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Abstract

This thesis mainly focuses on state-of-the-art challenges of distributed execu-
tion models and research the system support for artificial intelligence and high
performance computing applications. In this context, we focus on investigat-
ing in detail about co-designing the Dataflow-Threads execution model [61].
Moreover, to facilitate support, development, and debug the Dataflow-Threads
execution model, we introduced DRT; a lightweight Dataflow runtime [68].
DRT has been written in portable C code (tested with the GNU C compiler),
and it is open-source. It can be used on real machines based on architectures
like x86, AArch, RISC-V ISA.

Furthermore, we consider major problematic applications in the domain of
the Artificial Intelligence (AI) and High Performance Computing (HPC) and
address themain challenges and bottlenecks to extend our dataflow runtime. To
do this, we used widely known benchmarks to stress the capabilities of the DF-
Threads executionmodel and its evaluation against other parallel programming
models. We choose Blocked Matrix Multiplication and Recursive Fibonacci.
Matrix multiplication is one of the main kernels of AI and HPC Applications.
Plus, Recursive Fibonacci is a simple benchmark which creates enormous
number of threads and processes and stress the entire execution model.

In this thesis, we are mainly interested in heterogeneous platforms. A hetero-
geneous platform is a hardware device that contains a range of computing
components, such as multicore CPUs, GPU, or FPGAs. Their capabilities have
provided many features for researchers to use this kind of structure in their
state-of-the-art works. Heterogeneous systems are flexible, cost-efficient, and
well-supported by communities. Our work focuses mainly on CPU+FPGA
Heterogeneous systems, mostly a general-purpose CPU (x86 or ARM) within
a Unix-based operating system besides an FPGA accelerator. Subsequently,
because of a need in our hardware platform structure, we design and fab-
ricate the Gluon board, which uses serial transceivers in Xilinx Ultrascale+
Heterogeneous accelerator and facilitates GTH transceivers in high rate data
transfer applications. Gluon boards are modular and can carry up to 18 Gbps
on each lane with specific data types and payload sizes. The end-user cost to
manufacture the Gluon board is less than 400 euros with enormous capabilities.

Moreover, a real application demonstrates a distributed graph processing
application to express the distributed computing execution model and further
extend our execution model to cover the real-world application like Graph
Processing in large scale. In the first step, we provided a comprehensive
baseline, designed and proposed a large scale distributed graph processing
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application and evaluated it within the PageRank algorithm using well-known
datasets. We show how graph partitioning combined with a multi-FPGA
architecture leads to higher performance without limitation on the size of the
graph, even when the graph has trillions of vertices. Our performance analysis,
in the case of PageRank, forecasts performance improvement of up to 20 times
and a cost-normalized improvement of up to 12 times when comparing the
proposed approach on one Xilinx Alveo U250 FPGA accelerator against a state-
of-the-art baseline graph processing software implementation on a Intel Xeon
server CPU with a 40-core processor at 2.50 GHz.
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Introduction 1

„What is essential is invisible to the eye.

— Antoine de Saint-Exupery
(Writer, 1900-1944)

Reconfigurable computing is an emerging field that has rapidly grown during recent
years, and numerous research areas increasingly deal with reconfigurable hardware and
their architecture to implement computations. From wearable gadgets to datacenters,
reconfigurable hardware is employed on a large scale and the trend of using reconfigurable
hardware grows everyday in all aspects. Different technology of reconfigurable hardware
such as Field-Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs), and
Graphics Processing Units (GPUs) could successfully mitigate the bottlenecks of the ASIC
hardware while they had the majority of the market before. Basically, ASIC hardware
accelerators were effective, however, they are fraught with challenges. The major problem
with ASIC is that as algorithms change rapidly, hardware must be re-designed and re-
verified, which is costly in development time and time-to-market. Consequently, algorithm
innovation becomes more difficult without access to a flexible hardware. Furthermore,
fixed accelerators cannot be shared across applications, making them more costly in the
fabrication process. Ideally, a hardware that is capable of executing compute-intensive
algorithms at high performance with much lower power than programmable architectures
is required while remaining broadly applicable and adaptable. This work, in collaboration
with my research group, mostly focus on FPGA as a suitable hardware to adapt and re-
configure effectively our new concepts and build the new prototype. FPGA has several
advantages to DSP and GPU for instance FPGA has more power efficiency than GPU [161].
In addition to power consumption, FPGA can cover a broad range of applications while
GPU is mostly used for vector processing and even though the development time with
GPU is less than FPGA. GPU is more power hungry and likely is avoided in datacenters
and compute intensive applications when power and money has the crucial role, whereas,
FPGA offer some distinct advantages like low latency when it comes to the networking
applications. Finally, The most important advantage of FPGA regards irregular algorithms
like Graph Processing is that FPGA has sequential data access and can mitigate the irregular
access to the memory whilst GPU and CPU have conventional random memory access
architecture. We will discuss this more in details later in the next chapters.

1



2 Chapter 1 – Introduction

1.1 Motivation and contribution

Our group Ph.D. research line expresses the state-of-the-art challenges of distributed execu-
tion models and research the system support for high performance computing applications.
In this context, our research group focus is on Dataflow-Threads and its execution model
[67].

The contributions of this thesis are as follows:

1) Providing comprehensive literature review to understand how Dataflow-Threads can
be distinguished from other recent studies.

2) Providing a solid baseline and benchmark suite to compare our Dataflow-Threads
executionmodel with other parallel programmingmodels, such as OpenMPI and Cilk.
A unique algorithm for all mentioned programming models is developed and unique
methodology is performed to collect the results. Moreover, this work investigates in
detail to show which bottleneck has been faced within each experiment.

3) Providing a case study of the Distributed Graph processing on the Multi-FPGA plat-
form. This is a collaboration between two research groups to exploit the potential of
distributed reconfigurable platforms within the real-world application. This work
mainly studied PageRank and compared the performance model within actual imple-
mentation and baseline studies.

1.2 Thesis Structure

The structure of this thesis is as follows:

Chapter 1

This chapter is the introductory discussion about the Program Execution Models (PXM),
and more specifically, I discuss Dataflow Execution Models and the recent works in the
literature. I briefly point to the most important research and their contributions by their
category. This chapter introduces the different categories of Dataflow Abstraction and their
Execution Models. Then, a review of the most challenging and significant works to mitigate
any failure or bottleneck within this AbstractionModel will be addresses. This study shortly
introduce previous works in our laboratory, which have been done previously and present
their contributions briefly.

The aim of the chapter is to answer the following question:

Q. There have been many studies and investigations in Dataflow architectures since
early 70’s, The question iswhat is the status of theDataflowExecutionModels nowadays?
How much are they successful to surpassing conventional methods?

Chapter 2

2 Introduction



3 Chapter 1 – Introduction

This chapter reviews the most recent literature studies based on Dataflow ExecutionModels.
Moreover, I concisely point to some recent studiesmore similar to our work. In this chapter, I
differentiate our work from other studies, and I demonstrate the variety of the contributions
and their impact on the Dataflow Computing subject, and finally show a landscape of
state-of-art implementations focusing on Dataflow Execution Models.

The aim of the chapter is to answer the following question:

Q. This thesis focuses onHybridDataflowExecutionModel, The question is based on the
literature, what are challenges, bottlenecks and approaches recent studies have addressed?
and finally, what is the main features of a fine-grained dataflow execution model?

In particular, I discuss the selected studies implementation and their issues and I compare
them with ours and other related ones.

Chapter 3

This chapter discusses the need for a strong baseline for our research line. Many studies in
the literature discuss the bottlenecks and propose new methods in parallel programming.
However, a strong baseline in which all the aspects that have been studied carefully is
missing. In particular, parallel computing is a challenging concept, andmanymethodologies
are proposed to program, calculate and measure the metrics for the specific computation.
This work investigates several essential benchmarks in parallel programming and shows
essential aspects of a baseline and measurements. This work compares well-known parallel
programming models like OpenMPI, OpenMP and Cilk and discuss the lessons learned
during the baseline experiments.

The aim of the chapter is to answer the following question:

Q. The question is based on the proposed methodology, how we can have a strong base-
line to evaluate our execution model and in particular our Dataflow Thread execution
model?

Chapter 4

This chapter, introduces the Dataflow Thread Runtime (DRT). DRT is a lightweight runtime
to develop and debug dataflow based examples to be targeted by a future compiler for the
dataflow programs. The key point of DRT is that most of the dataflow runtimes do not
provide test and debug feature for developers to follow the execution model of the dataflow
program. DRT enables such feature for developers and has potential to be a backend of the
compiler in our workflow.

The aim of the chapter is to answer the following question:

Q. The question is as we investigated in the literature, how we can have a lightweight
runtime to test and debug Dataflow Thread programs? DRT is the solution to answer this
need.

Chapter 5

1.2 Thesis Structure 3



4 Chapter 1 – Introduction

In this chapter with the collaboration of my reseach group express a Big Scale Distributed
Graph Processing as a case study to fullfill the ”borse Pegaso ciclo 34” obligatory activity
abroad the country. The materials in this chapter are a collaboration between the University
of Siena (Smart Computing Program) and ”Custom Computing Research Group at Imperial
College London”. In this period, I defined a project based on the a Reconfigurable Graph
Processing Model that addresses the current challenges and needs to cover both groups
Ph.D. goals. This study can bring possibilities to the user and havemany advantages despite
a few current ones in the literature and I am progressing with the implementation. The aim
of the chapter is to answer the following question:

Q. The question is can the distributed graph processing on multi-FPGA platform be a
good solution for large scake graph processing and can be effectively compared with CPU
based graph processing solutions?

Chapter 6

At the beginning of my Ph.D. studies, I had this chance to collaborate with Dr. Lorenzo
Verdoscia at the Institute for High Performance Computing and Networking (CNR). Our
collaborating concluded with an DataflowApproach to accelerating FFT application and we
got the Best Paper Award of the 8th Mediterranean Conference on Embedded Computing
(MECO) in Budva, Montenegro, 2019.

Q. The question is can we provide a fast and reliable methodology based on Dataflow
concepts to process FFT as a widely used kernel in many applications?

Chapter 7

This chapter presents Individual Research Activity that have been carried out during the
Ph.D. program. The studies presented in this chapter are collaboration between myself
with other colleagues. I present the Gluon board in this chapter. GLUON board is the
modified and enhanced version of the TEBT0808 board from Trenz Company [69], which
with the new design is able to power up the FPGA module with unix-based operating
system. GLUON enables serial transceivers in Xilinx Ultra-scale+ structure and facilitates
using GTH transceivers in high rate data transfer applications.

Chapter 8

This chapter concludes the thesis. In this chapter we summarize themost important findings
from this work, the main achievements and what has been undergoing will be pointed in
three years of Ph.D. program. Of course the time limitation does not allow to dig into all
aspect of the theoretical and implementation of the study. I discuss in this chapter what is
left to be completed and what is the overseen studies to addresses in the future works.

4 Introduction



Related works 2
„The more you know, the more you realize you know

nothing.

— Socrates, Philosopher, 400 BC

This chapter contains two major parts. In the first part, I introduce Dataflow Architecture
and its Execution model. I shortly introduce our concept of Dataflow-Threads and its
potential to be deployed on reconfigurable architecture. To this end, we demonstrate our
concept, the challenges and bottlenecks, and the achievements so far. The achievements
and improvements of our research line in the recent years and the similar state-of-the-art
studies will be addressed.

The dataflowmodel represents a revolutionary alternative to the control flow (also known as
the von Neumann) model since the execution is driven only by the availability of operands.
A pure dataflow execution model has no program counter (PC) and global memory, the two
major elements of the vonNeumannmodel that become bottlenecks of its performance [138].
In dataflow computing, only limitation of parallelism is the data dependences between
instructions in the application program [152]. However, it is well investigated that data
driven feature of dataflow computers have the potential for exploiting all the parallelism
available in a program [44, 43, 10, 12, 11].

In conventional von Neumann machines, due to the dependence of the commands from the
PC,which also fetches load andwrite commands, theremay be delays in the entire program’s
execution, whereas, in a dataflow machine, the dependencies and instructions are inside
the processor already. The procedure to see all these dependencies is called Dataflow Graph
and dataflow machines use dataflow graphs as their machine language. A dataflow graph
(DFG) comprises arcs and nodes, with the nodes representing locations where variables are
assigned or used and the arcs representing the link between the places where a variable
is allocated and the places where the assigned value is used later. Based on the graph,
the independent instructions can now be executed first, followed by instructions whose
operands are available later. Unlike conventional machine languages, dataflow graphs
specify only a partial order for the instruction execution and thus provide opportunities for
parallel and pipelined execution at the Instruction level.

