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Abbreviations 

AI: Artificial Intelligence 

BBB: Blood Brain Barrier 

BET: Brain Extraction Tool 

BIANCA: Brain Intensity AbNormality Classification Algorithm 

CDMS: Clinically Definite Multiple Sclerosis 

CIS: Clinically Isolated Syndrome 

CNN: Convolutional Neural Network 

CNS: Central Nervous System 

CSF: Cerebrospinal Fluid 

DIS: Dissemination In Space 

DIT: Dissemination in Time 

DT: Delayed Treatment 

ET: Early Treatment 

FLIRT: FMRIB's Linear Image Registration Tool 

FNIRT: FMRIB's Non-Linear Image Registration Tool 

FSL: FMRIB Software Library  

Gd: Gadolinium 

GM: Gray Matter 

HC: Healthy Control 

LCM: Lesion Change Map 

LGA: Lesion Growth Algorithm 

LMM: Linear Mixed Model 

LPA: Lesion Prediction Algorithm 

LTP: Location of Training Points 

MRI: Magnetic Resonance Imaging 

MS: Multiple Sclerosis 

NBV: Normalized Brain Volume 

NAWM: Normal-Appearing White Matter 

nFNC: number of False Negative Clusters 

nFPC: number of False Positive Clusters 

NTP: Number of Training Points 

PBVC: Percentage Brain Volume Change 
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PD: Proton Density 

PPMS: Primary Progressive Multiple Sclerosis 

PS: Patch Size 

PVE: Partial Volume Effect 

PVVC: Percentage Ventricular Volume Change 

QNL: Quantitative NeuroImaging Laboratory 

REFLEXION: REbif FLEXible dosing in early MS extensION 

RRMS: Relapsing Remitting Multiple Sclerosis 

RQ: Research Question 

SPM: Statistical Parametric Mapping  

SPMS: Secondary Progressive Multiple Sclerosis 

SW: Spatial Weighting 

TE: Echo Time 

TLVC: Total Lesion Volume Change 

TR: Repetition Time 

WM: White Matter 

WMH: White Matter Hyper-intensities 
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1. Introduction 

Multiple sclerosis (MS) is a widespread inflammatory, demyelinating and neurodegenerative 

disease of the central nervous system (CNS) (Filippi, Preziosa, & Rocca, 2018). The incidence 

of MS is not homogeneous, but changes in a considerable way over the world. Where the 

prevalence is higher (North Europe, North America and Australia), about 30 on 100,000 people 

are affected (GBD 2016 Neurology Collaborators, 2019) . The causes of MS are still unknown, 

but it probably includes genetic as well as environmental factors. 

Different subtypes of disease exist: about the 85% of patients belong to that one named 

Relapsing Remitting (RR). These patients alternate attacks of focal neurological deficits 

(relapses) followed by clinically silent period (remitting phase). In RR patients the 

accumulation of clinical disability can be considered as the sum of residual disability not 

resolving after the attacks (Weinshenker, et al., 1989). After about 10-15 years the 

accumulation of disability usually change its course, becoming continue and progressive. This 

phase of disease is named Secondary Progressive MS (SPMS). Finally, about 15% of patients 

show a progressive accumulation of clinical disability from the disease onset. For this reason, 

the name of this last MS subtype is Primary Progressive MS (PPMS) (Lublin & Reingold, 

1996). There is not a privileged area of CNS involved at the onset of the disease, but different 

areas can be contemporary affected from the beginning of the MS. Thus, clinical symptoms 

greatly vary across patients, ranging from optics neuritis and muscle weakness to cognitive 

decline and fatigue (Noseworthy, Lucchinetti, Rodriguez, & Weinshenker, 2000).  

 

The following paragraph will briefly describe Magnetic Resonance Imaging (MRI) basic 

concepts, with emphasis on the sequences that are routinely used in MS. Afterwards, a detailed 

overview of the MS pathological hallmarks that are regularly analysed on MRI in both clinical 
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and research setting will be provided. Within this respect, brain lesions and atrophy biology, 

their appearance on MRI, how they are quantified, and the related challenges that are currently 

faced will be explained. Finally, the aim of the thesis will be provided. 

 

2. MS and MRI 

MRI is an imaging tool that currently offers the most sensitive non-invasive way of imaging 

the brain, spinal cord, or other areas of the body. Briefly, MRI works on the principle of nuclear 

magnetic resonance, a phenomenon where nuclei of atoms get excited in the magnetic field by 

electromagnetic waves and emit signals. Such signals reflect the characteristics of the imaged 

tissues and mostly derive from the hydrogen protons. Thus, the intensities of acquired images 

are influenced by the protons density and by the local environment of water molecules.  

By properly choosing the acquisition parameters, different kind of images can be obtained. In 

MS clinical practice the sequences that are routinely acquired are the T1-weighted, the proton 

density (PD) and the T2-weighted images (including fluid-attenuated inversion recovery 

[FLAIR]). T1-weighted sequence provide good contrast between gray (GM) and white matter 

(WM) resulting in images that most closely approximate the appearances of tissues 

macroscopically, although this is a gross simplification. Thus, this sequence is best for 

detecting anatomical abnormalities like tissue loss (i.e. atrophy). Further, contrast-enhanced 

T1-weighted imaging is a sensitive method for detecting active MS lesions. On such sequence, 

gadolinium (Gd) enhancement appears as an hyperintense area which reflects blood brain 

barrier (BBB) breakdown and histologically correlates with the inflammatory phase of lesion 

development.  

T2-weighted and PD images provide a good depiction of disease because pathological 

processes, such as demyelination or inflammation, are often related to increase in water 

content; thus, the affected areas appear bright on these sequences. 
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Given this context, MRI has the potential to depict the MS pathological hallmark: the 

concurrent presence of focal areas of inflammation (i.e. lesions) and of diffuse damage and 

neurodegeneration (i.e atrophy) (Lassmann, Brück, & Lucchinetti, 2007).  

2.1 Lesions  

Biological features. Lesions are characterized by the infiltration of inflammatory cells and the 

breakdown of the BBB (Lassmann, van Horssen, & Mahad, 2012). The mechanisms of BBB 

breakdown are incompletely understood but seem to involve direct effects of pro-inflammatory 

cytokines and chemokines produced by resident cells and endothelial cells, as well as indirect 

cytokine-dependent and chemokine-dependent leukocyte mediated injury (Minagar & 

Alexander, 2003; Ortiz, et al., 2014). The dysregulation of the BBB increases the infiltration 

of activated leukocytes, including macrophages, T cells and B cells, into the CNS, which leads 

to further inflammation and demyelination, followed by oligodendrocyte loss, reactive gliosis 

and neuro-axonal degeneration (Filippi, et al., 2018; Reich, Lucchinetti, & Calabresi, 2018). In 

active lesions, biopsies and autopsies showed a profound pathologic heterogeneity with four 

major patterns of immunopathology, suggesting that the targets of injury and mechanisms of 

demyelination in MS are heterogeneous and evolve over the course of months (Lucchinetti, et 

al., 2000). In this respect, WM inflammation plaques could be further classified as chronic 

active lesions, slowly expanding lesions and inactive lesions. The first ones are more frequent 

in MS patients with a longer disease duration and SPMS and are characterized by macrophages 

and microglia at the edge of lesions, with an inactive centre (Filippi, et al., 2018). Inactive 

lesions are sharply circumscribed, hypocellular and show reduced axonal density and lower 

density of lymphocytes than active plaques (Lassmann, van Horssen, & Mahad, 2012; Prineas, 

et al., 2001). Finally, mixed active/inactive lesions are also detected in MS. 
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Appearance on MRI. On PD, T2-weighted and FLAIR images MS lesions are easily detected 

in the WM as ovoid or round hyperintense elements (Filippi, et al., 2012; Filippi, et al., 2019) 

with the major axis usually perpendicular to the corpus callosum (Dawson’s fingers). 

Dimensions can range from few millimetres to more than 1 centimetre. MS lesions are 

disseminated throughout the CNS but have a predilection for optic nerves, subpial spinal cord, 

brainstem, cerebellum, and juxtacortical and periventricular WM regions (Filippi, et al., 2019). 

A subset (from 10 to 30%) of these T2-hyperintense MS lesions may appear hypointense on 

corresponding T1-weighted images (Filippi, et al., 2012). These hypointense lesions are 

commonly referred to as black holes and indicate areas with pathologically confirmed severe 

tissue destruction (Filippi, et al., 2012).  

 

Clinical relevance. The identification of lesions in the CNS on both cross-sectional and 

longitudinal MRI scans is a MS crucial diagnostic step for the demonstration of dissemination 

in space (DIS) and time (DIT) (Thompson, et al., 2018). Cross-sectional MRI scans provide an 

overview of the lesion damage accumulated this far in a patient and thus are used for assessing 

DIS. Longitudinal MRI scans are currently used for demonstrating DIT and are very useful for 

evaluating lesions activity over time in terms of newly formed, enlarging, shrinking or 

disappearing lesions. Thus, they provide an overview of disease evolution. Cross-sectional and 

longitudinal MRI studies demonstrated how lesions number and volume are associated with 

short and long-term changes in physical disability as well as clinical progression (O'Riordan, 

et al., 1998; Tintore, et al., 2015; Fisniku, et al., 2008; Brownlee, et al., 2019). For this reason, 

lesion load (i.e. number and volume), the number of Gd enhancing and newly formed lesions 

are often used as MRI outcomes in MS clinical trials (van Munster & Uitdehaag, 2017). Given 

this background, lesion identification and quantification on MRI is an important step in MS 

diagnosis, in monitoring disease progression and evaluating treatment efficacy.  
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Quantification approaches. To date, manual approach is considered the golden standard 

procedure for detecting MS lesions. However, this procedure is time consuming and prone to 

intra and inter-rater variability, which in turn could result in a large difference in the extracted 

lesions values (García-Lorenzo, Francis, Narayanan, Arnold, & Collins, 2013), thus limiting 

its use in large studies. Several authors (Filippi, et al., 1995; Grimaud, et al., 1996; Udupa, et 

al., 1997) have proposed semiautomated segmentation methods, whereby the computer aids 

the expert to reduce both segmentation time and rater variability. However, their use in large 

clinical trials is time consuming and deals incompletely with inter-rater differences. Given this 

background, automated tools represent a fascinating solution. However, automated lesions 

quantification is a complex task for several reasons, and no satisfactory solution has yet been 

reached. 

 

Current challenges. Several automated tools with different operating mechanisms and 

architecture have been proposed in the last years. However, diverse issues limit their use in 

clinical practice. First, automated accurate identification of MS lesions on MRI brain image is 

extremely difficult due to variability in lesion location, size and shape in addition to anatomical 

variability between subjects (García-Lorenzo, Francis, Narayanan, Arnold, & Collins, 2013). 

Second, most of these tools are developed to be protocol specific (Mårtensson, et al., 2020) or 

are poorly validated (Griffanti, et al., 2016). Consequently, such tools failed to be generalizable 

when applied to MRI with different acquisition conditions and often did not guarantee the same 

performances on new or “unseen” MRI datasets. Finally, the validation of these tools suffers 

from two limitations. The first one concerns with the limited and scarce use of high-resolution 

FLAIR images, now considered the preferable sequences where to perform segmentation due 

to their high sensitivity in lesion detection (Filippi, et al., 2019). Second, these tools are usually 

validated using manual segmentation as ground truth. As this approach is prone to error and is 
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highly subjective and difficult to reproduce, the validation process must be critically 

considered. Indeed, recent evidence suggested how the intra and inter-rater variability could 

affect the automated segmentation performances (Shwartzman, Gazit, Shelef, & Riklin-Raviv, 

2019). Given this context, the automated identification of MS lesions is still an open challenge, 

and no standardized tool has been widely employed.  

 

2.2 Atrophy  

Biological features. Different pathological substrates may be responsible for brain atrophy: 

loss of myelin, glial cells, neurons and axons due to demyelination and neurodegeneration. 

Establishing to which extent these components contribute to tissue loss is complex as they 

could depend on many factors, such as disease stage, brain region affected, type of 

pharmacological treatment, presence of comorbidities and other factors unrelated to the disease 

(Giorgio, Battaglini, Smith, & De Stefano, 2008). Brain atrophy affects both WM and GM. 

Atrophy of non-lesional or normal-appearing WM (NAWM) is likely secondary to 

demyelination, axonal damage and loss, the latter partially caused by Wallerian degeneration 

(Filippi, et al., 2012) and slow, progressive axonal loss throughout the brain, due to diffuse 

inflammation and oxidative stress (Kornek, et al., 2000). GM atrophy is common in neocortical 

areas, but is also found in other GM areas, such as the thalamus, hippocampus, and cerebellum. 

Evidence suggest how WM damage partially contribute to GM atrophy (Battaglini, et al., 2009; 

Riccitelli, et al., 2011). Thus, several mechanism drive GM atrophy. A study relating GM 

atrophy patterns measured using post-mortem MRI to histopathology showed that atrophy is 

explained predominantly by (neuro)axonal loss and neuronal shrinkage and is largely 

independent of demyelination (Popescu, et al., 2015).  
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Appearance on MRI. Cerebral atrophy is simply the compensatory enlargement of the 

cerebrospinal fluid (CSF) spaces derived from the reducing brain parenchymal volume. Thus, 

on the majority of MS brain T1-weighted images, brain atrophy can be detected as ventricular 

system enlargement, widening of cortical sulci and gyri and cortex displacement from inner 

skull. 

 

Clinical Relevance. Over the last 2 decades, several cross-sectional and longitudinal MRI 

studies have been performed to elucidate the clinical relevance of brain atrophy in MS. Within 

this respect, cross-sectional MRI scans are used to quantify brain atrophy accumulated this far 

(i.e. the atrophy state), whereas longitudinal MRI data allow to assess the brain volume changes 

over time (i.e. the atrophy rate). Evidence highlights how periventricular atrophy is detected in 

patients with clinically isolated syndrome (CIS)  who evolve to MS compared to those who 

does not (Dalton, et al., 2002). Greater brain atrophy develops in patients with worsening 

disability than in those who are clinically stable (Ingle, Stevenson, Miller, & Thompson, 2003). 

Whole brain atrophy correlates with cognitive dysfunction (Rao, Leo, Haughton, St Aubin-

Faubert, & Bernardin, 1989)  and mood disturbances (Bakshi, et al., 2000). Finally, 

quantification of brain volume on early scans provides prognostic measures of clinical status 

not only for medium and long-term follow-up (Fisher, et al., 2002) but also for short-term (over 

6 months) decline (Gauthier, et al., 2007). In the field of regional atrophy, GM tissue loss 

provides more clinically relevant information than does WM (Rocca, et al., 2017) and better 

explain physical and cognitive impairment (Roosendaal, et al., 2011). Further, subcortical deep 

GM volume may be present in the early stage of the disease, and it is strongly correlated with 

the disease course (Eshaghi, et al., 2018). Given this context, cross-sectional and longitudinal 

assessment of brain atrophy on MRI are valid measures of disease burden and progression and 

thus are of great relevance for better understanding the pathophisiology of MS. Further, as such 
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measures reflect neurodegenerative processes,  brain volumetric changes are regularly 

quantified for assessing neuroprotection in clinical trials (Zivadinov & Bakshi, 2004; De 

Stefano, et al., 2014; Barkhof, Calabresi, Miller, & Reingold, 2009). 

 

Quantification approaches. As for lesions, manual outlining is considered the most accurate 

method for both whole and regional brain segmentation. However, its use on large studies is 

limited for several reasons (see lesions quantification approaches paragraph). Semi-automated 

procedure certainly reduce the time needed for the segmentation, but do not offer a definitive 

solution and still have the disadvantages of user intervention, albeit to a lesser extent. Given 

this context, several approaches for the automated quantification of brain volumes have been 

developed. Currently, FSL (FMRIB Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) 

SIENAX and SIENA (Smith, et al., 2002) are ones of the most widely used tools for assessing 

cross-sectional brain volumes and longitudinal brain volumes change over time, respectively. 

Further, the SIENA method has been extended (SIENAr) (Bartsch, et al., 2007) to allow the 

voxel-wise statistical analysis of brain atrophy across subjects, which results in a regional 

analysis of differences in brain volume occurring over time between two groups of subjects 

(Battaglini, et al., 2009).  

Along with FSL, SPM (Statistical Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/) 

and FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) have provided automated pipelines that 

are widely used by the neuroimaging communities. However, all these tools are still considered 

far from manual segmentation and can produce considerable errors. 

 

Current challenges. When dealing with brain volume assessment, different challenges are 

routinely faced in both clinical and research settings. First, automated reliable quantification of 

brain tissues volume is not an easy task as image noises, artifacts, poor contrast between tissues 
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and bias field inhomogeneity certainly affect the segmentation procedure. Further, the complex 

anatomy of the brain and the finite resolution of MRI images lead to a phenomenon called 

partial volume effect (PVE). If ignored, PVE can bias brain measurements in the range of 20%-

60% (González Ballester, Zisserman, & Brady, 2002). Finally, producing an accurate 

separation of GM and WM at their interface is quite difficult and thus, their measures are 

relatively unstable (Battaglini, Jenkinson, De Stefano, & ADNI, 2018). Given this context, the 

automated segmentation of brain tissues represents the first challenge in MS brain atrophy 

assessment. In this respect, our laboratory (Quantitative Neuroimaging Laboratory, QNL) has 

recently developed both cross-sectional (SIENAX 2.0) (Luchetti, Gentile, Battaglini, Giorgio, 

& De Stefano, 2019) and longitudinal tools (SIENA-XL) (Battaglini, Jenkinson, De Stefano, 

& ADNI, 2018) for the accurate and robust assessment of whole and regional (GM/WM) brain 

volumes which demonstrated significant decrease in the measurements errors on multicentre-

datasets.  

