of operation. 

 

 
Fig. 2.3. Schematic representation of the axis in a wind turbine. 

  

The WT under test is a 2MW wind turbine from the “LA PLANA 1” wind 
farm, located about 20km southwest of Zaragoza, in the region of Aragon, 
Spain. This wind farm consists of 5 WTs used to perform Research and 
Development (R&D) in wind energy. More in detail, the WT under test is a 
G80/2000 machine manufactured by “Gamesa Corporación Tecnológica”, it is 
characterized by an 80 m rotor diameter mounted on the top of a 60 m tubular 
tower by “Vestas wind systems”.  
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In this work, three different subsystems have been detailed analyzed as part of 
several case studies in the following sections: 

• YAW system. The turbine of interest has two active motion 
subsystems in redundant configuration: an hydraulic unit and an 
electromechanical unit.  

• Control system. It is a very critical unit characterized by several 
purposes. It has to collect information coming from the SCADA 
(Supervisory Control and Data Acquisition) system and from the other 
external sensors. These data must be transferred to the operating 
center, but they are also processed and used to manage all the turbine 
functionalities.  

• The electrical equipment unit is a generic subsystem containing all the 
electrical components in the turbine, including a power converter 
integrating an IGBT module, a rectifier bridge, a crowbar system, a 
system used to improve the power factor (PFC), a soft starter, 
transformers, contactors, relays and so on.  

 
 
 

2.2.  HVAC system  
Heating, ventilation, and air conditioning (HVAC) is the technology of indoor 
and vehicular environmental comfort. The objectives of HVAC systems are to 
provide an acceptable level of occupancy comfort and process function, to 
maintain good indoor air quality, and to keep system costs and energy 
requirements to a minimum [16], [17].  
With hundreds of commuters often crowded onto train carriages during peak 
hours, passenger comfort is a major concern for operators around the world. 
While train carriages can mitigate some of the misery of overcrowding with 
good design and punctual service, an efficient heating, ventilation and air 
conditioning system (HVAC) is the best way of regulating temperature and air 
quality on crowded trains [18], [19]. Furthermore, one of the main objective of 
HVAC is to ensure emergency ventilation and sufficient air exchange [20]–[22]. 
In summary, HVAC has to ensure four functionalities: cooling capacity, heating 
capacity, ventilation capacity and emergency ventilation. The HVAC system 
installed in each train car consists of an air equipment conditioning, a control 
rack, extractor box, heater and floor heaters, convectors, the necessary probes 
to control the temperature of the different enclosures of the car, a pressure wave 
control and a control panel in each cabin. More specifically, the main 
components of the HVAC under analysis are: 
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• Heat exchanger. 
• Condenser fan and motor assemblies. 
• Semi-hermetic compressor. 
• Liquid tanks. 
• Air and liquid filters. 
• High and low pressure switches. 
• Temperature, moisture and liquid indicators. 
• Evaporator blower. 
• Expansion valves 
• Outdoor air temperature sensor 
• Control panel. 

 
The basic diagram of the HVAC under test is illustrated in Fig. 2.4.  
  

 
Fig. 2.4. HVAC functional diagram including the main components of the unit. 

 
The refrigeration/heating cycle of the HVAC under test uses four essential 
elements, namely compressor, condenser, expansion valve and evaporator 
blower. At the inlet of a compressor, the refrigerant inside the system is in a 
low pressure, low temperature, gaseous state. The compressor pumps the 
refrigerant gas up to a high pressure and temperature. From there it enters a 
heat exchanger (sometimes called a condensing coil or condenser) where it loses 
heat to the outside, cools, and condenses into its liquid phase. An expansion 
valve regulates the refrigerant liquid to flow at the proper rate. 
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The liquid refrigerant is returned to another heat exchanger where it is allowed 
to evaporate, hence the heat exchanger is often called an evaporating coil or 
evaporator blower.  
As the liquid refrigerant evaporates it absorbs heat from the inside air, 
returns to the compressor, and repeats the cycle. In the process, heat is 
absorbed from indoors and transferred outdoors, resulting in cooling of the 
train. 
 
 
 

2.3.  Inertial Measurement Unit  
Today, Inertial Measurement Units (IMUs) are widespread in many application 
contexts. Cellular phones, cars, human motion, robotics, self-driving vehicles, 
navigation in transportation vehicles, military and aviation represent only a 
part of frameworks in which these kinds of devices are more and more employed 
(see for instance but not only [23]–[28]). One of the reasons for such expansion 
is that in many practical situations, IMUs represents an optimal trade-off to 
achieve the design requirements and implement effective and efficient diagnostic 
[29], [30]. 
According to the complexity, costs, size and weight constraints of the specific 
application, IMUs could integrate different kind of sensors. The most common 
are: triaxial accelerometers (used for measuring the linear acceleration towards 
the three axes), triaxial gyroscopes (used for measuring the angular rate toward 
the three axes) and triaxial magnetometers (used for measuring the static 
magnetic field toward the three axes) or only a subset of them.  
From a practical point of view, the common solutions available today on the 
market, are low-cost low-power unit based on Micro Electro-Mechanical 
Systems (MEMS) devices [31]–[33]. MEMS-based IMUs have great 
performances in terms of accuracy, stability integration capability and cost-
efficiency. Furthermore, thanks to their small size, MEMS-based IMUs are 
easily integrated in many systems and they can provide measurement 
information for algorithms of positioning, localization and tracking just to cite 
a few [34]–[36].  
The Inertial platform analyzed in this work is the LSM9DS1 iNEMO inertial 
module by ST Microelectronics. This IMU is a MEMS device which integrates 
a 3-axial accelerometer, a 3-axial gyroscope, a 3-axial magnetometer and a 
temperature transducer. The key features of the considered device are the 
following: 

• 3 acceleration channels, 3 angular rate channels, 3 magnetic field 
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channels. 
• 9-axes degree of freedom. 
• ±2/±4/±8/±16 g linear acceleration full scale. 
• ±4/±8/±12/±16 gauss magnetic full scale. 
• ±245/±500/±2000 dps angular rate full scale. 
• 16-bit data output. 
• SPI and I2C serial interfaces. 
• Analog supply voltage 1.9 V to 3.6 V. 
• Embedded temperature sensor. 
• Embedded FIFO. 
• Position and motion detection functions. 
• Guaranteed to operate over an extended temperature range from -40 °C 

to +85 °C. 
• Typically adopted in several applications as indoor navigation, smart 

user interfaces, advanced gesture recognition and automotive. 
 
The LSM9DS1 is a system-in-package usually integrated within simple 
evaluation board required to easily integrates the unit within more complex 
systems. In this case, the STEVAL-MKI159V1 adapter board from ST 
Microelectronics has been used. An image of the adapter board with the 
LSM9DS1 MEMS-based IMU is reported in Fig. 2.5. 
 

 
Fig. 2.5. STEVAL-MKI159V1 adapter board from ST Microelectronics used to host 

the LSM9DS1 MEMS-based IMU. 
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Furthermore, a suitable Printed Circuit Board (PCB) has been specifically 
designed and realized for hosting the IMU and connectors needed for powering 
the device and allowing digital data exchange with the required external Micro 
Controller Unit (MCU).  
The LSM9DS1 inertial platform has been configured to have a full scale of 16 
g for the accelerometer, a full scale of 2000 dps for the gyroscope and a full 
scale of        16 gauss for the magnetometer. Such full scales allow to achieve 
a sensitivity of 0.732 mg/LSB, 0.43 mgauss/LSB, and 70 mdps/LSB 
respectively.  
To acquire data from the IMU the SPI serial standard interface has been used. 
An STM32 Nucleo-64 boards by ST Microelectronics is used to retrieve the 
data coming from the IMU through a ribbon cable using an SPI communication 
configured to work at 10 kHz.  
More in detail, the Nucleo-64 board integrates a STM32F401RE microcontroller 
which is based on a high-performance ARM®Cortex® -M4 32-bit RISC 
architecture. It is used to manage the configuration and communication over 
I2C interface with the inertial platform and sends the acquired data through 
USB to a laptop.  
The firmware of the STM32 Nucleo-64 handles the data acquisition doing 
polling of the LSM9DS1 data-ready register.  
A summary of the proposed acquisition chain is illustrated in Fig. 2.6. 
 

 
Fig. 2.6. Summary of the IMU acquisition chain including a MEMS-based platform, a 

MCU-based Nucleo 64 board and a laptop. 
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The primary purposes of the STM32 Nucleo-64 boards are the following:  
• To initialize and set all the DUT functionalities.  
• To acquire data coming from the MEMS sensors. The communication 

between the DUT and the microcontroller is based on the I2C 
communication bus, which operates at 400 kHz. 

• To transfer the acquired data to a PC through the USB communication 
interface, which implements a virtual COM port service operating at 
115200 bps. The output data rate (ODR) selected for this application 
is 119 Hz since it is a classical choice for many positioning algorithms 
[25]. In this case, an analog antialiasing filter of 50 Hz is automatically 
introduced on each axis and on each sensor. 

 
 

2.4.  Lithium-Ion batteries  
In everyday life people use electrical energy to power most of their devices, 
leading to a great necessity of stored electrical energy. Nearly all of the 
electricity is generated at large power plants, then it is delivered to buildings 
through transmission lines, transformers and cables. The energy is at this point 
available on demand via wall outlets [37]. 
Batteries are a valid alternative to electricity distribution through grids which 
remarkably allows more freedom.  
The energy of chemical compounds acts as a storage medium, and during 
discharge a chemical process generates energy. For some batteries this process 
can be reversed, thus the battery can be recharged. This allows a differentiation 
of batteries into two main categories: Primary and Secondary [38]: 

• Primary batteries convert chemical energy into electrical energy only 
once.  

• Secondary batteries are reversible energy converters and can be charged 
and discharged a fixed amount of time.  

 
During the last forty years Lithium batteries have gained a central role in the 
battery market. Lithium batteries are used in many complex critical systems 
such as pacemakers and bioengineering device, mission-critical defense and 
space systems, portable radio transceivers, mobile phones and laptops, the 
majority of miniaturized electronic devices and many others. 
Most lithium batteries have a cell voltage range of 1.5 - 4.0 V. Since lithium is 
a lightweight material, these batteries have a high energy content by weight. 
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Other advantages of using lithium as battery anodes are: Flat and stable 
discharging current, wide temperature range (e.g. from -10 °C up to +55 °C), 
long shelf life (over 10 years), more environmentally friendly with respect to 
batteries that use metals such as nickel and cadmium.  
Lithium battery got its name from the metal of the anode (negative electrode), 
which is the most lightweight metal and the third element of the periodic 
system. In primary batteries the electrolyte is made from an organic solvent 
and a salt solved in it, the salt usually is a lithium salt. The cathode material 
can be solid or fluid (some examples are Thionyl chloride SOCl2 or Copper 
Monosulfide CuS). However, Lithium batteries are mainly known as secondary 
batteries. Many cells have been developed starting from primary ones. For 
example, a widely used secondary Lithium cell is based on an anode made of 
lithium-aluminum alloy with manganese and chromium additions and a 
manganese dioxide cathode. The electrolyte of this cell is made of a salt mixed 
with ethylene carbonate (EC). This battery can last up to 500 cycles with a 
depth of discharge of 10%. Many other examples could be made, but the most 
important secondary battery is the Lithium-ion battery commercialized by 
Sony in 1991. The anode of these batteries can be made of carbon in graphitic 
form and contains lithium in the charged state. The cathode is made from 
cobalt oxide (CoO2) which is able to build lithium-cobatl oxide( LiCoO2) 
during discharge phase. Lithium ions migrate back and forth during cycling 
between the two host lattices, Carbon (C) and cobalt oxide (CoO2).  
Since 1991 lithium-ion batteries technology have been considerably improved 
to achieve higher standards in terms of eco-sustainability, cost and useful life 
leading to the development of solid-state batteries with polymeric electrolyte. 
The internal structure of a cylindric Lithium-Ion battery is illustrated in Fig. 
2.7.  
Despite several improvements, some shortcomings related to the use of Lithium-
Ion batteries still remain. First of all, Lithium-ion batteries represent complex 
electrochemical-mechanical systems in which various degradation mechanisms 
are possible. These degradation mechanisms reduce the charge capability of the 
battery over its life, resulting in capacity drop and internal resistance increase 
(which lead to a rapid decrease of the battery useful life). Other shortcomings 
are related to the temperature excursion. While low temperature significantly 
decreases their performances, high temperature could lead to severe failure and 
risk of explosion. 
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Fig. 2.7. Internal structure of a cylindric Lithium-Ion battery.  

 
 
 

2.5.  Lube Oil Console for Gas Turbine  
A gas turbine is a turbomachinery that converts thermal energy into mechanical 
energy. The standard set-up of a gas turbine is an upstream rotating compressor 
coupled to a combustion chamber and a downstream turbine. Gas turbines work 
in a continuous thermodynamic cycle and the basic operation is described in 
the following. Atmospheric air flows through a compressor that brings it to 
higher pressure, than a fuel is added into the air to create a high-temperature 
flow after ignition in combustion chamber.  This way the chemical energy of 
the air mixture (air and fuel) is converted in thermal energy. The high-
temperature and high-pressure gas enters the turbine: here it expands down to 
the exhaust pressure and produces mechanical energy. The output of the 
process is the turbine shaft work that is used to drive the compressor and other 
devices coupled to the shaft (e.g. electric generator).  
The proper working of the turbomachinery is ensured by the gas turbine 
auxiliary systems such as starting system, lubrication system and control 
system, as it is possible to see in the functional diagram in Fig. 2.8. 
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Fig. 2.8. Functional diagram of a gas turbine. 

  
One of the most important auxiliary unit is the lubrication system, also known 
as lube oil console.  
A lube oil console is used to reduce friction and fatigue between moving surfaces 
in mechanical equipment. The main aims of the mineral lube oil console are the 
following [39], [40]:  

• Take the oil from a tank.  
• Regulate the hydraulic parameters of the oil (such as pressure, 

temperature, density, viscosity and flow rate).  
• Provide clean oil to the components that require it at the proper 

pressure, temperature, density, viscosity and flow rate.  
 
In compliance with [40], the complete Reliability Block Diagram (RBD) of the 
Lube Oil under analysis is illustrated in Fig. 2.9 highlighting redundancies using 
different colors. The 2oo3 configuration is illustrated using a grey box, while 
the parallel configuration is highlighted by red color. The standby redundancies 
are characterized by their own symbols: a green box represents a warm standby 
(i.e. the standby unit is powered and ready to operate on demand) while cold 
standby configurations (i.e. the standby unit is completely disconnected and it 
cannot fail when the main unit is activated) are illustrated using yellow. 
A specific description of the functionalities of each block included in the RBD 
in Fig. 2.9 is included in the following.  
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Fig. 2.9. Reliability Block Diagram of the Mineral Lube Oil Console under analysis. 
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The tank is equipped with a temperature sensor (TIT - Temperature Indicating 
Transducer), three identical differential pressure sensors (PDIT - Pressure 
Differential Indicating Transmitter) in 2-out-of-3 configuration (simply called 
2oo3 in the following), a level transducer (LIT - Level Indicating Transmitter) 
and an electric heater which are submerged in the oil.  
A “Pumps unit” composed by two redundant branches called “Pump unit 1” 
and “Pump unit 2” is used to take the oil from the tank and to send it to the 
temperature regulation system. 
Each pump unit is composed by a pump which is driven using two redundant 
electric motors to ensure high continuity of service. The main motor and the 
standby motor supply the main pump in the unit 1, while the auxiliary motor 
and the standby motor 2 supply the auxiliary pump in the unit 2. A Pressure 
Safety valve (PSV) is installed along with each pump.  
A Pressure Indicating transmitter (PIT) and a Pressure Control Valve (PCV) 
are installed to monitor and regulate the pressure of the oil outcoming from the 
pump, while the temperature of the oil is monitored and regulated using two 
redundant TITs and a Temperature Control Valve (TCV).   
The final stage of the system is a filtering unit composed by two redundant 
filters (called Main filter and Standby filter) along with a PDIT and a PCV 
used to identify when a filter is dirty, and it requires to be replaced.  
The system includes also a fan to guarantee air exchange. 
 
 
 

2.6.  DC-DC converter  
A DC-DC converter is a system used in power supply unit to convert a DC 
voltage value into a greater/lower DC voltage value. The DC-DC converter 
under analysis is a customized unit used for power supply of a sensor node in 
the context of WSN-based diagnostic units for industrial complex systems. 
However, the same sensor node could also be used for several purposes, such as 
smart farming monitoring system, IoT infrastructure, health monitoring, non-
destructive control, etc. The developed power supply is composed of a battery 
pack, regulated through a buck converter. Additional integrated sensors of 
current and voltage (power meters) are equipped on the input and output of 
the DC-DC converter. The electric circuit of the Buck converter under study is 
shown in the electrical schematic in Fig. 2.10. A synchronous topology has been 
selected since it avoids the conduction losses on the diode due to the forward 
voltage with consequent increment of conversion efficiency.  
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Fig. 2.10. Topology of the Buck converter under analysis. 

 
The electrical parameters of the developed Buck converter are reported in 
TABLE II. I.   

  
TABLE II. I 

PARAMETERS OF THE DC-DC CONVERTER UNDER ANALYSIS. 

PARAMETER VALUE 

Input Voltage Vin 18 V 
Input Current Iin 170 mA 

Output Voltage Vout 9 V 
Output current Iout 350 mA 

Load RL 25 Ω 
 
The prototype of the developed diagnostic system is illustrated in Fig. 2. 11 
highlighting the main components of the DC-DC converter and the ESP32 
microcontroller used to drive the converter, to acquire data from condition 
monitoring sensors and transmit the data to a central hub for elaboration and 
storage purposes. A summary of the main components included in the 
customized PSM-based Buck DC-DC converter is reported in TABLE II. II.  
To achieve the best performance regardless of the operating conditions, the use 
of Pulse Skipping Modulation (PSM) has been evaluated. As known, the most 
used modulation technique for power converters is the Pulse Width Modulation 
(PWM) which operates at a constant frequency and variable duty cycle [41], 
[42]. The switching losses of a PWM converter are approximately constant 
independently from the load since the operating frequency is fixed. Thus, the 
conversion efficiency is usually maximum at heavy-load but decreases 
dramatically at light-loads. For this reason, the PSM has been used to increase 
the conversion efficiency also at light load. This modulation operates at fixed 
duty cycle and period, but some cycles are skipped to adjust the output power. 
The advantage of this modulation is the reduction of switching loss for light 
load with consequent increment of DC-DC conversion efficiency cycle [41], [42]. 
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Fig. 2. 11. Prototype of the power supply under analysis. The main components of the 

DC-DC converter are highlighted with red boxes. 

 
TABLE II. II 

MAIN COMPONENTS OF THE DEVELOPED DC-DC CONVERTER INCLUDING MODEL, 
MANUFACTURER AND MAIN PARAMETERS. 

COMPONENT 
MODEL AND 

MANUFACTURER 
MAIN PARAMETERS 

Inductor 
NS12575T470MN 
By Taiyo Yuden 

L = 46.3 µH 
rL = 62.3 mΩ 

@1 MHz 

Output Capacitor 
GRM32ER7YA106KA 

By Murata 

C = 9.84 µF 
rC = 12.2 mΩ 

@1 MHz 

MOSFETs 
BSO150N03 
By Infineon 

rDS = 18.2 mΩ 

Driver 
TPS28226DRBR 

By Texas instrument 
Sink current Imax = 4 A 
Max frequency 2 MHz 

Power Meters 
INA219 

By Texas Instrument 
12 BIT ADC 

Conversion time 532 µs 
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CHAPTER 3 
 
FAILURE MODES AND EFFECTS 

ANALYSIS: A CRITICAL REVIEW  
 
 
Failure Modes, Effects and Criticality Analysis (FMECA) 
plays a central role in many Design for Reliability 
procedure. This chapter provides an overview about 
FMECA according to the international standard IEC 60812 
(2018). The base theory, the aim and the methodology of 
the classical FMECA are presented along with an extensive 
state of the art. All the alternative Risk Priority Numbers 
that do not completely revolutionized the base idea of the 
IEC 60812 have been taken into account in order to identify 
the optimal FMECA procedure to be included in the 
proposed Reliability Life Cycle. The final part of the 
chapter implements the classical FMECA along with some 
alternative approaches to the most critical component of an 
HVAC system for railway applications. 1,2  

  

1 The literature review included in this chapter has been published as “L. Ciani, G. 
Guidi, and G. Patrizi, “Fuzzy-based approach to solve classical RPN drawbacks for 
railway signaling systems,” IEEE Intelligent Transportation System Magazine, Article 
in Press, 2021 “. 
2 The part of this chapter related to the alternative Risk Priority Numbers has been 
published as: L. Ciani, G. Guidi, and G. Patrizi, “A Critical Comparison of Alternative 
Risk Priority Numbers in Failure Modes, Effects, and Criticality Analysis,” IEEE 
Access, vol. 7, pp. 92398–92409, 2019.  
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3.1.  Introduction on FMEA and FMECA 
methods 
Failure Modes and Effects Analysis (FMEA) was firstly introduced in 1950s by 
U.S. Military Standard MIL-STD 1629: “Procedures for Performing a Failure 
Mode Effect and Criticality Analysis” [43]. After that, it was developed and 
applied by NASA, in 1960s, to verify reliability of space programs. In the late 
1970s, the Ford Motor Company introduced FMEA to the automotive industry 
for safety and regulatory consideration. By 1990s, many international standards 
were published for different applications of FMECA. Nowadays, it becomes one 
of the most powerful methods used for risk assessment and maintenance 
management [44]. 
FMEA is a systematic procedure for the analysis of a system to identify the 
potential failure modes, their causes and effects on system performance 
(performance of the immediate assembly and the entire system or a process). 
Here, the term system is used as a representation of hardware, software (with 
their interaction) or a process [45]. The analysis is successfully performed 
preferably early in the development cycle so that removal or mitigation of the 
failure mode is most cost effective. This analysis can be initiated as soon as the 
system is defined enough to be presented as a functional block diagram where 
performance of its elements can be defined. FMEA timing is essential; if done 
early enough in the development cycle, then incorporating the design changes 
to overcome deficiencies identified by the FMEA may be more cost-effective. It 
is therefore essential that the FMEA task and its deliverables be incorporated 
into the development plan and schedule. Thus, FMEA is an iterative process 
that takes place coincidentally with design process. The FMEA is also an 
iterative process that is updated as the design develops. Design changes will 
require that relevant parts of the FMEA be reviewed and updated [46], [47]. 
FMEA is applicable at various levels of system decomposition from the highest 
level of block diagram down to the functions of discrete components or software 
commands. Therefore, application of FMEA have to be preceded by a 
hierarchical decomposition of the system into its more basic elements. It is 
useful to employ simple block diagrams to illustrate this decomposition. The 
analysis then starts with lowest level elements. A failure mode effect at a lower 
level may then become a failure cause of a failure mode of an item in the next 
higher level. The analysis proceeds in a bottom-up fashion until the end effect 
on the system is identified. 
FMEA generally deals with individual failure modes and the effect of these 
failure modes on the system. Each failure mode is treated as independent. The 
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procedure is therefore unsuitable for consideration of dependent failures or 
failures resulting from a sequence of events. To analyze these situations other 
methods and techniques, such as Markov analysis or fault tree analysis may be 
required.  
The reasons for undertaking Failure Mode Effects Analysis may include [47]: 

• To identify those failures which have unwanted effects on system 
operation, e.g. preclude or significantly degrade operation or affect the 
safety of the user.  

• To satisfy contractual requirements of a customer, as applicable.  
• To allow improvements of the system’s reliability or safety (e.g. by 

design modifications or quality assurance actions). 
• To allow improvement of the system’s maintainability (by highlighting 

areas of risk or nonconformity for maintainability). 
 
Traditionally there have been wide variations in the manner in which FMEA 
is conducted and presented. The analysis is usually done by identifying the 
failure modes and failure mechanisms, their respective causes and immediate 
and final effects. The analytical results can be presented on a worksheet that 
contains a core of essential information for entire system and details developed 
for that specific system. It shows the ways the system could potentially fail, the 
components and their failure modes that would be the cause of system failure, 
and the cause(s) of occurrence of each individual failure mode.  
FMECA (Failure Modes, Effects and Criticality Analysis) is an extension to 
the FMEA to include a means of ranking the criticality of the failure modes to 
allow prioritization of countermeasures [47]. It is widely considered an effective 
and efficient methodology for risk assessment, failure analysis and maintenance 
decision-making. It is a powerful and effective tool that could be easily applied 
to estimate the risk associated to every failure of a safety-critical system [15], 
[39], [48]. It adds to the FMEA worksheet the frequency of occurrence rank (O), 
the severity measure rank (S) and the detection of each failure mode (D). 
According to the International Standard IEC 60812 (2018) [47], these three 
parameters are combined in order to calculate a criticality rank called Risk 
Priority Number (RPN), as follow: 
 
 𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑂𝑂 ∙  𝑆𝑆 ∙  𝐷𝐷 (3.1) 

 
Occurrence (O) is an index that measures the probability that a failure mode 
will happen, where the greater the index the greater the frequency of 
occurrence. Severity (S) measures the impact of the failure effects on the system 
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functionalities, low values of S stand for negligible failures, while greater values 
of S stand for catastrophic failures with safety implication. Detection (D) 
represents the probability that the failure mode will be diagnosed before its 
effects are manifested on the system. Detection is ranked in a reverse order 
compared to the previous parameters, the higher the D, the lower the possibility 
of detecting the failure [49]–[51]. The international standard IEC 60812 [47] 
suggest to use only integer number in a 1-to-10 scale to assess the values of O, 
S and D. Consequently, the RPN can assume values within the range [1; 1000]. 
 
 
 

3.2.  Drawbacks of classical RPN 
The classical RPN formula in Equation 3.1 is very simple and intuitive, but its 
use for the criticality analysis of the system/process failure modes has 
highlighted many drawbacks [51]–[58]: 

• Gaps in the Range: The RPN values are not continuous but have only 
a few unique values. If a 10 values scale is used, 88% of the range is 
empty; the largest number is 1000, but 900 is the second largest 
followed by 810, 800, 729, and 720. 

• Duplicate RPNs: Different values of the parameters may generate 
identical RPN values. For example, the RPN numbers 60, 72, and 120 
can be formed from 24 different combinations of S, O, and D. However, 
the hidden risk implications of the three events may be very vastly 
different because of the different severities of the failure modes. 

• High Sensitivity to Small Changes: Multiplying the numbers comprising 
the RPN is intended to magnify the effects of high-risk factors. For 
above mention example, if O and D are both 8, then a 1- point 
difference in severity rating results in a 64 quantitative grade difference 
in the RPN. It is very evident RPN value varying sensitivity to small 
changes. 

• Inadequate Scale of RPN, in fact the relative importance among O, S 
and D is not taken into consideration. The three factors are assumed 
to have the same importance. This may not be the case when applying 
to a practical FMECA. For example, the RPN1 with 3, 4, and 5 as S, 
O, and D, respectively, gives the value of 60, whereas the RPN2 with 
3, 5, and 5 gives 75. In fact, in RPN2 the failure mode has the twice 
the occurrence, but the RPN value is not doubled. This explains that 
the RPN values cannot be compared linearly. 
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• O, S, D are defined in very subjective way, in fact the three factors are 
difficult to precisely determine. Much information in FMECA can be 
expressed in a linguistic way such as moderate, remote or very high. 
Anyway, people who express these judgements should presumably be 
experts in the field where FMECA is performed, and these experts 
represent the most reliable source of information. In spite of that, 
experts’ knowledge is often uncertain and incomplete so that FMECA 
analysis is to performed by the support of methods able to properly 
manage such uncertainty of input data. 

• Dispersion of RPNs: All the possible RPN values are scattered among 
the full range, in fact there is a high concentration of multiple value in 
the left side of the scale and a low concentration in the right side.  

 
Fig. 3.1 shows the numbers formed by the RPN and the relative problems 
expressed below. The most intuitive drawback is the presence of “holes” in the 
scale between the numbers. In fact, greater part of the numbers is concentrated 
in the left side of the scale. Another evident problem shown by the figure is the 
multiplicity of some values, for example there are 24 different combinations for 
obtaining some specific RPN values. 
 
 
 

 
Fig. 3.1. Histogram of all the possible values of Risk Priority Number. 
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3.3.  Review of innovative FMECA approaches  
Many works in recent literature try to propose different methodologies to 
overcome the problems associated to the classical RPN. Braband [59] proposes 
to assess the new IRPN as the sum of the Occurrence, Severity and Detection 
using logarithmic scale to evaluate the indexes (more detail about this approach 
are given in section 3.4.1). This method is the only alternative RPN included 
in the international standard IEC 60812 [47]. Chang et al. [60] propose an 
exponential RPN called ERPN given by the sum of three exponential functions, 
one for each of the indexes. This approach is enhanced in [61] using the product 
of occurrence and detection that stand as probability, and severity plays a role 
as value in power (more detail about these two exponential methods are given 
in section 3.4.2). In this way a higher weight to Severity is assessed compared 
to Occurrence and Detection. Several papers propose different RPN 
formulations introducing innovative coefficients and parameters. These 
solutions could solve at least two of the RPN drawbacks: the duplicate issue 
and the relative importance of the parameters. For instance, in [62] an 
alternative RPN is proposed by considering the associated quality cost and the 
capability of failure detection system as additional terms to optimize the 
prioritization of each failure mode. Carmignani [63] introduces a priority-cost 
FMECA calculating the priority of every potential design fault and the 
profitability in accomplishing the corrective design actions. In [64] the Root 
Cause Analysis (RCA) is used to assess sub‑criterion weight and significant 
coefficient for Occurrence, Severity and Detection. Tang et al. [65] proposes an 
innovative approach considering the ambiguity measure of the experts that 
carried out the assessment of O, S and D to mitigate the subjectivity issue.  
Chang [66] suggests to use a method that integrates the ordered weighted 
geometric averaging (OWGA) operator and the decision-making trial and 
evaluation laboratory (DEMATEL) approach in order to a achieve an efficient 
and effective algorithm in risk analysis. In [67] a simple approach is proposed 
defining a new metric called RAV (Risk Assessment Value) as the product of 
Occurrence and Severity divided by Detection. In [68] Severity is obtained by 
summing different parameters related to safety, environment, costs, customer 
satisfaction and mission goal. In [69] a data-driven RPN calculation is introduced 
based on quantitative measures and sizable datasets to obtain a more formal and 
objective risk evaluation. Giardina [70] introduces a FMECA and HAZOP 
(hazard and operability analysis) integrated analysis called FHIA to improve risk 
analysis of complex system. In [71] a method based on minimum cut set is 
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proposed to take into account multiple failure modes and to extend the RPN 
definition by multiplying it with a weight parameter which characterize the 
importance of the failure causes within the system. 
A widely used technique to overcome the RPN problems is the fuzzy logic [72].  
Fuzzy theory was firstly introduced by Professor Lotfi A. Zadeh in 1965 [73] to 
handle the concept of partial-truth values between “completely true” and 
“completely false”. A fuzzy set A is usually expressed in terms of its membership 
function μA  which maps domain elements (x) in their respective degrees of 
belonging in the interval from 0 to 1 [74], [75]: 
 
 A = ��x, μA(x)� | x ∈ X� (3.2) 
 μA(x): X → [0,  1] (3.3) 

 
The strength of fuzzy is intrinsically correlated to Equation 3.2, in fact the 
possibility of assessing a degree of membership that is not fixed to 0 or 1, but 
could varies within a range between “false” to “true” allows to achieved several 
advantages in reliability engineering.  
Fuzzy is flexible and conceptually easy to understand, it introduces linguistic 
terminology and it allows to work with approximate values as well as 
incomplete or ambiguous data [76], [77].  
Fuzzy theory was applied to FMECA procedure in many different industrial 
fields, such as nuclear power plant [78], traditional power plant [79], power 
electronic components [80], satellite [55], agriculture [81], Oil&Gas [82], tunneling 
operation [83] and many others. Fuzzy FMECA could be conducted in many 
different ways depending on the drawbacks that the procedure wants to 
overcome. In many paper the fuzzy “If-Then principle” is implemented because 
it is far too easy the assessment of O, S and D using linguistic terms (see for 
instance [84]–[89]). All papers that use the fuzzy if-then to solve the FMECA 
drawbacks start representing Occurrence, Severity and Detection through 
linguistic variables that are associated to fuzzy membership functions [90]–[93]. 
Using a set of fuzzy inference rules, a fuzzy RPN assessment is obtained [94]–[99]. 
All the If-then FMECA procedures in literature are based on one of the following 
three types of fuzzy inferences to solve the if-then rules. The Mamdani inference 
firstly proposed in [100] results in an aggregation of fuzzy sets that must be 
defuzzied to achieve the crisp RPN. In the Sugeno inference [101] the results of 
the if-then rule provides a polynomial that must be solved to obtain the RPN. 
The last one is the Tsukamoto inference [102] which is a hybrid approach based 
on Mamdani and Sugeno inferences which is not widely used in literature. The 
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main disadvantages of all the if-then approaches is the number of rules that must 
be assessed. 
If-Then FMECA is not the only way to introduce fuzzy theory inside the classical 
FMECA procedure. In [103] an approach based on convex normalized fuzzy 
number is introduced using the degree of match to estimate the matching 
between the expert judgments and the fuzzy number. Keskin et al. [104] proposes 
to use the fuzzy Adaptive Resonance Theory (fuzzy ART) to assess the Risk 
Priority Number. In [105] the fuzzy RPN is calculated using alpha-level sets and 
linear programming models through the weighted geometric means of the fuzzy 
number assessed for Occurrence, Severity and Detection. In [106] a fuzzy 
approach integrating weighted least square method is used to achieve robustness 
RPN results in term of uncertainty. In [107] a consensus-based group decision-
making framework has been proposed based on possibilistic hesitant fuzzy 
linguistic information. The integration of fuzzy theory with TOPSIS (Technique 
for Order of Preference by Similarity to Ideal Solution) method was firstly 
proposed by Chen [108], and then applied in many papers such as Braglia et al. 
[109], Carpitella et al. [110] or Mangeli et al. [111] to solve FMECA drawbacks. 
In [112] the analytic hierarchy process (AHP) was used to integrate inside the 
classical FMECA some economic aspects. This approach was enhanced in  [113] 
combining fuzzy TOPSIS and AHP method. Other papers integrate fuzzy logic 
with different approaches, such as TODIM (a Portuguese acronym of interactive 
and multiple attribute decision making) [114], VIKOR (a Serbian acronym of 
Multicriteria Optimization and Compromise Solution) [115], PROMETHEE 
(Preference ranking organization method for enrichment evaluation) [116] and 
QUALIFLEX (Qualitative flexible multiple criteria method) [117].  
 
 
 

3.4.  Alternative RPNs: a critical analysis  
Several papers propose different approaches to overcome the limits associated 
to RPN. As extensively illustrated in the previous subsection, literature is 
plenty of papers that suggest integrating fuzzy theory in FMECA to optimize 
the RPN calculation.  
Despite these papers provides significant results in terms of RPN prioritization, 
the introduction of many different approaches within the classical FMECA 
drastically increase the complexity of the procedure. In fact, in many of these 
works, fuzzy is combined with other mathematical theory or with advanced 
approaches, consequently the complexity of the technique rapidly increases. 
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Moreover, in almost all of the already proposed fuzzy-FMECA the concept of 
the classical RPN defined in the international standard IEC 60812 is completely 
missing. The risk is not achieved by the multiplication of the three above-
mentioned indexes, but with different complex procedures that are not fully 
compatible with the policy of many companies that looks at easy and fast 
procedure to assess the risk analysis. 
As a consequence, the rest of the work takes into account only the alternative 
RPNs which propose powerful solution to solve the drawbacks included in 
Section 3.2 without increasing the computational complexity of the method and 
remaining coherent to the classical idea included in the standard IEC 60812 
[47]. 
TABLE III.I summarizes the main proposed approaches for each of the individual 
problem [51]. The first column of TABLE III.I contains the RPN drawbacks, while 
the second one contains the main methods suggested in literature to solve them. 
 

TABLE III.I 
POSSIBLE APPROACHES TO SOLVE COMMON RPN ISSUES. 

ISSUES POSSIBLE APPROACH 

Holes  - Sum O, S and D. 

Duplicate RPNs 

- Introduction of corrective factors. 
- Using exponentiation or exponential function. 
- Scale reduction. 
- Fuzzy theory. 

High sensitivity - Sum O, S and D. 

Importance O, S, D 
- Introduction of corrective factors.  
- Different formulation of RPN. 
- Fuzzy theory. 

Subjectivity O, S, D 
- Fuzzy theory. 
- Measurements 

Dispersion 
- Logarithmic equation. 
- Sum O, S and D.  
- Scale compression. 

 
 

3.4.1.  Sum of the indexes  
Braband et al. [59], [118] proposes an alternative equation for the RPN 
assessment, using the sum of the three metrics, called IRPN - Improved Risk 
Priority Number. The international standard IEC 60812 (2018) [47] recognizes 
the alternative RPN method proposed by Braband (called ARPN - Alternative 
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Risk Priority Number - instead of IRPN) as the only admissible modified 
version of the commonly used RPN with the aim of providing a more consistent 
assessment of criticality when parameters can be quantified on a logarithmic 
scale. Equation 2 shows how to assess the Alternative Risk Priority Number:  
 
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑂𝑂 +  𝑆𝑆 +  𝐷𝐷 (3.4) 

 
Considering a [1; 10] range of integer values for the three parameters O, S and 
D, Fig. 3.2 shows the numbers formed by the IRPN and the relative repetition 
frequency. The IRPN is a powerful solution for most the problems explained 
above because it results in a continuous scale delating the value dispersion, as 
shown in Fig. 3.2.   
In fact, IRPN assumes all the integer values in the interval from 3 to 30, 
therefore the IRPN scale has no gaps. 
Moreover, it solves the sensitivity problem because small variations in one 
ranking have the same effects on the IRPN, independently of the values of the 
other factors. Despite these advantages, the problem of the duplicate IRPNs is 
highly accentuated, with the maximum repetition frequency of 75, three times 
bigger than the classical RPN. This problem is clearly evident considering that 
the percentage number of unique values is only 2.8% comparing to the 12% of 
the classical RPN. 
 
 

 
Fig. 3.2. Histogram of all the possible values of ARPN (or IRPN). 
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3.4.2.  Exponential alternatives to the RPN  
Chang et al. [60] proposed an exponential RPN (ERPN) as Equation 3.3. In 
this method, the number of unique values for risk evaluation of failures has 
been increased, reducing the number of duplicates RPNs (see Fig. 3.3).  
 
 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝑥𝑥𝑊𝑊𝑆𝑆∙𝑆𝑆 + 𝑥𝑥𝑊𝑊𝑂𝑂∙𝑂𝑂 + 𝑥𝑥𝑊𝑊𝐷𝐷∙𝐷𝐷 (3.5) 

 
Where: 

• x is a positive integer, and 𝑥𝑥 ≥ 2;  
• O, S and D are integer values between 1 and 10;  
• 𝑊𝑊𝑆𝑆,𝑊𝑊𝑂𝑂,𝑊𝑊𝐷𝐷 are weights for severity, occurrence and detection 

respectively. 
 
Chang proved that the optimal choice is x=3, leading to 220 different unique 
values. 
 

 
Fig. 3.3. Histogram of all the possible values of ERPN(3). 

Khorshidi et al. [61] proposed another exponential alternative modifying 
Equation 3.3, as the product of occurrence and detection standing as 
probability, and severity plays a role as value in power, as follow: 
 
 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑧𝑧) = (𝑂𝑂 ∙ 𝐷𝐷) ∙ 𝑧𝑧𝑆𝑆 (3.6) 

 
Where z is a real number, and 𝑧𝑧 ≥ 1. According to Khorshidi, the choice that 
leads to the maximum number of unique values is 𝑧𝑧 = 𝑒𝑒 (see Fig. 3.4). 
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Fig. 3.4. Histogram of all the possible values of URPN(e). 
 
Both ERPN and URPN solve very well the problem of duplicate values and of 
different importance between O, S and D. However, both approaches amplify 
the problems of the “holes” and the dispersion issue because the maximum 
possible values are respectively 2 and 3 order of magnitude larger than the 
classical RPN. 
 
 

3.4.3.  Logarithmic RPN  
The application of logarithm in the classical RPN equation compress the scale 
of possible RPN to a 0-3 range (if base-10 is used), as shown in Fig. 3.5.  
 

 
Fig. 3.5. Histogram of all the possible values of LRPN. 
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 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑂𝑂 ∙ 𝑆𝑆 ∙ 𝐷𝐷) (3.7) 

 
The logarithmic RPN reduces the dispersion and the “holes” in the scale, but 
it has no effects on duplicates issue and on the importance of the three factors.  
For these reasons it is not an optimal method and in literature there is not 
any documentation that applies this equation on real systems. 
 
 

3.4.4.  Scale adjustments  
Many papers (see for instance but not only [68], [69], [119]–[121]) suggest to 
reduce the number of O, S and D levels because in many applications it is 
difficult to evaluate the parameters in ten different levels. According to these 
works, the choice of only 5 levels is optimal in several manufacturing fields. The 
standard IEC 60812 (2006) [122] proposed a 10-level approach and a reference 
guide to how assess these values. The 2018 new version of the standard [47] 
revises the reference guide table and it lets the designers free to assign the O, 
S and D values personalizing their own tables.  
For instance, the assessment of the occurrence rank is strictly related to the 
item failure rate and usually the failure rates of the components that make up 
a generic system varying in few orders of magnitude. Therefore, the use of a 5 
or less different occurrence values is recommended in order to cover the failure 
rates range in an optimal way. The consequences of a failure mode influence 
the severity assessment. In many applications it is not possible to define ten 
different levels of failure consequences, therefore the severity ranks are merged 
in sublevels with two or three individual level together. The same considerations 
are valid also for the detection range because usually the diagnostic information 
is not completely available during the design phase. For these reasons, a 5 or 
less levels evaluation is optimal also for severity and detection.  
Two examples of the application of a 1-5 scale of the O, S and D parameters 
for classical RPN and for IRPN are illustrated respectively in Fig. 3.6 and Fig. 
3.7. ERPN and URPN using 1 to 5 scale are both the best solutions in term of 
duplicate issues, but the range of possible values has little significance even in 
this case, as it is possible to see in Fig. 3.8 in case of the URPN(e) approaches 
is applied using a reduced scale.  
Overall, all the proposed approaches maintain each related drawback, but the 
adjustment of the scale using only five different values allow to mitigate these 
limits, making every technique more suitable for industrial and manufacturing 
applications.   
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Fig. 3.6. Histogram of all the possible RPN using a 1-5 scale of O, S and D parameters. 
 

 
Fig. 3.7. Histogram of all the possible IRPN using a 1-5 scale of O, S and D parameters. 
 

 
Fig. 3.8. Histogram of all the possible URPN(e) using a 1-5 scale of the O, S and D 
parameter. 
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3.4.6.  Statistical comparison  
The associated statistics of different alternative Risk Priority Numbers (e.g. 
mean, median, minimum value and maximum value) have been evaluated and 
included in TABLE III.II. The table also includes the maximum repetition 
frequency of a single risk value (called “Max Rep”), the number of different 
unique values and the percentage of unique values, considering that the possible 
different combinations of three factors expressed in a 10-point scale is 103. 
The IRPN proposed by Braband [59], [118] is characterized by a very 
compressed range from 3 to 30, with mean value and median coincident with 
the midpoint of the range. These parameters highlight that this method can 
easily overcome the “holes” and the dispersion issues. At the same time, the 
duplicate problem is amplified, as it is clearly identified considering that the 
percentage number of unique values is only 2.8% comparing to the 12% of the 
classical RPN. Indeed, it is characterized by the highest “most frequency”, 
representing the main problem related to this approach. Quite the opposite, 
ERPN and URPN solve very well the duplicates drawback with the maximum 
repetition frequencies of 6 and 4 respectively, and the related percentages of 
unique values of 22% and 42% respectively. Despite these advantages, both 
these methods have a limited use because of the range of possible values that 
is extremely broadened. Indeed, the mean value and the median of ERPN and 
URPN are shifted toward high numbers, producing results very difficult to 
interpret. The logarithmic RPN is characterized by a very compressed and 
dense scale with the same number of unique values of the classical RPN. The 
worst issue of this method is the shape of the distribution, that is moved toward 
the highest values of the range (i.e. right side of the plot), as it is possible to 
see in Fig. 3.5. 
The statistical demonstration of this sentence is provided by the LRPN median, 
that is the only value in the column higher than the midpoint of the range. In 
this case, the shape of the distribution and the high median value make the 
definition of the RPN threshold very challenging, because lots of RPN are 
concentrated in the final section of the range. Finally, TABLE III.II also 
highlights that all the alternative approaches proposed above have advantages 
and disadvantages, and no one can solve at the same time all the RPN 
drawbacks without introducing other limitations. Therefore, in many real cases, 
the classical RPN is still suitable, and the choice of alternative method depend 
on the analytical cost that a company can support. TABLE III.III compares the 
application of a scale adjustment on the classical RPN and on the alternative 
Risk Priority Numbers analyzed in this section. Obviously, the identification of 
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just 5 different values mitigates the duplicate issue, as it is possible to see 
comparing the percentages of unique values in TABLE III.II. and TABLE III.III. 
 

TABLE III.II 
COMPARISON BETWEEN STANDARD RPN AND DIFFERENT ALTERNATIVE RISK PRIORITY 

NUMBER APPROACHES USING A 1 TO 10 SCALE. 

FUNCTION MEAN MEDIAN 
MAX 

REP 

NUMBER OF 

UNIQUE 

VALUES 

% UNIQUE 

VALUES 
MIN MAX 

RPN 
1-10 scale 

166 105 24 120 12% 1 1,000 

IRPN 
1-10 scale 

16.5 16.5 75 28 2.8% 3 30 

ERPN(3) 
1-10 scale 

26,572 13,203 6 220 22% 9 177,147 

URPN(e) 
1-10 scale 

105,402 4,877.5 4 420 42% e 2,202,646.6 

LRPN 
1-10 scale 

1.9679 2.0212 24 120 12% 0 3 

. 
 
 

TABLE III.III 
COMPARISON BETWEEN STANDARD RPN AND DIFFERENT ALTERNATIVE RISK PRIORITY 

NUMBER APPROACHES USING A 1 TO 5 SCALE. 

FUNCTION MEAN MEDIAN 
MAX 

REP 

NUMBER OF 

UNIQUE 

VALUES 

% UNIQUE 

VALUES 
MIN MAX 

RPN 
1-5 scale 

27 20 9 30 24% 1 125 

IRPN 
1-5 scale 

9 9 19 13 10.4% 3 15 

ERPN(3) 
1-5 scale 

217.8 189 6 35 28% 9 729 

URPN(e) 
1-5 scale 

419.77 147.78 3 70 56% e 3.710,33 

LRPN 
1-5 scale 

1.78 1.86 9 30 24% 0 3 
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3.5.  Case study: HVAC system  
In order to compare advantages and disadvantages of the alternative risk 
priority numbers described above, a FMECA for Heating, Ventilation and Air 
Condition (HVAC) system in railway application has been developed in this 
work. The critical analysis of the comparison can provide recommendations and 
suggestions regarding the choice of the alternative RPN basing on the type of 
application.   
This study focuses on the failure modes, effects and criticality analysis of some 
of the most critical components that make up the HVAC: compressor, 
evaporator blower and air flow detector. 
The compressor draws in the cold gases exiting the evaporator battery at low 
pressure and compresses them, so it comes out as gas at high pressure and 
overheated. The motor compressor is fitted with an electromagnetic valve to 
vary the capacity according to the demands of refrigeration load at any time. 
Blowers are used to compress the water vapor for the purpose of raising its 
pressure and saturation temperature. This produces the desired heat transfer 
in the main heat exchanger for recycling the energy in the vapor, which greatly 
improves energy efficiency.  
Air flow detector, due to the interaction with the streaming fluid, generates an 
electrically measurable signal for determination of the total flow of the fluid. 
The air flow sensor can alert to HVAC cooling system failures, or it can be used 
to ensure there is air flow through the cabins all times. 
 
 

3.5.1.  Risk assessment using 1 to 10 scale  
TABLE III.IV includes all the items failure modes, the causes and the effects of 
each mode. The latter are divided in “Local effects” (i.e.  effects on compressor), 
“Global effects” (i.e. effects on the upper classification-level) and “Effects on 
train” (i.e. effects on the global system). The occurrence O, severity S and 
detection D of each mode were provided by three reliability experts in order to 
quantitatively consider the criticality of the components. The average results 
of the assessment are included in table V. O, S and D parameters can assume 
value in the 1-10 scale, the assessment follows the rules proposed in the 
international standard IEC 60812.  
The occurrence values are assessed considering the failure rate of each failure 
mode (provided by the manufacturer), while the failure effects influence the 
severity values.  
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TABLE III.IV 
FMEA OF THE MOST CRITICAL ITEMS INCLUDED IN A HVAC. 

FAILURE 

MODES 
CAUSES OF 

FAILURE 
LOCAL EFFECTS 

GLOBAL 

EFFECTS 
EFFECTS ON 

TRAIN 
COMPRESSOR 

FM1 - Motor 
does not start 
on demand 

Motor seize up.                         
Blocked 
compressor. 
Damage winding.  

Loss of pumping 
capacity. 

Loss of cooling 
function. 

Loss of cooling 
capacity. 

FM2 – Incorrect 
signal from 
thermostat 

Overheating of 
compressor.   
Thermostat dirty. 

Loss of protection  
Possible 
damage of 
compressor. 

Possible loss 
of cooling 
capacity.  

FM3 – Pump 
gas leakage 

Mechanical 
failure. 
Fretting 
compressor. 

Loss of refrigerant 
pumping. 

Loss of cooling 
function. 

Loss of cooling 
capacity. 

FM4 – Sticking 
internal valve  

Internal failure. 
Valve dirty. 

Pressure doesn't 
increase. 

Loss of cooling 
function. 

Loss of cooling 
capacity. 

FM5 - Internal 
overload motor 
protection 

Short circuit.                  
Electric overload. 
Compressor motor 
protection failure. 

Loss of pumping 
capacity. Short 
circuit of 
compressor. 

Loss of cooling 
function. 

Loss of cooling 
capacity. 

EVAPORATOR BLOWER 

FM6 – Incorrect 
signal from 
thermostat 

Vibrations over 
specification. 
Aging. 

Motor does not 
work. 

No ventilation 
Low pressure 
switch will cut 
off. 

Loss of 
ventilation, 
cooling and 
heating 
capacity. 

FM7 – Fails to 
run 

Internal failure. 
Coil in short-
circuit. 
Lifetime of the 
motor (aging). 

Motor does not 
work. 

No ventilation 
in evaporator 
coil. The 
pressure will 
increase.  

Loss of 
ventilation, 
cooling and 
heating 
capacity. 

FM8 -
Mechanical 
crack 

Lack of oil.                                     
Bearings 
deteriorated. 
Lifetime of the 
motor (aging). 

Motor does not 
work. 

No ventilation 
in evaporator 
coil. The 
pressure will 
increase.  

Loss of 
ventilation, 
cooling and 
heating 
capacity. 

AIR FLOW DETECTOR 
FM9 – It 
doesn’t detect 
air flow when 
there is. 

Internal failure. 

The heating coil 
and the 
compressor are 
stopped. 

Loss of 
heating or 
cooling 
function. 

Loss of cooling 
and heating 
capacity. 

FM10 - It 
detects air flow 
when there is no 
supply air 

Internal failure. 
There is no 
detection of air 
flow.  

Possible 
damage of the 
system. 

No effect 
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TABLE III.V is divided into six sections: 
1. Occurrence, Severity and Detection assessment for each failure mode. 
2. Classical RPN assessment (“value” column) and its decreasing 

prioritization ordering of the modes (“rank” column). The highest the 
rank, the highest the criticality related to this failure mode.  

3. IRPN assessment (“value” column) and its decreasing prioritization 
ordering of the modes (“rank” column). 

4. ERPN assessment using base 𝑥𝑥 = 3 and identical weights (set as 1) for 
the factors (“value” column) and its decreasing prioritization ordering 
of the modes (“rank” column). 

5. URPN assessment using 𝑧𝑧 = 𝑒𝑒  (“value” column) and its decreasing 
prioritization ordering of the modes (“rank” column). 

6. LRPN assessment (“value” column) and its decreasing prioritization 
ordering of the modes (“rank” column). 

 
The criticality assessment using the classical method leads to RPN values which 
vary in the first half of the admissible range (i.e. from 1 to 1000). The results 
are quite distant from each other: this leads to an easy prioritization of the 
mode from the highest RPN (most critical) to the lowest (least critical). 
 

TABLE III.V 
FAILURE MODE OF AN HVAC IN RAILWAY APPLICATION RANKED USING CLASSICAL AND 

ALTERNATIVE RISK PRIORITY NUMBERS. 

 O S D 
RPN IRPN ERPN (3) URPN (e) LRPN 

VALUE RANK VALUE RANK VALUE RANK VALUE RANK VALUE RANK 

FM1 8 6 7 336 3 21 2 9,477 4 22,592 5 2.527 3 

FM2 3 5 4 60 10 12 10 351 10 1,780 9 1.778 10 

FM3 6 6 7 252 6 19 6 3,645 7 16,944 6 2.401 6 

FM4 5 6 5 150 7 16 8 1,215 8 10,085 7 2.176 7 

FM5 4 6 5 120 9 15 9 1,053 9 8,068 8 2.079 9 

FM6 8 8 4 256 5 20 5 13,203 3 95,390 3 2.408 5 

FM7 9 8 6 432 1 23 1 26,973 1 160,971 1 2.636 1 

FM8 8 8 5 320 4 21 2 13,365 2 119,238 2 2.505 4 

FM9 7 7 7 343 2 21 2 6,561 5 53,735 4 2.535 2 

FM10 7 3 7 147 8 17 7 4,401 6 984 10 2.167 8 
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A threshold value which distinguishs the group of the most dangerous modes 
from the set of the least critical one could be identified comparing the data or 
by different mathematical approaches (more detail about the determination of 
the thresholds is reported in the next subsections.   
The IRPN scores vary in a limited range, leading to two main problems: item 
with the same values (e.g. Despite different O, S and D index FM1, FM8 and 
FM9 have the same IRPN=21) and difficulty in the definition of a RPN 
threshold rate due to a very compressed scale of admissible results.  
Both ERPN(3) and URPN(e) provide outcomes hardly comparable with the 
classical formulation because of the very wide admissible range. For the same 
reason the interpretation of the criticality related to these numbers is quite 
hard.  
The LRPN is the only one that maintains the same prioritization ordering of 
the classical formulation. The results are irrational numbers compressed in a 
very small range. 
Fig. 3.9 illustrates the results obtained from the analysis of TABLE III.V 
highlighting how the different approaches provide different prioritization 
orders. The chart shows ten different groups composed by five bars with 
different colors where the groups stand for the analyzed failure mode, the colors 
represent the different techniques, and the height of the bars identifies the 
criticality of the mode. The height of a bar depends on the priority associated 
to that mode with the specified method: the higher the bar and more critical is 
the mode, therefore higher is the rank.  
 

 
Fig. 3.9. Bar plot of the classical and alternatives RPN ranking for each failure mode. 
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What is striking about Fig. 3.9 and TABLE III.V is that the different approaches 
provide different ordering despite they consider the same O, S and D dataset. 
The most evident finding to emerge from the IRPN analysis is the duplicate 
issue, consequently the IRPN prioritization is meaningless because it is 
impossible to distinguish the more critical modes in presence of many identical 
values. The ERPN amplifies the importance of higher values of O, S and D; for 
instance, FM8 moves from the fourth rank in the classical RPN prioritization 
to the second position in the ERPN rank, due to the very high value of O and 
S. In some circumstances, giving high priority to higher O, S and D values 
could be positive. The disadvantages are evident when only one value of O, S 
and D is close to 10: in this case the exponential formulation of the higher 
parameter is dominant making the other one negligible. The URPN amplifies 
the importance only of the severity, therefore if the severity is very high the 
mode will definitely be critical. For example, using this method FM6, FM7 and 
FM8 have the maximum priority because they are characterized by the highest 
severity of the system (S=8).  
In summary, these results show that the most reasonable prioritization order is 
the one provided by the classical Risk Priority Number. 
 
 

3.5.2.  Risk assessment using 1 to 5 scale  
After the risk assessment of the previous section, the occurrence O, severity S 
and detection D rates of the identified failure modes were evaluated again 
considering a scale adjustment in order to test and validate the advantages and 
disadvantages of the 1 to 5 scale applied to the classical Risk Priority Number. 
The new O, S and D score are collected in TABLE III.VI.  
 

TABLE III.VI 
O, S AND D ASSESSMENT FOR THE FAILURE MODE OF AN HVAC USING A 1 TO 5 SCALE. 

FAILURE MODE O S D 

FM1 5 3 5 
FM2 1 2 2 
FM3 3 3 5 
FM4 2 3 3 
FM5 1 3 3 
FM6 5 5 2 
FM7 5 5 4 
FM8 5 5 3 
FM9 4 4 5 
FM10 4 1 5 
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TABLE III.VII 
COMPARISON OF THE RANKS USING 1 TO 5 SCALE AND 1 TO 10 SCALE APPLIED TO 

CLASSICAL RISK PRIORITY NUMBER. 

FAILURE MODE 
1-10 SCALE RPN 1-5 SCALE RPN 
VALUE RANK VALUE RANK 

FM1 336 3 75 3 
FM2 60 10 4 10 
FM3 252 6 45 6 
FM4 150 7 18 8 
FM5 120 9 9 9 
FM6 256 5 50 5 
FM7 432 1 100 1 
FM8 320 4 75 3 
FM9 343 2 80 2 
FM10 147 8 20 7 

 
TABLE III.VII includes a comparison between the results of the classical RPN 
assessment obtained using the standard scale and the reduced scale. As the 
table shows, there is not a significant difference between the rank provided by 
the two approaches. There are only two small differences between the two 
datasets: 

a) The rank of the failure modes FM4 and FM10 are inverted: using the 
1-10 scale FM4 and FM10 are the 7th and the 10th most critical modes 
respectively, instead the rank are swaped when the 1-5 scale are used. 

b) The failure modes FM1 and FM8 are characterized by the same RPN 
when the 1-5 scale are used: it results in two modes with the same rank. 

 
The difference a) is negligible because affect two modes characterized by low 
Risk Priority Number. In fact, FM4 and FM10 are considered not critical mode, 
therefore the difference in the rank provided by the two approaches is not 
significant. Quite the opposite, the difference b) is very relevant because 
highlights that the scale reduction could involves in a duplicates problem. 
This result is somewhat counterintuitive. The most surprising aspect of this 
difference is that the percentage of unique value using the 1-5 scale is doubled 
respect to use the 1-10 scale. Theoretically, reducing the scale, the number of 
duplicates decrease. Actually, the use of a small scale involves more duplicates 
in the O, S and D assessment, consequently the possibility of a duplicate in 
RPN evaluation increase.   
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The probability of a duplicate generated by the same combination of O, S, D 
increases using 1-5 scale while the probability of a duplicate generated by 
different combination of O, S, D decreases.  
Taken together, these results suggest that there is a benefit in the use of a 
reduced scale in term of unique values, but it is very important to pay specific 
attention to the Occurrence, Severity and Detection assessment in order to 
cover the complete admissible range of the parameter and reduce the possibility 
of a duplicate in the Risk Priority Number.  
The results obtained in TABLE III.VII are summarized in Fig. 3.10, using a bar 
plot illustrating ten different groups composed by two bars with different colors. 
The different groups stand for the analyzed failure modes, the blue bar 
represents the 1-10 scale assessment, and the red bar stands for the 1-5 scale 
evaluation. The higher the bar, the higher the rank associated to that mode (i.e 
more critical is the failure modes).   
Fig. 3.11 shows another comparison of the Risk Priority Numbers obtained in 
the previous assessments, where the height of the bars stands for the relative 
RPN, expressed as the ratio between the Risk Priority Number of that mode 
divided by the maximum RPN of the analysis.  
Considering the critical failure mode (i.e. the mode characterized by high 
relative RPN) no significant differences were found between the two 
approaches. Quite the opposite, analyzing the modes with low Risk Priority 
Number there was a significant difference between the two method. This means 
that, in proportion, the reduced scale affects more the assessment of the lower 
Risk Priority Numbers compared to the higher Risk Priority Numbers. 
 

 
Fig. 3.10. Bar plot of the RPN ranking using 1-10 scale (blue bars) and 1-5 scale (red 
bars) for each failure mode. 
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Fig. 3.11. Bar plot of the relative Risk Priority Number obtained using the classical 
RPN approach (blue bars) and the 1-5 scale RPN (red bars). 
 
 
 

3.6.  Measurements to improve FMECA during 
product life cycle  
The proper implementation of FMECA during the different steps of the product 
life cycle (design, development, manufacturing and maintenance) allows to 
identify and possibly solve potentially critical problems. It can be readily 
perceived that the information provided by the FMECA can be useful during 
the definition of the operative constraints, as well as during the preventive 
maintenance operations.   
The main aim of this thesis is to provide a general Data-Driven Reliability Life 
Cycle procedure that could be implemented to any kind of complex system. 
From this perspective, FMECA plays a central role within the procedure. But, 
how measurements (and more generally data) could improve the performances 
of FMECA procedure?  
If FMECA is properly integrated within the approach the answer to the 
previous question is quite straightforward. The first part of the FMECA 
worksheet is a qualitative analysis that includes the report of failure modes and 
mechanisms, causes of failure and failure effects. The second part of the 
worksheet includes the quantitative part of the procedure with the assessment 
of Occurrence, Severity and Detection. As seen before in section 3.2. one of the 
greatest drawbacks of the FMECA is the evaluation of these criticality indexes 
that could be extremely subjective and mainly influenced by the experience of 
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the analyst. A possible solution is to assess O, S and D by means of dedicated 
measurements to delete the subjectivity issue. The solution proposed in this 
work to improve FMECA reducing subjectivity of the assessment by means of 
measured data are reported in the following paragraphs. 
 
 

3.6.1.  Occurrence assessment by means of Accelerate Test 
The occurrence O could be estimated using the results of Accelerated Life Test 
(ALT) on the specific components. ALT technique allows to achieve 
information about the component reliability based on the results of tests 
performed subjecting a product to conditions above the nominal service 
operations [123], [124]. Stresses such as temperature excursion, high voltage and 
severe mechanical shocks are able to discover faults in a short amount of time 
with respect to the nominal conditions [125]–[127]. ALT is particularly useful 
in case of electronic devices because the wear-out of such components usually 
occurs after an extended amount of time. Therefore, it is essential to speed up 
the test since testing a population of electronic devices in normal conditions 
would yield few or no failures in a reasonable time even if a large sample is 
tested. An online monitoring of the device during the test allows to achieve 
information about the Accelerated Time-To-Failure (ATTF) of the items under 
test. Obviously, these data must be properly processed before they can be used 
to assess Occurrence. The complete procedure is illustrated in Fig. 3.12.  
First of all, the Time-To-Failure (TTF) in standard conditions must be 
evaluated using the proper Acceleration Factor (AF). Depending on the stress 
test used to accelerate the failure mechanisms, different models can be 
implemented to estimate the AF.  When estimating acceleration due to 
temperature, the Arrhenius degradation model is usually implemented. It is 
used to express both a single failure mechanism’s sensitivity to temperature 
and also a product’s thermal acceleration factor. The accelerating factor 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
of the Arrhenius model is given by [128]:  
 
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝐸𝐸𝑎𝑎
𝐾𝐾𝐵𝐵

�
1
𝑇𝑇0
−

1
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

�� (3.8) 

 
Where 𝑇𝑇0 is the reference temperature (i.e. operating temperature of the item 
in standard conditions), 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the exposition temperature during the test,   
𝐾𝐾𝐵𝐵 = 8.617 × 10−5  𝑒𝑒𝑒𝑒/𝐾𝐾  is Boltzmann’s constant and 𝐸𝐸𝑎𝑎 is the activation 
energy of the failure mechanisms, expressed in 𝑒𝑒𝑒𝑒.  
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Fig. 3.12. Proposed procedure to assess Occurrence O by means of measured data during 
accelerated test. 