In this chapter, I discuss the related studies in terms of expressingmost influential works and
their approaches to mitigate the deficiency and enhance the strength of dataflow execution
models. There are several category field of studies that I can discuss separately towards
them in this chapter. The categories are described as follows:

1) Dataflow Architecture Discussion

5



6 Chapter 2 – Related works

2) Fine-grained Parallelism Approaches in Dataflow Architecture

3) Dataflow Runtime Libraries

4) Dataflow Execution Models using Hardware Accelerator

2.1 Dataflow architecture

So far we had a brief understanding of what is a dataflow architecture. There have been
several efforts to build a dataflow hardware. In Fig. 2.1, the dataflow inspired models that
have been studied or even built, and used for several years has been depicted. These works
that are mentioned here are the most well-known studies, some works have been ommitted
for the sake of readability of the picture. Our work is based on Teraflux [67] and DF-Threads
execution model on Heterogeneous platform like AXIOM [63] that can be seen in the Fig.
2.1.

Beside these mainline researches, there have been many studies about dataflow architecture
with different research subjects. Some earlier studies try to introduce and build the dataflow
hardware [117, 76], some other ones try to introduce the dataflow languages and their
compiler [168], and some other research are based on developing dataflow executionmodels
and their runtime libraries [157, 61, 5, 60, 102, 50]. An increasing number of studies have
introduced their application based study based on dataflow computing. These works cover
a wide range of domains such as power efficiency [174, 70, 22], high performance computing
[52, 55, 133], computing scientific algorithms [159, 158], artificial intelligence [169, 101] and
accelerators for general purpose applications [163].

2.2 Taxonomy of dataflow execution models

What was mentioned already was a brief discussion about the dataflow architecture and
the studies since 1970. This section presents a taxonomy of dataflow architecture, program-
ming model, and execution models. There are several efforts in the literature to provide a
comprehensive study about dataflow [173, 152, 155, 21, 97, 138]. However, several items are
missing in these works, which are as follows. First, they did not cover the recent studies and
most covered works have been done between 70’s and 90’s. Second, it is not obvious where
and how dataflow is going forward and how dataflow can be used in the next generation of
computers.

Table 2.1 shows a survey of dataflow architecture based on the state-of-the-art. In this Table,
we show the most influential works and thier taxonomies and importants feature to point
out. In this table, the level of parallelism categorizes in three levels, ILP (Instruction Level
Parallelism), DLP (Data Level Parallelism), and TLP (Task level Parallelism).
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Fig. 2.1.: The most influential dataflow inspired and non-dataflow architectures and their timeline.

I aim to find the most bold features and the roadmap of these works. Moreover, I would
like to show what is the possible future of the dataflow architecture. More specifically, what
is the potential and where does the dataflow architecture go in the next years.

Static Dataflow

Dennis and Misunas [44] proposed the Static Dataflow model of computation to design,
evaluate, and implement computations that work on endless streams of data. A static
dataflow model is a directed graph of computational actors with FIFO channels connecting
them. The amount of tokens consumed and created by an actor must be fixed and pre-
specified in the static dataflow semantics. This ensures that crucial model features such
as deadlock-free and memory-bounded infinite computation, throughput, latency, and
execution schedule can be determined. There are other several efforts based on static
dataflow model such as HDFM [154], NEC [146], DDM1 [41]. Although static dataflow was
a basis of many efforts on 70’s till 90’s, however, there were several fundamental issues with
this model. We briefly discuss some issues regarding the static dataflow model,

1) Therewas amismatch between themodel and the implementation, Themodel requires
unbounded FIFO token queues per arc (which represent data dependences among
instructions) but the architecture provides storage for one token per arc.

2) The architecture does not ensure FIFO order in the reuse of an operand slot.

3) The static model does not support the function calls and loops

4) NoData Structures is supported in this model. So it was hard to program and exploit
the data locality.

2.2 Taxonomy of dataflow execution models 7
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Tab. 2.1.: Most influential and well-known dataflow architectures proposed in last four decades.

Dataflow
Architecture Key Concept Key Features Level of

Parallelism
Studies
References

Presenting
Year

Static Dataflow

In static dataflow, a program is
described as a set of operator nodes,
called actors, interconnected by a
set of data-carrying arcs, called
links. Data is passed through this
graph in one and only one packet
called tokens.

1) Too much parallelism.

2) Acknowlegment is needed for each token and makes
the tokens traffic double

3) Asynchronous execution.

4) Order of instruction execution is unpredictable, thus
the execution in uncertain.

5) Loops as a major bottleneck of many programs can
only be parallelized in sequential manner.

ILP [44, 154, 146, 41, 10,
80, 19] 1974-1987

Dynamic
Dataflow

In contrast with statis dataflow
model, In dynamic dataflow
concept, the number of tokens that
can be carry data in dataflow graph
is unlimited.

1) Loops can be parallelized, each iteration as
independent subgraph in the whole dataflow graph
model.

2) Suitable for stream computing models.

3) Introduce the data structure to dataflow architecture.

4) Not efficient in terms of memory, since there is a huge
need to store abundant number of tokens.

TLP [11, 138, 156, 124] 1987-1993

Hybrid Dataflow

Introduced in the late 80’s and
significant studies have been done
quickly for almost two decades.
There are two types of Hybrid
model. Dataflow/Control flow and
Control flow/Dataflow. The former
got most attention and has the
benefit of scheduling based on
dataflow semantic, whilst each
basic block inside executes
sequential control flow computing.

1) Combine the dataflow and von-Neumann models of
computation can mitigate the deficiency of both
models.

2) Control the granularity while being substantially
power efficient.

3) More program developing friendly than others.

TLP, ILP [149, 126, 19, 164, 96,
67] 1982-2004

Threaded
Dataflow

This model is also known as
"Data-Driven Multithreading". The
key factor of this model is to
intorduce the Task Synchronization
Unit (TSU) to the dataflow
semantics.

1) A "thread of instructions" is issued consecutively by
the matching unit without matching further tokens
except for the first instruction of the thread.

2) Data passed between instructions of the same thread
is stored in registers instead of written back to
memory.

3) The cycle-by-cycle consecutive instruction interleaving
of threads is same as von-Neumann control flow
execution model.

TLP, ILP [72, 151, 117, 135,
140, 36, 129, 79] 1988-1996

Spatial Dataflow

In a producer/consumer fashion,
spatial dataflow maps directly a
Dataflow Graph (DFG) on
resources available on a hardware
(PEs). Therefore, provide the
parallelism to compute program on
a core in space not in time.

1) There is no need for instructions because the
hardware itself represents the computation.

2) There is also no need for memory decode logic,
branch prediction or out of order scheduling.

3) Ease of programming development.

4) Suitable for many cases specifically streaming
application.

TLP [105, 29, 28] 2006-2015

Stream Dataflow

The concept is to set the operations
(kernel functions) that applied to
each element in a stream given a
sequence of data (a stream). Stream
dataflow take advantage of
integrating stream programming
language with dataflow execution
model concepts.

1) Is based on streaming memory access and reuse
patterns

2) High concurrancy beside low power consumption and
low overhead

3) less available hardware built so far.

ILP [110, 165, 120, 89] 2015-2019
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5) There are too much parallelism generated by the architecture but there is no way to
schedule them effecively to leverage this level of parallelism.

These limitations manke researchers to investigate more about the fundamental problems
regard static dataflow. In TTDA [10] andHPS [80] in the 80’s, researchers tried tomitigate the
static dataflow issues by adding more synchronization and resource managing ability to the
tokens, while preserving sequential ISA semantics. These efforts brought the idea of starting
another branch of the dataflow architecture which represented as Dynamic Dataflow.

Dynamic Dataflow

Once loop iterations and subprogram invocations could run in parallel, a dataflowmachine’s
speed improves dramatically. To achieve this, each loop iteration or subprogram invocation
should be executed as a separate instance of a re-entrant subgraph. This replication, on the
other hand, is simply theoretical. Only one copy of any dataflow graph is actually kept in
memory in a real implementation. Each token has a tag consisting of the address of the
instruction for which the particular data value is destined and other information defining
the computational context in which that data is to be used. This concept was led to build
the hardwares based on Dynamic Dataflow concepts such as MIT Tagged-Token Dataflow
Architecture [11] and Monsoon [117].

Spatial Dataflow

Spatial architecture is a type of accelerator that uses direct connection between a number
of very basic processing engines (PEs) to utilise significant computational parallelism .
Different algorithms can be built or coded into them, which are then mapped onto the
PEs utilising specific dataflows. Spatial architectures, as opposed to SIMD/SIMT designs,
are better suited to applications with producer-consumer interactions or that may benefit
from efficient data exchange throughout an area of PEs. One example of such design is
Maxeler Dataflow Engines [105]. Data is streamed from memory onto a chip on a dataflow
engine (DFE), where it goes directly from one functional unit to another without being
written to off-chip memory until the entire operation is completed. A control flow core
executes operations at different points in time on the same functional unit "computing in
time", whereas a dataflow core does computation on a chip spatially "computing in space".
Instructions are not required in a DFE because the DFE itself represents the computation. As
a result, no memory decode logic, branch prediction, or out of order scheduling is required,
allowing the chip to devote all of its resources to computation [118].

Another work that leverage spatial dataflow is Eyeriss [31]. Eyeriss is made up of a col-
lection of processing elements (PEs), each of which contains logic to compute multiply-
and-accumulate (MAC) and local scratch pad (SPad) memory to take advantage of data
reuse, as well as global buffers (GLBs), which provide an extra level of memory hierarchy
between the PEs and the off-chip DRAM. There are two version of Eyeriss project. One
major difference between Eyeriss v1 and Eyeriss v2 is that the latter uses two-level memory
hierarchy [29].

Hybrid Dataflow

2.2 Taxonomy of dataflow execution models 9
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There have been two basic models in computer architectures: (1) the von Neumann se-
quential control model; and (2) the dataflow data-driven computing model. The parallel
architectures based on the von Neumann model aim to exploit coarse-grain parallelism,
while the traditional dataflow architecture model was conceptualized to handle fine-grain
parallelism. For the past years, researchers have debated which model is a "more efficient"
basis for future large-scale parallel computer systems [58].

One of the very first hardwares based on hybrid dataflow was MDFA [57]. In MDFA work
clearly the concept of integrating von Neumann model of computing with dataflow com-
puting model is implemented and discussed. At that moment, there were other proposed
methods called "macro-dataflow", which was different from the concept of nowadays so
called "hybrid dataflow".

There is not a clear discussion that when and how the integration of "von Neumann sequen-
tial" execution model plus "dataflow semantics" named hybrid dataflow but there are many
works that discussed and studied this concept and produced many great works in this
context such as [67, 88, 102, 117, 111]. In these mentioned work, explicitly the potential of
integrating control flow computing model plus dataflow execution model is discussed and
hardware prototypes have been created moslty using reconfigurable devices such as FPGA.
There are imbiguity of using integration of control flow model with dataflow in hybrid
dataflow computing, we must point out that, in particular we are focusing on Dataflow->
Control flow execution model. This concept employs basic blocks of containing control
flow program, scheduled based on the dataflow execution paradigm. The basic block is a
set of sequential instructions, where data is passed between instructions using register or
memory as a usual conventional method to execute control flow programs.

Threaded Dataflow

In some previous studies, Hybrid Dataflow and Threaded Dataflow are categorized in one
seed. However, they are slightly different. Threaded Dataflow is a dataflow modification
approach in which instructions from specific instruction streams are executed in sequential
machine cycles. Whereas in Hybrid Dataflow this means threaded basic blocks are being
executed in a dataflow way). EM-4 [135] and its updated version EM-X [90], and Monsoon
[117] are well-known successful projects based on Threaded Dataflow. The implementation
of an effective synchronisation mechanism is the key design problem in all threaded dataflow
machines. Direct matching is a synchronisation mechanism that does not require the use of
associative mechanisms [153]. In [145] authors introduced an implementation of threaded
dataflow model on FPGA. This work is the development of a Thread Synchronization Unit
(TSU) on FPGA, a hardware unit that enables thread execution on a chip multiprocessor
utilising dataflow rules. Threads are executed depending on data availability, which means
that a thread is launched only if its input data is available. This execution model is known
as the non-blocking Data-Driven Multithreading model. Other efforts, such as [175], have
exploited this approach to build an recursively organized data-driven machine, RWC-1
is capable of automatically and dynamically allocating concurrent tasks to the available
hardware units.
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Stream Dataflow

By controlling the number of parallel computations that may be done, the stream processing
paradigm simplifies parallel software and hardware. A set of operations (kernel functions)
are applied to each element in a stream given a sequence of data (a stream). Kernel functions
are often pipelined, and best local on-chip memory reuse aims to minimize the bandwidth
loss caused by external memory access. Stream Dataflow is a concept of combining the
stream computing programming language and dataflow semantics first proposed in [89]
later enhanced and extended in [110]. Although in the work[110], authors provide novel
insights in Dataflow context, however, still the evaluation is based on Softbrain RISC-V based
simulator and there is not yet a real hardware implementation. Another high influential
work in this context is [78].

The Merits of Dataflow Architectures Dataflow architectures same as other architectures
have some advantages and some deficiencies. We talked about the possible deficiencies
of dataflow architecture separately in the dataflow introduction. Here we exhaustively
mention the merits of dataflow architecture and its execution model.