The second challenge is represented by the presence of factors now recognized as potential 

modifiers of pathological brain atrophy estimates. Particular attention should be given to 

pseudoatrophy, the paradoxical acceleration of brain atrophy following the initiation of anti-

inflammatory therapies. Such phenomenon, which is thought to reflect fluid shift related to 

resolution of inflammatory oedema, certainly complicates the interpretation and the clinical 

impact of brain volume measurements in MS. Further, only recently the contribution of normal 

aging to brain volume loss has begun to be explored. In this respect, our laboratory has recently 

provided “pathologic cut-offs” values for whole-brain atrophy to discriminate patients with MS 

from healthy controls (HCs) (De Stefano, et al., 2016). Given this context, establish to which 

extent brain atrophy measures are related to ‘true’ MS pathological mechanism needs to be 

elucidated and thus caution is needed when moving atrophy measures into clinical practice 

(Rocca, et al., 2017).  
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The third challenge that greatly limits the use of brain volume measurements in clinical practice 

is related to the absence of a common normative database against which compare the raw 

volumes obtained on MS patients (Rocca, et al., 2017). In this respect, our laboratory has 

recently provided both cross-sectional and longitudinal brain atrophy normative values for 

assessing the deviation from the expected brain volume loss in patients with neurological 

disorders (De Stefano, et al., 2018; Battaglini, et al., 2019). 

Finally, the fourth challenge concerns with the complex inter-role between WM lesions 

(inflammation) and brain atrophy (neurodegeneration) in MS. Although these two pathological 

mechanisms are present early in the disease course of MS, the dynamics of accumulation of 

WM lesions and brain atrophy is not completely understood (Fisher et al., 2002). Genetic data, 

observations from most experimental models and MRI studies appeared to favour a 

pathogenesis model in which inflammation precedes neurodegeneration (Dalton, et al., 2002; 

Chard, et al., 2003; Paolillo, et al., 2004; Milo, Korczyn, Manouchehri, & Stüve, 2020). Within 

this respect, several studies tried to understand the mechanisms that relates lesions to brain 

volume loss in MS. For example, axonal loss in lesions could cause atrophy by two 

mechanisms: tissue loss within the lesion per se, and Wallerian degeneration in related fibre 

pathways (Miller, Barkhof, Frank, Parker, & Thompson, 2002). Another plausible mechanism 

is the existence of destructive lesions especially in the periventricular regions resulting in an 

increase in ventricular volume, thus leading to increased brain volume loss (Dalton, et al., 

2002). Other studies suggested how neurodegeneration is related to pathogenic mechanisms 

primed by the preceding inflammation and later perpetuating with disease progression 

(Andravizou, et al., 2019).  

Conversely, evidence from clinical trials suggest how anti-inflammatory therapies exerts only 

a moderate effect on brain volume loss and no available treatment does completely halt 

neurodegeneration (Bross, Hackett, & Bernitsas, 2020; Dendrou, Fugger, & Friese, 2015; De 



14 
 

Stefano, et al., 2014). Further, serial MRI studies show that subtle focal changes in the WM 

can be seen weeks before a classical new lesion is formed (Filippi, Rocca, Martino, Horsfield, 

& Comi, 1998; Narayana, Doyle, Lai, & Wolinsky, 1998). Other MRI evidence suggested that 

lesion damage contribute only partially to brain atrophy (Battaglini, et al., 2009; Cappellani, et 

al., 2014; Roosendaal, et al., 2011). These findings suggest how brain atrophy mechanisms 

could be indirectly related to or are independent from traditional measures of overt lesions 

(Bermel & Bakshi, 2006).  

In conclusion, although evidence suggest the presence of inflammation in every stage of the 

disease, establishing the role of MS lesions in driving brain atrophy is not straightforward and 

needs further clarification (Lassmann, 2007) as a more complex interplay across these two 

pathological processes might occur. 

3. Aim of the thesis 

The aim of this thesis is to separately face the two MS challenges strictly related to WM lesions. 

In this respect, we will deal with both the more “practical” issue of automated lesions 

segmentation and the more “conceptual” topic related to the role of MS lesions in brain atrophy. 

In the following, a short description of the content of each chapter composing the main body 

of this thesis will be provided. 

3.1 MS Challenge 1: Automated lesion segmentation 

As lesions quantification is a key biomarker in MS diagnosis, monitoring disease course and 

treatment response, the need of a widely validated tool that can be considered totally 

comparable to manual segmentation is of utmost relevance in both clinical and research 

settings. Thus, in the fourth chapter of this thesis, we addressed the automated MS lesions 

segmentation technical challenge by describing a novel segmentation tool specifically tailored 

on MR brain images of MS patients. Within this respect, we developed a pipeline able to reduce 
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the impact of the inter-rater variability on lesions segmentation and whose settings are 

generalizable across different acquisition protocols. 

3.2 MS Challenge 2: The inter-role between inflammation and 

neurodegeneration 

Understanding the spatio-temporal relation between inflammation and neurodegeneration in 

the early phase of MS is of key relevance not only for developing more targeted and effective 

therapeutic strategies, but also for broaden our comprehension of the underlying disease 

mechanisms, how these relate to disease progression and whether these can be either modified 

by treatment or disease worsening. Further, exploring the spatio-temporal evolution of these 

two pathological processes will make data interpretation in both clinical and research settings 

clearer and more straightforward. To investigate the role of WM lesions in driving brain 

atrophy over time and how the evolution of inflammation and neurodegeneration is related, 

two complementary studies were performed. In study: 

1. We focused on the assumption that inflammation and neurodegeneration are two 

separate pathological mechanisms. Thus, in the fifth chapter of this thesis, we 

investigated whether WM lesions and brain atrophy developed simultaneously over 

time and tested whether these two processes were spatially interconnected within the 

same follow-up period.  

2. We focused on the assumption that inflammation precedes neurodegeneration. Thus, in 

the sixth chapter of the thesis, we investigated whether WM lesions were spatio-

temporally related to subsequent atrophy. 
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4. Study 1: BIANCA-MS: an optimised tool for automated 
multiple sclerosis lesion segmentation 
 

This study was performed in collaboration with Professor Mark Jenkinson and the post-

doctoral researcher Ludovica Griffanti of Oxford FSL (FMRIB software library) laboratory. 
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Introduction 

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), 

characterized by focal areas of inflammation resulting in lesions on Magnetic Resonance 

Imaging (MRI). The identification of these lesions is the fundamental diagnostic step for the 

demonstration of dissemination in space and time (Thompson, et al., 2018) and plays an 

important role in predicting disease course, as lesion number and volume are associated with 

short and long-term changes in physical disability  (Brownlee, et al., 2019; Tintoré, et al., 

2006). To date, manual segmentation is considered the best approach for segmenting lesions, 

but this procedure is time consuming and is affected by intra/inter-rater variability, thus 

limiting its use in large studies (García-Lorenzo, Francis, Narayanan, Arnold, & Collins, 2013). 

Against this background, automated tools have been increasingly developed and employed 

over the last years (Danelakis, Theoharis, & Verganelakis, 2018; Zeng, Gu, Liu, & Zhao, 2020; 

Shanmuganathan, Almutairi, Aborokbah, Ganesan, & Ramachandran, 2020; Kaur, Kaur, & 

Singh, 2021). Among automated methods, artificial intelligence (AI) approaches showed 

higher performance; however, their use in clinical practice is limited for several reasons. 

Firstly, the majority of AI tools are developed, trained and validated on a limited amount of 

data, mostly using a single scanning protocol (Mårtensson, et al., 2020). This often leads to 

algorithm “default” settings that fail to be generalizable when applied to MRI dataset with 

different acquisition protocols. To guarantee similar performances of AI software on new MRI, 

thus, a long and complex optimization pipeline needs to be performed (Griffanti, et al., 2016; 

Popescu, et al., 2012). Another, MS specific, limit consists in the lack of an extensive validation 

of these tools on large datasets of high-resolution 3D FLAIR images, now considered the most 

sensitive sequence for the detection of lesions in MS (Filippi, et al., 2019; Paniagua Bravo, et 

al., 2014). Finally, the inter-rater differences in lesions contouring affects both manual and 

automated lesion segmentation and it has been shown that it reduces the performances of AI 
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tools even when the same test data, algorithm settings and architecture are employed 

(Shwartzman, Gazit, Shelef, & Riklin-Raviv, 2019). 

In 2016, the FSL group developed a machine learning tool (BIANCA) to segment WM hyper-

intensities (WMH) of presumed vascular origin (Griffanti, et al., 2016). Recently, two studies 

employed BIANCA in MS lesion segmentation on FLAIR images (Weeda, et al., 2019; Duong, 

et al., 2019). However, in the former, very few algorithm settings (n=18) were tested on a 

limited amount of MRI data (n=14) and in the latter detailed information about the number of 

MS subjects and the setting employed were not provided. Therefore, the lack of data or an 

insufficient optimisation process may have limited the algorithm's performance. 

In this work BIANCA-MS, a new pipeline to automatically detect MS WM lesions that is based 

on the original version of BIANCA, is introduced with the aims to: 

1. provide the best parameters setting to be implemented in BIANCA for MS lesion 

segmentation, irrespective of scanning protocols, magnetic field strength, set of 

modalities and image resolutions. 

2. refine the lesions mask and reduce the impact of inter-rater variability on automated 

tools segmentation by introducing a post-processing cleaning step. 

Once designed, the following analyses were performed to validate BIANCA-MS. We (i) 

compared the performance of our approach with other currently available, and widely used, 

tools for automatic lesion segmentation in MS; on a multicentre dataset, we (ii) tested 

BIANCA-MS cross-centre generalisation by comparing algorithm performances using mixed 

and site-specific training and test sets; finally, we (iii) evaluated BIANCA-MS performance 

when all the datasets were pooled together.  
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Material and Methods 

MRI data 

In this study, MRI data from 470 Relapsing-Remitting MS subjects were included, belonging 

to 3 datasets that were different with respect to scanner manufacturers, magnetic field strengths 

and MRI acquisition protocols (see table 1). Dataset 1 consisted of 200 scans acquired at the 

University of Siena on a 1.5T Philips Gyroscan MRI (Philips Medical Systems, Best, 

Netherlands); Dataset 2 consisted of 120 scans acquired at the Meyer Hospital on a 3T Philips 

Achieva dStream (Philips Medical Systems, Best, Netherlands); Dataset 3 consisted of 150 

scans from a multicentre retrospective study, whose scans were collected at different imaging 

centres using similar acquisition parameters. No selection criteria were used for lesion 

characteristics (i.e. large confluent lesions or focal distinct T2-hyperintense areas).  
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Table 1. Acquisition protocols for each Dataset. TR=Repetition Time. TE= Echo Time 

 
 
 

 Dataset 1 Dataset 2 Dataset 3 

Image Flair T1-weigthed PD Flair T1-weighted PD T1-weighted T2-weighted 

Voxel size (mm3) 0.97X0.97X3 0.97X0.97X3 0.97X0.97X3 1X0.97X0.97 1X1X1 0.97X0.97X3 0.97X0.97X3 0.97X0.97X3 

TR (ms) 9000 35 30 11000 25 2200-3000 550-700 1800-2800 

TE1 (ms) 150 10 90 125 4.6 15-50 10-20 30-50 

TE2 (ms) - - - - - 80-120 - 60-100 

Inversion Recovery Delay 

(ms) 
2725 - - 2800 - - - - 

Image Resolution 2D 2D 2D 3D 3D 2D 2D 2D 
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Gold Standard lesion segmentation 

WM lesions were outlined by expert tracers (M.I. and M.L.) using a semi-automated 

segmentation technique based on local thresholding (www.xinapse.com/jim-7-software/). 

Recently published guidelines were followed to enhance the proper recognition of MS lesions 

(Filippi, et al., 2019). Briefly, WM lesions were defined as areas of focal hyperintensity on a 

T2-weighted (T2, T2-FLAIR or similar) or a proton density (PD)-weighted sequence. The 

raters had access to all the available sequences, thus segmentation was achieved through 

consensus of information among all modalities. These lesion masks were used as the “gold 

standard” for measuring the performance of the automatically obtained segmentations. 

Training, validation and test set creation 

Each dataset was divided into training, validation and test sets. The training and validation sets 

were built as follows: 100 subjects from the first and third datasets, and 80 subjects from the 

second dataset were randomly selected, following the alphabetical order of their pseudo-

anonymised codes. Following the proposed suggestion to use patients with higher lesion loads 

to train the algorithm (Griffanti, et al., 2016), these randomly selected subjects were further 

split into 2 groups: the half with the higher lesion loads were inserted into the training set 

(Dataset 1 and Dataset 3: 50; Dataset 2: 40), the others in the validation set (Dataset 1 and 

Dataset 3: 50; Dataset 2: 40).The remaining subjects from each dataset, with variable lesion 

loads, formed the three test sets (Dataset 1: 100; Dataset 2: 40; Dataset 3: 50) (see table 2). 

Details about the choice of the optimal number of subjects to be included in the training set are 

described in the supplementary materials. 
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Table 2. Subdivision of subjects for each dataset. Lesion volume is reported in cm3 

 

MRI Analysis 

Data preprocessing 

Image quality was assessed for aliasing, ghosting and other type of artefacts. After this step, 3 

subjects from Dataset 3 were excluded from this study. For each dataset all modalities were 

co-registered to the reference sequence where lesions have been segmented (FLAIR 2D and 

3D respectively for Dataset 1 and 2 and PD for Dataset 3) using FMRIB's Linear Image 

Registration tool (FLIRT) (Jenkinson & Smith, 2001; Jenkinson, Bannister, Brady, & Smith, 

2002). Brain masks were obtained on T1-weighted images using the Brain Extraction Tool 

(BET) (Smith, 2002)  from FSL and then registered on the main modality to obtain FLAIR/PD 

brain tissues. 

BIANCA-MS 

Here we present the two steps performed to obtain BIANCA-MS, a modified version of 

BIANCA that implements one fixed optimal setting, which we identified after a large 

optimization procedure, and a post-processing cleaning step for reducing the inter/intra-

variability in gold-standard lesion creation.  

BIANCA optimisation 

BIANCA is a flexible, multimodal supervised method based on the k-nearest neighbour 

algorithm. Briefly, the algorithm learns the definition of a lesion from a set of manually 

 Dataset 1 Dataset 2 Dataset 3 

 
No of 

subjects 

Lesion 

Volume 

No of 

subjects 

Lesion 

Volume 

No of 

subjects 

Lesion 

Volume 

Training 50 16.74±14.62 40 11.82±11.65 50 23.16±13.13 

Validation 50 1.33 ±0.93 40 1.32±1.03 50 5.18±3.2 

Test 100 6.01±7.42 40 5.51±7.39 50 13.51±12.7 
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segmented masks, by using the voxel intensities and the spatial distribution of the intensities 

as features. BIANCA can be optimised using different options like: 

 The possibility of weighting the spatial coordinates (i.e. spatial weighting option) 

which can increase the accuracy of segmentation, as in some brain regions lesions are 

more likely to occur. 

 The inclusion of intensity information about a small neighbourhood of each voxel 

(patch size option) that can make the segmentation more robust to misregistration and 

provides local context. 

 The selection of the number and the position of training points which is important to 

establish to what extent information around lesion edges is crucial for segmentation 

(i.e. Location of non-lesion training points and Number of Training points options). 

There are also post-processing steps to perform on BIANCA outputs: threshold selection and 

masking. The former highly influences the results: more restrictive thresholds reduce false 

positives but increase false negatives (Anbeek, Vincken, van Osch, Bisschops, & van der 

Grond, 2004). The latter consists of applying an exclusion mask to BIANCA outputs (Griffanti, 

et al., 2016) to reduce false positives.  

To select the optimized BIANCA setting, the training and validation sets of each dataset were 

used. There were 108 different sets of options used for training BIANCA (table 3). The 

parameters that were varied were the spatial weighting (SW), number of lesion and non-lesion 

training points (NTP), patch size (PS) and the location of non-lesion training points (LTP). All 

the available MRI sequences for each dataset were used, exclusion masks were applied and a 

threshold of 0.9 was used to obtain the binarized lesion mask. Finally, each of the 108 trained 

BIANCA models was applied to the validation set of the 3 datasets (see table 3). 
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Table 3. The list of the different values tested in this study during the phase of algorithm optimization. 

 

Post-processing cleaning step  

Supervised algorithms trained on lesion masks outlined by different users provide slightly 

different results when applied to new images (Bordin, et al., 2021). To reduce the impact of the 

inter-rater variability, we developed a post-processing cleaning step to be applied to lesions 

mask, either automatically or manually outlined. This procedure starts by obtaining pure WM, 

GM and CSF masks by removing lesion clusters from the three different tissue classes provided 

by FAST (Zhang, Brady, & Smith, 2001). Two stages then follow: a “Recovery” phase to avoid 

the loss of lesion voxels erroneously not included in lesion mask and a “Refining” phase that 

aims to create a cleaned lesion mask by considering local intensity contrast and B0 and 

radiofrequency (RF) inhomogeneity which reflected smooth spatial intensity changes through 

the whole image (figure 1). 

To perform the “Recovery” step, lesion masks (mask0) were 3D dilated by a single voxel 4 

times (𝑚𝑎𝑠𝑘ௗଵ = 𝑑𝑖𝑙𝑎𝑡𝑒3𝑑(𝑑𝑖𝑙𝑎𝑡𝑒3𝑑(𝑑𝑖𝑙𝑎𝑡𝑒3𝑑൫𝑑𝑖𝑙𝑎𝑡𝑒3𝑑(𝑚𝑎𝑠𝑘0)൯)) and only those voxels 

not adjacent to lesions were retained to form the dilated strip masks (𝑑𝑖𝑙𝑎𝑡𝑒𝑑௦௧௥௜௣ =

 𝑚𝑎𝑠𝑘ௗଵ − 𝑑𝑖𝑙𝑎𝑡𝑒3𝑑(𝑚𝑎𝑠𝑘0)). The WM surrounding the lesions was defined by applying a 

one voxel 3D dilation (𝑚𝑎𝑠𝑘ௗଶ = 𝑑𝑖𝑙𝑎𝑡𝑒3𝑑(𝑚𝑎𝑠𝑘0)), then taking this new dilated strip and 

masking this by the pure WM masks obtained from FAST: 

Features Values Tested Number of options 

Spatial weighting (SW) 1-5-10 3 

Patch size (PS) None-3-6-9 4 

Location of non WMH training points (LTP) Surround-Any-No Border 3 

Nº of training points (WMH VS non WMH) 

(NTP) 

500-1000; 2000-2000; 2000-

10000 
3 

Total combinations  108 
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𝑚𝑎𝑠𝑘௦௪௠ = (𝑚𝑎𝑠𝑘ௗଶ − 𝑚𝑎𝑠𝑘0) ∗ 𝑚𝑎𝑠𝑘௣௨௥௘௪௠ 

From this the Mahalanobis distance (MD) was defined as: 

𝑀𝐷 =
ห 𝑚𝑎𝑠𝑘௦௪௠ −  µௗ௜௟௔௧௘ௗ_௦௧௥௜௣ห

𝜎ௗ௜௟௔௧௘ௗ_௦௧௥௜௣
 

where µdilated_strip and σdilated_strip are the mean and standard deviation, respectively, of the 

intensities of the voxels in the dilated strips. Only those voxels of the surrounding WM with a 

MD bigger than a mild threshold (2.0) from the dilated strip were included to form the 

“recovery lesion” mask (𝑚𝑎𝑠𝑘௥௘௖); see “Recovery” in figure 1. 