 
Regarding the humidity stress, one of the most common models is the Peck’s 
law, introduced by D.S. Peck in 1989. The accelerating factor 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 considering 
Peck’s law is written as [128]: 
 
 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �

𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅𝐻𝐻0

�
𝑝𝑝

 (3.9) 

 
Where 𝑅𝑅𝐻𝐻0 is the percentage reference humidity, 𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the percentage 
humidity during the stress test and p is the accelerating power for this stress 
(usually set equal to 2.7). 
Another common acceleration factor is used in case of vibration stress, as follow 
[123]: 
 
 𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = �

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑊𝑊0
�
𝑚𝑚

 (3.10) 
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Where 𝑊𝑊0 is the reference vibration in standard conditions, 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the 
vibration endured during the stress test and m is the accelerating power for 
this stress (usually set equal to 4). For other AF models, see [123], [128]. 
Once the TTF is obtained using the proper AF model, a statistical analysis 
called Life Data Analysis (LDA) could be used to achieve information on the 
failure rate and on the probability of failure of the device [129]–[131]. Finally, 
a link table could be used to associate the estimated failure rate or the 
probability of failure to the occurrence levels. An example of link table used to 
assess O in case of 1-to-5 scale is illustrated in TABLE III.VIII. The devices 
under test are electronic components. 
 

TABLE III.VIII 
EXAMPLE OF LINK TABLE USED TO ASSESS OCCURRENCE BY MEANS OF MEASURED DATA 

DURING ACCELERATED TEST IN CASE OF 1-TO-5 SCALE. 

OCCURRENCE RATING 
FAILURE 

PROBABILITY 

Remote 1 < 1 ∙ 10−9 

Low 2 1 ∙ 10−9  ÷  1 ∙ 10−8 

Moderate 3 1 ∙ 10−8  ÷  5 ∙ 10−7 

Possible 4 5 ∙ 10−7  ÷  1 ∙ 10−6 

High 5 > 1 ∙ 10−6 
 
 

3.6.2.  Severity assessment 
The assessment of the Severity S is one of the most challenging tasks of a 
complete FMECA report. It is extremely difficult to precisely estimate S since 
it must rate the severity of the potential effect of the considered failure mode. 
Usually, a predetermined severity scale must be established and then the FMEA 
team assess the severity ranking of each failure based on the agreed-upon scale. 
Thus, unfortunately, it is not possible to improve the severity assessment based 
on available data coming from the product life cycle.  
 
 

3.6.3.  Detection assessment by means of online diagnostic 
The assessment of the Detection rate D is strictly related to the presence of 
diagnostic systems able to identify the failure of a component before its effects 
are manifested on the system. 
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Instrument on-board diagnostics is performed directly on the component in 
question to assess its working/failure status. This makes it necessary to 
introduce a dedicated on-board monitoring and diagnosis system to be installed 
near the analyzed component. Notwithstanding the increase of the system 
complexity and its cost, the introduction of diagnostic units allows to achieve 
several requirements extensively described in Section 7.  
Among others, data coming from diagnostic units could be used to precisely 
estimate the detection rate D within the FMECA process. Consequently, it is 
possible to continuously improve the FMECA during the product life cycle 
using the data of the diagnostic unit.  
  
 
 

3.7.  Final Remarks  
The aim of this section was twofold: 

• Contextualize the FMEA procedure within the concept of Data-Driven 
Reliability life Cycle.  

• Examine the different approaches presented in literature regarding the 
evaluation of alternative risk priority numbers. 

 
Several methods currently exist for the risk assessment of failure modes during 
a FMECA. These alternative approaches try to compensate the multiple issues 
related to the classical RPN interpretation, such as the presence of holes within 
the RPN range, the presence of duplicates, the values dispersion, the 
subjectivity of the assessment etc. The work focuses only on the techniques 
which do not introduce additional corrective factors or do not completely 
distort the formulation of the RPN with the introduction of new analytical 
theory. 
The analyzed approaches are: the standard RPN, IRPN (consists of the sum of 
O, S, D), ERPN (based on the exponentiation of O, S, D), URPN (consists on 
the product of O, D and S as power) and LRPN (based on the logarithm of the 
product of O, S, D). 
The advantages and disadvantages of each technique are evaluated by using a 
chart of all the possible values obtained combining O, S, D according to each 
procedure. This study has identified that no one method succeeds to solve all 
the issues and the solution of one problem involves the worsening of the other 
drawbacks.  
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The previous methods have been analyzed also considering a reduced O, S, D 
scale from 1 to 5. This reduction does not solve the problems but mitigates all 
of them, therefore it represents a trade-off through easiness of implementation, 
accuracy of results, flexibility to different application field, solution of the 
issues.  
In order to test and validate these assumptions, a FMECA was developed for 
the critical components of a HVAC system used in railway applications. These 
results show that the RPN is the most trustworthy equation because it provides 
the most reasonable prioritization order of the failure modes, especially when a 
1-to-5 scale is involved.  
Finally, some considerations regarding the subjectivity of the O, S and D 
assessment are presented. This work proposes to solve the problem assessing 
the parameters by means of data measured during the product life cycle 
(accelerated test for Occurrence evaluation and Diagnostic units for Detection 
assessment).  
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CHAPTER 4 
 
A PROPOSAL FOR RPN THRESHOLD 

ESTIMATION  
 
 
This chapter analyze the RPN threshold estimation 
methods available in literature. However, the available 
procedures suffer many drawbacks. Trying to fill this need, 
this section proposes a new approach for the Risk Priority 
Number threshold estimation based on a statistical analysis 
and compares the proposed method with the other 
quantitative prioritization techniques found in literature. 
The goal of the chapter is to introduce an innovative 
methodology that effectively identify the most critical 
component of the system under test, which is a fundamental 
aspect of the proposed Reliability Life Cycle procedure. The 
proposed approach has been applied to the electrical and 
electronic components included in a Spanish 2 MW onshore 
wind turbine. 1  

 
  

1 The part of this chapter related to the innovative RPN threshold estimation method 
has been published as: M. Catelani, L. Ciani, D. Galar, and G. Patrizi, “Risk Assessment 
of a Wind Turbine: A New FMECA-Based Tool With RPN Threshold Estimation,” 
IEEE Access, vol. 8, pp. 20181–20190, 2020. 
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4.1.  The problem of RPN threshold estimation  
This part of the work deals with the problem of the evaluation of a threshold 
risk value, which can distinguish negligible and critical failure modes. In fact, 
the components covered by the FMECA procedure are usually very different 
from a risk value point of view. The most critical failure modes, characterized 
by high RPN values, should be separated from those characterized by a 
significantly lower RPN value. The selection of “high priority” failure modes is 
a very critical issue for the development of corrective action plans and for the 
Operation&Maintenance decision-making process. Thus, the question is: “How 
such separation can be performed?” 
 
 
 

4.2.  Literature review of RPN threshold 
estimation methods  
Usually, companies define the RPN threshold using questionnaires to take into 
account the judgement of multiple experts in a qualitative manner. 
Alternatively, some companies apply corrective actions in a hierarchical order 
starting from the most critical components. Then, countermeasures are applied 
until the budget allows it. The major flaw of this cost-oriented approach is that 
some critical risk could not be mitigated. For some kind of applications this 
approach is still valuable, quite the opposite in case of safety related 
applications (e.g. railway systems, energy production plant, aerospace field etc.) 
a more precautionary point of view is required. Consequently, it is extremely 
important to identify which components are critical and which are not by means 
of a risk threshold. 
The international standard IEC 608212 [47] that define and regulate the 
FMECA technique misses to consider a method to identify a risk threshold and 
consequently to divide the failure modes in critical modes and negligible modes. 
Quite the same, also the Military Standard MIL-STD 1629A [43] does not take 
into account this aspect. Furthermore, only few papers in recent literature deals 
with this issue.   
Some papers set the RPN threshold subjectively by the judgement of multiple 
experts in the matter (see for instance but not only [68], [132]–[134]), and only 
few papers propose their own approaches for the threshold value. 
Bluvband et al. [135], [136] highlight for the first time that RPNs follows a 
particular trend and recommend a graphical tool for RPN analysis. This tool 
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creates a graph of ordered RPN values called Scree Plot which requires a 
preliminary ordering of RPN values by size, from smallest to largest. The 
calculated RPNs ordered by size usually form a right-skewed distribution, with 
a first tail on the left (negligible risk values) and a second tail on the right 
(critical risk values representing “outliers” from the distribution analysis point 
of view). The left part of the plot is characterized by a gradual increase of the 
RPN values, usually fit by means of a straight line 𝑓𝑓1(𝑥𝑥) with a slight slope. 
The RPN values scattered around this line should be considered a kind of 
“information noise”, as they do not require immediate attention. The short 
uppermost part of the Scree Plot is characterized by a very steep increase of 
the RPN values (RPN jumps), in the form of a straight-line 𝑓𝑓2(𝑥𝑥) with a very 
strong slope. The RPN values scattered around this line are related to the most 
critical issues of FMECA and must be dealt with promptly. The threshold value 
is determined in a qualitative way by evaluating the ordinate of the intersection 
between the two fit lines. The method proposed by Bluvband [135], [136] is an 
intuitive and simple graphical tool. The idea at the basis of this approach seems 
to be very interesting. The main concern of the method is related to the 
subjectivity for the division of the two datasets characterized by different 
slopes.  
Zhao et al. [137] propose a method to obtain a more objective and accurate 
RPN analysis, as follow: 

• Create Scree plot, following the rules explained by the Bluvband 
method. 

• Fit the RPN plot with a polynomial approximation of the first order 
using the linear regression method.  

• Plot the confidence bound of the linear regression. 
• Determine the threshold value of RPN from the turning point of the 

confidence level. 
 
This approach is based on a simple linear approximation method, but in many 
practical cases the RPNs do not follow a linear trend. Therefore, the 
approximation of the values with a single straight line provides a significant 
error.  
The use of the 80:20 Pareto principle is one of the most established approaches 
in reliability analysis to rank failure modes according to their RPN value and 
to optimize corrective actions for critical components. The Pareto diagram is 
helpful to visualize the differences between the rankings for the failures and 
effects. The 80:20 principle can be explained as follow: 80% of the total Risk 
Priority Numbers calculated during the FMECA procedure comes from only 
the 20% of the potential failure modes.  
Pareto analysis starts with the prioritization of failure modes by ranking them 
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in order, from the highest risk priority number to the lowest. The Pareto chart 
combines a bar graph with a cumulative line graph; the bars are placed from 
left to right in descending order, while the cumulative line distribution shows 
the percent contribution of all preceding failures. The combined chart uses the 
80:20 rule to indicate where the engineering effort should be focused more [138]–
[144]. Unfortunately, Pareto chart is not suitable for some kind of risk-
assessment applications because it is not always verified that the 80% of the 
criticalities arise from 20% of the causes, or in other words that the 80% of the 
RPNs represents the 20% of the failure modes. 
 
 
 

4.3.  Proposed approach: Boxplot analysis  
A new approach has been introduced in this work to overcome the limits of the 
previous methodologies. The proposed procedure consists of the following steps: 

1) Calculation of the Risk Priority Numbers according to the guidelines 
provided by the FMECA standard (a scale adjustment as in Section 
3.4.4 could be implemented in order to minimize the RPN drawbacks 
achieving an optimal assessment). 

2) Identification of the main statistical parameters of the RPN dataset 
(i.e. 25th percentile, mean value, median value, 75th percentile, outliers, 
minimum and maximum value). 

3) Generation of the boxplot of all the assessed Risk Priority Numbers. 
4) The negligible modes are all the failure modes with RPNs below the 

median value. 
5) The critical modes are all the failure modes with RPNs above the 75th 

percentile. 
6) The interval between the median value and the 75th percentile is 

considered ALARP ("as low as reasonably practicable") region.  
 
As the acronyms suggests, the ALARP region refers to reducing risk to a level 
that is as low as reasonably practicable. In practice, this means that the 
operator has to show through reasoned and supported arguments that there are 
no other practicable options that could reasonably be adopted to reduce risks 
further [145].  
If a failure mode is characterized by an RPN value that falls inside the ALARP 
zone, then designers have to analyze possible countermeasures to reduce the 
risk bearing in mind the benefits resulting from its acceptance and taking into 
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account the costs of any further reduction. Then designers could choose to apply 
countermeasures or not based on the previous consideration. The upper and 
lower limits of the ALARP region must be considered as low as reasonably 
practicable too.  
Instead, if the RPN is above the 75th percentile then the risk is treated as 
intolerable and cannot be justified in any ordinary circumstance, so corrective 
actions must be implemented.  
The introduction of an ALARP region in the process of setting a RPN threshold 
is one of the main strengths of the proposed method allowing to analytically 
identify not only a region of maximum criticality but also a set of failure modes 
with intermediate level of risk. This aspect is well-known in the risk assessment 
theory, however there are no procedure available in literature that allows to 
identify objectively and analytically an RPN threshold value for critical modes 
along with an ALRP region.  
 
 
 

4.4.  Case study: Electronic components of a 
Wind Turbine  
This study focuses on the (E/E/PE) components (i.e. 
electrical/electronic/programmable electronic items) inside the wind turbine 
described in section 2.1. The components are summarized in the low-level 
taxonomy in Fig. 4.1 (control system) and Fig. 4.2 (Electrical unit).  
 

 
Fig. 4.1. Low-level taxonomy of the WT under test: control system classification.  
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Fig. 4.2. Low-level taxonomy of the WT under test: Electrical unit classification. 

TABLE IV.I shows an extract of the FMECA assessed for the E/E/PE 
components of the G80/2000 WT under test. The complete report includes 100 
different failure modes: 38 modes refer to the control system, while 62 modes 
refer to the electrical subunit.  
Since there are no specific standards or handbooks containing failure data of 
WT, then some generic handbooks are used to carry out the functional failure 
analysis of the G80/2000 WT tested in this work. The main sources are: HDBK-
217plus (2015) [146], Telcordia SR-332 Issue 4 (2016) [147], MIL-HDB 338B 
(1998) [148], Siemens SN 29500-1 (2013) [149] and IEC 61709 (2017) [150].  
The first section of Table V gives an overview of the studied components. The 
“Upper level taxonomy” column includes the higher hierarchical levels; the 
“Classification” column shows the current taxonomy level; the “Taxonomy” 
column identifies the components, and the “Function” column explains the 
objective of the studied item. The table has a second section for the standard 
FMEA procedure including the “Failure Mode”, “Failure Cause,” and a detailed 
explanation of the failure effects. The local effects describe the consequences of 
a failure mode on the operation, function, or status of the specific item under 
consideration, while the global effects stand for the consequences on the 
operation, function, or status of the higher-level taxonomy categorization (in 
this work, it refers to the effects on the nacelle and the whole wind turbine.).  
In addition, some useful parameters are included in the third section of TABLE 

IV.I. More in detail, this section includes the failure rate of the considered item, 
the failure mode probability expressed by α and the mode failure rate which is 
used to evaluate the Occurrence rate. Considering 𝜆𝜆 the failure rate of the 
component, then the mode failure rate 𝜆𝜆(𝑀𝑀) is given by: 
 
 𝜆𝜆(𝑀𝑀) =  𝛼𝛼 ∙ 𝜆𝜆 (4.1) 
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TABLE IV.I 
FMECA EXTRACT OF THE E/E/PE COMPONENTS OF THE WT.   
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Furthermore, the third section of TABLE IV.I also includes two effective 
parameters such as the “Turbine functionality” and the “Safety loss” to 
evaluate the risk level of the modes and facilitate the Severity assessment: 

• Turbine functionality: this parameter gives the turbine operational 
status after the failure: 

o No impact: the turbine continues its work although the failure 
mode has occurred. 

o No impact in the short term: initially the turbine continues its 
work with all functionality, but a maintenance action in short 
term is needed. 

o Reduced: Redundancy and auxiliary systems allow the turbine 
essential functionality; the turbine continues to provide 
electricity and only few operations/functionalities are not 
available. 

o Strongly reduced: Most operations/functionalities are not 
available; the turbine continues to provide electricity with 
lower efficiency. 

o Doesn’t work: The turbine can’t produce electricity and thus 
the emergency brake is activated.    

 
• Safety loss: This parameter indicates if the failure modes could reduce 

the safety level of the turbine under analysis, with a consequent risk 
for the environment, the operator, or the turbine itself. It is a binary 
parameter which could be either “Yes” or “No”.  

 
The final section of the table illustrates the risk evaluation carried out assessing 
the Risk Priority Number using the Occurrence, Severity and Detection 
indexes.  
Since only few information about diagnostic systems was available, detection 
has been classified on a 3-value scale, from 1 (best case) to 3 (worst case), where 
2 represents the partially detectable scenario. A 1-to-10 scale has been set for 
the Occurrence rate, where the higher the mode failure rate, the higher the O 
rate. Quite the same, a 1-to-10 scale has been set also for the Severity rate, 
where the assessment is based on the Turbine functionality and Safety loss 
sections included in the FMECA report. TABLE IV.II includes the rules used to 
assess severity based on the two above-mentioned parameters: turbine 
functionality and safety loss. 
Fig. 4.3 summarizes the complete results of the RPN values assessment for the 
E/E/PE components of the G80/2000 WT under study. 
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TABLE IV.II 
EVALUATION CRITERIA TO ASSESS SEVERITY FOR THE WT. 

SEVERITY TURBINE FUNCTIONALITY 
SAFETY 

LOSS 
RATING 

None 

No impact NO 1 

No impact in short term NO 2 

Reduced NO 3 

Moderate 

No impact YES 4 

No impact in short term YES 5 

Strongly reduced NO 6 

High 
Reduced YES 7 

Turbine doesn’t work NO 8 

Hazardous 
Strongly reduced YES 9 

Turbine doesn't work YES 10 

 

 
Fig. 4.3. Number of occurrences of each RPN assessed for the turbine under test. 

The results of the FMECA reports have been used as case study to test the 
performancs of the proposed methodology. The following subsections includes 
the application of the quantitative methods available in literature and a 
comparison with the proposed Boxplot-based analysis. 
 
 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Risk Priority Number

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fr
eq

ue
nc

y



A PROPOSAL FOR RPN THRESHOLD ESTIMATION 

68 
 

4.4.1.  Bluvband method 
This subsection reports the analysis of the RPN threshold carried out using the 
Bluvband method [135], [136] on the Risk Priority Number dataset evaluated 
in the FMECA of the E/E/PE components that compose the WT under 
analysis. The aim is to determine the most hazardous failures and identify a 
threshold level that represenst the limit above which countermeasures on 
critical failures are required.  
The “Curve Fitting Tool” by MATLAB could be used to implement the linear 
regression method and to evaluate the algebraic description of the straight lines 
𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥). The coefficients in the following equation are evaluated at a 
95% confidence level: 
 

 𝑓𝑓1(𝑥𝑥) =  𝑝𝑝1 ∙ 𝑥𝑥 +  𝑝𝑝2           ⇒           �𝑝𝑝1 = 1.101   
𝑝𝑝2 = −0.748 (4.2) 

 𝑓𝑓2(𝑥𝑥) =  𝑝𝑝1′ ∙ 𝑥𝑥 +  𝑝𝑝2′           ⇒           �𝑝𝑝1
′  = 7.391   

𝑝𝑝2′  = −572.3 (4.3) 

 
Note that the slopes of the two straight lines 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥) are remarkably 
different from each other. In particular, the line that fits the uppermost part of 
the plot is almost seven times greater than the other line. 
 

 ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=
𝑝𝑝1′

𝑝𝑝1 
=  

7.391
1.101

=  6.7130  (4.4) 

 
The results of the proposed method are illustrated in the Scree Plot in Fig. 4.4. 
 

 
Fig. 4.4. Evaluation of RPN threshold using Bluvband method. 
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Analyzing the Scree Plot in Fig. 4.4 it is possible to define an RPN threshold 
value that represents the division between the negligible failure modes and the 
critical failure modes from the risk value point of view. The threshold can be 
identified by evaluating the ordinate of the intersection between the two fitting 
lines in Fig. 4.4, and the result is approximately 100.  
 
 

4.4.2.  Zhao method 
This subsection reports the analysis of the RPN threshold carried out using the 
method proposed by Zhao et al. [137]  on the RPN dataset evaluated in the 
FMECA of the E/E/PE components that compose the wind turbine under 
analysis. 
Also in this case, the “Curve Fitting Tool” by MATLAB could be used to 
implement the linear regression method and to evaluate the algebraic 
description of the straight lines 𝑓𝑓𝑍𝑍ℎ𝑎𝑎𝑎𝑎(𝑥𝑥) used to fit the RPN dataset. The 1st-
degree polynomial fitting curve obtained from the analysis of the data is the 
following: 
 

 𝑓𝑓𝑍𝑍ℎ𝑎𝑎𝑎𝑎(𝑥𝑥) =  𝑝𝑝1𝑧𝑧 ∙ 𝑥𝑥 +  𝑝𝑝2𝑧𝑧           ⇒           �𝑝𝑝1 = 1.262   
𝑝𝑝2 = −6.024  (4.5) 

 
The results of the procedure considering a 95% confidence bound of the straight 
fitting line are illustrated in the Scree Plot in Fig. 4.5. 
 

 
Fig. 4.5. Evaluation of RPN threshold using Zhao method. 
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4.4.3.  80:20 Pareto method 
This subsection reports the analysis of the RPN threshold carried out using the 
80:20 Parreto principle method in comliance with [138]–[144] on the RPN 
dataset evaluated in the FMECA of the E/E/PE components that compose the 
wind turbine under analysis. 
The results of the analysis are illustrated in the Pareto chart in Fig. 4.6. Each 
light purple bar stands for the RPN assessment of the corresponding failure 
mode (y-scale on the left side of the chart), while the continuous blue line 
represents the cumulative percentage distribution of the Risk Priority Number 
(y-scale on the right side of the chart).  
According to the 80:20 Pareto principle, the Risk Priority Number threshold of 
the dataset under analysis is approximately 48. The evaluation of the threshold 
level using Pareto method is highlighted in Fig. 4.6. The first step is the 
identification of the 80% of the cumulative distribution of the Risk Priority 
Numbers (highlighted using a red dot in the figure). Subsequently, the RPN 
threshold value is given by the value of the Risk Priority Number of the failure 
mode linked to the 80% of the cumulative percentage (highlighted using a red 
bar in the figure). 
 

 
Fig. 4.6. Evaluation of RPN threshold using Pareto chart and 80:20 principle. 
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equal to 100), and the Pareto chart indicates that 55 failure modes are critical 
(threshold equal to 48). 
Analyzing in detail the obtained results, it is clear that all the previous 
techniques have some critical drawbacks. For instance, according to the 80:20 
rule of the Pareto method, 80% of the criticality should arise from 20% of the 
causes. The results obtained in this work suggested that this principle does not 
fit very well with this kind of application. As a matter of fact, 80% of the RPNs 
of the E/E/PE components in the wind turbine represent 55% of the failure 
modes. The Pareto chart cannot be considered a powerful technique to identify 
the RPN threshold of a system, actually the principle used to select the 
numerical value of the threshold should be reviewed and specifically defined for 
each kind of application. In this case, it is absolutely not reasonable select a 
threshold of 48 indicating that more than half of the failure modes are critical. 
Quite the opposite, the Zhao method suggests for the system under test that 
only four failure modes are critical. More generally, this technique provides 
untrustworthy results for many applications because of the manner in which 
the threshold is evaluated. In fact, using this procedure very few risk priority 
numbers overpass the 95% confidence bound falling in the critical modes group.  
The Bluvband method provides interesting results, both threshold value and 
number of modes considered critical is reasonable. Anyway, the procedure for 
the threshold evaluation is vague and extremely subjective. According to the 
authors, the calculated RPNs form a right-skewed distribution, with a first tail 
on the left and a second tail on the right with very different slopes, but no 
information about how to divide the distribution in two sections are given. As 
a consequence, the identification of the threshold is dependent on the judgment 
of the designer that carry out the procedure.  
 
 
 

4.5.  Application of the proposed Boxplot 
analysis to estimate the RPN threshold  
The proposed Boxplot-based approach introduced in Section 4.3. has been 
applied to the case study described in Section 4.4 in order to estimate the RPN 
threshold of the E/E/PE components included in the wind turbine under 
analysis. The objective of this section is to test and validate the performances 
of the proposed method with the aim of identifying the optimal RPN threshold 
in terms of criticality identification, risk reduction, cost of the countermeasures 
and easiness of implementation.  
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The results of the statistical analysis are the following: 
• Range of admissible values: [1; 300]  
• Minimum: 8 
• Maximum: 180 
• 25th Percentile: 24 
• Median: 54 
• 75th Percentile: 87 
• Outliers: none (considering outliers all the RPNs more than three 

standard deviations away from the median). 
 
Fig. 4.7 shows the boxplot of the RPN dataset for the WT under test, 
highlighting with different colors the area of interest. The green zone (below 
the median) stands for the negligible failures, the yellow region represents the 
ALARP zone and the red region (above the 75th Percentile) indicate the critical 
failure modes.  
In particular, the proposed method suggests 25 failure modes inside the critical 
group (RPN higher than 87), 27 failure modes inside the ALARP region (RPN 
within the interval from 54 and 87) and 48 negligible modes (RPN lower than 
54). 
TABLE IV.III compares the results obtained with the proposed Boxplot-based 
approach and the other methods available in literature (note that 100 failure 
modes were identified in the subsystems under test and the range of possible 
RPN varies between 1 and 300). 
 
 

 
Fig. 4.7. Proposed approach for the Risk Priority Number threshold based on boxplot. 
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TABLE IV.III 
COMPARISON BETWEEN PROPOSED METHOD AND LITERATURE. 

METHOD THRESHOLD CRITICAL MODES ALARP 

Boxplot 87 25 Between 54 and 87 
27 modes 

Bluvband 100 11 Not Allowed 
Zhao 140 4 Not Allowed 

Pareto 48 55 Not Allowed 
 
The RPN threshold identified by means of the proposed approach falls between 
the threshold estimated using Bluvband and Pareto methods. Quite the same 
consideration could be drawn also for the number of critical modes. Considering 
only the red zone of Fig. 4.7 (critical modes), the Boxplot method is a more 
conservative approach respect to the method proposed by Bluvband. Designers 
must always choose the best solution in terms of cost and risk level. It is 
generally more advisable to select the worst-case scenario, that is, the procedure 
providing the lowest RPN threshold, considering a larger number of failure 
modes in the critical area. In this application, the worst-case scenario is the 
80:20 rule applied in the Pareto chart, but it provides not reasonable results in 
terms of the cost of the corrective actions. Indeed, it is not possible to apply 
countermeasures on the 55% of the failure. Therefore, the optimal trade-off 
between cost and threshold level is provided by the proposed method. 
Moreover, the new technique allows to introduce also an ALARP zone where 
each mode could be considered critical or negligible, depending on the scenario.  
 
 
 

4.6.  Final Remarks  
This section focuses on the problem of RPN threshold estimation in order to 
identify critical failure modes as the outcome of a Failure Mode, Effects, and 
Criticality Analysis. The problem of RPN threshold estimation is a fundamental 
aspect which is barely considered by both FMECA standards and scientific 
literature. However, it is a fundamental topic that requires particular attention 
since it allows to identify the most critical failure modes reducing the overall 
risk of the entire system, optimizing the cost of the countermeasures and the 
operation and maintenance costs.  
To separate the failure modes into critical and negligible failures, most 
companies simply set an arbitrary threshold based only on expert’s judgment. 
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Alternatively, some companies apply corrective actions in a hierarchical order 
starting from the most critical components. Then, countermeasures are applied 
until the budget allows it. This work compares the only three RPN threshold 
estimation available in literature applying the procedures to the E/E/PE 
components of a 2 MW Wind Turbine. The analyzed methods are the 80:20 
rule applied in the Pareto chart and two graphical procedures proposed 
respectively by Bluvband and Zhao. The Bluvband method provides plausible 
results includes 11 failure modes inside the group of the most critical failure 
modes. However, the procedure is vague and extremely subjective. The Zhao 
method is too optimistic because it provides only two critical modes. The Pareto 
chart is just the opposite; it is too conservative and considers more than 50% 
of failure modes as critical. This is mainly linked to the way the Pareto method 
is defined and evaluated. By a theoretical point of view, the 80:20 rule suggests 
that 80% of the criticality should arise from 20% of the causes, therefore 
considering the 80% as threshold value the 20% of the modes should be critical. 
Actually, the case study presented in this paper highlights that this is not true. 
With this kind of dataset, the 80:20 relationship is not verified, and the number 
of critical modes is much higher than the 20%, leading to inaccurate and too 
conservative results.    
Therefore, this work introduced a new approach based on a statistical analysis 
and a boxplot to separate negligible and critical modes. The proposed 
methodology represents the optimal trade-off between cost of the 
countermeasures and threshold level (by a risk reduction point of view). The 
major advantages of the proposed Boxplot procedure are the following: 

• It is an easy, practical and repeatable methodology. 
• Unlike other methods it takes into account the ALARP region. 
• It is based on statistical analysis. 
• It suffers no subjectivity in threshold definition. 
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CHAPTER 5 
 
RELIABILITY ALLOCATION: THEORY 

AND IMPROVEMENTS  
 
 
 
This chapter provides an overview of Reliability Allocation 
procedures focusing on some of the most known and widely 
used techniques. All the approaches available in literature 
are based on two assumptions: functional series architecture 
and exponential failure distribution. This chapter presents 
an innovative iterative approach that allows to overcome 
both assumptions and thus to apply reliability allocation as 
a central part of the proposed Reliability Life Cycle to any 
complex system. The validation of the proposed approach 
has been carried out implementing the method on three 
different applications: a numerical example, a sensors unit 
of an HVAC system for high-speed trains and a lube oil 
console for Oil&Gas applications. 1 

 
  

1 The innovative reliability allocation approach presented in this chapter has been 
published as “ M. Catelani, L. Ciani, G. Patrizi, and M. Venzi, “Reliability Allocation 
Procedures in Complex Redundant Systems,” IEEE Syst. J., vol. 12, no. 2, pp. 1182–
1192, Jun. 2018. “. 
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5.1.  Why Reliability Allocation? 
Let’s consider the design of an industrial product (or system, or plant) with a 
certain degree of complexity. Obviously, this product will have several 
functional elements that need to work together to make it works properly. For 
instance, there will be a power supply, a microprocessor, some sensor, etc. Each 
functional element can be provided by a single component, a subsystem, a 
module or an assembly. For simplicity, this work will refer to these collectively 
as ‘components.’  
Each component is different. Based on different technologies. Created by 
different design teams. Perhaps supplied by different suppliers. The design team 
leader is almost forced to treat the design of each component as its own ‘little 
design project.’ However, this is not always possible. In fact, among the 
functional and design requirements, the design team could have a reliability 
goal for the overall product  
Let’s say the product consists of nine components working together to achieve 
a specific task. The overall system reliability goal is that the product needs to 
be 95% reliable after three years. (see Fig. 5.1).  
Obviously, it is absolutely not enough to simply say to all the design teams and 
suppliers of the nine components that their reliability goals are also 95%.  
As a matter of fact, nine components that each have 95% reliability will result 
in a product with 63% reliability according to the model of a series 
configuration.  
 

 
Fig. 5.1. Example of reliability goal for a product made up by extremely different 

components.  
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Therefore, it is necessary to assign a numerical reliability goals to subsystems 
and components in support of system level reliability performance 
characteristics. This is commonly done by means of Reliability Allocation (RA). 
 
 
 

5.2.  Basic concepts of Reliability Allocation 
The choice of components in terms of reliability requirements represents a key 
issue to reduce failures occurrence and guarantee an adequate availability and 
safety of the whole system. In order to satisfy these requirements since the 
earliest design phases, the first step is to translate the overall system reliability 
goal into reliability requirements for each of the components making up the 
system; this process is known as Reliability Allocation (RA). Reliability 
allocation is a top-down technique that allows to apportion the reliability goal 
of the system between its components which is a very sensitive issue in 
industrial and commercial environments [151]. Therefore, RA plays a 
fundamental role in the development of a new industrial system. An accurate 
and efficient RA methodology allows designers to achieve the optimal target in 
compliance with the state of the art, the costs of the components, the operating 
conditions and the environmental factors [152]–[154]. 
When reliability allocation is implemented since the first design phases, it 
allows to achieve several benefits. First of all, RA evaluates the reliability 
parameters of each subsystem/unit/item that make up the system, allowing an 
in-depth knowledge of the system itself. Furthermore, RA optimizes the 
component reliability minimizing the life cycle cost and the unexpected and 
unpredicted failures. Moreover, RA is a realistic approach which includes 
several factors, that influence the system reliability and it gives the possibility 
to repeat the procedure at the various hierarchical levels. 
The RA problem could be essentially divided into six consecutive steps: 

1. Identify customer requirements in terms of system reliability or system 
failure rate, if any. 

2. Establish system reliability goal, working out how the product or 
system needs to perform to achieve the design requirements. 

3. Determine reliability design margin in order to take into account also 
the uncertainties on reliability data and the random processes of 
failures. 

4. Establish a preliminary functional series design which model the top 
hierarchical level of the product/system. 
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5. Allocate the component reliability according to one of the several 
methods available in literature.  

6. Do somethings, which means that if the goal could not be achieved with 
the current design, some improvements and modifications are required 
before putting into practice the RA procedure again.  

 
Fig. 5.2 shows a generic design flow including the six steps of the RA procedure 
to effectively and efficiently achieve the design requirements in terms of 
reliability.  
 

 
Fig. 5.2. Generic design flow of a complex system including the six steps of Reliability 

Allocation. 

 
Basically, the first four steps of the procedure provide a system reliability goal  
𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡) and a preliminary system architecture. Supposing to know the system 
architecture in terms of Reliability Bock Diagram (RBD), thus the system 
reliability is a function 𝕗𝕗{∙} of the reliability of each component Ri. Then the 
reliability allocation procedure could be summarized in determining a possible 
solution for the following inequality [4], [155]: 
 
 RSYS

∗(t) ≤  𝕗𝕗 {R1
∗(t), R2

∗(t),  … , Rn
∗(t)} (5.1) 

 
Where the generic term Ri

∗ (t) stands for the reliability allocated to the 
component i-th after the allocation process, and n is the number of components 
making up the system. Unfortunately, without some restrictions, the inequality 
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in equation (5.1) has an infinite number of solutions. As a consequence, the RA 
problem consists in establishing a procedure that creates a unique or limited 
number of solutions with which reasonable reliability can be assigned to the 
various components. 
For example, the allocated reliability for a simple subsystem of demonstrated 
high reliability should be greater than for a complex subsystem whose observed 
reliability has always been low. The allocation process is approximate, and the 
reliability parameters apportioned to the subsystems are used as guidelines to 
determine design feasibility. If the allocated reliability for a specific subsystem 
cannot be achieved at the current state of technology, then the system design 
must be modified, and the allocations reassigned. This procedure is repeated 
until an allocation is achieved that satisfies the system level requirement, within 
all constraints, and results in subsystems that can be designed within the state 
of the art.  
 
 

5.3.  Reliability Allocation: general procedure  
RA is a top-down technique much useful in industrial and commercial 
environments because it optimizes risk, development time, and the overall 
development costs. As the system design develops and more information about 
components and the operating environment becomes available, different 
allocation methods and reliability improvement techniques may also be 
considered.  
Thus, many procedures have been developed to assess reliability allocation in 
the last few years. However, all of them follow the same modus operandi in 
which the failure rate to be allocated to a generic subsystem is directly 
proportional to the failure rate of the whole system. This is a very limited 
approach and requires a huge level of simplification. This section presets the 
general procedure used to carry out the allocation of the reliability requirements 
in almost all the papers available in literature. 
 
 

5.3.1.  Required hypothesis  
Similarly to every mathematical procedure, Reliability allocation requires some 
initial hypotheses to ensure the proper working of the RA model.  
To the author knowledge, after a systematic and extensive literature review, it 
stands out that every allocation procedure proposed in literature is based on 
two assumptions:  
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Assumption i. Functional series architecture of the system under test, 
which means that no redundancies could be implemented.   

Assumption ii. Exponential failure rate distribution, which means that the 
failure rate of the component has to be constant. 
Therefore, only the middle section of the failure rate 
bathtub curve could be considered, while early failure 
mechanisms and wear out processes must be neglected.   

 
Assumption i. and Assumption ii. are quite popular in many RAMS 
methodology. For instance, series architecture and exponential failure 
distribution are the central core of the widely known reliability prediction.  
Handbooks such as the MIL-HDB 217 F Notice 2 (published by the U.S. 
Department of Defense in 1995) [156], the HDBK-217Plus (published by 
Quanterion Solutions Incorporated in 2015) [146], the SR-332 Issue 4 (published 
by Telcordia network Infrastructure solutions in 2016) [147], the SN 29500 
revision 07 (published by Siemens in 2013) [149] and the IEC 61709 (published 
by the International Electrotechnical Commission in 2017) [150] all relies on 
such initial hypothesis.     
However, to limit the application scenario only to systems described by a series 
architecture of components characterized by an exponential failure distribution 
is too simplistic. In fact, redundancy plays a fundamental role in many different 
fields of application where it is absolutely required to ensure continuity of 
service in case of failure of a critical component. Furthermore, mechanical, 
electromechanical and hydraulic components are usually described by the 
Weibull probability density function to take into account wear-out and early-
failure processes. Therefore, these simplifying hypotheses are not suitable for 
many industrial systems characterized by the presence of complex components, 
several redundancies and fault tolerant architectures. 
As a consequence, the aim of this work is to introduce an innovative 
methodology able to overcomes both Assumption i. and Assumption ii. and 
consequently to extend the range of applicability of the allocation methods 
already available in literature.  
 

5.3.2.  Influence factors  
One of the strongest points of the reliability allocation is that it takes into 
account a set of influence factors that affect the RAMS performances of system 
under analysis.  
A summary of the most used influence factors is illustrated in Fig. 5.3.  
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Fig. 5.3. Summary of influence factors for RA procedures. 

 
The complexity C usually represents the degree of complexity of the considered 
item, including number of components, number and type of eventual 
redundancies, etc. The higher the value C, the greater the complexity of the 
considered item is.  
Moving to the next influence factor, the State of the Art A measures the actual 
engineering development in the considered field. New technologies are 
considered likely to fail because the mechanisms of the component are not 
completely established, and failure data are not yet available. Thus, a higher 
state of the art value A is assessed to ensure a lower reliability. Quite the 
contrary, state of the art components that are present in the market since many 
years are considered more reliable, a thus a lower value of the state of the art 
parameter A is assessed.  
The environmental factor E measures the level of external stress sources on the 
considered component. Temperature, humidity, vibrations, mechanical shocks, 
weather conditions, electromagnetic noise are some of the factors that are 
weighted during the assessment of the environmental factor E. Similarly to the 
complexity, the higher the stress of the external environment, the higher the 
value of the E parameter is.  
The operative time T is a factor used by some approaches to take into account 
component that works for longer period than others. The longer the worked 
period with respect to the tola operative time, the lower the value of the 
influence factor T. 
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The influence factor M (Maintainability) measure the impact of a corrective 
maintenance operation that must be performed in case of failure of the 
considered component. It takes into account the cost of the maintenance 
operations, the time required to perform the task, the easiness of the procedures, 
and accessibility of the component, etc. If it is easy, fast and cheap to perform 
the maintenance operations, then a high value of the maintainability index M 
is assessed.  
The criticality factor K is a parameter that takes into account the effects of an 
eventual failure on the entire system in terms of functionalities, productivity 
and availability.  
In this case, the greater the criticality of the unit, the worsen the failure effects 
and the lower the criticality value K is. This is due to the fact that lower 
influence factor values lead to higher reliability allocated to the unit. Thus, a 
remarkably critical unit should have a very low K value to ensure a higher 
allocated reliability.  
According to its definition, the criticality factor K is strictly related to the 
Severity factor S of the FMECA procedure. The only difference is that S and 
K are defined in a reverse order. However, the reasons and guidelines that lead 
to the assessment of one parameter are the same of the other one, except for 
the ordering.  
The last factor taken into account in Fig. 5.3 is the Safety index R. It measures 
the impact of a possible failure by a safety point of view, considering the effects 
of failure on the system, environment, personnel and users. In this case, if the 
failure of a component will lead to catastrophic events and severe consequence 
by a safety point of view, then an extremely low value of the Safety parameter 
R is assessed. Also in this case, there is a strict correlation between the safety 
index R and the severity index S of the FMECA procedure. In fact, most of 
the time severity S takes into account the effect of failure also measuring the 
impact on the system safety. Similarly to the previous case, the only difference 
between S and R is that the RA influence factor R is defined in a reverse order 
with respect to the FMECA index S. 
As a consequence, when RA and FMECA are implemented as part of an overall 
design for reliability as the one presented in this work, then the assessment of 
the criticality K and Safety R should be guided following the guidelines already 
studied during the FMECA for the assessment of Severity S. 
This concept is clearly explained in TABLE V.I where the relationship between 
the FMECA index S (severity) and the RA indexes K (criticality) and R 
(safety) are studied. 
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TABLE V.I 
SIMILARITIES BETWEEN RA INDEXES K (CRITICALITY) AND R (SAFETY) WITH FMECA 

INDEX S (SEVERITY) 

TECHNIQUE PARAMETER DESCRIPTION 
RULES FOR THE 

ASSESSMENT 

FMECA Severity S 

Magnitude of the failure 
effects at local and global 
level by economic, 
performance, availability 
and safety point of view. 

Maximum S (usually 10) 
assigned to the most critical 
failures. 

Minimum S (usually 1) 
assigned to negligible 
failures. 

RA 

Criticality K 

Consequences of a failure 
on the system by a 
productivity and 
availability point of view. 

Maximum K (usually 10) 
assigned to non-critical 
components. 

Minimum K (usually 1) 
assigned to the most critical 
components. 

Safety R 

Impact of the failure on 
system, environment, 
personnel and users by a 
safety point of view. 

Maximum R (usually 10) 
assigned if the failure has no 
impact on safety. 

Minimum R (usually 1) 
assigned if the failure will 
lead to catastrophic events. 

 
 

5.3.3.  Overall procedure 
As explained above, all the reliability allocation procedures available in 
literature follow a common structure. The central point of each procedure is 
the assessment of a proportionality constant 𝜔𝜔 called weight factor. Each RA 
technique differs from the other according to a dedicated procedure to assess 
its own weight factors.  
A schematization of the generic structure of RA is illustrated in Fig. 5.4. The 
procedure starts with the specification of design requirement in terms of 
functional configuration, actual operating conditions, failure analysis, etc. At 
system level, all the techniques require a system reliability goal expressed in 
terms of either reliability 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡) or failure rate 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡). Then a weight factor 
is introduced as proportionality constant to evaluate the component reliability 
based on a combination of some influence factor as in equation (5.3). Finally, 
the component reliability could be assessed according to the weight factor.  
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Fig. 5.4. Schematization of the RA procedure at different levels. 

 
It is important to note that thanks to Assumption i. and Assumption ii. it is 
possible to convert the system reliability goal into a system failure rate goal 
and vice versa using the following relationship:  
 
 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑡𝑡𝑎𝑎 ∙ 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
∗)    ⟺     𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆

∗ = −
𝑙𝑙𝑙𝑙 �𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)�

𝑡𝑡𝑎𝑎
 (5.2) 

 
Where ta is the allocation time and it is set prior the allocation, when the 
system goal is defined.  
The overall reliability allocation procedure is illustrated in Fig. 5.5 highlighting 
four consecutive steps.   
 

 
Fig. 5.5. General procedure applicable to several Reliability Allocation methods 

proposed in literature. 

Firstly, the level of each considered influence factor must be evaluated for each 
item composing the system (STEP 1). Similarly to the FMECA, most of the 
techniques use a 10-point scale to assess the influence factor, as: 
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 𝑋𝑋𝑖𝑖  ∈ [1, 10] (5.3) 
 
Where 𝑋𝑋𝑖𝑖 represents a generic influence factor of the component i-th. Fig. 5.5 
takes complexity, state of the art and Environmental factor as an example, 
however all the influence factors describe in the previous section could be 
considered, depending on the technique that is implemented. 
Then, the second step consists in the evaluation of the weight factor 𝜔𝜔𝑖𝑖 for each 
one of the components under analysis. Every RA method in literature differs 
from the others only on the model used to calculate the weight factor. Generally 
speaking, the weight factor 𝜔𝜔𝑖𝑖 is a function ℊ of some of the influence factors 
mentioned above, as follow: 
 
 𝜔𝜔𝑖𝑖  =  ℊ(𝐶𝐶𝑖𝑖,𝐴𝐴𝑖𝑖 ,𝐸𝐸𝑖𝑖 ,𝑂𝑂𝑖𝑖)  (5.4) 

 
More information about how some of the widely known RA techniques assess 
the weight factor 𝜔𝜔𝑖𝑖 are provided in the following section.  
The third step is the core of the procedure since it allows to calculate the 
reliability target Ri

∗ (t) allocated to each component. More in detail, considering 
the subscript i as notation for the component i-th, then Ri

∗ (t) is given by: 
 
 𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎) = [𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)]𝜔𝜔𝑖𝑖 (5.5) 

 
Finally, the Step 4 allows to evaluate the failure rate of the component i-th 
based on the allocated reliability Ri

∗ (ta) under the assumption of exponential 
distribution as follow: 
 
 𝜆𝜆𝑖𝑖∗ = −

𝑙𝑙𝑙𝑙 [𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎)]
𝑡𝑡𝑎𝑎

 (5.6) 

 
 

5.3.4.  Some notes about the weight factor 
The weight factor 𝜔𝜔𝑖𝑖 is the mathematical object that allows to apportion the 
system reliability goal among the components that make up the system 
according to their characteristics. Thus, it is a powerful tool that must satisfy 
some constraints.  
According to the definition of a series configuration, the system reliability goal 
could be expressed as the product of the reliability allocated to each component, 
as follow:  
 



RELIABILITY ALLOCATION: THEORY AND IMPROVEMENTS 

86 
 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎) = �𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎)
𝑁𝑁

𝑖𝑖=1

 (5.7) 

 
Where N represents the number of components making up the system.  
Equation (5.5) clearly states that the reliability allocated to the i-th component 
is given by the system reliability goal to the power of the weight factor 𝜔𝜔𝑖𝑖. 
Introducing equation (5.5) within equation (5.7): 
 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎) = �[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)]𝜔𝜔𝑖𝑖
𝑁𝑁

𝑖𝑖=1

 (5.8) 

 
Considering that 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡) is a constant value and taking into account the 
properties of a product of sequence, equation (5.8) could be rewritten as: 
 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎) = [𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)]∑ 𝜔𝜔𝑖𝑖
𝑁𝑁
𝑖𝑖=1  (5.9) 

 
Thus, the weight factor must satisfy the following relationship: 
 

 �𝜔𝜔𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 =  1 (5.10) 

 
There is another important point that should be discussed when talking about 
the weight factor 𝜔𝜔𝑖𝑖. Thanks to Assumption ii. it is possible to translate the 
reliability model in equation (5.5) into a failure rate model. In this way, instead 
of allocating a reliability to each component based on the system reliability goal 
𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎) and the weight factor 𝜔𝜔𝑖𝑖, it will be possible to allocate a component 
failure rate 𝜆𝜆𝑖𝑖∗ based on the system failure rate goal 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆∗ and the same weight 
factor 𝜔𝜔𝑖𝑖.  
Under Assumption ii. the reliability R of a generic item can be written as 
function of the failure rate 𝜆𝜆 as follow: 
 

 𝑅𝑅(𝑡𝑡) = 𝑒𝑒− 𝜆𝜆 ∙ 𝑡𝑡 (5.11) 
 
Thus, equation (5.5) can be rewritten as: 
 

 𝑒𝑒− 𝜆𝜆𝑖𝑖
∗ ∙ 𝑡𝑡𝑎𝑎 = �𝑒𝑒− 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆

∗ ∙ 𝑡𝑡𝑎𝑎�
𝜔𝜔𝑖𝑖 (5.12) 

 𝑒𝑒− 𝜆𝜆𝑖𝑖
∗ ∙ 𝑡𝑡𝑎𝑎 = 𝑒𝑒− 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆

∗ ∙ 𝑡𝑡𝑎𝑎 ∙ 𝜔𝜔𝑖𝑖 (5.13) 
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 𝜆𝜆𝑖𝑖∗  ∙  𝑡𝑡𝑎𝑎 = 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
∗  ∙  𝑡𝑡𝑎𝑎  ∙  𝜔𝜔𝑖𝑖 (5.14) 

 𝜆𝜆𝑖𝑖∗  = 𝜔𝜔𝑖𝑖  ∙  𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
∗ (5.15) 

Equation (5.15) shows how the failure rate allocated to the i-th component 
could be estimated as a simple fraction of the system failure rate goal. Equation 
(5.15) also proves why the weight factor is considered a proportionality 
constant. Using the failure rate model, ωi actually represent a proportionality 
constant between the component failure rate and the system failure rate.  
Once again, it is easy to prove that the sum of the weight factors must be equal 
to 1 as in equation (5.10) introducing the definition of series configuration 
according to Assumption i. as follow:  
 

 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
∗ = �𝜆𝜆𝑖𝑖

∗
𝑛𝑛

𝑖𝑖=1

 (5.16) 

 
Thus, using equation (5.15) to substitute the allocated failure rate 𝜆𝜆𝑖𝑖∗ within 
equation (5.16) it is possible to achieve the following relationship: 
  

 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
∗ = �𝜔𝜔𝑖𝑖  ∙  𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆

∗
𝑛𝑛

𝑖𝑖=1

= 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
∗ ∙�𝜔𝜔𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (5.17) 

 
And thus, the sum of the weight factor must satisfy the following constraint: 
 

 �𝜔𝜔𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 =  1 (5.18) 

 
 
 

5.4.  Related works: classical approaches 
This section presents a systematic review of the most common RA methods 
available in literature.  
 
 

5.4.1.  Equal method  
The simplest and easiest allocation method is the "Equal Reliability Allocation". 
As it can be easily guessed from the name, this method allocates the same 
failure rate and the same reliability to all the components making up the 
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system. This means that the weight factor 𝜔𝜔𝑖𝑖 assessed using the Equal method 
is the same for all components i. As a consequence, the Equal method could be 
applied only to provide a first rough estimation of the reliability values to be 
allocated, but it cannot be considered a valuable solution. 
The mathematical model of the equal allocation method is the following: 
 

 𝑅𝑅𝑖𝑖∗(𝑡𝑡) =  �𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)𝑁𝑁 =  [𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)]
1
𝑁𝑁 (5.19) 

 𝜔𝜔𝑖𝑖 =  
1
𝑁𝑁

 (5.20) 

 
 

5.4.2.  ARINC method  
The ARINC apportionment method was designed in 1964 by ARINC Research 
Corporation, a subsidiary of Aeronautical Radio, Inc [157].  
This method is based on the assumption that the reliability of components can 
be assessed using previous calculations on similar components. 
The mathematical expression of weight factors is the following: 
 
 𝜔𝜔𝑖𝑖 =

𝜆𝜆𝑖𝑖
𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆

=
𝜆𝜆𝑖𝑖

∑ 𝜆𝜆𝑗𝑗𝑁𝑁
𝑗𝑗=1

 (5.21) 

 
Where 𝜆𝜆𝑖𝑖 is the estimated failure rate of the component i-th obtained through 
a similar system and 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆 is the estimated failure rate of the whole architecture 
[157].  
The peculiarity of the ARINC technique is that it is one of the few methods 
that considers historical failure data to assess the weight factors rather than 
quantitative influence factors like most of other techniques. As a matter of fact, 
ARINC requires the knowledge of past allocations on similar systems to allocate 
reliability to the various levels of the current system.  
The main advantage of this method is essentially its simplicity of calculations 
which allows to rapidly implement the allocation. However, ARINC suffers 
many flaws, such as: 

• It is not possible to apply ARINC method to innovative systems since 
no past data related to a similar system are available. 

• All failure rates must be extracted from the same source (single 
database), as they must be comparable to each other in order to have 
an optimal allocation. 
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5.4.3.  AGREE method  
AGREE (Advisory Group on Reliability of Electronic Equipment) technique 
considers three influence factors to calculate the weighting factors of each 
subsystem [158]. Complexity 𝐶𝐶𝑖𝑖 is assessed as the number of elements of the 
generic subsystem 𝑛𝑛𝑖𝑖 compared to the total number of components 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 of 
overall configuration.  
 
 𝐶𝐶𝑖𝑖 =

𝑛𝑛𝑖𝑖
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆

 (5.22) 

 
This technique also considers the importance 𝐼𝐼𝑖𝑖 of each subsystem i, where 
importance is defined as the probability that the system fails when the 
subsystem fails, thus 𝐼𝐼𝑖𝑖 ∈ [0; 1] where 𝐼𝐼 = 1 stands for the most critical items, 
while 𝐼𝐼 = 0 means that the failure has no critical effects.  
The third factor takes into account the effective time of use 𝑡𝑡𝑖𝑖′ of the 
subsystems, as follow: 
 
 𝑡𝑡𝑖𝑖′ =

𝑡𝑡
𝑡𝑡𝑖𝑖

 (5.23) 

 
where 𝑡𝑡𝑖𝑖 is the time of use of item I, while 𝑡𝑡 is the time of use of the whole 
system.  
According to the AGREE method [158], the reliability of a series architecture 
composed by N subsystems is defined as follow: 
 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡) = �{1 − 𝐼𝐼𝑖𝑖[1 − 𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑖𝑖)]}
𝑁𝑁

𝑖𝑖=1

= ��1 − 𝐼𝐼𝑖𝑖�1 − 𝑒𝑒−𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖��

𝑁𝑁

𝑖𝑖=1

 (5.24) 

 
Using the Taylor approximation of the exponential function 𝑒𝑒−𝑥𝑥 ≈ 1 − 𝑥𝑥 when 
𝑥𝑥 →  0, then: 
 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡) ≈�{1 − 𝐼𝐼𝑖𝑖[1 − (1 − 𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖)]}

𝑁𝑁

𝑖𝑖=1

= �{1 − 𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖}

𝑁𝑁

𝑖𝑖=1

 (5.25) 

 
Introducing the Taylor approximation once again and rewriting the system 
reliability as exponential function: 
 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡) ≈��𝑒𝑒−𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖 �

𝑁𝑁

𝑖𝑖=1

= 𝑒𝑒−∑ �𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖�

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆
𝑖𝑖=1  (5.26) 
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To solve equation (5.26) it is necessary to rewrite the left term using the 
exponential function.  
Thus, considering the properties of exponential and logarithmic functions, 
equation (5.26) can be rewritten as follow: 
 

 𝑒𝑒𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)] = 𝑒𝑒−∑ �𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖�

𝑁𝑁
𝑖𝑖=1  (5.27) 

 𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)] = −�𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (5.28) 

 
Multiplying and dividing the first term of equation (5.28) by the same quantity 
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆: 
 

 
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆

 𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)] = −�𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (5.29) 

 
However, 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 is the total number of components that make up the entire 
system. Thus, considering the definition of Complexity introduced by the 
AGREE method in equation (5.22), 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 can be rewritten as follow: 
 

 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (5.30) 

 
Introducing equation (5.30) within equation (5.29): 
 

 �𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= −
𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)] ∙ ∑ 𝑛𝑛𝑖𝑖𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆
 (5.31) 

 
Then, using the properties of the summation: 
 

 �𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= −��𝑛𝑛𝑖𝑖 ∙
𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)]

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆
�

𝑁𝑁

𝑖𝑖=1

 (5.32) 

 𝐼𝐼𝑖𝑖𝜆𝜆𝑖𝑖
∗𝑡𝑡𝑖𝑖 = −𝑛𝑛𝑖𝑖 ∙

𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)]
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆

 (5.33) 
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Introducing the definition of Complexity 𝐶𝐶𝑖𝑖 as in equation (5.22) and the 
definition of effective time as in equation (5.23) the latter became:  
 

 𝜆𝜆𝑖𝑖
∗ = −

𝐶𝐶𝑖𝑖 ∙ 𝑡𝑡𝑖𝑖′ ∙ 𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)]
𝐼𝐼𝑖𝑖𝑡𝑡

 (5.34) 

 
Now it is possible to define the weight factor of the AGREE method as a 
function of complexity, importance and effective time: 
 

 𝜔𝜔𝑖𝑖 =
𝐶𝐶𝑖𝑖 ∙ 𝑡𝑡𝑖𝑖′

𝐼𝐼𝑖𝑖
 (5.35) 

 
Introducing equation (5.35) and equation (5.2) within equation (5.34) the 
allocated failure rate according to the AGREE method could be expressed as: 
 

 𝜆𝜆𝑖𝑖
∗ = −

𝜔𝜔𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙[𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡)]
𝑡𝑡

=  𝜔𝜔𝑖𝑖 ∙  𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
∗ (5.36) 

 
The AGREE technique is a milestone in RA approaches. However, it suffers 
major drawbacks, such as: 

• The importance factor, as it is defined, does not take into account the 
consequences that a subsystem failure induced on the system. 

• It requires Taylor approximation, thus obtaining approximate result. 
• The assessment of the weight factor takes into account only three 

influence factors. 
 
 

5.4.4.  FOO method  
The FOO (Feasibility-Of-Objectives) technique was first introduced in 1976 by 
Anderson [159] and then included into the MIL-HDBK-338B Electronic 
Reliability Design Handbook from Department of Defense of USA in 1988 [148] 
as a method to develop and implement reliability programs for generic military 
products. Following the FOO method, the subsystem allocation factors are 
computed as a function of four influence factors, namely complexity C, 
environmental factor E, state of the art A and operative time O. Each rank is 
estimated using both design engineering and expert judgments and it is based 
on a scale from 1 to 10 as detailed described in TABLE V.II.  
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TABLE V.II 
RULES FOR THE ASSESSMENT OF INFLUENCE FACTORS ACCORDING TO FOO METHOD. 

INFLUENCE FACTORS RATING 

COMPLEXITY - C 1 2 3 4 5 6 7 8 9 10 
LOW               MAX 

ENVIRONMENT CONDITION - E 
1 2 3 4 5 6 7 8 9 10 

LOW               MAX 

STATE OF THE ART - A 
1 2 3 4 5 6 7 8 9 10 

MAX               LOW 

OPERATING TIME - T 1 2 3 4 5 6 7 8 9 10 
MAX               LOW 

 
The rating values are then multiplied to achieve a partial weight factor 𝛽𝛽𝑖𝑖. 
  

 𝛽𝛽𝑖𝑖 =  𝐶𝐶𝑖𝑖 ∙ 𝐸𝐸𝑖𝑖 ∙ 𝐴𝐴𝑖𝑖 ∙ 𝑂𝑂𝑖𝑖   (5.37) 
 
The final product has values ranging from 1 to 10000 and the subsystem ratings 
are normalized so that their sum is equal to 1.  
Thus, the weighting factors are given by: 
 

 𝜔𝜔𝑖𝑖 =  
𝐶𝐶𝑖𝑖 ∙ 𝐸𝐸𝑖𝑖 ∙ 𝐴𝐴𝑖𝑖 ∙ 𝑂𝑂𝑖𝑖

∑ �𝐶𝐶𝑗𝑗 ∙ 𝐸𝐸𝑗𝑗 ∙ 𝐴𝐴𝑗𝑗 ∙ 𝑂𝑂𝑗𝑗�𝑁𝑁
𝑗𝑗=1

 =
𝛽𝛽𝑖𝑖

∑ 𝛽𝛽𝑖𝑖𝑁𝑁
𝑗𝑗=1

  (5.38) 

 
The FOO method is a simple technique easily implementable using software 
tools. However, it is characterized by some major flaws (quite similar to the 
RPN drawbacks described in Section 3.2): 

• The partial weight factor 𝛽𝛽𝑖𝑖 is not unique. In fact, different 
combinations of the influence factors could provide the same 𝛽𝛽𝑖𝑖. 

• Although the partial weight factor 𝛽𝛽𝑖𝑖 could assume values between 1 
and 10000, there are many gaps in the range and only a very limited 
part of these 10000 possible values is obtained from a unique 
combination of factors. 

• All the different combinations of influence factors that lead to the same 
partial weight factor will also lead to the same allocated reliability. This 
may not be correct as the nature of the influence factors producing the 
same 𝛽𝛽𝑖𝑖 can be remarkably different. 
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• All the four influence factors have the same importance within the 
equation. 

• High subjectivity of the definition, which is deeply influenced by the 
expert’s judgments. 

 
 

5.4.5.  Bracha method  
Bracha method uses the same factors of FOO technique (see TABLE V.II) but 
it privileges the state of the art factor A in the formula to calculate the partial 
weight factors 𝛽𝛽𝑖𝑖 [160]: 
 

 𝛽𝛽𝑖𝑖 = 𝐴𝐴𝑖𝑖 ∙ (𝐶𝐶𝑖𝑖 + 𝑂𝑂𝑖𝑖 + 𝐸𝐸𝑖𝑖) (5.39) 
 
According to the Bracha method, the values of the influence factors are not 
determined by an expert like the FOO approach. Instead, the influence factor 
ratings are calculated through a set of complex mathematical models using 
several base factors, some of them are listed below: 

• the number of components of each subsystem;  
• the number of components of the most complex subsystem; 
• the number of redundancies; 
• the time of use of each subunit; 
• the operating time of each subsystem;  
• the applied stress; 
• the age of the database;  
• the time required to design the system. 

 
These models result in a set of four influence factors mathematically estimated 
varying in the range from 0 to 1.  The subsystem ratings are then normalized, 
therefore the weighting factors are given by [160]: 
 

 𝜔𝜔𝑖𝑖 =  
𝐴𝐴𝑖𝑖 ∙ (𝐶𝐶𝑖𝑖 + 𝑂𝑂𝑖𝑖 + 𝐸𝐸𝑖𝑖)

∑ [𝐴𝐴𝑖𝑖 ∙ (𝐶𝐶𝑖𝑖 + 𝑂𝑂𝑖𝑖 + 𝐸𝐸𝑖𝑖)]𝑁𝑁
𝑗𝑗=1

 =
𝛽𝛽𝑖𝑖

∑ 𝛽𝛽𝑖𝑖𝑁𝑁
𝑗𝑗=1

  (5.40) 

 
The Bracha method is able to solve two out of five drawbacks of the FOO 
method, namely the high subjectivity of the factor definition and the same 
importance assigned to all the factor in the equation to calculate 𝜔𝜔𝑖𝑖. However, 
it is not able to solve the other three major drawbacks of the FOO method, 
and it is also characterized by a high computational complexity due to the 
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models required to assess the complexity C, the environmental factor E, the 
state of the art A and the operative time O. 
 