1) The dataflow paradigm only enforces actual data dependencies, hence it exposes the
greatest degree of parallelism in a program.

2) The dataflow enables asynchronous data-driven execution of finer-grained tasks,
which has the ability to make better use of the underlying hardware. Additionally,
finer-grained elements have a lower memory usage, reducing the amount of memory
required.

3) The dataflow can effectively endure memory and synchronization latencies.

4) Since there are only actual data dependencies, the dataflow does not require power-
hungry modules like out-of-order execution and may use non-coherent memory
structures.

5) The dataflow concept is well-suited to application-specific streaming hardware.

6) Integrating Dataflow/Control execution model pardigms can open many possibilities
to develop the variety of applications. It has the advantages of both and mitigates
deficiency of them.

2.3 Fine-grained Parallelism Approaches in Dataflow
Architecture

In Fine-grained execution model, a program is split down into a large number of small
elements, to take advantage of better exploiting the underlying hardware to be more faster
and more power efficient. Processors resources are allocated to these elements indepen-
dently. A parallel work has a little amount of resources linked with it, and it is equally split

2.3 Fine-grained Parallelism Approaches in Dataflow Architecture 11
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across the processors. As a result, fine-grained parallelism makes load balancing easier.
The number of processors resources required to accomplish the processing is high since
each element processes less data. As a result, the overhead of communication and synchro-
nization increases. To accomplish this characteristics, there have been several studies and
proposed methods in the literature with different approaches [184, 138, 12, 67].

Dataflow Threads exploits these characteristics of fine-grained threads to spread them
efficiently across nodes/core in the multi-node/multi-core platform. Design mechanism of
a co-processor design including a load balancer, the design properties of synchronization
unit, Memory model and other implementation notes and feature are covered in [106].

To extend the role of DF-Thread and its execution model, I elaborate in investigating in the
literature by distinguishing theDF-Thread versus task, token, codelet and framelet.

DF-Thread

DF-Threads [61] introduces a low-level API, which enables a high-level code into a hybrid
dataflowmodel that can benefit from the high parallelism while parallel computations have
the potential to distribute over nodes and cores.

codelet

A codelet is a collection of machine instructions which are scheduled “atomically” as a
non-preemptive, single unit of computation. In the codelet PXM, Codelets are the prin-
cipal scheduling quantum. Codelets are expected (not required) to behave functionally,
consuming inputs, working locally, and producing output leaving (ideally) no state behind.
A codelet will only fire when all of the resources it requires are available. The recent works
which are Codelet-Based Implementations are: DARTS [183], SWARM [95], FreshBreeze
[42], and OCR [113]. Fig. 2.2 shows a Codelet Graph (CDG) and its dependencies. Codelets
are linked together to form a codelet graph. In a CDG, each codelet acts as a producer
and/or consumer. An initial codelet may fire, producing a result which multiple codelets
can consume, giving way for more codelets to execute. Since codelets are linked together
based on data dependencies, a CDG may benefit from the same properties as a dataflow
graph. As implemented in DARTS [183], Threaded Procedure scheduler (TP scheduler) is
responsible for load balancing TP between clusters, instantiating codelets, and distributing
codelets within a cluster [141].

framelet

First introduced in [129] and the definition is that, for each instance of a thread, a small
fixed size storage area (called framelet) is allocated in the Frame Store (see Fig. 2.5), to hold
the incoming inputs to that thread instance. A framelet is large enough to hold inputs for
most threads. When a particular thread’s requirement exceeds the size of a single framelet,
one or more additional overflow framelets are allocated as needed. The idea of framelet
was proposed to increase the locality of threads and cache optimization.

token

Based on static dataflow model definition in [56], a program is represented by a directed
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Threaded procedure

Codelet

Dependence

Fig. 2.2.: A codelet Graph (CDG) shows the codelets and their dependencies connected through a
multiple threaded blocks linked together [141].
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READY FIRED
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TRUE SWITCH
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Fig. 2.3.: A token-arc representation of data and dependency in the static and dynamic dataflow.

graph. During the execution of the program, data propagate along the arcs in data packets,
called tokens. Nodes in the graph are also called actors and arcs that transmit tokens which
carry the values to be processed by these actors. Actors become activated for execution
when tokens carrying operand values are at their input arcs [20]. A basic elements of
dataflow graph, nodes, arc and token based on static dataflow models is illustrated in Fig.
2.3. Note that static dataflow allows only one token on one arc. This limitation mitigated
later by proposing dynamic dataflow in which there is no limitation on number of token on
each arc.

task

The dataflow task transfers data between sources and destinations while allowing the user
to alter, clean, and edit data in the process. When a dataflow task is added to a package
control flow, the package can extract, manipulate, and load data.

2.3 Fine-grained Parallelism Approaches in Dataflow Architecture 13
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2.4 Dataflow Runtime Libraries

In recent years, there have been some works regarding Dataflow Runtime Libraries and
their execution models that, in this section, I summarized and discussed them. In the
following, we highlight some works that are related to our Dataflow Runtime (DRT), and I
point out the differences. The discussion in details about Dataflow Threads Runtime (DRT)
is appeared in Section 4.1.

BMDFM [119] Binary Modular DataFlow Machine, is a Threaded Dataflow, runtime environ-
ment for Shared Memory Processors (SMP) that provides a dataflow execution model with
its extended instruction set. The contribution of this work is to define and design of the
speculative tagging dynamic scheduling algorithm that is used to tag "ready instructions"
for execution in the runtime dataflow engine. Moreover, this work provides the design
of multi-threaded marshaled clustering (which have been prepared statically during the
compilation stage) of the data loaded from the control virtual machine into the dataflow
runtime. By the "virtual machine" it means an interface which provides the transparent
dataflow semantics for conventional programming. BMDFM has been implemented on con-
ventional multi-core platforms to show a complete parallelization environment. This work
is categorized as "Threaded Dataflow" and is based on "tagged-token dataflow model".

FREDDO [103] uses the distribution of Data-DrivenMulti-threads (DDM) over conventional
multi-core processors. FREDDO iswritten in C++ and used theObject-Oriented programing
features. This work is also categorized in "ThreadedDataflow" and based on a "tagged-token
dataflow model" with a slight difference. The authors recommended using a "Data-Driven
Multi-threading Thread (DThread)" and a Thread Scheduling Unit (TSU), which is a specific
module that is responsible for scheduling of DThreads. In practice, a program in FREDDO
is made up of DThreads code, Thread Templates, and the Dependency Graph. A DThread’s
information is stored in a Thread Template. The Dependency Graph depicts the DThreads’
consumer-producer relationships. Before a DThread is scheduled for execution, the TSU
unit in FREDOO verifies that the data required by it is available. In this work, the evaluation
has been done via a complete benchmark suite using 10 application.

Sucuri [139] is a minimalistic Python dataflow library to execute Dataflow Graphs (DFGs)
over a multi-core distributed platform. Sucuri is based on a centralized and local scheduler
in each node that can execute the ready tasks in their local queues. The compiler partitions
the DFG, then, during the runtime, each related DFG part will be distributed among the
associated node.

Swift/T [168] is a new implementation of the swift language [167] that provides high-level
programmability for implicit dataflow programming. It addresses some optimization for
the Swift parallel scripting language, along with Turbine compiler, which C/C++/Fortran
programmers can develop their software based on this platform.

SWARM (SWift Adaptive Runtime Machine) [95] is a software runtime with a codelet-based
[184] execution mechanism. SWARM breaks down a program into tasks with runtime
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dependencies and limitations that may be performed after all of the dependencies and
constraints have been fulfilled. Therefore, the task execution is scheduled by the runtime
depending on resource availability. SWARM also employs a work-stealing strategy for
on-demand load balancing. In particular, SWARM is a platform and runtime system
that uses a novel execution paradigm in a layer between the operating system and the
application. It manages of available hardware and software resources (such as threads,
memory, accelerators, and networking) and dynamically assigns work and data to them as
they become available.

Trebuchet [6] presents the implementation of dynamic dataflow architecture. Trebuchet
presents the execution of code blocks based on a multi-thread dataflow model. Trebuchet
emphasize on parallelizing the instructions (ILP) using dataflow semantics. To use Tre-
buchet to parallelize sequential programs, theymust first be compiled into TALM’s dataflow
assembly language and then executed on Trebuchet. Trebuchet is implemented as a virtual
machine, with each PE corresponding to a thread on the host computer. Instructions are
assigned to the PEs and fired according to the dataflowmodel when a program is performed
on Trebuchet.

In XKaapi [60], the authors show a dataflow task acceleration on distributed heterogeneous
target devices such as Multi-CPUs, and Multi-GPUs. XKaapi has been written in C++
language, and a work-stealing method has been presented for scheduling ready tasks via a
runtime system. In this work, the authors proposed a locality-awarework stealing algorithm
based on heuristics to manage data locality and tackle the cache unfriendly problem of
classic work stealing. The work stealing approach is inspired from Cilk [116] programming
model. The procedure is that an idle thread, called a thief, initiates a steal request to a
random selected victim. On reply, the thief receives a copy of one ready task, leaving the
original task marked as stolen.

These works use dataflow approaches to improve the execution time. In contrast, Dataflow
thread -which is focus of this thesis- ambition is to provide a tool for testing and debugging
dataflow benchmarks, while the performance is obtained by deploying one DF-Thread
implementation [61, 66, 157]. In particular, DRT represents a key element to develop a tool-
chain to support a dataflow execution model, which could be targeted by a compiler. While
there are many similarities between DRT and the above works, I choose a more detailed
comparison with the Codelet program execution model [184, 24] and Open Community
Runtime (OCR) [104, 113].

In the Codelet execution model concept [184], Codelet is a fine grain event-driven unit of
computation, smaller than a thread, aims to exploit the parallelism of Exascale platforms.
The runtime environment DARTS[183] has been presented in such a way that a high-level
program will turn into Codelet Graph with the API interface, and the runtime executes the
Codelets based programs to exploit the maximum parallelism and power efficiency of the
underlying hardware. DARTS uses a double level hierarchy to structure programs: threaded
procedures (TP) and Codelets; TP includes several Codelets. In contrast, DF-Threads leaves
more freedom to the programmer by using a flat hierarchy of threads.

2.4 Dataflow Runtime Libraries 15
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The Open Community Runtime [104] is based on event driven tasks. OCR is a runtime
that is influenced by the Codelet execution model and is inspired by the Asynchronous
Many Task (AMT) models. A high-level program written on OCR runtime is organized
with Directed Acyclic Graph, which is structured with relocatable data-blocks, events, or
tasks. These elements are called nodes connected to each other by edges, which represent
the dependencies between nodes. DARTS and OCR trigger threads by using both data and
events. In DF-Threads, we do not need this distinction: events can be treated as data.

DF-Threads [61] introduces a low-level API, which enables a high-level code into a hybrid
dataflow model that can benefit from the high parallelism while parallel computations are
the potential to distribute over nodes and cores.

2.5 Dataflow Execution Models using Hardware Accelerator

In this section I add the related studies and their implementation comparison of Dataflow
Architecture mainly on works that provide Dataflow Execution using Hardware Accelerator.
The main reason is that we compare other related studies with our co-processor implemen-
tation of DF-Threads. The detail discussion about the proposed model is covered in [106,
122].

As can be seen in Fig. 2.4, the Dataflow Threads high-level overview and other state-of-
the-art dataflow architectures are depicted. The main advantage of DF-Threads versus
Spatial Dataflowand StreamDataflow concept is that inDF-Threadwe schedule the dataflow
elements in the granularity equal to a thread. A thread is the smallest element of instructions
that can be managed independently by the dataflow scheduler. As illustrated in Fig. 2.4,
Stream Dataflow architecture is mainly based on Coarse Grain Reconfigurable Architecture,
and in the Spatial Dataflow architecture, it is based on the parallelized PEs and available
hardware on the device. The DF-Threads execution paradigm, in particular, is based on
multi-threading, with dynamic dataflow principles being used to create a Dataflow graph
(DFG) across threads and to efficiently leverage control flow execution within a thread.
Furthermore, obtaining the ready-to-execute instructions is deterministic (when all of the
thread’s inputs are accessible), which makes it close to optimum since the DF-Threads
management plans each thread’s life-time and knows which thread will be run at any given
time. In contrast, in spatial dataflow model, a program first will be translated into dataflow
graph (DFG), then the DFG will be mapped on available PEs on the hardware.

Fig. 2.5 shows the abstract model of a node in a multi-node platform, representing a
Dynamic dataflow multi-node execution model first proposed in [129]. In this model the
local memory of each node consists of an InstructionMemorywhich is read by the Execution
Unit and a Data Memory (or Frame Store) which is accessed by the Synchronization Unit.
The Ready Queue contains the continuations representing those threads that are ready
to execute. The Structure Memory stores data structures and is distributed among the
nodes. The Mem Unit handles the structure memory requests. The execution is based on
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Fig. 2.4.: The Dataflow Thread execution model high-level architecture versus well-known modern
dataflow approaches.
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Fig. 2.5.: The abstract model of the processing node using dynamic dataflow along with synchro-
nization unit proposed in [130] and [129].

dynamic dataflow scheduling where each actor, or a node in the dataflow graphs, represents
a thread [129]. Whereas in Dataflow Threads, as discussed, a thread is the smallest element
of instructions that can be managed independently by the dataflow scheduler. Dataflow-
Threads provides much finer grained granularity of computation.