The “Refining” phase consists of two consecutive steps. In the first refinement step, the 

intensities of all the voxels from the “recovery lesion” mask were compared to the intensity of 

the strip of the newly defined surrounding WM (after dilating 5 times the “recovery lesion” 

mask) 

𝑚𝑎𝑠𝑘௦௪௠ଶ = (𝑑𝑖𝑙𝑎𝑡𝑒𝑑3𝑑(𝑑𝑖𝑙𝑎𝑡𝑒3𝑑 ൬𝑑𝑖𝑙𝑎𝑡𝑒3𝑑 ቀ𝑑𝑖𝑙𝑎𝑡𝑒3𝑑൫𝑑𝑖𝑙𝑎𝑡𝑒3𝑑(𝑚𝑎𝑠𝑘௥௘௖)൯ቁ൰)

− 𝑚𝑎𝑠𝑘௥௘௖) ∗  𝑚𝑎𝑠𝑘௣௨௥௘௪௠) 

and retained when the MD was bigger than a sequence-dependent threshold (4.0 for PD, 7.0 

for FLAIR images). This step creates a new “roughly refined” mask (𝑚𝑎𝑠𝑘௥௘௙ଵ); see Refine-

step 1 in figure 1. From the 𝑚𝑎𝑠𝑘௥௘௙ଵ we removed all the lesions clusters with less than 4 

voxels because lesions below that size are not well defined (Filippi, et al., 2019) and thus could 

impair segmentation reproducibility. Further, these clusters are very likely to be false positive 

findings of the algorithm. In the second refinement phase, a strip of WM was created by dilating 

3 times the “roughly refined” mask  

𝑚𝑎𝑠𝑘௦௪௠ଷ = ቀ𝑑𝑖𝑙𝑎𝑡𝑒2𝑑(𝑑𝑖𝑙𝑎𝑡𝑒2𝑑 ቀ𝑑𝑖𝑙𝑎𝑡𝑒2𝑑൫𝑚𝑎𝑠𝑘௥௘௙ଵ൯ቁ) − 𝑚𝑎𝑠𝑘௥௘௙ଵቁ ∗ 𝑚𝑎𝑠𝑘௣௨௥௘௪௠ 

All the voxels with an MD distance from the surrounding WM bigger than 4.0 were retained 

to create the final output. This last step (MD distance calculation and thresholding) was 

performed separately at each slice of each lesion since differences of intensity due to the RF 
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inhomogeneities lead to systematic differences in the selection criteria of the retained voxels 

(Refine- step 2 in figure 1). To select all the thresholds, we tested several values for each 

sequence (e.g. FLAIR or PD images) from an internal dataset, that was not used in the analysis, 

and chose the ones providing the best results upon visual inspection. 

To test the impact of this post-processing cleaning step, 5 high resolution FLAIR images 

(different from the one used for selecting the MD thresholds) were segmented by two 

experienced tracers. Afterwards, the lesion masks obtained were processed with the procedure 

previously described and the differences across raters prior and after cleaning was assessed. 

Once validated, we implemented this post-processing cleaning step into BIANCA thus 

obtaining, together with the “optimised” setting, the BIANCA-MS pipeline. We then compared 

BIANCA and BIANCA-MS performances. Briefly, we separately trained BIANCA and 

BIANCA-MS on the training set of each dataset and then ran the trained algorithms on the 

corresponding test set. As the cleaning procedure was meant to be an integrative part of the 

new BIANCA-MS, manual masks were not cleaned when compared to BIANCA outputs. 

Instead, to allow a fair comparison and to reduce the inter-rater variability in lesions 

contouring, BIANCA-MS outputs were compared to the manually outlined masks being 

processed with the cleaning procedure.  
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Figure 1. Illustration of the cleaning step pipeline using three example lesions, to avoid clutter (example lesions shown with red boxes in the 

top image). The original lesion mask underwent an initial “Recovery” phase, followed by a two steps “Refinement” process. For each 

phase, the corresponding surrounding WM is depicted. Note MD = Mahalanobis Distance, WM = White Matter 
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BIANCA-MS Validation 

To validate BIANCA-MS, all the analyses were performed on the test set of each dataset. 

During algorithm validation, the inter-rater bias was handled into two different ways. First, 

BIANCA-MS was trained with the manual lesion masks being not cleaned as the source of 

variability across raters could ensure a training procedure as heterogeneous as possible. 

Second, on the test set of each dataset, the cleaning procedure was applied to the manual lesions 

masks to reduce the inter-rater bias impact on algorithm performance.  

Comparison of BIANCA-MS with existing approaches  

Firstly, we investigated whether the performance of BIANCA-MS was similar to those 

obtained with other existing approaches. Three different automated lesion segmentation 

algorithms were deployed: 

 Lesion growth algorithm (LGA) (Schmidt, et al., 2012) from SPM12 (https://www.applied-

statistics.de/lst.html): the algorithm first segments the T1-weighted images into the three 

main tissue classes (CSF, GM and WM). This information is then combined with the co-

registered FLAIR intensities in order to calculate lesion belief maps. By thresholding these 

maps with a pre-chosen initial threshold (κ) an initial binary lesion map is obtained which 

is subsequently grown along voxels that appear hyperintense in the FLAIR image. The 

result is a lesion probability map. In this work, the k-value was set to 0.3 as previously 

suggested (Schmidt et al 2012). 

 Lesion prediction algorithm (LPA) (Schmidt, 2017) from SPM12 (https://www.applied-

statistics.de/lst.html): LPA requires a FLAIR image only (although also T1-weighted 

images can be provided to the algorithm) and does not require the initial thresholding k-

value. This algorithm consists of a binary classifier in the form of a logistic regression 

model trained on the data of 53 MS patients with severe lesion patterns. As covariates for 

this model a similar lesion belief map as for the lesion growth algorithm (Schmidt, et al., 
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2012) was used as well as a spatial covariate that considers voxel specific changes in lesion 

probability. Parameters of this model fit are used to segment lesions in new images by 

providing an estimate for the lesion probability for each voxel. No pre-processing is 

applied, because the algorithm performs the necessary bias field correction and affine 

registration of T1 to FLAIR images as part of the pipeline. 

 nicMS (Valverde, et al., 2017; Valverde, et al., 2019): the algorithm is a deep learning 

method based on cascaded convolutional neural networks (CNN) that, in contrast to most 

supervised machine learning or deep learning methods, can be used when limited amounts 

of manual input data are available. As for BIANCA-MS, nicMS was trained on the training 

set. No pre-processing was required. 

As the cleaning procedure was developed as a BIANCA-MS component, SPM tools and nicMS 

performance were evaluated in comparison with the manual lesion masks being not cleaned. 

For each of these tools we performed threshold adjustment by varying the probability threshold 

from 0 to 1 with step size of 0.1 and choosing the value that gave the highest degree of similarity 

with the manual masks in the test sets. Analyses were performed on Datasets 1 and 2, as these 

tools were developed to work using FLAIR sequences.  

BIANCA-MS behaviour across datasets 

Second, we tested how BIANCA-MS behaves for each dataset individually. Thus, BIANCA-

MS was separately trained on each dataset, and for each training case it was run only on the 

corresponding test set. This provided for each dataset one set of performance measures, which 

we then compared to test the relative performance achieved across the different datasets. 

BIANCA-MS segmentation using mixed training sets 

Third, using images acquired in different centres, but with similar acquisition protocols, 

(Dataset 3) we investigated the influence of using mixed training and test sets on BIANCA-
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MS performance. Therefore, the selection of subjects in training, validation and test sets for 

Dataset 3 was made in 2 distinct ways: 

 non-stratified: sampling is mixed across all centres (as used for the previous analysis). 

 stratified by centre: the subjects selected for the training and validation subsets 

belonged to different centres from those used for the test set (a leave-one-centre out 

approach). This is used to test cross-centre generalisation. 

We separately trained BIANCA-MS on the training set of both the stratified and non-stratified 

dataset. For each training case, we ran BIANCA-MS on the corresponding test set and 

compared the performances achieved on the stratified and non-stratified datasets. 

Validation on pooled MRI dataset 

Finally, we created a fourth dataset (i.e. a global dataset) by merging the three datasets. All the 

images from the three training sets were used for training BIANCA-MS, whereas the MRI 

scans from all the different test sets were used for evaluating the algorithm. To ensure we used 

a consistent training and validation procedure, it was necessary to provide to BIANCA-MS a 

fixed set of modalities. Thus, we decided to include in the analyses FLAIR and T1-weighted 

images as they are present in both Dataset 1 and Dataset 2. For Dataset 3, we created artificial 

“PseudoFLAIR” images (figure 2) by using the following formula (Battaglini, De Stefano, & 

Jenkinson, 2012): 

𝑃𝑠𝑒𝑢𝑑𝑜𝐹𝑙𝑎𝑖𝑟:
2(𝑃𝐷 ∗ 𝑇2)

𝑃𝐷 + 𝑇2
∗ 𝑇1 

After training the algorithm, we then evaluated the performance of BIANCA-MS on the 

combined test set. 
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Figure 2. Example of PseudoFLAIR as obtained from PD, T2 and T1 on one subject for Dataset 3. 

 

Performance Evaluation 

To test the sensitivity, specificity and accuracy of the algorithm, three different metrics were 

evaluated: number of false positive clusters (nFPC), defined as the number of clusters 

incorrectly labelled as a WM lesion; number of false negative clusters (nFNC), defined as the 

number of clusters incorrectly labelled as non-WM lesion; DICE spatial similarity index (SI) 

defined as  

𝑆𝐼 =
2 ∗ 𝑇𝑝

2 ∗ 𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛 
 

where Tp, Fp and Fn are the true positive, false positive and false negative WM lesion voxels 

respectively. All these metrics were assessed in comparison to manual segmentation. 

Statistical analyses 

BIANCA-MS 

Optimization step: For each dataset, the 108 different settings were ranked accordingly to the 

SI, nFPC and nFNC achieved on the validation set. As in the original work of BIANCA 

(Griffanti, et al., 2016), the SI index was considered the main metric for determining the 

rankings. In cases where the SI index was equal, a higher priority for the ranking was then 

given to nFNC compared to nFPC, as we are interested in achieving high sensitivity for lesion 

detection. Finally, the setting that had a high ranking across all the datasets was retained and 

considered as the common optimal setting. 
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Post-processing cleaning step: On the five high resolution FLAIR images that had been 

segmented by two raters, two kinds of analyses were performed. 

 Qualitative analysis: to ensure that the proposed approach did not influence the quality 

of lesion segmentation, a third rater (RC, a neurologist who is an expert in MRI 

analysis) blindly assessed the lesion masks manually outlined by the 2 raters and those 

obtained after the cleaning procedure is applied. A total of 10 pairs of masks (manual 

without cleaning versus manual with cleaning) were assessed, with the third rater 

assigning to each pair a “winner” (i.e. the mask that is best at outlining the real lesions). 

 Quantitative analysis: the SI indices measured between the lesion segmentations from 

each rater, on the same subject, both with and without the cleaning step were compared 

using a paired t-test.  

To evaluate the influence of the cleaning procedure on BIANCA outputs on the three test sets, 

we compared the performances achieved with and without the refine step using a Wilcoxon 

signed rank test.  

BIANCA-MS Validation 

Comparison with existing approaches: SI, nFPC and nFNC values obtained by BIANCA-MS 

and the 3 software tools that we tested were separately compared using the Kruskal‐Wallis test 

followed by post hoc tests with Bonferroni correction. The volumetric correlation between each 

tool outputs and the manually segmented masks was assessed using Pearson coefficients. 

BIANCA-MS behaviour across datasets: SI, nFPC and nFNC values obtained by BIANCA-MS 

on the 3 datasets were compared using the Kruskal‐Wallis test followed by post hoc tests with 

Bonferroni correction. 

BIANCA-MS segmentation using mixed training sets: the SI, nFPC and nFNC values obtained 

by BIANCA-MS on the third dataset, with and without data stratification per centre for the 

training and test sets, were compared using the Wilcoxon test. 
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Validation on the pooled MRI dataset: SI, nFPC and nFNC values obtained on the pooled 

dataset were compared to the ones achieved by BIANCA-MS on each separate dataset using 

the Wilcoxon test. 

All the analyses were performed using MATLAB. Statistical significance was considered when 

p values were < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

Results 

BIANCA Optimization 

Table 3 shows the values for each BIANCA parameter that we decided to vary in order to 

optimize the algorithm. The best five ranked option combinations are listed in table 4. The 

setting with SW value of 5, different number of training points for WMH (2000) and non WMH 

(10000) classes, local average intensity within a kernel of size of 3 voxels and the absence of 

any location preferences in non-lesion training points is the first one to be shared between the 

3 datasets. This setting was indicated as the “optimal setting”, which demonstrated that was the 

least dependent on the acquisition protocols and therefore should be able to be used with less 

variation across datasets and hence be employed for all datasets without further adaptation 

required. 
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Table 4. Rankings of the best five BIANCA settings found based on performance in the validation set of each dataset. The common optimal setting is highlighted in bold. SW = spatial weighting, PS = Patch size, LTP = 

Location of WMH training points, NTP = Number of WMH/non-WMH training points. SI = Dice similarity Index, nFPC = number of false positive cluster, nFNC = number of false negative clusters 
 
 
 
 
 

  Dataset 1 Dataset 2 Dataset 3 

Setting 

Ranking 
 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

SW  5 1 1 10 1 1 1 1 5 1 5 5 10 10 5 

PS  3 6 9 3 3 9 6 None 3 None 3 None 3 3 6 

LTP  Any Any Any Any Surround Any Any Any Any Surround Any 
No 

Border 

No 

Border 
Any Any 

NTP  
2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

2000-

10000 

SI  0.48±0.17 0.48±0.17 0.47±0.17 0.47±0.17 0.46±0.17 0.44±0.18 0.42±0.18 0.42±0.17 0.41±0.17 0.41±0.18 0.51±0.16 0.5±0.15 0.5±0.15 0.5±0.16 0.5±0.16 

nFPC  23±15 23±38 25±43 19±10 15±18 53±37 48±31 69±36 26±10 28±15 31±20 49±21 26±13 27±13 25±13 

nFNC  2±4 3±4 2±4 3±4 5±5 2±4 2±5 2±4 3±7 5±7 6±5 5±5 7±5 7±6 8±6 
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Post-processing cleaning step 

Qualitative analysis: according to the third rater, no relevant differences were detected between 

the manually segmented and the cleaned lesion masks, suggesting the two segmentation outputs 

are indistinguishable (5/10 were better with cleaning). 

Quantitative analysis: the implementation of the post-processing cleaning step greatly reduced 

the inter-operator variability and strongly increased the spatial overlap between the two raters 

(SI without cleaning: 0.75±0.02; SI with cleaning: 0.87±0.02. p < 0.01) (Figure 3). Further, the 

implementation of the cleaning step greatly improved BIANCA performances (Figure 4, table 

5). For all the three datasets, significantly higher SI was observed when the post processing 

cleaning step is introduced, compared to when BIANCA outputs are not refined (p < 0.01). 

Moreover, the use of the cleaning step was found to be an effective method for increasing 

algorithm precision (i.e. reducing nFPC, p < 0.01). Finally, the implementation of the cleaning 

procedure slightly increased the algorithm sensitivity (i.e. reduced the nFNC, p < 0.01). 

 

Figure 3. Example of lesion segmentation outputs obtained by two raters without (Red and Blue, in the second and third columns) and with 

the post processing cleaning step (Orange and Magenta, in the fourth and fifth columns). Light Blue arrows indicate the regions where the 

raters showed differences in lesion contouring. These differences are reduced (green arrows) when a cleaning step is introduced. 
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  SI nFPC nFNC 

Dataset 1 
BIANCA 0.6±0.18 24±21 4±8 

BIANCA-MS 0.72±0.2* 12±12* 3±6* 

Dataset 2 
BIANCA 0.63±0.22 18±9 4±10 

BIANCA-MS 0.75±0.23* 15±8* 3±8* 

Dataset 3 
BIANCA 0.58±0.18 31±19 10±11 

BIANCA-MS 0.7±0.21* 16±11* 8±11* 

 Table 5. BIANCA versus BIANCA-MS comparison. Note that BIANCA performances were assessed with respect to lesions masks 

not cleaned, whereas BIANCA-MS outputs were compared with the manually outlined masks being cleaned. * Indicates results where the 

implementation of the refine procedure significantly (p < 0.05) altered tool performance 

  

 

 

 

A 

B 
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Figure 4. Boxplots of BIANCA (blue) and BIANCA-MS (red) performance measures showing the SI (A), nFPC (B) and nFNC (C) obtained 
using the test sets of each dataset. Note that BIANCA performances were assessed with respect to lesions masks not cleaned, whereas 

BIANCA-MS outputs were compared with the manually outlined masks being cleaned * indicates results where the implementation of the 
refine procedure significantly (p < 0.05) altered tool performance 

 

Comparison with existing approaches  

To allow a fair comparison, only the datasets where FLAIR images were provided have been 

analysed. For this reason, Dataset 3 was not included in this experiment. 