 

5.4.6.  Karmiol method  
The Karmiol method is based on the assessment of four influence factors, 
namely complexity C, state of the art A, operative time O and Criticality K. 
Each rank is estimated using both design engineering and expert judgments 
and it is based on a scale from 1 to 10 [161]. 
The procedure used to calculate the partial weight factor 𝛽𝛽𝑖𝑖 and the weight 
factor 𝜔𝜔𝑖𝑖 is quite similar to the FOO model. The only difference is that the 
Karmiol method allows two different approaches. In the first one the partial 
weight factor 𝛽𝛽𝑖𝑖 is based on the product of the indexes similarly to the FOO, 
as follow: 
  

 𝛽𝛽𝑖𝑖 =  𝐶𝐶𝑖𝑖 ∙ 𝐴𝐴𝑖𝑖 ∙ 𝑂𝑂𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖   (5.41) 
 
Then, the weight factor is achieved after a normalization process to ensure that 
equation (5.10) is satisfied. Thus: 
 

 𝜔𝜔𝑖𝑖 =  
𝐶𝐶𝑖𝑖 ∙ 𝐴𝐴𝑖𝑖 ∙ 𝑂𝑂𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖  

∑ (𝐶𝐶𝑖𝑖 ∙ 𝐴𝐴𝑖𝑖 ∙ 𝑂𝑂𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖  )𝑁𝑁
𝑗𝑗=1

 =
𝛽𝛽𝑖𝑖

∑ 𝛽𝛽𝑖𝑖𝑁𝑁
𝑗𝑗=1

  (5.42) 

 
Alternatively, it is possible to calculate the partial weight factor as sum of the 
indexes and then evaluate the weight factor after the normalization process, as 
follow: 
 

 𝛽𝛽𝑖𝑖 =  𝐶𝐶𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 𝑂𝑂𝑖𝑖 + 𝐾𝐾𝑖𝑖 (5.43) 

 𝜔𝜔𝑖𝑖 =  
𝐶𝐶𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 𝑂𝑂𝑖𝑖 + 𝐾𝐾𝑖𝑖

∑ (𝐶𝐶𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 𝑂𝑂𝑖𝑖 + 𝐾𝐾𝑖𝑖  )𝑁𝑁
𝑗𝑗=1

 =
𝛽𝛽𝑖𝑖

∑ 𝛽𝛽𝑖𝑖𝑁𝑁
𝑗𝑗=1

 (5.44) 

 
 

5.4.7.  AWM method  
In 1999 Kuo [162] introduced an Averaging Weighted Method (AWM) as a 
guide for reliability allocation design.  
The method uses a questionnaire investigation to select the most influential 
system reliability factors such as complexity, state-of-the-art, system criticality, 
environment, safety, and maintenance in order to determine the subsystem 
reliability allocation ratings. All the influence factors included in Fig. 5.3 are 
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allowed, depending on the results of the questionnaire. Each rank is estimated 
on a scale from 1 to 10 using design engineering and expert judgments to obtain 
the subsystem reliability rate [162]. TABLE V.III shows the admissible influence 
factors and their rating rules according to the guidelines described in section 
5.3.2. 
 

TABLE V.III 
INFLUENCE FACTORS ADMISSIBLE BY AWM ALLOCATION METHOD 

INFLUENCE 
FACTORS 

DESCRIPTION RATING 

COMPLEXITY - C Number of components; 
system architecture. 

1 2 3 4 5 6 7 8 9 10 
LOW               MAX 

ENVIRONMENT 
CONDITION - E 

External stress factors 
(humidity, temperature, 
vibration, etc.). 

1 2 3 4 5 6 7 8 9 10 
LOW               MAX 

STATE OF THE ART - 
A 

Scientific development in the 
system specific engineering 
context. 

1 2 3 4 5 6 7 8 9 10 
MAX               LOW 

CRITICALITY - K 
Subsystem importance; 
consequences of a potential 
fault on the entire system. 

1 2 3 4 5 6 7 8 9 10 
MAX               LOW 

MAINTAINABILITY - M 
Average repair cost; average 
repair time. 

1 2 3 4 5 6 7 8 9 10 
LOW               MAX 

SAFETY - R Impact of failure on system 
safety 

1 2 3 4 5 6 7 8 9 10 
MAX               LOW 

 
Considering a system composed by N subsystem, m is the number of influence 
factors and p the number of experts. Let 𝑌𝑌𝑖𝑖𝑖𝑖 denotes the j-th rating for 
subsystem i. 𝑋𝑋𝐾𝐾𝑖𝑖𝑖𝑖 is the j-th rating for subsystem i set by L-th expert and each 
factor is defined as follows: 
 

 𝑌𝑌𝑖𝑖𝑖𝑖 =
1
𝑝𝑝
�𝑋𝑋𝐾𝐾𝑖𝑖𝑖𝑖

𝑝𝑝

𝑘𝑘=1

∀𝑖𝑖 = 1, … ,𝑚𝑚∀𝑗𝑗 = 1, … ,𝑁𝑁 (5.45) 

 
Then, similarly to the Karmiol method, also in this case two different models 
can be used to allocate weighting factors 𝜔𝜔𝑖𝑖.  
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The geometric model is based on the product of the influence factors, and thus 
the weight factor is given by: 
 

 𝜔𝜔𝑖𝑖 =  
∏ 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

∑ ∏ 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

𝑚𝑚
𝑓𝑓=1

 =
𝛽𝛽𝑓𝑓

∑ 𝛽𝛽𝑓𝑓𝑚𝑚
𝑓𝑓=1

  (5.46) 

 
While the arithmetic model is based on the sum of the influence factors: 
 

 𝜔𝜔𝑖𝑖 =  
∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

∑ ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

𝑚𝑚
𝑓𝑓=1

 =
𝛽𝛽𝑓𝑓

∑ 𝛽𝛽𝑓𝑓𝑚𝑚
𝑓𝑓=1

  (5.47) 

 
The AWM has many advantages, such as: 

• The higher the experts number, the lower the impact of a possible 
evaluation error. 

• Minimum subjectivity issue due to factors assessment performed after 
a questionnaire-based investigation.  

• Possibility to choose which influence factors represent the best 
alternative to fit the specific system judging on system features. Thus, 
only the factors that actually influence the system performances are 
taken into consideration. 

• Low complexity. 
 
The main drawback of the AWM method is the equal weight that the influence 
factors have in the final equations (5.46) and (5.47). 
 
 
 

5.5.  Related works: other innovative approaches 
This section reports some of the innovative RA approaches available in 
literature as an alternative to the classical methods presented in the previous 
section. Currently, many works in literature about Reliability Allocation are 
focusing on giving high priority to certain influence factors and on minimizing 
the subjectivity of the expert judgments. 
To solve the above-mentioned problems Fullér R. and Majlender P. [163] 
introduced the MVOWA (Minimal Variance Ordered Weighting Averaging) 
operator to minimize the risk of giving too much importance to a single 
parameter. This is done by proposing an innovative method to estimate the 
auxiliary vector of the OWA operators minimizing the variance of the system). 
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As an alternative, Chang et al. in 2009 [162] introduced the MEOWA 
(Maximum Entropy Oredered Weighting Averaging) method which is able to 
assign different importance to the information available in a situation of 
uncertainty. More information about MEOWA method will be discussed in the 
following section.  
In order to take advantages of both MV-OWA and MEOWA methods Chen et 
al. [164] developed the MEMVOWA (Maximum Entropy Minimal Variance 
Ordered Weighting Averaging) method. Another approach that uses the 
MEOWA method as starting point of the RA procedure is presented in [165] 
integrating MEOWA and DEMATEL. 
To reduce the subjectivity during expert definition of the influence factors De 
Felice et al. [166] proposed the IFM (Integrated Factors Method) in which 
objectively established parameters are used. A method based on fuzzy logic has 
been developed in [167] to take into account unclear information in the 
allocation in case the experts' conclusions are inaccurate or confused.  
The ordered weighted geometric averaging (OWGA) operators have been used 
as central part of the allocation procedure in [168]. Then, the approach has 
been extended in [169] combining OWGA and fuzzy sets to ensure the benefits 
of both approaches. 
Other techniques available in literature are based on a preliminary risk analysis.  
For instance, Di Bona et al. [170] introduces the CFM (Critical Flow Method) 
which estimates the influence parameters starting from a PHA (Preliminary 
Hazard Analysis). In [171] a new distribution of the Criticality parameter K is 
presented to accurately allocate the reliability to the most dangerous 
subsystems for the operation of the system, for the user or for the environment. 
Similar approach has been presented also by Yadav et al. [172] assigning a 
greater weight to the Criticality parameter K. 
Some papers take into account the problem of uncertainty. For instance, in 
[173] an innovative RA method to allocate system reliability together with 
confidence level is presented, while Guangyan et al. [174] proposed a software 
that obtains the best allocation with an iterative procedures. An improved 
differential evolution algorithm is proposed in [175] to reallocate subsystem 
reliability for minimum cost and minimum uncertainty.  
The idea of allocate the component reliability by means of a comparitve analysis 
with similar systems was firstly introduced by ARINC method [157]. However, 
most of the allocation methods are generally applied to electronic systems, while 
in case of mechanical or hydraulic systems is difficult to allocate component 
reliability by similarity approach. To solve this problem, Wang et al. [176] 
presents a comprehensive failure rate allocation method, while in [177] an RA 
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method based on Meta-Action has been presented combining the FOO method 
with the FMA (Function-Movement-Action) decomposition technique. 
Other methods proposed some improvements to the classical allocation 
methods. For example, the AGREE allocation method has been extended in 
[178], while the Boyd method introduced in [179] combines the Equal and 
ARINC approaches.  
Some interesting literature review about Reliability Allocation have been 
recently published by Forcina et al. [152] and Silvestri et al. [153]. 
 
 
 

5.6.  Related works: MEOWA method 
In this section one of the most interesting and widely used innovative RA 
approach is presented and detailed discussed.  
In 1988 Yager [180] introduced the concept of OWA operators, which are 
important aggregation operators within the class of weighted aggregation 
methods. OWA operators have the ability to derive optimal weights of the 
attributes based on the rating of the weighting vectors after an aggregation 
process [180]. 
An OWA operator of dimension n is a function F from In ⟶ I, where I = [0, 1]. 
An auxiliary vector W =  [w1, w2, … , wn]T is associated to the OWA operators 
and it could be defined as follows: 
 

 �𝑤𝑤𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

     ∀𝑤𝑤𝑖𝑖 ∈ [0,1],    𝑖𝑖 = 1,2, …𝑛𝑛 (5.48) 

 𝑓𝑓(𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) = �𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (5.49) 

 
Where bi is the i-th largest element in the collection a1, a2, … , an and the 
following ordering is ensured b1 ≥ b2 ≥ ⋯ ≥ bn [180]. 
Later, Yager also introduced two important characterizing measurements with 
respect to the auxilliary vector W of the OWA operator. One of these two 
measures is “Orness of the aggregation”, which is definedas follows. Assume F 
is an OWA aggregation operator with an auxiliary vector W =  [w1, w2, … , wn]T, 
the degree of Oorness associated with this operator is defined as: 
 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑊𝑊) =  𝛼𝛼 =
1

𝑛𝑛 − 1
�(𝑛𝑛 − 𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝑤𝑤𝑖𝑖 (5.50) 



RELIABILITY ALLOCATION: THEORY AND IMPROVEMENTS 

99 
 

Where Orness(W) = α is called situation parameter and it can vary within the 
interval [0; 1]. 
The second characterizing measurement introduced by Yager is the “Dispersion 
of the aggregation” that is defined as: 
 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑊𝑊) = −�𝑤𝑤𝑖𝑖𝑙𝑙𝑙𝑙 (𝑤𝑤𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (5.51) 

 
O’Hagan in 1988  combined the principle of maximum entropy and OWA 
operators to propose a particular OWA weight that has maximum entropy with 
a given level of  Orness [181]. This approach is based on the process of 
maximization of Dispersion(W): 
 

 
1

𝑛𝑛 − 1
�(𝑛𝑛 − 𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝑤𝑤𝑖𝑖 = 𝛼𝛼 (5.52) 

 
Where: 
 

 0 ≤ 𝛼𝛼 ≤ 1;              �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1;            0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1 (5.53) 

 
Fuller and Majlender in 2001 [181] used the method of Lagrange multipliers on 
Yager’s OWA equation to derive a polynomial equation, which can determine 
the optimal auxiliary vector under the maximal entropy. According to this 
method, the associated auxiliary vector is easily obtained solving the following 
system of equations: 
 

 

⎩
⎪
⎨

⎪
⎧𝑤𝑤𝑗𝑗 = �𝑤𝑤1𝑛𝑛−𝑗𝑗  𝑤𝑤𝑛𝑛𝑗𝑗−1 

𝑛𝑛−1
                                                                                   

𝑤𝑤𝑛𝑛 =
[(𝑛𝑛 − 1)𝛼𝛼 − 𝑛𝑛]𝑤𝑤1 + 1
(𝑛𝑛 − 1)𝛼𝛼 + 1 − 𝑛𝑛𝑤𝑤1

                                                                        

𝑤𝑤1[(𝑛𝑛 − 1)𝛼𝛼 + 1 − 𝑛𝑛𝑤𝑤1]𝑛𝑛 = [(𝑛𝑛 − 1)𝛼𝛼]𝑛𝑛−1{[(𝑛𝑛 − 1)𝛼𝛼 − 𝑛𝑛]𝑤𝑤1 + 1}

 (5.54) 

 
With situation parameter α ∈ �1

2
 ; 1� and ∑ wi = 1n

i=1 . 
The Maximal Entropy Ordered Weighted Averaging (MEOWA) method 
presented by Chang in 2009 [182] uses the OWA operators and the optimal 
auxiliary vector under maximal entropy as in [181] to develop an innovative 
RA method which is able to assign the optimal weight to each influence factor.  
The Maximal Entropy Ordered Weighted Averaging Method (MEOWA) [182] 
gives the opportunity to select the number and type of factors to the expert 
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that carry out the allocation. In this work, two scenarios have been investigated 
in order to compare the MEOWA method with the other approaches such as 
FOO and AWM. The 4-parameter MEOWA has been customized in this work 
to implement the same factor as FOO, while the 6-parameter MEOWA starts 
from the six influence factors used in the AWM method. According to MEOWA 
method, the auxiliary vector W can be estimated using the procedure presented 
in equation (5.54). Thus, the auxiliary vector W depends only on the number 
of selected influence factors and on the situation parameter α. The evaluation 
of the auxiliary vector W in case of 4 influence factors (4-parameter MEOWA) 
is shown in TABLE V. IV while  
TABLE V.V reports the case of 6 influence factors (6-parameter MEOWA).   
 

TABLE V. IV 
COMPONENTS OF THE AUXILIARY VECTOR W IN COMPLIANCE WITH 4-PARAMETER 

MEOWA  
α 𝐰𝐰𝟏𝟏 𝐰𝐰𝟐𝟐 𝐰𝐰𝟑𝟑 𝐰𝐰𝟒𝟒 

0.5 0.250000 0.250000 0.250000 0.250000 

0.6 0.347440 0.272208 0.213266 0.167086 

0.7 0.461371 0.275618 0.164651 0.098361 

0.8 0.596482 0.252032 0.106491 0.044996 

0.9 0.764108 0.182133 0.043413 0.010348 

1 1 0 0 0 

 
TABLE V.V 

COMPONENTS OF THE AUXILIARY VECTOR W IN COMPLIANCE WITH 6-PARAMETER 

MEOWA 

α  𝐰𝐰𝟏𝟏 𝐰𝐰𝟐𝟐 𝐰𝐰𝟑𝟑 𝐰𝐰𝟒𝟒 𝐰𝐰𝟓𝟓 𝐰𝐰𝟔𝟔 

0.5 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

0.6 0.246782 0.207240 0.174034 0.146148 0.122731 0.103066 

0.7 0.347494 0.239774 0.165447 0.114160 0.078772 0.054353 

0.8 0.478120 0.254752 0.135737 0.072323 0.038535 0.020532 

0.9 0.663738 0.223831 0.075482 0.025455 0.008584 0.002895 

1 1 0 0 0 0 0 
 
Then, the overall factor Zk can be achieved and then allocated to each 
subsystem [181]. This index takes into account all n influence factors, each of 
them multiplied by the optimal weight.  
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 𝑍𝑍𝑘𝑘 = �𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖,𝑘𝑘

𝑛𝑛

𝑖𝑖=1

 (5.55) 

 
where b1,k >  b2,k > ⋯ > bn,k are the values assigned to the influence factors 
of the k-th subsystem in descending order. 
Finally, the weight factors ωk are given by: 
 

 𝜔𝜔𝑘𝑘 =
𝑍𝑍𝑘𝑘
𝑀𝑀𝛼𝛼

         𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒      𝑀𝑀𝛼𝛼 = ��𝑤𝑤𝑖𝑖�𝑏𝑏𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗=1

�
𝑛𝑛

𝑖𝑖=1

 (5.56) 

 
MEOWA technique provides a situation parameter α ∈ [0.5 ; 1] that is necessary 
to achieve the reliability allocation values: α = 1 is used in case of high 
confidence of the decision-maker, while α = 0.5 is used when the decision-maker 
faces a moderate uncertainty. Consequently, when this parameter assumes high 
values, the RA procedure associates a lower reliability to the items 
characterized by influence factors with high ranks. This characteristic is crucial 
and it is not valid for all the other allocation methods where the weight factors 
are calculated simply as sum or product of the influence factors.  
When α = 0,5 the MEOWA method assigns the same weight to all influence 
factors, as the other RA techniques.   
The benefits of using the conditional parameter are highest in case of RA 
assessment during early design phase when information and data are imprecise, 
incomplete or uncertain.  
The MEOWA allocation technique is one of the best techniques available in 
literature. The benefits of MEOWA are listed below: 

• It has no bounds on number and type of influence factors, allowing to 
customize each application based on the actual condition that affect 
the system under analysis. 

• The engineers performing the RA process can also decide to define new 
influence factors that can be particularly characterizing for the system. 

• The optimal weights are assigned to each factor thanks to the OWA 
operator, the Lagrange multipliers and the maximal entropy principle.  

• No subjectivity problem thanks to the auxiliary vector. 
• It is possible to express the desired level of confidence for the specific 

allocation based on the value of the situation parameter α.  
• Setting α = 0.5 the same weight is attributed to each value of each 

factor. Instead α = 1 provides greater weight to the largest value among 
all those assigned to the subsystem factors. Thus, MEOWA is the only 
method that allows to assign greater importance to the pejorative factor 
(the highest) of each subsystem 
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The only drawback of MEOWA is related to the high computational complexity 
of the software to solve the equations that provide the auxiliary vector. 
 
 
 

5.7.  The critical role of redundancies 
By a reliability point of view, it is possible to identify several different 
configurations that are commonly implemented in complex systems. Such 
functional configurations can be classified into three categories according to the 
type of redundancy realized. Each one of them includes one or more base 
configurations, as follow:  

• No redundancy. In this scenario there are no redundant components 
that can provide continuity of service in case of failure.  

o Series configuration: the system works if and only if all the 
components making up the configuration work properly. This 
is the case required by Assumption i. and all the RA methods 
available in literature require this configuration to be applied 
[154], [183]. Considering a system composed by N components, 
each one of them characterized by the reliability function𝑅𝑅𝑖𝑖(𝑡𝑡), 
then the reliability of a series architecture 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) is given by:  

 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = �𝑅𝑅𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖 = 1

 (5.57) 

 
• Static redundancy. In this scenario the system includes two or more 

components working simultaneously to ensure the achievements of the 
same functionality/goal. Thus, redundancy is continuously used by the 
service of interest, regardless of whether faults are present or not. Faults 
are tolerated implementing the fault masking technique without proper 
fault detection (i.e. Fault masking is the systematic application of error 
compensation, even in absence of errors) [154], [183].  

o Parallel configuration: in this case the system fails if and only 
if all the components of the configuration are failed. This means 
that, considering a parallel configuration composed by N items, 
the system works if at least 1 item out of N (1ooN) is 
functioning. The reliability of the parallel configuration 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) 
is given by: 

 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = 1 −�[1 − 𝑅𝑅𝑖𝑖(𝑡𝑡)]
𝑁𝑁

𝑖𝑖 = 1

 (5.58) 
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o k-out-of-N (kooN): in this configuration, considering a system 
composed by N items, the proper functionalities are ensured if 
at least k items out of N works properly. To analyze this 
architecture, some hypotheses are required. Usually, the 
binomial distribution under the assumption of identical items 
(same product, same manufacturer, same supplier, same 
external stresses, same installation point, etc) is required. Thus, 
the reliability of a kooN configuration 𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡) is given by: 

 𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡) = ��
𝑁𝑁
𝑖𝑖
� 𝑅𝑅𝑖𝑖(𝑡𝑡)𝑖𝑖  [1 − 𝑅𝑅𝑖𝑖(𝑡𝑡)]𝑁𝑁−𝑖𝑖   

𝑁𝑁

𝑖𝑖=𝑘𝑘

 (5.59) 

 
• Dynamic redundancy. Redundancy is activated on demand by a service 

of interest in presence of faults typically after reconfiguration. So, 
dynamic redundancy consists of fault detection and system 
reconfiguration with a standby unit. In case of the main component 
(active unit) fail, then the standby unit is activated to complete the 
mission [184]–[187]). 

o Cold standby: in this case only the main unit is operative; the 
standby unit is inactive and completely disconnected from the 
power source. Therefore, quiescent components during the 
inactive period do not age and cannot fail. In this configuration 
a diagnostic unit is necessary to detect main unit failure and 
switch the load to the standby equipment on demand. 
Switching devices can’t be considered failure free by definition 
because a fault in such unit nullifies redundancy advantages. 
The response time necessary to activate and initialize the 
standby unit and the addition of the switch failure rate are the 
main drawbacks of cold standby architecture compared to 
static redundant architecture. Considering 𝑅𝑅1 the reliability of 
the main component, p the failure probability of the switching 
device, 𝑓𝑓1 the probability density function of the main 
component, 𝑅𝑅2,𝑎𝑎 the reliability of the standby item when it 
operates in active mode, and x the time to failure of the main 
component. Then, the reliability function for a cold standby 
configuration 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) is expressed as: 

 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝑅𝑅1(𝑡𝑡) + (1 − 𝑝𝑝) ∙ � 𝑓𝑓1(𝑥𝑥) ∙ 𝑅𝑅2,𝑎𝑎(𝑡𝑡 − 𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑡𝑡

0

 (5.60) 
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o Warm standby: In this case both units are connected to the 
power source, but only the main item is used. The standby is 
half operative and ready to work in case of failure of the main 
item. An important advantage of this configuration is the 
reduction of the response-time. Thus, it is not necessary to wait 
for standby unit start-up because the equipment is ready to 
use. Standby units age during the quiescent period and can fail 
before switching the load; for this reason, it is necessary to 
introduce a specific failure rate for the quiescent status. 
Standby equipment is always described by two different failure 
rates: 𝜆𝜆0 when the main unit is working properly so standby 
unit is half-operative; 𝜆𝜆 when the standby unit is fully operative 
after main equipment fail. Considering 𝑅𝑅2,𝑠𝑠𝑠𝑠 the reliability of 
the standby item in the quiescent mode evaluated using failure 
rate 𝜆𝜆0 The reliability function for a warm standby 
configuration 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡) is given by: 

 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡) = 𝑅𝑅1(𝑡𝑡) + (1 − 𝑝𝑝) ∙ � 𝑓𝑓1(𝑥𝑥) ∙ 𝑅𝑅2,𝑠𝑠𝑠𝑠(𝑥𝑥) ∙ 𝑅𝑅2,𝑎𝑎(𝑡𝑡 − 𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑡𝑡

0

 (5.61) 

 
Considering all the redundant configuration just described, it is clear how 
Assumption i. of considering only the series architecture is too simplistic and 
absolutely not reasonable.  
 
 
 

5.8.  Proposed iterative RA approach for 
complex systems 
The aim of this work is to extend the range of applicability of the RA techniques 
available in literature overcoming both the initial hypothesis described in 
section 5.3.1. (Assumption i. and Assumption ii.).   
Thus, this section introduces an innovative iterative approach to overcome both 
Assumption i. and Assumption ii. and extend the range of applicability to any 
kind of complex system (including static redundancies, dynamic redundancies 
and component characterized by non-constant failure rate) [188].  
The innovative procedure proposed in this work is illustrated in Fig. 5.6. The 
required inputs are the system reliability goal 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎) at the allocation time 
𝑡𝑡𝑎𝑎 and the system Reliability Block Diagram (RBD).  
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Fig. 5.6. Proposed allocation procedures for complex systems. 
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5.8.1.  System decomposition  
The first step of the procedure consists in the decomposition of the system RBD 
according to the different hierarchical levels. Each level must be assembled by 
a unique reliability architecture, such as series, parallel, standby or k-out-of-n. 
Usually, but not always, the top level corresponds with the equivalent series 
architecture of the system under test, which means that each redundant block 
is grouped in a single equivalent series item. Then, the redundancies grouped 
in the top level are decomposed in the subsequent levels.  
The system decomposition is performed until all the single components included 
in the RBD are treated separately.  
An example of system decomposition performed on a generic complex system 
is illustrated in Fig. 5.7. The green blocks stand for the base component 
identified by the symbols from R1 to R11. The red boxes represent the equivalent 
subunit required for the system decomposition at the different levels. For 
instance, the entire central block of the RBD become a single item REQ1 at the 
top hierarchical level, while it is then decomposed as a parallel architecture 
between REQ2 and REQ3 at the 2nd level. The 3rd level is composed by two 
separated architectures. The first one is the top branch of the parallel 
configuration REQ1 and it represents the series decomposition of the block REQ2. 
 

 
Fig. 5.7. Example of complex system decomposition into four hierarchical levels. 
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Furthermore, the 3rd level also includes the decomposition of the equivalent 
block REQ3 which is the actual series of R8, R9 and R10 blocks. Similarly, the 4th 
level includes the decomposition of the parallel architecture between R3 and R4 
blocks and the decomposition of the 2oo3 configuration. 
 
 

5.8.2.  Influence factors  
The following step is the evaluation of the influence factors based on expert’s 
judgments. Depending on the techniques implemented, different influence 
factors can be considered.  
The experts that perform the assessment assign the influence factors to the 
single items making up the system. In other words, taking once again the system 
decomposition in Fig. 5.7. as an example, the experts have to assign the 
influence factors of all the component identified by green boxes (i.e. all the 
single items).  
Subsequently, it is necessary to estimate the equivalent influence factors of the 
subsystems identified in the different hierarchical levels. This means that a set 
of rules to derive the influence factors of the equivalent items (red boxes) from 
the factors of the single items (green boxes) is required.  
Considering a worst-case scenario, the following list of rules has been proposed 
to effectively estimate the influence factors of the equivalent subsystems.  

• Complexity C → the total complexity factor of an equivalent unit is 
given by the maximum complexity value between the elements 
belonging to the unit. In this way, the principal of worst-case scenario 
is ensured. Consider a system composed by M equivalent units, where 
each unit is composed by a number Ni of base items. Then, the 
complexity of the equivalent unit i is given by:  

 𝑪𝑪𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=1,…,𝑁𝑁𝑖𝑖

𝑪𝑪𝑗𝑗      ∀𝑖𝑖 = 1, 2, … ,𝑀𝑀 (5.62) 
 

• Criticality K → the total criticality factor of an equivalent unit is given 
by the minimum value among all the criticality factors of the item 
making up the unit. Since the criticality is defined in reverse order, in 
this way the principal of worst-case scenario is ensured. Consider the 
same system of the previous case, the criticality of the equivalent unit 
i is given by:  

 𝑲𝑲𝐸𝐸𝐸𝐸𝑖𝑖
= 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗=1,…,𝑁𝑁𝑖𝑖
𝑲𝑲𝑗𝑗      ∀𝑖𝑖 = 1, 2, … ,𝑀𝑀 (5.63) 

 
• State of the Art A → the total state of the art factor rating of a unit 

is the mean between the states of the art of the elements belonging to 
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the unit. In this case, it is more reasonable to provide a metric that 
describe the entire equivalent unit as the average value between the 
engineering advancement of all the components included in the unit.  
Consider the same system of the previous case, the state of the art of 
the equivalent unit i is given by:  

 𝑨𝑨𝐸𝐸𝐸𝐸𝑖𝑖 =
1
𝑁𝑁𝑖𝑖
�𝑨𝑨𝑗𝑗

𝑁𝑁𝑖𝑖

𝑗𝑗=1

     ∀𝑖𝑖 = 1, 2, … ,𝑀𝑀 (5.64) 

 
• Environmental factor E → the total environmental factor of the entire 

unit is equal to the maximum value among all the environmental factors 
of the considered items. Thus, the principal of worst-case scenario is 
ensured. Consider the same system of the previous case, the 
environmental factor of the equivalent unit i is given by:  

 𝑬𝑬𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=1,…,𝑁𝑁𝑖𝑖

𝑬𝑬𝑗𝑗      ∀𝑖𝑖 = 1, 2, … ,𝑀𝑀 (5.65) 
 

• Operating Time T → the overall operating time of the entire unit is 
equal to the operating time of the most used item. Thus, the principal 
of worst-case scenario is ensured. Consider the same system of the 
previous case, the operating time of the equivalent unit i is given by:  

 𝑻𝑻𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=1,…,𝑁𝑁𝑖𝑖

𝑻𝑻𝑗𝑗      ∀𝑖𝑖 = 1, 2, … ,𝑀𝑀 (5.66) 
 

• Maintainability M → similarly to the state of the art, also the 
maintainability factor rating is assigned as the mean value between the 
maintainability of the elements belonging to the unit. In this way, the 
maintainability of the entire equivalent unit is the average value 
between the maintenance cost, the task duration and the accessibility 
of all the items.  Consider the same system of the previous case, the 
maintainability of the equivalent unit i is given by:  

 𝑴𝑴𝐸𝐸𝐸𝐸𝑖𝑖
=

1
𝑁𝑁𝑖𝑖
�𝑴𝑴𝑗𝑗

𝑁𝑁𝑖𝑖

𝑗𝑗=1

     ∀𝑖𝑖 = 1, 2, … ,𝑀𝑀 (5.67) 

 
• Safety R → the total safety factor of an equivalent unit is given by the 

minimum value among all the safety factors of the item making up the 
unit. This is due to the fact Safety S represents the impact of the failure 
on system, environment, personnel and users by a safety point of view 
and it is assessed in reverse order. Thus, the worst-case scenario is 
ensured only selecting the minimum value between all the component 
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making up the unit. Consider the same system of the previous case, the 
criticality of the equivalent unit i is given by:  

 𝑹𝑹𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=1,…,𝑁𝑁𝑖𝑖

𝑹𝑹𝑗𝑗      ∀𝑖𝑖 = 1, 2, … ,𝑀𝑀 (5.68) 
 
 

5.8.3.  Allocation of reliability requirements: the extension to 
redundant architectures  

The following steps involve the implementation of the allocation loop 
highlighted by the blue box in Fig. 5.6. 
Starting from the top hierarchical level and using the system reliability goal as 
input of the procedure, this phase requires to estimate the weight factors of the 
units and then allocate the unit reliability according to the corresponding 
weight. Then, the procedure must be repeated in the following hierarchical level 
in a TOP-DOWN manner using the results of the previous level as input of the 
current level. This iterative approach should be repeated until all the different 
hierarchical levels have been studied and the corresponding reliability allocated. 
Moving back once again to the system decomposition taken as example in Fig. 
5.7. it is necessary to repeat this iterative procedure four times. The results 
achieved for REQ1 during the first cycle become the input to allocate the 
reliability at the 2nd level. Then similar considerations lead to the reliability 
allocation of the 3rd and 4th levels. At the end of the fourth repetition, the 
reliability of all the ten components (green boxes) identified by the symbols 
from R1 to R10 will be allocated. 
All the allocation techniques previously mentioned could be implemented in 
this phase to calculate the optimal weight factor and then allocate the 
component reliability. It is important to note that to overcome Assumption i. 
and extend the range of applicability of such methods to redundant architecture 
it is necessary to deal with each configuration separately. The following 
subsections illustrates how the reliability is allocated to each component based 
on the system architecture.  
 

5.8.3.1. Series configuration: classical approach 
As a reminder, under Assumption i. the classical approach to allocate the 
reliability follows a simple structure. Firstly, one or more influence factors are 
allocated, usually using a 1-to-10 scale.  
 
 𝑋𝑋𝑖𝑖  ∈ [1, 10] (5.69) 
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Where 𝑋𝑋𝑖𝑖 represents a generic influence factor of the component i-th. Then the 
weight factor 𝜔𝜔𝑖𝑖 is estimated as a function ℊ of the influence factors: 
 
 𝜔𝜔𝑖𝑖  =  ℊ(𝐶𝐶𝑖𝑖 ,𝐴𝐴𝑖𝑖,𝐸𝐸𝑖𝑖 ,𝑂𝑂𝑖𝑖)  (5.70) 

 
Then the reliability allocated to the i-th component Ri

∗ (t) is given by: 
 
 𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎) = [𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)]𝜔𝜔𝑖𝑖 (5.71) 

 
 

5.8.3.2. A proposal for parallel configuration 
In order to enlarge the range of applicability of the allocation methods, the 
following hypotheses have been proposed in this work in case of parallel 
configuration  [188]: 

• Replacement of the reliability function R(t) with unreliability function 
F(t) within the equations. 

• Inversion of the influence factor rating. This step is necessary to keep 
the right relationship between the definition of the influence factors and 
the rating. For example, in traditional methods for series system the 
complexity factor C is based on a scale from 1 to 10, where the least 
complex system is rated 1 and the most complex system has a rank 
equal to 10. In this way a growth in the complexity increases the 
weighting factor and consequently decreases the reliability allocated. 
Such relationship must be ensured also in present of parallel 
configuration.  

 
More in detail, if the system is described by a parallel architecture, the weight 
factor ωı� is evaluated using the same function ℊ of the inverted influence 
factors, as follow: 
 
 𝜔𝜔𝚤𝚤�  =  ℊ�𝐶𝐶𝚤𝚤� ,𝐴𝐴𝚤𝚤� ,𝐸𝐸𝚤𝚤� ,𝑂𝑂𝚤𝚤� � (5.72) 

 
Where the generic inverted factor 𝑋𝑋𝚤𝚤�  in case of a 10-point scale will be expressed 
as follow: 
 
 𝑋𝑋𝚤𝚤�  =  11 −  𝑋𝑋𝑖𝑖 (5.73) 

 
Then, the reliability allocated to each unit is given by: 
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 𝐹𝐹𝑖𝑖∗ (𝑡𝑡𝑎𝑎) = �𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠∗ (𝑡𝑡𝑎𝑎)�𝜔𝜔𝑖𝑖 (5.74) 

 𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎) = 1 − 𝐹𝐹𝑖𝑖∗ (𝑡𝑡𝑎𝑎) = 1 − �𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠∗ (𝑡𝑡𝑎𝑎)�𝜔𝜔𝑖𝑖 (5.75) 

 𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎) = 1 − [1 − 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)]𝜔𝜔𝑖𝑖 (5.76) 

 
In case the method selected to allocate reliability includes other parameters, it 
is necessary to also invert such value. For instance, considering then MEOWA 
method, the assumption of the inversion of the situation parameter α rating is 
required in case of assessing the allocation procedure for parallel configurations. 
The relation performing this inversion is shown below: 
 
 𝛼𝛼�  =  1.5 − 𝛼𝛼 (5.77) 

 
Equation (5.77) assigns to the new situation parameter 𝛼𝛼�   image values in the 
range from 0.5 to 1. When 𝛼𝛼 = 0.5 the corresponding value is 𝛼𝛼� = 1. Instead for 
𝛼𝛼 = 1 the corresponding value is 𝛼𝛼� = 0.5. 
According to the proposed approach, several Reliability Allocation techniques 
can be successfully extended and applied to parallel configuration. More in 
detail, taking the approaches described in the previous sections, the proposed 
method works properly with Equal, FOO, Bracha, Karmiol, AWM and 
MEOWA. More generally, the proposed extension to parallel configuration can 
be applied to any method which is based on weight factors defined as follow: 
 
 𝜔𝜔𝑖𝑖 =

𝒻𝒻(𝑌𝑌𝑖𝑖𝑖𝑖)
∑ 𝒻𝒻(𝑌𝑌𝑖𝑖𝑖𝑖)𝑁𝑁
𝑖𝑖=1

 (5.78) 

 
Where Yij denote the j-th rating for subsystem i, and 𝒻𝒻 is a function of  Yij. 
Hence, two RA milestones such AGREE and ARINC cannot be extended to 
parallel configuration.  
 
 

5.8.3.3. A proposal for k-out-of-N configuration 
As explain in section 5.7.1. the k-out-of-N configurations is generally made up 
by three modules with the same reliability properties. Thus, the allocation 
methods shown in Section 5.4. and Section 5.5. cannot be implemented in this 
architecture. In fact, all these techniques do not allow to allocate the reliability 
goal evenly to the items. The only alternative is the Equal Allocation Method 
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that can apportion the reliability target evenly between the redundant items  
[188]. Taking the 2oo3 (2 items out of 3 need to be properly working) as an 
example the following steps illustrate how the reliability 𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎) can be allocated 
equally among the components of a kooN configuration. The reliability of a 
2oo3 configuration 𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡) is given by: 
 
 𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡𝑎𝑎)  =  3 ∙ [𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎)]2 − 2 ∙ 𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎)3 (5.79) 

 
For the sake of simplicity, let assume: 
 
 𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎)  =  𝑝𝑝 (5.80) 

 
Then, substituting equation (5.80) into equation (5.79) and solving the 
equation: 
 
 𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡𝑎𝑎)  =  3𝑝𝑝2 − 2𝑝𝑝3 (5.81) 

 2𝑝𝑝3 − 3𝑝𝑝2 + 𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡𝑎𝑎) = 0 (5.82) 

 𝑝𝑝3 −
3
2
𝑝𝑝2 +

1
2
𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡𝑎𝑎) = 0 (5.83) 

 
After few mathematical steps the solution of the third-grade polynomial 
equation (5.83) can be expressed as follow: 
 

 𝑅𝑅𝑖𝑖∗ (𝑡𝑡𝑎𝑎)  =
1
2
�𝑧𝑧 +

1
𝑧𝑧

+ 1� (5.84) 

 𝑧𝑧 = �2�[𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡𝑎𝑎)]2 − 𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡𝑎𝑎)2 − 2 ∙ 𝑅𝑅2𝑜𝑜𝑜𝑜3∗(𝑡𝑡𝑎𝑎) + 1
3

 (5.85) 

 
 

5.8.3.4. A proposal for standby redundancy 
As explained in section 5.7.1. component reliability of a standby architecture is 
given by an integral equation not always easy to solve. As a consequence, it is 
not possible to precisly apply such equation within the already complex model 
of RA techniques.  
Nevertheless, a different proposal to apply reliability allocation techniques to 
standaby redundancies (either cold standby or warm standby) is presented in 
this secton.  
More in detail, in this paper standby redundancy are processed as parallel 
configuration. Therefore, the innovative method introduced in 5.7.1.2 based on 
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inversion of the influence factors and unreliability estimation is taken into 
account also in present of standby redundancies.  However, it is necessary to 
introduce some adjustment to the influence factor of the standby unit to take 
into account the time in which it is inoperative. For example, the operative 
time O and the criticality K could be easily updated in order to optimally 
describe the differences between an active component or a standby unit. 
 
 

5.8.4.  Final loop: the extension to non-constant failure rate  
Regardless the configurations, the previous step provides a reliability value  
𝑅𝑅𝑖𝑖∗ estimated at time 𝑡𝑡𝑎𝑎 for each one of the items included in the system RBD. 
Then, it is necessary to find the components in the market with specific 
characteristics that allows to achieve the estimated reliability. Only if all the 
components included in the system achieve their own reliability goal then it is 
possible to ensure that the system reliability goal 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡) is fulfilled.  
Under Assumption ii. the exponential failure rate is considered. In this case, 
the hypothesis of constant failure rate remarkably simplifies the procedure. In 
fact, under such assumption, the reliability allocated to a generic component i 
could be expressed as a function of the constant failure rate 𝜆𝜆𝑖𝑖∗ as follow: 
 

 𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑡𝑡𝑎𝑎 ∙ 𝜆𝜆𝑖𝑖
∗) (5.86) 

 
Thus, knowing the allocation time 𝑡𝑡𝑎𝑎 the failure rate allocated to the considered 
component could be easily estimated as: 
 

 𝜆𝜆𝑖𝑖
∗ = −

𝑙𝑙𝑙𝑙 [𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎)]
𝑡𝑡𝑎𝑎

 (5.87) 

 
Or alternatively, the allocated Mean Time Between Failures 𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝑖𝑖∗ could be 
achieved as the reciprocal of the allocated failure rate, as follow: 
 

 𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝑖𝑖∗ =
1
𝜆𝜆𝑖𝑖
∗ = −

𝑡𝑡𝑎𝑎
𝑙𝑙𝑙𝑙 [𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎)] (5.88) 

 
Once the component failure rate or the component MTBF are estimated using 
equations (5.87) and (5.88) it is possible to select a component on the market 
that allows to fulfill the obtained requirements.  
In the last years, manufacturer started providing information about the 
component failure rate or the component MTBF under the assumption of 
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exponential failure distribution. Alternatively, in case for example of component 
to be used in safety-related systems, the certification committee provides a 
safety certificate that includes the failure rate of the item.  
As a general comment, in case of exponential distribution, it is quite easy to 
identify a component in the market that fulfill the requirements in terms of 
either allocated failure rate 𝜆𝜆𝑖𝑖∗ or allocated 𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝑖𝑖∗.  
Quite the contrary, in case of failure distribution different from the exponential, 
such operation become quite difficult.  
Let’s take the Weibull distribution as an example. Under the assumption of 
Weibull failure distribution, the reliability allocated to component i could be 
expressed as a function of two parameters: the shape parameter 𝛽𝛽 and the scale 
parameter 𝜂𝜂, as follow: 
 

 𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑡𝑡𝑎𝑎
𝜂𝜂
�
𝛽𝛽
� (5.89) 

 
While the component failure rate under Weibull assumption could be expressed 
as a function of the same two parameters, as: 
 

 𝜆𝜆𝑖𝑖
∗(𝑡𝑡𝑎𝑎) =

𝛽𝛽
𝜂𝜂
�
𝑡𝑡𝑎𝑎
𝜂𝜂
�
𝛽𝛽−1

 (5.90) 

 
As a consequence, the component failure rate cannot be precisely estimated 
since equation (5.90) depends on two different parameters. Thus, without the 
introduction of some improvements of the methodology, the RA procedure can 
assign only a fixed reliability value 𝑅𝑅𝑖𝑖∗ allocated at a certain time 𝑡𝑡𝑎𝑎.  
The same problem arises also in present of any other failure distribution that 
does not consider a constant failure rate. For instance, the reliability and the 
failure rate under lognormal failure distributions are function of the location 
parameter 𝜇𝜇 and the scale parameter 𝜎𝜎, just the same as the normal 
distribution.  
Trying to solve this problem, this work introduces a new methodology based 
on accelerated life test to estimate the parameters of the selected failure 
distribution and choose the proper component on the market. This solution 
represents the right branch of the second loop (yellow box) in Fig. 5.6. and it 
is implemented only in case the constant failure rate assumption is not 
applicable. The complete flowchart of the procedure supposing a Weibull failure 
distribution is illustrated in Fig. 5.8. 
According to the proposed method illustrated in Fig. 5.8. the RA procedure 
continues regularly until the component reliability 𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎) has been assessed. 
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Then, the reliability function is written as function of the distribution 
parameters. The following step is the selection of the most suitable component 
available in the market. However, manufacturers usually do not provide 
information about the shape and scale parameters of the failure distribution. 
Thus, an Accelerated Life Test (ALT) procedure is carried out to evaluate the 
reliability performances of the selected components. ALT allows to achieve 
information about the component reliability based on the results of tests 
performed subjecting a product to conditions above the nominal service 
operations [123], [124], [189]. A set of devices (usually the test bed must 
comprise a set of 10 - 30 identical components) are subjected to external stress 
sources such as temperature, humidity, vibration, voltage and current bias, etc. 
After the test it is possible to estimate the item reliability by means of 
probabilistic assessment and life data analysis [129]–[131], [190]. 
 

 
Fig. 5.8. Proposed alternative to allocate component reliability also in case of non-

constant failure rate. 

 
Life data analysis (LDA) is the study of a representative sample of units that 
allows analyst to estimate a life distribution for all the products of the same 
population (e.g. reliability function, probability of failure at a fixed time, failure 
rate, etc.). LDA consists of four major steps, as follow: 

1. Perform an accelerated test plan to collect a dataset of Times To Failure 
(complete or censored dataset are admissible). 

2. Identify the distribution that best fit the available failure data. This best-
fitting distribution provides information about the entire population. 
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3. Estimate the parameters of the selected distribution. 
4. Generate plots and results to estimate product life characteristics. 

 
There are several distributions available in literature that could be used to 
describe the life of a population [131]. The behaviour of each distribution is 
described and influenced by characteristics and parameters that vary from 
distribution to distribution.  
The exponential failure distribution is used in many handbooks to describe 
electronic components. The Probability Density Function (PDF) fexp(t) 
depends only on a single parameter λ, as follow [154]: 
 
 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 (5.91) 

 
The 2-parameter Weibull distribution is the most common probability 
distribution in LDA. The PDF 𝑓𝑓2𝑤𝑤(𝑡𝑡) depends on the shape parameters 𝛽𝛽 and 
the scale parameter 𝜂𝜂 [154]: 
 

 𝑓𝑓2𝑤𝑤(𝑡𝑡) =
𝛽𝛽
𝜂𝜂
�
𝑡𝑡
𝜂𝜂
�
𝛽𝛽−1

𝑒𝑒−�
𝑡𝑡
𝜂𝜂�

𝛽𝛽

 (5.92) 

 
A valid alternative to the 2-parameter Weibull distribution is the 3-parameter 
Weibull distribution which introduce a location parameter 𝛾𝛾, as follow [154]:   
 

 𝑓𝑓3𝑤𝑤(𝑡𝑡) = �
𝛽𝛽
𝜂𝜂
�
𝑡𝑡 − 𝛾𝛾
𝜂𝜂

�
𝛽𝛽−1

∙ 𝑒𝑒−�
𝑡𝑡−𝛾𝛾
𝜂𝜂 �

𝛽𝛽

          𝑡𝑡 ≥ 𝛾𝛾

0                                                   𝑡𝑡 < 𝛾𝛾
 (5.93) 

 
The lognormal distribution is used to describe the infant mortality of a 
population. The PDF 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) depends on a location parameters 𝜇𝜇 and the scale 
parameter 𝜎𝜎 [154]: 

 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) =
1

√2𝜋𝜋𝜎𝜎𝜎𝜎
𝑒𝑒−

(𝑙𝑙𝑙𝑙𝑙𝑙−𝜇𝜇)2
2𝜎𝜎2  (5.94) 

 
Strictly related to the lognormal distribution, also the PDF of the normal 
distribution 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) depends on the same location parameters 𝜇𝜇 and the scale 
parameter 𝜎𝜎 [154]: 
 

 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) =
1

√2𝜋𝜋𝜎𝜎
𝑒𝑒−

(𝑡𝑡−𝜇𝜇)2
2𝜎𝜎2  (5.95) 
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Another useful life distribution is the Gamma distribution. The PDF 𝑓𝑓𝑔𝑔(𝑡𝑡) 
depends on a shape parameters 𝑘𝑘 and the scale parameter 𝜇𝜇 [154]: 
 

 𝑓𝑓𝑔𝑔(𝑡𝑡) =
𝜇𝜇

𝛤𝛤(𝑘𝑘)  ∙ (𝜇𝜇 ∙ 𝑡𝑡)𝛼𝛼−1  ∙ 𝑒𝑒−𝜇𝜇∙𝑡𝑡 (5.96) 

 
Where Γ(∙) is the gamma function.  
Regardless the life distribution, the reliability of the population at a time t 

could be achieved integrating the PDF from t to infinitive, while the failure 
rate is the ratio between the PDF and the reliability, as follow: 

  

 𝑅𝑅(𝑡𝑡) = � 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑑𝑑
∞

𝑡𝑡
 (5.97) 

 𝜆𝜆(𝑡𝑡) =  
𝑓𝑓(𝑡𝑡)

∫ 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑑𝑑∞
𝑡𝑡

 =  
𝑓𝑓(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

  (5.98) 

 
In order to fit a statistical model to a life data set, the analyst should estimate 
the parameters of the life distribution that will make the function fitting the 
data in the best way. Several methods have been developed to estimate the 
parameters that will fit a lifetime distribution to a particular dataset, the most 
common are the Rank Regression (RR) and Maximum Likelihood Estimation 
(MLE). The RR (also called Least Square method) requires that a straight line 
is fitted to a set of data points in order to minimize the sum of the squares of 
the distance of the points to the fitted line. The MLE method is considered one 
of the most robust parameter estimation techniques. The basic idea is to obtain, 
for a given distribution, the most likely values of the parameters that will best 
describe the data. Both approaches require to estimate the cumulative 
distribution starting from the Time to Failure data. The most widely used 
method of determining the coordinates of the point is the median rank for each 
failure. The median rank is the value that the true probability of failure should 
have at the i-th failure out of a sample of N units at the 50% confidence level. 
The rank can be identified by solving the cumulative binomial equation for Z. 
 

 0.5 = ��
𝑁𝑁
𝑘𝑘
�𝑍𝑍𝑘𝑘(1 − 𝑍𝑍)𝑁𝑁−𝑘𝑘

𝑁𝑁

𝑘𝑘=𝑗𝑗

 (5.99) 

 
Alternatively, the Kaplan-Meier (K-M) method could be implemented. In case 
of complete data, the cumulative distribution F(ti) is given by: 
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 𝐹𝐹(𝑡𝑡𝑖𝑖) =
𝑖𝑖 − 0.5
𝑁𝑁

 (5.100) 

 
In case of right-censored data, the cumulative distribution F(ti) is given by: 
 

 𝐹𝐹(𝑡𝑡𝑖𝑖) = 1 −
(1 − 𝑝𝑝𝑖𝑖) + (1 − 𝑝𝑝𝑖𝑖−1)

2
 (5.101) 

 
𝑝𝑝𝑖𝑖 = 1 −��

𝑁𝑁 − 𝑖𝑖
𝑁𝑁 − 1 + 1

�
𝛿𝛿𝑖𝑖

𝑖𝑖

 
(5.102) 

 
An automated measurement system that continuously monitor the devices 
during the test should be implemented in order to acquire the exact Accelerated 
Time To Failure (ATTF) of each device. To convert the ATTF into the 
corresponding Time To Failure (TTF) in normal operating conditions the 
acceleration model described in section 3.6.1 could be implemented. 
After that, the obtained data can be used to estimate the parameters of the 
failure distribution for the considered device. This is the final step of the 
procedure illustrated in Fig. 5.8. Then, as explained also in Fig. 5.6, if the 
reliability target come out from the RA process has been achieved it is possible 
to move to the following components. Otherwise, if the estimated parameters 
do not allow to fulfill the allocated reliability it is necessary to select another 
component available on the market and repeat the test. This is done until all 
the components included in the system have been analyzed.  
Obviously, performing ALT leads to a significant increase of the design phase 
duration and increase the cost of the product. Thus, the use of non-constant 
failure rate could be sustained only in presence of extremely critical components 
in case of safety-related systems. Otherwise, the overall procedure could not 
maintain an adequate cost-benefits ratio.  
 
 

5.9.  Case study A: a numerical example 
This section presents a first application of the proposed procedure on a 
numerical example. The RBD of the system under analysis is illustrated in Fig. 
5.9. The system is not a real RBD, it simply represents a numerical example of 
a generic complex system composed by 5 parallel branches (M = 5). Each 
branch is composed by a number Ni of components as follow: N1 = 3, N2 = 4, 
N3 = 2, N4 = 1, N5 = 5. 
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Fig. 5.9. Reliability Block Diagram of Case Study A 

The system reliability goal to achieve through the Reliability Allocation 
procedure is: 
 
 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)|𝑡𝑡𝑎𝑎=8760 ℎ = 0.99 (5.103) 

 
According to the proposed procedure, the first step required to allocate the 
component reliability to the system described by case study A is the system 
decomposition into hierarchical levels, as illustrated in Fig. 5.10. 
 

 
Fig. 5.10. Case study A: System decomposition into two hierarchical levels. 

Then, it is necessary to estimate the influence factors and the weight factors of 
the items composing the system. After a great number of tests and simulations, 
the MEOWA method has proven to be the best solution among all the methods 
presented in this work. The auxiliary vector W solves the problem arisen with 
the other methods to assign an appropriate weight to influence factors with 
very high/low values. This is possible precisely tuning the situation parameter 
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α to allocate the proper reliability to the items characterized by extremely high 
influence factors. Thus, this section applies the proposed method presented in 
section 5.8. using the influence factors and the weight factor of the 6-parameter 
MEOWA approach described in section 5.6. TABLE V. VI shows the influence 
factors of the 6-parameter MEOWA (namely Complexity C, Environmental 
factor E, State of the art A, Criticality K, maintainability M and safety R) 
and their assessed values in order to implement the proposed method.  
 

TABLE V. VI 
INFLUENCE FACTORS ACCORDING TO 6-PARAMETER MEOWA USED TO IMPLEMENT THE 

PROPOSED METHOD ON CASE STUDY A. 

BRANCH ITEM 
INFLUENCE FACTORS 

𝐂𝐂 𝐄𝐄 𝐀𝐀 𝐊𝐊 𝐌𝐌 𝐑𝐑 

 
1 

1.1 1 4 7 7 7 6 

1.2 1 5 4 8 8 10 

1.3 1 2 10 6 9 3 

2 

2.1 3 5 9 9 8 8 

2.2 2 7 6 9 8 4 

2.3 4 6 7 10 6 7 

2.4 3 2 6 9 10 9 

3 
3.1 2 5 10 8 10 3 

3.2 2 6 6 7 6 8 

4 4.1 7 3 2 6 10 6 

5 

5.1 2 4 9 8 6 8 

5.2 2 3 9 10 6 4 

5.3 2 5 9 5 4 3 

5.4 1 2 9 5 8 4 

5.5 1 2 9 8 6 7 
 
After the assessment of the influence factors for the 15 components included in 
the system (as in the RBD illustrated in Fig. 5.9.) it is necessary to evaluate 
the influence factors of the equivalent units (i.e. the red blocks in Fig. 5.10.) 
according to the rules described in section 5.8.2. 
The results for the four equivalent units are illustrated in TABLE V. VII (N.B. 
the fourth branch of the RBD is composed by one single component, thus it is 
not necessary to identify an equivalent unit of the branch.) 
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TABLE V. VII 
ESTIMATION OF THE INFLUENCE FACTORS FOR THE EQUIVALENT SUBUNITS. 

BRANCH ITEM 
INFLUENCE FACTORS 

𝐂𝐂 𝐄𝐄 𝐀𝐀 𝐊𝐊 𝐌𝐌 𝐑𝐑 

1 EQ1 1 5 7 6 8 3 

2 EQ2 4 7 7 9 8 4 

3 EQ3 2 6 8 7 8 3 

5 EQ5 2 5 9 5 6 3 
 
Since the top level is composed by a parallel configuration the proposed 
procedure for redundant architecture as in section 5.8.3.2. must be used. Thus, 
the inversion of the influence factor as in equation (5.72) and equation (5.73) 
has been implemented and reported in TABLE V. VIII. 
 

TABLE V. VIII 
INVERTED INFLUENCE FACTORS ACCORDING TO THE PROPOSED PROCEDURE. 

BRANCH ITEM 
INFLUENCE FACTORS 

𝐂𝐂� 𝐄𝐄� 𝐀𝐀� 𝐊𝐊� 𝐌𝐌�  𝐑𝐑� 

1 EQ1 10 6 4 5 3 8 

2 EQ2 7 4 4 2 3 7 

3 EQ3 9 5 3 4 3 8 

4 4.1 4 8 9 5 1 5 

5 EQ5 9 6 2 6 5 8 
 
The next step is the allocation of the reliability requirements to the top 
hierarchical level (i.e. the equivalent parallel composed by five branches as in 
the top side of Fig. 5.10.). Thus, according to the MEOWA method, the 
influence factor of the equivalent unit must be sorted in descending order, as 
in TABLE V. IX.  
After that, the auxiliary influence factor con be evaluated multiplying the 
ordered influence factors 𝑏𝑏𝑖𝑖 as in TABLE V. IX. by the 6-parameter auxiliary 
array 𝑤𝑤𝑖𝑖 as in TABLE V.V. The value of the situation parameter α has been set 
equal to 0.8 to emphasize the items characterized by high influence factors close 
to 10. Thus, according to equation (5.77), the inverted situation parameter 𝛼𝛼� 
for parallel architecture will be set to 0.7. The products 𝑤𝑤𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, the overall 
factors 𝑍𝑍𝑘𝑘 as in equation (5.55) and the normalization factor 𝑀𝑀𝛼𝛼 as in equation 
(5.56) are reported in TABLE V. X. 
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TABLE V. IX 
ORDERED INFLUENCE FACTORS FOR THE EQUIVALENT SUBUNITS REQUIRED TO EVALUATE 

THE WEIGHT FACTOR BY MEANS OF 6-PARAMETER MEOWA. 

BRANCH ITEM 
INFLUENCE FACTORS 

𝐛𝐛𝟏𝟏 𝐛𝐛𝟐𝟐 𝐛𝐛𝟑𝟑 𝐛𝐛𝟒𝟒 𝐛𝐛𝟓𝟓 𝐛𝐛𝟔𝟔 

1 EQ1 10 8 6 5 4 3 

2 EQ2 7 7 4 4 3 2 

3 EQ3 9 8 5 4 3 3 

4 4.1 9 8 5 5 4 1 

5 EQ59 9 8 6 6 5 2 
 

TABLE V. X 
AUXILIARY INFLUENCE FACTORS AND OVERALL FACTOR. 

BRANCH ITEM 𝐰𝐰𝟏𝟏 ∙ 𝐛𝐛𝟏𝟏 𝐰𝐰𝟐𝟐 ∙ 𝐛𝐛𝟐𝟐 𝐰𝐰𝟑𝟑 ∙ 𝐛𝐛𝟑𝟑 𝐰𝐰𝟒𝟒 ∙ 𝐛𝐛𝟒𝟒 𝐰𝐰𝟓𝟓 ∙ 𝐛𝐛𝟓𝟓 𝐰𝐰𝟔𝟔 ∙ 𝐛𝐛𝟔𝟔 𝐙𝐙𝐤𝐤 

1 EQ1 3.4749 1.9182 0.9927 0.5708 0.3151 0.16310 7.4348 

2 EQ2 2.4325 1.6784 0.6618 0.4566 0.2363 0.10870 5.5743 

3 EQ3 3.1274 1.9182 0.8272 0.4566 0.2363 0.1631 6.7289 

4 4.1 3.1274 1.9182 0.8272 0.5708 0.3151 0.0544 6.8131 

5 EQ5 3.1274 1.9182 0.9927 0.6850 0.3939 0.1087 7.2258 

        Mα = 33.7769 
 
After that, the values in TABLE V. X. can be used to evaluate the weight factor 
according to equation (5.56) (MEOWA method) and then the allocated 
reliability of the five branches using equations (5.74)-(5.77) specifically 
proposed for parallel architectures. The results are included in TABLE V. XI. 
 

TABLE V. XI 
WEIGHT FACTORS AND ALLOCATED RELIABILITY TO THE FIVE PARALLEL BRANCHES. 

BRANCH ITEM 
WEIGHT 

FACTOR 𝛚𝛚𝐢𝐢 

ALLOCATED 

RELIABILITY 
𝐑𝐑𝐢𝐢

∗(𝐭𝐭𝐚𝐚) 
1 EQ1 0.220114 0.637112 

2 EQ2 0.165034 0.532337 

3 EQ3 0.199215 0.600452 

4 4.1 0.201709 0.605014 

5 EQ5 0.213928 0.626627 
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This phase concludes the first iteration of the proposed method. Considering 
the branch number 4, the result included in TABLE V. XI. is directly the 
reliability to be allocated to component R4.1.  
Then, it is necessary to repeat the procedure to the 2nd hierarchical level in 
order to assign the reliability of the equivalent units among the components 
that make up each branch.  
Thus, firstly the reliability of the branch number #1 𝑅𝑅𝐸𝐸𝐸𝐸1∗ = 0.637112 become 
the target reliability of a second iteration in which the reliability values are 
assigned to component R1.1 R1.2 and R1.3 considering a series configuration. 
Then, quite similar operation will lead to the assessment of the reliability 
requirements to each branch. For the sake of brevity, the complete assessment 
at 2nd hierarchical level is not fully reported.  
As an example, the different steps of the application to branch #3 are reported 
in TABLE V. XII where the reliability is calculated considering the reliability of 
the equivalent unit 𝑅𝑅𝐸𝐸𝐸𝐸3∗ = 0.600452. 
 

TABLE V. XII 
PROPOSED ITERATIVE PROCEDURE: APPLICATION TO BRANCH #3 OF CASE STUDY A. 

ITEM 𝐂𝐂 𝐄𝐄 𝐀𝐀 𝐊𝐊 𝐌𝐌 𝐑𝐑 

3.1 2 5 10 8 10 3 

3.2 2 6 6 7 6 8 

       

ITEM 𝐛𝐛𝟏𝟏 𝐛𝐛𝟐𝟐 𝐛𝐛𝟑𝟑 𝐛𝐛𝟒𝟒 𝐛𝐛𝟓𝟓 𝐛𝐛𝟔𝟔 

3.1 10 10 8 5 3 2 

3.2 8 7 6 6 6 2 

       

ITEM 𝐰𝐰𝟏𝟏 ∙ 𝐛𝐛𝟏𝟏 𝐰𝐰𝟐𝟐 ∙ 𝐛𝐛𝟐𝟐 𝐰𝐰𝟑𝟑 ∙ 𝐛𝐛𝟑𝟑 𝐰𝐰𝟒𝟒 ∙ 𝐛𝐛𝟒𝟒 𝐰𝐰𝟓𝟓 ∙ 𝐛𝐛𝟓𝟓 𝐰𝐰𝟔𝟔 ∙ 𝐛𝐛𝟔𝟔 

3.1 4.7812 2.5475 1.0859 0.3616 0.1156 0.0411 

3.2 3.8250 1.7833 0.8144 0.4339 0.2312 0.0411 

       

ITEM 𝐙𝐙𝐤𝐤 𝐌𝐌𝛂𝛂 WEIGHT FACTOR 𝛚𝛚𝐢𝐢 RELIABILITY 𝐑𝐑𝐢𝐢
∗(𝐭𝐭𝐚𝐚) 

3.1 8.9329 16.0618 0.556160 0.753006 

3.2 7.1289 16.0618 0.443840 0.797406 
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Finally, TABLE V. XIII shows the reliability allocation results using the 
developed iterative approach. As a result, lower reliability is allocated to 
components with high influence factors. 
 