RISC-V Approach

The ultimate goal of the dataflow machine, is where the dataflow semantics mapped and
deployed on a underlying machine, which could exploit underlying hardware to achieve an
ideal performance. Eliminating the von Neumann control flow deficiencies and bottlenecks
is the most ambition of dataflow machines.

To achieve this, there were difficulties which hindered to build a such machine [138]. By
increasing the attitude to use reconfigurable hardware such as FPGA, researches become
motivated to implement dataflow architecture on FPGA and the suitable architecture to
implement the dataflow idea was RISC core. The idea first proposed in [109] and later
by [35]. Fig. 2.6 shows a modest dataflow architecture to deploy on RISC-V hardware.
The authors show that this approach not only can exploit both conventional and dataflow
compiling technology but, more so than its predecessors, it can be viewed as a dataflow
machine that can achieve complete software compatibility with conventional von Neumann
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Fig. 2.6.: The dataflow RISC multiprocessor organization proposed in [109]. In this work the
dataflow semantics and its instruction set based on I-structure method is mapped to the
RISC processor.

machines. The authors proposed three instructions for their RISC-V dataflow machine
pipeline, START, READ and WRITE. Which are responsible for SCHEDULE, FETCH and WRITE the
frame token from/to different PEs.

There are other works which inspired from the concept of transporting dataflow architec-
ture in RISC processor using reconfigurable devices. In [35], the authors proposed an ISA
extension for a RICS-V dataflow implementation. This work which is based on "tagged
token dataflow", proposes a dataflow (DF) extension to the RISC-V Instruction Set Architec-
ture (ISA). To test the performance of the extension, the authors created a dataflow CPU
model and integrated it with the Gem5 simulator. The authors designed a heterogeneous
dataflow/Von Neumann architecture and defined the memory instruction set and RISC-V
instruction bit-field illustrated in Fig. 2.7. Similar to conventional RISC-V instructions, the
instructions are encoded with opcode and function bits to indicate the operation. Instead of
specifying the source operands with the remaining bits, the dataflow instructions contain
pointers to dependent instructions: Destination0, Destination1, and Destination2– which
represent the arcs in a DF graph. To differentiate between left and right operands, the
remaining bits D2, D1, and D0 are utilized.

Task Scheduling on RISC-V

Other studies which their principals are based on Data-Driven Multi-threaded Dataflow
architecture are [108, 92]. We try to describe most important notes in these works. In
[108], the authors developed a system prototype in which Task Scheduling functionality is
directly mapped by logic embedded in the processor (RISC-V core) and made available to
applications utilizing specific instructions (an interface to RISC-V core). The overview of
the design is depicted in Fig. 2.8.

This design diminishes Task Scheduling overhead by eliminating FPGA-CPU connection
latencies, allowing activities to be scheduled to cores at much greater rates. Designing
this new architecture involved using the Chisel language [15], to integrate Picos [144], a
mature Task Scheduling accelerator, to Rocket Chip [13], an open-source, silicon-proven,
multi-core implementation of RISC-V. To evaluate Task Parallel application performance of
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this platform, the authors adapted Nanos [16] (a software-only Task Scheduling runtime,
targeting the OmpSs programming model [51]) to the system. To develop a user interface,
the authors also developed a lightweight, Task Scheduling runtime called Phentos. This
work is explicitly using task-based dataflow architecture semantics [91, 143], however, this
work is the one of the few ones which implement successfully the concept of Task-based fine-
grained parallelism on hardware accelerator. In a nutshell, task parallelism is a technique for
automatically translating sequential imperative programs into dataflow models, in which
essential operations are executed simultaneously and asynchronously as soon as their input
data becomes available. We found this approach similar to the Dataflow Threads approach
that we discussed in this thesis and our previous works [67, 66].
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Dataflow Execution Model
Baseline Study

3
„A picture is worth a thousand words. An interface is

worth a thousand pictures.

— Ben Shneiderman
(Professor for Computer Science)

The purpose of this chapter is to establish a baseline for the dataflow execution model by
comparing different benchmarks with a detailed comparison to existing parallel execution
models such as cilk and OpenMPI. This chapter demonstrates the evaluation results of
the same algorithm for all benchmarks and the benefits and drawbacks of the dataflow
execution paradigm using these experiments. This chapter focus on four benchmarks:
Matrix Multiplication, Fibonacci, Blocked Cholesky, and Histogram. The reason to select
these benchmarks is to evaluate the execution model with special stress on different aspects
as described below:

• Recursive Fibonacci: Recursive Fibonacci (RFIB) benchmark is used to generate a
high number of threads and widely used in order to stress the execution model to
handle a big number of individual threads.

• Blocked Matrix Multiplication: Blocked Matrix Multiplication (BMM) is a very
widely used kernel in many applications (especially in Artificial Intelligence, Deep
Neural Networks, etc.), and it stresses memory hierarchy of the system.

• Cholesky Factorization: Based on linear algebra, the definition is a decomposition of
a Hermitian, positive-definite matrix into the product of a lower triangular matrix and
its conjugate transpose, which is useful for efficient numerical solutions like solving
least square problems. It is useful to evaluate the computation and communication
overhead of the execution model.

• Histogram: Histogram evaluates the memory model in case of data race condition. It
may have multiple threads accessing the same bin of the histogram for updating the
bin count.

Apart from the above benchmarks, the capability of our executionmodel withmore sophisti-
cated benchmarks that will stress the computation on different aspects will be demonstrated.
Such as creating multiple threads, Moving data around as memory operations, andmemory
policies that will prevent concurrent read/write on a specific memory location. For these
reasons, I choose graph computing applications like PageRank, which includes all these
characteristics. To demonstrate the potential of the Dataflow-Threads execution model, I
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evaluate the metrics on the most well-known execution models. The Sequential execution
(which is the basic implementation of the mentioned benchmarks) then I evaluate the bench-
marks with the same algorithm running on MPI [115, 77] and Cilk [33] programming
models to compare how the execution will be working.

Along with the result comparisons and providing a strong baseline, I consider investigating
a bit in the literature to compare the baseline results with other related works to validate the
baseline results. To evaluate high-performance parallel computing methods and algorithms,
we need tomeasure the efficiency of the evaluatedmethod. we use the strong scalingmethod
in which the experiment will be executed in a loop. The fixed-size problemwill execute with
a specific number of processors/workers/threads in each iteration. In the next iteration,
the same problem size will be executed by more processors based on how many resources
are available in the platform.

Finally, I show the execution time and calculate the speedup based on the Eq. 3.1.

Speedup =
Tsequential

Tn
(3.1)

Where TSequential is the computational time for running the software running sequentially on
a platform, and Tn is the computational time running the same software with n processors.
Here by processor we mean hardware unit in the platform like Core/Thread.

Ideally, I would like the program to achieve a linear speedupwhile the number of processors
(speedup = n) is increased. It means that every processor would contribute all of its
computational resources. Unfortunately, achieving this aim in real-world applications is
quite difficult. In this section, I quickly describe the most critical bottlenecks, limitations,
and procedures that I used to establish the baseline across our platforms, and at the end of
each section I point out the lessons learned from each baseline.

For more explanation about the scalability experiment source codes and the scripts, please
refer to Section Appendix A at the end of the thesis.

3.1 Methodology

The methodology to establish such baseline incorporated the following items:

1) Finding the most relevant benchmarks each of which can stress the execution model
in such a way to show the potential of the execution model.

2) Implementing the appropriate algorithmwith the different executionmodel including
our proposed execution model.

3) Executing the same benchmarks with different executionmodels on the same platform
(multi node or multi core).

22 Dataflow Execution Model Baseline Study
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Fig. 3.1.: The methodology to develop the desired baseline.
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Fig. 3.2.: The separated functions development in all algorithms and programming models to
ensure Region of Interest measures the same part of the algorithm in all benchmarks.

4) Comparing the results achieved from the previous item and show the comparison.
This results can express the execution time, speedup, kernel activity, etc.

This methodology that is used in this thesis is depicted in Fig. 3.1. Execution time is the
mainmetric to be investigated in these experiments, measured by using gettimeofday(&tv,
NULL) function from time.h Linux library. Based on our coding style, we develop the pro-
gram in separate function to eliminate the impact of declarations and memory initialization
from the main goal of the study. To do this, as can be seen in Fig. 3.2, we develop the decla-
rations and initialization in the prepare() function, then we call the compute() and start
the measurement here, once this function is returned we stop the measurement. Cilk_sync
is used in programming models like "Cilk" or in OpenMPI the MPI_Barrier to be sure
that all the parallel instances are computed and reached to this point before stopping the
measurement. Finally, we check and validate the result calculated within the report()
function and compare the achieved result with the sequential version of implementation to
inform the user that the execution was successful or not.

In some cases, to investigate more about the scaling and efficiency of the algorithm weak-
scaling method is used. The appropriate report will be discussed later when we talk more
about the efficiency of the benchmark execution. In the strong scaling we increase the
number of cores/workers/processors with the fixed problem size, while in the weak scaling
both the problem size (in one dimension) and the number of cores/workers/processors is
increased.

To go through the baseline study, I adopt and develop the selective benchmarks to express
the potential of our execution model. The list of the benchmarks and the status of their
implementation is listed on Table 3.1.

3.1 Methodology 23
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Tab. 3.1.: The status of the benchmarks that have been developed for the baseline study, software
simulation and hardware implementation, N stands for Node and C stands for Cores.

Implementation RFIB BMM Cholesky Histogram PageRank

Baseline
Sequential 3 3 3 3 3

MPI 3 3 3 3 3

Cilk 3 3 3 3 3

Software Simulation COTSon 3 3 3 3 -

Hardware
Implementation

FPGA RISC-V 1N-1C - - - -

FPGA ZYNQ 1N-1C
2N-1C - - - -

Tab. 3.2.: The hardware specification of platforms used in this experiment.

Hosts OS RAM Processor Sockets Core per
Socket

Thread per
Core L1d L1i L2 L3 MAX Freq

Udoo-x 1 Ubuntu 16.04 8 GB Core i5 9400F 4 1 1 24K 32K 1024K - 1.6 GHz

RV0 Ubuntu 20.04 16 GB SiFive RISC-V 4 1 1 32K 32K 2048K - 1.0 GHz

Lab146 1 Ubuntu 18.04 8 GB Core i5 9400F 1 6 1 32K 32K 256K 9216K 3.9 GHz

TFX2 Ubuntu 18.04 256 GB AMD Opteron 6168 4 12 1 64K 64K 512K 5118K 1.9 GHz

TFX3 Ubuntu 18.04 1 TB AMD Opteron 6272 4 8 2 2 16K 64K 2048K 6144K 1.9 GHz

COTSon 3 ubuntu 18.04 4 GB - 1 1 1 32K 32K 1024K 4M 1.0 GHz
1Udoo-x and Lab146 are multi-node.
2 There is a dispute for TFX3, which seems with hwloc library [121], which OpeMPI uses this library to recognize the underlying hardware,
the CPU topology is not hyper threaded.
3 I use COTSon simulator to evaluate our Dataflow Thread programs.

3.2 Reference code and Hardware

All the experiments in this document are based on the C codes written and maintained in
the our local repository. The source code of the all the experiments are available and will
be sent upon the request.

I used different machines to evaluate the benchmarks, these machines have different config-
urations, the specifications of each machine such as Processor, Memory, Cache Hierarchy
and other useful information are listed in Table 3.2.

In this configuration, we use machine named TFX2 for Multi-core execution and machine
named Lab146 for running benchmarks on Multi-node execution.

3.3 Environment, Compilers, and Setups

In this section I show the performance analysis of the given algorithm with different
environments, parallel programming models, and their setup with different hardware.
The Compilers, their flags and the necessary environment variables are described below,
see Table 3.3, Table 3.4 , and Table 3.5 for the configurations that have been used for each
environment.
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Furthermore, to do the correct time measurement one should consider the following items
and take them into account to measure properly:

• Use the clock with suitable precision, not too much not too less, and make the Region
of Interest (ROI) probes to the region which evolves the computational section of the
program, not the initialization or report part.

• It is inappropriate to refer to scaling numbers with more than 1 CPU as the baseline.

• Measure multiple independent runs per problem size in a loop and measure the
average value. In our study the default loop iteration to measure a stable timing is 10
iteration, in case it is easy to change the repetition number to higher value (for smaller
problem sizes I did with 30 iterations).