Dataset 1: The optimal lesion probability threshold was 0.4 for nicMS, 0.5 for LPA and 0 (no 

threshold) for LGA. Figures 5 and 6 show examples where all the evaluated tools provided 

optimal and suboptimal lesion segmentation for a single subject. On the test set, the tools 

showed significant different SI values (BIANCA-MS: 0.72±0.2; LGA: 0.33±0.18; LPA: 

0.56±0.18; nicMS: 0.67±0.23; p < 0.01). A post-hoc test revealed how BIANCA-MS showed 

the highest SI (p < 0.01). Similarly, overall differences across tools were achieved for nFNC 

(BIANCA-MS: 3±6; LGA: 16±16; LPA: 9±11; nicMS: 5±7; p < 0.01). A post-hoc test revealed 

how BIANCA-MS showed the lowest nFNC (p < 0.01). Significantly different nFPC were 

achieved across the different tools: (BIANCA-MS: 12±12; LGA: 1±3; LPA: 7±10; nicMS: 8±7; 

p < 0.01). A post-hoc test revealed how LGA showed the lowest nFPC (p < 0.01). Finally, 

BIANCA-MS and nicMS showed the highest volumetric correlation (i.e. Pearson coefficients) 

with the manually outlined masks (BIANCA-MS: 0.97; nicMS: 0.97; LPA = 0.92; LGA = 0.86). 

C 
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Figure 5. Example of optimal lesion segmentation using the different lesion segmentation tools on the same subject from the test set of 

dataset 1: manual without (light blue) and with clean (orange); BIANCA-MS (blue, SI : 0.9, nFPC : 8, nFNC : 3), LST-LGA (red, SI : 0.55, 

nFPC : 2, nFNC : 19), LST-LPA (magenta, SI : 0.76, nFPC : 9, nFNC : 10) and nicMS (green, SI : 0.83, nFPC : 12, nFNC : 5). 

 

Figure 6. Example of suboptimal lesion segmentation using the different lesion segmentation tools on the same subject from the test set of 

dataset 1: manual without (light blue) and with clean (orange); BIANCA-MS (blue, SI : 0.59, nFPC : 14, nFNC : 7), LST-LGA (red, SI : 

0.02, nFPC : 0, nFNC : 16), LST-LPA (magenta, SI : 0.33, nFPC : 6, nFNC : 9) and nicMS (green, SI : 0.5, nFPC : 15, nFNC : 1). 
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Dataset 2: The optimal lesion probability threshold was 0.3 for nicMS, 0.4 for LPA and 0.2 for 

LGA. Figures 7 and 8 show examples where all the evaluated tools provided optimal and 

suboptimal lesion segmentation for a single subject. On the test set, the tools showed significant 

different SI values (BIANCA-MS: 0.75±0.23; LGA: 0.59±0.24; LPA: 0.59±0.21; nicMS: 

0.71±0.3; p < 0.01). A post-hoc test revealed how BIANCA-MS showed the highest SI (p < 

0.01). Significant differences were achieved for nFNC (BIANCA-MS: 3±8; LGA: 14±19; LPA: 

8±11; nicMS: 6±4; p < 0.01). A post-hoc test revealed how BIANCA-MS and nicMS showed 

the lowest nFNC (p < 0.01). Significantly different nFPC were achieved across the different 

tools: (BIANCA-MS: 15±8; LGA: 6±5; LPA: 18±21; nicMS: 5±8; p < 0.01). A post-hoc test 

revealed how LGA and nicMS showed the lowest nFPC (p < 0.01). Finally, nicMS and LGA 

showed the highest volumetric correlation with the manually outlined masks (BIANCA-MS: 

0.98; nicMS: 0.99; LPA = 0.97; LGA = 0.99). 

 

Figure 7. Example of optimal lesion segmentation using the different lesion segmentation tools on the same subject from the test set of 

dataset 2: manual without (light blue) and with clean (orange); BIANCA-MS (blue, SI : 0.94, nFPC : 6, nFNC 23), LST-LGA (red, SI : 0.69 , 

nFPC :2, nFNC : 31), LST-LPA (magenta, SI : 0.73, nFPC : 18, nFNC :11) and nicMS (green, SI : 0.78, nFPC : 11, nFNC : 5).  
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Figure 8. Example of suboptimal lesion segmentation using the different lesion segmentation tools on the same subject from the test set of 

dataset 2: manual without (light blue) and with clean (orange); BIANCA-MS (blue, SI : 0.62, nFPC : 12, nFNC : 4), LST-LGA (red, SI : 

0.18, nFPC : 7, nFNC : 44), LST-LPA (magenta, SI : 0.36, nPC : 31, nFNC : 22) and nicMS (green, SI : 0.55, nFPC : 7, nFNC : 9). 

 

BIANCA-MS behaviour across datasets 

When BIANCA-MS was run on the three test sets, no differences were found for SI (Dataset 1: 

0.72±0.2; Dataset 2: 0.75±0.23; Dataset 3: 0.7±0.21). Significant different nFNC were achieved 

across datasets (Dataset 1: 3±6; Dataset 2: 3±8; Dataset 3: 8±11; p<0.01). A post-hoc test 

revealed how the highest nFNC were achieved on Dataset 3 (p < 0.01). BIANCA-MS showed 

different nFPC across datasets (Dataset 1: 12±12; Dataset 2: 15±8; Dataset 3: 16±11; p<0.01). 

A post-hoc test revealed increased nFPC in Dataset 3 compared to Dataset 1 (p < 0.01). 

BIANCA-MS segmentation using mixed training sets 

No statistically significant differences were found for SI, nFPC and nFNC when BIANCA-

MS was trained on the stratified versus the non-stratified datasets (Table 6). 
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 SI nFPC nFNC 

Non-stratified 

Dataset 3 
0.7±0.21 16±11 8±11 

Stratified Dataset 3 0.68±0.18 17±12 12±13 

 

Table 6. Comparison of BIANCA-MS performances measures using the stratified and non-stratified sets extracted from Dataset 3 (to test for 

cross-centre generalisation). Note that none of the statistical tests were significant here 

Validation on pooled MRI dataset 

No statistically significant differences were found in BIANCA-MS SI and nFNC measures 

when the tool was trained and validated using pooled sets of images acquired with different 

scanning protocols (SI: 0.70±0.21, nFNC: 5±11) and when each dataset is separately analysed 

(median values across datasets, SI: 0.72±0.21; nFNC: 4±9). Slightly higher nFPC were 

achieved on the pooled dataset (global Dataset: 20±14; median value across datasets, nFPC: 

14±11; p < 0.01). 
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Discussion 

In this work we presented BIANCA-MS, a novel automated procedure for the segmentation of 

WM brain lesions in MS. This tool has been validated on MR images acquired using different 

scanners, imaging protocols and resolutions, demonstrating that it is robust, flexible and 

accurate. With the pipeline proposed here, we wanted to overcome some of the main issues 

limiting AI tools generalization and their implementation in medical imaging: the identification 

of a unique set of parameters able to deal with a variety of scanning protocols and the variability 

in results induced by inter-rater variability. 

The first contribution of this study is the unique algorithm setting identified after a large 

optimization procedure, whose parameters proved to be relatively independent from scanning 

protocol and reflected typical MS lesion features (SW = 5, PS = 3, LTP = any, NTP WMH/non-

WMH= 2000/10000). The selection of a value of 5 for the SW option was most likely needed 

due to the specific regional distribution of MS lesions (Filippi, et al., 2019). The absence of any 

regional preferences in non WMH-voxels (LTP option) could be due to the variability of MS 

lesion borders, which could be either sharp or ill-defined (Lucchinetti, et al., 2000). Since the 

inflammation process could affect different brain regions, information from the anatomic 

context around lesions (PS option) proved to improve algorithm accuracy (Lao, et al., 2008). 

The imbalance in the number of training voxels between WMH and non-WMH was related to 

the wide heterogeneity of non-WMH voxels. Thus, a higher number of non-WMH voxels was 

needed for better depicting non-lesional tissues. Importantly, the set of options proved to be 

relatively independent of the acquisition protocol, the set of images provided, image resolution 

and main modality of reference, based on the fact that it ranked highly for all datasets. 

Therefore, the use of this harmonized setting could avoid the complex and time-consuming 

optimization procedures needed for adapting algorithm parameters to each dataset. In the 

original work of BIANCA, different optimal settings were found (Griffanti, et al., 2016). This 
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is likely related to the different spatial location, shape and contrast between WMH of presumed 

vascular origin and MS lesions.  

Another crucial and innovative step of the BIANCA-MS pipeline is the cleaning procedure. 

The implementation of this approach was motivated by the evidence of the inter-rater bias 

impact on segmentation (Shwartzman, Gazit, Shelef, & Riklin-Raviv, 2019). This is of great 

relevance if we consider that automated tools are usually validated in comparison to manual 

segmentation. Such procedure is highly subjective and difficult to reproduce, thus resulting in 

insufficiently reliable gold standard. Even in standardized platforms, that are increasingly being 

used for the validation of automated lesion segmentation tools (i.e. MICCAI and ISBI), 

differences across raters are detected. Given this context, obtaining a reliable gold standard 

makes the automated tools validation process itself a challenge. In this work, the application of 

the cleaning step significantly increased the concordance across raters, thus reducing the source 

of variability when validating BIANCA-MS. Moreover, the absence of any relevant difference 

between the lesion masks with and without the cleaning procedure suggested that our pipeline 

reduced the inter-rater variability without influencing the overall quality of the initial 

segmentation. Finally, our cleaning approach greatly improved BIANCA accuracy, precision 

and slightly affected its sensitivity. Several strategies have been proposed to refine lesion 

segmentation, including the use of lesion location information (Datta & Narayana, 2013), 

continuity across slices (Abdullah, Younis, Pattany, & Saraf-Lavi, 2011), ratio maps across 

modalities (Sajja, et al., 2006) and classification of FP as outlier clusters far from lesion and 

not lesion tissues (Lao, et al., 2008). Other approaches simultaneously employed information 

coming from different sources (Ganna, Rombaut, Goutte, & Zhu, 2002; Khastavanehm & 

Haron, 2014; Abdullah, Younis, Pattany, & Saraf-Lavi, 2011; Roura, et al., 2015; Battaglini, et 

al., 2014). A point of strength of our pipeline relies on the objective analysis of intensity 

distribution of the pure tissues surrounding the lesions in both 3D and 2D, which solves the 
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problem of local inhomogeneities strongly influencing lesion segmentation. Although future 

studies are needed to further test the reliability of the approach, the large variability in MRI data 

analysed here and the results obtained demonstrate the apparent robustness of our approach. 

BIANCA-MS clearly outperformed all the existing tools that we evaluated in terms of SI in 

both high and low-resolution images (Dataset 2 and 1 respectively). LGA achieved the lowest 

SI value whereas nicMS and LPA ranked second and third respectively. Further, BIANCA-MS 

achieved on both datasets the lowest nFNC thus proving the high sensitivity of the approach. 

LGA showed the highest nFNC, providing overall the worst performance across all the tools. 

BIANCA-MS showed lower precision in lesion detection (i.e. higher nFPC) in comparison   to 

nicMS and LGA. However, the higher SI achieved by our approach suggested that the higher 

nFPC did not seem to alter the segmentation accuracy. On both high and low-resolution images, 

BIANCA-MS and nicMS showed constantly high volumetric correlation with the manually 

outlined masks, whereas LGA and LPA showed relatively lower degree of concordance on 2D 

acquired images. Taken together, our findings suggested that BIANCA-MS provided overall 

the best performance across all the evaluated tools. Noteworthy, these results could be 

influenced by the way we selected tools optimal thresholds: we used SI as main metrics, giving 

more importance in achieving lower nFNC (i.e. higher sensitivity) than lower nFPC (i.e. higher 

precision). Thus, different selection criteria might provide different results. Importantly, the 

nicMS and LST tools require FLAIR images as a predefined reference modality; thus, although 

artificial pseudoFLAIR images were provided, Dataset 3 was excluded to allow a fair 

comparison across tools. BIANCA-MS is very flexible in terms of reference modality and can 

perform segmentation using any set of images provided. Further, several studies have reported 

variations in algorithm performances across datasets (Griffanti, et al., 2016; Roura, et al., 2015; 

Guo, et al., 2019), even with consistent scanner field strength and after protocol harmonization 

(Shinohara, et al., 2017). The consistency of the performance measures obtained across datasets 
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demonstrated the robustness and flexibility of BIANCA-MS when different acquisition 

protocols, image modalities and resolutions are provided to the algorithm. 

It is also worth noting that BIANCA-MS performed slightly better (although not significantly) 

on FLAIR-3D images. Algorithms are validated using mostly images with 2D/slice-wise 

acquisitions, with only a small number of images with 3D acquisitions employed, often 

referring to online databases. In this respect we did not limit our analyses to images with 2D 

acquisitions, but we validated BIANCA-MS, to the best of our knowledge, on the biggest 

private dataset of MS subjects where images with 3D acquisitions have been manually 

segmented. The results achieved are of the utmost relevance if we consider that high resolution 

FLAIR-3D sequences are now the preferable acquisition due to their high sensitivity in lesion 

detection (Filippi, et al., 2019; Paniagua Bravo, et al., 2014), and thus in the future such high-

resolution images will be more and more commonly acquired.  

Another key observation in our study is that training BIANCA-MS on stratified or non-stratified 

data did not influence the performance of the algorithm. In clinical trials the accrual of WM 

lesions is one of the most commonly used MRI outcomes (van Munster & Uitdehaag, 2017) 

and images are acquired from different centres. Thus, an automatic segmentation tool that 

provides accurate and robust segmentation of WM lesions in multicentre data is greatly needed. 

The results of this study highlight how BIANCA-MS is insensitive to data stratification per 

centre, making it easier to apply in clinical trials where training with data from the same centre 

is difficult or impossible, whereas mixed training sets are straightforward. In a recent work, a 

similar cross validation approach was performed (Gabr, et al., 2020). Our results are in line 

with those obtained by Gabr and colleagues, however we did not focus only on SI, but we also 

included nFPC and nFNC as further analysis metrics.  

Finally, the introduction of PseudoFLAIR images allowed the creation of a global multicentre 

dataset. When trained on this unified dataset, the performance of BIANCA-MS was comparable 



47 
 

to the ones achieved when separately trained on each centre. Lesion segmentation across 

heterogeneous acquisition protocols is a challenging task, with studies reporting from poor 

(Heinen, et al., 2019) to moderate reproducibility across centres (de Sitter, et al., 2017). 

Recently, an AI tool demonstrated high consistency across a wide range of imaging parameters 

(Duong, et al., 2019). However, the great amount of training data (n=295) needed to achieve 

such performance could in part limit its use in a real-world setting. Pooling MRI data represents 

a very practical solution for increasing both the external validity and transposability of research 

findings to clinical settings (Heinen, et al., 2019). Further, training AI tools on more 

heterogeneous data increased the performance in out of distribution (OOD) MRI data 

(Mårtensson, et al., 2020). We hope large multicentre datasets will be more and more employed 

in the future. The wide training procedure is likely to further the performance of BIANCA-MS 

for lesion segmentation in OOD MRI data, avoiding the need to be retrained. 

This study is not without limitation. Firstly, BIANCA-MS is not completely automatic, as it 

needs to be re-trained whenever applied to data acquired with different acquisition protocols. 

However, we showed that a promising solution to this would be training BIANCA-MS on big 

multicentre datasets. Secondly, we focused on segmenting WM lesions, employing an 

exclusion mask of cerebellum and gray matter (GM). Usually, these lesions are not easily 

detectable on conventional MR images (García-Lorenzo, Francis, Narayanan, Arnold, & 

Collins, 2013). This is certainly matter for further improvement of this promising tool. Future 

efforts could address the implementation of sequences able to improve GM lesion detection 

(Nelson, et al., 2007; Geurts, et al., 2005). To be implemented in clinical settings, future studies 

are necessary to validate BIANCA-MS on both healthy subjects and longitudinal data. 

To conclude, in this work we have presented BIANCA-MS, a novel automated procedure 

developed to overcome some of the issues limiting the generalizability of results achieved by 

AI tools. Our method clearly outperformed other available tools and proved to be robust, 
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accurate and flexible across different scanning protocols. Further, the insensitivity of BIANCA-

MS to data stratification per centre makes it suitable when a mixed training set is provided, as 

in clinical trial settings. Finally, pooling MRI data acquired with different scanning protocols 

did not influence BIANCA-MS performance. This introduces the possibility of obtaining a 

BIANCA-MS version that is pre-trained on some large datasets and can perform lesion 

segmentation on OOD MRI data without needing to be retrained. These encouraging results 

suggested that BIANCA-MS is a promising tool for the segmentation of WM brain lesions in 

MS. 
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Supplementary Materials 

Choice of optimal training size 

For determining the optimal number of subjects to include in the training set, training data from 

Dataset 1 were partitioned into 9 subsets: from 10 (20%) to 50 (100%) subjects with step size 

of 5. Using a restricted set of algorithm settings (n=5), BIANCA was trained separately using 

these various training subsets and the corresponding performance values were evaluated using 

the validation set (50 subjects). Finally, a Spearman regression was used for assessing the 

relation between training size and the BIANCA performance measures (SI, nFPC and nFNC). 

 SI nFPC nFNC 

r 0.8 0.67 -0.86 

Table 7. Spearman correlation coefficients between training size and BIANCA performance measures 

 

 

B 

A 
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Figure 9. Regression analyses between BIANCA performance measures (A: SI; B: nFPC; C: nFNC) achieved using the validation set and 

varying the size of the training set. Each line represents a different BIANCA setting. 