TABLE V. XIII 
OUTPUT OF THE PROPOSED APPROACH FOR CASE STUDY A (WEIGHT FACTORS IN 

COMPLIANCE WITH 6-PARAMETER MEOWA). 

BRANCH ALLOCATED RELIABILITY 

1 0.878770 0.849513 0.853435   
2 0.852271 0.861832 0.856324 0.846346  
3 0.753006 0.797406    
4 0.605013     
5 0.906414 0.903343 0.921514 0.913622 0.908997 

 
This case study highlights the huge benefits that are achievable using the 
conditional parameter, in particular when RA procedures are assessed during 
design phase with imprecise, incomplete or uncertain pieces of information. 
The tool calculates also the failure rate to be apportioned to each item, 
assuming that all the blocks of the system are single elements and not 
subsystems in turn. Fig. 5 shows an example of the tool outcomes containing 
the simulation results for MEOWA technique. 
 
 
 

5.10.  Case study B: sensors unit of an HVAC 
In this section the proposed RA iterative approach for complex system has been 
applied to a sensor unit of an HVAC system for high-speed trains (for more 
detail see section 2.2.). The RBD of the system under analysis is illustrated in 
Fig. 5.11. 
 

 
Fig. 5.11. Reliability Block Diagram of Case Study B: safety system of an HVAC unit.  
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The system is basically composed by two redundant branches. The top branch 
includes two temperature sensors in parallel configuration (identified by 
reliability R1 and R2) and three pressure transmitters in 2oo3 configuration 
(identified by reliability R3 R4 and R5). This branch also includes a series 
element called voter unit used to elaborate the output of the pressure sensors 
in 2oo3 architecture. The voter (identified by reliability R6) must diagnose any 
anomalies in the sensors output and guarantee the proper output in case of 
failure of one sensor. An example of application of voter system is illustrated in 
Fig. 5.12 considering three sensors S1, S2 and S3. In such case, the output of 
the 2oo3 architecture is equal to the intermediate value among the output of 
the three sensors. In case of failure of one single sensor (fail-to-low condition), 
the voter detect the failure and reconfigure the output which continue to be 
reasonable despite the failure of one sensor.  
 

 
Fig. 5.12. Example of application of voting system in 2oo3 architecture.  

 
Moving back to the RBD in Fig. 5.11., the second branch is composed by a 
single unit used for redundant and safety issues. Component R7 is a safety 
device able to measure temperature and pressure of the refrigerant gas and 
communicate the measurement data to the central unit. In case of failure of the 
main sensors included in the top branch, the safety device R7 provides 
redundant information to ensure continuity of service.  
The system reliability goal to achieve through the Reliability Allocation 
procedure has been set as 95% reliability at the end of the HVAC life cycle, 
which is estimated after 20 years. 
 
 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)|𝑡𝑡𝑎𝑎=20 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0.95 (5.104) 
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The first step required to allocate the component reliability to the sensor unit 
of the HVAC under analysis is the system decomposition into hierarchical 
levels, as illustrated in Fig. 5.13. In this case, three different levels have been 
identified.  
The top level is a simple parallel configuration between the first branch 
(equivalent item EQ1 which stands for the temperature and pressure sensors) 
and the safety device R7.  
Then, the second level includes the series configuration between the equivalent 
item EQ2, the equivalent item EQ3 and the voter unit R6.  
Finally, the third level is used to model the two parallel temperature sensors 
and the 2oo3 configuration composed by three pressure transmitters.  
 

 
Fig. 5.13. System decomposition of case study B into three hierarchical levels.  

Also in this case, the influence factors of the 6-parameter MEOWA method 
have been used to evaluate the weight factors of the components. The complete 
assessment of the influence factors is reported in TABLE V. XIV.  
Note that the same factors have been assigned to items R3, R4, and R5 because 
they are considered in 2oo3 configuration.  
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TABLE V. XIV 
INFLUENCE FACTORS ACCORDING TO 6-PARAMETER MEOWA USED TO IMPLEMENT THE 

PROPOSED METHOD ON CASE STUDY B. 

ITEM 
INFLUENCE FACTORS 

𝐂𝐂 𝐄𝐄 𝐀𝐀 𝐊𝐊 𝐌𝐌 𝐑𝐑 

R1 6 5 10 4 10 4 

R2 8 5 6 5 6 5 

R3 - R4 - R5 5 5 7 4 6 6 

R6 3 2 3 2 4 2 

R7 7 4 2 1 2 1 
 
The estimation of the influence factors for the equivalent subunits according to 
the proposed model as in equations (5.62)-(5.68) is reported in TABLE V. XV. 
 

TABLE V. XV 
ESTIMATION OF THE INFLUENCE FACTORS FOR THE EQUIVALENT SUBUNITS. 

LEVEL ITEM 
ITEM USED TO 

ASSESS THE FACTORS 
INFLUENCE FACTORS 
𝐂𝐂 𝐄𝐄 𝐀𝐀 𝐊𝐊 𝐌𝐌 𝐑𝐑 

2nd level 
EQ2 R1 - R2 8 5 8 4 8 4 

EQ3 R3 - R4 - R5 5 5 7 4 6 6 

Top level EQ1 REQ2 - REQ3 - R6 8 5 6 2 7 2 
 
Following the procedure illustrated in the previous case study (section 5.9), the 
item reliability has been allocated at the top hierarchical level (i.e. parallel 
configuration between equivalent unit EQ1 and component R7) using the 
proposed approach for parallel configuration as in section 5.8.3.2. The results 
varying the situation parameter α are illustrated in Fig. 5.14 where the 
reliability allocated to the safety unit R7 and to the top branch EQ1 are 
compared with system reliability goal (red dashed line). 
As it is possible to see in Fig. 5.14, the extremely low influence factors of the 
safety unit R7 led to higher reliability with respect to the reliability of the 
equivalent unit EQ1 regardless the value of the situation parameter α.  
The following step is the allocation of reliability requirements to the 2nd 
hierarchical level using the results of the equivalent unit EQ1 as input target. 
In this case, model for series configuration has been implemented as in section 
5.8.3.1. The results achieved varying the situation parameter α are illustrated 
in Fig. 5.15. 
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Fig. 5.14. Reliability allocated at the top hierarchical level of case study B varying the 

situation parameter α.  

 
 

 
Fig. 5.15. Reliability allocated at the second hierarchical level of case study B varying 

the situation parameter α. 

 
Finally, the procedure is repeated at the 3rd hierarchical level considering the 
two different architectures left.  
Firstly, the proposed model for parallel configuration as in section 5.8.3.2. has 
been used to allocate reliability requirements to components R1 and R2 (parallel 
temperature sensors) starting from the reliability results achieved for the 
equivalent unit EQ2.   
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Then, the proposed model for k-ot-of-N configuration as in section 5.8.3.3. has 
been used to allocate reliability requirements to the 2oo3 architecture composed 
by the pressure transmitters R3, R4 and R5 starting from the results of the 
equivalent unit EQ3.   
The overall results achieved for the seven considered items varying the situation 
parameter α are illustrated in Fig. 5.16. Note that the reliability of the three 
pressure transmitters has been illustrated using a single line (yellow trend). 
This is due to the fact that the proposed RA procedure assigns the same 
reliability to all the items making up a 2oo3 configuration as required by the 
initial hypotheses of the k-out-of-N architectures. 
What stands out from Fig. 5.16 is the extremely high reliability values assigned 
to both the voter unit (R6) and the safety instrumentation unit (R7). This is 
due to the very low influence factors assigned to both components.   
 

 
Fig. 5.16. Results of the reliability allocation procedure to Case study B considering 

the proposed models.  

 
The reliability results varying the situation parameter as in Fig. 5.16 are 
extremely helpful to designer during the allocation process. However, at the end 
of the procedure is necessary to provide a reliability at a certain time. In this 
case, according to equation (5.104) the allocation time has been set equal to 
𝑡𝑡𝑎𝑎 =  20𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  175200 ℎ.  
Considering a situation parameter 𝛼𝛼 =  0.85 the reliability allocated to each 
component 𝑅𝑅𝑖𝑖∗(𝑡𝑡𝑎𝑎) is included in TABLE V. XVI. 
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TABLE V. XVI 
RESULTS OF THE ALLOCATION PROCESS FOR CASE STUDY B: RELIABILITY VALUES. 

ITEM 
ALLOCATED RELIABILITY 

AT  𝐭𝐭𝐚𝐚 =  𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

R1 0.6414731 

R2 0.6439310 

R3 - R4 - R5 0.7957998 

R6 0.9403383 

R7 0.8136760 
 
Then, according to the final step of the proposed procedure (as in section 5.8.4) 
it is necessary to estimate the failure rate of the components making up the 
system. The temperature sensors (R1 and R2) and the pressure transmitter (R3, 
R4 and R5) are electronic components that can be easily described by an 
exponential failure distribution. Similarly, also the voter unit can be 
approximated to a constant failure rate item. Thus, the failure rate of such 
items can be estimated using equation (5.87). The results achieved for these 
components are reported in TABLE V. XVII. The unit of measurement of the 
failure rate is FPMH (Failure Per Million Hours).  
 

TABLE V. XVII 
ALLOCATED FAILURE RATE TO COMPONENTS OF CASE STUDY B THAT FOLLOW THE 

EXPONENTIAL FAILURE DISTRIBUTION. 

ITEM 
ALLOCATED FAILURE 

RATE 

R1 2.5341783 FPMH 

R2 2.5123499 FPMH 

R3 - R4 - R5 1.3036969 FPMH 

R6 0.3511166 FPMH 
 
After that, it is necessary to find a component on the market that allows to 
achieve the requirements as in TABLE V. XVII. Taking the temperature and 
pressure sensors as an example, the certification of the component failure rate 
under exponential failure distribution of many distributors are available on the 
Safety Automation Equipment List (SAEL) of the Exida certification company.  
Quite the opposite, the safety unit used as redundant source of information 
about both temperature and pressure data is a complex equipment that could 
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be better described by a Weibull failure distribution. Thus, according to the 
proposed procedure as in section 5.8.4 an accelerated life test plan is required 
to ensure that the allocated reliability of the unit R7 as in TABLE V. XVI will 
be satisfied.    
 
 
 

5.11.  Case study C: lube oil console for Oil&Gas 
systems  
In this section the proposed iterative approach has been applied to a lube oil 
console for Oil&Gas systems (for more information about the case study, see 
section 2.5.). In this case, the impacts of minor components (such as piping, 
wires, connectors and alike) on system reliability have been neglected due to 
their relatively low probability of failure with respect to the other items. 
The reliability block diagram of the system under test has been illustrated in 
Fig. 2.9 and it is not reported here for the sake of brevity. The system is 
composed by 24 different components, as follow:  

• Four differential pressure transmitters, three located in the oil tank 
making up a 2oo3 configuration (PDIT) and one located in filter section 
(PDIT_F). 

• One level sensor (LIT). 
• Three temperature sensors, one located in the oil tank (TIT) and other 

two located in the temperature regulation unit (TIT_1 and TIT_2). 
• One heater. 
• Two pumps (MAIN PUMP and AUX PUMP). 
• Four motors (MAIN MOTOR, AUX MOTOR, STD-BY MOTOR and 

STD-BY MOTOR_2). 
• Two pressure safety valves (MAIN PSV and AUX PSV). 
• One absolute pressure sensor (PIT). 
• Two pressure control valves (PCV_1 and PCV_2). 
• One temperature control valve (TCV). 
• Two filters in cold standby architecture (MAIN FILTER and STD-BY 

FILTER).  
• One Fan.  

 
The system reliability goal to achieve through the Reliability Allocation 
procedure has been set as 90% reliability after 5 years of use. 
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 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆∗(𝑡𝑡𝑎𝑎)|𝑡𝑡𝑎𝑎=5 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0.9 (5.105) 
 
In compliance with the proposed iterative approach, the first step of the 
procedure consists in the decomposition of the system RBD into different 
hierarchical levels. Each level must be assembled by a unique reliability 
architecture, such as series, parallel, standby or k-out-of-n. The decomposition 
of the lube oil under test is illustrated in Fig. 5.17, highlighting four levels.  
 

 
Fig. 5.17. System decomposition of case study C into four different hierarchical levels. 

The top level corresponds with the equivalent series architecture of the system 
under test, which means that each redundant block is grouped in a single 
equivalent series item. Then, the redundancies grouped in the top level are 
decomposed in the 2nd level. For instance, the 2oo3 PDIT item in the top level 
become the actual 2-out-of-3 architecture in the 2nd level. Quite the same the 
1oo2 TIT and the 1oo2 FILTERS items. Instead, the pump unit is a more 
complex architecture that requires four decomposition levels. The 2nd level is 
composed by a cold standby architecture including the Pump Unit 1 (main 
unit) and the Pump Unit 2 (standby unit). Then, each unit is divided into a 
series configuration of three components: motor, pump and PSV. In particular, 
the Pump Unit 1 is composed by the main pump, the main PSV and the motor 
unit 1, while the Pump Unit 2 is composed by the auxiliary pump, the auxiliary 
PSV and the motor unit 2. Finally, the 4th level includes the decomposition of 
the motor units into a warm standby configuration each one including an active 
and a standby motor.  
Seven influence factors (namely Complexity C, Environmental factor E, State 
of the Art A, Operative Time T, maintainability M, criticality K and safety 
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R) have been evaluated for each one of the components included in the RBD 
of the system under test based on expert’s judgments. Using these factors, it is 
possible to allocate the component reliability using many existing techniques, 
such as FOO, arithmetic AWM, 4-parameter MEOWA and 6-parameter 
MEOWA. The complete assessment report is included in TABLE V. XVIII.  
 

TABLE V. XVIII 
INFLUENCE FACTORS USED TO ASSESS THE WEIGHT FACTORS OF EACH COMPONENT 

INCLUDED IN THE CASE STUDY C. 

 ITEM C E A T M K R 

PDIT 5 10 5 10 6 4 9 
LIT 4 10 5 10 6 2 8 
TIT 5 10 5 10 6 2 8 
Heater 1 10 5 6 6 4 7 
Main Pump 9 6 5 8 10 4 2 
Main Motor 7 2 5 7 8 5 3 
Std-by Motor 6 2 5 3 8 4 3 
Main PSV 5 8 5 8 4 4 4 
Aux Pump 9 4 5 2 10 1 1 
Aux Motor 7 2 5 2 8 4 2 
Std-by Motor 2 6 2 5 1 8 1 2 
Aux PSV 5 4 5 2 4 1 4 
PIT 5 8 5 10 3 2 8 
PCV_1 3 8 5 10 4 1 8 
TCV 3 8 5 10 3 2 6 
TIT_1 5 8 5 10 3 5 9 
TIT_2 5 8 5 10 3 5 9 
PDIT_F 5 8 5 10 3 2 8 
Main Filter 2 6 5 8 2 9 5 
Std-by Filter 2 6 5 2 2 7 5 
PCV_2 3 8 5 10 4 1 8 
FAN 3 2 5 7 3 4 7 

 
Analyzing the main motor and the standby motor it is easy to understand how 
the allocation is weighted in case of standby redundancy. The main motor is a 
more complex item working for longer period; therefore it is characterized by a 
higher complexity C and a higher Operating time O with respect to the standby 
motor. Moreover, it has also a higher criticality K which means it is a less 
critical component due to the presence of the standby unit. Such considerations 
have been drawn in order to extend the applicability of the RA process to 
standby redundancies according to the proposed method as in section 5.8.3.4. 
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The influence factors of the equivalent units can be estimated considering the 
principle of the “worst-case scenario” as detailed illustrated in section 5.8.2. 
The results of the assessment are included in TABLE V. XIX. 
 

TABLE V. XIX 
INFLUENCE FACTORS OF THE EQUIVALENT UNITS: CASE STUDY C. 

LEVEL UNIT 
ITEM USED TO 

ASSESS THE FACTORS 
C E A T M K R 

3rd Motor Unit 1 
Main Motor - Std-by 

Motor 
7 2 5 7 8 4 3 

3rd Motor Unit 2 
Aux Motor - Std-by 

Motor2 
7 2 5 2 8 1 2 

2nd Pump Unit 1 
Main Pump - Motor 
Unit1 - Main PSV 

9 8 5 8 7 4 2 

2nd Pump Unit 2 
Aux Pump - Motor Unit2 

- Aux PSV 
9 4 5 2 7 1 1 

TOP 2oo3 PDIT PDIT - PDIT - PDIT 5 10 5 10 6 4 9 

TOP Pumps Unit 
Pump Unit 1 - Pump 

Unit 2 
9 8 5 8 7 1 1 

TOP 1oo2 TIT TIT_1 - TIT_2 5 8 5 10 3 5 9 

TOP 1oo2 Filters 
Main Filter - Std-by 

Filter 
2 6 5 8 2 7 5 

 
The following steps require to calculate the weight factors and the allocated 
reliability to the component included in the top hierarchical level. The 
procedure has been repeated considering the weight factors of four different 
approaches: 

• FOO method based on Complexty C, Environmental factor E, state of 
the art A and operative time O.  

• 4-parameter MEOWA based on the same influence factor as FOO 
method. 

• Arithmetic AWM based on Complexty C, Environmental factor E, 
state of the art A, Maintainability M, Criticality K and Safety R. 

• 6-parameter MEOWA based on the same influence factor as arithmetic 
AWM. 

 
The weight factors estimated for each hierarchical level in case of Arithmetic 
AWM and FOO methods are included in TABLE V. XX. 
 



RELIABILITY ALLOCATION: THEORY AND IMPROVEMENTS 

135 
 

TABLE V. XX 
WEIGHT FACTORS OF ARITHMETIC AWM AND FOO ASSESSED FOR DIFFERENT LEVELS. 

 



RELIABILITY ALLOCATION: THEORY AND IMPROVEMENTS 

136 
 

Obviously, it is important to take into account that in case of series 
configuration the weight factor could be estimated directly using the equations 
proposed in each method, while in case of parallel configuration equations (5.69) 
- (5.70) must be used. Moreover, the 2oo3 configuration has been dealt with 
the method proposed in section 5.8.3.3. while the standby redundancies have 
been dealt with during the influence factors assessment as required by the 
method proposed in section 5.8.3.4. 
Using the reliability target in equation (5.105) it is possible to calculate the 
reliability of the items composing the top hierarchical level simply applying the 
weight factors in TABLE V. XX to equation (5.71) since the top level is a series 
configuration. Then, in case of redundancies, the results achieved at the 
previous steps are used as reliability target for the evaluation of the component 
reliability at the 2nd level. In this case, it is important to evaluate the allocated 
reliability using the correct formula, such as Equation (5.71) in case of series 
architecture, equations (5.74) - (5.76) in case of parallel configuration or 
standby redundancies, and equations (5.84) - (5.85) in case of k-out-of-n 
configuration. Then, the same approach is repeated consecutively to the 
subsequent hierarchical levels, every time considering the results of the next 
higher level as input reliability target. 
Fig. 5.18 shows the results of the procedure applied using the reliability models 
based on four influence factors, i.e. FOO and 4-parameter MEOWA. Quite the 
same, Fig. 5.19 shows the results of the procedure applied using the reliability 
models based on six influence factors, i.e. Arithmetic AWM and 6-parameter 
MEOWA.  
 

 
Fig. 5.18. Reliability allocated using the proposed method to the components that 

make up the lube oil console by means of FOO and 4-parameter MEOWA. 
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Fig. 5.19. Reliability allocated using the proposed method to the components that 

make up the lube oil console by means of Arithmetic AWM and 6-parameter 
MEOWA. 

The FOO model cannot allocate the correct reliability to some critical 
components, such as the main motor, the main pump and the main PSV. In 
fact, using this model the impact of a great standby redundancy unit lead to 
untrustworthy reliability results for the main unit. Quite the opposite, 
MEOWA and AWM methods provides comparable results. 
Finally, it is important to consider that there is a large uncertainty associated 
with known values of reliability parameters in commercially available devices. 
The accelerated test (using for example temperature, vibration or humidity 
stress factors) proposed as final loop of the procedure presented in this work 
could provide more accurate reliability data about commercial components 
available on the market. 
 
 
 

5.12.  Final remarks  
The first part of this section contains a complete survey of Reliability Allocation 
techniques available in literature. The classical RA approaches such as Equal, 
ARINC, AGREE, FOO, Bracha, Karmiol and AWM have been discussed 
thoroughly in separate subsections. Then, some of the innovative approaches 
recently published in literature have been studied and analyzed, with an in-
depth analysis of the MEOWA method. 
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The main criticalities of all the RA procedures available in literature is the 
presence of two initial assumptions not always reasonable: the series 
configuration of the system RBD and the exponential failure distribution of all 
the components.  
Trying to fill this gap, the second part of this section presents an innovative 
iterative procedure which is able to overcome both initial hypothesis and thus 
it can be applied to any kind of complex system. The proposed method is a 
general procedure that use the weight factor of the other methods available in 
literature. It simply provides a set of guidelines to extend the applicability of 
the other techniques to any kind of complex system.  
The first test bench of the proposed method was the standard parallel 
architecture, and it shows some interesting results. The ARINC and AGREE 
techniques turn out not to be suitable for this kind of application (due to some 
mathematical restrictions in the weight factors definition) so their application 
continue to be limited to series configurations. On the other hand, all the other 
approaches such as FOO, Bracha, AWM, Karmiol and MEOWA techniques 
could be easily applied to parallel architectures introducing the approach 
presented in section 5.8.3.2. Quite similarly, the application of such techniques 
could be extended also to standby redundancies following the guidelines 
proposed in section 5.8.3.4. Finally, the proposed procedure allows to extend 
the applicability of the RA approach also to k-out-of-N configuration as 
described in section 5.8.3.3. The final loop of the procedure presented in this 
chapter allow to extend the applicability of all the techniques available in 
literature to component characterized by a non-constant failure rate by means 
of accelerated life tests performed on the selected components.  
After the comparison between the weight factors of the allocation methods 
available in literature, the MEOWA technique turned out to be the best 
solution since it solves the problems of the weight factor assessment arisen in 
the other techniques. 
In conclusion, the optimal Reliability Allocation procedure can be summarized 
as follows:  

1. System decomposition into hierarchical levels as in section 5.8.1. 
2. Assessment of the influence factors of the components making up the 

system. 
3. Estimation of the influence factor for the equivalent units included in 

the different hierarchical levels following the principle of the worst-case 
scenario as in section 5.8.2.  

4. Assessment of the weight factors according to MEOWA technique as a 
function of the situational parameter α as in section 5.6. 
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5. Evaluation of the component reliability at the top hierarchical level 
starting from the system reliability goal. The proper equations should 
be used according to the system configuration as in section 5.8.3. 

6. Repeat the previous step to evaluate the component reliability at the 
lower hierarchical levels starting from the reliability results achieved at 
the level above. The proper equations should be used according to the 
system configuration as in section 5.8.3. 

7. Selection of the most suitable component available in the market and 
evaluation of the component failure rate by means of proper equations 
(in case of exponential distribution) or by means of accelerated life test 
(in case of non-constant failure rate). If the reliability target is not 
achieved, another component in the market should be used.  

 
The final part of the chapter presents the implementation of the proposed 
procedure to three different applications:  

• Case study A - it is a numerical example composed by 5 parallel 
branches, each one including a different number of series items. 

• Case study B - it is a sensors unit used to monitor temperature and 
pressure of the gas used in an HVAC system for high-speed train. The 
analyzed system includes several redundancies: two parallel 
temperature sensors, three pressure transmitters mounted in 2oo3 
configuration by means of a voting unit and a safety unit that directly 
provides redundant information about temperature and pressure.  

• Case study C - it is a lube oil console for gas turbine. The system is 
basically a series chain of different subunits, each one including 
different redundant architectures, such parallel, k-out-of-N, Cold 
standby and Warm standby.  

 
The analysis of the three case study proves the effectiveness of the proposed 
procedure highlighting the advantages of the method and emphasizing how it 
is possible to overcome the initial hypotheses required by every other allocation 
method.  
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CHAPTER 6 
 
ENVIRONMENTAL STRESS SCREENING  

 
 
The first part of this chapter presents the development of a 
customized test plan and test bed for characterization of 
Inertial Measurement Units under Environmental Stress 
Screening. The reliability and metrological performances of 
the IMUs have been characterized introducing adequate 
figures of merits to study the behavior of the devices in time 
and frequency domains. The second part of this chapter 
presents a test plan for characterization of DC-DC 
converters under harsh environment. Also in this case, the 
reliability and the electrical performances of the device have 
been investigated using different parameters. The results of 
both case studies prove how it is possible to integrate an 
ESS test plan within a Life Cycle Reliability procedure to 
efficiently and effectively improve the performances of the 
system through its entire life cycle. 1, 2 

  
1  The test plan for characterization of the IMUs has been published as:  
- “D. Capriglione et al., “Experimental Analysis of Filtering Algorithms for IMU-Based 

Applications Under Vibrations,” IEEE Trans. Instrum. Meas., vol. 70, Article No. 
3507410, 2021“. 

- “D. Capriglione et al., “Development of a test plan and a testbed for performance 
analysis of MEMS-based IMUs under vibration conditions,” Measurement, vol. 158, 
Article No. 107734, 2020”.  

- “D. Capriglione et al., “Performance Analysis of MEMS-based Inertial Measurement 
Units in terrestrial vehicles”, Measurement, Vol. 186, Article No. 1102337, 2021”. 

2  The characterization of the DC-DC converters has been published as “G. Patrizi et 
al., "Electrical Characterization under Harsh Environment of DC-DC Converters used 
in Diagnostic Systems", IEEE Trans. Instrum. Vol. 71, Article No. 3504811, 2022.” 
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6.1.  Introduction: the importance of screening 
test in design for reliability 
Accelerated Life Tests and aging tests are excellent methods of learning about 
the design of equipment over a relatively short span of time and affecting that 
design prior to committing the program to production. Once production begins, 
other types of test procedures can provide important intelligence on how well 
the product has been built and tested. This is the reason why screening tests 
are sometimes included as final part of design for reliability procedures. 
Screening is defined as the process carried out to detect and remove non-
conforming items, or those susceptible to early life failure. When screening plans 
are included in the manufacturing process, then, they should be performed on 
all the equipment being produced in order to stress the product so that out-of-
specification weaknesses will be exposed.  
The stresses are chosen to address possible failure modes found in a 
manufacturing process—modes such as loose fasteners, improper solder joints 
or weldments, missing hardware, defective components, and improper solder 
joints. Typically for electronic and mechanical devices, temperature cycling and 
random vibration up to specification level are used to uncover possible 
manufacturing defects.  
In other words, the producer performs the screening exposing all the produced 
components to certain level of environmental and/or electrical stress so that 
the customer doesn’t need to do so in use. 
But why screening tests are so important in the context of a design for 
reliability procedure?  
The answer to such question is quite simple and straightforward. Any findings 
coming out from a screening process are generally expensive, but not as 
expensive as returns and unsatisfied customers. In fact, screening test not only 
keeps potential problems out of the customer’s hands, but they also allow 
continuous improvements of product quality and system reliability. 
Among the different screening procedures, environmental test plays a central 
role in design for reliability approaches. In fact, designers have to take into 
account that customers will use the product somewhere and somehow. That 
implies there will be a set of environmental and use conditions or stresses. 
Hence, the designed product should operate as expected by the customer where 
and how the customer expects the product to work. 
There are a few ways to approach evaluating if the developed product will work 
within the expected customer environment and under the customer’s use 
conditions. Environmental screening allows to select specific failure mechanisms 
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of interest and thus to identify stress conditions related to those specific failure 
mechanisms. Then, the product can be tested under the identified test 
conditions in order to simulate customer environments and evaluate if early 
failure will be exposed by the actual operating conditions in which the customer 
will install the developed equipment. 
For these reasons, environmental screening procedures have been studied and 
discussed in this work as part of the proposed Reliability Life Cycle.  
 
 
 

6.2.  Environmental Stress Screening: an 
overview 
The process for detecting flaws (i.e. imperfections that could result in failures) 
by applying environmental and/or operational stresses to precipitate them as 
detectable failures is usually called Environmental Stress Screening (ESS) [191] 
or Reliability Stress Screening (RSS) [192].  
ESS is the tailored application of electrical and environmental stresses to 
electronic parts, module, units and systems to identify and eliminate defective, 
abnormal or marginal parts and manufacturing defects. ESS is composed by a 
process or a series of process in which environmental stimuli, such as rapid 
thermal cycling and random vibration, are applied to the device under test.  
The processes of ESS or RSS are used to detect flaws in a population of items, 
usually components, leading to the subsequent removal of these flawed items 
from the population. The removal of such components facilitates rapid 
achievement of the reliability level expected for the population over the useful 
life. 
ESS is a common and widely-conducted practice used to eliminating latent 
defects due to infant mortalities in electronic equipment (see Fig. 6.1) [148], 
[191], [193]–[196]. 
Fig. 6.1 illustrates the classical trend of a component failure rate (usually called 
the bathtub curve) which is divided into three sections [131], [183]:  

• Early failure or infant mortality: in this phase failure are caused by 
intrinsic material defects, design or assembly mistakes and so on. 

• Random failure: this section is also called useful life, and the failure 
rate trend is approximately constant. 

• Wear-out failure: in this phase, the failure rate increases due to 
fatigue and material deterioration. 
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Fig. 6.1. Effects of environmental stress screening on the bathtub curve. 

 
Electronic components are adequately described using a constant failure rate 
model (i.e., exponential failure distribution). This is due to the fact that such 
type of items is characterized by a long-time useful life, which is predominant 
respect to the other two sections. This is a basic assumption for many reliability 
approaches existing in literature, like reliability prediction (see for instance 
[146], [147], [156]), Reliability Block Diagram (RBD) [197], reliability allocation 
(as detailled described in section 5), reliability importance, and so on.  
As a matter of fact, fatigue is not a real failure mode for electronic components 
because wear-out will occur when the item will be already obsolete, so the last 
zone of the bathtub curve could be easily neglected for this type of device.  
Quite the opposite, the infant mortality section could not absolutely be 
neglected because intrinsic defects due to the manufacturing process are very 
common, especially in low-cost commercial components. Therefore, 
environmental stress screening must be used to evaluate design and materials 
problems and consequently decrease the failure rate in the first zone of the 
bathtub curve (see the green trend in Fig. 6.1).  
ESS is typically conducted on 100% of manufactured products to accelerate 
early failures in the most cost-effective solution. It can identify failure modes 
that usually are not discovered through simple inspection or testing, such as: 

• Parameter drifts; 
• Shorts and open on the electronic board; 
• Incorrect installation; 
• Wrong part installation; 
• Contaminated part; 
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• Hermetic seal failure; 
• Foreign material contamination; 
• Cold solder joints; 
• Defective parts. 

 
The screening level should not exceed the design limits, but they must be of 
sufficient strength to precipitate failures due to weak parts and manufacturing 
defects at the earliest time such that corrections are most cost-effective.  
Considering the entire population of generic manufactured products just came 
out of the production process. The robustness of these population is usually 
distributed according to a bimodal normal probability density function. The 
highest peak stands for the strong population (i.e. subset of the total population 
of items made up of non-weak items), the items that belongs to this group 
generally fail because of random failures or wear out failures. The lowest peak 
represents the intrinsically weak population (i.e. subset of the total population 
of items made up of only weak items), that covers the first zone of the bathtub 
curve (early failures). Effective screening requires stresses of sufficient 
magnitude and time duration to precipitate failures from latent defects without 
accumulating significant damage to the remaining non-defective structural 
elements (see Fig. 6.2). 
 

 
Fig. 6.2. Comparison between population robustness and ESS strength. 

 
There are a number of common types of screening procedures which could be 
used with some degree of success. These common screening procedures (stresses) 
are shown in  
TABLE VI.I in compliance with [192].  
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TABLE VI.I 
COMMON SCREENING TYPES AND TYPICAL DEFECT TYPES PRECIPITATED BY ESS. 

STRESS DEFECT TYPES PRECIPITATED 

Thermal cycling 

Component parameter drift 
Hermetic seal failure 
Poor thermal coefficient matches 
Stress relaxation 
Loosening of connections or parts 
Cracks 

Vibration 

Particle contamination 
Defective oscillator crystals 
Poorly bonded internal parts 
Poorly secured high-mass parts 
Mechanical flaw 
Loosening of connections or parts 
Part mounting issues 

Combined thermal 
cycling and vibration 

All mechanisms under vibration and thermal cycling 
Interaction between mechanisms 

High voltage Shorted connections 

Humidity 

Sealing properties 
Hygroscopic contamination 
Circuit stability 
Corrosion 

High temperature 
Performance degradation 
Chemical reaction 

Acceleration 
Cracks 
Mechanical defects 

Gas pressure test Leaks and hermetic failure 

Power cycling 
In-rush current response 
Circuit transients 
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There are a number of types of ESS: constant stress screening, step stress 
screening, and Highly Accelerated Stress Screening (HASS).  
More in detail, a constant stress screening is a screening procedure where a 
constant environmental and/or operational stress is used for the duration of the 
process.  
A step stress screening is a screening procedure where environmental and/or 
operational stresses are changed at planned intervals, usually increasing in 
strength for the duration of the process. Step stress screening is often used to 
shorten process times, and to give some idea of likely failures rates at different 
stress levels.  
Highly Accelerated Stress Screening (HASS), is intended to be an on-going 
process either performed on the whole production (100 % screening) or on a 
sample from the production or from a batch. The HASS process is typically set 
up as a rapid temperature change between the upper operating limit reduced 
by some amount and the lower temperature limit plus the same amount. 
If no operating limits have been identified, a level as high as appropriate for 
the item’s technology is chosen. Normally the screening strength of the HASS 
screening is adjusted by increasing or decreasing the number of temperature 
cycles. HASS normally stays within the items' operational limits to allow 
continuous monitoring of the function of the item, but operational limits can 
be exceeded where the items under HASS are not monitored during the 
screening. However, it is important that the stress levels remain below the 
destruction limit for good items. The items should then be tested for function 
after the HASS.  
Generally, the purpose of all of these screening types is to cause relevant failures 
to occur in the item. Such relevant failures are those that would have prevented 
the item from achieving its reliability requirements in service. 
 
 
 

6.3.  Research questions and direction of this 
work  
The interest in diagnostic, fault diagnosis and condition monitoring rapidly 
increase over the last years due to the fast development of Industry 4.0. 
Considering the great increase of automation and the high complexity of the 
industrial equipment, the diagnostics process has become fundamental in every 
manufacturing field representing an essential part of performance requirements 
[35], [198]–[201]. 
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This is due to the fact that diagnostic and fault diagnosis allow to increase the 
reliability and maintainability of the system under test, and consequently also 
its availability. At the same time the need of corrective maintenance is 
minimized as well as the overall management costs. Essentially, diagnostic is 
based on monitoring some condition parameters of a system to acquire a large 
amount of data. Processing these data, it is possible to identify some particular 
conditions that are indicative of a possible incipient fault. There are many 
requirements to implement diagnostic on complex industrial system. Accurate 
sensors, multi-channel acquisition system, fast processing unit able to elaborate 
large amount of data, and high reliability are mandatory requirements. 
In this point of view, this work presents an Environmental Stress Screening test 
plan for two electronic devices used in diagnostic units: a Inertial measurement 
unit (case study A) used to monitor acceleration and angular rate of industrial 
machinery and a DC-DC converter (case study B) used to supply WSN-based 
diagnostic unit.  
In particular, the reliability of diagnostic systems is a key factor as well as their 
accuracy and all their metrological characteristics. This statement represents a 
critical aspect during the design phase because diagnostic elements are usually 
considered failure-free by definition. This assumption means that diagnostic 
must provide a continuous and reliable flow of information, without loss of 
calibration, erratic data or hardware failures in order to assure the expected 
behavior and the correct operation of the monitored system. 
As a consequence, accuracy and reliability performances of diagnostic systems 
are becoming fundamental requirements in almost all applications to ensure the 
proper expected behavior of the monitored system and consequently mitigate 
its related risk. Nevertheless, in recent literature, the dynamic metrological 
performance and how the actual operating conditions can affect the 
metrological performances, the electrical performances and reliability of such 
systems is not adequately dealt with. This kind of analysis is called context-
awareness assessment because it considers the real scenario in which the system 
is operating, characterized by the presence of significant temperature, humidity, 
vibrations, mechanical shocks and so on.  
Trying to fill this gap, the main objective of this chapter is to introduce an 
ESS-based test plan to characterize the performances of the DUTs ensuring 
that the system will work in presence of significant external stress sources. The 
results of the tests are used to investigate both reliability and metrological 
performances of the DUTs at the same time. 
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6.4.  Case study A: Inertial Measurement Units 
Inertial Measurement Units (IMUs) represent an essential part of monitoring, 
diagnostic, and/or controlling system in many different application fields, like 
navigation and transportation, automotive and self-driving vehicles, Unmanned 
Aerial Vehicles (UAVs) and aerospace devices, cellular phones, human motion, 
robotics, and many other contexts (see for instance but not only [24], [26], [202]–
[206]).  
Based on the complexity, costs, size and weight requirements of the specific 
application, Inertial Measurement Units could integrate all the following 
sensors, or only a subset of those [29], [207]:  

• A triaxial accelerometer used to measure the linear acceleration toward 
the three axes.  

• A triaxial gyroscope used to measure the angular rate toward the three 
axes.  

• A triaxial magnetometer used to measure the static magnetic field 
toward the three axes.  

 
Several technologies of IMU are available in the market. Micro-Electro-
Mechanical Systems (MEMS) devices are a practical, low-cost, and low-power 
solution that allows to ensure high accuracy and stable performances within 
small easy-integrated chip. Consequently, nowadays, MEMS-based IMUs are 
dominating the inertial platform market in every field of application [23], [32], 
[208]–[210]. For more information about MEMS-based IMU see section 2.3. 
 
 

6.4.1.  Research motivations 
The expected performance of such systems is provided in the related datasheets 
by microelectronic manufacturers which, generally, consider simplified 
operating conditions that are not well representative of the actual way of such 
devices operating. Indeed, typical information that can be found in datasheets 
deals with selectable ranges for measuring linear acceleration, angle rate, and 
static magnetic field, as well as the related sensitivity (to each detected 
quantity) and the temperature operating range. Nevertheless, the influence of 
the actual operating conditions on the dynamical metrological performances 
and on the system reliability is not sufficiently dealt with.      
Recent literature extensively focuses on MEMS-based IMUs design and 
calibration (see, for instance, but not only [24], [25], [31], [32], [202], [204]).  
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Quite the opposite, the characterization of IMUs under a real operating context 
well-representative of actual scenario is not adequately considered.  
Despite this lack, a context-awareness reliability analysis and metrological 
performance analyses of MEMS-based IMU under the actual operating 
conditions are crucial for many application fields. Relevant temperature 
variation, high humidity level, significant vibration stresses, mechanical shocks 
are only a few lists of environmental factors that profoundly affect the 
performances of microelectronic devices [211]–[213].   
As an example, in the automotive context, in navigation and industrial 
environments, IMUs mounted on terrestrial vehicles are continuously interested 
in mechanical stresses as random vibrations, so it is expected that the effects 
of such vibrations could generally affect both the metrological performance, the 
reliability and the time to failure [126], [214].  
Another example of such criticalities arises when commercial IMUs are mounted 
in UAVs (and more generally in aeronautical applications). Varying for instance 
the altitude of the flight, the temperature and humidity of the external air 
could remarkably change, leading to drifts or even failure of the measurement 
units [30], [210]. 
Furthermore, a context-awareness analysis is the most suitable one to 
characterize the performances of either software or algorithms that are 
embedded in microcontrollers. In fact, the real operating conditions could 
activate some hardware failure mechanisms that in nominal conditions are 
generally neglected, as well as could lead to software malfunctions, parameters 
drift, increase of the convergence time, data misinterpretation, and many other 
issues [215]. As for the low-cost IMUs, which are widely employed in popular 
applications as low-cost UAV and automotive, they are generally characterized 
by low Output Data Rates (typically close to 100 Hz).  
On the other hand, many international testing standards agreed that road 
vehicles experienced vibration up to hundreds of Hz. Consequently, it is 
fundamental to investigate the performances of such devices in a context-
awareness scenario to identify possible unexpected behavior in the presence of 
a high-frequency stimulus. Despite this, testing the performance of positioning 
algorithms operating under vibration stimuli comparable to the real vibration 
(impressed for instance, by the wind or by motor propulsion) is another 
significant aspect not adequately described in recent literature. 
Furthermore, there is another missing point in recent literature. Currently, 
there are not international standards specifically designed for the environmental 
test of IMUs, as well as customized standards for MEMS devices are not yet 
available.  
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6.4.2.  Aim of the test procedures 
Trying to fill all the above-mentioned gaps, this work proposes a customized 
test plan and a measurement setup in order to characterize the effects of the 
actual operating conditions (in terms of temperature and vibration) on a set of 
widely-used commercial low-cost MEMS-based IMUs for automotive and UAVs 
applications.  
The operating performances of both automotive and low-cost commercial UAV 
applications were considered to develop a test that is well-representative in 
terms of both these contexts.  
The proposed test plan allows to carry out different kinds of analysis at the 
same time focusing on many goals strictly related to each other: 

• Screening of the weak population by a reliability point of view. The 
proposed test plan can be contextualized within the context of ESS-
RSS test procedures. Thus, the investigation of early failure due to 
infant mortality can be performed. This will allow to significantly 
decrease the failure rate of the device in the first phase of its lifecycle, 
avoiding unexpected early failures.   

• Characterization of the IMU’s metrological performances under harsh 
environment. The analysis of the raw data outcoming for the IMUs 
during the test allows to estimate miscalibration issue, loss of accuracy 
and stability, cross-axis sensitivity, spurious response ratio, etc.  

• Characterize the performances of different positioning algorithms under 
temperature and vibration conditions. Two different well-known 
filtering algorithms for positioning were tested basing on the data 
acquired by the IMUs during the tests. More in detail, the considered 
filtering algorithms are based on the Complementary filter and on the 
Attitude and Heading Reference Systems (AHRS) Kalman filter with 
the aims of analyzing and comparing two kinds of opposite approaches: 
the former based on suitable high/low pass filters, and the latter based 
on the capability of prediction given by the Kalman filter. 

• Analysis of the IMU frequency response in presence of an additive high-
frequency white gaussian noise, typical of the automotive and aerospace 
contexts.  

• Verification of the MEMS-based IMU performances in order to ensure 
that the system will work properly when it is subjected to vibration 
and temperature stresses (well-representative of low-cost automotive or 
UAVs applications). 
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6.4.3.  Failure analysis of MEMS-based IMU 
The environmental conditions remarkably affect the metrological and electrical 
performances as well as the component reliability of microelectronic devices. 
For instance, MEMS-based IMUs developed to work on automotive and UAV 
applications are subject to temperature excursion and vibration conditions that 
could cause fatigue and fracture on the devices, as well as stiction of the 
mechanical parts, creep and plastic deformation, short and open circuit, etc. 
[216]–[219].  
A preliminary functional failure analysis is required prior the draft of the test 
plan to understand every possible failure mechanism that could lead to faults 
and malfunctions of the whole inertial module. In this work, the failure analysis 
focuses on both mechanical and electrical physical domains in order to cover all 
the failure mechanisms typical of MEMS technology.  
According to many works in recent literature (see for instance [218], [220]–
[227]), the typical failure mechanisms of MEMS sensors are detailed included 
in TABLE VI.II.  
The table also provides a list of one or more failure causes and one or more 
acceleration factors for each one of the failure mechanisms. The acceleration 
factors are extremely helpful parameters useful to understand which 
environmental condition influences most the component reliability and its 
performances [228], [229]. 
Vibrations, and more generally all mechanical shocks, influence almost all the 
possible failure mechanisms of the MEMS sensors, as highlighted using blue 
bold character in TABLE VI.II.  
Quite similarly, also temperature is a critical influence factors able to trigger 
many failure mechanisms of MEMS devices, as emphasized using red bold 
character in TABLE VI.II.  As a matter of fact, temperature stress could be useful 
to investigate the ability of soldering to endure high and low temperatures, as 
well as it is useful to highlight electrical and/or physical drifts in the parameters 
of the microelectronic device. These parameter drifts produce effects on both 
system performances and reliability. 
As a conclusion, almost all the identified failure mechanisms can be quickly 
investigated using thermal and vibration tests. For this reason, this work 
proposes an ESS-based test plan based on two different accelerating factors: 
temperature and vibration. Different test procedures based on these two stress 
sources have been developed in order to fulfil all the test objectives presented 
in section 6.4.2. 
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TABLE VI.II 

FAILURE ANALYSIS OF MEMS SENSORS INCLUDING FAILURE MECHANISMS, ROOT CAUSES 

AND ACCELERATION FACTORS. 

FAILURE 

MECHANISM 
ROOT CAUSES 

PHYSICAL 

DOMAIN 
ACCELERATION 

FACTORS 

Creep and 
plastic 
deformation 

Intrinsic stress 
Applied stress 
Thermal stress 

Mechanical 
Temperature 
Applied strain 
Vibration 

Fracture due to 
mechanical 
shocks and 
vibrations 

Overload 
Fatigue 
Shock 
Stress corrosion 

Mechanical 

Acceleration 
Frequency (at 
resonance) 
Vibration 

Wear 

Adhesive 
Abrasive 
Corrosion 
Surface fatigue 

Mechanical 

Mechanical shock 
Speed 
Temperature 
Environment 

Contamination 
Intrinsic 
Fabrication-Induced 
User Environments 

Mechanical 
Environment 
Temperature 

Stiction 

Capillary force 
Van der Walls force 
Electrical static force 
Residual stress 
Chemical bonding 

Mechanical 
Electrical 

Humidity 
Mechanical shocks 
Vibrations 
Voltage 

Short/open 
circuit 

Dielectric material degradation 
High electric field 
Electromigration 
Ohmic contact 

Electrical 
Electric field 
Temperature 
Humidity 

Dielectric 
charging 

Dielectric material degradation 
High electric field 

Electrical 

Electric field 
Temperature 
Radiation 
Humidity 

Electrostatic 
discharge (ESD) 

Static electricity 
Electrostatic induction 

Electrical 
Charged devices 
Charged Environment 
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6.5.  Case study A: Test plan and Measurement 
setup  
This section presents the proposed ESS-based test plan and the measurement 
setup used to characterize the performance of the MEMS-based IMU under 
test. 
 
 

6.5.1.  Structure of the test plan 
The proposed test plan for characterization of MEMS-based IMU is basically 
composed by two major parts: a vibration-based test plan and a thermal-based 
test plan. Both of these test plans include several test profiles with different 
features, as detailed described in the following subsections.  
As described in section 2.3., a proper data acquisition unit has been developed 
to store the outcomes of the DUTs during the test. For the sake of reliability 
analysis, each test included in the following test plans is based on a 
predetermined data acquisition procedure developed in three phases: 

• "Before zone". It is the time slot prior to the application of the 
considered stress (either temperature or vibration). It lasts 3 minutes 
in order to acquire enough data to characterize the performance of the 
DUT before the stress application. 

• "Test zone": It is the time slot in which the test profile is applied to the 
DUT. During this phase, the IMU acquire data and transfer them to a 
laptop utilizing the suitable acquisition chain described in section 2.3. 
The duration of this phase depends on the time duration of the 
considered test. The data analysis is performed offline after the 
conclusion of the test plan to characterize the metrological 
performances of the IMU under the actual operating conditions of the 
considered environment. The data could also be used to evaluate the 
performances of different positioning algorithms.  

• "After zone": It is the reciprocal time slot of the before zone. The DUTs 
endure no stress (neither temperature nor vibration) during this time. 
It lasts 3 minutes. The data analysis performed on this time slot allows 
to investigate miss calibrations and other phenomena that the proposed 
test profile could have triggered. Ore in detail, Comparing the 
performances of the DUTs before and after the stress application it is 
possible to identify potential failure mechanisms or any possible 
damages exposed by the test. As a consequence, this phase provides 
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fundamental information for the reliability analysis and the early failure 
analysis of the DUTs.  

 
Fig. 6.3 summarizes this concept illustrating with different colors two 
consecutive repetitions of the same service condition. 
 

 
Fig. 6.3. The test procedure's schematic representation is divided into three zones: 

before zone, test zone, and after zone. The different colors stand for different 
repetitions of the test. 

 
6.5.2.  Proposed test plan: vibration stress profiles 

This work proposes a non-standard procedure specifically tuned to reflect the 
operative condition of the MEMS inertial module, taking into account the real 
environmental stresses of the field of application. From a vibration point of 
view, the operating conditions of electronic devices installed on cars, 
motorcycles, or on low-cost commercial UAVs are comparable and could be 
reasonably approximate as equal.  
The proposed vibration test plan is composed of four kinds of tests: a sinusoidal 
vibration profile, a random vibration test, a vibration step-test and a sine-on-
random vibration profile.  
 
 

6.5.2.1. Random vibration test 
The random vibration profile provides the possibility to study the behavior of 
the device under test at different frequencies simultaneously, emulating the 
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operating conditions of these devices (in terms of vibration) when they are 
installed and used in real scenarios.  
Since there are no specific standards available for the device and applications 
studied in this work, the test setup was settled comparing several test profiles 
included in many international standards:  

• IEC 60068-2-64 [230] is the European standard published by 
International Electrotechnical Commission (IEC) in 2008. The general 
standard regulates the environmental testing, while section 2-64 is 
about random vibration.  

• MIL-STD-810G [231] is a milestone for environmental testing developed 
by the U.S. Department of Defense in 2008.  It is currently the guideline 
for the majority of the laboratory tests.  

• JESD22-B103B.01 (2016) [232] is an international standard published 
by “Jedec solid state technology association” in 2016. It proposes 
testing procedures for microelectronics devices focusing on vibration at 
variable frequency.  

• ETSI EN 300 019-2-5 [233] developed by the European 
Telecommunications Standards Institute (ETSI) in 2002. It deals with 
the environmental testing area for different kinds of 
telecommunications equipment installed in vehicles. 

• ISO 16750-3 (2003) [234] provided by the International Organization 
for Standardizations in 2003. It covers the environmental testing of 
electrical and electronic components installed on road vehicles.  

• ANSI C136.31 [235] is an American standard developed in 2010 that 
covers the vibration test methods for roadway and area luminaires. 

 
During the random test, the IMU is vibrated using normally distributed random 
vibrations. The standards mentioned above use the Acceleration Spectral 
Density (ASD) to characterize a random vibration profile over a frequency 
domain. According to the international standard IEC 60068-2-64 [230] ASD is 
defined as “the mean-square value of that part of an acceleration signal passed 
by a narrow-band filter of a center frequency, per unit bandwidth, in the limit 
as the bandwidth approaches zero and the averaging time approaches infinity”.  
The developed test profile is divided into two zones: a low-frequency span, 
including the range from 5 Hz to 20 Hz and a high-frequency span from 20 Hz 
up to 500 Hz. In the first frequencies span, the Acceleration Spectral Density 
is defined as follow:  
  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿 = 2 𝑚𝑚
2

𝑠𝑠3� = 0.02 𝑔𝑔
2

𝐻𝐻𝐻𝐻�  (6.1) 
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Instead, in the high-frequency span 𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻 decreases as -3 dB/oct. Fig. 6.4 
shows a graphical representation of the developed profile.  
 

 
Fig. 6.4. Proposed random vibration test profile showing the trend of the Acceleration 
Spectral Density in the considered range of frequencies. The data tips are located in 

the most significant points of the profile. 

In compliance with the standard mentioned above, both axes in the figure are 
illustrated on a logarithmic scale. Even if the trend illustrated in Fig. 6.4 is 
quite representative of the profile, other parameters must be defined in order 
to provide a complete and exhaustive description of the test. The Root Mean 
Square Acceleration 𝑎𝑎𝑅𝑅𝑅𝑅𝑅𝑅 (expressed using the RMS value of the gravitational 
acceleration g) is a useful parameter that measures the amount of acceleration 
impressed to the DUT during the test. In fact, it can be monitored continuously 
during the test, and consequently, it can be used by the shaker controller to 
ensure that the demanded profile will be fulfilled. It is defined as the RMS value 
of the square root of the surface area below the Acceleration Spectral Density 
trend through the frequency domain. The random vibration profile defined 
above results in a Root Mean Square Acceleration of 𝑎𝑎𝑅𝑅𝑅𝑅𝑅𝑅 = 1.2864 𝑔𝑔. 
The ASD test level shall be applied within a tolerance of ±3 𝑑𝑑𝑑𝑑 of the nominal 
value at any frequency, allowing for the instrument and random error, referred 
to the specified ASD. The RMS acceleration levels shall not deviate more than 
±10% of the nominal value defined above. 
The test profile is repeated along X, Y, and Z axes, with a time duration of 30 
minutes on each axis and a peak displacement RMS 𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅 = 1.85 𝑚𝑚𝑚𝑚. The 
controller samples the profile and provides 400 different spectral lines to the 
shaker that implement the test. 
The random vibration test in this work has been developed to simulate the 
effects of the vibration induced by several factors in a motorcycle or a drone, 
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such as a gust of wind, wind buffeting, motor propulsion, a sudden brake, road 
bumps, linear acceleration or deceleration of the entire vehicle, path harshness, 
etc. 
 
 

6.5.2.2. Sinusoidal vibration test 
The sinusoidal vibration test is used to investigate any mechanical weakness 
and/or degradation in the device under test, to demonstrate the mechanical 
robustness of the specimen and/or to study its dynamic behavior. In order to 
achieve these objectives, the test is based on a continuous sweep of frequencies 
changed exponentially with time.  
The sinusoidal test plan was developed based on the procedures included in the 
international standard IEC 60068-2-6 [236], which is a European standard 
published by the International Electrotechnical Commission (IEC) in 2009. 
This standard provides general guidelines for sinusoidal vibration testing of 
commercial devices; therefore, the AEC-Q100-rev.H [237] is used to customize 
the test on the field of application. In fact, the AEC-Q100 is an international 
standard that contains a set of qualification tests for integrated circuits used 
on automotive applications.  
The test is based on a continuous frequency swept of sinusoidal stimuli, and it 
is divided into two-zone:  

• A first zone from 20 Hz to the so-called “cross-over frequency” in which 
the severity of the test is expressed as constant displacement. In this 
phase the amplitude of the acceleration increases according to the 
frequency of the stimuli. In the proposed test plan, this zone is 
characterized by 1 mm peak-to-peak displacement.  

• A second zone from the cross-over frequency up to 2 kHz in which the 
severity of the test is expressed as constant acceleration, while the 
displacement is uncontrolled. In the proposed test plan, the test has 
been performed with three different service conditions: 2 g - 4 g - 8 g 
peak acceleration. 

 
The value of displacement amplitude is related to the value of acceleration 
amplitude in such a manner that the magnitude of vibration is the same at the 
cross-over frequency. In this way, the frequency range may be swept 
continuously, changing from constant displacement to constant acceleration 
and vice versa at the cross-over frequency.  
For this reason, every sinusoidal vibration test is generally characterized by a 
different cross-over frequency so that the above-mentioned relationship is 
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fulfilled. In particular, the cross-over frequencies of the three service conditions 
are reported in TABLE VI.III along with the other parameters of the test 
severity. 
 

TABLE VI.III 
COMPLETE TEST SEVERITY OF SINUSOIDAL VIBRATION PROFILES. 

SERVICE 

CONDITION 
PEAK 

ACCELERATION 
PEAK-PEAK 

DISPLACEMENT  
CROSS-OVER 

FREQUENCY 
FREQUENCY 

RANGE 

S1 8 g 1 mm 63 Hz [20 - 2000] Hz 

S2 4 g 1 mm 45 Hz [20 - 2000] Hz 

S3 2 g 1 mm 32 Hz [20 - 2000] Hz 

 
The test is performed according to a constant sweep rate performed in a 
logarithmic manner at 1 decade/minute speed rate. The sweep is performed 
four times, from the minimum to maximum, and returns to the minimum 
frequency. Considering the above information, a complete sweep is performed 
in 4 minutes, leading to a complete test which lasts 16 minutes.  
The complete test is repeated in each of the orientation axes X, Y, and Z. A 
tolerance level of +/- 10% on the test being performed, either displacement or 
acceleration, is allowed.  
Fig. 6.5 illustrates the service condition S3 of the sinusoidal vibration test 
proposed in this work, highlighting the most significant points using data tips. 
 

 
Fig. 6.5. Sinusoidal vibration test profile: service condition S3. The data tips are 

located in the most significant points of the profile. 
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The three service conditions S1, S2, and S3 are represented in Fig. 6.6, where 
the dotted lines stand for the cross-over frequencies 𝑓𝑓𝑆𝑆1, 𝑓𝑓𝑆𝑆2 and 𝑓𝑓𝑆𝑆3 related to 
the conditions S1, S2, and S3 respectively.  
The first test to be performed is the service condition S3. If no failures are 
exposed after the test, then severity could be increased moving on the 
condition S2, and finally to condition S1.  
 

 
Fig. 6.6. Representation of the three sinusoidal vibration profiles S1, S2 and S3  

 
 

6.5.2.3. Vibration step-test 
The objective of this test profile is to characterize the frequency behavior of the 
MEMS-based IMUs subjected to a sinusoidal vibration at different frequencies, 
maintaining a constant peak acceleration. Starting from the widely known 
sinusoidal vibration profile (as described in section 6.5.1.1.), a customized test 
profile is presented in this section based on a frequency step-up of a sinusoidal 
stimulus over time to carefully investigate the frequency response of the inertial 
platforms. The developed test plan is a sort of vibration step-test, where the 
physical quantity that step up is not the peak acceleration but is the frequency 
of the stimulus. Using this test profile, it is possible to achieve information 
about the frequency response of the IMU under test and, at the same time, it 
is possible to investigate its ability to withstand a constant vibration stimulus 
over a large frequency span. The latter could also provide significant 
information on the reliability performances of the IMUs, which represents a 
critical requirement in many application fields. As mention above, the classical 
sinusoidal sweep vibration test is defined and illustrated in the international 
standards IEC 60068-2-6 (2009) [236]. Based on the test profile proposed in 
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section 6.5.1.1., the vibration step test adopted in this work consists of a single 
sweep from 40 Hz to 2000 Hz analyzing a single frequency for a fixed period of 
holding time. After such a period of time, the frequency will be increase of a 
fixed frequency step. An extract of the vibration profile proposed in this work 
is illustrated in Fig. 6.7, considering only the subrange 40 – 200 Hz. 
 

 
Fig. 6.7. Extract of the vibration step-test profile in the frequency range 40 - 200 Hz. 

 
The severity of the complete test is the following: 

• Minimum frequency: 40 Hz 
• Maximum frequency: 2000 Hz 
• Frequency step: 20 Hz 
• Vibration peak: 2 g 
• Type of vibration stimuli: Sinusoidal 
• Holding time at each step: 25 s 
• Number of cycles: 1 
• Number of axes: 3 

 
 

6.5.2.4. Sine-on-Random vibration test 
Each one of the test profiles presented in the previous sections is based on a 
single type of vibration stress. However, according to the international standard 
ISO 16750-3:2003 [234] (Road vehicles- Environmental conditions and testing 
for electrical and electronic equipment – Part 3: Mechanical loads), the 
vibration endured by an electronic device mounted on a road vehicle can be 
divided into two types: 

• Sinusoidal vibration: it could be one of the spectral components from 
the acceleration due to the vehicle's motion, or it could be caused by 
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unbalanced mass forces, vibration induced by the pulsation of the 
intake air, etc.… 

• Random noise from all the other vibration sources of an engine (e.g., 
closing of valves), the noise created by the gearwheels' friction, random 
vibration induced by rough-road-driving.  

 
Hence, ISO 16750-3:2003 [234] suggests performing the test as a combined sine 
and random test in compliance with International Standard IEC 60068-2-80 
[238]. The latter defines "swept frequency sinusoidal vibration on wideband 
random vibration" or simply Sine-On-Random as one or more sinusoids swept 
over a frequency range and superimposed on random vibration.  
In other words, this kind of vibration test is based on the application of two 
different vibration stimuli at the same time: wideband random vibration stress 
and a sinusoidal vibration stimulus. This test requires the definition of a 
composite vibration severity, consisting of swept frequency sinusoidal 
components on a random background. In some instances, the sinusoidal 
stimulus could be maintained fixed instead of being swept over a frequency 
range.   
Consequently, both sinusoidal and random vibration severities have been 
customized on the actual operating condition related to the application field 
(automotive and low-cost UAVs). 
Regarding the sinusoidal vibration, this stimulus is a low-frequency sinusoid 
with a vibration peak of 1 g. Both frequency and amplitude are maintained 
constant over the testing time. This vibration stands for a hypothetical IMU 
input signal, which must be acquired without distortion since it represents the 
acceleration that the positioning algorithms must process. The truthfulness of 
this vibration has been proven in [239], [240] in which a suitable measurement 
system has been proposed to evaluate the driver's exposure to vibration during 
a ride on a motorcycle. The paper highlights that the vibration analysis band 
for a motorcycle varies from 0.25 Hz to 20 Hz.  
As a consequence, four different service conditions (SC) have been developed 
to recreate different scenarios well representative of the automotive 
application's actual vibration.  
For the sake of simplicity, the service conditions are based on a single sinusoid, 
which is not the real vibration experienced in the automotive field. Instead, it 
is only a single spectral component of the actual vibration.  
Three SCs are based on a single sinusoid with constant frequency (i.e., 5 Hz – 
10 Hz – 15 Hz), while the last one is based on a continuous frequency sweep 
from 5 Hz to 20 Hz.  
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The wideband random vibration is based on the excitation of all the frequencies 
in a defined spectrum at any given time. This test is extremely useful since 
vibrations found in everyday life scenarios are not repetitive or predictable like 
sinusoidal waveforms.  
The severity of random vibration is described providing an ASD value over a 
frequency range. The proposed test plan is based on a constant density value 
𝐴𝐴𝐴𝐴𝐴𝐴 = 0.01 𝑔𝑔2/𝐻𝐻𝐻𝐻 over the frequency range from 200 Hz to 2 kHz. This 
represents a wideband gaussian white noise that could distort the low-frequency 
signal related to the monitored item's actual motion. Because of the ODR of 
the DUTs, a 50 Hz antialiasing filter is introduced on the IMU (see section 2.3). 
Consequently, the random vibration should be completely cut-off by the 
antialiasing filter embedded in the considered devices (for more information see 
section 2.3). 
Several standards agree that the vibration endured by an electronic device for 
automotive application is a wideband stimulus with a maximum frequency of 
up to 2 kHz. The frequency range is strictly related to the exact deployment of 
the DUT.  
The most significant standards taken into account during the development of 
the proposed test plan are the following:  

• ISO 16750-3 published by the International Organization of 
Standardization in 2003 [234]. 

• IEC 60068-2-64 published by the International Electrotechnical 
Commission in 2008 [230]. 

• ETSI EN 300 019-2-5 published by the European Telecommunications 
Standards Institute in  2002 [233]. 

• AEC-Q100-rev.H published by the Automotive Electronics Council in 
2014 [237]. 