• Various factors must be taken into account when more than one node (multi-node) is
used:

(a) Interconnect speed and latency

(b) Max memory per node

(c) Processors per node

(d) Max processors

(e) System variables and restrictions (e.g. stack size, CPU aggressive monitoring
tool, etc.)

Note that the adjustment of MPI parameters may also substantially enhance the
performance of MPI-based applications. MPI programs also need a specific amount
of memory for each MPI process.

• Additionally but not necessarily if possible measure using different systems (as I do in
this document with several hardware). Most importantly ones that have significantly
different processor / network balances (ie. CPU speed vs. interconnect speed).

• Take into account that the CPU is hyper thread enabled or not. This feature may cause
some not expected results from parallel processing, unless you exactly know what
you are dealing with hyper-threading.

• Last but not least, always check the workload of the machine you are using. By using
w command in ubuntu, you simply realize the workload in last 1, 5, 15 minutes (in the
load average section). If your machine is under another load, your results are most
likely invalid.
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Tab. 3.3.: The configurations of the experiment that has been done on Lab146.

Title Description
Operating system Ubuntu 18.04.3 LTS

OpenMPI version 2.1.1

OpenMPI options mpirun -n $j –hostfile ∼/hosts ./executable $i

GCC Version version 7.4.0

GCC Flags -O3

Kernel 4.15.0-65-generic

CPU see Table ??
Network 10M/100M/1G multi-port switch

Tab. 3.4.: The configurations of the experiment that has been done on TFX2 a Single Multi-core Machine.

Title Description
Operating system Ubuntu 18.04.3 LTS

OpenMPI version 2.1.1

OpenMPI options mpirun -n $j –hostfile ∼/hosts ./executable $i

GCC Version version 7.5.0

GCC Flags -O3

Kernel 4.15.0-142-generic

CPU see Table ??
Network Single Multi-core Machine

Tab. 3.5.: The configurations of the experiment that has been done on TFX3 a Single Multi-core Machine.

Title Description
Operating system Ubuntu 18.04.3 LTS

OpenMPI version 2.1.1

OpenMPI options mpirun -n $j –use-hwthread-cpus –hostfile ∼/hosts ./executable $i

GCC Version version 7.5.0

GCC Flags -O3

Kernel 4.15.0-154-generic

CPU see Table ??
Network Single Multi-core Machine
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3.4 Literature Study

This document focuses on two parallel programming languages that are more closely
related to our execution model. OpenMPI [115] and Cilk [33] are two well-known parallel
programming languages in this scope, for which I attempt to provide a baseline based on
the benchmarks mentioned and evaluate how these parallel programming paradigms work.
OpenMPI has been introduced as an open-source implementation of MPI industry standard,
developed and maintained by academia, the individual contributes, and some industry-
based research centers and its first release was in 2010. Gradually it became popular, and
many research centers and universities tried to contribute, even in industry section, some
companies like Intel, IBM, and CUDA developed their branch and released their optimized
and specialized version of OpenMPI.

Cilk first evolved at MIT in 1994 as a parallel programming extension to the C programming
language. In 2006, Cilk became a startup named "Cilk Arts", which produced the open-
supply platform Cilk++ as an extension to C++ compiler. Intel Corporation acquired Cilk
Arts in 2009, brought vectorization directives, and renamed Cilk++ to the Intel Cilk Plus
platform, making it industrial in its compiler. Nowadays a open-supply releases for the
GCC and LLVM compilers are available.

Recently, Cilk development continued by a research group in MIT, and they changed the
name toOpencilk [116]. OpenCilk is an open-source implementation of the Cilk concurrency
platform developed and maintained by MIT researchers. Cilk applications are compiled
using the Tapir/LLVM compiler, based on Clang and LLVM, and build parallel programs
more efficiently than current compilers for parallel programming languages.

These two programming paradigms are still under development, and many publications
choose them as a baseline to propose their new work. Here I use benchmarks that have
been widely implemented using these two programming models. The difficulty here is that
the related literature is still not mature enough because these programming models are still
under development, and plenty of updates have been deployed so far in many different
aspects. In this context, OpenMPI is well-known among High Performance Computing
research groups, and there are many works, and active projects that use OpenMPI as a key
programming model.

In [87], the authors use a matrix multiplication baseline that has been implemented with
a two-sided method (MPI_send() and MPI_recv()) on Cray XC40 CPU node. This node
has 32x Intel Xeon Processor E5-2690 v3 Haswell chips. The MPI compiler used is IntelMPI
version 5.0.3, and the biggest matrix size that has been evaluated is 5120 (like many research
in the literature, the authors didn’t explain why and how they evaluated such numbers for
the matrix size). The measurement method in this work uses MPI wall clock MPI_Wtime
and does the measurement in a loop with 15 iterations. In another work, [134] there is
a similar approach to build a baseline with different parallel programming models like
OpenMP [148] and OpenMPI. In this work, the authors evaluated the matrix multiplication
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experiment on an old machine with a Pentium D (3 GHz) processor, MPICH Compiler,
Linux Fedora 14, and 1 GB of RAM. In [2], a comparison between five parallel programming
models has been evaluated. In this article, the processor is Intel CoreTM2 Duo Processor
T6500 with 4GB of RAM and a clock frequency of 2.10 GHz with Ubuntu 10 Operating
System installed. Another work [103], authors present a Data-Driven Multi-threading
approach and the evaluation is based on benchmarks such as: Recursive Fibonacci, Blocked
Matrix Multiplication and Blocked Cholesky. They accordingly report the execution time
for sequential version of mentioned benchmarks as a reference. In this work, the evaluation
has done with HP server machine with 2 AMD Opteron 6276 processors running at 1.4
GHz that supports 32 threads. Each processor is an 8-core 64-bit Clustered Multi-Threaded
(CMT) architecture with the capacity of running 16 threads simultaneously. Each core has
a 16KB 4-way set associative L1 data cache, a 64K 2-way set associative L1 instruction cache
and a 2MB 16-way set associative L2 cache. Also, each processor utilizes a 6MB 64-way set
associative L3 cache. The server is equipped with a shared 48GB DDR3 RAM clocked at
1333MHz and the server runs the Ubuntu 14.04 OS.

In [99], the authors show the dynamic behavior of MPI programs using Recursive Fibonacci
benchmark. In this work the evaluation and baseline have been done within 30 nodes from
the French Grid’5000 testbed with two Dual Core processors (four cores per node) and
Gigabit Ethernet network. The MPI-2 implementation used was MPICH2 version 1.0.8p1
that has support for dynamic process creation and multi-threaded MPI calls.

In [75] and [85], the authors show an approach for specific optimization on parallel pro-
gramming load balancing and context-aware nested recursive algorithms. In these works
the authors choose Cilk as evaluation baseline and Recursive Fibonacci as the benchmark.
The evaluation of [99] have been done on Lenovo Thinkpad p51 20HH000TUS with an Intel
i7 processor with four cores, eight virtual-cores/threads is used. It runs Ubuntu 18.04.4 LTS.
Flag -O3 is used for compilation with GCC compiler and and In [85] the evaluation have
been done using Intel Xeon E5-4650 processors, each offering 8 cores clocked at a nominal
frequency of 2.7 GHz (up to 3.3 GHz with Turbo Boost).

In [176], the authors provided a wide range of experiment on Intel® Transactional Syn-
chronization extension for high performance computing. They proposed and evaluate a
set of algorithm for Transactional Memory concept and to do their evaluation they used
Histogram as a benchmark.

3.5 Recursive Fibonacci

As mentioned before, Recursive Fibonacci(RFIB) is a kernel that can easily create a huge
number of threads. Therefore it is a suitable benchmark to evaluate how the execution
model manages many threads during the execution. To explain the RFIB algorithm, it
’unwinds’ the number you give it until it can get a value (0 or 1) and then adds that to the
total. The "unwinding" occurs each time that the value of n-2 and the value of the n-1 is
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1 int serialfib(int n)
{

if(n < 1) return 1;
4 return n < 2 ? n : serialfib(n-1) + serialfib(n-2);

}
int RFIB(int n, int th) {

7 if(n<2)
return n;

if( n < th)
10 {

return serialfib(n);
} else

13 {
return RFIB(n-2,th) + RFIB(n-1,th)

}
16 }

Listing 3.1: Recursive Fibonacci function code

given to the RFIB method (n is the number of the RFIB index in each recursion) when the
last line of the Listing 4.6 is reached.

With each recursion where the method variable number is NOT smaller than 2, the state or
instance of the RFIB method is stored in memory, and the method is called again. Each time
the RFIB method is called, the value passed in is less than the value passed in during the
previous recursive call (by either 1 or 2). This procedure continues until the value returned
is smaller than 2 (either 0 or 1).

The required RFIB number is then calculated by adding these values together. Each time
a 0 or 1 is returned from one instance of the RFIB method to the previous instance of the
RFIB method, and so on, this summing operation occurs.

Here we use a threshold or cut-off to control the granularity of the number of produced
threads by RFIB. By this means, when the recursion reaches the number of the cut-off or
threshold, the execution goes with a sequential version and won’t go forward. In this way,
the granularity will be adjustable by the user.

RFIB Sequential Execution

For the Recursive Fibonacci, the sequential implementation is evaluated by the reference
code as mentioned in Section 3.2. The execution time for different index numbers are shown
in Table 3.6. We keep the sequential results of the Recursive Fibonacci as a references to
compare with other works, since it is the sequential version and other factors like algorithm
and programming model overhead is not involved in the sequential version.

RFIB with Cilk

In order to evaluate the RFIB with cilk programming model, we installed the cilk version 5
using Ubuntu 18.04 official packages, and the implementation of the RFIB is the reference
code as mentioned in the Section 3.2. The Listing 3.7 shows the algorithm implemented
with cilk primitives to get insight into how the implementation is done. Cilk schedules
processes using the work-stealing concept rather than the work-sharing approach. When a
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Tab. 3.6.: The sequential version of Recursive Fibonacci on three platforms TFX2, Lab146 and
COTSon simulator.

Fibonacci
index

Execution time (ms)
TFX2 Lab146 COTSon

5+1 0.002 0.001 0.002
10+1 0.005 0.001 0.0063
15+1 0.047 0.003 0.046
20+1 0.5 0.028 0.528
20+10 0.35 0.023 0.35
25+12 3.4 0.215 3.63
30+20 23.2 2.1 38.24
35+22 199.9 23.67 432.856
40+30 2105.9 269.85 4955.83
45+32 21606.2 2964.8 55143.33

int serialfib(int n){ // sequential function
2 if(n < 1) return 1;

return n < 2 ? n : serialfib(n-1) + serialfib(n-2);
}

5 long int RFIB( int n,int th){ //the parallel recursive function
if( n < th){

return serialfib(n);
8 }else{

long int x = cilk_spawn RFIB(n-1,th);
long int y = RFIB(n-2,th);

11

cilk_sync;
return x+y; }

14 }

Listing 3.2: Recursive Fibonacci function code using Cilk programming model.

thread is scheduled to execute in parallel whenever the runtime performs an asynchronous
function call, this is known as work-sharing.

The execution time for different RFIB index numbers are summarized in Table 3.7.

RFIB with MPI

RFIB with MPI has been done within an inspiration from the study of dynamic behavior
of MPI in [25]. In this work we evaluate the RFIB within dynamic process scheduling
with MPI. To calculate the RFIB recursion, we use MPI_Comm_spawn() for each instance of
RFIB. Every spawn requests results in the child-root connecting to the parent process to
exchange information. An application that spawns tasks frequently will incur the overhead
of this connection establishment and communication for every individual spawn. This
overhead increases significantly while we use MPI_send() and MPI_Recv() to send and
receive childs over the ranks within multi-core or multi-node platform. The reason is that
for each spawning, the MPI Communicator creates a file descriptor for shared memory
system and a SSH connection for multi-node platform. This factors together make the
execution of RFIB within Dynamic MPI becomes much slower. Note that the scheduling
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Tab. 3.7.: The Recursive Fibonacci on platform TFX2 with Cilk programming model.

Fibonacci
index

Execution time (ms)
1N1C 1N2C 1N4C 1N8C

5+1 0.359 0.562 0.927 1.531
10+1 0.396 0.654 1.028 1.764
15+1 1.137 1.117 1.445 2.455
20+1 8.754 5.287 4.009 3.664
20+10 0.758 0.937 1.392 2.466
25+12 4.627 2.935 2.644 3.033
30+20 23.736 17.138 10.666 7.498
35+22 205.63 107.444 56.232 34.455
40+30 2217.565 1233.658 579.294 324.787
45+32 24549.696 12285.544 6621.103 3246.632

Tab. 3.8.: The Recursive Fibonacci on platform TFX2 with MPICH programming model.

Fibonacci
index

Execution time (ms)
1N1C 1N2C 1N4C 1N8C

5+1 2300 1307 925 802
10+1 29296 15050 11650 10320
15+1 403203 248272 67059 179660
20+1 crash crash crash crash
20+10 84374 45215 36218 35890
25+12 414870 228250 170620 161800
30+20 82270 49620 37800 35520
35+22 409030 234560 168510 164120
40+30 84470 47850 35700 35400
45+32 401770 253690 215370 172870

within dynamically processing of MPI was not successful on OpenMPI scheduler, therefore
we switched to MPICH [77] and with Hydra scheduler we could successfully evaluate RFIB
over different platforms both multi-core and multi-node.