Results showed a dependence on the training size (Table 7, Figure 9), with performances 

improving when using bigger training sets. In particular, with training size varying from 10 to 

50 subjects, the SI index increased by 5.22% (r=0.8, p< 0.05; median at 10 vs median at 50: 

0.44 vs 0.47), the nFPC increased by 12.19% (r=0.67, p=0.05; median at 10 vs median at 50: 

20.5 vs 23) and the nFNC decreased by 25% (r=-0.86, p< 0.01; median at 10 vs median at 50: 

4 vs 3).  

These results are consistent with the finding of another work (Narayana, et al., 2020), where 

using bigger training sets (≥50) led to better segmentation performances. Given this context, 

we decided to include in the training set a number of subjects (Dataset 1 and 3: 50; Dataset 2: 

40) that is likely to be able to be used in a real-world setting allowing, at the same time, 

meaningful lesion segmentation. 
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5. Study 2: The concurrent Spatio-temporal relationship between 
inflammation and neurodegeneration in early Multiple Sclerosis: A 
Post-hoc Analysis of the REFLEXION Study 
 
This study was performed in collaboration with professor Hugo Vrenken and PhD candidate 

Rozemarijn Mattiesing* of the Amsterdam VU University Medical Center. 

*Equally contributed to this work and share co-first authorship  
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Introduction 

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) 

characterized by the concomitant presence of focal area of inflammation in the white (WM) and 

gray (GM) matter (lesions) and diffuse damage and neurodegeneration in the entire brain 

(atrophy) (Lassmann, Brück, & Lucchinetti, 2007). Although these two processes are present 

early in the disease course of MS, the dynamics of accumulation of WM lesions and brain 

atrophy is not completely understood.  

At current, the few longitudinal MRI studies investigating the relation between WM lesions and 

brain atrophy have focused on the assumption that inflammation precedes neurodegeneration 

(Chard, et al., 2003; Paolillo, et al., 2004; Dalton, et al., 2002). However, these two biological 

processes could represent somewhat unrelated aspects of the disease (Tauhid, Neema, Healy, 

Weiner, & Bakshi, 2014) working in parallel, with one prevailing over the other at different 

stages of disease or in different brain regions (Bodini, et al., 2016; Bodini, et al., 2009). Indeed, 

weak-to-modest associations between the development of regional brain atrophy and lesion 

changes in number (newly detected lesions) and volume (progressive tissue damage in pre-

existing lesions) suggested that lesions damage contribute only partially to brain atrophy 

(Battaglini, et al., 2009; Cappellani, et al., 2014; Roosendaal, et al., 2011). At present, only few 

studies investigated how WM lesion changes (activity) and brain volume changes (atrophy) are 

linked within the same time interval (Richert, et al., 2006; Sailer, et al., 2001). Further, studies 

within the early phase of MS are even scanter (Varosanec, et al., 2015; Dalton, et al., 2004) and 

often limited to a single follow-up when looking at the longitudinal spatial correlation (i.e. 

voxel-wise analyses) between WM damage and brain atrophy (Raz, et al., 2010; Rocca, et al., 

2016). To develop more targeted therapeutic strategies which can effectively intervene in the 

early stage of disease, it is crucial to better understand the underlying disease mechanisms, how 

these relate to disease progression and whether these can be either modified by treatment or 
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disease worsening. Thus, it is of great relevance to investigate whether inflammation and 

neurodegeneration are two independent processes which might develop simultaneously within 

the early phase of the disease. Further, exploring the concurrent temporal evolution of these 

two pathological processes will make data interpretation in both clinical and research settings 

clearer and more straightforward. 

Longitudinal MRI studies are mandatory to explore the dynamic associations between WM 

lesions and brain atrophy. The randomized, double-blind, placebo-controlled, multi-center 

clinical trial REFLEX and its extension REFLEXION (REbif FLEXible dosing in early MS 

extensION) provided such opportunity. In this trial, patients presenting with a first clinical 

demyelinating event (FDCE) were followed over a period of five years with yearly MRI scans. 

Primary analyses on REFLEX/ION study showed how treatment with interferon β-1a was 

associated to overall MRI reduced activity (Comi, et al., 2012) (Comi, et al., 2017). However, 

the link between atrophy and WM lesions was not investigated.  

In this study we investigated whether, in the early phase of MS, WM lesions and brain atrophy 

were spatially interconnected within the same follow-up period and tested whether these two 

processes developed simultaneously over time. Further, the REFLEX/ION study design 

provided us the opportunity to investigate how treatment influenced the concurrent relation 

between inflammation and neurodegeneration. Therefore, we first tested whether WM lesions 

and brain atrophy were differentially related prior and after treatment onset. Second, we 

examined on how these two processes were associated within the first year of treatment. Third, 

we explored how brain atrophy and WM lesions were linked during a stable treatment period. 

Finally, we assessed whether the relation between inflammation and neurodegeneration differed 

between patients who converted to MS and those who did not. 
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Methods 

Population 

REFLEXION was a preplanned extension of the randomized, double-blind, placebo-controlled, 

multi-center clinical trial REFLEX. Procedures and the design of the study have been described 

in detail elsewhere (Comi, et al., 2012) (Comi, et al., 2017) . Briefly, patients experiencing a 

first clinical demyelinating event at high risk of converting to MS and with at least two clinically 

silent lesions of 3 mm or more on T2-weighted brain MRI scan, at least one of which was ovoid, 

periventricular, or infratentorial were included. Patients were either randomized to one of the 

two early treatment (ET) arms, where treatment was initiated with subcutaneous interferon beta-

1a (sc IFN β-1a) once a week or three times a week, or to the delayed treatment (DT) arm where, 

during the first two years (i.e., the REFLEX phase), patients did not receive treatment (placebo 

group) but at the start of REFLEXION received sc IFN β-1a three times per week (figure 1). 

Clinically definite MS (CDMS) was defined by a relapse accompanied by an abnormal 

magnetic resonance imaging (MRI) scan or a sustained increase in EDSS score of ≥1.5 points. 

For each patient, the yearly interval-specific CDMS status was provided. If patients converted 

to CDMS they switched to open-label treatment with sc IFN β-1a three times per week. 

 

Figure 1. Schematic representation of the REFLEX and its extension REFLEXION study design. 

MRI data 

For the current post-hoc analyses, multicenter yearly MRI scans over a period of 5 years were 

provided by PAREXEL International Corporation. These consisted of 1x1x3 mm proton-

density- (PD), T2-, T1-, and Gadolinium-enhanced T1-weighted images. The Image Analysis 
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Center, VU University Medical Center, Amsterdam, The Netherlands, provided manual 

delineations of the PD/T2-weighted lesions for each yearly visit and manually edited brain 

extraction masks originally obtained by using FSL BET (Smith, 2002) on T1-weighted images, 

part of FSL (Smith, et al., 2004). Scans were included if the input data was of sufficient quality 

and the different processing steps and output of the image analyses described below passed the 

quality control (specific criteria are described in more detail in the Results section). 

MRI analysis 

Longitudinal atrophy quantification 

The T1-weighed images were corrected for slice-to-slice variations (interleaved acquisition) 

and subsequently lesion filled with the linearly registered PD/T2-weighted manual delineations. 

Yearly percentage brain volume change (PBVC) and percentage ventricular volume change 

(PVVC) were estimated with SIENA (Smith, De Stefano, Jenkinson, & Matthews, 2001) and 

its extension VIENA (Vrenken, et al., 2014), both part of FSL (Smith, et al., 2004). The 

normalised and lesion filled T1-weighted image and manually edited brain mask were used as 

input. PBVC and PVVC were used as longitudinal measures of whole-brain atrophy and central 

atrophy, respectively. 

Longitudinal lesion change quantification 

Yearly lesion changes were automatically segmented by an in-house developed method that is 

based on the use of subtraction images (SI) (Moraal, et al., 2010) (Moraal, et al., 2010). Details 

of this method are described in a separate work investigating the effect of sc IFN β-1a treatment 

on WM lesions accrual and the relation between WM lesions distribution and conversion to 

CDMS in the REFLEX study (Battaglini, et al., In Preparation). Briefly, before creating the SIs, 

the slice-to-slice variation in signal intensity on the PD-weighted images was corrected. The 

PD images of both visits of a yearly interval (e.g., baseline-month12) were registered to a 

common halfway space using a similar procedure to that used in FSL-SIENA software. To 
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obtain the SIs, the PD-weighted image of the first visit of each interval was subtracted from the 

second visit. To give a robust analysis, the SIs were further normalized to account for the 

differences between the sites and MRI scanners from which the images were obtained. Voxels 

with a normalized intensity difference exceeding 1.5 standard deviations were labeled as 

changing. Based on the baseline and follow-up lesion masks and the voxel-wise lesion changes, 

each individual lesion was labelled as new, enlarging, shrinking or disappearing. The yearly 

total lesion volume change (TLVC) was calculated by subtracting the sum of the negative lesion 

volume change (shrinking + disappearing) from the positive lesion volume change (new + 

enlarging) for each interval. 

Voxel-wise Input images 

The following steps were performed to produce the input images that were submitted to the 

voxel-wise analyses. First, we created a study-specific template. FSL-SIENAX (Smith, et al., 

2002) was used to obtain normalized brain volume (NBV) for all baseline T1-weighted images. 

Afterwards, 100 patients were selected based on the percentile NBV distribution (from 1st to 

the 100th percentile). For each of these 100 subjects, the T1-weighted images were intensity 

normalized (divided by the 99th intensity percentile and multiplied by 10000), non-linearly 

registered to the MNI standard space (voxel size = 2x2x2 mm3) using FSL-FNIRT (Andersson, 

Jenkinson, & Smith, 2010) and averaged to create the study-specific template.  

Second, to ensure that all the images of a subject underwent the same preprocessing and to 

avoid interpolation bias, a subject-specific template was created. For each subject, the T1-

weighted images were intensity-normalized using the N4 algorithm (Tustison, et al., 2010), 

linearly registered to the baseline T1-weighted scan using FLIRT (Jenkinson & Smith, 2001; 

Jenkinson, Bannister, Brady, & Smith, 2002) and averaged to create the subject-specific 

template. The subject-specific template was then non-linearly registered on the study-specific 



57 
 

template space and the warp-fields generated from this registration were used for the subsequent 

registration of SIENA outputs on the study-specific template. 

To study local atrophy, cerebral edge displacement maps were created. For each subject, the 

yearly brain edge flow images provided by SIENA were spatially dilated, non-linearly 

registered to the study-specific template using the warp fields generated through the procedure 

described above, masked with a standard space brain edge image, smoothed with an isotropic 

Gaussian kernel with a sigma of 5 mm and remasked (Bartsch, et al., 2007) (De Stefano, et al., 

2003) 

Study Design 

Population subgroups were formed to address at both whole brain and voxel-wise level the 

following research questions (RQ): 

1. Investigate the relation between lesion volume changes and brain atrophy within the 

same year. All available datapoints were analysed. 

2. Test whether treatment could influence this relation (all available datapoints were 

analysed). Within this respect, we investigated the relation between lesion volume 

changes and brain atrophy during: 

a. An untreated period: year 1 and 2 DT patients of the REFLEX period (i.e. 

placebo) were analysed, while excluding the interval-specific converters. To test 

whether this relation differed during a treatment period, all the REFLEXION 

period DT patients (year 4 and 5) were analysed. 

b. The first year of treatment: year 1 ET and year 3 DT patients were analysed, 

excluding the DT patients who converted during the first two years of the study 

(because, as per the study protocol, they received treatment upon conversion, 

which in their case was earlier than year 3). 
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c. A stable treatment period. To prevent the confounding effects by resolving 

edema and pseudo-atrophy at the start of treatment, the datapoints where the 

patients have received at least one year of treatment were analysed (ET: year 2, 

3, 4 and 5; DT: year 4 and 5).  

3. Assess whether the relation between lesion volume changes and brain atrophy differed 

between converters and non-converters. All available datapoints were analysed. 

 

Statistical analyses 

Whole brain: Statistical analyses were performed in Rstudio. Linear mixed models (LMM) 

were used to deal with the yearly repeated measurements we have for the atrophy and lesion 

volume change measures. We incorporated a random intercept with a three-level structure 

where observations are clustered within the patients and the patients are clustered within the 

different study sites. All LMMs were corrected for age and sex. An alpha of 0.05 was used as 

the cut-off for significance. Significant interactions were further explored by post-hoc tests. To 

address RQ 1, we applied a LMM with PBVC/PVVC as the dependent variable and TLVC as 

the independent variable, while also inserting treatment and the interval-specific CDMS status 

as additional fixed factors. For RQ 2 and 3, we used similar LMMs but now we also 

incorporated an interaction between treatment and TLVC and interval-specific CDMS status 

and TLVC, respectively. To address RQ 2a, we incorporated an interaction between TLVC and 

period, and corrected for the interval-specific CDMS status in a separate LMM. The same LMM 

was used for RQ 2b and 2c. 

Voxel-wise: For each yearly interval, regional statistical inference was carried out using 

permutation testing (Nichols & Holmes, 2002) (5000 permutations) as implemented in the FSL 

“randomise” program (Winkler, Ridgway, Webster, Smith, & Nichols, 2014). Design matrices 

within the GLM framework were used, with age, sex and site as covariates. Threshold-Free 
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Cluster Enhancement randomise option was used. To address RQ 1, TLVC was used as 

regressors with treatment and the interval-specific CDMS status as additional covariates. For 

RQ 2 and 3, we used similar voxel-wise statistics but now incorporating an interaction between 

treatment and TLVC and between interval-specific CDMS status and TLVC, respectively. 

Similar voxel-wise statistics were used for RQ 2a, with the CDMS status being inserted as 

covariate for the REFLEXION treatment period. The same model used for RQ 2b and 2c. Only 

results with at least 15 significant voxels (p<0.05) were reported. The anatomical location 

where brain atrophy significantly correlated with lesion volume changes was determined by 

using predefined standard space masks (http://www.fmrib.ox.ac.uk/fsl/) as provided by the 

MNI structural atlas. The number (V) and location of significant voxels were reported. 
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Results 

Population 

A total of 400 patients enrolled in the REFLEXION study provided MRI data for the extension 

period and the input data of 392 were included in the current analyses (see table 1). Concerning 

the input data: 4 subjects were excluded because of incomplete trial data, 2 subjects because of 

an inconsistent acquisition protocol, 5 visits because of incorrect/incomplete image(s), 8 visits 

because of movement, 6 visits because of missing data, and 2 visits were excluded from the 

lesion change analyses because of corrupted PD-weighted images. The quality check of the 

output from the lesion change quantification and longitudinal atrophy measurements resulted 

in 158 excluded visits (23 lesion change quantification, 133 longitudinal atrophy, 2 shared 

rejections). Reasons for exclusion were: low quality of the images, artefacts, registration 

problems and pipeline failure.  

Table 1. Demographics of the included patients. CDMS = clinically definite multiple sclerosis (across the whole study period), ET = early 

treatment, DT = delayed treatment, SD = standard deviation 

RQ 1: Relation between atrophy and concurrent lesion volume changes 

All the datapoints available from the entire dataset of 392 subjects were analyzed (see table 1 

for demographic). 

Whole brain: A Significant positive relation between PBVC and TLVC (B = 0.046, SE = 0.013, 

p < 0.001) was found. A Significant negative relation between PVVC and TLVC (B = -0.466 

SE = 0.118, p < 0.001) was found. 

 
Converters 

to CDMS 

Non-converters 

to CDMS 
ET DT Overall 

Subjects (N) 162 230 262 130 392 

Gender (F/M) 95/67 147/83 162/100 80/50 242/150 

Age (mean±SD) 30.32±7.99 32.23±8.52 31.68±8.43 30.97±8.19 31.44±8.35 
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Voxel-wise: Results are summarized in table 2. In year 1, faster atrophy was associated with 

lower TLVC. From year 2 to year 5, faster periventricular atrophy was related to higher TLVC.  

Time Interval 
Number of 

significant Voxels 

Location of 

significant voxels 

Year 1 4868 PV/FL/PL/TL 

Year 2 220 PV 

Year 3 2629 PV 

Year 4 87 PV 

Year 5 121 PV 

Table 2. Schematic representation of the Voxel-wise significant results for the concurrent relation between atrophy and TLVC. PV 

=Periventricular, FL = Frontal Lobe, PL = Parietal Lobe, TL = Temporal Lobe 

 

RQ 2: Influence of treatment on the relation between atrophy and concurrent lesion 

volume changes 

All the datapoints available from the entire dataset of 392 subjects were analyzed (see table 1 

for demographic). 

Whole brain: ET and DT patients showed significant different relation between PVVC and 

TLVC (B = -0.812, SE = 0.24, p < 0.001). A post-hoc test revealed how the relation was 

significant only for the ET group (B = -0.781, SE = 0.149, p < 0.001). 

Voxel-wise: Results are summarized in table 3. In year 1, 4 and 5, ET and DT patients showed 

significant different relation between atrophy and TLVC. In particular, faster periventricular, 

infratentorial and frontal lobe atrophy was associated with higher TLVC in ET patients. In year 

3, faster periventricular atrophy was related to higher TLVC in both ET and DT patients, but 

the relation was stronger for DT. 
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Time Interval 
Number of 

significant Voxels 

Location of 

significant voxels 

Year 1 77 INF 

Year 3 446 PV 

Year 4 172 PV 

Year 5 643 PV/FL 

Table 3. Schematic representation of the Voxel-wise significant results for the influence of treatment on the concurrent relation between 

atrophy and TLVC. PV =Periventricular, FL = Frontal Lobe, INF = Infratentorial 

RQ 2a: REFLEX placebo versus REFLEXION DT patients 

Datapoints from 97 placebo subjects were analyzed (mean age ± SD: 31.65 ± 8.25, Number of 

Male/Female: 36/61). 101 DT subjects were analyzed (mean age ± SD: 31.06 ± 8.17, Number 

of Male/Female: 41/60). 57 patients did not convert to CDMS. 

Whole brain: REFLEX period DT patients showed significant positive relation between PBVC 

and TLVC (B = 0.072, SE = 0.029, p = 0.013). An opposite trend was found between PVVC 

and TLVC (B = -0.917, SE = 0.306, p = 0.003). No significant relation was reached for the 

REFLEXION DT patients. Overall, similar relation between WM lesion changes and brain 

atrophy was observed through REFLEX and REFLEXION period DT patients. 