 
 

TABLE VI.IV summarizes the normative references used to identify the 
frequency range of the random vibration concerning installation type.  
Most of the standards agree that devices mounted on-road vehicles are 
subjected to random vibration up to 2 kHz. This is why the proposed test plan 
includes a random vibration over the frequency range from 200 Hz to 2 kHz, 
although the ODR of the sensor is 119 Hz. 
Additional information regarding the test are illustrated in the following: 

• Test duration: 10 minutes. 
• Axes involved: X, Y, and Z. 
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• Repetition: 5 consecutive tests for each SC of each axis. 
• The same fixture must be used for all the test run along the same 

axes. 
• For the sake of repeatability, several test repetitions must be carried 

out without dismounting and remounting the DUTs to the vibration 
table (so the position stays the same) to minimize the mounting 
uncertainties. This is fundamental to ensure that any mechanical 
load due to the fixture of the DUTs to the shaker remains the same 
in all the repeated tests. 

 
TABLE VI.IV 

NORMATIVE REFERENCE FOR RANDOM VIBRATION TESTING: EQUIPMENT INSTALLED ON A 

GROUND VEHICLES. 

TYPE OF INSTALLATION 
MAXIMUM 

FREQUENCY 
REFERENCE 

STANDARD 

Equipment mounted directly on the 
engine 

up to 2 kHz ISO 16750-3 

Gearbox mounted equipment up to 2 kHz ISO 16750-3 

Equipment mounted on sprung 
masses (vehicle body) 

up to 1 kHz ISO 16750-3 

Equipment mounted on unsprung 
masses (wheel, wheel suspension) 

up to 2 kHz ISO 16750-3 

Automotive application: Integrity 
test for semiconductor devised 

up to 2 kHz AEC-Q100 

Automobile, chassis-mounted. up to 1 kHz IEC 60068-2-64 

Automobile, engine compartment, 
attached to the body or the radiator. 

up to 0.2 kHz IEC 60068-2-64 

Telecommunication equipment 
mounted on a ground vehicle 

up to 0.5 kHz ETSI EN 300 019-2-5 

Equipment mounted directly on the 
engine 

up to 2 kHz ISO 16750-3 

 
TABLE VI.V summarizes the severity of the proposed test plan highlighting the 
four different SCs. Note that the random vibration is kept unchanged for all 
service conditions. 
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TABLE VI.V 
SUMMARY OF THE DEVELOPED TEST PLAN: FOUR SERVICE CONDITIONS WITH DIFFERENT 

SEVERITIES HAVE BEEN PROPOSED. 

SERVICE 

CONDITION 

SINUSOIDAL VIBRATION RANDOM VIBRATION 

Frequency 
Peak 

vibration 
Frequency 

range 
ASD  

[g2 / Hz] 
SC 1 5 Hz 1 g 200 – 2000 Hz 0.01 
SC 2 10 Hz 1 g 200 – 2000 Hz 0.01 
SC 3 15 Hz 1 g 200 – 2000 Hz 0.01 

SC 4 

Sweep from 
5 Hz to 20 Hz 

 
Sweep rate 1 

oct/min 

1 g 200 – 2000 Hz 0.01 

 
To ensure repeatability of the results, every test repetitions of each SC of the 
same axes have been performed using the same fixture, without dismounting 
the setup between one acquisition and the following one. 
According to the test plan and taking the Service Condition SC 2 as an example, 
Fig. 6.8 illustrates the acceleration spectral density generated by the shaker 
over the considered frequency range measured by a suitable accelerometer. It is 
visible the 10 Hz sinusoid and the wideband white noise over one order of 
magnitude lower than the sinusoids.  
 

 
Fig. 6.8. Test Condition SC2: Vibration profile measured during the test. 

Furthermore, since Fig. 6.8 illustrates the actual vibration endured during the 
test (i.e. it is not a theoretical trend), it is also present an additive noise over 
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the frequency domain not covered by the sinusoids and the random vibration 
included in the profile (i.e., for frequencies lower than 10 Hz and frequencies 
from 10 Hz to 2 kHz). Despite this, the latter noise is over two orders of 
magnitude lower than the gaussian white noise, and thus it could be neglected. 
 
 

6.5.3.  Proposed test plan: thermal stress profiles 
This work proposes a non-standard procedure specifically tuned to reflect the 
operative condition of the MEMS inertial module, taking into account devices 
installed on cars, motorcycles, or on low-cost commercial UAVs. The proposed 
thermal test plan is composed of three kinds of tests: a thermal cycling test in 
a limited range with humidity exposure, a temperature cycling test in an 
extended range, and a temperature step test.  
 
 

6.5.3.1. Thermal cycling test with humidity exposure 
The aim of the test is the performance characterization of commercial IMU 
under temperature and humidity combined stresses. Both reliability and 
metrological performances can be investigated using an in-depth analysis of the 
raw data acquired during the test. 
Different environmental testing standards with a generic field of application 
have been consulted in order to customize the proposed test plan for MEMS-
based IMU, as follow:  

• MIL-STD-810G [231] published by the U.S. Department of Defense in 
2008 as generic guidelines for test procedures.  

• IEC 60068-2-14 [241] published by the International Electrotechnical 
commission in 2011. The section 2-14 refers to the change of 
temperature during test.  

• IEC 60068-2-38 [242] published by the International Electrotechnical 
commission in 2021. The section 2-38 refers to combined temperature 
and humidity cyclic test.  

• JEDEC JESD22 A104E [243] published by “Jedec solid state 
technology association” in 2014. It proposes testing procedures for 
microelectronics devices focusing on thermal cycling test. 

 
The proposed test plan is based on a cold/hot thermal cycling test repeated a 
few times, with humidity stress exposure at the maximum temperature. The 
severity of the proposed test profile is the following: 

• Cold temperature: 𝑇𝑇𝐶𝐶  =  −10 °𝐶𝐶 
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• Hot temperature: 𝑇𝑇𝐻𝐻  =  50 °𝐶𝐶 
• Cold temperature exposition time: 𝑡𝑡𝑒𝑒𝑒𝑒𝑝𝑝  =  30 𝑚𝑚𝑚𝑚𝑚𝑚 @ 𝑇𝑇𝐶𝐶 
• Hot temperature exposition time: 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒  =  30 𝑚𝑚𝑚𝑚𝑚𝑚 @ 𝑇𝑇𝐻𝐻 
• Approximate temperature variation rate between 𝑇𝑇𝐶𝐶 and 𝑇𝑇𝐻𝐻 and vice 

versa: ∆𝑇𝑇 ≅ 2 °𝐶𝐶/𝑚𝑚𝑚𝑚𝑚𝑚 
• Estimated cycle duration: 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  2 ℎ 
• Number of consecutive cycle: 𝑁𝑁 =  2 
• Estimated test duration: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  =  4 ℎ 
• Maximum relative humidity: 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  =  95 % 
• Humidity control: Activated only during hot temperature exposition 

time to ensure the 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 humidity level. 
 
The detailed explanation of the proposed test plan is illustrated in Fig. 6.9, 
where the different phases of the test are highlighted. 
 

 
Fig. 6.9. Proposed combined temperature and humidity cycling test profile. 

 
For the sake of reproducibility, different test repetitions should be run to 
acquire repeated data. The test profile implemented in each repetition is the 
same one illustrated in Fig. 6.9.  
 
 

6.5.3.2. Temperature cycling test 
This test set up was designed comparing different temperature test profiles from 
ISO 16750-4 [244], IEC 60068-2-14 [241], MIL-STD 810G [231], and JEDEC 
JESD22 A104E [243]. The severity of the test is the following: 

• Cold temperature TA = −20°C 

0 20 40 60 80 100 120 140 160 180 200 220 240
Test dura�on [min] min

-20

-10

0

10

20

30

40

50

Te
m

pe
ra

tu
re

 [°
C]

30 min exposi�on
�me at TC=-10 °C

"Before zone" 
at ambient temperature

"A�er zone" 
at ambient temperature

Linear inrease 
at 2 °C/min

Linear decrease
at 2 °C/min

CYCLE N° 1 CYCLE N° 2

30 min exposi�on
�me at TH = 50 °C

and RHmax = 95%



ENVIRONMENTAL STRESS SCREENING 

168 
 

• Hot temperature TB = 60°C 
• Exposition time t1 = 1h 
• Number of cycles: 4 
• Raised time: 1h from TA to TB (approximately speed: 2°C/min); 
• Lowered time: 2h from TB to TA (approximately speed: 1°C/min). 

 
The developed test profile is illustrated in Fig. 6.10, and it is based on the 
repetition of four consecutive steps:  

i. Exposition at temperature TA for t1. 
ii. Temperature increases from TA to TB at a specified rate.  
iii. Exposition at temperature TB for t1. 
iv. Temperature decreases from TB to TA at a specified rate. 

 

 
Fig. 6.10. Proposed temperature cycling test profile. 

 
 

6.5.3.3. Temperature step-test 
The proposed test plan is used to investigate the IMU's performance under test 
at different temperatures inside the guaranteed operability range. The test plan 
is based on the so-called temperature step stress test described in the 
international standards IEST-RP-PR-003.1 (2012) [245] regarding the 
Accelerated Life Test. The IMU under test has been developed as part of a 
fault diagnosis system to be implemented in a motorcycle. Therefore, the 
automotive field of the application must be considered during the design of the 
test profile. The following international standards have been used as guidelines 
to customize the proposed profile according to the automotive stress context: 
ISO 16750-4 (2010) [244] regarding the environmental testing for electrical and 
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electronic equipment integrated into road vehicles; AEC - Q100 - Rev-H (2014) 
[237] regarding the test qualification for an integrated circuit in the automotive 
field; ETSI EN 300 019-2-5 (2002) [233] about the environmental tests of 
telecommunication systems installed in ground vehicles.  
The profile's main steps are summarized in TABLE VI.VI, highlighting the 
temperature task, the temperature interval, and each step's time duration.  The 
proposed profile is a temperature step stress test, as the one illustrated in Fig. 
6.11. It is characterized by a 5 °C step performed in 5 minutes followed by 15 
minutes of exposition time at a constant temperature. In compliance with the 
components' datasheet and the automotive field's stress context, the proposed 
profile covers the range from -20 °C up to 60 °C.  
   

TABLE VI.VI 
TEMPERATURE STEPS OF THE PROPOSED TEST PLAN HIGHLIGHTING TASK, TEMPERATURE 

INTERVAL, AND TIME DURATION OF EACH STEP. 

 
Temperature 

Task 
Temperature 

Time 
From To 

STEP 0 
Lowered at 

maximum rate. 
20 °C -20 °C - 

STEP 1 Fixed exposition -20 °C 15 minutes 

STEP 2 
Raised at the 

maximum rate. 
-20 °C -15 °C 5 minutes 

STEP 3 Fixed exposition -15 °C 15 minutes 

STEP 4 
Raised at the 

maximum rate. 
-15 °C -10 °C 5 minutes 

STEP 5 Fixed exposition -10 °C 15 minutes 

STEP 6 
Raised at the 

maximum rate. 
-10 °C -5 °C 5 minutes 

… … … … … 

STEP 31 Fixed exposition 55 °C 15 minutes 

STEP 32 
Raised at the 

maximum rate. 
55 °C 60 °C 5 minutes 

STEP 33 Fixed exposition 60 °C 15 minutes 

STEP 34 
Lowered at 

maximum rate. 
60 °C 20 °C - 
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Fig. 6.11. Proposed temperature step stress test. 

  
 

6.5.4.  Measurement setup for vibration test procedures 
In order to implement the proposed vibration test plan, a suitable testbed has 
to be developed. It has to be designed for assuring three main goals: 

1) To host the DUTs and realize the vibration profiles previously defined.  
2) To allow testing the performances only of the DUT by avoiding the 

influence of any auxiliary devices adopted in the test set-up. 
3) To ensure that the DUTs are mounted in such a manner to simulate 

classical automotive or UAV applications or expected vibration during 
packaged shipment. 

 
Moreover, during the vibration test the device has to be rigidly fastened on the 
vibration platform and the leads adequately secured to avoid excessive lead 
resonance.  
The test method is based primarily on an electrodynamic or a servo-hydraulic 
vibration generator (also known as shaker) with an associated computer-based 
control system used as a vibration testing system. The experimental tests were 
fulfilled using two different shakers with different performances:  

• Sentek M2232A used for X and Y axes (up to 22 kN force)  
• LDS V730 DPA10K used for Z axis (up to 9.8 kN force) 

 
TABLE VI.VII illustrates the main characteristics of the shakers. It is very 
important to note that the severities of the test proposed in the previous 
paragraphs are within the specification of both shakers.   
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TABLE VI.VII 
MAIN FEATURES OF THE TWO ADOPTED SHAKERS. 

Parameter Sentek M2232A LDS V730DPA10K 

Force 22 𝑘𝑘𝑘𝑘 9.8 𝑘𝑘𝑘𝑘 

Orientation Horizontal Vertical 

Displacement Limit Peak ± 25.5 𝑚𝑚𝑚𝑚 ± 25.4 𝑚𝑚𝑚𝑚 

Max Velocity Peak 2 𝑚𝑚/𝑠𝑠 2 𝑚𝑚/𝑠𝑠 

Max Acceleration Peak 99.93 𝑔𝑔 75 𝑔𝑔 

Drive Frequency range 2 𝐻𝐻𝐻𝐻 𝑡𝑡𝑡𝑡 2000 𝐻𝐻𝐻𝐻 2 𝐻𝐻𝐻𝐻 𝑡𝑡𝑡𝑡 2000 𝐻𝐻𝐻𝐻 

 
Both shakers are connected to the same controller Dactron laser LS2000, which 
is an 8-channels controller with the possibility to switch between the two 
different actuators.  
The test set-up includes two identical 3056B2 General Purpose Piezoelectric 
Accelerometers by Dytran Instruments Inc. used as input channels for the 
vibration controller. TABLE VI.VIII summarizes the main performances of these 
sensors. 
 

TABLE VI.VIII 
MAIN FEATURES OF THE PIEZOELECTRIC ACCELEROMETERS. 

Parameter 3056B2 Accelerometers by Dytran 

Technology Piezoelectric 

Sensitivity, ±5% 100mV/g 

Frequency range 1Hz to 10kHz 

Electrical noise 0.0004grms 

Linearity ±1% F.S. 

Max vibration ±400g 

 
The controller requires at least two inputs, one called “Control Accelerometer” 
located on one of the DUTs and the other one called “Monitor Accelerometer”, 
located on the table of the shaker.  Using this configuration, it is possible to 
control the amplitude of the vibration produced by the shaker directly on the 
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DUTs allowing to apply on them the vibration profile with a high level of 
accuracy.   
For the sake of repeatability, the "control accelerometer" is directly connected 
to the computer-based control system which uses a feedback to actuate the 
vibration shaker based on the response of the control accelerometer. Fig. 6.12 
illustrates the complete testbed developed in this work, including both the 
vibration testing system and the acquisition system required to store the data 
monitored by the IMUs (as described in section 2.3.). 
 

 
Fig. 6.12. Complete testbed developed for this project, including the vibration testing 

system, the device under test, and the acquisition system. 

 
The fixing of the device to the shaker represents one of the most challenging 
steps of the vibration test, it must propagate the vibration equally to all the 
sections of the device under test without absorb it. Moreover, it must be safe, 
and it must have the resonance mode out of the profile frequency range. 
An example of a fixture used for the Z-axis on the LDS V730 DPA10K shaker 
is illustrated in Fig. 6.13. while a picture of the complete measurement setup 
in case of Z-axis is illustrated in Fig. 6.14. 
As for the X-axis and Y-axis, they were separately excited by suitably arranging 
the DUTs according to the shaker reference system (shaker Sentek M2232A is 
involved).  
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Fig. 6.13. Picture of the three DUTs mounted on the vibration generator during the 

test (Z-axis is involved). 

 

 
Fig. 6.14. Picture of the complete measurement setup in case of vibration test 

procedures (Z-axis is involved). 
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In particular, as for the X-axis, all the DUTs have been oriented parallel to the 
direction of the vibration stress provided by the shaker, whereas, as for the Y-
axis, all the DUTs have been oriented perpendicular to the direction of the 
vibration stress provided by the shaker. In this way, the axis excited by the 
shaker is different with respect to the previous case even if the shaker works 
toward the same direction.  
A picture of the complete measurement setup used for vibration test procedures 
in case of Y-axis is illustrated in Fig. 6.15 (shaker Sentek M2232A is involved). 
The red-box labels highlight the different equipment used in the proposed 
measurement setup.  
 

 
Fig. 6.15. Picture of the complete measurement setup in case of vibration test 

procedures (Y-axis is involved). 

 
Looking at the previous figures, it is fundamental to note that only the IMUs 
are subjected to the vibration stress, while the Nucleo-64 boards are not tested 
in order to allow the characterization of the IMUs and the filtering algorithms 
avoiding the influence of external devices. 
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6.5.5.  Preliminary characterization of the vibration testbed   
Before the implementation of the proposed vibration profile, it is extremely 
important to run a preliminary test in order to investigate the presence or not 
of spurious effects such as self-resonance of the IMU board or of the fixture and 
anything else that may experience vibrations during the test. Moreover, it is 
fundamental to ensure the system withstands force and provides an adequate 
level of transmission and resonance, thus bringing to reliable results. To do 
that, it is important to ensure the stiffness of the fixture because the natural 
frequency of the systems depends upon the stiffness and mass present.  
A useful parameter to investigate such effects is the testbed's transmissibility, 
which means the ratio of output acceleration to input acceleration. As 
previously described in section 6.5.4, the proposed measurement setup 
integrates a “monitor accelerometer” that measures the amount of vibration 
provided by the shaker (i.e., input acceleration) and a “control accelerometer” 
that measures the amount of vibration experienced by the DUTs (i.e., output 
accelerometer). Therefore, the transmissibility illustrated in Fig. 6.16 has been 
evaluated as the ratio between the two accelerometers' output during a 
sinusoidal test sweep from 20 Hz to 2000 Hz. The transmissibility is 
approximately 1 from 20 Hz to 1000 Hz proving that no spurious phenomena 
are present in this range. Quite the opposite, self-resonance of the fixture is 
experienced at a frequency higher than 1000 Hz. Consequently, it is important 
to limit the following analysis to the frequency range lower than 1000 Hz. 
 

 
Fig. 6.16. Transmissibility of the proposed test setup evaluated as the ratio between 

control accelerometer output and monitor accelerometer output. 
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6.5.6.  Measurement setup for thermal test procedures   
The experimental setup used to characterize the IMUs under thermal stress is 
illustrated in Fig. 6.17. A climatic chamber able to regulate both temperature 
and humidity is used to carry out the proposed test plan.  
The test was carried out using the climatic chamber UY1200C by “Angelantoni 
group” shown in Fig. 6.18.  
 

 
Fig. 6.17. Experimental setup proposed to evaluate the performances of IMUs under 

thermal stress. 

 

 
Fig. 6.18. Climatic chamber used for thermal test procedures. 
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The main features of the chamber are the following: 
• Control: Temperature and Humidity. 
• Volume: 1.2 𝑚𝑚3 
• Temperature range: [−40 ÷ 180] °𝐶𝐶 
• Relative humidity: up to 95% 
• Maximum speed in optimal condition: 2 °/𝑚𝑚𝑚𝑚𝑚𝑚  

 
The temperature of the devices is monitored using a set of k-type thermocouples 
and PT100 resistance temperature detector (RTD) connected to a datalogger. 
The adopted datalogger is the LR8450 Memory HiLogger by HIOKI Corporate. 
The selected instrument is a 1 ms sampling portable datalogger expandable up 
to 120 channels. In the specific case, a U8551 universal input unit for voltage, 
temperature and humidity measurements has been used. A picture of the 
datalogger equipped with two input units is illustrated in Fig. 6.19. 
 

 
Fig. 6.19. LR8450 datalogger used to monitor the temperature of the devices 

during thermal tests. 

 
 
 

6.6.  Case study A: Analysis of raw measurement 
data 
This section reports the experimental results achieved during the 
implementation of both vibration and temperature test plans. A set of three 
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devices, namely DUT#1 - DUT#2 - DUT#3 have been subjected to all the 
test procedures described in section 6.5.2. and section 6.5.3. 
For every test procedure, the discussion of the achieved results is designed to 
allow two kinds of analyses: 

• Type 1 - Reliability Analysis: To compare the general operating of each 
sensor (accelerometer and gyroscope) of the DUTs before and after the 
application of the vibration profile, in order to verify the capability of 
the DUT sensors to keep the expected performance once the stimulus, 
due to applied operating conditions, stops.  

• Type 2 - Metrological characterization: To evaluate the DUT sensors 
operating under the application of the considered stimulus in order to 
quantify some performance index. 

 
 

6.6.1.  Random vibration test  
This section reports the results achieved during the application of the random 
vibration test as in [207], [214].  
In particular, Fig. 6.20 and Fig. 6.21 report the evolution of RMS values 
measured by the accelerometers and gyroscopes of DUT#1 on X-axis and Y-
axis, when the shaker has actuated the vibration only along the Z-axis. Both 
figures clearly highlight the three different zones of operation as in Section 6.5.1. 
In particular: (i) S1 corresponds to the “Before Test” zone in which no vibration 
is applied, (ii) S2 corresponds to the “Test zone”, and (iii) S3 corresponds to the 
“After Test”phase achieved after the vibration has been stopped.  
 

 
Fig. 6.20. Device #2: Accelerometer output during random vibration test (the 

vibration is applied on the Z-axis). 
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Fig. 6.21. Device #2: Gyroscope output during random vibration test (the vibration 

is applied on the Z-axis). 

 
The most striking result to emerge from Fig. 6.20 and Fig. 6.21 is that both 
accelerometer and gyroscope show a sensitivity on the X-axis and Y-axis even 
if the vibration is actuated on the Z-axis. Indeed, in zone S2, the RMS values 
measured by the sensors are significantly different from ones observed before 
and after the test. Similar trends have been observed for DUT #2 and DUT 
#3.   
As for Type 1 analysis, TABLE VI.IX summarizes the results for all DUTs and 
for all the three axes by showing the mean value (µ) and standard deviation 
(σ) of RMS values observed in S1 and S3 in case of the accelerometer sensors. 
From the values observed in TABLE VI.IX regarding the accelerometer sensors, 
the following main considerations can be drawn: 

• Focusing the attention on the results achieved for the accelerometer 
sensor of DUT #1 (see the first row of TABLE VI.IX), they show, for 
each axis (x,y,z), the full compatibility (from a measurement point of 
view) of the results achieved in S1 and S3. This outcome means that the 
application of the considered vibration stimulus does not affect neither 
the accelerometer general operation nor the sensor calibration. 

• As for DUT #2 and DUT #3, although the measured values of µ and 
σ are in some cases different from the case of DUT #1, the comparisons 
between the behaviors shown in S1 and S3 confirm the full compatibility 
of the related results for each axis.  

 
Similarly to the previous case, the outputs of the gyroscope sensors are shown 
in TABLE VI.X in terms of mean value and standard deviation. 
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TABLE VI.IX 
TYPE 1 ANALYSIS FOR THE THREE AXES OF THE ACCELEROMETER SENSORS DURING 

RANDOM VIBRATION TEST. 

D
U

T
 X-Axis 

S1 [g] 
X-Axis 
S3 [g] 

Y-Axis 
S1 [g] 

Y-Axis 
S3 [g] 

Z-Axis 
S1 [g] 

Z-Axis 
S3 [g] 

µ σ µ σ µ σ µ σ µ σ µ σ 

#1 0.010 0.002 0.010 0.002 0.018 0.017 0.017 0.010 0.002 0.001 0.002 0.002 

#2 0.003 0.001 0.003 0.001 0.003 0.019 0.003 0.008 -0.011 0.002 -0.011 0.002 

#3 -0.018 0.002 -0.018 0.002 -0.019 0.019 -0.019 0.006 -0.023 0.002 -0.023 0.002 

 
TABLE VI.X 

TYPE 1 ANALYSIS FOR THE THREE AXES OF THE GYROSCOPE SENSORS DURING RANDOM 

VIBRATION TEST. 

D
U

T
 X-Axis 

S1 [°/s] 
X-Axis 
S3 [°/s] 

Y-Axis 
S1 [°/s] 

Y-Axis 
S3 [°/s] 

Z-Axis 
S1 [°/s] 

Z-Axis 
S3 [°/s] 

µ σ µ σ µ σ µ σ µ σ µ σ 

#1 0.004 0.093 -0.006 0.088 0.002 0.100 0.011 0.100 -0.001 0.095 -0.028 0.099 

#2 -0.021 0.126 -0.005 0.118 -0.021 0.120 -0.002 0.120 0.009 0.126 -0.077 0.131 

#3 0.018 0.115 0.036 0.116 0.033 0.920 -0.062 1.300 -0.007 0.900 0.100 1.140 

 
Focusing the attention on the results achieved for the gyroscope sensors, 
different values of µ were observed for S1 and S3 regardless the axis and the 
considered device. However, the observed values of σ cover these differences, 
which means that, once again, the application of the considered vibration 
stimulus does not affect neither the gyroscope general operation nor the 
calibration of the considered sensors. 
As for the Type 2 analysis, during the application of the vibration profile the 
observed RMS values increase coherently with the input stimulus provided by 
the shaker as expected. However, even if the vibration is actuated only on one 
axis, a kind of sensitivity is observed also on the axis not excited during this 
test. In this work, the following parameters have been proposed to quantify 
such a generally unwanted sensitivity: 
  

 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 = �20 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑆𝑆2
𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑆𝑆2

� (6.2) 

 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 = �20 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑆𝑆2
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑆𝑆1

� (6.3) 
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Where, i denotes the not excited (accelerometer or gyroscope) axis, j denotes 
the excited accelerometer axis, RMSi,S2 and RMSj,S2 the RMS values estimated 
in S2 for the i and j axes, and RMSi,S1 the RMS value estimated in S1 for the i 
axis. 
As a consequence, RRi,j describes the rejection ratio of the i axis when the 
excitation is applied on the j axis whereas, SRi,j provides the ratio between the 
spurious response of the DUT on the considered axis with respect to the 
expected value (i.e. the quite zone value). Of course, RRi,j should be as high as 
possible (∞ in the ideal case) whereas SRi,j should be as low as possible (0 in 
the ideal case). 
TABLE VI.XI report the values of RRi,j for all the accelerometer sensors of the 
three DUTs. 
 

TABLE VI.XI 
REJECTION RATIOS FOR THE THREE AXES OF THE ACCELEROMETER SENSORS DURING 

RANDOM VIBRATION TEST. 

DUT 
EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

RRY,X [dB] RRZ,X [dB] RRX,Y [dB] RRZ,Y [dB] RRX,Z [dB] RRY,Z [dB] 

#1 36.4 41.8 33.5 35.9 28.4 25.5 

#2 33.2 35.7 40.5 40.2 29.7 25.5 

#3 37.1 43.9 42.5 30.7 24.9 27.7 

 
From the analysis of TABLE VI.XI, some considerations can be drawn: 

• RRi,j  falls in the range [25 dB ÷ 45 dB] regardless the considered DUT 
and the considered couple of axes (i and j); 

• For each DUT, the worst performance (lowest values of rejection ratio) 
is observed for RRx,z and RRy,z ; 

• DUT#1 and DUT#3 show the best rejection ratios in the case of RRz,x, 
whereas DUT#2 shows the best performance in the case of RRx,y.   

 
The estimated spurious response ratios SRi,j are illustrated in TABLE VI.XII. 
From the analysis of the table the following considerations can be drawn: 

• SRi,j falls in the range [8 dB ÷ 40 dB] regardless the considered DUT 
and the considered couple of axes (i and j). It means that the Spurious 
response ratios never approaches the zero value (ideal case). 

• The worst cases are observed for the excitation on the z-axis (i.e. SRx,z 
and SRy,z), coherently also with the results shown in TABLE VI.XI. 
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TABLE VI.XII 
SPURIOUS RESPONSE RATIOS FOR THE THREE AXES OF THE ACCELEROMETER SENSORS 

DURING RANDOM VIBRATION TEST. 

DUT 
EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

SRY,X [dB] SRZ,X [dB] SRX,Y [dB] SRZ,Y [dB] SRX,Z [dB] SRY,Z [dB] 

#1 24.6 11.0 20.9 16.8 32.6 36.5 

#2 19.9 15.7 23.3 11.8 23.5 31.5 

#3 15.9 8.2 10.1 20.5 26.4 24.9 

 
As for the gyroscope sensors, the meaning of RRi,j decays because the shaker 
does not apply any angular velocity. As a consequence, only the SRi,j parameter 
has been evaluated for the three gyroscopes under test. In this case, SRi,j  allows 
comparing the working of the gyroscope between S1 and S2 regardless the 
excitation axis. TABLE VI.XIII reports the achieved results for each excited 
axis. From the analysis of such results, the following considerations can be 
drawn: 
• SRi,j falls in the range [9 dB ÷ 37 dB] whatever be the DUT and the 

considered couple of axes (i and j). Therefore, also in this case the 
Spurious response ratios never approaches the zero value (ideal case). 

• Once again, the worst cases are observed for the excitation on the z-axis 
(i.e. SRx,z and SRy,z), coherently also with the results shown in TABLE 

VI.XI and TABLE VI.XII.  
 

TABLE VI.XIII 
SPURIOUS RESPONSE RATIOS FOR THE THREE AXES OF THE GYROSCOPE SENSORS DURING 

RANDOM VIBRATION TEST. 

DUT 
EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

SRY,X [dB] SRZ,X [dB] SRX,Y [dB] SRZ,Y [dB] SRX,Z [dB] SRY,Z [dB] 

#1 21.9 22.1 18.4 17.2 19.8 15.3 

#2 11.8 11.2 9.9 17.0 16.9 15.9 

#3 15.6 14.7 14.5 34.4 16.3 17.5 

 
In summary, with reference to the Type 1 Analysis, the achieved results have 
shown that the proposed random vibration test does not affect the general 
operating and the calibration of both accelerometer and gyroscope sensors 
because, once the external stimuli have been stopped, the sensors recover its 
normal operating.  
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As for the Type 2 Analysis, some significant effects have been highlighted 
during the application of the external stimulus. In particular, thanks to the 
definition and the analysis of suitable rejection coefficients it has been 
highlighted how both the accelerometer and gyroscope sensors exhibit a 
significant sensitivity also on the not excited axes.  
 
 

6.6.2.  Sinusoidal vibration test  
As described in section 6.5.2.2. the sinusoidal vibration test requires to sweep 
the frequency from 20 Hz up to 2 kHz by continuously applying a sinusoidal 
stimulus for all the duration of the test. In addition, for each frequency sweep, 
three values of the actuated vibration magnitude, i.e. 2 g, 4 g and 8 g, 
respectively, were applied. 
Also in this case, it is possible to identify three different zones of operations S1, 
S2, and S3. Thus suggesting to consider the previously defined two kinds of 
analyses (i.e. Type 1 and Type 2) to investigate the effects of the tests on the 
considered Inertial Measurement Units as in [126], [214]. 
As for Type 1 analysis, TABLE VI.XIV and TABLE VI.XV summarize the 
achieved results for all DUTs and for all sensors axes by showing the means (µ) 
and standard deviations (σ) of RMS values observed in S1 and S3 in case of 
accelerometer and gyroscope respectively. From the values observed in both 
tables (8 g-stimulus magnitude is involved), similar considerations previously 
reported for the Random Vibration Test can be drawn. In particular, by 
comparing the values observed for µ and σ, in S1 and S3, the application of the 
Sinusoidal Vibration Test does not affect neither the general operation nor the 
calibration of both accelerometer and gyroscope sensors. This consideration is 
valid regardless the considered axis and the DUTs involved. Similar results 
have been obtained also during the 2 g-stimulus and 4 g-stimulus test.    
 

TABLE VI.XIV 
TYPE 1 ANALYSIS FOR THE THREE AXES OF THE ACCELEROMETER SENSORS DURING 

SINUSOIDAL VIBRATION TEST. 

D
U

T
 X-Axis 

S1 [g] 
X-Axis 
S3 [g] 

Y-Axis 
S1 [g] 

Y-Axis 
S3 [g] 

Z-Axis 
S1 [g] 

Z-Axis 
S3 [g] 

µ σ µ σ µ σ µ σ µ σ µ σ 

#1 0.010 0.002 0.010 0.002 -0.003 0.001 -0.003 0.001 -0.005 0.022 -0.006 0.011 

#2 0.002 0.005 0.002 0.003 0.006 0.002 0.006 0.002 -0.022 0.026 -0.023 0.010 

#3 -0.020 0.002 -0.020 0.002 0.033 0.002 0.034 0.002 0.014 0.031 0.012 0.007 
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TABLE VI.XV 
TYPE 1 ANALYSIS FOR THE THREE AXES OF THE GYROSCOPE SENSORS DURING SINUSOIDAL 

VIBRATION TEST. 

D
U

T
 X-Axis 

S1 [°/s] 
X-Axis 
S3 [°/s] 

Y-Axis 
S1 [°/s] 

Y-Axis 
S3 [°/s] 

Z-Axis 
S1 [°/s] 

Z-Axis 
S3 [°/s] 

µ σ µ σ µ σ µ σ µ σ µ σ 

#1 0.011 0.094 -0.021 0.094 -0.005 0.114 0.017 0.116 0.003 0.091 0.058 0.089 

#2 0.017 0.106 -0.016 0.106 0.001 0.110 -0.010 0.106 -0.002 0.096 0.037 0.104 

#3 -0.074 0.961 -0.159 0.675 -0.002 0.105 -0.298 0.100 0.000 0.107 -0.069 0.109 

 
As for the Type 2 analysis, also in this case, during the application of the 
vibration profile the observed RMS values increases coherently with the input 
stimulus provided by the shaker. Indeed, as an example, Fig. 6.22 reports the 
evolution of the Root Mean Square values measured by the accelerometer of 
DUT #1 on y-axis, when the shaker has actuated a sinusoidal vibration with a 
stimulus-magnitude equal to 2 g along the y-axis. Note that the 2 g value 
provided by the shaker refers to a peak magnitude, while Fig. 6.22 (as well as 
the following figures) shows the RMS value acquired by the sensor.   
 

 
Fig. 6.22. DUT #1: output of the accelerometer sensor during sinusoidal vibration 

applied on the y-axis.  
 
As it happened in the case of the random vibration test, also in the case of the 
sinusoidal vibration test, a kind of sensitivity has been observed on the axis not 
excited during the test and here not reported for a sake of brevity. Moreover, 
since the sinusoidal vibration test involves a frequency sweep, the observed 
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RMS values coming from the accelerometer and gyroscope sensors can be useful 
in order to analyze the frequency response of the systems. Fig. 6.23 reports the 
accelerometer sensor output of DUT #1, for the considered frequency sweeps 
actuated on the y-axis together with the corresponding applied profile stimulus. 
Note that the trends are reported as RMS values. 
 

 
Fig. 6.23. DUT #1: accelerometer output versus frequency with a sinusoidal vibration 

applied on the y-axis. 

 
Fig. 6.23 clearly shows that the accelerometer sensor has a low-pass filter 
behavior. This is due to the presence of the anti-aliasing filter, automatically 
inserted by the DUT once selected the sampling rate. In particular, since a 
sampling rate equal to 100 Hz has been selected, the 3 dB cut-off frequency of 
the anti-aliasing filter is nominally placed at 50 Hz and after such a frequency 
the accelerometer output generally decreases.  
In more detail, focusing the attention on the case of the 4 g-stimulus magnitude 
(see Fig. 6.24), it is possible to verify the non-ideal response of the sensor. In 
fact, the sensor output is characterized by the presence of resonance zones 
highlighted by red circles in the figure in which very high variations of the gain 
are observable. The main criticality of such response is that it could make not 
forecastable the system frequency response. 
Indeed, considering the transfer function shown in Fig. 6.25, we observed that 
even for frequencies greater than the cut-off (i.e. 50 Hz), the gain of the system 
reaches (or in some case overcomes) the one evaluated below the cut-off 
frequency, thus overcoming the expected gain (black dashed line) inside these 
zones. This behavior appears around a multiple of the frequency 60 Hz and 
could be imputable to unwanted mechanical resonance.  
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Fig. 6.24. Magnification of DUT #1 accelerometer output for the 4 g-stimulus 

magnitude applied on the y-axis. 

 
Fig. 6.25. Transfer function of the DUT #1 accelerometer output for the 4 g-stimulus 

magnitude applied on the y-axis. 

 
To quantify the maximum deviation between the expected gain and the real 
one the Gain Deviation (𝐺𝐺𝐺𝐺𝑖𝑖) on the i-th axis has been defined and analysed: 
 

 𝐺𝐺𝐺𝐺𝑖𝑖 = 20 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑀𝑀𝐺𝐺

𝐸𝐸𝐺𝐺
 (6.4) 

 
Where, 𝐸𝐸𝐺𝐺 and 𝑀𝑀𝐺𝐺 are the expected gain and the maximum measured gain, 
respectively, inside the first frequency resonance zone, on the i-th axis. 
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TABLE VI.XVI reports the GDi values for all considered DUTs, excitation axes, 
stimulus magnitude, and accelerometer sensors. Analyzing the table, the 
following considerations can be highlighted: 
• The values of GDi fall in the range [2.0 dB, 4.0 dB]; 
• The stimulus magnitude does not significantly affect the value of GD 

whatever be the excited axis and the DUT.    
 

TABLE VI.XVI 
GDI OF THE THREE AXES OF THE ACCELEROMETERS DURING SINUSOIDAL VIBRATION TEST. 

DUT GDx [dB] GDy [dB] GDz [dB] 

2g-stimulus magnitude 

#1 2.0 2.7 3.0 

#2 2.9 2.7 2.5 

#3 2.8 3.1 2.2 

4g-stimulus magnitude 

#1 3.5 3.2 2.9 

#2 3.4 2.8 2.8 

#3 4.0 3.0 2.5 

8g-stimulus magnitude 

#1 2.9 2.1 2.5 

#2 2.5 2.6 3.0 

#3 3.2 2.9 2.4 

 
As for the gyroscope sensors, Fig. 6.26 reports the output acquired by DUT #1 
on the three axes when the 4 g-magnitude sinusoidal test has been applied. As 
it is possible to see in the figure, there are unexpected angular rotations on all 
the three axes over the considered frequency sweep range, and once again, some 
resonance zones can be identified.  
To evaluate such effect, the proposed figure of merit, namely Spurious Gain 
(hereinafter SGi), is given by the ratio between the maximum RMS value 
evaluated over the whole frequency sweep range (i.e. S2) and RMS value 
evaluated over the quite zone (i.e. S1), for each axis, as defined in the following: 
  

 𝑆𝑆𝑆𝑆𝑖𝑖 = 20 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓∊[𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚]
𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆2

𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆1
 (6.5) 
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Fig. 6.26. DUT #1 gyroscope output (on all axes) versus frequency with a 4 g-

magnitude sinusoidal vibration applied on the y-axis accelerometer sensor. 

 
TABLE VI.XVII reports the value observed for 𝑆𝑆𝑆𝑆𝑖𝑖 for each DUT when the 4 g-
stimulus magnitude sinusoidal vibration is applied. It proves how the gyroscope 
sensors are generally influenced by spurious gain on each sensor axis. In 
particular, the values of 𝑆𝑆𝑆𝑆𝑖𝑖 fall in the range [3.0, 20.0 dB] for each DUT, which 
means that a significant sensitivity to stimulus applied on the accelerometer 
axes is still observable as it happened in the case of Random Vibration test. 
 

TABLE VI.XVII 
SDI OF THE THREE AXES OF THE GYROSCOPE SENSORS FOR THE 4 G-STIMULUS MAGNITUDE 

DURING SINUSOIDAL VIBRATION TEST. 

D
U

T
 EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

SGX 

[dB] 
SGY 

[dB] 
SGZ 

[dB] 
SGX 

[dB] 
SGY 

[dB] 
SGZ 

[dB] 
SGX 

[dB] 
SGY 

[dB] 
SGZ 

[dB] 

#1 17.6 9.9 19.3 13.8 8.8 4.3 8.7 4.7 4.3 

#2 15.9 19.8 11.2 4.9 8.1 4.6 5.1 4.2 3.7 

#3 5.2 4.3 4.3 18.0 4.9 3.4 14.4 7.6 4.4 

 
 

6.6.3.  Vibration step-test  
This section reports the results of the vibration step-test carried out to estimate 
the frequency behavior of the three identical IMUs under test as in [29]. 
Similarly, to the previous test, Also in this case, it is possible to identify three 
different zones of operations S1 (Before test), S2 (Test zone) and S3 (After test). 
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The first part of the experimental test is the reliability analysis aiming at 
evaluates the destructive or the miss calibration effect of the test on the devices 
under investigation. For this reason, it considers only the analyses of the S1 and 
S3 zones for each sensor of every IMUs (i.e. accelerometer and gyroscope). 
TABLE VI.XVIII shows the mean values µ and the standard deviations σ 
acquired by accelerometers and gyroscopes toward X-axis before and after the 
test. The table is divided into three main sections, each one reports the results 
achieved when the vibration step-test is actuated toward a different axis. 
Similarly,  
TABLE VI.XIX reports the results acquired by the sensors toward the Y-axis 
and TABLE VI.XX reports the data regarding the Z-axis of gyroscopes and 
accelerometers.  
As can be seen from the tables, the measured values show for each sensor axis 
of both the accelerometer and gyroscope, full compatibility of the results 
achieved in the zones before and after the test. This is true for every step sine 
excitation applied on all the axes. This fact represents two fundamental results: 
i) the step sine test applied has not damaged both the accelerometers and the 
gyroscopes, ii) also in terms of sensor calibration (see the average values), the 
tests seem not to affect both of them. 
 

TABLE VI.XVIII 
TYPE 1 ANALYSIS: MEAN AND STANDARD DEVIATION OF X-AXIS SENSORS OUTPUTS. 

DUT 

ACCELEROMETER [g RMS] GYROSCOPE [mdps RMS] 

BEFORE TEST S1 AFTER TEST S3 BEFORE TEST S1 AFTER TEST S3 

µ σ µ σ µ σ µ σ 

EXCITED AXIS: X 

#1 0.000 0.000 0.000 0.001 -0.014 0.133 0.032 0.129 
#2 0.000 0.002 0.000 0.002 0.013 0.108 -0.153 0.126 
#3 -0.001 0.002 0.000 0.002 0.018 0.105 0.023 0.112 

EXCITED AXIS: Y 

#1 0.000 0.001 0.000 0.001 -0.032 0.105 -0.089 0.092 
#2 0.000 0.002 0.000 0.002 0.009 0.113 -0.154 0.107 
#3 0.000 0.001 0.000 0.001 0.003 0.074 0.060 0.094 

EXCITED AXIS: Z 

#1 0.000 0.002 -0.001 0.002 0.000 0.127 -0.023 0.099 
#2 0.000 0.002 -0.001 0.002 0.001 0.117 -0.026 0.110 
#3 0.000 0.001 0.000 0.002 -0.015 0.094 -0.005 0.089 
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TABLE VI.XIX 
TYPE 1 ANALYSIS: MEAN AND STANDARD DEVIATION OF Y-AXIS SENSORS OUTPUTS. 

DUT 

ACCELEROMETER [g RMS] GYROSCOPE [mdps RMS] 

BEFORE TEST S1 AFTER TEST S3 BEFORE TEST S1 AFTER TEST S3 

µ σ µ σ µ σ µ σ 

Excited axis: X 

#1 0.000 0.000 0.000 0.001 -0.014 0.133 0.032 0.129 
#2 0.000 0.002 0.000 0.002 0.013 0.108 -0.153 0.126 
#3 -0.001 0.002 0.000 0.002 0.018 0.105 0.023 0.112 

Excited axis: Y 

#1 0.000 0.001 0.000 0.001 -0.032 0.105 -0.089 0.092 
#2 0.000 0.002 0.000 0.002 0.009 0.113 -0.154 0.107 
#3 0.000 0.001 0.000 0.001 0.003 0.074 0.060 0.094 

Excited axis: Z 

#1 0.000 0.002 -0.001 0.002 0.000 0.127 -0.023 0.099 
#2 0.000 0.002 -0.001 0.002 0.001 0.117 -0.026 0.110 
#3 0.000 0.001 0.000 0.002 -0.015 0.094 -0.005 0.089 

 
 

TABLE VI.XX 
TYPE 1 ANALYSIS: MEAN AND STANDARD DEVIATION OF Z-AXIS SENSORS OUTPUTS. 

DUT 

ACCELEROMETER [g RMS] GYROSCOPE [mdps RMS] 

BEFORE TEST S1 AFTER TEST S3 BEFORE TEST S1 AFTER TEST S3 

µ σ µ σ µ σ µ σ 

EXCITED AXIS: X 

#1 0.000 0.000 0.000 0.001 -0.014 0.133 0.032 0.129 
#2 0.000 0.002 0.000 0.002 0.013 0.108 -0.153 0.126 
#3 -0.001 0.002 0.000 0.002 0.018 0.105 0.023 0.112 

EXCITED AXIS: Y 

#1 0.000 0.001 0.000 0.001 -0.032 0.105 -0.089 0.092 
#2 0.000 0.002 0.000 0.002 0.009 0.113 -0.154 0.107 
#3 0.000 0.001 0.000 0.001 0.003 0.074 0.060 0.094 

EXCITED AXIS: Z 

#1 0.000 0.002 -0.001 0.002 0.000 0.127 -0.023 0.099 
#2 0.000 0.002 -0.001 0.002 0.001 0.117 -0.026 0.110 
#3 0.000 0.001 0.000 0.002 -0.015 0.094 -0.005 0.089 
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The second part of the experimental investigation during the vibration step-
test has the aim of investigating the operation of the IMUs at different 
frequency. For the sake of brevity, the analysis will regard only the 
accelerometer’s outputs of the three identical DUTs.  
Considering the test actuated along X-axis, the experimental results are 
reported in Fig. 6.27 where the RMS values, over each single step sine length 
window, are shown.  
 

 
Fig. 6.27. RMS accelerometer’s output with stimulus applied to the X-axis. 

 
Similarly, Fig. 6.28 shows the results achieved when the vibration is actuated 
toward Y-axis while Fig. 6.29 refers to Z-axis.  
 

 
Fig. 6.28. RMS accelerometer’s output with stimulus applied to the Y-axis.  
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Fig. 6.29. RMS accelerometer’s output with stimulus applied to the Z-axis. 

 
First of all, it is interesting to look at the output of the sensors toward the axes 
not interested directly by the excitation. This means to look at Y-axis (red 
trend) and Z-axis (yellow trend) in Fig. 6.27, while  X-axis (blue trend) and Z-
axis (yellow trend) are the trend of interest in Fig. 6.28 and X-axis (blue trend) 
and Y-axis (red trend) are the trend of interest in Fig. 6.29. It can be seen that 
independently from the axis on which the stimulus is applied, all the 
accelerometer’s show an unexpected behavior. More in detail, such outputs are 
significantly different from zero despite no vibration is actuated toward their 
reference. This fact means that the devices suffer of an undesired cross-axis 
sensitivity, a result that have been accurately and thoroughly discussed in 
section 6.6.1. (random vibration test) and 6.6.2 (sinusoidal vibration test).  
The second significant result is retrieved, analyzing all the axes outputs: also if 
an output data rate has been set to 100Hz, which automatically introduce a 
low-pass filter on the outcoming data at ODR/2 (50 Hz), the outputs measured 
by the sensors follow the expectation only up to 400 Hz stimulus. After that, 
the outputs of all the axis start present suddenly gains and not linear behaviors.  
Furthermore, it is important to highlight the operation of all the axes with high 
frequencies stimulus. In such case, all the sensors measure high acceleration 
levels, which are not expected. The worst behavior seems to be exhibited by 
the application of stimulus on the Z-axes, the same results, previously 
mentioned, have been obtained for all the DUTs under test, confirming the 
presence of an important deviation of the operation from the expected one. 
Also, for the gyroscopes, similar considerations can be drawn from the analysis 
of RMS values achieved over the step sine tests. 
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6.6.4.  Sine-on-Random vibration test  
In this section the experimental results obtained during the excitation of the 
three DUTs with the Sine-on-Random vibration profile (see section 6.5.2.4) are 
reported. The test aims to evaluate both the potential failure mechanisms or 
any possible damages on the DUTs and analyze their operation during the test's 
execution. For this reason, the experimental results section aims at two kind of 
analysis [246], [247]:  

• Type 1 analysis: it reports the results of an analysis "Before-After" to 
investigate reliability, sensor miss-calibration, etc.  

• Type 2 analysis: it reports the evaluation of few particular indexes 
devoted to the exploration of the DUT's behaviors under the 
excitations.  

 
Even if the DUT is factory calibrated, to eliminate residual gain and offset 
errors due to the final installation and/or soldering procedure on development 
board, an initial 6-point tumble sensor calibration has been taken into account 
as in [246], [247]. 
Starting from the Type 1 analysis, this test aims to verify the impact of the 
proposed excitation on the DUTs. Generally, the test can report unwanted 
inducted miscalibration on the sensors after the test or permanent damages.   
The outcome of these analyses is extremely important. Indeed, the evidence 
that no critical influences are exhibit after the tests reveal that the analysis 
during the test zones (reported in the following) has significance. At the same 
time, the Type 1 analysis can show how much DUTs are reliable in terms of 
any potential failure mechanisms or any possible damages during the entire 
experimental test.  
For the sake of explanation, TABLE VI.XXI reports, for the three DUTs, the 
mean value µ  and standard deviation σ of the acquisitions before (zone S1) and 
after (zone S3) the application of the test.  
TABLE VI.XXI refers to the service condition SC 1 (for more detail see TABLE 

VI.V in section 6.5.2.4) and it illustrates all the five repetitions of test carried 
out consecutively for the sake of measurement reproducibility.  
For the sake of brevity, the table illustrates only the mean and standard 
deviation acquired by the accelerometer sensors when the sine-on-random 
vibration test with severity SC 1 is applied on the X-axis. However, quite 
similar results have been obtained considering both the excitation on the Y-
axis and Z-axis and considering all the other Service Conditions (SC2, SC3, and 
SC4). 
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TABLE VI.XXI 
TYPE 1 ANALYSIS FOR THE THREE AXES OF THE ACCELEROMETER SENSORS WHEN THE 

EXCITATION IS APPLIED ON THE X-AXIS. 

R
E
P

E
T

IT
IO

N
 

X-axis [g] Y-axis [g] Z-axis [g] 

BEFORE 

TEST S1 
AFTER TEST 

S3 
BEFORE 

TEST S1 
AFTER TEST 

S3 
BEFORE 

TEST S1 
AFTER TEST 

S3 

µ σ µ σ µ σ µ σ µ σ µ σ 

DUT #1 

#1 0.0013 0.0017 0.0013 0.0017 -0.0003 0.0019 -0.0003 0.0019 -0.0003 0.0019 -0.0003 0.0019 

#2 -0.0002 0.0144 -0.0005 0.0139 0.0006 0.0017 0.0003 0.0017 0.0006 0.0017 0.0003 0.0017 

#3 -0.0008 0.0016 -0.0006 0.0016 0.0007 0.0021 0.0008 0.0020 0.0007 0.0021 0.0008 0.0020 

#4 0.0005 0.0017 0.0005 0.0017 -0.0007 0.0019 -0.0006 0.0018 -0.0007 0.0019 -0.0006 0.0018 

#5 0.0008 0.0134 0.0006 0.0134 0.0018 0.0017 0.0015 0.0017 0.0018 0.0017 0.0015 0.0017 

DUT #2 

#1 -0.0004 0.0016 -0.0001 0.0016 0.0001 0.0020 0.0002 0.0020 0.0001 0.0020 0.0002 0.0020 

#2 -0.0012 0.0017 -0.0012 0.0017 0.0001 0.0019 0.0001 0.0019 0.0001 0.0019 0.0001 0.0019 

#3 -0.0004 0.0139 -0.0006 0.0124 0.0011 0.0017 0.0008 0.0017 0.0011 0.0017 0.0008 0.0017 

#4 -0.0003 0.0017 -0.0004 0.0017 -0.0006 0.0020 -0.0006 0.0021 -0.0006 0.0020 -0.0006 0.0021 

#5 -0.0001 0.0017 -0.0001 0.0017 0.0011 0.0019 0.0011 0.0019 0.0011 0.0019 0.0011 0.0019 

DUT #3 

#1 0.0010 0.0125 0.0006 0.0125 -0.0002 0.0017 -0.0002 0.0017 -0.0002 0.0017 -0.0002 0.0017 

#2 -0.0005 0.0017 -0.0001 0.0017 0.0002 0.0021 0.0003 0.0073 0.0002 0.0021 0.0003 0.0073 

#3 -0.0009 0.0017 -0.0009 0.0017 -0.0001 0.0019 -0.0002 0.0019 -0.0001 0.0019 -0.0002 0.0019 

#4 0.0004 0.0126 0.0003 0.0120 -0.0002 0.0017 -0.0003 0.0017 -0.0002 0.0017 -0.0003 0.0017 

#5 -0.0005 0.0017 -0.0006 0.0017 -0.0002 0.0072 -0.0003 0.0021 -0.0002 0.0072 -0.0003 0.0021 

 
According to TABLE VI.XXI, (better represented in Fig. 6.30), full compatibility 
(from a measurement point of view) among all the "before S1" and "after S3" 
conditions has been discovered for all the repetitions and for all the considered 
sensors. Thus, the following considerations can be drawn:  

i) the tests have not influenced the devices correct operability; 
ii) non-miscalibration phenomenon (i.e., a changing of the mean value) 

has been observed during all the tests.  
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More in detail, Fig. 6.30 reports the error plots of the DUT#1 considering the 
X-axis of the accelerometer. The mean values (blue and red stars) and standard 
deviation (blue and red vertical lines) used to build Fig. 6.30 have been 
extracted from TABLE VI.XXI. In particular, the comparison of the 
measurements relative to the single repetition can be easily evaluated by 
analyzing the blue lines (relative to the zone S1 before the test) and the red 
lines (relative to the zone S3 after the test).  
 

 
Fig. 6.30. Test Condition SC1: Error Bar for the Type 1 analysis of the accelerometer 

embedded in DUT#1 when the excitation is applied on the X-axis. 

 
The same approach has been considered for the gyroscope sensors, obtaining 
the full compatibility of the output by a measurements point of view. 
As for the Type 2 analysis, different indexes have been considered to evaluate 
unwanted sensitivity phenomena on axes different from the excited ones. In 
particular, the Rejection Ratios 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 defined in equation (6.2) and the Spurious 
response Ratios 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 defined in equation (6.3) have been evaluated for the three 
axes of the sensors. 
Furthermore, due to the nature of the sine-on-random vibration test (i.e. a sine 
vibration at a single frequency belonging to a particular scenario related to the 
slow movement of suspended masses in vehicles, with the addition of a 
wideband random vibration noise), the Signal to Noise Ratio (SNR) has been 
evaluated with and without the random vibration introduced in each SC 
conditions.  
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Starting from the 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 index analysis, TABLE VI.XXII reports these values 
calculated for the severity SC1 during the test zone. In particular, to prove that 
tests results are consistent throughout the "Test Zone S2", five repetitions for 
all the DUTs considering the excitation on all the axes have been reported. 
 

TABLE VI.XXII 
REJECTION RATIOS FOR THE THREE AXES OF THE ACCELEROMETERS (SEVERITY SC 1). 

Rep. RRY.X [dB] RRZ.X [dB] RRX.Y [dB] RRZ.Y [dB] RRX.Z [dB] RRY.Z [dB] 

DUT #1 

#1 0.2 22.3 32.9 26.6 25.6 0.2 
#2 0.0 22.4 32.9 26.6 25.6 0.2 
#3 0.1 22.2 32.9 26.6 25.7 0.2 
#4 0.1 22.3 33.0 26.7 25.8 0.5 
#5 0.0 22.4 33.1 26.8 25.8 0.2 

DUT #2 

#1 2.9 27.2 22.7 55.6 6.5 52.1 
#2 3.0 27.3 22.3 46.1 8.7 22.4 
#3 3.2 27.3 22.1 55.5 7.1 49.5 
#4 3.0 27.3 22.0 57.5 5.2 49.3 
#5 3.1 27.3 21.9 57.8 4.8 52.8 

DUT #3 

#1 7.6 23.5 33.4 32.7 2.6 0.5 
#2 7.3 23.5 33.8 32.8 2.7 0.5 
#3 6.8 23.4 33.9 32.9 2.8 0.4 
#4 6.9 23.5 33.5 32.9 2.9 0.3 
#5 6.6 23.4 34.1 32.8 2.9 0.4 

 
Ideally, the 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗  should tend to infinite, representing the ideal case where the 
excitation provided on an axis does not influence the non-excited axis 
considered for the analysis. The analysis of TABLE VI.XXII can lead to several 
considerations:  

• With except for one case (i.e., DUT#2, Rep. 2), the achieved results 
highlights good repeatability regardless the considered DUT and the 
considered 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗.  

• All DUTs generally show a non-ideal behavior in terms of cross-
sensitivity for some couples of axes. This can be imputable to their 
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internal structure, which cannot perfectly avoid the partition of 
mechanical stress on a not excited axis.  

• As for DUT#1, the worst performance is observed for 𝑅𝑅𝑅𝑅𝑦𝑦,𝑥𝑥 and for 
𝑅𝑅𝑅𝑅𝑦𝑦,𝑧𝑧 which means that the Y-axis is the most sensitive to vibrations 
applied on the other axes (x and z, respectively). 

• As for DUT#2, the worst performance is observed for 𝑅𝑅𝑅𝑅𝑦𝑦,𝑥𝑥, and for 
𝑅𝑅𝑅𝑅𝑥𝑥,𝑧𝑧 which means that both the Y-axis and the X-axis are the most 
sensitive to vibrations applied on the other axes (x and z, respectively).  

• As for DUT#3, the worst performance is observed for 𝑅𝑅𝑅𝑅𝑥𝑥,𝑧𝑧 and for 
𝑅𝑅𝑅𝑅𝑦𝑦,𝑧𝑧 which means that the excitation on the Z-axis brings to the 
highest cross-sensitivity concerning the other axes. 

• The different behaviors among the DUTs in terms of both RRi,j values 
(for a given couple of i,j they show different values of RRi,j) and “worst 
couples of axes” can be due to the intrinsic features' dispersion of the 
considered low-cost DUTs. 

 
The results reported in TABLE VI.XXII consider only severity SC 1 for the 
accelerometers. However, similar behaviors can be drawn also for SC 2, SC 3, 
and SC 4 profiles and for gyroscope sensors. Fig. 6.31 and Fig. 6.32 show the 
mean values and the standard deviations of the 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 calculated over the five 
repetitions for each SC of DUT#1 considering respectively accelerometer in 
Fig. 6.31 and gyroscope in Fig. 6.32.  
 

 
Fig. 6.31. Bar graph of the mean value of the 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 indexes over all the repetitions for 

the different SC conditions (accelerometer of DUT#1 is involved). 
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Fig. 6.32. Bar graph of the mean value of the 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 indexes over all the repetitions for 

the different SC conditions (gyroscope of DUT#1 is involved). 

Comparing the behaviors obtained for different service conditions, it has been 
revealed a weak influence of the particular frequency of the sinusoidal of each 
SC on the 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 value. Similar results have been achieved also in the case of the 
other IMU under test (i.e. DUT #2 and DUT #3). 
As for the analysis of the 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,note that such a figure of merit aims at the 
spurious rejection ratio among the measures regarding the quiet zone before 
each test S1 and the actual test zone S2 for each one of the non-excited axes. 
This index should be ideally zero, representing the scenario in which applying 
the excitation on a particular axis j, it does not influence the ratio among the 
measured RMS value of a non-excited axis i, evaluated before and during the 
stimulus's application.  
TABLE VI.XXIII reports the 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 indexes (SC 1 condition is involved) for the 
three DUTs and five repetitions. Looking at the results reported in the table, 
some considerations can be drawn: 

• The first and the last column of TABLE VI.XXIII, representing the 
evaluation of the spurious rejection analysis for the Y-axis when 
excitation is applied on the X-axis and the Z-axis, respectively, reveals 
to be the worst case. Therefore, once again, the lower rejection ability 
of the Y-axis seems to be confirmed. 

• With except of few cases (i.e., DUT#2-Rep.2, DUT#3-Rep.1 and 
DUT#3-Rep.5), whatever be the DUT, the achieved results show good 
repeatability.  
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• Again, the differences among the DUTs in terms of 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 can be 
imputable to the intrinsic features' dispersion of the considered low-
cost DUTs. 

 
TABLE VI.XXIII 

SPURIOUS REJECTION RATIOS FOR THE THREE AXES OF THE ACCELEROMETER (SEVERITY SC 1). 

Rep. SRY.X [dB] SRZ.X [dB] SRX.Y [dB] SRZ.Y [dB] SRX.Z [dB] SRY.Z [dB] 

DUT #1 

#1 52.8 30.7 23.4 29.8 27.7 53.1 

#2 52.5 30.1 23.2 29.5 27.4 52.8 

#3 52.2 30.1 23.0 29.3 26.6 52.1 

#4 53.0 30.9 23.4 29.8 28.5 53.2 

#5 51.2 28.9 22.8 29.0 25.9 51.4 

DUT #2 

#1 50.0 25.7 35.7 37.5 42.7 43.2 

#2 49.9 25.6 36.1 37.5 40.9 41.6 

#3 48.6 24.4 36.1 37.2 34.1 45.4 

#4 49.6 25.4 34.9 35.6 36.8 48.4 

#5 49.7 25.5 36.8 37.3 36.8 48.5 

DUT #3 

#1 45.4 29.4 23.5 24.1 37.9 40.0 

#2 45.5 29.3 22.9 23.9 38.6 50.8 

#3 45.8 29.2 23.0 24.0 38.8 51.1 

#4 46.3 29.7 23.8 24.4 38.5 51.1 

#5 46.5 29.7 22.9 24.2 39.7 42.3 

 
Similar results have been obtained for the other SCs in the case of the 
accelerometer sensors, as showed in Fig. 6.33. In such case, the similar behaviors 
obtained among the different SCs reveal a low influence of the particular SC's 
sinusoidal frequency on 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗.  
As for the gyroscope sensors, Fig. 6.34 shows how the behavior is less regular 
respect to the accelerometer sensors. Indeed, in the case of 𝑆𝑆𝑆𝑆𝑦𝑦,𝑥𝑥 and 𝑆𝑆𝑆𝑆𝑧𝑧,𝑥𝑥, such 
values are weakly influenced by the considered SC (i.e., main frequency of the 
sinusoidal vibration), whereas in the other cases (𝑆𝑆𝑆𝑆𝑥𝑥,𝑦𝑦, 𝑆𝑆𝑆𝑆𝑧𝑧,𝑦𝑦, 𝑆𝑆𝑆𝑆𝑥𝑥,𝑧𝑧 and 𝑆𝑆𝑆𝑆𝑦𝑦,𝑧𝑧) 
at least one condition between SC3 or SC4 show remarkably higher values. 
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Fig. 6.33. Bar graph of the mean value of the 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 indexes over all the repetitions for 

the different SC conditions (accelerometer of DUT#1 is involved). 

 
Fig. 6.34. Bar graph of the mean value of the 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 indexes over all the repetitions for 

the different SC conditions (gyroscope of DUT#1 is involved). 