The snippet in the Listing 3.3 and 3.4 shows the slave part of the RFIB development using
MPI programming model first proposed in [25]. The execution time for different RFIB index
numbers are summarized in Table 3.8.

RFIB with DF-Thread

To implement different benchmarks using DF-thread semantics we used the API functions
that we covered in Section 4. To evaluate out DF-Thread code we have provide the same
hardware platform similar to our real machines on COTson simulator [9, 122]. We configure
our COTSon simulator to run the benchmarks based on multi-core or multi-node configura-
tions requested. For the COTson architecture configuration that used in the evaluation of
the benchmarks see Table ??. Lessons learned with RFIB

We briefly show some numerical comparisons between small and large sizes of the RFIB
indexed on some platforms and discuss about them.
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1 void worker_fib(char **argv)
{

MPI_Comm children_comm [2];
4 uint64_t x,y,n_worker;

sprintf(command ,"%s",argv [0]);
argv += 1;

7 n_worker = atol (argv [0]);
if (n_worker < thd || n_worker < 2 )
{

10 unit64_t res = serialfib(n_worker);
MPI_Isend (&res , 1, MPI_DATATYPE , 0, 1, parent ,&send);
MPI_Wait (&send ,& status);

13 }else{
sprintf (argv[0], "%ld", (n_worker - 1));
MPI_Comm_spawn (command , argv , 1, local_info , myrank ,

16 MPI_COMM_SELF , &children_comm [0], MPI_ERRCODES_IGNORE);
sprintf (argv[0], "%ld", (n_worker - 2));

19 MPI_Comm_spawn (command , argv , 1, local_info , myrank ,
MPI_COMM_SELF , &children_comm [1], MPI_ERRCODES_IGNORE);

MPI_Recv (&x, 1, MPI_DATATYPE , MPI_ANY_SOURCE , 1,
22 children_comm [0], MPI_STATUS_IGNORE);

MPI_Recv (&y, 1, MPI_DATATYPE , MPI_ANY_SOURCE , 1,
25 children_comm [1], MPI_STATUS_IGNORE);

fibn = x + y; // computation
28 MPI_Isend (&fibn , 1, MPI_DATATYPE , 0, 1, parent ,&send);

MPI_Wait (&send ,& status);
}

31 MPI_Comm_disconnect (& parent);
}

Listing 3.3: Theworker function of the Recursive Fibonacci function code usingMPI programming
model.

1 void root_fib(char **argv)
{

MPI_Comm root_comm;
4 int n_root=atoi(argv [1]);

sprintf(command ,"%s",argv [0]);
argv +=1;

7 if (n_root < thd){
fibn = serialfib(n_root);

}else{
10 sprintf(argv[0],"%ld",n_root);

MPI_Comm_spawn (command , argv , 1, local_info , myrank , MPI_COMM_SELF ,
&root_comm , MPI_ERRCODES_IGNORE);

13 MPI_Recv (&fibn , 1, MPI_LONG , MPI_ANY_SOURCE , 1, root_comm ,
MPI_STATUS_IGNORE);

MPI_Comm_disconnect (& root_comm);
16 }

}

Listing 3.4: The root function of the Recursive Fibonacci function code using MPI programming
model.
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In Table 3.9, we summarize the multi-core experiment for RFIB. The multi-core experiment
includes DF-Thread on COTSon versus shared memory models like Cilk and MPI. To this
end, we use TFX2 platform for multi-core experiment and COTson simulator for DT-Thread
evaluation.

Whereas in Table 3.9we summarize themulti-node experiment on Lab146 platform, which is
suitable for multi-node experiments. Same as multi-core platform, we evaluate DF-Threads
on COTSon simulator with multi-node configuration. In Fig. 3.3 and Fig. 3.4, we show
the scalability of the DF-Threads execution within RFIB benchmark over multi-core and
multi-node platform. In multi-core apart from the execution time comparison with Cilk, we
show the speedup plot with the MPI as the baseline that has been done on TFX2 platform.
Inmulti-node we just evaluated RFIBwith DF-Threads andMPI, in this caseMPICH. Finally,
we show the execution time evaluation and Speedup plot.
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Fig. 3.3.: The speedup of the DF-Thread in the multi-node experiment.

The lessons we learn from these experiments on multi-core and multi-node platforms are
as follows:

1) Recursive Fibonacci is a challenging benchmark for parallel programming model
and it is hard to manage many fine-grained recursions among available hardware
resources on multi-core and more on multi-node. DF-Thread has the capability to
manage the recursion on both multi-node and multi-core platform with significantly
shorter execution time compared to Cilk and MPI.
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Fig. 3.4.: The speedup of the DF-Thread in the multi-core experiment.

2) DF-Threads shows an important scalability on multi-core experiment against Cilk.
We show the 8 cores comparison of RFIB executed on COTSon simulator in Fig. 3.6
and Fig. 3.7.

3) Dynamic behavior of the recursion in MPI programming model is much slower than
other programming models since in MPI, by spawning the child, a file descriptor and
in multi-node experiment an SSH connection between childs will be created. This
behavior makes the overall execution time much bigger than DF-Thread and Cilk.

4) On multi-core evaluation, there is a close competition between Cilk and DF-Threads.
This reveals the fact that DF-Thread can be a good candidate for such execution model
since it can easily distribute among cores and even nodes.

5) The scalability of the DF-Thread shows a close to ideal speedup in Fig. 3.3 and Fig.
3.4 for bigger workloads when The computation and network capacity is saturated.
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Fig. 3.5.: The RFIB multi-node experiment within DF-Thread and MPI. The baseline is MPI and
we show how DF-Thread is comparable within the well-known programming model for
variety of RFIB indexes.

36 Dataflow Execution Model Baseline Study



37 Chapter 3 – Dataflow Execution Model Baseline Study

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

5
+1

1
0
+1

1
5
+1

2
0
+1
0

2
5
+1
2

3
0
+2
0

3
5
+2
2

1N8C

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Cilk DF-Thread

Fig. 3.6.: The Execution time comparison of DF-Threads against Cilk with the RFIB experiment on
8 cores experiment.
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Fig. 3.8.: The RFIB multi-node experiment within DF-Thread and MPICH. Here we show how
much is the Speedup of DF-Thread compared to MPI execution model.
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Fig. 3.9.: The Blocked Matrix Multiplication algorithm sketch that is used in our benchmark and
its execution model.

3.6 Blocked Matrix Multiplication

Since the early 80s, Blocked Matrix Multiplication became a widely used kernel in many
mathematics and computer science problems, andmuch research has been done tomake this
computation faster and more efficient. There are many solutions in the field of Mathematics
and Computer Science to solve the Blocked Matrix Multiplication. One is partitioning the
matrix into sub-matrices, vectors, or blocks. Here in our benchmark suite, we divide the
matrix rows based on the size of the block (specify how many rows you want to partition)
here we call is BLOCKSZ, and then the computation kernel will multiply this BLOCKSZ×N
matrix to N×Nmatrices. Fig. 3.9 shows the sketch of the BMM algorithm.

BMM Sequential Execution

In this experiment we increase the problem size and execute the benchmark sequentially
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Fig. 3.10.: A sample structure of the hardware and how MPI processes are distributed throughout
the hardware resources.

Tab. 3.11.: The sequential version of BlockedMatrixMultiplication on three platforms TFX2, Lab146
and COTSon simulator.

Matrix size
Execution time (ms)

TFX2 Lab146 COTSon

216+8 24 8 942.25
320+8 193 35 3167.07
400+8 226 58 6130.08
504+8 429 106 12160.56
640+8 3343 366 32020.2
808+8 7582 459 63436
1016+8 18896 3295 125933
1280+8 61867 4475 278347.66

on one core/hwthread. As expected, the execution time will be increased by increasing
the problem size. The point is this execution time will be up to some hours if we just going
to bigger numbers such as 8192. Even though for 1024 size it took some milliseconds to
execute Matrix Multiplication, if we increase the problem size 2x times, the execution time
will increase in order of O(n3) times which in this case would be 8x times more time. The
execution of BMM sequential of different hardware is shown in Table. 3.11.

BMMwith Cilk

The first programming model that we demonstrate here is Cilk. The function code to
explain the BMM using cilk programming model is shown in Listing 3.5. In this code, we
use cilk_spawn to parallelize the matrix multiplication kernel among hardware resources.
The Cilk compiler knows that a function call followed by the spawn keyword can be done
asynchronously in a concurrent thread. The sync keyword makes the current thread wait
for asynchronous function calls from the current context to finish before continuing. The
Cilk keywords create a number of quirks to the C syntax. A Cilk function cannot be called
using standard C calling conventions; instead, it must be called using spawn and then
waited for with sync. Only a Cilk function can be used with the spawn keyword. In the
context of a C function, the spawn keyword isn’t allowed.
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1 int matrixMultiply(DATA *a, DATA *b, DATA *c, int n, int n_local) {
int i, j, k;
DATA t;

4 for(i=0; i<n_local; i++) {
for (j=0; j<n; j++) {

t = (DATA)0;
7 for (k=0; k<n; k++) {

t += a[i*n + k] * b[k*n + j];
}

10 c[i*n + j] = t;
}

}
13

return 0;
}

16 int main(int argc , char argv [])
{

// Matrix allocation , initialization , etc.
19 for(int index =0; index <n; index+= BLOCKSZ)

{
int local_block=BLOCKSZ;

22 cilk_spawn matrixMultiply(A, B, C, n, local_block);
}
cilk_sync;

25

}

Listing 3.5: BMM using cilk programming model function code

Tab. 3.12.: The BlockedMatrixMultiplication experiment on platformTFX2withCilk programming
model, here we consider BLOCK size equal to 8 to set the granularity.

Matrix size
Execution time (ms)

1N1C 1N2C 1N4C 1N8C

216+8 162 86 52 35
320+8 539 278 144 83
400+8 1026 523 276 150
504+8 2035 1036 529 277
640+8 4993 2571 1267 653
808+8 9959 5096 2714 1395
1016+8 23159 12442 6469 3356
1280+8 51781 27525 14373 7567
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BMMwith MPI

One of the challenging benchmarks discussed here is the Blocked-Matrix Multiplication
using MPI. MPI is the standard de-facto for the multi-node execution and there are many
variants of the MPI compiler by different companies such as Intel MPI [83] and IBM Spec-
trum [81]. Note that MPI and its different versions and variants has dependency to the
environment of the experiment. Tuning the parameters and environment are the most
important factor to achieve a good result within MPI. In the following we discuss these right
parameters and observed effects of bottlenecks or limitation with the MPI experiment.

Listing 3.6 shows the implementation of the BMMwith MPI. In this implementation we
used two-side communication method of MPI, which used MPI_send() and MPI_Recv()
primitives. Note that in our algorithm we send the matrix B to all processes, this method
has been proposed as a baseline implementation in [74]. Basically we partition the Matrix
"A" into Size/BlockSZ number of rows, then we assign each of these to just one processes.
For instance, if the Matrix A=64, and BlockSZ is 4, we have 16 partitions each of which has 4
rows. These 16 partitions will be assign to one process, therefore we create 16MPI processes.
Finally we execute these 16 processes on 1-2-4-8 cores or nodes, with the combinations of
1-N and N-1 (core-node).

To execute this experiment we assign each MPI process to one Core or Hwthread in Hype-
threaded hardware as shown in Fig. 3.10.

Lessons learned with BMM

Blocked Matrix Multiplication is one of the most important benchmarks in the computer sci-
ence literature. Matrix multiplication is one of the main kernels of AI andHPCApplications.
BMM stress the memory operation capability of the execution model. Moreover, BMM is
widely used to evaluate the memory and cache hierarchy performance of the system. We
evaluate BMM over multi-core and multi-node platform using DF-Thread, Cilk and MPI
programming models.