Voxel-wise: Results are summarized in table 4. In year 1, faster atrophy was associated with 

lower TLVC in placebo patients (figure 2). An opposite trend was found in year 2, where faster 

periventricular atrophy was related to higher TLVC (figure 2). During a treated period (year 4 

and 5), faster periventricular atrophy was related to lower TLVC in DT patients. 
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Time Interval 
Number of 

significant Voxels 

Location of 

significant voxels 

Year 1 (untreated) 2034 PV/PL/TL/INF 

Year 2 (untreated) 1464 PV 

Year 4 (treated) 223 PV 

Year 5 (treated) 1000 PV/FL/TL 

Table 4. Schematic representation of the Voxel-wise significant results for the concurrent relation between atrophy and TLVC in REFLEX 

and REFLEXION period DT patients. PV =Periventricular, FL = Frontal Lobe, PL = Parietal Lobe, TL = Temporal Lobe, INF = 

Infratentorial 

 
Figure 2. Voxel-wise analyses within the first two years of the untreated placebo period: yellow-orange show voxels of significant regions 

where lower TLVC was related to faster atrophy (A, top row) and where higher TLVC was related to faster atrophy (B, bottom row) 

 

RQ 2b: First year of treatment 

231 ET subjects were analyzed (mean age ± SD: 31.9 ± 8.38, Number of Male/Female: 82/149). 

208 patients did not convert to CDMS. 65 DT subjects were analyzed (mean age ± SD: 31.72 

± 7.62, Number of Male/Female: 24/41). 59 patients did not convert to CDMS. 
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Whole brain: ET and DT patients showed significant different relation between PBVC and 

TLVC in the first year of treatment (B = 0.222, SE = 0.07, p = 0.002). A post-hoc test revealed 

that the direction of the relation was different between ET (B = 0.081, SE = 0.027, p = 0.003) 

and DT (B = -0.141, SE = 0.065, p = 0.032) patients. Similar results were found for the relation 

between PVVC and TLVC, with ET and DT showing a significant difference in the first year 

of treatment (B = -4.489, SE = 0.732, p < 0.001). A post-hoc test revealed that the direction of 

the relation was different between ET (B = -1.08, SE = 0.284, p < 0.001) and DT (B = 3.41, SE 

= 0.677, p < 0.001) patients. 

Voxel-wise: Within the first year of treatment of the ET patients (year 1), faster periventricular 

and frontal lobe atrophy was associated with lower TLVC (V = 2192, figure 3). No significant 

relation was found for DT patients in year 3.  

 

Figure 3. Voxel-wise analyses within the first year of treatment of ET patients (Year 1): yellow-orange shows voxels of significant regions 

where lower TLVC was related to faster atrophy. 

 

RQ 2c: Stable treatment period 

Datapoints from 256 ET subjects were analyzed (mean age ± SD: 31.66 ± 8.46, Number of 

Male/Female: 96/160). 162 patients did not convert to CDMS. Datapoints of the RQ 2a 101 DT 

patients were used. 

Whole brain: The relation between PBVC/PVVC and TLVC did not differ between ET and 

DT patients. 
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Voxel-wise: During stable treatment period, faster occipital lobe atrophy was associated with 

higher TLVC (Year 4 V = 283) in ET patients. For DT patients, results are summarized in table 

4 (years 4 and 5). 

RQ 3 - Influence of conversion to CMDS on the relation between atrophy and 

concurrent lesion volume changes 

All the datapoints available from the entire dataset of 392 subjects was analyzed (see table 1 

for demographic). 

Whole brain: Converters and non-converters patients showed significant different relation 

between PBVC and TLVC (B = -0.113, SE = 0.027, p < 0.001). A post-hoc test revealed that 

the relation was significant only for patients who did not convert to CDMS (B = 0.084, SE = 

0.016, p < 0.001). Similar results were achieved when looking at the relation between PVVC 

and TLVC (B = 1.087, SE = 0.245, p < 0.001). A post-hot test revealed that this relation was 

significant only for non-converters (B = -0.837, SE = 0.145, p < 0.001). 

Voxel-wise: Results are summarized in table 5. In years 3 and 4, converters and non-converters 

showed significant different relation between atrophy and TLVC. In particular, faster 

periventricular and occipital lobe atrophy was associated with higher TLVC in patients who did 

convert to CDMS. 

Time Interval 
Number of significant 

Voxels 

Location of significant 

voxels 

Year 3 3779 PV 

Year 4 153 OL 

Table 5. Schematic representation of the Voxel-wise significant results for the influence of conversion on the concurrent relation between 

atrophy and LTVC. PV =Periventricular, OL = Occipital Lobe 
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Discussion 

In this work we found that inflammation and neurodegeneration developed simultaneously in 

the early phase of MS, thus suggesting that these two processes partially resulted from different 

and independent pathological mechanisms. Interestingly, the spatio-temporal concordance 

between these two processes seems to take place mostly in the periventricular region. Further, 

WM lesion changes and brain atrophy seemed to be differentially related across an untreated 

and treated period.  

To better elucidate the complex spatio-temporal dynamics between inflammation and 

neurodegeneration, it is important to consider two key points in the REFLEX/ION study design. 

First, patients were recruited after their first attack. This imply that most of the subjects had 

active inflammation when entering in the study. Thus, several competitive mechanisms should 

be considered: the anti-inflammatory effect of the treatment, the neurodegeneration (both 

pseudo-atrophy and “true” atrophy) and the slow focal damage accrual. Second, DT subjects 

who converted to CDMS during the first two years received treatment earlier than year 3. Thus, 

the patients who truly received delay treatment from year 3 were the less severe cases showing 

lower brain activity (i.e. non-converters). Taken together, these factors certainly influenced the 

relation between inflammation and neurodegeneration. 

Contrary to the studies which assumed that inflammation precedes neurodegeneration (Chard, 

et al., 2003; Paolillo, et al., 2004; Dalton, et al., 2002), our first relevant finding is that WM 

lesions and brain atrophy developed simultaneously over time, suggesting an uncoupling 

between these two processes. Few other MRI studies investigated the relationship between 

lesion changes and brain atrophy within the same follow-up period in the early phase of MS 

(Varosanec, et al., 2015; Dalton, et al., 2004). Such studies found how WM lesions accrual and 

brain volume changes occurred simultaneously. Our results largely confirmed this: higher WM 

lesion volume changes was related to faster widespread atrophy within the same follow-up 
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period. Whether there is a pathological explanation for this association remains to be elucidated. 

Neuropathology observations revealed how profound axonal loss in the normal appearing white 

matter (NAWM) seemed to develop independently from axonal injury in demyelinated lesions 

(DeLuca, Williams, Evangelou, Ebers, & Esiri, 2006). Further, in long-term MS patients, 

ongoing myelin destruction, associated with axonal and neuronal degeneration, was detected in 

the absence of parenchymal inflammatory infiltration (Peterson, Bö, Mörk, Chang, & Trapp, 

2001; Bø, Vedeler, Nyland, Trapp, & Mørk, 2003). These observations suggested that 

neurodegeneration in MS could occur independently from inflammation (Trapp & Nave, 2008). 

Whole brain analyses results were not entirely replicated at voxel-wise level. This is not 

unexpected given that whole brain analyses used all datapoints together, whereas voxel-wise 

analyses were performed within each time interval. This imply that the results achieved within 

a specific time-interval could in some extent be “diluted” by other years datapoints and thus 

could not be detected at whole brain level. Further, if we consider the REFLEX/ION study 

design, the initial shifts in fluid and changes in the volume of inflammatory could have obscured 

the real relation between WM lesion volume changes and brain atrophy. Given this context, 

first years datapoints could have driven the overall detection of any relationships between 

inflammation and neurodegeneration. To support this theory, it is important to mention how the 

voxel-wise analyses in the first year of the study achieved the same results to those obtained at 

whole brain level (i.e. faster atrophy being associated to lower lesion volume change).  

Inflammation and neurodegeneration were related mostly in the periventricular area. This 

finding is in line with other studies that showed how these two processes are greater in the 

periventricular areas and in proximity to CSF spaces (Brown, et al., 2017; Liu, et al., 2015). 

Such greater periventricular activity is related to the presence of locally secreted 

proinflammatory cytokines derived from CSF compartments harbor B cells that reside within 

the CSF space (Magliozzi, et al., 2018; Genovese, et al., 2019).  
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At a voxel-wise level we found a different relation between WM lesion changes and brain 

atrophy across an untreated and treated period. In particular, REFLEX period DT patients (i.e. 

placebo) showed faster whole and central atrophy being associated with lower TLVC. These 

findings are not surprising if we consider the two crucial points of REFLEX/ION study design 

previously discussed: the inclusion of only the non-converters patients (i.e. the ones showing 

less brain activity) in this analysis since they are the ones receiving truly delay treatment and 

the presence of baseline active inflammation. Indeed, previous studies have shown how MS 

patients presenting gadolinium-enhancing lesions have an accelerated decrease in brain volume 

in comparison to those without sign of active inflammation (Radue, et al., 2015; Vidal-Jordana, 

et al., 2013; Sastre-Garriga, et al., 2015). These observations were largely confirmed by the 

results achieved in this work. If we exclude the initial effect of active inflammation and shifts 

in fluids, at voxel-wise level we did find how inflammation and neurodegeneration are 

differentially related prior and after treatment. In the second year of the untreated period faster 

periventricular atrophy was associated with concurrent increase of TLVC. During a treated 

period, faster (mostly periventricular) atrophy was related to concurrent lower TLVC. These 

results demonstrated how treatment could influence the relation between inflammation and 

neurodegeneration. A possible explanation is that anti-inflammatory medication does not seem 

to stop the chronic accrual of pathology, which is not surprising. While acute inflammation 

could be largely suppressed, chronic inflammation and neurodegeneration could progress and 

may cause further neuronal and axonal death. Another possible theory could be that treatment 

initially exerts its effect on inflammation while effects on neurodegeneration requires more time 

to be detected.  

Another key observation in our study is that, within the first year of treatment, faster whole and 

central brain atrophy was associated to lower TLVC. Paradoxically, anti-inflammatory drugs 

have often been associated with an acceleration of brain volume loss following the initiation of 



69 
 

therapy. This phenomenon, referred to as “pseudo-atrophy”, is generally assumed to be related 

to resolution of inflammation and fluid shifts (De Stefano, et al., 2014; Zivadinov, et al., 2008). 

Although its dynamics are still largely unknown, pseudo-atrophy certainly complicates the 

interpretation of brain atrophy measurements in both clinical and research settings (De Stefano, 

et al., 2021). Thus, it is crucial to investigate to what extent the pseudo-atrophy may be related 

to the resolution of inflammation as opposed to neurodegeneration. Further, it could be of great 

relevance to localize the brain tissues or regions where this phenomenon occurs. Congruent to 

pseudo-atrophy effect, in this work lower TLVC was associated to faster periventricular and 

frontal lobe atrophy within the first year of treatment of the ET patients. Conversely, such 

relation was not detected in the DT patients. This result was confirmed by the voxel-wise 

statistics looking at treatment effect on the relation between inflammation and 

neurodegeneration (RQ 2). Normally, one would expect that both ET and DT would have shown 

the same response to treatment onset. The lack of pseudo-atrophy effect on the DT group could 

be addressed to several reasons. First, it is well assumed how pseudo-atrophy is found only in 

patients who showed active inflammation (Vidal-Jordana, et al., 2013; Sastre-Garriga, et al., 

2015; Radue, et al., 2015). Within this respect, DT patients showed relatively stable WM lesions 

activity (i.e. TLVC value close to 0, data not shown) during their first year of treatment. Second, 

it should also be considered the low sample size of the DT group (ET: 231; DT: 65). Finally, 

and accordingly to REFLEX/ION study design, most of the DT patients receiving treatment 

from year 3 were mostly the less severe cases (non-converters: 59; converters: 6). Taken 

together, these factors might have hampered the detection of the pseudo-atrophy effect within 

DT patients first year of treatment. 

To prevent the confounding effect of resolving oedema and pseudo-atrophy during the first year 

of treatment, we restricted our analyses to datapoints where patients had received at least one 

year of therapy. Significantly different relationships were found at voxel-wise level: in ET 
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patients, faster occipital lobe atrophy was associated to higher TLVC, whereas in DT faster 

(mostly periventricular) atrophy was associated to lower TLVC. These results were confirmed 

by the voxel-wise statistics looking at treatment effect on the relation between WM lesion 

changes and brain atrophy (RQ 2). Although not straightforward, one might hypothesize a sort 

of prolonged pseudo-atrophy effect on the DT patients. Indeed, the course of pseudo-atrophy is 

not completely understood and thus, the assumption that pseudo-atrophy occurs only during the 

first year of therapy is not necessarily valid (De Stefano & Arnold, 2015).  

Finally, we investigated whether conversion to CDMS could influence the relation between 

inflammation and neurodegeneration. It is well established how increased inflammatory activity 

and brain atrophy are related to higher risk of conversion to CDMS (Kalincik, et al., 2012; 

Tintoré, et al., 2006). Our results showed that in patients who did convert to MS, WM lesions 

and brain atrophy developed simultaneously, with higher TLVC being related to concurrent 

periventricular and occipital lobe faster atrophy. 

This study is not without limitation. First, the REFLEX/ION study design made it difficult to 

precisely assess to what extent inflammation and neurodegeneration are the results of two 

independent pathologic mechanisms. Second, we did focus our analyses only on the relation 

between WM lesion changes and global/central brain atrophy. Several studies have highlighted 

the presence of GM damage in the early phase of MS (Raz, et al., 2010; Dalton, et al., 2004; 

Henry, et al., 2008). In this work the low quality of the T1-weighted images and the poor 

contrast across tissues made it difficult to look at the relation between WM lesions and GM 

damage. Future studies will address this issue by implementing new generation of imaging 

processing methods (i.e. SIENA-XL, Jacobian integration methods) (Battaglini, Jenkinson, De 

Stefano, & ADNI, 2018; Nakamura, et al., 2013) able to provide robust and accurate GM 

volumes estimates.  Further, it would be very interesting to test whether WM lesions accrual in 

specific brain tracts is related to damage in “anatomically contiguous/connected” cortical lobes. 
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Third, the pathological explanation of the uncoupling between these inflammation and 

neurodegeneration remains to be elucidated. Indeed, although our results suggested that these 

two processes develop independently, genetic data and observation from most experimental 

models appear to favour a pathogenesis model in which inflammation precedes 

neurodegeneration (Milo, Korczyn, Manouchehri, & Stüve, 2020). Thus, the question whether 

inflammation and neurodegeneration are causally related or could develop independently is still 

a topic of discussion and our results did not provide a definite solution. Future studies should 

focus not only on the correlated and not causally linked changes but should also investigate the 

causal relation between WM lesions and brain atrophy. Within this respect, the causal relation 

between inflammation and neurodegeneration has been investigated in a separate study (6th 

chapter of this thesis) for the present dataset. 

To conclude, we found that inflammation and neurodegeneration occur simultaneously in the 

early phase of MS, thus suggesting how WM lesions contribute only partially to the loss of 

overall brain tissue or vice versa. Interestingly, the periventricular regions are always affected 

by atrophy, while the parietal and temporal lobe seems to be involved at different temporal 

intervals and in relation with the treatment and the activities of the patients. 
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6. Study 3: The Spatio-temporal Relationship Between White 
Matter Lesions and Brain Atrophy in Clinically Isolated 
Syndrome and Early Multiple Sclerosis: A Post-hoc Analysis of 
the REFLEXION Study 
  
This study was performed in collaboration with professor Hugo Vrenken and PhD candidate 

Rozemarijn Mattiesing* of the Amsterdam VU University Medical Center. 

*Equally contributed to this work and share co-first authorship  

Data of this work submitted to peer review scientific publication 
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Introduction 

Multiple sclerosis (MS) is a chronic demyelinating inflammatory disease of the central nervous 

system with a neurodegenerative component. Already present from the earliest stages of the 

disease, the two most prominent pathological processes that lead to tissue damage in the brain 

are the formation of focal white matter (WM) lesions and atrophy (Simon, 2014). The 

development of these two pathological processes is presumed to be interrelated (Fisher, et al., 

2002) but the underlying mechanisms remain to be elucidated. 

In order to effectively intervene and target the underlying pathologies in the early phase of the 

disease, it is crucial to broaden our understanding of the underlying mechanisms, their 

interactions, and whether these can be modified by early treatment. For this reason, it is 

especially important to uncover the association between inflammation and neurodegeneration 

in patients with clinically isolated syndrome (CIS) and early MS. 

There are relatively few longitudinal studies of the relationship between atrophy and WM 

damage in patients with CIS and early MS (Chard, et al., 2003; Dalton, et al., 2004; Dalton, et 

al., 2002; Paolillo, et al., 2004; Varosanec, et al., 2015), and these studies have focused on the 

assumption that inflammation precedes neurodegeneration. For example, Chard et al. (2003) 

found that, in long-term follow-up of patients with CIS, subsequent atrophy was more strongly 

related to the accumulation of focal T2 lesions in the early phase (0–5 years) rather than later 

phases in the study (5–10 years and 10–14 years). Dalton et al. (2002) found that baseline lesion 

measures are related to the development of subsequent ventricular enlargement over one year 

in those with CIS. According to a review, inflammatory damage and ongoing WM changes, 

such as gadolinium enhancing lesions, seem to be predictive of later atrophy in relapsing 

remitting MS (Zivadinov & Zorzon, 2002). 

Currently it is unknown whether neurodegeneration in MS is secondary to the inflammatory 

processes leading to WM lesions or whether neurodegeneration is a primary disease process, 
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that (also) leads to secondary WM damage. Alternatively, both options might occur 

simultaneously. A recent review (Milo, Korczyn, Manouchehri, & Stüve, 2020) concluded that 

evidence from animal models and genetic studies favors a pathogenesis in which inflammation 

precedes neurodegeneration.  