 
These results can be imputable to the gyroscope's intrinsic features: indeed, 
typically, they are devoted to measure only the rotational rate; however, in a 
real scenario, gyroscopes exhibit sensitivity to acceleration mostly due to the 
asymmetry of their micromachining inaccuracies and mechanical designs. These 
facts lead to significant sensitivity to linear acceleration and vibration 
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rectification, representing the largest error source. More importantly, low-cost 
gyroscopes are often not optimized for vibration rejection since they are 
generally designed using compact and straightforward mechanical systems. In 
addition gyroscopes are prone to drift, representing an additional error source. 
This phenomenon is mainly due to two causes: a slow-changing, named bias 
instability and a higher frequency noise variable reported in scientific literature 
as Angular Random Walk (ARW). 
The final analysis performed after the sine-on-random vibration test aims to 
compare the Signal to Noise Ratio (SNR) indexes calculated during the tests 
and the one calculated considering only the single sine vibration (without the 
addition of the random noise vibration in the range 200 Hz – 2000 Hz). 
According to the Nyquist criterium, the DUT under test, selecting an output 
data rate (ODR) of 119 Hz, applies a low pass filter with a cut-off frequency of 
50 Hz for both the gyroscope and accelerometer. The introduction of the low 
pass filter with the reported specification is fundamental to avoid the aliasing 
phenomena. Consequently, this filter should eliminate the noise above the 
Nyquist frequency, mixed down into the baseband, improving the SNR. 
To evaluate the SNR on each acquisition, a MATLAB built-in function (snr) 
available in the Signal Processing Toolbox has been employed. This function is 
able to calculate the signal's spectrum and automatically labels its main 
features as the fundamental component, the DC value, the harmonics, and the 
noise. The SNR analysis leads to evaluate its variation with and without 
random noise on a defined sine vibration (the main component of SC1, SC2, 
and SC3 condition, respectively 5 Hz, 10 Hz, and 15 Hz). These indications can 
qualify the sensors' ability to reject the vibration noise above the Nyquist 
frequency that, due to the nature of the DUTs (internal LPF with a cut-off 
frequency of 50 Hz in the proposed setup), should be irrelevant. To be valid, 
this analysis must be done on accelerometers' signal acquired on the same axes 
of the excitations. 
TABLE VI.XXIV compares the reference SNR (achieved when no random 
vibration is applied) against the SNR achieved in the case of random vibration 
superimposed to the sinusoidal one in the case of SC 1 and all DUTs. Looking 
at results, the following considerations can be drawn: 

• Since the SNRs values significantly decrease concerning the reference 
ones, it proves how the real behavior of the antialiasing LPF filter is 
sensitive to unexpected contributions at low-frequency even if the 
random vibrations have been generated in the frequency range from 
200 Hz to 2000 Hz (which is higher than the filter cut-off frequency). 
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• The SNR calculation over all the DUTs considering the different 
repetitions and the excited axis, respectively, show good repeatability 
(over the 5 repetitions) regardless the DUT and the considered axis. 

• According to the behaviors revealed with 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 and 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗, also in this 
case, the SNR indexes calculated for the Y-axis during its excitation is 
smaller concerning the other ones, representing the lowest immunity 
(i.e., the higher sensitivity) to the random noise.  

 
TABLE VI.XXIV 

BAR GRAPH OF THE MEAN VALUE OF THE SNR OVER ALL THE REPETITIONS FOR THE DIFFERENT SC1, 
SC2, SC3 CONDITIONS AND REFERENCE (ACCELEROMETER OF DUT#1 IS INVOLVED). 

REP. SNRX [dB] 
REFERENCE 

SNRX [dB] 
SNRY 

[dB] 
REFERENCE 

SNRY [dB] 
SNRZ [dB] 

REFERENCE 

SNRZ [dB] 

DUT #1 

#1 13.3 

27.8 

7.1 

30.1 

12.0 

28.5 

#2 13.6 7.3 12.3 

#3 13.4 7.1 11.7 

#4 13.7 7.2 12.1 

#5 13.3 7.1 11.7 

DUT #2 

#1 10.8 

27.3 

2.3 

28.5 

11.8 

26.2 

#2 10.8 2.4 12.3 

#3 11.0 2.6 12.2 

#4 11.1 2.5 12.3 

#5 11.0 2.4 11.8 

DUT #3 

#1 9.2 

26.2 

5.2 

25.7 

9.4 

27.3 

#2 9.9 5.1 9.8 

#3 9.9 5.1 9.8 

#4 10.1 5.0 9.8 

#5 10.2 5.0 9.9 

 
Similar behaviors have been achieved in the case of SC2 and SC3, as shown in 
Fig. 6.35, where the mean values of the five repetitions of the SNR have been 
reported for all the SCs with respect to the reference SNR, in the case of 
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DUT#1. In particular, regardless the SC, an SNR decreasing (concerning the 
reference one) is clearly observable. Finally, similar behaviors have been 
achieved for DUT#2 and DUT#3. 
 

 
Fig. 6.35. Bar graph of the mean value of the SNR over all the repetitions for the 
different SC1, SC2, SC3 conditions compared with the reference (purple bars). 

Accelerometer of DUT#1 is involved. 

 
Moreover, the Signal to Noise Ratio (SNR) analysis among the different 
working conditions revealed the non-ideality of the antialiasing LPF filters in 
such a low-cost device. Therefore, its non-ideality can mine the reliability of 
measurements made by these kinds of platforms.  
The achieved results suggest taking into account such non-idealities for 
designing suitable data processing and digital filtering techniques to be applied 
in a real application to improve the measurement data's overall reliability that 
could generally feed further algorithms like positioning ones. 
 
 

6.6.5.  Thermal cycling test with humidity exposure  
This section illustrates the behavior of the three devices when subjected to 
temperature and humidity exposure (test plan in section 6.5.3.1.). Also in this 
case, the experimental test has regarded two main aspects:  

i. The evaluation of miscalibration due to the test analyzing the output 
of the sensors before and after the test.   
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ii. The influence of the temperature and humidity on the sensors' output 
considering a static operation. 

 
Regarding the Type 1 analysis, TABLE VI.XXV reports the experimental results 
regarding the analysis of the accelerometer's output of three DUTs over three 
repetitions. More in detail, the table includes the mean value µ and standard 
deviation σ of the sensors' output over the 3-minute acquisition window before 
S1 and after S3 the test. Analyzing TABLE VI.XXV, the full compatibility from 
a measurement point of view regarding each sensor before and after the test 
zone can be seen. This fact leads to the absence of sensors' miscalibration caused 
by the thermal cycling test, and thus to the absence of failure mechanisms 
triggered during the test. 
 

TABLE VI.XXV 
TYPE 1 ANALYSIS FOR MISCALIBRATION CONSIDERING THREE DEVICES AND THREE REPETITIONS OF 

THE THERMAL TEST. 

R
E
P

E
T

IT
IO

N
 

X-axis [g] Y-axis [g] Z-axis [g] 

BEFORE 

TEST S1 
AFTER TEST 

S3 
BEFORE 

TEST S1 
AFTER TEST 

S3 
BEFORE 

TEST S1 
AFTER TEST 

S3 

µ σ µ σ µ σ µ σ µ σ µ σ 

DUT #1 

#1 -0.0071 0.0011 -0.0063 0.0010 -0.2044 0.0308 -0.2042 0.0308 0.0106 0.0016 0.0113 0.0017 

#2 -0.0022 0.0004 0.0016 0.0003 -0.0025 0.0012 -0.0025 0.0013 0.0075 0.0012 0.0084 0.0013 

#3 -0.0015 0.0003 0.0098 0.0015 0.0023 0.0004 0.0028 0.0005 0.0133 0.0020 0.0147 0.0022 

DUT #2 

#1 -0.0006 0.0002 -0.0015 0.0016 0.0005 0.0002 0.0022 0.0004 0.0009 0.0003 -0.0010 0.0003 

#2 -0.0004 0.0002 0.0001 0.0017 0.0061 0.0009 0.0100 0.0015 0.0107 0.0016 0.0057 0.0009 

#3 0.0015 0.0003 0.0011 0.0124 -0.0010 0.0009 0.0030 0.0006 0.0017 0.0005 0.0021 0.0004 

DUT #3 

#1 0.0089 0.0014 -0.0010 0.0002 -0.0093 0.0014 -0.0079 0.0012 -0.0161 0.0024 -0.0097 0.0015 

#2 0.0000 0.0002 0.0010 0.0002 0.0001 0.0002 0.0008 0.0002 -0.0002 0.0006 -0.0093 0.0014 

#3 0.0000 0.0002 -0.0002 0.0002 -0.0002 0.0002 0.0013 0.0003 0.0002 0.0004 0.0040 0.0006 

 
Fig. 6.36 reports the evolution of the accelerometer sensors' output during the 
thermal test. Similarly, Fig. 6.37 shows the evolution of the gyroscope sensors' 
output during the test. As shown from the figures, both the sensors' output 
reports an evident correlation with the temperature.  
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Fig. 6.36. Evolution of accelerometer outputs during the thermal test. (DUT#1, Y-

axis is involved). 

 

 
Fig. 6.37. Evolution of gyroscope outputs during the thermal test. (DUT#1, Y-axis is 

involved). 

 
For the sake of brevity, Fig. 6.36 and Fig. 6.37 illustrates only the test regarding 
the DUT#1 and the Y-axis of both gyroscope and accelerometer. However, the 
same correlation has been observed for all sensors' axes considered in this work.  
To synthetically report the behaviors of all DUTs under test, TABLE VI.XXVI 
report the maximum and minimum sensors' output during the temperature test 
(three repetitions) and before the test for DUT#1. Similarly, TABLE VI.XXVII 
includes the same data about DUT#2 while TABLE VI.XXVIII reports the 
values regarding DUT#3. 
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Considering the minimum and maximum sensors' output during the zone before 
the test, a significant variation can be observed in all the sensors' axes during 
the execution of the thermal cycling test.  
 

TABLE VI.XXVI 
DUT #1 MAXIMUM AND MINIMUM SENSOR OUTPUTS VERSUS THERMAL CYCLES. 

DUT#1 ACCELEROMETER [m/s2] 

 BEFORE ZONE REPETITION 1 REPETITION 2 REPETITION 3 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.003 0.000 -0.020 0.012 -0.013 0.014 -0.018 0.012 

Y -0.006 0.001 -0.020 0.014 -0.019 0.019 -0.019 0.013 

Z 0.000 0.009 -0.011 0.029 -0.013 0.027 -0.026 0.023 

DUT#1 GYROSCOPE [˚/s] 
 BEFORE ZONE REPETITION 1 REPETITION 2 REPETITION 3 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.325 0.000 -0.712 3.418 -0.980 3.114 -0.582 3.623 

Y -0.096 0.101 -0.173 1.506 -0.421 1.753 -0.170 1.366 

Z -0.096 0.014 -0.256 1.042 -0.094 1.097 -0.452 1.080 

 
TABLE VI.XXVII 

DUT #2 MAXIMUM AND MINIMUM SENSOR OUTPUTS VERSUS THERMAL CYCLES. 
DUT#2 ACCELEROMETER [m/s2] 

 BEFORE ZONE REPETITION 1 REPETITION 2 REPETITION 3 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.009 0.000 -0.016 0.000 -0.004 0.018 -0.003 0.028 

Y -0.001 0.000 -0.017 0.000 -0.017 0.014 -0.009 0.013 

Z 0.000 0.012 0.000 0.030 -0.001 0.017 -0.003 0.000 

DUT#2 GYROSCOPE [˚/s] 
 BEFORE ZONE REPETITION 1 REPETITION 2 REPETITION 3 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX 

X 0.000 0.122 -0.736 0.507 -1.072 0.390 -1.313 0.629 

Y 0.000 0.457 -2.873 2.296 -2.969 2.791 -3.490 2.206 

Z 0.000 0.113 -0.549 0.650 -0.499 0.731 -0.989 0.729 
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TABLE VI.XXVIII 
DUT #3 MAXIMUM AND MINIMUM SENSOR OUTPUTS VERSUS THERMAL CYCLES. 

DUT#3 ACCELEROMETER [m/s2] 

 BEFORE ZONE REPETITION 1 REPETITION 2 REPETITION 3 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.002 0.000 -0.023 0.026 -0.010 0.011 -0.013 0.015 

Y 0.000 0.003 -0.035 0.031 -0.020 0.021 -0.025 0.018 

Z 0.000 0.016 0.000 0.030 -0.009 0.011 -0.011 0.015 

DUT#3 GYROSCOPE [˚/s] 
 BEFORE ZONE REPETITION 1 REPETITION 2 REPETITION 3 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.581 0.000 -3.597 5.145 -4.123 4.842 -3.391 5.535 

Y -0.503 0.000 -3.834 7.369 -4.629 6.865 -3.779 7.859 

Z 0.000 0.359 -2.677 2.797 -2.412 2.956 -3.081 2.502 

 
In particular, once fixed the axis, intervals [MIN ÷ MAX] observed for the 
temperature test repetitions are very similar and generally overlapped 
concerning the single DUT for both the accelerometer and the gyroscope. 
However, for each gyroscope's axes and DUTs, a different excursion interval 
has been observed. More in details, the maximum excursion of DUT #1 
gyroscope regards the X-axis and fall in the range [-0,712 ÷ 3,418] dps, while 
the maximum excursion of DUT #2 gyroscope regards the Y-axis and fall in 
the range [-3,490 ÷ 2,206] dps, and the maximum excursion of DUT #3 
gyroscope regards the Z-axis and fall in the range [-3,779 ÷ 7,859] dps. These 
ranges can influence such devices' correct operation, mainly when employed in 
an environment characterized by significant temperature stress. This fact can 
probably be imputed to the slightly different mechanical construction processes, 
neglecting the possibility of using a unique function to correct the temperature 
influence. On the opposite, considering all the repetitions, axes, and DUTs, the 
accelerometers report an interval [MIN ÷ MAX] observed for the temperature 
stress very similar and overlapped. 
 
 

6.6.6.  Temperature cycling test  
This section illustrates the behavior of the devices during the temperature 
cycling test defined in section 6.5.3.2. 
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During the test, the sensors exhibited abnormal drifts, as can be seen in Fig. 
6.38 observing the X-axis response of the gyroscope, accelerometer and 
magnetometer output in case of DUT #1. The figure clearly highlights the 
effects of the temperature on all sensors. Indeed, although the DUT is kept 
steady during all the temperature cycles (so the ideal output of each sensor 
should be constant), significant dispersions of the sensor nominal outputs are 
observed as a function of the temperature excursion. In more detail, the 
magnetometer follows the trend of the temperature profile, whereas the 
gyroscope and the accelerometer show an opposite trend against the 
temperature profile. Very similar behaviors have been obtained for the other 
axes (y and z) of DUT #1 sensors, DUT #2 and DUT #3. 
 

 
Fig. 6.38. Evolution of gyroscope, accelerometer, and magnetometer outputs during a 

single temperature cycle. (DUT#1 and x-axis is involved). 

 
TABLE VI.XXIX summarize the results achieved for each DUT, sensor, and 
axis, in terms of µ and σ of the sensors output observed in S1 and S3 zone.  
Focusing the attention on accelerometer sensors, the results reported in in the 
table prove the full compatibility of the sensor outputs achieved in S1 and S3 
regardless the axis and the DUT considered. Moreover, the values observed for 
µ and σ in S3 are very similar to ones achieved in S1. As a consequence, the 
application of the temperature cycles between -20 °C and 60 °C does not affect 
the general operating and the calibration of the accelerometer sensors. 
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TABLE VI.XXIX 
ANALYSIS OF THE THREE AXES OF THE ACCELEROMETER, GYROSCOPE AND MAGNETOMETER SENSORS 

DURING TEMPERATURE CYCLING TEST. 
ACCELEROMETER 

D
U

T
 X-Axis 

S1 [g] 
X-Axis 
S3 [g] 

Y-Axis 
S1 [g] 

Y-Axis 
S3 [g] 

Z-Axis 
S1 [g] 

Z-Axis 
S3 [g] 

µ σ µ σ µ σ µ σ µ σ µ σ 

#1 0.005 0.001 0.011 0.002 0.002 0.002 0.008 0.002 0.004 0.002 0.007 0.002 

#2 0.001 0.001 0.015 0.014 0.008 0.006 0.015 0.014 0.003 0.002 0.024 0.019 

GYROSCOPE 

D
U

T
 X-Axis 

S1 [°/s] 
X-Axis 
S3 [°/s] 

Y-Axis 
S1 [°/s] 

Y-Axis 
S3 [°/s] 

Z-Axis 
S1 [°/s] 

Z-Axis 
S3 [°/s] 

µ σ µ σ µ σ µ σ µ σ µ σ 

#1 0.145 0.114 0.166 0.106 0.115 0.108 0.289 0.106 0.146 0.098 2.807 0.094 

#2 0.839 0.111 2.654 0.273 1.342 0.129 4.091 0.202 0.229 0.124 1.309 0.095 

MAGNETOMETER 

D
U

T
 X-Axis 

S1 [G] 
X-Axis 
S3 [G] 

Y-Axis 
S1 [G] 

Y-Axis 
S3 [G] 

Z-Axis 
S1 [G] 

Z-Axis 
S3 [G] 

µ σ µ σ µ σ µ σ µ σ µ σ 

#1 0.566 0.005 0.468 0.004 0.144 0.017 0.298 0.012 0.454 0.008 0.518 0.007 

#2 0.174 0.005 0.158 0.006 0.093 0.008 0.184 0.007 1.234 0.008 1.122 0.007 

 
On the contrary, the results reported in TABLE VI.XXIX about the gyroscopes 
prove that the considered kind of temperature stress can alter significantly the 
sensor calibration. In more detail, for both the DUTs and for all the axes, the 
values of µ significantly increase in S3 with respect to S1. In some cases, such 
increase even reach about one order of magnitude. These results agree with the 
typical well-known drift effect of the gyroscope sensors concerning general 
temperature variations already highlighted during the thermal (temperature 
plus humidity stress) cycling test in section 6.6.5. As for the magnetometer 
sensors, TABLE VI.XXIX highlights how the effect of the thermal test is weakly 
visible, except in the case of the Y-axis where the values of µ doubles in S3 with 
respect to the corresponding value observed in S1, for both the DUTs. 
Furthermore, a boundary analysis has been performed by evaluating the 
maximum and the minimum values observed for each sensor and each axis of 
DUT #1 during the four cycles. These results are summarized in TABLE 

VI.XXX, where the data have been achieved after a suitable pre-calibration 
phase and are compared against a reference values measured before the test.   
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TABLE VI.XXX 
DUT #1 MAXIMUM AND MINIMUM SENSOR OUTPUTS VERSUS TEMPERATURE CYCLES. 

DUT#1 ACCELEROMETER [g] 

 REFERENCE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

X 0.000 0.001 -0.016 0.014 -0.015 0.014 -0.024 0.014 -0.015 0.014 

Y 0.000 0.001 -0.026 0.027 -0.023 0.013 -0.022 0.013 -0.024 0.013 

Z -0.001 0.002 -0.010 0.019 -0.008 0.018 -0.006 0.020 -0.003 0.022 

DUT#1 GYROSCOPE [˚/s] 
 REFERENCE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.08 0.02 -5.49 7.38 -5.38 7.32 -5.35 7.40 -5.37 7.29 

Y -0.01 0.02 -13.52 9.91 -13.63 9.79 -13.76 9.81 -13.63 9.84 

Z -0.01 0.01 -1.77 1.73 -1.89 -0.17 -1.97 -0.44 -1.95 -0.51 

DUT#1 MAGNETOMETER [G] 
 REFERENCE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

X 0.12 0.12 0.04 0.23 0.05 0.19 0.05 0.20 0.05 0.20 

Y -0.13 -0.13 -0.22 -0.04 -0.23 -0.04 -0.23 -0.05 -0.23 -0.06 

Z 1.18 1.18 1.09 1.35 1.09 1.35 1.09 1.34 1.09 1.32 

 
Focusing on TABLE VI.XXX, some considerations about DUT #1 can be drawn: 

• As for the gyroscope sensor, once fixed the axis, the intervals [MIN ÷ 
MAX] observed for the four temperature cycles are very similar and 
generally overlapped. Compared with values achieved in reference 
conditions, for all axes, the temperature excursions have led to a 
significant increase in the range. The Y-axis shows the highest 
sensitivity with the widest range observed performing Cycle 3 (i.e. 
[13.76 dps ÷ 9.81 dps]). The order of magnitude of such values is very 
similar to the ones typically experienced in many real applications as 
aeronavigation, positioning control, and so on.  

• As for the accelerometer sensor, once again, for a given axis, the 
intervals [MIN ÷ MAX] observed for the four temperature cycles are 
very similar and generally overlapped.  Compared with values achieved 
in reference conditions, for all axes, the temperature excursions have 
led to a significant increase in the corresponding ranges. All the axes 
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exhibit ranges of the same order of magnitude. In this case, the widest 
range has been observed in the case of the Y-axis duing Cycle 1 (i.e. 
[26 mg ÷ 27 mg]). Once again, such values are very similar to ones 
typically experienced in many real applications as an inclinometer.  

• As for the magnetometer sensor, once fixed the axis, the intervals [MIN 
÷ MAX] observed for the four temperature cycles are almost identical. 
Compared with the reference conditions, a variation of the range is still 
observable even if less significant concerning the case of the gyroscope 
and the accelerometer sensors. The widest range has been observed in 
the case of the Z-axis during both Cycle 1 and Cycle 2 (i.e. [-1.09 G ÷ 
1.35 G]). Such values are very similar to ones typically experienced in 
many real applications as the heading control of a vehicle.  

 
Similarly to the previous case, the results achieved for DUT #2 are summarized 
in TABLE VI.XXXI. 
 

TABLE VI.XXXI 
DUT #2 MAXIMUM AND MINIMUM SENSOR OUTPUTS VERSUS TEMPERATURE CYCLES. 

DUT#2 ACCELEROMETER [g] 

 REFERENCE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

X 0.000 0.000 -0.018 0.018 -0.018 0.017 -0.018 0.017 -0.019 0.016 

Y 0.000 0.000 -0.015 0.011 -0.015 0.011 -0.015 0.009 -0.016 0.009 

Z 0.000 0.000 -0.011 0.008 -0.009 0.010 -0.008 0.011 -0.007 0.012 

DUT#2 GYROSCOPE [˚/s] 
 REFERENCE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.02 0.01 -0.71 0.36 -0.64 0.26 -0.69 0.35 -0.70 0.31 

Y -0.03 0.03 -0.34 1.75 -0.36 2.51 -0.30 1.89 -0.32 1.84 

Z -0.01 0.00 -0.15 3.20 0.71 3.33 0.66 3.44 0.67 3.47 

DUT#2 MAGNETOMETER [G] 
 REFERENCE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

AXIS MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

X -0.54 -0.54 -0.83 -0.41 -0.84 -0.41 -0.85 -0.41 -0.84 -0.41 

Y -0.23 -0.23 -0.40 0.11 -0.39 0.11 -0.38 0.11 -0.38 0.12 

Z 0.46 0.46 0.31 0.57 0.32 0.58 0.31 0.57 0.31 0.57 
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As for DUT #2, the following considerations can be drawn: 
• As for the gyroscope sensor, once fixed the axis, the intervals [MIN ÷ 

MAX] observed for the four temperature cycles are similar and 
generally overlapped. Compared with values achieved in reference 
conditions, for all axes, the temperature excursions have led to a 
significant increase in the range. The Z-axis shows the highest 
sensitivity with the widest range observed in Cycle 1 (i.e. [-0.15 dps ÷ 
3.20 dps]). Once again, the order of magnitude of such values is very 
similar to ones typically experienced in many real applications. 
Compared with the results achieved for DUT #1, the gyroscope sensor 
of DUT #2 seems to be less sensitive with respect to the gyroscope 
sensor of DUT #1 for each axis.  

• As for the accelerometer sensor, for a given axis, the intervals [MIN ÷ 
MAX] observed for the four temperature cycles are very similar. 
Compared with values achieved in reference conditions, for all axes, the 
temperature excursions have led to a significant increase in the 
corresponding ranges. All axes show very similar ranges, and the widest 
range was observed for the X-axis in Cycle 1 (i.e. [-18 mg ÷ 18 mg]).    
Compared with the results achieved for DUT #1, the accelerometer 
sensor of DUT #2 shows a similar sensitivity with respect to the 
accelerometer sensor of DUT #1.  

• As for the magnetometer sensor, once fixed the axis, the intervals [MIN 
÷ MAX] observed for the four temperature cycles are almost identical, 
thus confirming the high repeatability also experienced in the case of 
DUT #1. Once again, compared with the reference conditions, a 
variation of the range is still observable. The widest range has been 
observed in the case of the X-axis (i.e. [-0.85 G ÷ -0.41 G]). Compared 
with results achieved in the case of DUT #1 the ranges experienced for 
DUT #2 are similar in terms of the order of magnitude.   

 
 

6.6.7.  Temperature step-test  
This section reports the performances of the Inertial Measurement Units during 
temperature step-test. once again, the experimental test that has been carried 
out highlighted a significant correlation of the sensors' output with 
temperature. As an example, Fig. 6.39 illustrates DUT #1 gyroscope, 
accelerometer, and magnetometer time evolution for all the axes (Z-axis is 
perpendicular to the horizontal plane; thus, the accelerometer's z component 
has been reported without the DC value for better readability). 
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Fig. 6.39. Time evolution of the three axes of the gyroscope (a), accelerometer (b), and 
magnetometer (c) output during the stress test. The bottom figure (d) represents the 

trend of the temperature during the test. 

 
For the sake of explanation, the maximum and minimum of the sensors' output 
signals are reported for DUT #1 and DUT #2 in TABLE VI.XXXII. The 
temperature has the same influence on gyroscopes and accelerometers sensors: 
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the span for each axis during the thermal cycle is up to two times the LSB 
values for both the sensors. As indicated by the manufacturer, the 
magnetometer exhibits a higher sensitivity to a temperature excursion. 
However, the internal temperature sensors embedded in the considered IMUs 
seem to be accurate enough for compensating the other sensors' output. 
 

TABLE VI.XXXII 
EXCURSION OF THE SENSORS OUTPUT DURING TEMPERATURE STEP TEST. 

 T [°C] 
GYROSCOPE 

[°/s] 
ACCELEROMETER 

[m/s2] 
MAGNETOMETER 

[T x 10-6] 

X Y Z X Y Z X Y Z 

DUT#1 

MAX 56.9 0.91 5.15 1.43 -0.13 0.09 10.14 1.06 30.00 36.30 

MIN -23.3 -0.29 -1.73 -1.06 -0.27 -0.07 9.90 -47.20 -13.30 -0.73 

SPAN 80.2 1.20 6.88 2.49 0.40 0.16 0.24 48.26 43.30 37.03 

DUT#2 

MAX 56.9 0.94 1.68 1.42 0.13 -0.21 10.03 0.45 26.80 18.70 

MIN -24.9 -0.02 -0.44 -0.95 -0.18 -0.44 9.87 -45.10 -18.60 -3.31 

SPAN 81.8 0.96 2.12 2.37 0.31 0.21 0.16 45.55 45.40 22.01 

 
By a reliability point of view, it has not been observed any internal MEMS 
failure during the temperature step test. A confirmation of the MEMS' 
reliability after the proposed screening test is highlighted by the reduced 
hysteresis in the sensors' output during the falling and the test's rising phases 
illustrated in TABLE VI.XXXIII.  As an example, the maximum hysteresis 
exhibited by the Z-axis of the DUT #1 gyroscope is equal to 0.77°/s. Similar 
results have been achieved for the gyroscopes of the other devices.  
 

TABLE VI.XXXIII 
MAXIMUM HYSTERESIS ACHIEVED DURING TEMPERATURE STEP TEST. 

DUT 
GYROSCOPE [°/s] ACCELEROMETER [m/s2] 

X Y Z X Y Z 

#1 0.36 0.22 0.77 0.08 0.07 0.14 

#2 0.52 0.69 0.52 0.10 0.06 0.10 

 
A second confirmation that the screening test has not triggered any failure 
mechanisms has been obtained using the analysis "after-before" (Type 1 
analysis) which shows the compatibility of the measurement results extracted 
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from the sensors' output data. As an example, TABLE VI.XXXIV reports the 
mean and standard deviation of the gyroscope Y-axis (characterized by the 
highest hysteresis) over 600 samples at 28°. Similar results have been achieved 
for the other gyroscope axes and the other sensors (accelerometers and 
magnetometers). 
 

TABLE VI.XXXIV 
TYPE 1 ANALYSIS FOR TEMPERATURE STEP TEST (GYROSCOPE Y-AXIS IS INVOLVED). 

DUT 

GYROSCOPE [°/s] 

BEFORE TEST AFTER TEST 

µ σ µ σ 

#1 0.247 0.002 0.251 0.003 
#2 0.122 0.003 0127 0.002 

 
Furthermore, for all the sensors' output, the dependence on the temperature 
may be approximated with a piecewise linear regression, as can be seen in Fig. 
6.40 that shows the scatter plot of the temperature with respect to the 
gyroscope's Y-axis for DU #1 and DUT #2 during the falling and the rising 
transient of the test cycle. 
 

 
Fig. 6.40. Scatter plot among temperature and gyroscope's output for DUT#1 and 

DUT #2. 

 
It is extremely important to point out that the estimated piecewise models' 
parameters of the sensor's output (gyroscope, accelerometer, and 
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magnetometer) vary for each DUT. This result prevents the choice of a unique 
calibration for all the sensors (indeed, the manufacturers do not provide the 
end-user of low-cost MEMS-based IMU with this type of information). 
 
 
 

6.7.  Case study A: Effects of the test on 
positioning algorithms 
 

6.7.1.  Some note on considered positioning algorithms  
In literature exist various algorithms to compute orientation from inertial 
measurement units of an object. The algorithms employed in this work for the 
estimation orientation are based on a complementary filter and AHRS Kalman 
filter available in the Matlab R2020a Sensor Fusion Toolbox. Among various 
available algorithms, they have been chosen due to the widespread use in 
several practical applications. At the same time, they differ entirely in terms of 
internal structure, allowing the use of one or the other concerning the 
computation power available on the target platform and the estimation 
accuracy required. The complementary filter is a suitable orientation 
calculation tool for systems having memory constraints but presenting minimal 
tunable parameters. In the complementary filter, the accelerometer and the 
gyroscope play the central role in the orientation estimation while the 
magnetometer is used as a "corrective sensor". The name "complementary" well 
explains the algorithm's structure, where a low pass filter is used to eliminate 
small forces creating disturbances in the accelerometer's reading while a high 
pass filter is used to eliminate the drift usually accumulated due to the 
integration over a period of the gyroscope data [248]. On the contrary, the 
AHRS filter uses a nine-axis error-state Kalman filter structure, which is a 
standard estimation filter. More in detail, the Kalman filter aims to follow the 
errors in orientation, gyroscope offset, linear acceleration, and magnetic 
disturbance in order to calculate the final orientation and angular velocity. The 
Kalman filter estimates the state of the system based on the current and 
previous states, giving more accurate results with respect to the complementary 
filter. The orientations of the DUT used have been calculated in three 
dimensions coordinate system in agreement with the sensor plane [249]. The 
data acquired by the platforms has been scaled and converted to meet the 
algorithms' inputs requirements. 
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6.7.2.  Preliminary information  
In the following sections, the experimental results achieved during both random 
vibration test (described in section 6.5.2.1) and sinusoidal vibration test 
(described in section 6.5.2.2) are reported and commented. 
For both the vibration profiles, the positioning algorithms performances under 
the application of the considered stimulus have been evaluated. Furthermore, 
to warrant that the results achieved do not depend on eventual damages or 
malfunctioning of the DUTs occurred during the application of the stimulus, 
the performance of positioning algorithms before and after the application of 
each vibration profile has been evaluated (and compared) as well. Then, each 
test sequence is constituted of three phases delimiting three zones:  

i. Quiet zone before the application of the stimulus (hereinafter S1). 
ii. Stimulus zone (hereinafter S2). 
iii. Quiet zone after the application of the stimulus (hereinafter S3).   

 
All the analyses have been carried out by considering the application of the 
vibrating stimulus on each of the axes (i.e. x, y, z) and the effects on the 
performance of the positioning algorithms have been evaluated by analyzing 
the deviations of the Eulero’s angles (i.e. α, β, γ) due to the vibrations 
concerning their ideal values, which should be equal to zero degrees because the 
DUT is not moving (the DUT is mechanically bonded on the shaker plane). 
Moreover, to compare the deviations observed during the application of the 
stimulus against the intrinsic variability of the Eulero’s angles due to the non-
ideality of the measurement chain, the experimental standard deviation 
expressed as σd (d ∊{ α | β | γ }), calculated in S1 has been considered as a 
baseline and reported in TABLE VI.XXXV. It is worth noting that the 
comparison between the Complementary filter and the AHRS Kalman filter is 
based on the same sensor raw data coming from each IMU and it is performed 
off-line by using the Matlab R2020a Sensor Fusion Toolbox. 
 

TABLE VI.XXXV 
EXPERIMENTAL STANDARD DEVIATION σd WITHIN S1 FOR THE THREE DUTS AND FOR 

COMPLEMENTARY AND AHRS ALGORITHMS. 

DUT 
COMPLEMENTARY FILTER AHRS KALMAN FILTER 

α [°] β [°] γ [°] α [°] β [°] γ [°] 

#1 0.008 0.006 0.002 0.003 0.003 0.007 

#2 0.005 0.006 0.005 0.004 0.008 0.007 

#3 0.006 0.004 0.004 0.005 0.002 0.004 
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6.7.3.  Random vibration test  
Fig. 6.41 shows the time evolution of the Eulero’s angles (α, β, γ) during 
random vibration test, in the case of the Complementary filtering. In this case, 
the raw data provided by DUT #1 have been used to evaluate the angles when 
the stimulus is applied on the X-axis. A similar scenario is illustrated in Fig. 
6.42 where the AHRS Kalman filter algorithm has been used. 
 

 
Fig. 6.41. Time evolution of Eulero’s angles during random vibration test considering 

the Complementary algorithm (excitation on X-axis and DUT #1 are involved). 

 

 
Fig. 6.42. Time evolution of Eulero’s angles during random vibration test considering 

the AHRS algorithm (excitation on X-axis and DUT #1 are involved). 
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Observing the previous figures it is possible to see that, during the application 
of the random vibration test, all the angles are affected by the stimulus by 
showing a significant deviation concerning the ideal one (i.e., zero degrees). To 
quantify such a deviation, at first, the Root Mean Square (RMS) value of such 
angles have been evaluated in S1, S2, and S3, respectively. Then, the following 
figures of merits (called absolute angle deviations) have been calculated as: 
 

 𝛥𝛥𝛥𝛥𝑎𝑎 = �𝛼𝛼𝑎𝑎,𝑆𝑆2 − 𝛼𝛼𝑎𝑎,𝑆𝑆1� (6.6) 

 𝛥𝛥𝛥𝛥𝑎𝑎 = �𝛽𝛽𝑎𝑎,𝑆𝑆2 − 𝛽𝛽𝑎𝑎,𝑆𝑆1� (6.7) 

 𝛥𝛥𝛥𝛥𝑎𝑎 = �𝛾𝛾𝑎𝑎,𝑆𝑆2 − 𝛾𝛾𝑎𝑎,𝑆𝑆1� (6.8) 

 
Where: 

• a denotes the axis of excitation of the stimulus; 
• αa,S2 denotes the RMS value of α within S2; 
• αa,S1 denotes the RMS value of α within S1; 
• βa,S2 denotes the RMS value of β within S2; 
• βa,S1 denotes the RMS value of β within S1; 
• γa,S2 denotes the RMS value of γ within S2; 
• γa,S1 denotes the RMS value of γ within S1.    

  
Based on the above-defined figures of merit, the results achieved for the 
Complementary and AHRS filtering are reported in TABLE VI.XXXVI. By 
analyzing such results, the following considerations can be drawn: 

• The values of Δαa, Δβa, and Δγa are significantly bigger than the 
corresponding σd for every device and for every axis of excitation. 

• For all DUTs, the lowest values of Δαa, Δβa, and Δγa have been 
achieved when stimulus is applied on the Y-axis in case of the 
Complementary algorithm, whereas the AHRS algorithm shows the 
lowest deviations in case of stimulus applied on the Z-axis. 

• For both algorithms, once fixed the stimulus excitation axis, the three 
considered DUTs show different values of Δαa, Δβa, and Δγa. This can 
be imputable to the combination of the following non-ideality:  
o The intrinsic features dispersion of the considered low-cost IMUs. 
o The poor repeatability of the measurement chain (i.e., embedded 

accelerometers, gyroscopes and magnetometers, antialiasing low-
pass filters automatically set by the DUTs, quantization devices) 
when operating under vibration. 
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o The residual differences of installation (mainly orientation and 
clamping) of the three DUTs on the shaker plane. As a 
consequence, for a given excitation axis (X, Y or Z) and a given 
angle (α, β or γ), the combined effects of the above-described 
non-ideality led to the results shown in TABLE VI.XXXVI, which 
can roughly give the order of magnitude and the range of 
variation of the Δαa, Δβa, and Δγa concerning both the 
considered kinds of DUT and stimulus. For the same reasons, a 
worst-case in terms of stimulus excitation axis cannot be 
univocally identified.   

• Comparing the two algorithms, the values of Δαa, Δβa, and Δγa are 
generally lower for Complementary than AHRS. This behavior seems 
to be in opposition to the literature regarding those typologies of filters 
[250]. However, it is probably imputable to the different intrinsic 
operations of the filters: the unexpected vibrations for the two 
algorithms cause different responses, which in case of the 
Complementary, where there is not a weight of the actual angular 
estimations with the previous one, lowers the influence of the disturbs. 
On the opposite, the AHRS seems to be more affected by the disturbs 
due to an integral error depending on the filter's structure itself. 

 
TABLE VI.XXXVI 

ABSOLUTE ANGLE DEVIATIONS FOR COMPLEMENTARY AND AHRS ALGORITHMS. 
COMPLEMENTARY FILTER 

DUT 
EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

Δαx [°] Δβx [°] Δγx [°] Δαy [°] Δβy [°] Δγy [°] Δαz [°] Δβz [°] Δγz [°] 

#1 9.2 6.7 15.4 8.3 49.1 1.3 87.1 42.7 76.4 

#2 67.6 46.3 86.6 0.6 15.4 3.6 36.4 22.9 42.3 

#3 44.8 26.9 73.2 11.1 37.3 14.3 18.9 18.3 31.9 

AHRS KALMAN FILTER 

DUT 
EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

Δαx [°] Δβx [°] Δγx [°] Δαy [°] Δβy [°] Δγy [°] Δαz [°] Δβz [°] Δγz [°] 

#1 90.5 39.1 72.5 155.1 73.7 129.2 81.0 51.1 84.5 

#2 53.3 24.3 116.3 87.5 41.5 127.4 11.5 69.6 20.4 

#3 49.6 52.2 105.9 75.7 50.8 155.2 139.9 48.5 95.7 
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Finally, after the execution of all the random vibration tests, the experimental 
standard deviation, σd (d ∊{ α | β | γ }) has been again calculated and reported 
in TABLE VI.XXXVII. Comparing such values with ones shown in TABLE 

VI.XXXV, they are very similar. Consequently, they confirm how the results 
achieved during the random vibration tests are not due to damages or 
malfunctioning of the DUTs that could be occurred during the application of 
the stimulus.   
 

TABLE VI.XXXVII 
EXPERIMENTAL STANDARD DEVIATION σd WITHIN S3 DURING RANDOM VIBRATION FOR THE THREE 

DUTS AND FOR COMPLEMENTARY AND AHRS ALGORITHMS. 

DUT 
COMPLEMENTARY FILTER AHRS KALMAN FILTER 

α [°] β [°] γ [°] α [°] β [°] γ [°] 

#1 0.006 0.004 0.003 0.006 0.004 0.003 

#2 0.009 0.011 0.003 0.007 0.003 0.002 

#3 0.010 0.012 0.016 0.010 0.011 0.017 

 
 

6.7.4.  Sinusoidal vibration test  
As an example, Fig. 6.43 shows the RMS values of α versus the frequency 
during the application of the sinusoidal test in the case of Complementary filter 
algorithm, for DUT #1 and when the stimulus is applied on the X-axis. Fig. 
6.44 shows the same scenario in case of AHRS Kalman filter. 
 

 
Fig. 6.43. Evolution of α versus frequency during sinusoidal vibration test in case of 

Complementary filter (excitation on X-axis and DUT #1 are involved). 
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Fig. 6.44. Evolution of α versus frequency during sinusoidal vibration test in case of 

AHRS Kalman filter (excitation on X-axis and DUT #1 are involved). 

 
In particular, within S2 a stimulus according to the vibration test profile 
described in section 6.5.2.2 has been applied by considering a maximum 
acceleration value equal to 2g. Then, the RMS values of Eulero’s angles have 
been calculated over each frequency point belonging to the sweep range 
20-600 Hz. This frequency range has been selected by taking into account the 
dynamics of typical applications. 
Comparing Fig. 6.43 and Fig. 6.44 it is possible to see that the frequency 
response of both algorithms shows a not flat behavior highlighting a wide 
dispersion over the whole frequency range. As a matter of fact, this behavior 
can be imputable to mechanical resonances of the low-cost sensors 
(accelerometers, gyroscopes, magnetometers) employed in the DUTs, which in 
turn propagate through the filtering algorithms. Similar behaviors were 
achieved for β and γ. 
To quantify such a dispersion and the deviation with respect to the quite zone 
before the test S1, the mean value and standard deviation of the observed RMS 
values over the whole frequency range (hereinafter µf and σf, respectively), for 
each Eulero’s angle, have been evaluated. 
TABLE VI.XXXVIII compares the obtained results by showing such values for 
each stimulus excitation axis and for both the considered filtering algorithms. 
From the analyses of such results, some consideration can be drawn: 

• Both Complementary and AHRS filters show a value of µf ≠ 0 for every 
DUT, for every excitation axis and for every considered Eulero’s angle.  

• For both Complementary and AHRS filters, the highest value of µf and 
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σf are observed in the case of the angle γ, meaning that, inside the 
considered frequency range (20-600 Hz), the evolution of γ is 
characterized by the greatest variability around the greatest mean 
value. 

• Comparing the corresponding values in the table, they are very similar 
both in terms of µf and σf. 

• As it happened in the case of random vibration tests, once fixed the 
stimulus excitation axis and the Eulero’s angle, the three considered 
DUTs show different values of µf and σf which can be mainly imputable 
to the intrinsic features dispersion of the adopted low-cost DUTs, to 
poor repeatability of all the measurement chain (embedded sensors, 
filters, and quantization devices) when operating under vibration 
conditions, as well as to the residual differences of installation (mainly 
orientation and clamping) of the three DUTs on the shaker plane. 

 
TABLE VI.XXXVIII 

MEAN RMS AND STANDARD DEVIATION ANGLE IN THE RANGE 20-600 HZ FOR COMPLEMENTARY AND 
AHRS ALGORITHMS. 

COMPLEMENTARY FILTER 

DUT 

EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

α [°] β [°] γ [°] α [°] β [°] γ [°] α [°] β [°] γ [°] 

μf σf μf σf μf σf μf σf μf 

#1 7.5 1.6 29.5 5.0 46.8 14.8 5.8 42.7 61.1 

#2 56.7 15.8 3.1 1.2 85.7 16.0 45.3 51.2 57.8 

#3 15.6 4.8 10.4 9.4 57.5 12.9 71.3 46.2 70.8 

AHRS KALMAN FILTER 

DUT 

EXCITED AXIS: X EXCITED AXIS: Y EXCITED AXIS: Z 

α [°] β [°] γ [°] α [°] β [°] γ [°] α [°] β [°] γ [°] 

μf σf μf σf μf σf μf σf μf 

#1 7.6 1.6 29.9 5.1 46.0 14.9 11.9 43.9 61.5 

#2 57.1 15.8 3.2 1.2 85.9 15.9 50.8 60.6 58.3 

#3 11.5 8.0 17.7 10.9 57.7 12.9 28.3 16.8 71.3 

 
Once again, the results shown in TABLE VI.XXXVIII can roughly give the order 
of magnitude and the range of variation of the Δαa, Δβa, and Δγa concerning 
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both the considered kinds of DUT and stimulus. 
Finally, after the execution of all the sinusoidal vibration tests, the 
experimental standard deviation, σd (d ∊{ α | β | γ }) has been again calculated 
and reported in TABLE VI.XXXIX. Comparing such values with ones shown in 
TABLE VI.XXXV, they are still very similar, and in any case, neglectable 
concerning µf and σf observed during the application of the stimulus. 
Consequently, they confirm how the results achieved during the sinusoidal 
vibration tests are not due to damages or malfunctioning of the DUTs that 
could be occurred during the application of the stimulus. 
 

TABLE VI.XXXIX 
EXPERIMENTAL STANDARD DEVIATION σd WITHIN S3 DURING SINUSOIDAL VIBRATION FOR THE THREE 

DUTS AND FOR COMPLEMENTARY AND AHRS ALGORITHMS. 

DUT 
COMPLEMENTARY FILTER AHRS KALMAN FILTER 

α [°] β [°] γ [°] α [°] β [°] γ [°] 

#1 0.008 0.005 0.011 0.008 0.006 0.011 

#2 0.005 0.014 0.007 0.004 0.005 0.009 

#3 0.016 0.015 0.023 0.019 0.016 0.021 

 
 

6.7.5.  Temperature step-test  
To analyze the effect of the temperature on the considered filtering algorithms, 
the orientations of the DUTs employed have been calculated in three 
dimensions coordinate system in agreement with the sensor plane. In addition, 
the IMUs sensors' output has been scaled and converted to meet the algorithms' 
inputs requirements. 
Both the algorithms have been run on the data acquired from the IMUs during 
the temperature step-test. 
These analyses have shown how even if the variation in terms of raw data 
outcoming from the sensors seems to be a constraint in a small range, its 
propagation reflects significantly on calculating the Eulerian angles in both 
Complementary filter algorithm and AHRS Kalman filter algorithm.  
More in detail, considering Fig. 6.45, it can be seen that the application of the 
constant temperature step results in a significant deviation (in some cases 
approaching ± 200°) of the alpha angle for both the algorithms.  
The estimation of the beta and gamma angles is less affected by the IMU 
Kalman filter's temperature test than the complementary filter. This fact is 
probably due to the IMU Kalman filter's capacity to take into account the 
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observation made in the last instants to correct the angle deviation in 
consequence of small perturbation. 
 

 

 
Fig. 6.45. Eulerians’angles calculated by the IMU Kalman filter in the upper subplot 

and by the Complementary filter in the bottom subplot. 

 
 
 

6.8.  Case study B: DC-DC converters for 
diagnostic units 
Wireless Sensor Networks (WSNs) represent an optimal tradeoff to implement 
effective diagnostic in industrial plants [251], [252], allowing to monitor several 
condition parameters, assessing the system’s remaining useful life of industrial 
plants  [253], ensuring fault tolerance,  saving costs and minimizing the plant 
downtimes. WSNs can be equipped with several different kinds of transducers, 
and each node of the network can be used to monitor different equipment using 
different sets of sensors. Moreover, a WSN can cover a large area of the plant 
and its architecture can be easily extended and updated with more nodes 
allowing a sparsely distributed monitoring of the system. For this reason, 
diagnostic and Condition Monitoring (CM) units play a critical role in the 
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operation and maintenance of industrial plants [15], [254]. In this scenario, it is 
fundamental to ensure that the diagnostic unit itself works properly during the 
complete system life cycle. However, diagnostic units installed in industrial 
plants or in offshore applications must endure several external stress sources 
that influence the performances of the devices. Both electrical/electronic 
performances and reliability are deeply affected by harsh environments, such 
as: hot temperature (e.g. units located nearby combustion chambers or motors, 
heaters, etc.), cold temperature (e.g. units located nearby cryogenic equipment 
or units located in offshore plants), rapid thermal excursion (e.g. units located 
on wind turbines, pipelines, etc.), mechanical shocks and random vibrations 
(i.e. produced by the wind, or by nearby rotor machines, system in motion, 
etc.) and high relative humidity [211], [215].  
One of the most critical elements of a WSN-based diagnostic unit used in plant 
CM is the power supply. The main reasons for such criticality are threefold: 

• The aim of the power supply is to convert energy from the primary 
source and to provide suitable supplies to the different parts of the 
diagnostic unit (e.g. microcontroller and elaboration units, transceiver, 
active transducers, etc). Therefore, a failure of the DC-DC converter 
inevitably lead to the unavailability of the entire node [255].    

• WSNs are usually self-powered using a battery pack. Therefore, the 
conversion efficiency of the DC-DC converter used to supply the node 
is a fundamental aspect in order to guarantee a longer useful life of the 
unit [256]. Since each node collects and transmits data only in short 
intervals during the day, in the course of most of its life the node 
operates in energy saving mode. Therefore, the DC-DC converter will 
mainly operate under light load conditions. As known, the most used 
modulation technique for DC-DC converters is the Pulse Width 
Modulation (PWM). However, literature shows how PWM is affected 
by low conversion efficiencies with light loads. For this reason, in this 
work, a different control strategy called Pulse Skipping Modulation 
(PSM) has been used in order to increase the conversion efficiency and 
therefore the node autonomy. However, a comparison between PSM 
and PWM is presented to emphasize the benefits of PSM and to 
validate the results of the other analysis.  

• Many electrical parameters of the DC-DC converter (e.g. efficiency, 
output ripple, input ripple, step response, etc.) are deeply affected by 
the harsh environment in which the converter could work in case of 
industrial onshore/offshore plants [257].   
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6.8.1.  Related works 
The characterization of the power supply under harsh stress conditions is a 
critical and fundamental aspect that surely must be taken into account during 
the design of a new customized DC-DC converter. However, in recent literature, 
most of the papers dealing with the design of innovative power supply 
characterize the performance of their device only in standard operating 
conditions (see for instance but not only [258]–[260]). There are no papers in 
recent literature dealing with the design and characterization of DC-DC 
converters under more than one external stress source. For example, [261], [262] 
presents the characterization of power converters under harsh environment 
dealing only with temperature stress. Van De Sande et al. [263] analyses the 
temperature dependence of electric variables in DC-DC converter.  In [264] a 
PWM-based converter for high temperature is designed and tested using a 
thermal cycling test. The results of a highly accelerated thermal test are 
presented in [265] in order to highlight the MOSFET failure mechanisms 
without taking into account the effects that temperature induced on the 
converter performances. In [266], the characterization under temperature stress 
of a sensor node for wireless monitoring has been presented. Kosai et al. [267] 
presents the characterization of a boost converter under high temperature 
conditions, while a characterization under low temperature operation is 
presented in [268]. Quite the contrary, scenarios including high humidity or 
excessive random vibrations have never been dealt with in literature. 
Furthermore, the manufacturers of commercial equipment miss to consider such 
important characterization under considerable high stress levels. One of the 
main reasons for this lack is that there are no specific standards currently 
available to test the performances of power electronics for industrial 
applications.  
 
 

6.8.2.  Aim of the test procedures 
Trying to fill the literature gaps described in the previous section, this work 
aims to achieve the following objectives: 

1. Fill the above-mentioned gap characterizing the performances of a 
customized self-made DC-DC converter used in WSN-based diagnostic 
systems for industrial plants.  

2. Test the electrical performances of the proposed converter under harsh 
environmental conditions typical of industrial and manufacturing 
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processes. Differently from all the other papers in literature, the 
proposed characterization is based on a sequence of five stress tests 
including high and low temperatures, high humidity and wideband 
vibration stress sources. 

3. Investigate reliability and infant mortality of the converter using a 
customized Environmental Stress Screening (ESS) test plan to expose 
early failures.  

4. Evaluate the advantages of the PSM over the PWM and characterized 
the behavior of each modulation for different operating temperatures. 
Since the DC-DC converter may operate in harsh environment, a 
comparison in terms of efficiency conversion between PWM and PSM 
for a DC-DC Buck converter under light load and high temperature 
conditions is presented. The advantages and disadvantages obtained 
from the proposed study are highlighted. 

 
 
 

6.9.  Case study B: Test plan and Measurement 
setup  
This section presents the proposed ESS-based test plan and the measurement 
setup used to characterize the performance of the customized DC-DC 
converters under test. 
 
 

6.9.1.  Structure of the test plan 
The proposed test plan for characterization of reliability and electrical 
parameters of DC-DC converters is basically composed by three major parts: a 
temperature-based test plan (composed by two consecutive tests integrating 
temperature and humidity stresses), a vibration-based test plan (composed by 
two consecutive tests) and a comparison between PWM-based converters 
(traditional solution) and PSM-based converters (innovative solution) under 
temperature stress. 
The characterization of the developed DC-DC converter under harsh conditions 
has been carried out through a customized test plan which integrates different 
test guidelines:  

• Environmental Stress Screening (ESS) according to MIL-HDBK-344 
Rev. A Notice 2 (2012) [191] and in compliance with IEST-RP-PR001.2 
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(2016) [269]. 
• Reliability Stress Screening (RSS) according to IEC 61163-2 (2020) 

[192]. 
 
The base idea of RSS and ESS test plans is to expose a new electronic device 
to stress (or sequence of stresses) in order to expose latent defects manifesting 
transient or permanent failure mechanisms during the screening process. After 
the screening process, the surviving population can be assumed to have higher 
reliability than a similar unscreened population since the intrinsic failure due 
to manufacturing process have already been exposed. This reduces the failure 
rate of the components and consequently increase the device reliability [126]. 
Note that RSS and ESS procedures help manufacturers to detect product 
defects and production flaws exposing all the failures that would otherwise be 
encountered by the end user during the first hours of use. Quite the opposite, 
this kind of test does not aim at exposing random defects, which would appear 
after a long time of operation.  
As a matter of fact, effective RSS or ESS procedures require stresses of sufficient 
magnitude and time duration to precipitate failures from latent defects without 
accumulating significant damage to the remaining non-defective items. 
Furthermore, RSS and ESS test plans are also extremely useful to characterize 
the performances of the device operating in harsh conditions.  
Note that the effects of RSS and ESS test plans are to eliminate early failures 
and thus to decrease the failure rate only in the first region of the bathtub 
curve (for more information about the failure rate trend and the bathtub curve 
see [131]). For a complete analysis of the device failure rate during the useful 
life other methods have to be performed, such as a reliability prediction by 
means of handbooks (see for instance [185], [270], [271]) or an accelerated life 
test plan (see for instance [123], [129], [190]).    
The proposed test plan is based on five consecutive tests. Similarly to the 
experimental characterization of case study A, also in this case before each test, 
a precondition phase is required to characterize the performances of the devices 
in standard conditions. After the test is completed, a stabilization phase at 
standard conditions is required to achieve useful information about the effects 
of the test on the devices.  
A flowchart of the test plan including five different test procedures is depicted 
in Fig. 6.46. Each test includes 8 DC-DC converters. A set of 8 devices 
represents an optimal trade-off for RSS-based test plan in terms of cost, 
robustness and repeatability of the results, validation of the methods, 
investigation of early failures and characterization of the performances. 
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Fig. 6.46. Flowchart of the proposed test plan including five different test procedures. 

 
 

6.9.2.  Detailed description of the tests 
The detailed description of the proposed tests is the following: 
 

TEST A. Thermal cycling test. It consists of a cyclic repetition of low 
temperature TLOW = -20 °C and high temperature THIGH = 80 °C 
maintained constant for an exposition time of 1 h. During the exposition 
at 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 the relative humidity is set to RH = 95%. The transition 
between TLOW and THIGH is performed at 3 °C/min. As illustrated in 
Fig. 6.47 two consecutive cycles have been carried out. The test has 
been developed following the guidelines of the international standards 
JEDEC JESD22-A100C (2007) [272], MIL-STD-883L (2019) [273] and 
IEC 60068-2-39 [274]. 
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Fig. 6.47. Test plan definition for the characterization of DC-DC converters under 

harsh conditions. Test A: Thermal cycling test. Temperature and humidity stresses are 
involved. 

 
TEST B. Temperature Step Test. It consists of a sequence of 

temperature steps ΔT = 5 °C maintained constant for an exposition 
time of 10 minutes. The temperature interval is between TLOW = -20 °C 
and THIGH = 80 °C. The transition between two consecutive steps is 
performed at 3 °C/min. The test is illustrated in Fig. 6.48 and it has 
been developed following the guidelines of the international standards 
ISO 16750-4 (2010) [244] and IEST-RP-PR003.1 (2012) [245].  
 

 
Fig. 6.48. Test plan definition for the characterization of DC-DC converters under 

harsh conditions. Test B: Temperature Step test. 
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TEST C. Random Vibration Test. It consists of a wideband random 
vibration profile described by an Acceleration Spectral Density (ASD) 
in compliance with the international standards IEC 60068-2-64 [230] 
and JEDEC JESD22-B103B.01 (2016) [232]. The vibration profile 
resembles the one presented for the characterization of the Inertial 
Measurement Units (Case study A) defined in section 6.5.2.1. The 
devices have to endure vibration between fmin = 5 Hz and fmax = 1 kHz 
with a maximum value which has been set equal to ASD = 0.02 g2/Hz 
reached between fA = 30 Hz and fB = 200 Hz. The test is illustrated in 
Fig. 6.49 and it must be repeated three times along X, Y and Z axis for 
a duration of 30 minutes per axis. 
 

 
Fig. 6.49. Test plan definition for the characterization of DC-DC converters under 

harsh conditions. Test C: Random Vibration test. 

 
TEST D. Sinusoidal Vibration Test. It consists of a single sweep of 

sinusoidal harmonics between fmin = 5 Hz and fmax = 1 kHz with 
maximum peak acceleration of Ap = 2g. The vibration profile resembles 
the one presented for the characterization of the Inertial Measurement 
Units (Case study A) defined in section 6.5.2.2. The test is illustrated 
in Fig. 6.50 and it must be repeated along X, Y and Z axis. It has been 
developed following the guidelines of the international standards IEC 
60068-2-6 (2009) [236] and MIL-STD 810G [231]. 
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Fig. 6.50. Test plan definition for the characterization of DC-DC converters under 

harsh conditions. Test D: Sinusoidal Vibration test. 
 

TEST E. High Temperature Test. It consists of a sequence of 
temperature steps ΔT2 = 20 °C maintained constant for an exposition 
time of 1 hour to ensure perfect temperature stability is reached within 
the chamber. It starts at ambient temperature TAMB = 20°C up to 
extremely high temperature TEX_HIGH = 120 °C. Since this test has been 
specifically developed to investigate the advantages bring by the 
introduction of the innovative PSM against the PWM, the set of 8 
DUTs has been divided into two groups: 4 PSM-based converters and 
4 PWM-based converters. Furthermore, the test aims at extending the 
applicability of the results of the other tests, proving the ability of the 
PSM against PWM. 

 
 

6.9.3  Measurement setup 
The purpose of the proposed test plan is the electrical characterization under 
harsh conditions of 8 DC-DC converters specifically developed for this work as 
described in Section 2.6. The DUTs have been mounted on a metallic plate 
which has many purposes: it serves as heat sink facilitating the thermal 
dissipation, it is used as fixture for the DUTs during the vibration test and it 
facilitates the wiring. The base idea of the work is to measure different electrical 
parameters of the DUTs to achieve an overall characterization of the devices 
when they operate under different test conditions. Accordingly, the following 
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measurements have been performed during Test A, Test B, Test C, Test D and 
Test E: 

• Measurement of the conversion efficiency η of the 8 DUTs by means of 
the power meters integrated into the prototype boards.  

• Measurement of the conversion efficiency of one DUT by means of two 
Keithley 2110 5½-digit benchtop digital multimeters. The DMMs used 
in the setup are characterized by 1 mV resolution in the 100 V DC 
voltage range required to measure the input and output voltage of the 
DC-DC converter. The resolution in the 1 A DC current range required 
to measure input and output current is 10 μA. 

• Measurement of the Input Ripple and Output Ripple of one DUT by 
means of a RIGOL DS1104Z, 100 MHz, 1 GSa/s 4-channel digital 
oscilloscope. 

• Measurement of the step response in terms of Input Overshoot, Output 
Overshoot and Response delay using the digital oscilloscope described 
above.   

 
Therefore, a suitable automated measurement setup is required to characterize 
the DUTs in case of standard operating conditions as illustrated in Fig. 6.51.  
 

 
Fig. 6.51. Initial Measurement Setup used to characterize the DUTs in normal 

conditions without external sources of stress. 

 
Along with the benchtop digital multimeters and the digital oscilloscope, the 
measurement also includes a 2-channel power generator and two laptops. The 



ENVIRONMENTAL STRESS SCREENING 

235 
 

first laptop has been used to store data acquired by the digital instruments 
(multimeters and oscilloscopes) while the second laptop has been used to store 
the data acquired by the power meters integrated with the DC-DC converters 
under test by means of USB serial communication interface.  
The setup illustrated in Fig. 6.51  has been used not only for the 
characterization under standard operating conditions but also during the 
implementation of the test profiles used to simulate harsh conditions. Only 
minor adjustments are required, as follow: 

• The DUTs must be inserted inside a climatic chamber to carry out the 
characterization under temperature and humidity stresses. The 
chamber must be able to regulate temperature and humidity at the 
same time and its operating limits must allow the implementation of 
Test A, Test B and Test E. Furthermore, a datalogger equipped with a 
set of k-type thermocouples and one humidity sensor has been used to 
monitor temperature and humidity inside the climatic chamber and to 
acquire data regarding the overheating of the DUTs. 

• In order to carry out Test C and test D under vibration stress, an 
electrodynamic vibration generator (also known as shaker) with an 
associated computer-based control system is required. Two 
accelerometers (i.e. control and monitor) have been used to drive the 
shaker in compliance with the test profile. The setup used in Test C 
and Test D is shown in Fig. 6.52.  

 

 
Fig. 6.52. Experimental setup for characterization of eight DC-DC converters under 

vibration stress (Test C and Test D). 



ENVIRONMENTAL STRESS SCREENING 

236 
 

6.10.  Case study B: Results and Discussion 
This section reports the results achieved on the 8 devices under test during the 
characterization under harsh conditions.  
Fig. 6.53 shows the efficiency variation under temperature and humidity 
stresses during Test A (thermal cycling test). As an example, the efficiency of 
4 out of 8 devices (from DUT 1 to DUT 4) are illustrated using blue trends in 
Fig. 6.53 while temperature inside the chamber during the test is illustrated 
using a red trend. The figure highlights a temperature dependence of the DUTs 
which increase their efficiency at low temperature, and then decrease the 
efficiency when temperature starts increasing. However, the efficiency variation 
during the test remains in a limited range for all the 8 DC-DC converters, with 
a maximum variation range of approximately 1%. This information is 
fundamental to ensure that the efficiency of the converters remain as expected 
when the devices operate at extremely low or extremely high temperature.   
 

 
Fig. 6.53. Efficiency variation (left y axis - blue trend) during Test A (thermal cycling 
test) compared to the temperature of the climatic chamber (right y axis - red trend). 

DUT 1, DUT 2, DUT 3 and DUT 4 are involved. 

 
Fig. 6.54 shows the input ripple of a DUT 1 during test A (blue dotted trend) 
compared to the temperature of the climatic chamber. When the device 
operates at 80 °C the input ripple slightly increases from approximately 80 mV 
up to about 85 mV. Quite the opposite, the output ripple of DUT 1 shown in 
Fig. 6.55 remains approximately constant, with slight variations between 5 mV 
and 6 mV thanks to the optimization of the output capacitor network. This 
proves the goodness of design of the proposed converter which is able to ensure 
a very limited output ripple at both -20 °C and 80 °C.  
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Fig. 6.54. Input ripple of DUT 1 during Test A (thermal cycling test) compared to the 

temperature of the climatic chamber (right y axis - red trend). 