Table 3.13 shows the BMM evaluation on the TFX2 machine for multi-core experiment and
comparison between DF-Thread, Cilk and MPI, and Table 3.14 shows the BMM evaluation
on distributed machines in the Lab146 platform as multi-node experiment and comparison
between DF-Thread and MPI.
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1 void compute ()
{

/* Send A by splitting it in row -wise parts */
4 if (mpiRank == NODE_MASTER) {

for (i=1; i<mpiSize; i++) {
sizeToBeSent = n * getRowCount(n, i, mpiSize);

7 MPI_Send(A + sizeSent , sizeToBeSent , MPI_DATATYPE , i, TAG_INIT ,
MPI_COMM_WORLD);

sizeSent += sizeToBeSent;
10 }

}
else { /* Receive parts of A */

13 MPI_Recv(A, n_ubound , MPI_DATATYPE , 0, TAG_INIT , MPI_COMM_WORLD ,
MPI_STATUS_IGNORE);

}
16 MPI_Bcast(B, n*n, MPI_DATATYPE , 0, MPI_COMM_WORLD);

matrixMultiply(A, B, C, n, n_local);
/* Receive partial results from each WORKER */

19 if (! mpiRank) {
sizeSent = n_ubound;
for (i=1; i<mpiSize; i++) {

22 sizeToBeSent = n * getRowCount(n, i, mpiSize);
MPI_Recv(C + sizeSent , sizeToBeSent , MPI_DATATYPE , i, TAG_RESULT ,

MPI_COMM_WORLD , MPI_STATUS_IGNORE);
25 sizeSent += sizeToBeSent;

}
}

28 else { /* Send partial results to ROOT */
MPI_Send(C, n_ubound , MPI_DATATYPE , 0, TAG_RESULT , MPI_COMM_WORLD);

}
31 MPI_Barrier(MPI_COMM_WORLD);

}
int matrixMultiply(uint64_t *a, uint64_t *b, uint64_t *c, int n, int

n_local) {
34 int i, j, k;

for (i=0; i<n_local; i++) {
for (j=0; j<n; j++) {

37 for (k=0; k<n; k++) {
c[i*n + j] += a[i*n + k] * b[k*n + j];

}
40 }

}
return 0;

43 }
int getRowCount(int rowsTotal , int mpiRank , int mpiSize) {

return (rowsTotal / mpiSize) + (( rowsTotal % mpiSize > mpiRank)?1:0);
46 }

Listing 3.6: BMM using MPI programming model function code
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Fig. 3.11.: Scheme of the Blocked Cholesky and how kernels are distributed throughout the hard-
ware resources.

3.7 Blocked Cholesky Factorization

In tile-based dense linear cholesky factorization, simply, Blocked Cholesky Factorization,
a matrix A with dimension of N × N is split into NT × NT tiles, where each tile is of size
A/NT = BlockSZ . This essentially divides onematrix factorization intomany smaller matrix
factorization, some of which have to be executed sequentially and some can be executed
concurrently. Here, each of the factorizations performed on a tile is considered a kernel or
task. By varying the tile size we can easily tune the parallelism and the overhead to execute
a task. A classic, widely used and easy to understand example of a tile-based algorithm
is the Cholesky Factorization [23]. Cholesky is a dense linear algebra algorithm which
calculates the lower triangular matrix L of a symmetric positive definite matrix A , such
that A = LLT . This factorization has four different types of kernel/tasks: syrk, gemm,
potf2, and trsm, which are successively applied on the trailing sub-matrix at each step of
the algorithm. This procedure is depicted in the Fig. 3.11. The brief explanation of the
description of each kernel is as follows:

1) syrk: is a symmetric rank-k update, which updates to the diagonal tile of the input
matrix.

2) gemm: is a matrix-matrix multiplication, used to update tiles in trailing matrix.

3) potrf: performs an untiled version of Cholesky factorization of a diagonal tile of the
input matrix and overrides it with the final elements of the output matrix.

4) trsm: is a triangular system solve, which applies transformation computed by POTRF
to an off-diagonal tile below the diagonal tile operated by the last POTRF of the same
column.

Blocked Cholesky Sequential Execution

44 Dataflow Execution Model Baseline Study
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Tab. 3.15.: The sequential version of Blocked Cholesky on three platforms TFX2, Lab146 and
COTSon simulator.

Matrix size
Execution time (ms)

TFX2 Lab146 COTSon

1088+4 24 8 942.25
2112+4 193 35 3167.07
3008+4 226 58 6130.08
4032+4 429 106 12160.56

Tab. 3.16.: The Blocked Cholesky experiment on platform TFX2 with Cilk programming model,
here we consider BLOCK size equal to 4 to set the granularity.

Matrix size
Execution time (ms)

1N1C 1N2C 1N4C 1N8C

1088+4 1252 764 495 267
2112+4 10098 6032 3376 1821
3008+4 31921 17537 9742 5244
4032+4 80023 41856 23516 12391

In this experiment we increase the problem size and execute the benchmark sequentially
on one core/hwthread. We keep the sequential version of experiment as the reference to
compared with other literature studies. To select an appropriate input size for blocked
Cholesky we consider several facts. First, since we just compute the lower triangular part
of the matrix, therefore the computation workload will be smaller than BMM. We have to
ensure there is sufficient workload for the benchmark evaluation, therefore we choose bigger
number for matrix sizes. Second, for the parallel programming models implementations,
since the matrix will be divided by tiles, and then each tile will be assigned to a processor,
the chosen size for matrix must be divisible to tile size and then number of processors.

The implemented blocked cholesky code is shown in Listing 3.7 and the sequential execution
evaluation summarizes in Table 3.15.

Blocked Cholesky with Cilk

Cilk schedules processes using the work-stealing concept rather than the work-sharing
approach. When a thread is scheduled to execute in parallel whenever the runtime performs
an asynchronous function call, this is known as work-sharing.

The Blocked Cholesky written with Cilk programming model is listed in Listing 3.8 and
the evaluation of the experiment is summarized in Table 3.17.

Blocked Cholesky with MPI

The execution model of Blocked Cholesky using MPI produces many processes based
on the tile size given to the program, and perform mathematical operation based on this
partitioned tiles over the whole matrix. The point is this mathematical kernel are dependant
to each other and communicate during the execution. Therefore, one important item to

3.7 Blocked Cholesky Factorization 45
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void potrf(float * const A, long ts , long ld)
2 {

static int INFO;
static const char L = ’L’;

5 spotrf_ (&L, &ts , A, &ld , &INFO);
}
void trsm(float *A, float *B, long ts , long ld)

8 {
static char LO = ’L’, TR = ’T’, NU = ’N’, RI = ’R’;
static float DONE = 1.0;

11 strsm_ (&RI , &LO , &TR , &NU , &ts , &ts , &DONE , A, &ld , B, &ld );
}
void syrk(float *A, float *B, long ts , long ld)

14 {
static char LO = ’L’, NT = ’N’;
static float DONE = 1.0, DMONE = -1.0;

17 ssyrk_ (&LO , &NT , &ts , &ts , &DMONE , A, &ld , &DONE , B, &ld );
}
void gemm(float *A, float *B, float *C, long ts , long ld)

20 {
static const char TR = ’T’, NT = ’N’;
static float DONE = 1.0, DMONE = -1.0;

23 sgemm_ (&NT , &TR , &ts , &ts , &ts , &DMONE , A, &ld , B, &ld , &DONE , C, &ld);
}

26 void cholesky_blocked(const int ts , const int nt , float* Ah[nt][nt])
{

int i, j, k;
29 for (k = 0; k < nt; k++) {

// Diagonal Block factorization
potrf (Ah[k][k], ts, ts);

32 // Triangular systems
for (i = k + 1; i < nt; i++) {

trsm (Ah[k][k], Ah[k][i], ts , ts);}
35 // Update trailing matrix

for (i = k + 1; i < nt; i++) {
for (j = k + 1; j < i; j++) {

38 gemm (Ah[k][i], Ah[k][j], Ah[j][i], ts , ts);}
syrk (Ah[k][i], Ah[i][i], ts , ts);

}
41 }

}

Listing 3.7: Blocked Cholesky sequential version function code
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void potrf(float * A, long ts , long ld)
{

3 static int INFO;
static const char L = ’L’;
spotrf_ (&L, &ts , A, &ld , &INFO);

6 }
void trsm(float *A, float *B, long ts , long ld)
{

9 static char LO = ’L’, TR = ’T’, NU = ’N’, RI = ’R’;
static float DONE = 1.0;
strsm_ (&RI , &LO , &TR , &NU , &ts , &ts , &DONE , A, &ld , B, &ld );

12 }
void syrk(float *A, float *B, long ts , long ld)
{

15 static char LO = ’L’, NT = ’N’;
static float DONE = 1.0, DMONE = -1.0;
ssyrk_ (&LO , &NT , &ts , &ts , &DMONE , A, &ld , &DONE , B, &ld );

18 }
void gemm(float *A, float *B, float *C, long ts , long ld)
{

21 static const char TR = ’T’, NT = ’N’;
static float DONE = 1.0, DMONE = -1.0;
sgemm_ (&NT , &TR , &ts , &ts , &ts , &DMONE , A, &ld , B, &ld , &DONE , C, &ld);

24 }
void compute(int ts , int nt , float* Ah[nt][nt]){

for (int k = 0; k < nt; k++) {
27 // Diagonal Block factorization

potrf (Ah[k][k], ts, ts);
cilk_for (int i = k + 1; i < nt; i++) {

30 trsm (Ah[k][k], Ah[k][i], ts , ts);
}
cilk_for (int i = k + 1; i < nt; i++) {

33 cilk_for (int j = k + 1; j < i; j++) {
gemm (Ah[k][i], Ah[k][j], Ah[j][i], ts , ts);
}

36 syrk (Ah[k][i], Ah[i][i], ts , ts);
}

}
39 }

Listing 3.8: Blocked Cholesky using Cilk programming model function code
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Tab. 3.17.: The Blocked Cholesky experiment on platform TFX2 with MPI programming model,
here we consider tile size 4 to set the granularity.

Matrix size
Execution time (ms)

1N1C 1N2C 1N4C 1N8C

1088+4 1707 1205 838 515
2112+4 13216 9128 6287 3725
3008+4 38862 28384 18807 11099
4032+4 95457 69404 45604 27517

unit64_t *histo , *colors;

3 void histo_seq(unit64_t *_histogram , unit64_t *_colors , uint64_t size)
{

if (size == 1) {
6 _histogram [* _colors ]++;

}
else {

9 histo_seq(_histogram , _colors , size /2);
histo_seq(_histogram , _colors + size/2, size - size /2);

}
12 }

void compute ()
{

15 histo_seq(histo ,colors , CSIZE);
}

Listing 3.9: Histogram sequential version function code

stress the execution model is evaluated by using Blocked Cholesky apllication. The Blocked
Cholesky evaluation of the experiment using MPI programming model is summarized in
Table 3.17.

3.8 Histogram

The first step in creating a histogram is to "bin" (or "bucket") the range of values, which
means dividing the entire range into a series of intervals and counting how many values
fall into each interval. Bins are often defined as non-overlapping, sequential periods of a
variable. The bins (intervals) must be next to each other and are typically (but not always)
of the same size. Even though the time complexity of the histogram algorithm is not heavy,
however, the data conflict to match data in the appropriate bin or bucket is massive. This
lightweight benchmark is suitable to stress the memory policies and widely used in data
race conditions in transactional memory literature studies.

Histogram Sequential Execution

The sequential implementation of the histogram benchmark is shown in Listing 3.9. The
sequential execution evaluation summarizes in Table. 3.18.
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Tab. 3.18.: The sequential version of Histogram on three platforms TFX2, Lab146 and COTSon
simulator. We consider "bin" size equal to 4 for this measurement.

Input size Execution time (ms)
TFX2 Lab146 COTSon

216+4 0.77 0.14 8.69
218+4 2.69 0.559 36.05
220+4 8.82 2.3 143.9
222+4 34.7 9.02 567.1

Tab. 3.19.: The Histogram experiment on platform TFX2 with Cilk programming model, here we
consider "bin"" size equal to 4.

Input size Execution time (ms)
1N1C 1N2C 1N4C 1N8C

216+4 10 14 10 10
218+4 43 42 34 28
220+4 169 162 126 100
222+4 676 780 511 404

Histogram with Cilk

The single most prominent reason that parallel computing is not widely deployed today
is because of race conditions. Identifying and debugging race conditions in parallel code
is hard. Once a race condition has been found, no methodology currents exists to write a
regression test to ensure that the bug is not reintroduced during future development. We
developed the cilk implementation of the Histogram benchmark shown in the Listing 3.10.
The evaluation of the experiment is summarized in Table 3.10.

Histogram with MPI

The implementation of the Histogram benchmark using MPI programming model is shows
in the Listing 3.11. The evaluation of the experiment is summarized in Table 3.11.

Lessons learned with Histogram

There are several insights regarding the histogram evaluation. It is an interesting benchmark
through our evaluation since it produces a high level of data conflict. Within smaller size of

Tab. 3.20.: The Histogram experiment on platform TFX2 with MPI programming model, here we
consider "bin"" size equal to 4.