To investigate how WM lesions and atrophy in MS develop over time and how their evolution 

is related, long-term follow-up with regular magnetic resonance imaging (MRI) is required. The 

randomized, double-blind, placebo-controlled, multi-center REFLEXION clinical trial 

provides such an opportunity. In this trial, patients presenting with CIS were followed over a 

period of 5 years with yearly MRI scans. In the primary analyses of the study by Comi et al. 

(2017), overall MRI activity was reduced in patients receiving early treatment compared to 

patients receiving delayed treatment with subcutaneous interferon β-1a (sc IFN β-1a). However, 

that study did not look at the relationship between atrophy and WM lesion measures. 

In the current study, we therefore conducted advanced post-hoc image analyses on the 

REFLEXION dataset. Our main goal was to investigate whether WM lesions are spatio-

temporally related to subsequent atrophy in patients with CIS and early MS. In turn, we also 

studied if this possible association differed between patients receiving either early or delayed 

treatment with sc IFN β-1a, or between patients who converted to clinically definite MS during 

the study and those who did not. 
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Methods 

Study 

REFLEXION was a preplanned extension of the randomized, double-blind, placebo-controlled, 

multicenter REFLEX clinical trial (REbif FLEXible Dosing in Early Multiple Sclerosis). 

Procedures and the design of the study have been described in detail elsewhere (Comi, et al., 

2012) (Comi, et al., 2017). Briefly, patients with CIS at high risk of converting to MS were 

included and either randomized to one of two early treatment arms, where treatment with sc 

IFN β-1a 44 μg was initiated once a week or three times a week, or to the delayed treatment 

arm in which, during the first 2 years (i.e., the REFLEX phase), patients did not receive 

treatment (placebo group) but at the start of REFLEXION received sc IFN β-1a 44 μg three 

times a week (Figure 1). If patients converted to clinically definite MS (CDMS), they received 

open-label treatment with sc IFN β-1a 44 μg three times a week. CDMS was defined by a 

relapse accompanied by an abnormal MRI scan or a sustained increase in Expanded Disability 

Status Scale score of ≥1.5 points, i.e. as defined by the 2005 McDonald criteria (Polman, et al., 

2005). 

  

Figure 1. Schematic representation of the REFLEX and its extension REFLEXION study design. 

MRI data 

For the current post-hoc analyses, multicenter yearly MRI scans over the full 

REFLEX/REFLEXION study period of 5 years were evaluated. These consisted of 1x1x3 mm 

proton-density- (PD), T2-, T1-, and gadolinium-enhanced T1-weighted images. The Image 

Analysis Center of Amsterdam UMC (Location VUmc, Amsterdam, The Netherlands) 
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provided manual delineations of the PD-/T2-weighted lesions for each yearly visit and manually 

edited T1-weighted brain extraction masks originally obtained by using the FSL brain 

extraction tool (Smith, 2002), part of FMRIB’s software library (Smith, et al., 2004). Scans 

were included if the input data were of sufficient quality and the different processing steps and 

output of the image analyses described below passed quality control measures (specific criteria 

are described in more detail in the Results section). 

Longitudinal atrophy measurement 

The T1-weighted images were corrected for slice-to-slice intensity variations (due to 

interleaved acquisitions) and subsequently lesion filled with the linearly registered PD-/T2-

weighted manual delineations. Yearly percentage brain volume change (PBVC) and percentage 

ventricular volume change (PVVC) were estimated with SIENA (Smith, et al., 2002; Smith, De 

Stefano, Jenkinson, & Matthews, 2001) and its extension VIENA (Vrenken, et al., 2014), both 

part of FMRIB’s software library (Smith, et al., 2004). The normalized and lesion filled T1-

weighted image and the manually edited brain mask were used as input. Yearly PBVC and 

PVVC were used as longitudinal measures of whole brain atrophy and central atrophy, 

respectively. 

Longitudinal lesion change quantification  

Yearly lesion volume changes were automatically segmented by an in-house developed method 

that is based on the use of subtraction images (SI) (Moraal, et al., 2010; Moraal, et al., 2010). 

Details of this method are described in a separate work investigating the effect of sc IFN β-1a 

treatment on WM lesions accrual and the relation between WM lesions distribution and 

conversion to CDMS in the REFLEX study (Battaglini, et al., In Preparation). Briefly, before 

creating the SIs, the slice-to-slice variation in signal intensity on the PD-weighted images was 

corrected. The PD images of both visits of a yearly interval (e.g., baseline-month 12) were 

registered to a common halfway space using a similar procedure to that used in SIENA 
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software, based on the T2-weighted images. To obtain the SIs, the PD-weighted image of the 

first visit of each interval was subtracted from the second visit. To give a robust analysis, the 

SIs were further normalized to account for the differences between the sites and MRI scanners 

from which the images were obtained. Voxels with a normalized intensity difference exceeding 

1.5 standard deviations were labelled as changing. Based on the baseline and follow-up lesion 

masks and the voxel-wise lesion changes, each individual lesion was labelled as new, enlarging, 

shrinking, or disappearing. The yearly total lesion volume change (TLVC) was thereafter 

calculated by subtracting the sum of the negative lesion volume change (shrinking + 

disappearing) from the positive lesion volume change (new + enlarging) for each interval. To 

allow lesion probability map analyses of the anatomical distribution of the four lesion types, 

lesion labels were stored in a lesion change map (LCM) for each of the four lesion types, for 

each patient and for each interval. 

Voxel-wise input images 

The following steps were performed in order to produce the input images for voxel-wise 

statistical analyses. First, we created a study-specific template. FSL-SIENAX (Smith, et al., 

2002) was used to obtain normalized brain volume for all baseline T1-weighted images. 

Afterwards, 100 patients were selected based on the percentile distribution of normalized brain 

volume (from 1st to the 100th percentile). For each of these 100 patients, the T1-weighted 

images were intensity normalized (divided by the 99th intensity percentile and multiplied by 

10,000), non-linearly registered to the MNI standard space (resolution = 2x2x2 mm) using FSL-

FNIRT (Andersson, Jenkinson, & Smith, 2010) and averaged to create the study-specific 

template. Second, to ensure that all the images of each patient underwent the same pre-

processing and to avoid interpolation bias, a patient-specific template was created. Accordingly, 

the T1-weighted images were intensity-normalized using the N4 algorithm (Tustison, et al., 

2010), linearly registered to the baseline T1-weighted scan using FLIRT (Jenkinson, Bannister, 
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Brady, & Smith, 2002), and averaged to create the patient-specific template. The patient-

specific template was then non-linearly registered on the study-specific template space using 

FNIRT and the warp-fields generated from this registration were used for the subsequent 

registration of SIENA and LCM outputs on the study-specific template. 

To study local atrophy, brain edge shift maps were created. For each patient, the yearly brain 

edge shift images provided by SIENA were spatially dilated, non-linearly registered to the 

study-specific template using FNIRT, masked with a standard space brain edge image, 

smoothed with an isotropic Gaussian kernel with a sigma of 5 mm, and remasked (Bartsch, et 

al., 2007; De Stefano, et al., 2003) 

To study local lesion activity, the yearly LCMs of growing, new, shrinking, and disappearing 

lesions were non-linearly registered to the study-specific template using the warp-fields 

generated through the procedure described above. 

Statistical analyses 

Whole brain: Statistical analyses were performed in Rstudio. For the whole brain analyses, 

linear mixed models were used to deal with the repeated measurements we have for the yearly 

atrophy and lesion change measures. We incorporated a random intercept with a three level 

structure where observations are clustered within the patients and the patients are clustered 

within the different study sites. All linear mixed models were corrected for age and sex. 

Regarding conversion to CDMS, depending on the research question, we categorized patients 

into converters and non-converters either considering the full 5-year study period or using each 

patient’s time-dependent CDMS status for the yearly interval under consideration. An alpha of 

0.05 was used as the cut-off for significance. Significant interactions were further explored by 

post-hoc tests. 

First, we performed separate analyses in order to assess if atrophy and lesion volume changes 

differed between treatment groups and between converters and non-converters. Linear mixed 
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models were used with treatment and interval-specific CDMS status as fixed factors. To assess 

the treatment effect over time, we used a similar model but incorporated an interaction between 

treatment and the yearly intervals. For atrophy, PBVC and PVVC were alternately used as the 

dependent variable; for lesion volume changes, TLVC was the dependent variable. Second, to 

test whether lesion volume changes were related to atrophy in the next year, we incorporated a 

time-lag in our linear mixed models to link TLVC in year 1 to PBVC or PVVC in year 2, and 

TLVC in year 2 to PBVC or PVVC in year 3, etc... We then applied a linear mixed model with 

TLVC as the independent variable and PBVC or PVVC in the next year as the dependent 

variable, correcting for treatment and CDMS status across the whole study period. Additionally, 

to test whether the relationship between lesion volume changes and atrophy in the next year 

differed between treatment groups or between converters and non-converters, we used similar 

models but also incorporated an interaction between treatment and TLVC, and CDMS status 

across the whole study period and TLVC, respectively. 

In order to prevent confounding effects by resolving edema and pseudo-atrophy at the start of 

treatment, all linear mixed models were performed on the data points where the patients have 

received at least one year of treatment. This means that for the early treatment group, TLVC in 

years 2, 3, and 4 and PBVC or PVVC in the next year were included; and for the delayed 

treatment group, only TLVC in year 4 and PBVC or PVVC in year 5. This will be called the 

stable treatment period. 

To test the relationship between lesion volume changes and atrophy in the next year in an 

untreated period, we included the data points of TLVC in year 1 and PBVC or PVVC in year 2 

of the delayed treatment (then placebo) group in the REFLEX period, while excluding the 

delayed treatment patients who converted during the first 2 years of the study and controlling 

for CDMS status across the whole study period. To see if the relationship differed between the 

REFLEX placebo period and the REFLEXION treatment period (TLVC in year 4 and PBVC 
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or PVVC in year 5) excluding the first year of treatment of the delayed treatment patients 

(TLVC in year 3 and PBVC or PVVC in year 4), we incorporated an interaction between TLVC 

and period and corrected for CDMS status across the study period in a separate linear mixed 

model. 

Voxel-wise: For each yearly interval, regional statistical inference was carried out using 

permutation testing (Nichols & Holmes, 2002) (5000 permutations) as implemented in the 

Randomise program of FMRIB’s software library (Winkler, Ridgway, Webster, Smith, & 

Nichols, 2014). The Threshold-Free Cluster Enhancement randomise option was used. When 

looking at the difference between early and delayed treatment patients and converters/non-

converters in terms of atrophy and LCMs within each interval, design matrices within the GLM 

framework were used with treatment and interval-specific CDMS status as variables of interest, 

and age, sex, and study site as covariates. TLVC was used as regressor when looking at the 

relationship with brain edge shifts in the next year. Only results with at least 15 significant 

voxels were reported. The anatomical location was determined by using pre-defined standard 

space masks (see http://www.fmrib.ox.ac.uk/fsl/fslwiki/), as provided by the MNI structural 

atlas and the JHU WM tractography atlas. The number (V) and the location of significant voxels 

(p<0.05) were reported. The voxel-wise analyses were matched to the whole-brain analyses but 

could only be performed for each yearly interval. 
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Results 

A total of 400 patients enrolled in the REFLEXION study provided MRI data for the extension 

period, and the input data of 392 patients were included in the current analyses (Table 1). 

Concerning the input data, 4 patients were excluded because of incomplete trial data, 2 patients 

because of an inconsistent acquisition protocol, and 2 patients because no consecutive visits 

were available that were needed to calculate yearly atrophy and lesion change measures. 

Regarding visit data, 5 visits were excluded because of incorrect/incomplete image(s), 8 visits 

because of movement, 6 visits because of missing data, and 2 visits were excluded from the 

lesion change analyses because of corrupted PD-weighted images. The quality check of the 

output from the lesion change quantification and longitudinal atrophy measurements resulted 

in 158 excluded visits (23 lesion change quantification, 133 longitudinal atrophy, and 2 shared 

rejections). Reasons for exclusion were: low quality of the images, artefacts, registration 

problems, and pipeline failure. 

Table 1. Demographics of the included patients. CDMS = clinically definite multiple sclerosis (across the whole study period), ET = early 

treatment, DT = delayed treatment, SD = standard deviation. 

 

Atrophy 

Table 2 and Figure 2, panel A and C, provide the yearly PBVC and PVVC for the different 

treatment groups. When looking separately within each yearly interval, global atrophy was 

higher in the first year for early versus delayed treatment (PBVC: B=-0.198, SE=0.069, 

 
Converters 

to CDMS 

Non-converters 

to CDMS 
ET DT Overall 

Subjects (N) 162 230 262 130 392 

Gender (F/M) 95/67 147/83 162/100 80/50 242/150 

Age (mean±SD) 30.32±7.99 32.23±8.52 31.68±8.43 30.97±8.19 31.44±8.35 
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p=0.004), indicative of resolving edema and pseudo-atrophy. In the second and fourth year, 

global atrophy rate was slower in the early vs delayed treatment group (PBVC, year 2: B=0.159, 

SE=0.069, p=0.021; PBVC, year 4: B=0.176, SE=0.076, p=0.021). For central atrophy, similar 

results were found in year 1 (B=2.538, SE=0.616, p<0.001) and year 2 (B=-1.560, SE=0.614, 

p=0.011). Taken across the whole 5-year study period, atrophy rate (PBVC and PVVC) did not 

differ significantly between patients in the early and delayed treatment group. On a voxel-wise 

level, similar results were observed in the first year; there was faster periventricular atrophy 

and atrophy in the temporal lobe for the early vs delayed treatment group (V=4165). In the 

second year, the early treatment group showed slower atrophy in the frontal lobe compared with 

the delayed treatment group (V=807).  

Table 2 and Figure 2, panel B and D, provide the yearly PBVC and PVVC for the interval-

specific converters/non-converters to CDMS. Across the whole 5-year study period, compared 

to non-converters, patients who converted to CDMS showed faster global atrophy (B=-0.112, 

SE=0.035, p=0.001) but not central atrophy. In voxel-wise analyses, patients who converted 

during an interval showed faster atrophy compared with non-converters, mostly periventricular, 

in years 1 (V=1720), 2 (V=93), and 4 (V=919). 
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Figure 2. Boxplots depicting the percentage brain volume change, percentage ventricular volume change, and total lesion volume change 

across all years for the early and delayed treatment groups and interval-specific converters and non-converters. Outliers beyond the y-axis 

range are shown on the x-axis (panel E and F). *p<0.05. **p<0.001
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Table 2. Longitudinal atrophy and lesion volume changes measures across treatment groups and interval-specific converters to clinically definite 

multiple sclerosis and non-converters, in each year of the study. Values are mean ± standard deviation. ET = early treatment, DT = delayed 

treatment, Conv = converters to clinically definite multiple sclerosis (CDMS), Nonc = non-converters to CDMS, PBVC = percentage brain volume 

change, PVVC = percentage ventricular volume change, TLVC = total lesion volume change. 

 

White matter lesion volume changes 

In Table 2 and Figure 2, panel E, the yearly TLVC is provided for the early and delayed treatment 

groups. When looking separately within each interval, the early treatment group showed a lower 

TLVC compared with the delayed treatment group only in year 1 (B=-0.318, SE=0.125, p=0.011). 

Overall, TLVC did not differ between the early and delayed treatment groups across the whole 5-year 

study period. In voxel-wise analyses, early treatment patients showed lower activity of growing 

lesions compared with the delayed treatment group in year 1 in the forceps minor and anterior 

thalamic radiation (V=49), and higher activity of shrinking lesions in year 5 in the posterior corona 

radiata (V=98). 

Measure Group Year 1 Year 2 Year 3 Year 4 Year 5 

PBVC 

(%/y) 

ET -0.541±0.722 -0.353±0.603 -0.322±0.547 -0.311±0.584 -0.412±0.597 

DT -0.362±0.675 -0.536±0.750 -0.371±0.591 -0.508±0.533 -0.416±0.573 

Nonc -0.443±0.685 -0.375±0.620 -0.324±0.522 -0.316±0.525 -0.382±0.518 

Conv -0.752±0.828 -0.521±0.754 -0.366±0.633 -0.480±0.640 -0.464±0.687 

PVVC 

(%/y) 

ET 6.868±7.095 2.373±4.582 2.518±4.195 1.968±4.725 2.602±4.354 

DT 4.413±8.479 4.022±5.965 3.604±6.394 2.901±4.431 1.850±3.933 

Nonc 5.870±7.741 2.412±4.620 2.843±4.186 1.713±3.935 2.098±3.435 

Conv 7.283±7.045 4.319±6.149 2.941±6.414 3.254±5.540 2.816±5.270 

TLVC 

(mL/y) 

ET -0.339±1.568 0.207±0.983 0.214±0.837 0.150±1.002 0.185±0.874 

DT -0.006±1.945 0.218±0.838 0.065±0.960 0.222±1.078 0.041±0.697 

Nonc -0.254±1.731 0.217±0.927 0.097±0.664 0.077±0.643 0.073±0.542 

Conv -0.057±1.556 0.196±0.961 0.296±1.205 0.345±1.469 0.250±1.135 
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Yearly TLVC is provided for converters/non-converters using the interval-specific CDMS status in 

Table 2 and Figure 2, panel F. Converters showed a higher TLVC compared with non-converters 

across the whole study period (B=0.217, SE=0.062, p<0.001). In year 5, converters showed higher 

activity of growing lesions compared with non-converters in the superior and posterior corona radiata, 

and the forceps major (V=358). 