 

 
Fig. 6.55. Output ripple of DUT 1 during Test A (thermal cycling test) compared to 

the temperature of the climatic chamber (right y axis - red trend). 

 
The final analysis of the converter’s performances during Test A involves the 
estimation of the step response analyzing the average input overshoot at -20 °C 
and 80 °C, the average output overshoot at -20 °C and 80 °C and the average 
delay time at -20 °C and 80 °C. The results achieved for DUT 3 are summarized 
in TABLE VI. XL for each temperature and for each cycle. The average input 
overshoot has minor oscillations, but it does not show any particular 
dependence on temperature. Quite the same, the average output overshoot 
remains approximately constant during the complete Test A. However, the 
average delay time shows a significant increase from about 300 μs measured at 
-20 °C up to over 600 μs measured at 80 °C. As a consequence, the high 
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temperature does not influence both input and output overshoots of the 
converter, while it has some significant effects on the delay time. 
 

TABLE VI. XL 
STEP RESPONSE OF DUT 3 ESTIMATION DURING TEST A (THERMAL CYCLING TEST) 

INCLUDING INPUT OVERSHOOT, OUTPUT OVERSHOOT AND RESPONSE DELAY AT LOW AND 

HIGH TEMPERATURES. 

TEMPERATURE CYCLE 
AVERAGE 

INPUT 

OVERSHOOT 

AVERAGE 

OUTPUT 

OVERSHOOT 

AVERAGE 

DELAY 

TIME 
Standard 
conditions 

 25 °C 
--- 21.05 V 14.31 V 298 μs 

-20 °C 
1 20.96 V 14.44 V 301 μs 
2 21.49 V 14.66 V 289 μs 

80 °C 
1 21.84 V 14.24 V 961 μs 
2 21.32 V 14.38 V 638 μs 

 
 
Fig. 6.56 illustrates the efficiency variation under Test B (temperature step 
test) of 4 out of 8 devices (from DUT 5 to DUT 8). The figure proves the 
temperature dependence of the convert’s efficiency already highlighted by Test 
A (Fig. 6.53). 
 

 
Fig. 6.56. Efficiency variation (left y axis - blue trend) during Test B (temperature 
step test) compared to the temperature of the climatic chamber (right y axis - red 

trend).  DUT 5, DUT 6, DUT 7 and DUT 8 are involved. 
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During the 5 °C increasing steps of Test B the efficiency of all the 8 DC-DC 
converters slightly decreases reaching a minimum value when the device 
operates around 80 °C. Then, during the 5 °C decreasing steps, the efficiency 
slowly increases. However, as already happen during Test A, the efficiency 
variations remain in a limited range with a maximum variation of 
approximately 1 %. As in test A, the input ripple and the output ripple of the 
converters have been evaluated also during the temperature step test (Test B). 
The measurement results of DUT 4 are illustrated in Fig. 6.57 and Fig. 6.58 
showing the input and output ripple respectively.  
 

 
Fig. 6.57. Input ripple of DUT 4 during Test B (temperature step test) compared to 

the temperature of the climatic chamber (right y axis - red trend). 

 
Fig. 6.58. Output ripple of DUT 4 during Test B (temperature step test) compared to 

the temperature of the climatic chamber (right y axis - red trend). 
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The input ripple follows the temperature trend slightly increasing when 
temperature increases, and decreasing when the temperature is lowered. Quite 
the contrary, the output capacitors allow to maintain the output ripple 
approximately constant nearby 5.5 mV during Test B.  
The step response of DUT 5 evaluated during Test B is depicted in Fig. 6.59. 
The top subplot shows the input overshoot, while the bottom subplot shows 
the output overshoot. The input overshoot has some minor variation of 
approximately 0.8 V not related to the temperature profile. Instead, the output 
overshoot is more stable, but it shows a minor increase during the lowering 
phase of the test.  
 

 
Fig. 6.59. Step response of DUT 5 estimation during Test B (temperature step test). 
The top subplot illustrates the input overshoot, while the bottom subplot shows the 

output overshoot. 

 
Fig. 6.60 highlights the overheating of some critical components included in the 
developed DC-DC converters during Test B (i.e. the microcontroller, the 
resonant inductor, the 25 Ω load resistance, the power MOSFET and the driver 
circuit). The height of each bar in Fig. 6.60  represents the average overheating 
of the 8 DUTs during rising phase (blue bars) and during lowering phase (red 
bar) of the test. During the lowering phase, the average overheating is greater 
than the rising phase because of thermal inertia. The interesting aspect standing 
out from the figure is that the MOSFET and the driver suffer a significant 
overheating during the test, thus adequate countermeasures to dissipate the 
heath during normal conditions should be implemented. On the contrary, the 
overheating of the microcontroller is not excessive.   
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Fig. 6.60. Overheating of some critical components that make up the converters. The 

height of each bar stands for average overheating of the 8 converters during rising 
phase (blue bars) and lowering phase (red bars) of Test B. 

 
To provide overall information of the efficiency variations Δη during both Test 
A and Test B, Fig. 6.61 compares the results measured from all the 8 DUTs. 
The yellow bars represent Test A while the blue bars stand for Test B. Both 
tests have led to a minor variation of the conversion efficiency of all the 8 
developed DC-DC converters. However, at the end of both tests, no failure 
mechanisms have been triggered and all the devices have kept working properly.  
This means that the temperature and humidity stresses of the proposed ESS 
test plan were not able to expose any hidden failure.  
 

 
Fig. 6.61. Comparison of the efficiency variation Δη during Test A (thermal cycling 

test - yellow bars) and Test B (temperature step test - blue bars). 



ENVIRONMENTAL STRESS SCREENING 

242 
 

After the conclusion of the thermal tests A and B, the test plane moves to the 
vibration stress carrying out random (Test C) and sinusoidal (Test D) vibration 
along X, Y and Z axis. 
As an example, Fig. 6.62 compare the efficiency of DUT 6 before and after the 
execution of the random vibration test along Z axis.  
 

 
Fig. 6.62. Efficiency of DUT 6 before and after Test C (blue trends) compared to the 

efficiency measured during the test (yellow line). Z axis is involved. 

 
During the test execution, the variability of the converter efficiency suddenly 
increases with respect to the standard conditions measured during the 
preconditioning phase. However, this unexpected behavior is not a major 
criticality for the system under test because of three reasons: 

• The increment of the efficiency under vibration stress is not remarkable. 
In fact, it remains consistently within the 2% variability. 

• The mean value of the converter efficiency before and after the test is 
approximately equal to the efficiency measured during the test running. 
This means that, overall, the vibration stress does not affect the 
efficiency of the device.  

• After the test conclusion, the efficiency of the converter goes back to 
the values before the test, highlighting that no permanent failure 
mechanisms have been triggered during the test.   

 
The same results have been obtained for every device and for each excitation 
axis. For the sake of brevity, the mean value and the standard deviation of the 
8 DUT’s efficiency is reported in TABLE VI.XLI.  
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TABLE VI.XLI 
PERFORMANCE ANALYSIS OF THE EIGHT DUTS UNDER VIBRATION. BOTH TEST C AND 

TEST D ARE INVOLVED. VIBRATION APPLIED ALONG X AXIS. 
TEST 

ZONE 
DUT 1 DUT 2 DUT 3 DUT 4 DUT 5 DUT 6 DUT 7 DUT 8 

Pretest 

Mean Value μ 

89.145% 89.371% 89.532% 89.344% 89.382% 88.416% 88.911% 87.091% 

Standard Deviation σ 

0.003% 0.003% 0.003% 0.005% 0.0021 0.081% 0.062% 0.004% 

Test C 
Random 
Vibration 

Mean Value μ 

89.224% 89.314% 89.481% 89.334% 89.329% 88.388% 88.673% 86.973% 

Standard Deviation σ 

0.026% 0.011% 0.004% 0.012% 0.0099 0.184% 0.091% 0.023% 

Test D 
Sine 

Vibration 

Mean Value μ 

89.255% 89.304% 89.434% 89.334% NaN 88.379% 88.742% 86.985% 

Standard Deviation σ 

0.006% 0.004% 0.004% 0.012% NaN 0.207% 0.057% 0.004% 

After 
test 

Mean Value μ 

89.247% 89.304% 89.408% 89.312% NaN 88.424% 88.923% 87.063% 

Standard Deviation σ 

0.031% 0.002% 0.010% 0.004% NaN 0.218% 0.098% 0.002% 

 
In the table, the performance before the test is compared with the efficiency 
during Test C (random vibration), during Test D (sinusoidal vibration) and 
after the test execution. The table shows the measurement results when the 
vibration is performed along X axis. However, similar results have been 
achieved also during the actuation of the test toward Y and Z axis. It is 
important to note that Test C expose a hidden failure on DUT 5. At the end 
of the Random Vibration Test the DC-DC converter number 5 stopped working 
because of some problems during the manufacturing of the board. TABLE 

VI.XLI reports ‘NaN’ in the column of DUT 5 to highlights this issue.  
Along with the characterization of the devices, the proposed test plan had the 
aim of precipitate any eventual hidden failure of the converters under test. In 
this case, the two temperature tests were not able to expose such failure, while 
the random vibration did. The failed solder joints of DUT 5 that lead to the 
converter failure are shown in Fig. 6.63. 
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Fig. 6.63. Zoom of the bottom side of DUT 5 highlighting the failed solder joints as a 

consequence of Test C (Random Vibration test). 

 
Another important analysis proposed in this work is the comparison between 
the PWM and PSM for different operating temperatures performed during Test 
E. The main aim of the test was to emphasize the benefits of PSM-based 
converters against PWM-based converters under light load conditions.  
In Fig. 6.64(a), the DC-DC conversion efficiency for different loads is shown. 
For each modulation, the efficiency has been evaluated at two temperature, 
namely T = 20 °C and T = 120 °C. The variations of efficiency ΔηT due to the 
temperature excursion are represented using double end arrows. The figure 
highlights how PSM allows to maintain remarkably high efficiency at both 
ambient temperature TAMB and extremely high temperature TEX_HIGH over a 
wide range of output power, from 0.5 W up to 20 W. For instance, the most 
striking result to emerge is that the higher efficiency decrease for the PSM-
based converter is approximately ηT = 0.8 % (increasing temperature from 
20°C up to 120°C). On the other hand, the PWM-based converter decreases its 
efficiency by almost 7% moving from 20 °C up to 120 °C. 
In Fig. 6.64(b), the gain of efficiency using the PSM respect to PWM for 
different output power and operating temperatures is highlighted. The 
observations that can be made are: 

• The conversion efficiency can be remarkably improved in case of light 
load conditions using the PSM. The switching losses for light load are 
predominant and highly affect the conversion efficiency. 

• The efficiency of the converter with PWM is highly affected by the 
temperature. On the other hand, the converter efficiency with PSM 
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remains almost unchanged with the temperature. Thus, the PSM 
modulation is suggested in every application field in which the 
operating temperature varies in a wide range.  

 
As a consequence, PSM was selected as the best suited modulation for WSN 
application, where each node may operate in harsh environment. 
 

 
(a) 

 
(b) 

Fig. 6.64. Comparison between PWM and PSM efficiency for different operating 
temperatures. (a) Difference of efficiency for different power and temperature. (b) 

Comparison between PSM and PWM for different loads and temperatures. 
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CHAPTER 7 
 
CONDITION MONITORING: FROM 

PLANNING TO IMPLEMENTATION 
 
 
Condition monitoring (CM) plays a central role in 
maintenance-decision making of complex systems. Thus, it 
has been included in the proposed Reliability Life Cycle 
procedure. This chapter provides an overview of CM 
techniques taking a wind turbine as an example. An 
innovative diagnostic-oriented methodology to select the 
optimal maintenance policy is presented as an alternative 
to the classical RCM decision-making process. The chapter 
also presents a new data-driven CM system to efficiently 
monitor the health state and detect damages in the wind 
turbine by means of measurements of critical parameters. 
Finally, an innovative hybrid-tree Wireless Sensor Network 
is presented in order to effectively and efficiently implement 
condition monitoring on the whole wind farm. 1, 2   

 
  

1 The innovative RCM approach and the application to the Yaw system included in this 
chapter have been published as “M. Catelani, L. Ciani, D. Galar, and G. Patrizi, 
“Optimizing Maintenance Policies for a Yaw System Using Reliability-Centered 
Maintenance and Data-Driven Condition Monitoring,” IEEE Trans. Instrum. Meas., 
vol. 69, no. 9, pp. 6241–6249, Sep. 2020. “. 
2 The part of this chapter related to the condition monitoring of the whole wind farm 
has been published as “L. Ciani, A. Bartolini, G. Guidi, and G. Patrizi, “A hybrid tree 
sensor network for a condition monitoring system to optimise maintenance policy,” 
ACTA IMEKO, vol. 9, no. 1, pp. 3–9, 2020. 
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7.1.  Overview of maintenance planning 
Since the last years, diagnostics process became fundamental in several different 
field of applications. Diagnostic is now an essential part of performance 
requirements in Industry 4.0, especially for industrial, energy and 
transportation system [34]–[36], [275]–[277]. Diagnostic is used to evaluate the 
current health state of the system under test predicting its remaining useful life 
based on features that capture the gradual degradation of its operational 
capabilities. As a matter of fact, diagnostic procedures allow to improve 
reliability, availability, maintainability and safety (RAMS) parameters of 
complex system, ensuring that the equipment works successfully and reducing 
down-time due to unexpected failures [278]–[282].  
Condition monitoring (CM) is one of the most effective and powerful diagnostic 
procedure: CM is the process of monitoring one or more condition parameters 
in machinery to identify some changes that are indicative of an incipient fault 
or equipment health degradation [148]. In the past, condition monitoring was 
applied simply through routine manual diagnostic actions but, with the 
introduction of low-cost sensors and automated monitoring systems, online 
data-driven condition monitoring was adopted.  
Condition monitoring is a type of condition-based maintenance (CBM) used to 
select and survey parameters from the sensors placed in the system in order to 
detect a change in the health machine condition [283], [284].  
During the design phase of a product or plant the assessment of the optimal 
diagnostic and failure management policy is a critical phase that could be 
implemented using the Reliability centred maintenance (RCM) procedure. 
RCM allows to efficiently and effectively achieve the required safety, 
availability and economy of operation. Reliability Centred Maintenance 
provides a decision process to identify applicable and effective diagnostic and 
preventive maintenance requirements for equipment in accordance with the 
safety, operational and economic consequences of identifiable failures, and the 
degradation mechanisms responsible for those failures. RCM uses a FMEA 
analysis to lead the diagnostic and maintenance assessment toward the most 
cost-efficient and cost-effective solution. According to the international 
standard IEC 60300-3-11, the RCM procedure follows five steps providing a 
comprehensive program that addresses not only the analysis process but also 
the preliminary and follow-on activities necessary to ensure that the RCM effort 
achieves the desired results [285]–[288]: 

1. Initial definition (Availability requirements, maintenance 
specification, environment and so on); 

2. Failure modes and effects analysis;  
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3. Identification of the optimal maintenance task using the decision-
making diagram; 

4. Implementation of corrective actions; 
5. Continuous improvements that give information to improve steps 2 

and 3. 
 
The above-mentioned five steps are summarized in Fig. 7.1. 
 

 
Fig. 7.1. Flow chart of the RCM process including five consecutive steps in order to 

select the optimal maintenance policy 

  
Steps 2 and 3 are the core of Reliability Centred Maintenance. The 

“Identification of the optimal maintenance task” (step 3) is guided by the 
FMEA report that provides important information to select the most 
appropriate and effective failure management policy. In compliance with the 
international standard IEC 60300-3-11, the main maintenance task are [288]: 

• Condition monitoring: it is a continuous or periodic task to evaluate 
the condition of an item in operation against pre-set parameters in 
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order to monitor its deterioration. It may consist of inspection tasks, 
which are an examination of an item against a specific standard. 

• Scheduled restoration: it is the work necessary to return the item to 
a specific standard. Since restoration may vary from cleaning to the 
replacement of multiple parts, the scope of each assigned restoration 
task has to be specified. 

• Scheduled replacement: it is the removal from service of an item at 
a specified life limit and replacement by an item meeting all the 
required performance standards. 

• Failure-finding (FF): it is a task to determine whether or not an 
item is able to fulfil its intended function. It is solely intended to 
reveal hidden failures. A failure-finding task may vary from a visual 
check to a quantitative evaluation against a specific performance 
standard. Some applications restrict the ability to conduct a 
complete functional test: in such cases, a partial functional test may 
be applicable. 

• No preventive maintenance: in some situations, no task is required, 
depending on the effect of failure. The result of this failure 
management policy is corrective maintenance or no maintenance at 
all. Sometimes, this approach is called “Run-To-Failure”. 

 
Condition monitoring and failure finding belong to the Condition Based 
Maintenance (CBM) procedures. CBM is the most effective policy because its 
goal is to monitor the health state of the system under test planning a 
maintenance task only in case it is necessary [289]–[292].  
In compliance with international standard IEC60300-3-11 [288], Fig. 7.2 shows 
how to guide the maintenance task selection in order to identify the optimal 
maintenance solution for the system under test.  
The maintenance decision-making diagram aims to simplify the assessment of 
the optimal maintenance tasks. However, the maintenance policy choice 
depends only on two conditions: if the failure is evident or not and if the failure 
will involve consequences on the safety level of the system under test. As a 
consequence, at least four possible task options are given in each orange box; 
this means the international standard gives the designer a high level of 
subjectivity. Overall, the diagram is very generic and doesn’t lead to a unique 
task choice; the designer is free to choose one or another option, based only on 
his or her expertise. 
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Fig. 7.2. Decision diagram for maintenance assessment according to the international 

standard IEC 60300-3-11. 

 
 
 

7.2.  State of the art of Reliability Centred 
Maintenance  
The most important but challenging parts of the RCM process are failure mode 
effect and criticality analysis (FMECA) and task selection. FMECA is 
developed using the subjective knowledge of domain experts. Meanwhile, the 
decision diagram proposed by the international standard IEC 60300-3-11 [288] 
for task selection is very generic, and the task choice mostly relies on the 
experience of the analyst that performs the RCM [293]. Despite these 
disadvantages, RCM is a powerful solution, widely used in every industrial field 
in which service continuity represents a mandatory requirement, and 
maintenance must be optimized in terms of money and time [294].  
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Some researchers propose an effective RCM assessment using reliability 
software [295]. In [296] the RCM is applied to the whole system under test 
instead of focusing on individual components. Others papers use analytical 
models and a dynamic approach [297], [298], while some authors create their 
own framework for maintenance decision making [299], [300]. Zakikhani et al. 
[301] proposes an availability-based RCM, while in [302] a whole dependability 
study (RAMS) is introduced to optimize maintenance policy. In [303] the 
variation trends of the failure rates of components under imperfect maintenance 
are used to optimize the maintenance of metro trains based on the concept of 
RCM. Afzali et al. [304] proposes a weighted importance reliability index model 
to prioritize the components in a complete RCM report. In [305] a stochastic 
RCM is proposed, while other papers introduce genetic algorithms to solve the 
mathematical problem of RCM optimization [306], [307]. 
 
 
 

7.3.  Proposed approach for maintenance 
decision-making of a wind farm 
This work focuses on a Spanish wind farm located near Zaragoza, in the region 
of Aragon (Spain).  
A wind farm, sometimes called wind park, is a group of wind turbines (WTs) 
in the same location used to produce electricity. A large wind farm may consist 
of several hundred individual wind turbines and cover an extended area of 
hundreds of square kilometers [13], [308]. This results in a very critical issue 
during the maintenance planning phase as well as during the design of condition 
monitoring and diagnostic systems. Furthermore, unexpected failure events and 
low availability are crucial challenges for wind-power operators, especially as 
the installed capacity of wind power has been growing exponentially in recent 
years [309]. Moreover, the decision-diagram presented in the RCM international 
standard (IEC 60300-3-11) is far to generic since it let to the user the possibility 
to choose between at least 4 different options without a detailed explanation of 
how to assess the optimal tasks between these options.  
Trying to fill this gap, this work introduces a customized decision-making 
process able to solve the subjectivity of the procedure proposed in the standard 
and consequently to address the optimal maintenance policy to the wind farm. 
The proposed method uses a decision-logic diagram (Fig. 7.3) to suggest only 
one of the tasks illustrated in the previous section for each of the failure mode 
identified through the FMECA.  
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Fig. 7.3. Proposed procedure for maintenance decision diagram based on failure analysis 



CONDITION MONITORING: FROM PLANNING TO IMPLEMENTATION 

254 
 

Firstly, the failure modes are classified as hidden or evident. Then the designer 
has to understand different characteristic of the failure mode depending on the 
path:  

• Will the failure mode lead to a safety loss? 
• Will the failure mode involve effects on the turbine functionality?  
• Is it possible to detect the failure cause? 
• Is the item under test characterized by high complexity? 

 
The information included in the FMECA are mandatory in order to answer the 
previous questions and consequently address the optimal task to each failure 
mode. It is very important to note that several paths of the decision diagram 
led to the choice of CM. If it is possible to detect the cause that could lead to 
the failure, then the process guides the designer to assess the CM task despite 
the other information on the failure classification. 
Overall, the approach could be considered as a diagnostic-oriented decision-
making diagram which prefers the assessment of CBM tasks (either CM or FF) 
with respect to scheduled maintenance task. In case of extremely big systems 
under analysis as the considered wind farm, this will allow a remarkable 
decrease of Operation and Maintenance costs and a significant improvements 
of plant availability.  
In case of failure finding or scheduled maintenance assessment the interval 
between two consecutive tasks must be evaluated. Taking the yaw system of a 
wind turbine as a case study, this work assesses the task interval by means of 
the occurrence of each failure mode. The occurrence O is a rate that the 
FMECA used to classify the probability that a failure mode will happen. Three 
scheduled maintenance intervals are planned: 3, 6, or 12 months.  
Very short maintenance intervals are proposed because WTs are hybrid systems 
mainly composed of electric, mechanical and hydraulic sub-units. These kinds 
of components tend to degrade very quickly with time; therefore, the 
maintenance plan must be optimized to minimize the Life Cycle Cost (LCC) 
and ensure high availability. Hence the choice of a short interval between two 
consecutive tasks. The failure finding procedure is a cheaper and less complex 
practice than scheduled maintenance. Therefore, its task interval is shorter than 
the scheduled maintenance interval because failure finding doesn’t involve all 
the turbine functionality. Moreover, FF could be run during the standard 
turbine operation. The task interval is not defined for condition monitoring or 
no preventive maintenance. CM is a continuous procedure that monitors some 
characteristic of the productive process during all the turbine run-time, so it is 
implemented continuously. Quite the opposite no preventive maintenance is 
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used only after failure (i.e., run-to-failure). TABLE VII.I summarizes the criteria 
proposed in this work to define the task interval for the wind turbines the 
compose the wind farm under analysis. 
 

TABLE VII.I 
CRITERIA FOR THE ASSESSMENT OF THE INTERVAL BETWEEN TWO CONSECUTIVE TASKS. 

OCCURRENCE 
SCHEDULED 

MAINTENANCE 
FAILURE 

FINDING 
CONDITION 

MONITORING 
RUN TO 

FAILURE 

From 1 to 4 12 months 6 months Continuously - 

From 5 to 7 6 months 3 months Continuously - 

From 8 to 10 3 months 1 month Continuously - 
 
 
 

7.4.  Application: Yaw system of a wind turbine 
In this section the proposed diagnostic-oriented maintenance decision-making 
has been applied to the yaw system of a 2 MW Wind Turbine as described in 
[15].  
The analyzed yaw is mounted on the top of a 60-meter tubular tower with the 
function of moving the nacelle toward the wind direction. Fig. 7.4 depicts the 
low-level taxonomy of the yaw system according to the guidelines of the 
international standard ISO 14224 [310].  
 

 
Fig. 7.4. Low-level taxonomy of the yaw system under study. 
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The RCM assessment starts with the “initiation and planning” step; the 
taxonomy depicted in Fig. 7.4 is mandatory to analyze the operating context 
and define the work plane. As highlighted by Fig. 7.1, after the taxonomy is 
identified, a functional failure analysis must be done to study all problems that 
might arise from malfunctions of the system. The investigation starts at the 
lowest taxonomic level and continues to the system level.  
Using the decision-making diagram proposed in this work it is possible to assess 
the optimal maintenance task for each failure mode through the information 
provided by the FMECA. The choice guided by the diagnostic-oriented decision 
diagram in Fig. 7.3 results to be the optimal solution in terms of cost, plant 
productivity and unexpected downtimes. 
TABLE VII.II summarizes an extract of the maintenance report for the yaw 
system under test. This table contains the answers to the questions asked in 
the proposed decision-making diagram.  
Thus, for each failure mode identified during the preliminary functional failure 
analysis, the table includes:  

• The occurrence rate O provided by five reliability experts in order to 
quantitatively consider the criticality of the components. The final 
value reported in the table is obtained through the average of the expert 
assessment.  

• A description of the failure impact on the turbine functionalities (i.e. 
No impact, Reduced, Strongly Reduced, System does not work). 

• The failure classification as hidden or evident according to the 
requirements of the standard IEC 60300-3-11. 

• The impact that the failure produce on the overall system safety 
(expressed as simple binary option YES/NO). 

 
FMECA results are crucial in the maintenance task assessment because they 
provide the expert with a mean to make the projects more cost-efficient and 
cost-effective. In fact, knowing the cause and the effect of a failure is important 
during the process of identification of the optimal maintenance policy. For 
instance, if it is possible to monitor the causes that could lead to a failure mode, 
then a condition monitoring system must be implemented in order to identify 
every possible event that indicate an incipient fault.  
TABLE VII.II also includes the outcomes of the RCM procedure (task option, 
task interval, and task duration) following the guidelines proposed in the 
innovative approach described in the previous section. 
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TABLE VII.II 

PROPOSED PROCEDURE FOR MAINTENANCE DECISION-MAKING: INPUT AND OUTPUT OF THE 

METHOD FOR THE YAW SYSTEM UNDER ANALYSIS 
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The results are summarized in Fig. 7.5, which is a pie chart containing the 
assigned percentages of each operational task within the maintenance plan. The 
percentages are obtained considering the value of the “task option” column in 
the complete maintenance report of the system under test, while TABLE VII.II 
includes only an extract of this assessment. 
 

 
Fig. 7.5. Pie chart of the complete task selection for the yaw system under analysis 

 
Fig. 7.5 highlights that only 5% of the assigned tasks are corrective maintenance 
(i.e. run to failure) in order to maximize the system availability. CBM 
(condition based maintenance, that comprises both condition monitoring and 
failure finding) is much larger because it maximizes availability and minimizes 
the life-cycle cost of the system by intervening before the occurrence of failure. 
Condition monitoring has the highest percentage (41%) of all tasks. These 
results come out from the previous consideration and they represent the proof 
of the importance of condition-based maintenance on real case. According to 
the plan, for the 67% of failure modes it is possible to implement maintenance 
only if some condition shows that the system is going to fail. In this way, it is 
possible to save money decreasing downtime due to unexpected failure because 
condition monitoring system informs the operating center that a possible failure 
is going to happen when the turbine is still working. At the same time, condition 
monitoring allows to decrease the maintenance cost avoiding scheduled 
maintenance at certain time in which the turbine doesn’t need to be maintained.  
In fact, scheduled maintenance can sometimes lead to unnecessary maintenance 
routines and loss of production capacity. 
The complexity and the cost of most of the components that make up the yaw 
is another reason why the allocation percentage of scheduled restoration is less 
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than the condition monitoring. In fact, the replacement of a component not yet 
broken is almost never acceptable for these kinds of items. In particular, not 
even one scheduled replacement is assessed, as a matter of fact the whole 
scheduled maintenance (28%) is scheduled restoration. 
 
 
 

7.5.  Implementation of Condition Monitoring 
for the Yaw system under analysis 
This section proposes an effective data-driven CM system to monitor some of 
the most critical component of the Yaw under analysis according to the RCM 
report assessed using the guidelines of the proposed procedure (Fig. 7.3).  
TABLE VII. III contains an extract of the proposed CM assessment for the yaw 
system of the studied WT.  
 

TABLE VII. III 
MEASUREMENT UNITS AND SENSORS USED BY THE CM UNIT TO MONITOR THE YAW 

ITEM FAILURE MODES MEASUREMENT SENSORS 

Hydraulics 
system 

- Leakage                                        
- Contamination                                    
- Improper flow                                       
- Stuck valve 

Pressure 
Piezoelectric pressure 
transmitter 

Flow Ultrasonic meter 
Temperature Thermocouple 
Level Magnetic level meter 
Contamination Contamination sensor 
Structural integrity Ultrasound sensor 

Gear 

- Binding/Sticking                                                  
- Excessive Wear                                                               
- Fails to move                                                                      
- Mechanical damage 

Vibration MEMS accelerometer 
Temperature Thermocouple 
Motion Displacement transducer 
Applied force Strain gauge 
Micro-deformation Extensimeter 
Structural integrity Ultrasound sensor 

Control 
system 

- Parameter drifts                                                      
- No output                                                             
- Short/Open circuit                                                     
- Error in data 
elaboration  

Temperature 
Resistance temperature 
detector 

Humidity Humidity sensor 
Vibration MEMS accelerometer 
Power consumption Integrated power meter 
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Considering some of the most critical components, TABLE VII. III illustrates 
the measurement units and the types of sensor proposed for monitoring the yaw 
of the WT under analysis by means of the CM system. The electrical failure 
causes are mainly influenced by environmental condition, therefore a Resistance 
Temperature Detector (RTD), a humidity sensor and a MEMS accelerometer 
are used to monitor the control system along with an integrated power meter 
to monitor current consumption and voltage at the same time. A Piezoelectric 
pressure transmitter, an ultrasonic flow meter, a thermocouple, a magnetic level 
meter and a contamination sensor are used to investigate the characteristics of 
the oil in the hydraulic system, while an ultrasound sensor is used to monitor 
the structural integrity of the hydraulic unit.  
In compliance with [15], Fig. 7.6 and Fig. 7.7 propose two possible ways to 
implement data-driven condition monitoring in the hydraulic system: oil 
temperature and hydraulic pressure. For both, condition monitoring involves 
two crucial tasks: 

• Data sampling and storage. 
• Limit alarm monitoring by comparing the signals provided by the sensors 

against a pre-set limit.  
 
Fig. 7.6 shows the variation of the oil temperature inside the pistons used to 
move the nacelle. The data were acquired by the CM tool using a 25 Hz 
sampling frequency by means of temperature sensors located in different points 
of the hydraulic subsystem. Fig. 7.6 proposes two different high limit levels for 
the oil temperature based on expert judgment and historical data acquired on 
different days.  
The yellow line stands for the “first level alert”. If the signal passes this limit, 
the CM system activates a relay output and sends a message to the operating 
center warning the operator of a possible incipient problem/failure. The red 
line represents the “hazardous alarm”. If the signal passes this limit, the CM 
system commands a turbine emergency shutdown. 
Fig. 7.7 shows a different approach, looking at the hydraulic pressure of the 
fluid. The sampled data must be compared with two low alarms (“low first level 
alert” and “low hazardous alarm”) and two high alarms (“high first level alert” 
and “high hazardous alarm”) at the same time.  
The low alarms identify possible leakage or breakage in the hoses and valves.  
The high alarms warn about overpressure inside the pump or the valves that 
could lead to several mechanical failure mechanisms.   
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Fig. 7.6. CM for oil temperature: sampled data and limit alarm 

 

 
Fig. 7.7. CM for hydraulic pressure: sampled data and limit alarm. 

 
Temperature is the perfect indicator of possible incipient failure for all kinds of 
items, especially electrical and electronical ones. Therefore, as reported in 
TABLE VII. III, a condition monitoring system based on the temperature inside 
the nacelle is the perfect solution for the control system.  
Fig. 7.8 highlights the effects of temperature on control system reliability [311], 
[312]. The blue line is the reliability of the control system calculated using an 
RBD model where the failure rate of the components was evaluated using a 
reliability prediction with standard environmental conditions 𝜆𝜆𝑖𝑖

(𝑇𝑇0).  
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Fig. 7.8. Temperature effects on control system reliability. 

 
According to Arrhenius’s model illustrated in equations (7.1)-(7.2), the 
reliability of the electronic system is deeply influenced by temperature, and the 
probability of failure rapidly increases when the temperature increases [312], 
[313]. 
 

 𝜆𝜆𝑖𝑖
(𝑇𝑇) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝜆𝜆𝑖𝑖

(𝑇𝑇0) (7.1) 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐸𝐸𝑎𝑎
𝐾𝐾𝐵𝐵

�
1
𝑇𝑇0
−

1
𝑇𝑇
�� (7.2) 

 
Where the activation energy Ea has been set according to handbooks and 
standards as Ea = 0.6 eV =  9.613 ∙ 10−20 J (see for instance [147], [150], [156], 
[312]) and the standard temperature is given by T0 = 25 °C.  
The actual temperature T = 35 °C has been evaluated using the average of the 
acquired temperature during a week of operation.   
The analysis carried out on the control system and illustrated on Fig. 7.8 
highlights that the impact of temperature on electronic component increases 
over time and becomes particularly significant after approximately two years 
of the turbine life. 
Fig. 7.9 proposes a condition monitoring implementation for the control system. 
The assessment is similar to the ones proposed for the oil temperature. The 
alarm level is quite low because even a little increase in the temperature could 
activate some failure mechanisms that are usually neglected at standard 
temperatures.   
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Fig. 7.9. Condition monitoring for electromechanical components: sampled 

temperature data and limit alarms.  
 
 
 

7.6.  Integration of Failure Finding procedures 
within the Condition Monitoring tool 
Together with condition monitoring, failure finding is key in attempts to 
improve the maintenance policies and avoid wasting money and time.  
The effectiveness of failure finding is highlighted in TABLE VII.IV. This table 
compares the failure rate evaluation for a commercial solenoid valve with and 
without the implementation of the failure finding task (e.g. nondestructive test) 
to establish the valve’s health status.  
The failure rate is divided into four categories: λSD, λSU, λDD and λDU. As TABLE 

VII.IV indicates, the application of the failure finding task to this kind of valve 
can considerably reduce the number of undetected failures (both dangerous and 
safe failures are considered).  
 

TABLE VII.IV 
EFFECTS OF THE FAILURE FINDING TASK IMPLEMENTATION FOR SOLENOID VALVE. 

CONFIGURATION 𝛌𝛌𝐒𝐒𝐒𝐒 [𝐅𝐅𝐅𝐅𝐅𝐅] 𝛌𝛌𝐒𝐒𝐒𝐒 [𝐅𝐅𝐅𝐅𝐅𝐅] 𝛌𝛌𝐃𝐃𝐃𝐃 [𝐅𝐅𝐅𝐅𝐅𝐅] 𝛌𝛌𝐃𝐃𝐃𝐃 [𝐅𝐅𝐅𝐅𝐅𝐅] 

Solenoid valve without 
nondestructive test 

0 129 0 145 

Solenoid valve with 
nondestructive test 

124 5 130 15 
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The undetected failure rate given by the sum of safe undetected failures and 
dangerous undetected failures for the two configurations is: 
 

 𝜆𝜆𝑈𝑈
(𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 𝜆𝜆𝑆𝑆𝑆𝑆

(𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝜆𝜆𝐷𝐷𝐷𝐷
(𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 274 𝐹𝐹𝐹𝐹𝐹𝐹 (7.3) 

 𝜆𝜆𝑈𝑈
(𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐹𝐹𝐹𝐹) = 𝜆𝜆𝑆𝑆𝑆𝑆

(𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐹𝐹𝐹𝐹) + 𝜆𝜆𝐷𝐷𝐷𝐷
(𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐹𝐹𝐹𝐹) = 20 𝐹𝐹𝐹𝐹𝐹𝐹 (7.4) 

 
A comparison between equations (7.3) and (7.4) indicates the undetected failure 
rate without test implementation is 13 times greater than the failure rate when 
failure finding is implemented. Considering all the valves in the yaw system, 
the reliability and availability improvement obtained by selecting the failure 
finding task for this type of component is remarkable.   
Similarly to the previous analysis, TABLE VII.V shows the effects of FF 
procedure implemented on a ball valve of the yaw system under analysis. In 
this case, the selected FF procedure is the so-called PVST (Partial Valve Stroke 
Test). PVST is a technique used in safety valves to allow the user to test a 
percentage of the possible failure modes of a shutdown valve without the need 
to physically close the valve. In other words, PVST is used to assist in 
determining that the safety function will operate on demand without actually 
close the valve. PVST allows to expose hidden failures reducing the probability 
of failure on demand. It also allows to extend the time between consecutive 
maintenance tasks increasing the plant availability and optimizing the LCC.  
TABLE VII.V compares the failure rate evaluation for a trunnion mounted ball 
valve with and without the implementation of the failure finding task (i.e. 
PVST) to establish the valve’s health status. Once again, the failure rate is 
divided into four categories: λSD, λSU, λDD and λDU. 
 

TABLE VII.V 
EFFECTS OF THE FAILURE FINDING TASK IMPLEMENTATION FOR A BALL VALVE. 

CONFIGURATION 𝛌𝛌𝐒𝐒𝐒𝐒 [𝐅𝐅𝐅𝐅𝐅𝐅] 𝛌𝛌𝐒𝐒𝐒𝐒 [𝐅𝐅𝐅𝐅𝐅𝐅] 𝛌𝛌𝐃𝐃𝐃𝐃 [𝐅𝐅𝐅𝐅𝐅𝐅] 𝛌𝛌𝐃𝐃𝐃𝐃 [𝐅𝐅𝐅𝐅𝐅𝐅] 

Ball valve without 
PVST 

0 114 0 382 

Ball valve with PVST 113 1 201 181 

 
The undetected failure rate for the two configurations is given by: 
 

 𝜆𝜆𝑈𝑈
(𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 𝜆𝜆𝑆𝑆𝑆𝑆

(𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝜆𝜆𝐷𝐷𝐷𝐷
(𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 496 𝐹𝐹𝐹𝐹𝐹𝐹 (7.5) 

 𝜆𝜆𝑈𝑈
(𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐹𝐹𝐹𝐹) = 𝜆𝜆𝑆𝑆𝑆𝑆

(𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐹𝐹𝐹𝐹) + 𝜆𝜆𝐷𝐷𝐷𝐷
(𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐹𝐹𝐹𝐹) = 182 𝐹𝐹𝐹𝐹𝐹𝐹 (7.6) 
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A comparison between equations (7.5) and (7.6) indicates the undetected failure 
rate without test implementation is almost 3 times greater than the failure rate 
when PVST is implemented. The improvement obtained by selecting the failure 
finding task for this type of valve is lower than the improvements achieved for 
the solenoid valve. This is mainly due to the nature itself of the PVST that 
cannot close completely the valve and thus it cannot expose all the hidden 
failure mechanisms. However, it is still recommended to implement such 
procedure to improve the overall RAMS parameters of the plant.  
 
 
 

7.7.  Proposed Wireless Sensor Network to 
implement Condition Monitoring on a wind farm  
Monitoring Systems plays a fundamental role in any wind farm because are 
crucial to guarantee the turbine functionality and to provide a quick advice in 
case of failure. Furthermore, the recent development of offshore wind farms 
makes the diagnostic implementation to control and manage the status of the 
turbines even more difficult. For example, the use of a wired monitoring system 
would entail higher additional costs compared to the wireless solution. 
Moreover, technological and structural changes are more difficult in a fixed 
(wired) installation. 
Therefore, it is essential to use, low cost and plug and play system such as the 
Wireless Sensor Networks (WSNs). WSNs are networks characterized by a 
distributed architecture of small nodes. Each node can host multiple sensors 
and is equipped with computational and wireless communication unit [314], 
[315]. The monitoring system acquires several condition parameters to evaluate 
the health state of the turbine, as described in the previous sections.  
The design of a monitoring system for a wind farm has four main issues: 

• The large dimensions of the covered area. 
• The great number of parameters that must be monitored. 
• The condition parameters rapidly changing and consequently the 

required high sampling frequency. 
• The possibility of increase the number of sensor node in case of new 

turbine installation inside the wind farm. 
 
The previous problems require a proper trade-off in term of cover area and 
transmission protocol. In fact, the great number of parameter and the high 
sampling frequency require a high-frequency protocol with high bitrate that 
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usually is characterized by a limited coverage area. Wireless Mesh Networks 
(WMNs) are an optimal solution to provide broadband internet access to large 
geographical areas using a great number of nearby nodes and dynamic routing 
tables to guarantee high-frequency transmission and high bitrate despite the 
large geographical area [316]. Moreover, WMNs allow to increase the number 
of nodes inside the network in case of new turbine installation without requiring 
any changes in the already existing architecture, with a consequent decrease of 
management cost. The differences between a traditional WSN and Mesh 
network are the following [317]–[322]: 
• A traditional WSN (Fig. 7.10) is a point-to-multipoint (star) network 

where a single central node, known as the access point (AP), is directly 
connected to all other nodes. Traditional infrastructure Wi-Fi networks 
have the disadvantage of limited coverage area because every station must 
be in a range directly connected with the access point. Furthermore, 
overloading is another relevant drawback of traditional wireless networks 
because the maximum number of stations permitted in the network is 
limited by the capacity of the AP. 

• A WMN (Fig. 7.11) is a self-organized and self-configured sensors 
network. It is composed by several sensor nodes and a single root node 
that manages the entire network and allows data uploading to the cloud. 
Each node is able to communicate with all the neighboring nodes and 
consequently the network can cover very large areas. Another advantage 
of this network is that it is naturally a fault tolerant system. As a matter 
of fact, when a node stops working, the whole network does not fail, but 
the access point can be reached by different paths. 

 

 
Fig. 7.10. Traditional Wireless Sensor Network used to monitor a wind farm. 
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Fig. 7.11. Wireless Mesh Network topology to monitor a wind farm. 

 
This work proposes the design of a wireless mesh network composed by low 
cost and low power sensor battery-based sensor nodes. Fig. 7.12 shows the block 
diagram of the developed sensor node which is composed by the following units: 
• A power supply unit used to supply all the components of the sensor 

node. It is composed by a small photovoltaic panel, two lithium-ion 
batteries (INR18650-35e characterized by a capacity of 3500 mAh), a 
“Batteries Management System” (BMS) and a “Maximum Power Point 
Tracking” (MPPT). The photovoltaic panel and the batteries are 
necessary to guarantee a continuous power supply to the monitoring 
system. Using this architecture, the sensor node can provide a continuous 
flow of information regarding the state of the turbine. This kind of 
redundancy is mandatory to guarantee the self-sufficiency of the CM unit 
and consequently to allow a proper monitoring of the wind farm. 

• A set of sensors according to the results of the RCM analysis carried out 
using the proposed approach.  

• An external antenna.  
• A radio and processing unit which is the real core of the sensor node. It 

is based on the ESP32 system-on-a-chip microcontroller by “Espressif”. 
The ESP32 is configured to transmits data using IEEE 802.11 Wi-Fi 
protocol. The microcontroller is mounted on an evaluation board used 
for software programming by means of a USB-to-UART bridge 
controllers. The evaluation board also includes pin interface and power 
supply by means of an AMS1117 LDO. Two 8-channel 12-bit SAR ADCs 
and two 8-bit DACs are embedded in the ESP32. A customized interface 
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board is used to connect the power unit and the sensors unit to the ESP32 
microcontroller. Furthermore, the interface board hosts some discrete 
components such as multiplexers, amplifiers, filters etc.. 

 

 
Fig. 7.12. Block diagram of the proposed sensor node for Condition Monitoring of 

Wind Turbines. 

The proposed WSN provide continuous and near real-time data acquisition 
which can be used to [323]: 
• Maintain process tolerances.  
• Verify and protect machine, systems and process stability.  
• Detect maintenance requirements.  
• Minimize downtime.  
• Prevent failures and consequently save cost and time. 
• Plan a maintenance policy based on the prediction of failure. 

 
Each turbine requires hundreds of different sensors to monitor the condition 
parameter that influence the wear-out process, therefore a hybrid tree-mesh 
network is proposed. Fig. 7.13 shows the network architecture divided into 
three layers: 
• The first level is composed only by the root node (i.e. the access point).  
• The second layer is the Wi-Fi mesh network where each node identifies a 

specific turbine. 
• The third layer is a wired network directly connected only to the second 

layer node of the specific turbine.   
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Fig. 7.13. Hybrid tree-mesh network architecture for Condition Monitoring of a wind 

farm. 

 
The root node is the data collection point of the network, it also includes the 
router and the server, as shown in Fig. 7.14. Each one of the nodes in the second 
layer manages the data collection of a single wind turbine. It is also able to 
work as bridge node for the other second layer devices receiving data from a 
different node and retransmitting that to the root node in order to cover the 
entire wind farm area. Inside each turbine there are few third layers nodes with 
the aim to manage various sensors, as shown in Fig. 7.14 and Fig. 7.15. This 
level uses a shielded wired connection to carry information to the second layer 
node and to avoid interference caused by electronic and mechanical components 
of the turbine. Fig. 7.15 also shows an example of diagnostic implementation 
using the proposed network in the nacelle of the wind turbine under test. The 
red circle shows some possible locations of the processing unit of the nodes to 
manage the sensors of a specific turbine section. 
 

 
Fig. 7.14. Proposed architecture with first, second and third layer nodes location. 
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Fig. 7.15. Possible third level sensor (red circle) deployment inside the nacelle of a 

wind turbine. 

 
Over the years, the power generation capability of the WT has increased, and 
consequently also the dimension of the blades and the overall WT extension 
have increased. Therefore, the distance between two neighbor turbines could be 
significant (over hundreds of meters) [11].  The ESP32 board is equipped with 
an integrated patch antenna which is absolutely not enough to cover such 
distances, so it is necessary the introduction of another antenna located above 
the nacelle used for the transmission of the acquired data (Fig. 7.15). It is not 
possible to use a directional antenna head towards a close node because the 
WMN is a self-organized and self-configured network in which every device 
must be able to communicate with many nodes located in different positions. 
Therefore, a power amplifier and a high-gain omnidirectional antenna are used 
as radio unit. Consequently, the second layer node is located outside the 
turbine, close to the antenna. It is very important to protect the electronic 
device by the weathering effects using a protective case to minimize the 
acceleration of the wear-out process due to temperature, humidity, rain, wind 
and solar radiation. 
TABLE VII.VI reports an extract of the types of measurements and the sensors 
used by the proposed CM tool to monitor the wind farm under analysis. The 
table extends the information reported in TABLE VII. III which refers only to 
the yaw system whereas TABLE VII.VI provides an overall idea of the CM of 
the entire WT.  
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TABLE VII.VI 
EXTRACT OF THE SENSORS USED TO MONITOR THE MOST CRITICAL ITEMS OF THE WT. 

COMPONENT MEASUREMENT SENSORS 

BLADES 

Crack/Fatigue detection Acoustic Emission 

Wind speed/direction Anemometer 

Acceleration, pitch, roll and yaw Inertial module 

Micro-deformation Extensometer 

GEARBOX 

Vibration MEMS accelerometer 

Temperature Thermocouple 

Motion Displacement transducer 

Stress Strain gauge 

HYDRAULIC 

SYSTEM 

Pressure Piezoelectric pressure transmitter 

Flow Ultrasonic meter 

Level Magnetic level meter 

Contamination Contamination sensor 

TOWER 
Crack/Fatigue detection Acoustic Emission 

Micro-deformation Extensometer 

UPS 

Temperature Resistance temperature detector 

Humidity Humidity sensor 

Current Hall effect integrated current sensor 

POWER 

CONVERTER 

Temperature Resistance temperature detector 

Humidity Humidity sensor 

Vibration MEMS accelerometer 

CONTROL 

SYSTEM 

Temperature Resistance temperature detector 

Humidity Humidity sensor 

Vibration MEMS accelerometer 

 
 
 

7.8.  Final remarks 
This chapter focuses on the maintenance policy optimization of a wind farm by 
means of a Condition Monitoring tool. The Reliability Centred Maintenance 
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approach is a widely known procedure described by the international standard 
IEC 60300-3-11 used to identify the optimal maintenance policy on a 
system/plant. However, the decision-making diagram included in the standard 
has a major subjectivity issue. As a matter of fact, for each identified scenario 
it let to the user the possibility to choose between many different options 
without explaining how to select the optimal maintenance policy. Thus, most 
of the choices are left to the experience of the operator that perform the 
assessment. To solve this problem, this work proposes a new decision-logic 
diagram based on failure information that could be included in the FMECA 
worksheet. The proposed method associates only one possible task to each 
scenario remarkably reducing the subjectivity problem since there is no longer 
need to rely only on expert’s judgments. The proposed method is a diagnostic-
oriented approach which favor the assessment of CBM task such as Condition 
Monitoring and Failure Findings. Considering the results of the assessment 
performed on the yaw system of a WT, only 5% of the assigned tasks are 
corrective maintenance; condition-based maintenance (CM and Failure Finding) 
constitutes the largest part of the assessed tasks, thus maximizing availability 
and minimizing the operational cost. The proposed assessment highlights the 
importance of a proper diagnostic management in complex systems. For this 
reason, the work also proposes some type of measurement and the respectively 
sensor technology that could be used to monitor some critical subsystems. Using 
the hydraulic system as first example, it proposes two condition monitoring 
systems, one based on the acquisition of oil temperature data and the other on 
hydraulic pressure data. When the sampled signal passes the first level alert, 
this warns the operator of an incipient problem/failure. If the signal passes the 
hazardous alarm level, the system commands a turbine emergency shutdown. 
The work also proposes a data-driven condition monitoring for the control 
system based on the temperature inside the turbine highlighting the effects of 
temperature on electronic components using the Arrhenius’s law. The 
effectiveness of Failure Finding procedures carried out along with CM tools has 
been illustrated considering the effects of such procedures on two types of safety 
valves: a solenoid valve and a ball valve. The final part of this chapter focuses 
on the development of an hybrid tree wireless mesh network to effectively and 
efficiently implement CM on the entire wind farm. The work illustrates a 
possible deployment for the sensor nodes inside the wind farm highlighting the 
different node’s level within the network and the interaction between nodes.  
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CHAPTER 8 
 
PROGNOSTIC AND HEALTH 

MANAGEMENT  
 
 
Prognostic and health management represent the final part 
of the proposed Reliability Life Cycle. In this chapter a 
hybrid approach based on both Condition Monitoring and 
physic model is presented to improve the accuracy and 
precision of prognostic for lithium-ion batteries. An artificial 
intelligence method is integrated with a state space 
estimation technique typical of filtering-based approaches. 
The state space estimation is used to generate a big dataset 
for the training of a neural network. Some additional deep 
layers are used to improve the prediction of nonlinear trends 
(typical of batteries) while the performance optimization of 
the network is ensured using a genetic algorithm. The 
proposed method has been applied to two battery 
degradation datasets from the data repository of NASA and 
from the Toyota Research Institute. Two different 
degradation models are compared, the widely known 
empirical double exponential model and an innovative single 
exponential model which allows to ensure optimal 
performance with fewer parameters required to be 
estimated. 1 

  
1 This chapter has been published as “M. Catelani, L. Ciani, R. Fantacci, G. Patrizi, 
and B. Picano, “Remaining Useful Life Estimation for Prognostics of Lithium-Ion 
Batteries Based on Recurrent Neural Network,” IEEE Trans. Instrum. Meas., vol. 70, 
Article No. 3524611, 2021”.  
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8.1.  Introduction 
Prognostic and Health Management (PHM) techniques have emerged in recent 
years becoming more and more significant [324], [325]. PHM is starting to be 
recognized as a key feature in several industrial fields in order to maximize the 
safety level of the system and minimize the Life Cycle Cost (LCC). Prognostics 
is defined as the prediction of the future state of health of the system under 
test based on current and historical health conditions. PHM is usually divided 
into five consecutive steps, as follow [326], [327]: 

1) Data acquisition;  
2) Condition monitoring and anomaly detection; 
3) Diagnostic; 
4) Prognostic; 
5) Maintenance decision.  

 
Time-dependent data about materials degradation and environmental loads 

are collected during the first step. These data could be used during the 
subsequent phase to find unexpected behavior by comparing them with nominal 
conditions. This second phase can provide an early warning on the system's 
incorrect behavior, even though an anomaly does not necessarily identify a 
failure. The use of contextual parameters acquired using sensors to investigate 
performance anomaly is usually called Condition Monitoring (CM) [15], [201]. 
Then the diagnostic step allows to identify failure modes, mechanisms and 
damages from the previously found anomalies. In case diagnostic highlights no 
damages at the current moment, the future health state of the system is 
predicted in the Prognostic step. Prognostic allows to predict the Remaining 
Useful Life (RUL) of the system by estimating the progression of a fault based 
on given environmental conditions. Dedicated tools such as RUL estimation 
methods could provide essential information used to predict when the health 
state of the system will degrade reaching the failure threshold. Based on 
previous steps an effective Condition-based maintenance (CBM) could be 
carried out to avoid critical failures. Using this approach, the maintenance task 
will be carried out before the failure occurs, with a minimum effect on system 
availability.  

Condition Based Prognostic Maintenance (CBPM) encloses the complete set 
of actions used to evaluate the current state of health of the system by 
monitoring the evolution of one or more parameter. Condition monitoring plays 
a fundamental role to acquire the data and to process theme before the 
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implementation of one or more prognostics methods. In this way operators can 
forecast the future state of health of the system providing as a result the time 
at which the system will no longer work. The general flowchart of a prognostic-
based maintenance decision-making is illustrated in Fig. 8.1. 
 

 
Fig. 8.1. The general flowchart of Prognostic-based maintenance decision plan. 

Many applications require a proper and accurate prognostic methodology, such 
as wind turbine [328], gas turbine [329], railway systems [330], electronic 
components [331], induction motor [332], bearings [333] and batteries [334]. 
More in general, PHM and CBPM are fundamental techniques in every 
industrial and manufacturing field where fault diagnosis (as well as prevention 
and mitigation of failure consequences) allows to increase availability and safety 
of the whole system/plant with an essential decrease of the LCC. 
Under these circumstances, it is clear how PHM plays an essential role in 
Lithium-Ion batteries State-Of-Charge (SOC) estimation. In fact, Lithium-Ion 
batteries are installed in a variety of systems, such as smartphones, laptops, 
and all consumer electronics, electric vehicles, aerospace systems, clean 
transportation systems, communication infrastructures, Wireless Sensor 
Networks and many others. Batteries are currently one of the most expensive 
components in several applications, therefore it is extremely important to 
monitor their health state and their SOC [335]. A long battery lifetime is 
required to ensure economic viability and minimize the LCC. However, ensure 
remarkable lifetime of Lithium-Ion batteries is a challenging task that is not 
always achievable due to the complex degradation mechanisms that affect the 
battery [336], [337]. For these reasons, the huge spreading of lithium-ion 
batteries in many technological fields has led to an increase interest in 
prognostics and RUL estimation.  
The overall research objective of this chapter is to improve the accuracy and 
precision of RUL estimation for Lithium-Ion battery by means of state space 
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estimation and Recurrent neural network (RNN). More in detail, the RNN 
implemented is an Echo State Network (ESN). A hybrid approach based on 
both condition monitoring and physical degradation model is presented in this 
chapter to enhance and facilitate decision-making in operation and maintenance 
of Lithium-Ion batteries.  
 
 
 

8.2.  Remaining Useful Life Estimation 
Remaining Useful Life (RUL) is defined as the time remaining for a component 
to perform its functional capabilities before failure. In other words, RUL refers 
to the system lifetime left from the current time to the end-of-life (EOL), where 
the EOL represents the time in which the system health pass the failure 
threshold [154], [338], [339]. 
By taking RUL into account, engineers can schedule maintenance, optimize 
operating efficiency, and avoid unplanned downtime. For this reason, 
estimating RUL is a top priority in predictive maintenance programs [326].  
The inputs of a RUL estimation model are condition indicators, i.e. features 
extracted from sensor data or log data whose behavior changes in a predictable 
way as the system degrades or operates in different modes. The method used 
to calculate RUL depends on the kind of data available: 

i. Lifetime data indicating how long it took for similar machines to reach 
failure. In this case, proportional hazard models and probability 
distributions of component failure times are used to estimate RUL. A 
simple example is estimating the discharge time of a battery based on 
past discharge times and covariates, variables such as the environment 
in which the battery operated (such as temperature) and the load 
placed on it. 

ii. Run-to-failure histories of machines similar to the one you want to 
diagnose. If a database of run-to-failure data from similar components 
(or different components showing similar behavior) is available, then 
RUL can be estimated using similarity methods. These methods 
capture degradation profiles and compare them with new data coming 
in from the machine to determine which profile the data matches most 
closely. 

iii. A known threshold value of a condition indicator that detects failure. 
In many cases, run-to-failure data or lifetime data was not recorded. 
However, sometimes engineers have information on prescribed 
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threshold values. For example, the temperature of a liquid in a pump 
cannot exceed 71°C and the pressure must be under 155 bar. With this 
kind of information, it is possible to fit time series models to condition 
indicators extracted from sensor data such as temperature and pressure, 
which rise or fall over time. These degradation models estimate RUL 
by predicting when the condition indicator will cross the threshold. 
They can also be used with a fused condition indicator that incorporates 
information from more than one condition indicator using techniques 
such as principal component analysis. Depending on the type of 
component/system under analysis, the condition indicators can be fused 
to estimate the component State-of-Health (SOH). Then, the SOH is 
compared against the failure threshold to estimate the RUL. This 
approach is generally referred simply as data-driven. 

 
The latter method (iii.) represents the most interesting solution in the point of 
view of an overall data-driven reliability life cycle as the one proposed in this 
work. As a consequence, this is the type of approach that will be discussed in 
this chapter.  
Fig. 8.2 shows an example of data-driven RUL estimation comparing the SOH 
of a generic component with an acceptable health level known as failure 
threshold set as the 50% of the SOH (red dashed line). The other horizontal 
dashed black lines represent the health condition (from 100% to 85% of the 
SOH), a caution scenario (from 85% to 75%) and a need for repair (below 70%).   

 

 
Fig. 8.2. Example of data-driven RUL estimation comparing the component SOH 

against an acceptable health level (failure threshold). 
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Using the measured data about the component SOH (blue line), a prediction of 
the future health is performed (red line). The time between the starting point 
of the prediction and the predicted deterioration point (i.e. the time in which 
the predicted SOH decrease below the failure threshold, called EOL) is the RUL 
of the component.  
 
 
 

8.3.  Related Works about PHM and RUL 
estimation of Batteries 
Generally speaking, prognostic approaches could be classified as physics-based 
or data-driven models. Lithium-ion batteries (LIBs) are dynamic components 
characterized by nonlinear behavior and complex internal mechanisms. 
Furthermore, several causes influence battery degradation, including both 
physical and chemical failure mechanisms [336]. As a consequence, only few 
physics-based approaches are currently available for RUL estimation of 
batteries. Quite the opposite, many data-driven methods have been developed 
in the last few years. Data-driven RUL estimation method are basically divided 
into three categories [340]: stochastic process degradation, filtering methods and 
Artificial Intelligence (AI).  
Stochastic degradation such as Gaussian and Weiner models are usually 
implemented to simplify the evaluation of RUL uncertainty. For example, Liu 
et al. [341] proposes a Gaussian Process Regression (GPR) to describe the 
uncertainty in State-Of-Health prediction, while in [342] GPR is combined with 
indirect Health Indicator (HI) to solve the capacity unmeasurable problem of 
operating batteries. A Wiener process model with random drift efficient is used 
to model the degradation process in [343]. Xu et al. [344] introduce the Weiner 
process combined with Maximum Likelihood Estimation (MLE) and a genetic 
algorithm (GA) to model batteries wear-out under time-varying temperature 
conditions.   
A widely known approach for RUL estimation of batteries is based on filtering 
techniques such as Kalman Filter (KF) and Particle Filter (PF). The classical 
KF (used for example in [345]) is not suitable in case of strong nonlinear 
degradation process as the one of a lithium-ion battery. Therefore, some papers 
propose different optimization of Extended Kalman Filter (EKF) [346], [347] 
and Unscented Kalman Filter (UKF) [348], [349] to better estimate nonlinear 
battery degradation. Other approaches enhance and optimize the performance 
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of PF [350], [351] and Unscented Particle Filter (UPF) [352], [353] to solve these 
issues. Other papers combines different strategies such as [354] which integrates 
Wiener process and UPF to consider four different sources of degradation 
process variability at the same time. Similarly, [355] uses Gaussian process and 
PF for RUL estimation of Lithium-Ion batteries under uncertain conditions. In 
[356] PF is combined with  sliding-window gray model, while in [357] long short-
term memory technique is used to optime the performance of PF. Chen et al. 
[358] proposes an innovative fractional grey model combined with UPF.  
Nevertheless, most of these methods are based on several recurrent observations 
of battery degradation. Furthermore, these methods have limited modeling 
ability for complex nonlinear processes. 
Some approaches based on artificial intelligence (AI) have been presented in 
the last few years to solve the problems of filter-based estimation methods. 
AutoRegressive (AR) models are used in [359] and in [360], while Support 
Vector Machine (SVM) have been used in [361] and [362]. Moreover, Relevance 
Vector Machine (RVM) has been implemented in several papers (see for 
instance [363] and [364]). RVM provides better performances in terms of 
accuracy and computational complexity respect to SVM. However, RVM-based 
methods are characterized by low stability issues. Neural Networks are the 
optimal mean to estimate RUL of Lithium-Ion batteries since the degradation 
process is strongly nonlinear. For instance, in [365] a deep neural network is 
integrated with autoencoder model to represent battery health degradation. 
However, Recurrent Neural Networks (RNN) are characterized by a larger 
feasibility for RUL prediction of Lithium-Ion batteries because of their 
superiority in time series prediction [366]. One of the best approaches in 
literature is presented in [367] where a monotonic echo state network 
(MONESN) algorithm is adopted to track the nonlinear patterns of battery 
degradation.  
 
 
 

8.4.  Proposed approach for RUL estimation of 
Lithium-Ion batteries 
In this section a data-driven approach based on Artificial Intelligence for 
Remaining Useful Life estimation of batteries is presented.  
The proposed method integrates different aspects of existing methodologies in 
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order to find the optimal RUL estimation with high accuracy and low 
computational complexity. An online hybrid method based on physics-based 
degradation model, state space estimation and ESN prediction is presented.  
 
 

8.4.1.  Overall procedure 
The schematic representation of the online RUL estimation is presented in Fig. 
8.3. A data-driven condition monitoring is used to acquire degradation data 
regarding the monitored system. After a pre-processing phase, the degradation 
data are compared to a safety threshold estimated using common knowledge 
and historical data. The aims of this real-time comparison are twofold:  

• To provide an updated degradation model used to improve the safety 
threshold estimation. 

• To estimate the Remaining Useful Life of the system under analysis and 
consequently to plan the optimal condition-based maintenance decision.  

 
 
 

 
Fig. 8.3. Schematic representation of the proposed Online RUL estimation based on 

Condition Monitoring and Real-time comparison. 