Relationship between WM lesion volume changes and subsequent atrophy 

During stable treatment, after at least one year of treatment (so excluding the first year for the early 

treatment group and the third year for the delayed treatment group), we found a negative relationship 

between TLVC and PBVC in the next year (B=-0.113, SE=0.022, p<0.001), consistent with a higher 

lesion volume change being related to faster atrophy in the next year. This relationship did not differ 

between the treatment groups and also not between patients who did and did not convert to CDMS 

across the whole study period. We found a similar relationship for central atrophy: TLVC was 

positively related to PVVC in the next year (B=1.156, SE=0.164, p<0.001). This relationship did not 

differ between converters and non-converters, but treatment seemed to modulate the effect 

(TLVC*treatment: B=0.972, SE=0.421, p=0.021). A post-hoc test revealed that TLVC was only 

significantly related to PVVC in the next year in the early treatment group (B=1.348, SE=0.181, 

p<0.001). Voxel-wise analyses showed that, in early treatment patients, higher TLVC in years 2 

(V=3926) and 3 (V=1369) were related to faster periventricular atrophy in the next year, as shown in 

Figure 3. In year 4, TLVC was related to faster periventricular atrophy in the next year in the early 

(V=322) and delayed treatment (V=472) groups. A separate analysis that included an interaction term 

indicated that this relationship was stronger in the delayed treatment group (V=113), as shown in 

Figure 4. The (temporal-spatial) relationship between TLVC and atrophy in the next year did not 

differ between CDMS converters and non-converters. 

In the untreated period of patients who received delayed treatment, there was no significant 

relationship between TLVC and PBVC or PVVC in the next year. This relationship also did not differ 

significantly between the REFLEX and REFLEXION period. In voxel-wise analyses, the relationship 
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was also not present in the REFLEX period; but in the REFLEXION period, higher TLVC in year 4 

was related to faster periventricular atrophy in the next year (V=472).  

 

 Figure 3. Voxelwise analyses in the early treatment group: significant regions where higher TLVC in year 2 (top row) and year 3 (bottom 

row) was related to faster periventricular atrophy in the next year.  
 



87 
 

 

Figure 4. Voxelwise results showing the relation between TLVC in year 4 and subsequent atrophy in year 5 in the early treatment group (top row) 

and the delayed treatment group (middle row), as well as the regions in which this relation between TLVC and subsequent atrophy was significantly 

stronger in the delayed treatment group compared to the early treatment group (bottom row). 
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Discussion 

This study found that in patients with CIS and early MS, during stable treatment (at least one year) 

with sc IFN β-1a, higher WM lesion volume changes were related to faster periventricular atrophy in 

the next year. In the short untreated period for patients with delayed treatment, the relationship 

between lesion volume changes and atrophy in the next year was not significant.  

In year 1, patients who received early treatment showed faster brain volume loss (in line with expected 

pseudo-atrophy) and lesion volume decrease (in line with expected resolving edema), while in years 

2 and 4 they showed slower atrophy compared with patients who received delayed treatment. In 

voxel-wise analyses, similar results were found in the periventricular areas and temporal lobe in year 

1, and in the frontal lobe in year 2. 

Previous studies found that lesion measures were associated with subsequent atrophy (Chard, et al., 

2003; Dalton, et al., 2004; Dalton, et al., 2002; Paolillo, et al., 2004; Varosanec, et al., 2015). Our 

results largely confirmed this: higher WM lesion volume changes were related to faster 

periventricular atrophy in the next year in patients with CIS and early MS. The association was not 

the same for all investigated subsets of the trial data. We first looked at the stable treatment period, 

in which we only included the data points where patients had received at least 1 year of therapy. This 

selection was made to prevent the confounding effects of resolving edema and pseudo-atrophy during 

the first year of treatment with sc IFN β-1a. Anti-inflammatory medication is known to induce an 

initial reduction in brain volume during the first 6 months to 1 year, which is not associated with a 

loss of cell structures but rather fluid shifts (De Stefano, et al., 2014; Zivadinov, et al., 2008). The 

relationship between WM change and subsequent atrophy was found in this stable treatment period. 

However, we did not observe this relationship in untreated patients, i.e. when we focused on the 

placebo period of the delayed treatment group in the first 2 years of the REFLEX study. 

Our findings do not imply that treatment triggers a relationship between WM changes and subsequent 

atrophy. Actually, it might be expected that this relationship would be more apparent in the delayed 

treatment group, while these patients were receiving placebo, since the inflammation is not (yet) 
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suppressed. However, this (exploratory) analysis only included one data point (TLVC at year 1 and 

PBVC or PVVC at year 2), had a relatively small sample size, and this group also has the potential 

for bias, because of the presumably non-random removal of patients who converted to CDMS and 

who were then treated with open label sc IFN β-1a; all of these factors may have prevented the 

detection of a relationship in the placebo period. Since patients were recruited just after their first 

attack, during the first two years (the REFLEX period), placebo recipients may have exhibited shifts 

in fluid and changes in the volume of inflammatory cells that might obscure any relationship between 

true lesion accrual and true atrophy during this period. Moreover, the relationship did not differ 

between the REFLEX and REFLEXION period for the delayed treatment patients, meaning that there 

was no difference between the untreated and treated period for such patients. Therefore, treatment 

does not cause the association between WM changes and subsequent atrophy to appear. 

For central atrophy, the relationship between WM changes and subsequent atrophy seemed to be 

modulated by treatment with sc IFN β-1a, since a post-hoc test revealed that it was only present in 

the early treatment group. However, this additional interaction analysis is limited by the fact that the 

delayed treatment patients only had one data point included (because they started treatment in year 3, 

unless they converted before) and the early treatment group was overrepresented with three data 

points for each patient. Therefore, this result should be interpreted with caution. 

The very few studies that have investigated the relation between WM lesions and brain atrophy in 

CIS and early MS have focused on the hypothesis that inflammation precedes neurodegeneration. To 

the best of our knowledge, the causal relation between WM lesion changes and brain atrophy has not 

been investigated in a similar longitudinal manner before. However, evidence suggest that lesion 

accrual and brain atrophy could be largely independent processes that both occur at increased rates in 

patients or during periods with more severe disease. Future studies should in more detail investigate 

both hypothesized causal relations between lesions and atrophy, as well as the possibility of correlated 

but not causally linked changes. Such studies should employ imaging techniques that are able to zoom 

in on the local microstructure and tissue properties, such as diffusion tensor imaging. Furthermore, 
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the relation between concurrent changes in lesions and atrophy has been investigated in a separate 

study (5th chapter of this thesis) for the present dataset. 

Treatment with sc IFN β-1a only had a significant effect on atrophy and lesion volume changes during 

certain periods of the study. The results in the first year were indicative of resolving edema and 

pseudo-atrophy, which is to be expected based on what is known about the effects of anti-

inflammatory treatment during the first year (De Stefano, et al., 2014; Zivadinov, et al., 2008). 

Interestingly, we did not see this effect in the delayed treatment group in the first year of treatment 

(i.e. year 3 of the study). This might be because this group is smaller, but we did find a significant 

difference in the fourth year of the study, which could be speculated to reflect a delayed pseudo-

atrophy effect in such patients. It would have been easier to explain if this effect occurred in the third 

year of the study, since the delayed treatment patients started treatment at that time (unless they 

converted to CDMS beforehand). In the fourth year, these patients had already received at least 1 year 

of treatment and it seems counterintuitive that the atrophy rate had not become more similar between 

the early and delayed treatment groups by then. This potentially has an important clinical 

consequence, by highlighting a different response to early and delayed treatment in terms of brain 

atrophy and lesion accrual.  

Patients who converted to CDMS showed faster global atrophy and lesion volume change across the 

whole study period compared to non-converters, and since these patients have a worse disease 

progression this seems to be expected. However, because they received treatment with sc IFN β-1a 

three times a week upon conversion to CDMS, this result is somewhat difficult to interpret. 

This brings us to one of the limitations of the study. Since the study design is fairly complicated 

because treatment (dosing) and conversion status are intertwined, it was not possible to correct for all 

potential confounders. We tried to account for this in the linear mixed models, and for this reason we 

analyzed specific subsets of the trial data. For example, in order to look at a pure untreated placebo 

group we excluded the converters in the first and second year of the study, but this also introduced a 

potential selection bias of including only the cases with a more benign disease progression.  
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Ideally, we would have looked at the relationship between WM lesions and gray matter (GM) atrophy. 

However, due to the quality of the 2D scans, with limited contrast in the images, which makes it 

difficult to detect the WM-GM border, this was not possible. For this reason we focused on global 

and central atrophy measures, and we cannot make statements about the relationship between WM 

and GM pathology in MS. Future studies using 3D imaging with adequate WM-GM contrast could 

address these issues, including the relationship between specific cortical lobes and WM tracts in the 

brain. 

A strength of this trial was regular, tightly controlled MRI scans over a fairly long period, and a large 

sample that enabled us to investigate the relationship between atrophy and WM changes in patients 

with CIS early in the disease process. Ideally these patients would have been followed-up for an even 

longer duration. Therefore, future trials should aim to increase the follow-up period to better elucidate 

the relationship between the two pathological processes, and make use of the most recent advances 

in imaging such as 3D-FLAIR and 3D-T1 images to be able to look in more detail at GM and WM; 

for example, by measuring cortical thickness. These studies should also focus on WM damage 

potentially being secondary to neurodegeneration. 

In conclusion, we found that higher lesion volume changes were related to subsequent faster 

periventricular atrophy in patients with CIS and early MS. The question remains whether these 

processes are causally related or whether they are merely two pathological processes that occur 

simultaneously in such patients. This needs to be investigated further in future studies. 
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7. Summary and future perspectives 

The studies presented in this thesis faced two MS lesions related challenges. We first dealt with the 

technical difficulties of developing an accurate tool for automated WM lesion segmentation. 

Afterwards, we investigated the complex inter-role across inflammation and neurodegeneration. For 

these two distinct MS challenges, a summary followed by possible future directions of research will 

be provided in the following paragraphs. 

 

MS Challenge 1: Automated lesion segmentation 

Summary. As mentioned in the Introduction, accurate lesion segmentation is a complex task for 

several reasons. In certain respects, one could argue that some of the tools developed this far have 

reached a higher degree of accuracy and sensitivity. However, these tools usually showed poor 

consistency, robustness and generalizability. Such limitation could be due to the lack of an extensive 

validation approach, with most of the tools showing to be “tailored” on specific acquisition protocols. 

Further, there is very scarce employment of high-resolution FLAIR images, now considered the 

preferable sequence where to detect MS lesions. Finally, the use of the manual segmentation as gold 

standard to measure tools performances should be critically considered. Indeed, the lack of 

reproducibility and the intra/inter-rater variability of the manual approach could affect the automated 

segmentation performances, thus impairing the validation procedure.  

Against this background, in this thesis a novel approach, named BIANCA-MS, was introduced. This 

procedure comprises two innovative key elements. The first one is a harmonized setting tested under 

different acquisition protocols which avoid the long optimization procedure needed to tune algorithm 

settings to each dataset. The second key element is a post-processing cleaning-step. This was designed 

to be applied to both the manual segmentation, to reduce the impact of the inter-rater variability during 

algorithm validation, and to BIANCA-MS outputs, to further refine lesions segmentation. 
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Our experiments highlighted how BIANCA-MS achieved, on both low and high-resolution FLAIR 

images, significant higher degree of similarity to the gold standard compared to other widely used 

tools. Further, the consistency and reproducibility of performances achieved across different datasets 

(i.e. different scanning acquisition protocols) proved BIANCA-MS robustness and flexibility. On a 

multicentre dataset, BIANCA-MS demonstrated to be insensitive to data stratification per centre, 

making it easier to apply in clinical trials context. Finally, when all the scanning protocols are mixed 

into one pooled dataset, BIANCA-MS performances were comparable to the ones separately achieved 

on each centre. This introduces the possibility of obtaining a BIANCA-MS version that is pre-

validated on large datasets and can perform robust and accurate lesion segmentation on “unseen” or 

new MRI data without needing to be revalidated. 

Taken together, these encouraging results suggested how BIANCA-MS is a promising tool able to 

overcome some of the technical issues that still makes MS automated lesion an open challenge.  

 

Future perspectives. As lesion identification on MRI is a crucial diagnostic step in MS, it is important 

to develop a tool as accurate as possible. In this respect, it would be greatly important to test 

BIANCA-MS behaviour on healthy controls. Such test will provide crucial information about 

BIANCA-MS reliability and specificity, opening the way to its possible implementation in clinical 

practice.  

Further, it would be of utmost relevance to develop a BIANCA-MS longitudinal pipeline able to 

provide robust lesions volumetric assessment over-time and accurately classify lesions accordingly 

to their degree of activity (i.e. new, shrinking, disappearing, enlarging or stable). Finally, future 

efforts could address the implementation of sequences to allow GM lesion detection.  

 

MS Challenge 2: The inter-role between inflammation and neurodegeneration 

To date, whether inflammation and neurodegeneration are two independent or causally related 

processes is still a topic of debate. Uncover the association between these two pathological processes 
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in the early phase of MS is of utmost relevance to effectively intervene and target the underlying 

pathologies. Noteworthy, most of the studies have investigated the inter-role between inflammation 

and neurodegeneration at whole brain level, with regional analyses being poorly used and often 

limited to a single follow-up.  

Given this context, by using both whole brain and voxel-wise analyses, two complementary studies 

on the REFLEX/ION clinical trial were performed to assess the spatio-temporal relation between 

WM lesion changes and brain atrophy. We first investigated whether inflammation and 

neurodegeneration are two independent processes which develop simultaneously over time; second, 

we explored whether and to which extent WM lesion changes are related to subsequent atrophy thus 

implying a causal relationship between these two pathological processes. Further, in the 

REFLEX/ION trial patients received either early (from baseline) and delay (from year 3) treatment 

and underwent yearly MRI for a 5-year period. This design allowed us to further investigate whether 

treatment and disease worsening could influence the relation between inflammation and 

neurodegeneration. 

 

Concurrent relation between WM lesion volume changes and brain atrophy 

Summary. In this study we found that inflammation and neurodegeneration developed 

simultaneously in the early phase of MS, thus suggesting that these two processes partially resulted 

from different and independent pathological mechanisms. We then restricted our analyses within the 

first year of treatment to better explore the pseudoatrophy effect. As mentioned in the Introduction, 

this phenomenon certainly complicates the interpretation of brain atrophy measurements in both 

clinical and research settings. Thus, it is crucial to investigate to what extent the pseudoatrophy may 

be related to the resolution of inflammation as opposed to neurodegeneration. In our work, lower WM 

lesion volume changes was related to faster periventricular and frontal lobe atrophy. Interestingly, 

this phenomenon was detected only in patients who showed signs of active inflammation (i.e. early 

treated patients).  
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Another key finding in this work was that WM lesion changes and brain atrophy seemed to be 

differentially related prior and after treatment onset. However, this was detected only at voxel-wise 

level and not with whole brain analyses. This finding could suggest specific regional mechanisms, 

which presence is “diluted” when the whole brain analyses are performed. In this work, faster 

periventricular atrophy was associated with higher WM lesion volume changes during an untreated 

period, whereas faster periventricular atrophy was related to lower inflammatory activity during a 

treated period. These results suggested that while treatment largely suppressed acute inflammation, it 

did not stop the chronic accrual pathology and neurodegeneration. However, it may be possible that 

treatment effects on neurodegeneration requires more time to be detected. 

We have also investigated whether the relation between inflammation and neurodegeneration could 

be influenced by disease worsening. In this respect, higher brain activity in terms of WM lesions and 

atrophy were detected in patients who converted to MS. 

Interestingly, the spatio-temporal concordance between inflammation and neurodegeneration seemed 

to take place mostly in the periventricular region, while the parietal and temporal lobe seems to be 

involved at different temporal intervals and in relation with the treatment and the activities of the 

patients. This greater periventricular activity could be related to the presence of locally secreted 

proinflammatory cytokines derived from CSF compartments harbor B cells that reside within the CSF 

space. Such inflammatory environment could lead to the presence of destructive lesions resulting in 

an increase in ventricular volume. Cortical atrophy could be explained by retrograde degeneration of 

axons injured in WM lesions (i.e. Wallerian degeneration). However, this phenomenon alone could 

not entirely account for cortex volume loss as several mechanisms, like neuronal shrinkage and 

demyelination, could contribute to cortical neurodegeneration. 

 

Relation between WM lesion volume changes and subsequent brain atrophy 

Summary. The main finding of this study was that higher WM lesion volume changes were related 

to faster periventricular atrophy in the next year. Further, no significant different association between 
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inflammation and neurodegeneration was detected across an untreated and treated period, thus 

meaning that treatment does not influence the causal relationship between these two processes.  

Treatment only had a significant effect on atrophy and lesion volume changes during certain periods 

of the study. In the first year of treatment, our results were indicative of resolving oedema and 

pseudoatrophy. Congruent with the study on the concurrent relation between inflammation and 

neurodegeneration, this effect was not detected in the first year of treatment of the delay treated 

patients (year 3 of the study). Interestingly, in these patients we did find faster brain atrophy in year 

4, which could be speculated to reflect a delayed pseudoatrophy effect. This potentially has an 

important clinical consequence, by highlighting a different response to early and delayed treatment 

in terms of brain atrophy and lesion accrual.  

 

General Conclusions. Our experiments provided complementary results. Indeed, if on one hand 

higher WM lesion volume changes were related to subsequent faster atrophy, it is also true that 

inflammation and neurodegeneration developed simultaneously in the early phase of MS, thus 

suggesting that these two processes partially resulted from different and independent pathological 

mechanisms. These findings highlighted how the relation between inflammation and 

neurodegeneration is not restricted to a single direction but is more probably the sum of different 

models that are not mutually exclusive and could coexist at the same time. 

 

Future perspectives. In elucidating the relation between inflammation and neurodegeneration, we did 

focus our analyses only on the relation between WM lesions and global brain and ventricular atrophy. 

Several studies have highlighted the presence of GM damage in the early phase of MS. Thus, future 

studies will address this issue by implementing new generation of imaging processing methods able 

to provide robust and accurate GM volumes estimates (i.e. SIENA-XL). Further, it would be very 

interesting to test whether WM lesions accrual in specific brain tracts is related to damage in 

“anatomically contiguous/connected” cortical lobes. Future efforts should aim to increase the follow-
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up period to better elucidate the relation between the two pathological processes. Finally, the question 

whether inflammation and neurodegeneration are causally related or could develop independently is 

still a topic of discussion and our results did not provide a definite solution. In this respect, future 

studies should also focus on the pathological model where WM damage could be secondary to 

neurodegeneration. 
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