 
The most interesting phase of the online procedure presented in Fig. 8.3. is the 
data processing and elaboration phase required to estimate the RUL after the 
comparison with the safety threshold. In this chapter, an hybrid approach 
which use different features of physics-based model, filtering methods and AI 
methods is presented to estimate the future SOC of a Lithium-Ion battery. The 
complete flowchart of the proposed method is presented in Fig. 8.4.  
The battery under test is continuously monitored by means of condition 
monitoring tools and appropriate measurements to obtain a capacity 
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degradation dataset 𝐶𝐶𝑘𝑘 where 𝑘𝑘 = 1,2, . . .𝑛𝑛  represents the number of charge and 
discharge cycle and n is the number of samples in the considered dataset.  
Then, similarly to many filtering-based methods (i.e. EKF, UKF, UPF, etc.) 
the state space of the battery under test is estimated.   
 

 
Fig. 8.4. Complete flowchart of the proposed approach used to estimate the Remaining 

Useful Life of Lithium-Ion batteries. 

 
 

8.4.2.  Double exponential degradation model 
Many papers in literature use a double exponential degradation model to 
describe the physics-based degradation of Lithium-Ion batteries (see for 
instance [368]–[372]) which represents a good trade-off between modeling 
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accuracy and complexity. According to these papers, the capacity Q of the 
battery can be described as follow:  
 
 𝑄𝑄 =  𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑏𝑏 ∙ 𝑘𝑘)  +  𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑑𝑑 ∙ 𝑘𝑘) (8.1) 

 
Where a, b, c and d are the model parameters that need to be estimated while 
the independent variable k stands for the cycle number. Considering the 
degradation model in equation (8.1), parameters a and c characterize the initial 
capacity and are related to the internal impedance, while b and d represent the 
aging rate. Thus, the current state space estimated using the double exponential 
model can be written as follow:  
 
 𝑿𝑿𝒛𝒛  =  [𝑎𝑎𝑧𝑧;  𝑏𝑏𝑧𝑧;  𝑐𝑐𝑧𝑧;  𝑑𝑑𝑍𝑍] (8.2) 
 𝑄𝑄𝑧𝑧  =  𝑎𝑎𝑧𝑧 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑏𝑏𝑧𝑧 ∙ 𝑘𝑘)  + 𝑐𝑐𝑧𝑧 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑑𝑑𝑧𝑧 ∙ 𝑘𝑘) (8.3) 

 
Where the subscript z represents the z-th cycle (current estimation time) and 
𝐗𝐗𝐳𝐳 stands for state space estimated using the first model - double exponential 
in equation (8.3).  
 
 

8.4.3.  Proposed single exponential degradation model 
In this work, a second degradation model has been introduced to better describe 
the battery degradation with a simpler state space. The proposed single 
exponential model is given by: 
 

 𝑿𝑿�𝒛𝒛  =  �𝑎𝑎�𝑧𝑧;  𝑏𝑏�𝑧𝑧� (8.4) 

 𝑄𝑄𝑧𝑧  =  𝐶𝐶0 + 𝑎𝑎�𝑧𝑧 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑏𝑏
�𝑧𝑧
𝑘𝑘� � (8.5) 

 
Where C0 is the initial capacity of the battery and 𝐗𝐗�𝐳𝐳 stands for state space 
estimated using the second model - single exponential in equation (8.5). The 
state space at the current cycle is estimated using the Matlab Curve Fitting 
Toolbox and the degradation model in equation (8.3) or equation (8.5). The 
notation for the current cycle is kpred which is the number of the cycle in which 
the prediction is performed.  
The following steps involve the use of the proposed RNN prediction.  
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8.4.4.  Proposed Neural Network 
The RNNs represent one of the most powerful tools to perform time series 
prediction, especially when there exist temporal dependencies among successive 
samples. The RNNs have gained momentum in time series forecasting when 
data are temporally related, since they are characterized by the presence of 
memory units which makes the network able to catch the existing temporal 
correlation among the samples of a time series. Due to the RNN outstanding 
ability in time series prediction [373], the application of the RNNs may 
represent a valuable approach to be integrated in the proposed predictive 
framework, as described in Fig. 8.4, aiming at forecasting the nonlinear behavior 
of the time series object of the analysis. Within the class of the RNNs, the ESN 
represents a fast and efficient type of RNN, due to its intrinsic simplicity in 
training and in its architecture [374]. A typical ESN consists of an input layer, 
a recurrent layer, called reservoir, and an output layer (as can be seen in Fig. 
8.5). The connection weights of the input layer and the reservoir layer are fixed 
after initialization, and the output weights are trainable and obtained by 
solving a linear regression problem.  
A typical ESN is characterized by [375]: 

• an input layer; 
• a recurrent layer, i.e., the reservoir; 
• large number of sparsely connected neurons in the reservoir; 
• an output layer; 
• efficiency in time complexity and energy consumption. 

 
 

 
Fig. 8.5. Architecture of the proposed Deep Echo State Network. 

 
Accordingly, we have applied an ESN with additional hidden reservoir layers, 
typically referred as deep ESN, which may improve the prediction performance 
in presence of complex time series. Therefore, as illustrated by Fig. 8.5, the 
proposed forecasting procedure consists of an input layer, multiple reservoir 
layers, and one output layer. In accordance to the ESN theory, the connections 
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of the reservoir layers are randomly initialized. Let u be the input vector of the 
s(i) values, i.e., given by: 
 
 𝒖𝒖(𝑡𝑡) = [𝑠𝑠(1), . . . , 𝑠𝑠(𝑛𝑛)]𝑇𝑇 (8.6) 

 
whose state transition function for the layer λ is represented by [375]: 
 

𝑥𝑥(𝜆𝜆)(𝑡𝑡) = �1 − 𝛼𝛼(𝜆𝜆)�𝑥𝑥(𝜆𝜆)(𝑡𝑡 − 1) + 𝛼𝛼(𝜆𝜆)𝑸𝑸(𝑡𝑡) (8.7) 

𝑸𝑸(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝑾𝑾𝑖𝑖𝑖𝑖
(𝜆𝜆)𝑖𝑖(𝜆𝜆)(𝑡𝑡) + 𝜽𝜽(𝜆𝜆) + 𝑾𝑾�(𝜆𝜆)𝑥𝑥(𝜆𝜆)(𝑡𝑡 − 1)� (8.8) 

 
In which α is the smoothing constant, while 𝑾𝑾𝑖𝑖𝑖𝑖

(𝜆𝜆) represents the input weights 
matrix associated to the level λ. Furthermore, tanh represents the activation 
function, and 𝜽𝜽(𝝀𝝀) is the array of the bias weight. Finally, the recurrent weights 
matrix for layer λ is denoted by 𝑾𝑾�(𝜆𝜆), and 𝑖𝑖(𝜆𝜆) is the input of the λ-th layer. 
More in detail, at the initial step, i.e., when λ=1, then 𝑖𝑖(1)(𝑡𝑡) = 𝑢𝑢(𝑡𝑡), whereas 
𝑖𝑖(𝜆𝜆)(𝑡𝑡) = 𝑥𝑥(𝜆𝜆−1)(𝑡𝑡)  if  λ≠1. Consequently, the output y is given by: 
 
 𝒚𝒚(𝑡𝑡) = 𝑾𝑾𝑜𝑜𝑜𝑜𝑜𝑜�𝑥𝑥(1), . . . , 𝑥𝑥(𝑁𝑁𝐿𝐿)�

𝑇𝑇
+ 𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 (8.9) 

 
In which NL is the number of reservoir layers and 𝐖𝐖out and 𝛉𝛉out are the output 
weight matrix and vector, respectively. Then, using the state space 𝐗𝐗𝐳𝐳 a big 
dataset is generated with the aim of training the proposed ESN to follow the 
double exponential model. Quite the same, a second dataset is generated using 
the state space 𝐗𝐗�𝐳𝐳 with the aim of training the network to follow the single 
exponential model. The network parameters optimization has been performed 
on the basis of the linear-weighted particle swarm optimization procedure 
adopted in [376]. Accordingly, a L_2 regularization has been applied, in order 
to avoid ill-posed configurations and to effectively monitor the ESN reservoir 
status. 
The exploitation of the genetic algorithm (GA) [377] has been performed in 
order to optimize the global parameter of the ESN, i.e., the number of the nodes 
in the reservoir and the spectral radius. In this regard, it is important to point 
out that typically, in the ESNs, the search of these parameters is provided 
throughout an exhausting search or performing random experiments, which is 
time and computational consuming. As deeply certified by literature, the GA 
[378] is an iterative algorithm during which a range of solutions are produced 
passing through the selection and the reproduction processes. In fact, in order 
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to produce the next generation of solutions on the basis of the current 
population, the GA identifies the individuals with the best values of the fitness 
function, which represents the metric to perform selection criterion. The 
individuals exhibiting the best fitness values, named as elite, are directly 
admitted to the next generation, together with the children derived from the 
crossover and the mutation procedures [378], having valuable values of the 
fitness function.  
Consequently, letting γ = (N, α) be the solution parameters we are interested 
in, in which N represents the amount of the nodes in the reservoir, and α is the 
spectral radius, respectively, the GA module behavior, accordingly with 
literature [377], [378], can be summarized as: 

1) Generate a random initial population constituted by 100 individuals γ; 
try the ESN by setting the parameters accordingly with γ. Evaluate the 
corresponding fitness function, i.e., the percentage of MSE on the training 
data as in [377]. 

2) The algorithm uses the individuals belonging to the current population 
to produce the next one, as follow: 

- rank each individual on the basis of the fitness function evaluation; 
- select the best individuals as elite and pass them to the next 

population generation; 
- select parents by choosing individuals with high values of fitness 

function. Generate children by mutation, i.e., performing random 
changes from a single parent, or by combining the parameters of a 
pair of parents, i.e., by crossover. Replace the parent with the 
children in order to create the next generation. 

- terminate when the maximum number of mutation M is reached. 
 
 

8.4.5.  Battery SOC prediction and RUL estimation 
After the training phase the ESN is able to predict the future SOC of the 
battery under test (in case of batteries, SOC correspond to SOH). The capacity 
dataset predicted by means of ESN is called Ck�, where k = kpred, kpred + 1, . . . n 
and it represents the first output of the proposed procedure.  
The following step is the comparison of the estimated Ck� with a failure threshold 
which is indicative of a possible incipient failure. As a matter of fact, since the 
system under analysis is a battery, the failure threshold represents the end of 
life of the battery even if no failure is going to happen. In other words, the 
failure threshold is the point in time after which the battery’s capacity is no 
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more sufficient to power the device. Usually, almost every work in literature 
set the failure threshold FTH equal to the 70% of the rated capacity value Cnom. 
Thus: 
 
 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ∙  0.7 (8.10) 

 
Considering 𝐊𝐊𝐫𝐫� the set including all indexes k corresponding to estimated 
capacity values of the dataset Cz� lower than the threshold FTH.  
 
 𝑲𝑲𝒓𝒓�  =  �𝑘𝑘𝑟𝑟� | 𝐶𝐶𝑘𝑘𝑟𝑟��  <  𝐹𝐹𝐹𝐹𝐹𝐹�

 
      ∀ 𝑘𝑘𝑟𝑟�  ∈ �𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚�

 
 (8.11) 

 
Thus, the predicted End of Life EOLpred is determined identifying the cycle in 
which the capacity value of the predicted dataset decrease below the threshold. 
In other words: 
 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  =  𝑚𝑚𝑚𝑚𝑚𝑚 𝑲𝑲𝒓𝒓�   = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘𝑟𝑟� | 𝐶𝐶𝑘𝑘𝑟𝑟��   <  𝐹𝐹𝐹𝐹𝐹𝐹� (8.12) 

 
Thus, the predicted Remaining Useful Life 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 can be determined as follow: 
 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  −  𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (8.13) 

 
RULpred is the second and most important output of the proposed method. It 
allows to evaluate the remaining life of the battery and consequently to plan 
the following maintenance activities accordingly. This results in an optimization 
of the operation and maintenance cost and an increase of the system availability 
since maintenance is performed only when it is needed.  
As emphasized in Fig. 8.4 the proposed approach is a cyclical procedure that 
must be repeated continuously during the entire battery life cycle. Therefore, 
every subsequent estimation of the battery health will result in a lower RULpred 
level.  
When the estimated EOLpred starts rapidly approaching the FTH, then a 
maintenance task should be planned to replace the wore out battery before its 
capacity keeps degrade below a certain threshold. Moreover, the RUL 
estimation and the maintenance decision could be used to update the failure 
threshold. 
As summary, the detailed steps of the proposed algorithm are presented in the 
following. 
 



PROGNOSTIC AND HEALTH MANAGEMENT 

287 
 

Algorithm 1 Hybrid algorithm for RUL estimation by means of RNN 
and state space estimation  

Input:    C0= Initial battery capacity 
              k1 = First prediction time 
              Ckpred= dataset of battery capacity until kpred  

Start 
1. Battery Condition Monitoring 
2. for 𝑖𝑖 = k1 ∶  𝐸𝐸𝐸𝐸𝐸𝐸 do  
3.  State space analysis using Matlab Curve Fitting Toolbox 
4.  Estimation of single exponential model’s parameters 
5.  Generation of training dataset based on model’s parameters 
6.  ESN global parameters selection applying GA 
7.  ESN prediction of future capacity with optimized parameters 
8.  Comparison with failure threshold 
9.  RUL evaluation 

10.  Maintenance decision 
11. end for  
End 
Output: RULpred = Predicted RUL of the battery   

 
 
 

8.5.  Experimental Data 
An extensive review of commercially and publicly available battery degradation 
datasets for prognostic and health management has been carried out in order 
to find the most suitable datasets to validate the proposed approach [379], [380]. 
More in detail, two different Lithium-Ion battery degradation datasets have 
been used in this work, as detailed described in the following subsections. 
 
 

8.5.1.  NASA battery dataset 
The LIB dataset “Dataset1_BatteryAgingARC-FY08Q4” from the data 
repository of Prognostics Center of Excellence at NASA Ames Research Center 
has been used as first testbench of the proposed method [381]. Among the six 
battery datasets included in this data repository, the Dataset1 considered in 
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this work is the only one that according to the guidelines provided by NASA is 
suitable for prognostic and RUL estimation. A battery testbed developed by 
NASA Ames Research Center for prognostic purposes has been used to acquire 
data regarding several commercially available Lithium-ion 18650 sized 
rechargeable batteries. According to [381] the measurement setup used for RUL 
estimation includes a power supply, a programmable load, a voltmeter, a 
thermocouple sensor and a climatic chamber used to regulate and stabilize the 
temperature during the test and a data acquisition system [381]. The dataset 
under analysis includes a set of four batteries (namely B0005, B0006, B0007 
and B0018). Repeated charge and discharge cycles resulted in accelerated aging 
of the batteries, providing the optimal test solution for prediction of Remaining 
Useful life and more generally for prognostic purposes.   
More in detail, charging was carried out in a constant current mode at 1.5 A. 
When the battery voltage reached 4.2 V, the charging continued in a constant 
voltage mode until the charge current dropped to 20 mA. Discharge was carried 
out at a constant current level of 2 A until the battery voltage fell to 2.7 V (in 
case of battery B0005), 2.5 V (in case of battery B0006), 2.2 V (in case of 
battery B0007) and 2.5 V (in case of battery B0018) [381].  
The battery degradation dataset under analysis provides different data about 
battery aging, including the battery terminal voltage measured during charge 
and discharge phases, battery output current measured during charge and 
discharge phases, battery temperature and battery capacity. The Input of the 
proposed method is the battery capacity throughout different degradation 
cycles, as illustrated in Fig. 8.6. One of the main properties of ESN is the great 
ability to operate in presence of nonlinear and chaotic data including anomalies. 
Therefore, anomalies in the dataset have not been removed and all the available 
data have been processed equally. The rated capacity Crated of the four batteries 
is 2 Ah, therefore according to equation (10) the failure threshold is given by:  
 
 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ∙  0.7 =  1.4 𝐴𝐴ℎ (8.14) 

 
To test the performances of the proposed approach it is necessary to evaluate 
the real Remaining Useful Life of the measured dataset RULmeas as follow. 
Considering the capacity degradation dataset Ck containing the measured 
capacity data. The set 𝐊𝐊𝐫𝐫 including all the indexes k corresponding to measured 
data lower than the threshold is defined as: 
 
 𝑲𝑲𝒓𝒓  =  �𝑘𝑘𝑟𝑟 | 𝐶𝐶𝑘𝑘𝑟𝑟  <  𝐹𝐹𝐹𝐹𝐹𝐹�

 
      ∀ 𝑘𝑘𝑟𝑟  ∈ �𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑛𝑛�

 
 (8.15) 
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Fig. 8.6. Battery degradation dataset provided by NASA Ames Research Center 

regarding batteries B0005, B0006, B0007 and B0018. The failure threshold FTH has 
been set equal to the 70% of the rated capacity. 

 
Then the End-of-Life of the measured data EOLmeas is determined identifying 
the cycle in which the capacity value of the measured data decrease below the 
threshold. 
 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑚𝑚𝑚𝑚𝑚𝑚 𝑲𝑲𝒓𝒓  =  𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘𝑟𝑟 | 𝐶𝐶𝑘𝑘𝑟𝑟  <  𝐹𝐹𝐹𝐹𝐹𝐹�

 
 (8.16) 

 
Consequently, the Remaining Useful Life RULmeas of the measured dataset is 

given by: 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (8.17) 
 
Then, the estimation error EE between the predicted Remaining Useful Life 
RULpred and the real Remaining Useful Life of the measured dataset RULmeas 
can be defined as: 
 
 𝐸𝐸𝐸𝐸 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�  (8.18) 

 
Furthermore, the Mean Square Error MSE has been used to measure the 
average squared difference between the estimated capacity values Ck�  and the 
measured data Ck as follow: 
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𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑚𝑚

 �� 𝐶𝐶𝑘𝑘  −  𝐶𝐶𝑘𝑘� �2
𝑚𝑚

𝑖𝑖=1

 (8.19) 

 
Where m is the dimension of the predicted dataset and the measured dataset. 
Furthermore, it is important to highlight here that the proposed strategy 
assumes as loss function the Mean Square Error (MSE) metric. 
 
 

8.5.2.  TRI battery dataset 
The performances of the proposed procedure have been tested and validated 
using also another dataset [382] provided by the Toyota Research Institute in 
collaboration with MIT (Massachusetts Institute of Technology) and Stanford 
University (simply referred as TRI dataset in the following) [382]. 
The dataset refers to 124 commercial LIBs tested under fast-charging 
conditions. The batteries under test are lithium-ion phosphate (LFP)/graphite 
cells manufactured by A123 Systems. Each battery is characterized by a rated 
capacity of 1.1 Ah and a nominal voltage of 3.3 V.  
All the LIBs (except for 2 cases) have been tested until the battery End-Of-
Life EOLmeas is reached. The LIB’s FTH is the 80% of the rated capacity (i.e. 
0.88 Ah) and the measured EOLmeas varies from 150 cycles up to 2300 cycles. 
The LIBs under test have been cycled with different fast-charging profile and 
a common CC-discharge policy (4C). The one-step or two-step fast-charging 
profiles used in the experimental setup follow the notation “C1(Q1)-C2”. In 
this charging policy, a constant-current step of C1 is performed until the state 
of charge Q1 is reached. After that, charging goes on as a constant-current step 
C2 until the SOC = 80%. After that, all batteries are charged at 1C CC-CV.  
The data is split into three batches corresponding to three blocks of experiments 
carried out separately in different dates: “Batch 2017-05-12”, “Batch 2017-06-
30” and “Batch 2018-04-12”. Focusing the attention on the most recent batch 
of batteries (“Batch 2018-04-12”), 46 different batteries have been analyzed. 
Within this batch, the LIBs are gathered according to 8 different fast-charging 
conditions. The complete dataset is illustrated in Fig. 8.7 where each subplot 
shows a group of batteries charged with a different fast-charging policy.  
The major effect of the different conditions is the variation of the batteries EOL 
according to the specific charging policies. 
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Fig. 8.7. TRI battery dataset. Batch 2018-04-12. Different charging conditions have 

been grouped together in each subplot. Source of the data: [382]. 
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The batteries have been tested at constant temperature condition of 30 °C 
inside a controlled temperature chamber and monitored using type T 
thermocouples.  
The TRI dataset has been selected because of the following reasons:  

• It is one of the most recent and updated battery datasets for prognostic 
and health management. 

• It is one of the largest datasets including 124 LIBs under test.  
• Batteries have been tested under several fast-charging policies, allowing 

to validate the method under different operating conditions not always 
considered in literature.  

• EOL of batteries under test varies in a wide range between 150 cycles 
and 2300 cycles, allowing once again to validate the proposed method 
under several different scenarios.  

 
 
 

8.6.  Results and Discussion for NASA dataset 
In this section the results of the RUL prediction carried out using the proposed 
procedure on batteries B0005, B0006, B0007 and B018 are presented.  
The state space has been estimated according to the Double Exponential model 
in equations (8.2)-(8.3) and using the Single Exponential model in equations 
(8.4)-(8.5). The goodness of fit has been evaluated using two measures:  

• Coefficient of determination R2 (R-squared). It represents the proportion 
of the variance for a dependent variable that is explained by an 
independent variable or variables in a regression model. The better the 
regression model, the closer to 1 the R2 is. 

• Root Mean Square Error (RMSE) which is a standard way to measure 
the error of a model in predicting quantitative data. The better the 
regression model, the lower the RMSE is.  

 
 

8.6.1.  Implementation of the proposed method 
The estimated parameters and the goodness of fit are reported in TABLE VIII.I 
in case of double exponential model and TABLE VIII.II in case of single 
exponential model. 
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TABLE VIII.I 
STATE SPACE ESTIMATION ACHIEVED USING CURVE FITTING TOOLBOX FOR BATTERIES 

B0005 - B0006 - B0007 - B0018. ESTIMATED PARAMETERS AND GOODNESS OF FIT IN 

CASE OF DOUBLE EXPONENTIAL MODEL 

BATTERY kpred 
DOUBLE EXPONENTIAL MODEL 

a b c d R2 RMSE 

B0005 
80 361.6 -0.009979 -359.8 -0.01004 0.9634 0.01637 
100 2.361 -0.004369 -0.5429 -0.02426 0.9726 0.01953 
120 2.109 -0.003418 -0.2944 -0.0377 0.9832 0.01896 

B0006 
80 -711.2 0.003179 713.2 0.003164  0.9643 0.0319 
100 2.086 -0.003968 -0.06686 -0.07632 0.9564 0.04037 

B0007 
80 -2.66e+05 -0.2192 2.66e+05 -0.2192 0.9803 0.01173 
100 2.077 -0.002877 -0.2138 -0.04384 0.9723 0.01805 
120 2.011 -0.002466 -0.15 -0.06315 0.9799 0.01818 

B0018 80 -5.22e-06 0.1182 1.842 -0.002508  0.9314 0.02978 
 

TABLE VIII.II 
STATE SPACE ESTIMATION ACHIEVED USING CURVE FITTING TOOLBOX FOR BATTERIES 

B0005 - B0006 - B0007 - B0018. ESTIMATED PARAMETERS AND GOODNESS OF FIT IN 

CASE OF SINGLE EXPONENTIAL MODEL 

BATTERY kpred 
SINGLE EXPONENTIAL MODEL 

C0 a b R2 RMSE 

B0005 
80 1.8565 -1.118 -111.9 0.9244 0.02324 
100 1.8565 -1.097 -110.5 0.961 0.02305 
120 1.8565 -1.133 -112.7 0.9781 0.02144 

B0006 
80 2.0353 -1.002 -52.84 0.9141 0.04887 
100 2.0353 -1.003 -52.79 0.9384 0.04753 

B0007 
80 1.8911 -1.043 -110.6 0.9633 0.01581 
100 1.8911 -0.8971 -101.7 0.9715 0.01814 
120 1.8911 -0.8717 -99.86 0.9824 0.01687 

B0018 80 1.8550 -0.5238 -35.47 0.8753 0.03962 

 
Analyzing the goodness of fit in TABLE VIII.I and TABLE VIII.II it is clear that 
the single exponential model fit extremely well the degradation of the four 
batteries under test. The results obtained with the single exponential model 
proposed in this work are comparable with the widely known double 
exponential model proving that the single exponential model is a valid 
alternative when a lower number of coefficients is required.  
The following steps require the use of the proposed ESN to estimate the battery 
degradation. TABLE VIII.III summarizes the structure and main parameters of 
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the proposed DESN (Deep Echo State Network).  
 

TABLE VIII.III 
MAIN PARAMETERS OF THE PROPOSED DESN 

ESN LEVELS 3 
POPULATION SIZE 100 

N [100, 800] 
ELITE COUNT 5 

CROSSOVER FRACTION 0.78 
α [0.75,1.4] 

ACTIVATION FUNCTION Tanh 
LOSS FUNCTION MSE 

M 15 
 
The network implementation has been realized in python, considering a number 
of network levels equal to 3, as reported in TABLE VIII.III. The connections 
between the units in each level of the network has been randomly generated, 
whereas the number N of units in the reservoir, as well as the spectral radius 
α, has been selected by applying the GA. The optimization process involving N 
and α has been performed considering the range [100, 800] and [0.75, 1.4] for 
the two parameters, respectively. Then, as stopping criterion of the GA, the 
achievement of the maximum number of generations has been used, here set 
equal to 15. Moreover, the elite selection process terminates when the best five 
individuals advance to the next population generation. Differently, the 
crossover fraction per generation has been set equal to 0.78. It is important to 
highlight that the number of samples created for each dataset forecast has been 
properly selected performing random experiment, in order to find the minimum 
number of samples needed to reach a valuable accuracy prediction. Therefore, 
the number of training samples varies for each dataset.  
Fig. 8.8 highlights the training phase of the proposed method comparing the 
measured data and the model-based generated dataset considering the RUL 
prediction of battery B0005 at 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 80 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 by means of single exponential 
model. The parameters of the battery’s state space used to generate the data 
are the ones reported in TABLE VIII.II. 
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Fig. 8.8. Training of the proposed ESN. The blue dots show the measured data, while 

the red stars stand for the training dataset generated according to the single 
exponential model and the state space estimated in TABLE VIII.II (Prediction 

performed at 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 80 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

 
Fig. 8.9 shows the prediction of the health state performed for battery B0005 
using the proposed method at the prediction time kpred = 100 cycles. The 
measured data are compared with the results of the prediction achieved using 
the proposed RNN in three different scenarios: 

a. Network training using the measured data. 
b. Network training using a large dataset generated according to the state 

space estimation in TABLE VIII.II and the single exponential model. 
c. Network training using a large dataset generated according to the state 

space estimation in TABLE VIII.I and the double exponential model.  
 
Analyzing Fig. 8.9 it is possible to highlight the potentialities of the proposed 
model. In fact, the capacity predicted considering the scenario a. (training using 
the measured data) is absolutely not reasonable. The network does not catch 
the non-linear behavior of the dataset and the battery capacity remains 
approximately constant without reaching the failure threshold. This is mainly 
due to the quality of the battery data and the many regeneration phenomena 
in the considered dataset, while it is not linked to the numerosity of the training 
dataset. In fact, similar results have been obtained moving the prediction time 
kpred from 80 cycles up to 150 cycles.   
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Fig. 8.9. Results of the RUL estimation performed with the proposed approach on the 

battery B0005 using three different trainings methodology for the developed RNN: 
training using the measured data (red dots), training using state space estimation and 

single exponential model (yellow dots), training using state space estimation and 
double exponential model (purple dots). 

Quite the opposite, when the network is trained using the proposed method 
that integrates the state space estimation and the parameters of TABLE VIII.I 
and TABLE VIII.II, then the predicted dataset estimates the RUL of the battery 
with an estimation error of only 3 and 4 cycles (double and single exponential 
model respectively).  
More in detail, the proposed single exponential model follows the measured 
data almost perfectly, while the double exponential model provides a low 
estimation error even if the predicted trend does not follow perfectly the 
measurements. This phenomenon proves the superiority of the proposed single 
exponential model against the well-established double exponential for this kind 
of batteries. 
Fig. 8.10 compares the capacity prediction for battery B0007 achieved using 
the single exponential model in three different prediction times:  kpred =
80 cycles, kpred = 100 cycles, and kpred = 120 cycles. Considering battery B0007 
the proposed single exponential model allows to perfectly follow the trend of 
the measured data, regardless the time of the estimation kpred. 
Obviously, moving forward the prediction time, the predicted capacity 
approximate the measured data with a lower error.  
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Fig. 8.10. Results of the RUL estimation performed with the proposed approach on the 

battery B0007 at three different prediction times: 80 cycles (red dots), 100 cycles 
(yellow dots), 120 cycles (purple dots). 

 
This is due to the fact that a greater prediction times involves a greater 
measured dataset and therefore a better state space estimation. As a 
consequence, improving the state space estimation used to train the RNN, also 
the prediction of the RNN significantly improves providing more accurate 
predicted Remaining Useful Life RULpred. 
For the sake of brevity, the results of the proposed RUL estimation method are 
summarized in TABLE VIII.IV in case of both single exponential model and 
double exponential model.  
The goodness of estimation has been analyzed comparing both EE and MSE. 
The four batteries under test have been analyzed at different prediction times. 
TABLE VIII.IV reports the results achieved at prediction time kpred = 80 cycles, 
kpred = 100 cycles, and kpred = 120 cycles. 
Focusing on the estimation error, the proposed method ensures a performant 
estimation with an extremely low absolute error between the measured and the 
predicted RUL.  
Comparing the results achieved using the proposed single exponential model 
and the well-established double exponential model it is possible to note that 
the proposed model provides better results for three out of four batteries 
(B0005, B0006 and B0007). Only battery B0018 favor the double exponential 
model.  
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TABLE VIII.IV.  
RESULTS OF THE RUL ESTIMATION PERFORMED USING THE PROPOSED METHOD ON THE 

BATTERIES B0005 - B0006 - B0007 - B0018 

BATTERY MODEL kpred RULmeas RULpred EE MSE 

B0005 

Single Exp 

80 44 45 1 29.3e-3 

100 24 24 0 0.28e-4 

120 4 4 0 0.11e-3 

Double Exp 

80 44 50 6 39.7e-3 

100 24 28 4 1.4e-3 

120 4 4 0 1.1e-3 

B0006 

Single Exp 
80 29 29 0 1.5e-3 

100 9 11 2 0.31e-4 

Double Exp 
80 29 33 4 2.2e-3 

100 9 7 2 6.7e-3 

B0007 

Single Exp 

80 86 83 3 0.52e-4 

100 66 67 1 0.83e-3 

120 46 46 0 0.14e-3 

Double Exp 

80 86 82 4 2.9e-3 

100 66 65 1 2.2e-3 

120 46 46 0 1.8e-3 

B0018 
Single Exp 80 17 19 2 8.0e-3 

Double Exp 80 17 16 1 5.5e-3 

 
 
Taking battery B0005 as an example, the estimated 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 using the single 
exponential model decreases from 45 cycle at 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 80 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 down to 24 
cycles at 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 100 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and then to only 4 cycles when 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 120 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  
When RUL estimation is performed at 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 120 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the proposed 
approach alerts the maintenance crew that the battery will reach the 30% 
degradation threshold after only other 4 cycles. Thus, a maintenance task to 
replace the battery will be planned shortly. 
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8.6.2.  Goodness of estimation 
The goodness of the proposed RUL estimation has been studied with two 
analysis.  
Firstly, a comparison between the predicted RUL and the actual RUL of the 
batteries is presented. Taking battery B0007 as an example, the accuracy of 
the proposed estimation is shown in Fig. 8.11 considering the single exponential 
model and varying the prediction time starting from kpred = 80 cycles up to 
kpred = 150 cycles.  
 

 
Fig. 8.11. Accuracy estimation of RUL prediction using the single exponential model 
comparing predicted RUL (blue line) and actual RUL (red line) for battery B0007. 
The battery End-Of-Life is 166 cycles. Prediction time varies from 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 80 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

up to 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 150 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

 
Fig. 8.11 highlights the goodness of the proposed method, showing how the 
predicted RUL trend (blue line) follows accurately the actual RUL (red trend). 
It can be seen from the figure that many times the prediction ensure a 
remarkably low absolute error.  
To highlight the quality of the prediction, Fig. 8.12 shows the prediction carried 
out at kpred = 80 cycles on battery B0007 including the upper and lower 95% 
confidence bounds (green dashed lines).  
Such intervals have been evaluated by means of t-distribution with N-1 degrees 
of freedom, where N is the number of capacity samples randomly generated by 
the proposed ESN at the considered cycle kpred. 
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Fig. 8.12. RUL Prediction using the proposed single exponential model in case of 

battery B0007 (prediction performed at 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 80 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). The green dashed lines 
represent the confidence bounds of the proposed prediction. 

 
 

8.6.3.  Comparison with other methods 
Finally, the results achieved using the proposed hybrid approach that integrates 
state space estimation and prediction based on AI have been compared with 
some of the methods available in literature that provides results applied on the 
same battery dataset. The comparison reported in TABLE VIII.V includes six 
different methods: 

• A particle filter as in [357]. This comparison is fundamental since the 
particle filter is one of the widest used approach for RUL estimation of 
batteries.  

• An innovative method also present in [357] based on an improved Long 
Short-Term Memory Fusion Technique. 

• A PF integrated with a nonlinear AR model presented in [360]. This 
comparison has been chosen since this approach integrates aspect of 
filtering methods and AI methods similarly to the proposed method. 

• An Empirical Mode Decomposition and Autoregressive Integrated 
Moving Average presented in [359]. 

• An innovative indirect health indicator based on multiple Gaussian 
process regression as in [342].  

• The Monotonic ESN presented in [367] since it is the same neural 
network of the proposed approach.  
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TABLE VIII.V. 
COMPARISON BETWEEN RUL ESTIMATION ACHIEVED USING THE PROPOSED METHOD 

(BOTH SINGLE AND DOUBLE EXPONENTIAL MODELS) AND USING DIFFERENT APPROACHES 

AVAILABLE IN LITERATURE. 

Battery kpred 
Proposed method Literature comparison 
EE  

Single Exp 
EE  

Double Exp 
Method EE Ref. 

B0005 80 1 6 

Particle Filter 

8 

[357] 

B0005 100 0 4 6 
B0006 80 0 4 7 
B0006 100 2 2 3 
B0007 80 3 4 8 
B0007 100 1 1 7 
B0018 80 2 1 7 
B0005 80 1 6 

Improved Long Short-Term 
Memory Fusion Technique 

3 

[357] 

B0005 100 0 4 2 
B0006 80 0 4 2 
B0006 100 2 2 1 
B0007 80 3 4 3 
B0007 100 1 1 2 
B0018 80 2 1 1 
B0005 80 1 6 Nonlinear AR model and 

Regularized PF 
8 

[360] 
B0005 100 0 4 4 
B0005 100 0 4 Empirical Mode 

Decomposition and AR 
Integrated Moving Average 

4 
[359] B0006 80 0 4 3 

B0007 100 1 1 2 
B0005 80 1 6 Indirect health indicator 

and multiple Gaussian 
process regression 

6 
[342] B0006 80 0 4 3 

B0018 80 2 1 5 
B0005 80 1 6 

Monotonic ESN 
6 

[367] B0006 80 0 4 3 
B0018 80 2 1 1 

 
The comparison highlights the goodness of estimation provided by the proposed 
method. When the single exponential model is taken into account the proposed 
approach provides extremely better results of the other methodologies. Instead, 
the double exponential model reached worsen results respect to the improved 
Long Short-Term Memory Fusion Technique, similar results to the Monotonic 
ESN, while overcomes the results of the other approaches included in the 
comparison table.  
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8.7.  Results and Discussion for TRI dataset 
This section presents the results of the proposed methodology applied on the 
TRI battery dataset. Firstly, this section aims at verifying if the proposed single 
exponential model can be successfully applied to the considered dataset. This 
step is fundamental to validate the proposed model with a dataset composed 
by a large number of LIBs. To ensure accurate prognostic and effective RUL 
estimation the single exponential model must fit properly all the 124 LIBs 
included in the considered dataset. The estimation of the goodness of fit has 
been carried out using the coefficient of determination R2 and the Root Mean 
Square Error (RMSE). Well-fitting regression models are characterized by 
values of R2 close to 1 and values of RMSE close to 0. Both goodness of fit 
measures have been illustrated in the boxplots in Fig. 8.13. 
The top subplot shows the results achieved for the three batches in terms of 
coefficient of determination R2, while the bottom subplot refers to the RMSE. 
Each boxplot summarizes the goodness of fit of an entire batch of batteries 
showing its main statistical parameters. This is done to analyze the variability 
of the parameters and the quality of the fitting. The boxplots in Fig. 8.13 
highlight that the single exponential model fit well the degradation mechanisms 
of the 124 LIBs under test, allowing to extend the application of the proposed 
procedure to the considered dataset. In fact, the different fast-charging policies 
barely influence the goodness of fit of the proposed single exponential model. 
 

 
Fig. 8.13. Goodness of fit of the Single exponential model for TRI dataset. 
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The results of the application of the proposed Deep-ESN are summarized in 
Fig. 8.14, where the blue trends represent the measurement datasets while the 
yellow lines stand for the predicted battery capacity datasets. The training 
phase of the proposed Deep-ESN has been stopped at the 60% of the battery 
life, while the remaining 40% of the dataset has been used to validate the 
prediction. Analyzing in detail Fig. 8.14 it is possible to highlight the 
outstanding performances of the proposed network and validate the application 
under different fast-charging policies. The most striking results to emerge is 
that the proposed method is able to effectively predict the future behavior of 
the batteries regardless the charging policy selected for the specific LIB.   
The proposed ESN is able to predict properly the future degradation of the 
battery capacity under all the 8 considered conditions. More in detail, the 
prediction errors in terms of absolute RUL error AE and Mean Square Error 
MSE are shown in TABLE VIII.VI for the different charging conditions. The 
MSE is the loss function of the proposed network, while the absolute error gives 
an immediate measure of the prediction quality. 
 

TABLE VIII.VI. 
QUALITY OF THE PREDICTION UNDER DIFFERENT CHARGING CONDITIONS. ABSOLUTE 

ERROR AND MSE ARE USED TO COMPARE THE PREDICTED RUL AND THE MEASURED RUL. 

CHARGING POLICY CHANNEL AE MSE 

5C(67%)4C CH 10 3 1.5515e-9 

5.3C(54%)4C CH 43 0 4.2068e-9 

4.8C(80%)4.8C CH 6 0 9.7688e-10 

5.6C(19%)4.6C CH 12 1 1.6169e-7 

5.6C(36%)4.3C CH 45 1 2.5371e-11 

3.7C(31%)5.9C CH 38 0 1.5216e-7 

5.9C(15%)4.6C CH 24 1 3.0841e-8 

5.9C(60%)3.1C CH 40 0 1.2790e-8 

 
To easily understund the quality of the proposed RUL prediction, the analysis 
of the percentage relative error between predicted capacity and actual measured 
capacity have been included in TABLE VIII.VII and Fig. 8.15. More in detail, 
TABLE VIII.VII highlights the maximum percentage error achieved for each one 
of the 8 fast-charging policies included in “Batch 2018-04-12”.  
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Fig. 8.14. Prediction results performed using the proposed ESN-based procedure on 8 

batteries characterized by different fast-charging condition. 
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TABLE VIII.VII. 
MAXIMUM PERCENTAGE ERROR BETWEEN PREDICTED AND MEASURED CAPACITY FOR 

DIFFERENT CHARGING CONDITIONS. 

CHARGING 

POLICY 
CHANNELS 

MAX PERCENTAGE 

ERROR 

5C(67%)4C 2 - 7 - 10 - 18 - 42 - 47 - 34 1.1467 % 

5.3C(54%)4C 3 - 8 - 11 - 19 - 27 - 35 - 43 - 48 1.9185 % 

4.8C(80%)4.8C 1 - 6 - 9 - 17 - 25 - 33 - 41 - 46 1.1817 % 

5.6C(19%)4.6C 4 - 12 - 14 - 20 - 22 - 28 - 36 - 44 4.2491 % 

5.6C(36%)4.3C 5 - 13 - 15 - 21 - 23 - 29 - 37 - 45 0.7631 % 

3.7C(31%)5.9C 16 - 30 - 38 3.1295 % 

5.9C(15%)4.6C 24 - 39 2.4023 % 

5.9C(60%)3.1C 32 - 40 2.4561 % 

 

 
Fig. 8.15. Percentage relative error between predicted and measured capacity. Each 

trend represents the worst battery of a single charging condition. 

 
The percentage error in each row of the table refers to the worst performed 
prediction of every charging condition. Such analysis emphasizes that the 
quality of the prediction decreases when the charging current increases, however 
the percentage relative error still remains considerably low.   
For every one of the worst conditions in TABLE VIII.VII, the complete trend of 
the prediction error is illustrated in Fig. 8.15, where sample 0 refers to the 
prediction time kpred. The percentage relative error in Fig. 8.15 is considerably 
low in the initial phase of the prediction. Then it increases when the capacity 
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of the LIB is approximately 1 Ah (i.e., ≃90% of rated capacity). After that, 
thanks to the goodness of the single exponential model, the error decreases 
reaching values lower than the 0.5% approaching the FTH.  
Finally, the quality of the proposed method has been tested in case of a noisy 
battery dataset. The battery cell in channel 46 of “Batch 2018-04-12” has noisy 
voltage profiles and thus a noisy discharge capacity profile. According to the 
authors of the dataset, this could be caused by a problem in one or more 
electronic connections [382]. The prediction results in case of noisy battery data 
are illustrated in Fig. 7 varying the time in which the prediction is performed. 
More in detail, the analysis has been repeated considering as training dataset 
the 40 %, 50%, 60% and 70% of the battery lifetime. The analysis of Fig. 7 
proves the ability of the proposed method to identify the battery degradation 
behavior also in presence of noisy data, regardless the time in which the 
prediction is performed.   
 

 
Fig. 8.16. Results of the proposed RUL estimation method in case of noisy dataset. 

The different predictions in each subplot have been performed at prediction time 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
from 40% to 70% of the actual battery EOL. 

Finally, it is important to note that despite the proposed Deep-ESN consists of 
a deep neural network belonging to the reservoir computing model, there is no 
large additional computational complexity in the whole learning process in 
comparison to the conventional ESN. In fact, as detailed in [383], the 
computational complexity of both the ESN and its deep version results to be 
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driven by the training process whose complexity is O(I ∙ D2), in which D is the 
number of data points in the considered dataset and I is the input length. 
 
 

8.8.  Final remarks 
This chapter introduces a hybrid method for Lithium-Ion batteries RUL 

estimation by means of state space estimation and Recurrent Neural Network. 
The hybrid approach integrates a condition monitoring unit and a physical 
degradation model to enhance operation and maintenance. More in detail, the 
main contributions of this chapter are: 

• The introduction of an innovative hybrid approach which integrates 
CM and physical degradation model to estimate the batteries EOL.  

• The integration of an Artificial Intelligence estimation method with a 
state space estimation which is typical of filtering-based approach. The 
state space estimation allows to generate a big dataset used for the 
Network training, ensuring valuable estimation regardless the 
prediction time.  

• Introduction of additional deep layers within the ESN to ensure an 
accurate estimation of nonlinear trends. This step is essential to 
guarantee an optimal estimation for Lithium-Ion batteries where the 
degradation mechanisms are strongly nonlinear.  

• Introduction of a single exponential degradation model for Lithium-Ion 
batteries which is an alternative to the widely known double 
exponential model. The proposed model provides better results with 
lower parameters and lower complexity ensuring the same accuracy. 

 
The widely known double exponential model is compared with a proposed single 
exponential model to estimate the battery degradation by means of the RNN. 
The training of the neural network has been performed based on a randomly 
generated dataset according to the state space estimation of the measured data.  
In other words, the condition monitoring unit provides data regarding the 
internal capacity of the battery, then the state space is estimated according to 
the new single exponential model (similarly to the filtering method). These data 
are used to generate a training dataset for the RNN, which then provides the 
estimation of the future battery state of charge. The two considered degradation 
models have different characteristics and different dynamics. However, the 
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proposed ESN is able to accurately catch the dynamics of both model of all the 
four datasets, ensuring generalization and robustness of the method.  
The analysis of the experimental results performed on two very different battery 
datasets (i.e., Prognostic Center of Excellence at NASA and Toyota Research 
Institute - TRI) highlighted the ability of the proposed method to precisely 
estimate the RUL of several batteries under test. More in detail, the proposed 
single exponential model provides better results with respect to the well-
established double exponential model with a lower complexity and a fewer 
number of parameters for three out of four batteries. In addition, a comparison 
with the state of the art proves how the proposed method allows to reach 
optimal results in terms of RUL estimation error. Furthermore, the 
experimental results prove the ability of the proposed method to accurately 
estimate the batteries behavior regardless the selected charging policy. 
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CHAPTER 9 
 
PROPOSED DATA-DRIVEN 

RELIABILITY LIFE CYCLE  
 
 
 
 
 
The aim of this final chapter is to introduce and describe 
the proposed data-driven reliability life cycle for complex 
systems. The procedure is presented in this section, paying 
considerable attention to the relationships between each 
method and the others included in the whole Reliability Life 
Cycle. Furthermore, some final remarks about the RAMS 
methods proposed in the previous chapter have been drawn, 
with particular attention to the impact of each individual 
improvements and optimization with respect to the state-
of-the-art in the field.   

 
  



PROPOSED DATA-DRIVEN RELIABILITY LIFE CYCLE 

310 
 

9.1.  Introduction 
As extensively described in the Introduction section of this work, there are 
several design for reliability methods available in literature that integrates 
different reliability tasks. However, all-around Reliability Life Cycle procedures 
able to consider the complete system life cycle (from design and development 
to disposal) by a reliability point of view are seldom available. 
According to recent literature, different approaches could be used in the 
different phases of the product life cycle. Depending on the parameters of 
interest, it is possible to identify different techniques that could be used 
depending on the specific period of the product life cycle.  
For instance, reliability prediction could be used to estimate a component 
failure rate during the first phase of the design, while life data analysis serves 
the same purposes when a prototype is ready to be tested.  
Another shining example could be found in risk management flow processes. 
Fault Tree Analysis and Failure Modes and Effects Analysis are both well-
established and standardized techniques for risk assessment of complex units. 
However, they provide different kinds of outcomes about the risk associated to 
a failure and they are usually implemented alternatively based on the outcome 
of more interest.  
Another fundamental aspect that is barely taken into account in design for 
reliability methodologies is the key role of diagnostics. Proper and accurate 
diagnostics and condition monitoring tools should be designed along with the 
systems that they will have to monitor. Starting from a failure analysis of the 
system under test, it is essential to introduce adequate sensors and independent 
elaboration units within the design of the system itself. This will allow to 
provide data about the health state of the system and consequently to achieve 
information about the remaining useful life of the product Thus, condition-
based maintenance could be plan accordingly, saving a great amount of 
resources (both money and time) and ensuring adequate level of system 
availability and productivity. However, this procedure is able to ensure striking 
and significant results only if it designed and planned during the design phase 
of the system itself.  
In this point of view, this final chapter aims at presents an innovative data-
driven reliability life cycle which integrates different RAMS techniques strictly 
related to each other. A workflow is presented to highlight the relationships 
between the considered methods and to emphasize how the output of one single 
approach should be used to improve and optimize the following one.  
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9.2.  Description of the proposed method 
This section introduces the proposed Reliability Life Cycle procedure. The 
complete flowchart of the process is illustrated in Fig. 9.1 where the life cycle 
of the product is divided into two subsections:  

• RAMS methods implemented during design phase with two major 
purposes:  

o Evaluate the reliability, availability, maintainability and safety 
of each component and each subsystem making up the system 
under analysis. 

o Carry out a risk assessment procedure in order to find the most 
critical components by a risk value point of view. This allows 
to introduce adequate design countermeasures to mitigate such 
high-risk scenarios. 

• Diagnostics and Prognostic approaches carried out after the 
implementation and installation of the system in the specific field of 
application.  

 
The above-mentioned subsections are identified using two dashed-line colored 
squares in Fig. 9.1. 
Moving forward to the specific methods taken into consideration, 10 different 
RAMS methodologies have been included in the proposed data-driven 
Reliability Life Cycle.  
The flowchart in Fig. 9.1 uses different colors of the boxes to identify different 
areas of application of the techniques. More in detail, the approaches considered 
as fundamental part of the proposed Reliability Life Cycle are described in the 
following: 

• Reliability Block Diagram (RBD) used to generate a reliability model 
of the system under test in order to identify and model properly 
different kind of redundancies.  

• Failure Modes, Effects and Criticality Analysis (FMECA) implemented 
to identify every possible failure of the system and to estimate the risk 
associated to each critical event. 

• Risk Priority Number (RPN) threshold estimation in order to identify 
a set of critical items and divide it form the negligible components (by 
a risk-value point of view. 

• Reliability Allocation carried out with the aim of estimate the 
reliability requirements of each individual component and each 
equivalent subsystem included in the developed device.  
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• Accelerated Life Test to estimate the failure rate and the reliability 
parameters of critical components characterized by non-constant failure 
rate. 

• Safety Integrity Level (SIL) evaluation techniques carried our in case 
the system under analysis is a safety critical unit to be used in s Safety 
Instrumented System (SIS) or a Safety Related System (SRS).  

• Environmental Stress Screening (ESS) test procedure with the aim of 
identify the weak population and remove it from the strong products. 
This will allow to avoid infant mortality failures lowering the failure 
rate values in the first phase of the bathtub curve. Furthermore, ESS 
procedures can be used to characterize the performances of the 
developed product in the real scenario in which the system will be 
installed. This can be characterized by the presence of significant 
temperature variation, humidity exposure, vibration levels, mechanical 
shocks and so on. 

• Condition Monitoring tools designed during the design phase of the 
product itself and implemented after the installation of the system on 
the field in order to achieve information about the health state of the 
system under analysis. 

• Remaining useful Life (RUL) estimation method able to quantify the 
amount of time from the current moment to the end-of-life of the 
system starting from condition monitoring data and failure threshold 
alarms.   

• Condition-based maintenance planned properly according to the 
outcomes of condition monitoring tools and remaining useful life 
estimation algorithms.  

 
It is important to note that, among all the ten techniques included in this 
procedure, only two methods have not been discussed in this work: RBD and 
SIL evaluation. As a matter of fact, the Reliability Block Diagram methodology 
is a well-defined and well-standardized technique properly described in the 
international standard IEC 61078 (2016) [197]. By a research point of view, it 
does not provide any particular starting point since the description of the 
redundant models is well-defined and accepted in the scientific community. 
Quite similarly, the SIL evaluation techniques must follow strict and rigorous 
rules defined and standardized in several international standards, depending on 
the field of application. Few examples are the IEC 61508 (2011) [384] about the 
electric and electronic components, or the IEC 61511 about process industry 
sector [385].  
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Fig. 9.1. Proposed data-driven reliability life cycle for complex systems. 
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The proposed procedure illustrated in Fig. 9.1 starts with two approaches 
carried out simultaneously, a Reliability Block Diagram and a Failure Modes, 
Effects and Criticality Analysis. While RBD has been considered a single tool, 
FMECA has been divided into several tasks. Firstly, a classical FMECA should 
be performed taking into account the considerations about alternative RPNs 
and scale reductions presented in Section 3. Furthermore, whenever it is 
possible, the indexes of the FMECA should be assessed quantitatively using the 
measurements-based procedures presented in the final part of Section 3. After 
that, a proper clustering of the failure modes between critical, intermediate and 
negligible modes must be performed according to the proposed Boxplot method 
for threshold estimation presented in Section 4. This allows to identify the most 
hazardous conditions and thus implement proper and accurate corrective 
actions.  
After that, RBD and FMECA are used as starting point from the Reliability 
Allocation procedure. Using the methodology proposed in Section 5 it is possible 
to evaluate a reliability target for each component and each subunit making up 
the system. After that, the proper component should be selected on the market. 
If a device able to ensure the target reliability is available, then it is possible 
to move forward to the next component. Otherwise, an Accelerated Life Test 
plan should be used to indirect estimate the reliability parameters of the 
selected component by means of a Life Data Analysis.  
The following step is a SIL evaluation that should pe performed only if the 
system is a safety-critical unit according to the recommended standards. 
Imperfect maintenance model should be taken into account in order to ensure 
a more accurate SIL estimation.  
The final step that should be performed before the installation of the system is 
a screening procedure carried out by means of an ESS test plan. To properly 
develop an ESS procedure information about failure analysis are required. Then, 
the test could be used to identify any possible intrinsic malfunction due to the 
production processes and to characterize the performances of the system in a 
harsh environment typical of the actual scenarios in which the product will be 
installed. Two examples of ESS test plans and context-awareness analysis have 
been presented in Section 6.  
After installation and implementation of the considered system, diagnostic and 
prognostic approaches can be performed. This starts with a Condition 
Monitoring tool that should be designed and installed along with the system 
itself. An example of condition monitoring from planning to implementation is 
presented in Section 7 in case of a wind turbine. Other examples of Condition-
based maintenance tasks have also been presented in Section 7. Finally, the 
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data gather by the condition monitoring tool are used to implement effect 
Prognostic strategies. An example of prognostic and RUL estimation has been 
presented in Section 8, where an innovative hybrid method for RUL estimation 
of Lithium-Ion batteries has been proposed.  
 
 
 

9.3.  Relationships between the considered 
techniques  
In this section the relationships between the proposed methods are detailed 
described. Every approach integrated within the proposed Reliability Life Cycle 
in Fig. 9.1 is related to each other, the output of one technique become the 
input of the following ones, and vice versa. More in detail: 

• The Failure Modes, Effects and Criticality Analysis is essential in order 
to estimate the most critical items included in the systems and thus to 
reduce their risk level. This is a cyclic approach which start with a 
FMECA and continues with an RPN threshold estimation in order to 
find the most critical units. After that, corrective actions are 
implemented, and the failure analysis is performed once again. This 
cycle is continuously improved not only during design phase, but also 
after installation and implementation of the system.  

• FMECA is also used as input of the ESS screening procedure. In order 
to be effective, an ESS test plan must be designed taking into account 
the failure modes and failure mechanisms identified during the 
FMECA. This allows to plan the test bearing in mind what accelerated 
factors mostly influence the reliability of each component.  

• As detailed described in Section 5, the RBD is the standard input of 
the Reliability Allocation procedure. More in detail, the RBD of the 
system is essential to identify the different hierarchical levels of the 
system under test and thus to properly model the redundancies in the 
proposed allocation methodology.  

• Another fundamental input of the Reliability Allocation is the 
criticality analysis included in the FMECA. Section 5 emphasized how 
the FMECA report is extremely useful to estimate the influence factor 
of each component required by the Allocation method. 

• Once again, FMECA is strictly linked to another approach which plays 
a central role in the proposed reliability Life Cycle. In fact, Condition 
Monitoring data are widely used to improve the assessment of the 
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Detection rate in the FMECA report, keeping it continuously updated 
during the entire system life cycle.  

• Condition Monitoring data are the starting point for the 
implementation of Condition-Based Maintenance and prognostic 
methods such as RUL estimation.  

• RBD is not only the input of the Reliability Allocation but also the 
starting point of the SIL estimation methods according to several 
international standards.  

• Reliability Allocation allows to estimate the reliability requirements of 
every component and every subsystem included in the design. Thus, it 
can remarkably simplify the RUL estimation models.    
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CONCLUSIONS  
 
 
The work presented in this thesis extends the classical idea of Design for 
Reliability introducing an innovative data-driven reliability life cycle procedure 
that integrates different RAMS techniques to optimize the reliability of complex 
industrial systems during both design and operational phases. Furthermore, the 
work also presents some improvements and optimizations of the techniques 
included in the proposed Reliability Life Cycle in order to overcome the major 
drawbacks highlighted by the literature.  
More in detail, Chapter 1 presents an introduction to the work with the aim of 
emphasize the research questions and the objective of the project. The gaps in 
the body of knowledge that this research aims to fill are extensively explained, 
and the problems addressed by this study are properly outlined. Furthermore, 
Chapter 1 also illustrates the main contributions emphasizing the key element 
of novelties of this research project. The core of the chapter outlines the 
importance of the thesis within the context of the RAMS disciplines and more 
in detail within the topic of Instrumentation and Measurements to Improve 
Diagnostics, Prognostic and Reliability of complex system. As a matter of fact, 
the entire work has been developed in order to highlight the fundamental role 
of metrology within RAMS contexts, paying particular attention to these 
aspects that are normally neglected during RAMS analysis and simulation 
approaches. 
Chapter 2 provides a brief description of the complex systems taken as case 
study in the various sections of this work. In particular, six different systems 
have been used to test the performances of the methodologies introduced in the 
other chapters and included in the proposed Reliability Life Cycle. More in 
detail, the chapter starts describing the basic features of an onshore wind 
turbine, with specific reference to the electrical and electronic units and to the 
yaw system used to move the turbine toward the wind direction. Other complex 
systems dealt with in this work are an HVAC (Heating, Ventilation and Air 
Conditioning) unit installed in high-speed trains and a lubrication system for 
gas turbines. Furthermore, a general-purpose Inertial Measurement Unit has 
been presented and described because it is a useful platform in diagnostic and 
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condition monitoring units. Strictly connected to the latter, lithium-ion 
batteries and a customized self-made DC-DC converter used to supply WSN-
based diagnostic units have also been included because they represent the most 
critical items in any condition monitoring device. 
Chapter 3 illustrates the first technique studied and optimized in this work. 
The Failure Modes, Effects and Criticality Analysis (FMECA) plays a central 
role in many Design for Reliability procedure and thus it has been included in 
the proposed Reliability Life Cycle. Chapter 3 starts illustrating in detail the 
base theory about FMECA according to the international standard IEC 60812 
(last update 2018). An extensive literature review is included in the chapter to 
emphasize the various different forms of alternative FMECA already published 
in literature. All the alternative Risk Priority Numbers that do not completely 
revolutionized the base idea of the IEC 60812 have been taken into account in 
order to identify the optimal FMECA procedure to be included in the proposed 
Reliability Life Cycle. The final part of the chapter implements the classical 
FMECA along with some alternative approaches to the most critical component 
of an HVAC system for railway applications. A statistical comparison is 
presented to highlights drawbacks and shortcomings of each method, before 
introduces some possible approach to reduce subjectivity of FMECA assessment 
by means of dedicated measurements and sensor technologies.  
The following step in the proposed Reliability Life Cycle is the evaluation of an 
RPN (Risk priority Number) threshold to divide all the identified failure modes 
in different clusters by a risk value point of view. The review of the state-of-
the art pointed out few quantitative methods to carry out this issue, and each 
one of them suffer many drawbacks.  
Trying to fill this need, Chapter 4 proposes a new approach for the Risk Priority 
Number threshold estimation based on a statistical analysis and compares the 
proposed method with the other quantitative prioritization techniques found in 
literature. The goal of the chapter is to introduce an innovative methodology 
that effectively identify the most critical component of the system under test, 
which is a fundamental aspect of the proposed Reliability Life Cycle procedure. 
The proposed approach has been applied to the electrical and electronic 
components included in a Spanish 2 MW onshore wind turbine. The proposed 
methodology is an easy, practical and repeatable solution which represents the 
optimal trade-off between cost of the countermeasures and threshold level (by 
a risk reduction point of view). The major advantages of the proposed Boxplot 
procedure are the introduction of the ALARP region in the RPN threshold 
estimation, the statistical base of the analysis and the ability to solve the 
subjectivity problem. 



CONCLUSIONS 

319 
 

Reliability Allocation (RA) is the real core of the whole proposed Reliability 
Life cycle, and thus Chapter 5 provides an overview of this procedure focusing 
on some of the most known and widely used techniques available in literature. 
To the author knowledge, all the RA approaches are based on two assumptions: 
functional series architecture and exponential failure distribution. Chapter 5 
builds upon this issue introducing an innovative iterative approach that allows 
to overcome both assumptions and thus to apply reliability allocation to any 
complex system. The validation of the proposed approach has been carried out 
implementing the method on three different applications: a numerical example, 
a sensors unit of an HVAC system for high-speed trains and a lube oil console 
for Oil&Gas applications. The results of the applications prove the effectiveness 
of the proposed procedure highlighting the advantages of the method and 
emphasizing how it is possible to overcome the initial hypotheses required by 
every other allocation method. 
The following step of the proposed Reliability Life Cycle is the implementation 
of a screening procedure by means of ESS (Environmental Stress Screening) 
test plan in order to identify and remove the defected products.  
In this point of view, the first part of Chapter 6 presents the development of a 
customized test plan and test bed for characterization of Inertial Measurement 
Units (IMUs)under temperature and vibration stress sources. The reliability 
and metrological performances of the IMUs have been characterized introducing 
adequate figures of merits to study the behavior of the devices in time and 
frequency domains. The second part of Chapter 6 presents a test plan for 
characterization of DC-DC converters under harsh environment. Also in this 
case, the reliability and the electrical performances of the device have been 
investigated using different parameters. The results of both case studies prove 
how it is possible to integrate an ESS test plan within a Reliability Life Cycle 
procedure to efficiently and effectively improve the performances of the system 
through its entire life cycle. Both aims of failure analysis and context-awareness 
characterization have been properly fulfilled by the proposed test plan. In fact, 
the experimental analysis allowed to discover defected items and, at the same 
time, it has been used to characterize the performances of the devices under the 
actual operating conditions that they will endure.  
After the installation and implementation of the system, condition monitoring 
(CM) starts to play a central role in the proposed Reliability Life Cycle. Thus, 
Chapter 7 provides an overview of CM techniques taking a wind turbine as an 
example. An innovative diagnostic-oriented methodology to select the optimal 
maintenance policy is presented as an alternative to the classical decision-
making process. The chapter also presents a new data-driven CM system to 
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efficiently monitor the health state and detect damages in the wind turbine by 
means of measurements of critical parameters. Finally, an innovative hybrid-
tree Wireless Sensor Network is presented in Chapter 7 in order to effectively 
and efficiently implement condition monitoring on the whole wind farm.  
The data acquired by CM tools con be used for both diagnostic and prognostic 
purposes. Prognostic and health management represent the final part of the 
proposed Reliability Life Cycle. In Chapter 8 a hybrid approach based on both 
Condition Monitoring and physic model is presented to improve the accuracy 
and precision of prognostic for lithium-ion batteries. An artificial intelligence 
method is integrated with a state space estimation technique typical of filtering-
based approaches. The state space estimation is used to generate a big dataset 
for the training of a neural network. Some additional deep layers are used to 
improve the prediction of nonlinear trends (typical of batteries) while the 
performance optimization of the network is ensured using a genetic algorithm. 
The proposed method has been applied to a battery degradation dataset from 
the data repository of Prognostics Center of Excellence at NASA. Two different 
degradation models are compared, the widely known empirical double 
exponential model and an innovative single exponential model which allows to 
ensure optimal performance with fewer parameters required to be estimated. 
Finally, Chapter 9 aims at introducing and describing the proposed data-driven 
reliability life cycle for complex systems. The procedure is presented paying 
considerable attention to the relationships between each method and the others 
included in the whole Reliability Life Cycle.   
Future development of this work could involve the optimization and 
improvements for the other methods included in the proposed reliability life 
cycle that have not been dealt with in this work (i.e. Reliability Block Diagram 
and SIL evaluation) and the application of the whole Reliability Life Cycle to 
a single case study, starting from design and development of the system up to 
installation, operation and maintenance.  
Other further improvements could be the extension of the proposed RUL 
estimation method for battery state of health analysis to other kind of electronic 
and mechanical components and the implementation of a sensitivity analysis 
within the context of the proposed Reliability Allocation procedure to quantify 
the effects of small deviation in the influence factors.  
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