Input size Execution time (ms)
1N1C 1N2C 1N4C 1N8C

216+4 0.7 0.6 1.19 0.9
218+4 1.7 2.1 2.17 2.1
220+4 8.1 6.2 5.69 6.6
222+4 29.16 23.49 31.2 22.46
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uint64_t *histogram , *color;
2 typedef unsigned int uint;

typedef unsigned char uchar;
#define Cilk_lockvar pthread_mutex_t

5 #define Cilk_lock pthread_mutex_lock
#define Cilk_unlock pthread_mutex_unlock
void prepare (){

8 color = malloc(CSIZE * sizeof(uint64_t));
histogram = malloc(BSIZE * sizeof(uint64_t));
lock = (pthread_mutex_t *) calloc(BSIZE ,sizeof(pthread_mutex_t));

11 for (int i = 0; i < CSIZE; ++i)
{

color[i] = (unit64_t)rand()%BSIZE;
14 }

}
void histo_cilk(unit64_t *histogram , unit64_t *color , uint64_t size)

17 {
if (size == 1) {

Cilk_lock (&lock[*color ]);
20 histogram [*color ]++;

Cilk_unlock (&lock[*color ]);
}

23 else {
cilk_spawn histo_cilk(histogram , color , size /2);
histo_cilk(histogram , color + size/2, size - size /2);

26 cilk_sync;
}

}
29 void compute (){

cilk_spawn histo_cilk(histogram , color , CSIZE);
}

Listing 3.10: Histogram with Cilk programming model function code
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void hist_mpi (){
2 uint64_t ssize = (CSIZE - 1) /nw + 1;

uint64_t histogram_private[BSIZE ];
for(int i=0; i<BSIZE; i++){

5 histogram_private[i] = 0;
}
slice = malloc(ssize * sizeof(DATA));

8 MPI_Status Stat;
if (wid == MASTER) { // Distribute the work

for (int i= 0; i<ssize; ++i) slice[i] = color[i]; // Assign 1st
slice to master

11 for(int w=1; w<nw; ++w) // Send the other slices to the slaves
MPI_Send(color + w*ssize , ssize , MPI_INT , w, TAG_GENERAL ,

MPI_COMM_WORLD);
} else { // slave

14 int dataWaitingFlag; // Wait until a message is there to be
received

do MPI_Iprobe(MASTER , TAG_GENERAL , MPI_COMM_WORLD , &dataWaitingFlag
, MPI_STATUS_IGNORE);

while (! dataWaitingFlag);
17 MPI_Recv(slice , ssize , MPI_INT , MASTER , TAG_GENERAL ,

MPI_COMM_WORLD , &Stat);
}
// Processing data

20 for (int i= 0; i<ssize; ++i) histogram_private[slice[i]]++; free(
slice);

if (wid == MASTER) { // Process the partial results
int w, done = 0;

23 // Accumulate the result
for (int i= 0; i<BSIZE; ++i) histogram[i] += histogram_private[i

];
do {// Get partial histograms from slaves

26 for (w=1; w<nw; ++w) { // round robin check
int dataWaitingFlag;
MPI_Iprobe(w, TAG_GENERAL , MPI_COMM_WORLD , &

dataWaitingFlag , MPI_STATUS_IGNORE);
29 if (dataWaitingFlag) { // Get the message

MPI_Recv(histogram_private , BSIZE , MPI_INT , w,
TAG_GENERAL , MPI_COMM_WORLD , &Stat);

++done;
32 // Accumulate the result

for (int i= 0; i<BSIZE; ++i) histogram[i] +=
histogram_private[i];

}
35 }

} while (done < nw - 1);
} else // slave: send back the partial result

38 MPI_Send(histogram_private , BSIZE , MPI_INT , MASTER ,
TAG_GENERAL , MPI_COMM_WORLD);

}

Listing 3.11: Histogram with MPI programming model function code
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the bin, the biggest data conflict will be occurred. Data races can decrease the performance
significantly since the memory policy on parallel programming models locks the portion
of memory that needs to be write/read with each thread or process. For instance, Cilk
programming model shows significant performance degradation [32]. As shown in the
implementation in Listing 3.10, pthread_mutex_lock and pthread_mutex_lock are POSIX
definitions to protect data races in the memory. These policies will be a speed-bump of
the performance. However, in MPI the situation is better since each MPI process has its
own memory and Therefore there is no need to put memory lock to control memory races.
Finally in DF-Thread execution model, we control the memory races by guards, these
guards are defined in such a way to make a protection without degrading the performance
in DF-Thread memory model.

3.9 Conclusion

We present a quantitative approach to build a strong baseline for our execution model. In
this chapter, we develop and 4 more important benchmarks in the literature. We evaluate
our experimental baseline with Recursive Fibonacci (RFIB), Blocked Matrix Multiplication
(BMM), Blocked Cholesky and Histogram. Each of mentioned benchmarks has important
feature to stress the execution model. We ensure using the same algorithm implemented
for all the benchmarks to follow an apple-apple comparison. Then we choose different
hardware platform to experiment the multi-core and multi-node evaluation. To do this, we
choose TFX2 for multi-core evaluation and Lab146 for Multi-node. The results evidence
that DF-Thread has an important potential compared to Cilk and MPI programming model
to run over hardware resources. The evaluation of the benchmarks express the benefit
of using DF-Thread is promising to be more faster and exploiting underlying hardware
better than aforementioned ones, where the Cilk and MPI programming models are highly
optimized and they have compiler support.
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Dataflow Runtime 4
„The greatest glory in living lies not in never falling,

but in rising every time we fall.

— Nelson Mandela
Former President of South Africa

4.1 DRT: A Lightweight Dataflow Runtime To Debug and
Develop Dataflow Programs

Future computers may take advantage of a dataflow program execution model (PXM) for
both performance and energy advantages. One key element to provide a compilation tool-
chain for such machines is a framework for developing initial benchmarks. DRT (Dataflow
Runtime) is a tool that enables the fast prototyping of those benchmarks for the Dataflow
Threads (DF-Threads) PXM. In this work, we show how to use DRT to develop dataflow
based examples to be targeted by a future compiler for the dataflow PXM.

DRT has been written in portable C code (tested with the GNU C compiler), and it is open-
source, therefore, it can be used on real machines based on architectures like x86, AArch,
RISC-V ISA.

Here, we discuss some didactic examples, and we show how to study and debug the data
exchange, which is flowing through frames that are detached from the data stack. We
compare DRT against similar dataflow runtime libraries such as DARTS and OCR. Even
though our environment is not yet optimized, we found that DRT outperforms the above
runtime frameworks in terms of execution time. We also give an evaluation of the time and
complexity to develop DF-Threads examples in DRT compared to the approach of using
a full system simulator and FPGAs for more accurate modeling. Even though dataflow
models have shown many great features, conventional programming languages do not
support them very well [173]. This limitation, together with the possible high performance
gains, motivated us to introduce a tool, which could reduce the gap between conventional
languages and dataflow execution models.

4.1.1 Background

In this work, we present the Dataflow Runtime tool (DRT) to quickly develop and test the
execution of dataflow codes based on DF-Threads API. Our contributions in this work are:
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DF-Threads execution model
inputs

DFTH1 DFTH2

DFTH3

DFTH5

outputs

Classical execution model

Set of parallel threads

APP.BIN

APP.C

DFT-APP.BIN

APP.C

DFTH6

DFTH4

Fig. 4.1.: Simplified representation of the DF-Threads execution model. On the left, we represent
the irregular read and write of generic threads. On the right, the exchange of data among
threads happens in a more regular fashion [88].

• Introducing a dataflow runtime (DRT), which is presented first in this work.

• Illustrating how the DRT tool can be used for debugging and studying the movement
of data frames (a feature that is not available in standard debuggers).

• Comparing the execution time speedup of DRT against similar dataflow runtime.

In 4.1, we show a simplified high-level overview of DF-Threads execution (right) and a
classical (von Neumann style) execution (left). In the classical execution, the parallel threads
can read/write from/to any location of the memory. Therefore, a high synchronization
and coherency overhead may be generated. As mentioned in detail in [61], each of these
DF-Threads has a different behavior according to the memory access pattern. Consequently,
it may need different execution and hardware support. It is worth recalling that using
standard libraries like Pthreads is not required. Here, we briefly recall the specification of
the DF-Threads API:

• DF-Threads follow the dataflow semantics: a thread is ready when its input is fully
available; it starts executing when the scheduler decides to assign it to a physical
resource (e.g., a core).

• The management of a DF-Thread lifetime happens through the following functions,
which are described in Table 4.1: df_schedule, df_ldframe, df_write, df_destroy.

• DF-Threads are isolated in terms of memory accesses, and their execution can be
repeated in the case of faults since their inputs are retained [166].
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Tab. 4.1.: DF-Threads function definitions [65]

DF-Threads API function Description

uint64_t df_schedule(void∗ ip, uint64_t
sc)

Create the DF-Thread and its associated frame; sc
is the synchronization count, which represents the
number of inputs that the DF-Thread will receive.

uint64_t df_ldframe() Retrieve the frame pointer associated with the cur-
rent DF-Thread.

uint64_t df_write(void∗ fp, uint64_t val) The value valwill be stored in a location pointed
by fp, and for each write, the sc (which is specified
by scheduler before) will be decremented.

uint64_t df_destroy() Terminate the current DF-Thread and deallocate
its input frame.

4.1.2 Writing dataflow codes with the DF-Threads API

This Section shows the workflow to map the desired application into a dataflow code (here
DF-Threads). While this translation could be done by a compiler, we do not have such a
compiler at the moment (the compiler could be future work).

We use fine-grain algorithms to show the potentiality of our tool in mapping several DF-
Threads on real architectures. We choose the Recursive Fibonacci (RFIB) as a “simple yet
complex enough” example to illustrate the development methodology for DF-Threads
programs. The RFIB algorithm is a well-known example used to create many threads and
stress the runtime and the scheduling management.

In 4.2, we describe the original C code and its mapping into DF-Threads, together with the
dynamic behavior of the dataflow code. In this case, two DF-Threads are created: RFIB and
“adder".

The key operation is the df_schedule, which creates a DF-Thread, whose code is specified
by the parameter ip (the instruction pointer or the name of the corresponding function).
With the same operation, a portion of memory (frame) is allocated and associated with
the same DF-Thread. The size of the frame is determined by the number of inputs of the
DF-Thread that is specified by the sc value of the df_schedule. The df_schedule returns
the address (frame pointer) to the allocated memory space (the frame). The next step is to
write the DF-Thread input and the output locations. This can be done by using the df_write.
Once the frame pointer (fp) has been retrieved by the df_ldframe, the df_writewill store
the data (here n-1, n-2) in the location of fp[1] and fp[2], respectively. Please note that fp[0]
has been reserved as the output location, into which the DF-Thread will write the result.
For each write into the frame, the sc value will be decremented by 1 (this is implied by
df_write and it is part of the implementation of the df_write itself).

In the end, df_destroy will terminate the current DF-Thread [66].

4.1 DRT: A Lightweight Dataflow Runtime To Debug and Develop Dataflow
Programs 55
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void RFIB(void) {

uint64_t* fp =(uint64_t*) df_ldframe();

int n = fp[1]; 

if (n <= 1) { 

df_write(fp[0],n); 

}else {

uint64_t* tfib1 = df_schedule(&RFIB,2);  

uint64_t* tfib2 = df_schedule(&RFIB,2); 

df_write(&tfib1[1], n-1); 

df_write(&tfib2[1], n-2); 

uint64_t* tadd = df_schedule(&adder,3); 

df_write(&tadd[0], fp[0]); 

df_write(&tfib1[0], tadd+1)); 

df_write(&tfib2[0], tadd+2); 

}

df_destroy();

}

void adder(void) {

uint64_t* fp =(uint64_t*)df_ldframe();

uint64_t f1 = fp[1]; 

uint64_t f2 = fp[2]; 

df_write(fp[0],f1+f2);

df_destroy();

}

n

RESULT
LOCATION

uint64_t* fp =(uint64_t*) df_ldframe();

int n = fp[1]; 

...

n

if
(n <= 1)

RESULT
LOCATION

...
if (n <= 1){

df_write(fp[0],n);
} 

n

(else)

n-1 n-2

(else)

RESULT
LOCATION

RESULT
LOCATION

n

RESULT
LOCATION

...

df_write(&tfib1[1], n-1); 

df_write(&tfib2[1], n-2); 

...

df_write(&tadd[0], fp[0]); 

df_write(&tfib1[0], tadd+1)); 

df_write(&tfib2[0], tadd+2); 

f1
f2

adder

RESULT 
LOCATION

=f1+f2

else {

uint64_t* tfib1 = df_schedule(&RFIB,2);  

uint64_t* tfib2 = df_schedule(&RFIB,2); 

...

uint64_t* tadd = df_schedule(&adder,3);

... 

RESULT
LOCATION =n

Original C code
(Recursive Fibonacci)

DF-Thread coding Dynamic behavior

int RFIB(int n){

if ( n<=1) return n; else

return RFIB(n-1) + RFIB(n-2);

}

Fig. 4.2.: Illustrating the operations of the basic DRT API functions with a simple Recursive Fi-
bonacci (RFIB) example. On the left, there is the representation of the RFIB function
and its coding in DF-Thread style. On the right, we detail the specific dynamic behavior.
Example rearranged from [104].

.c 
Code

Manual 
Coding 

into DFT 
Syntax

.c code 
+ DFT 

Primitives

GCC 
Compiler

DF Binary
with DRT

x86_64

AArch64

.c 
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GCC + DRT 
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DRT is presented in this paper

DF Binary
without 

DRT

DF Binary
with DRT
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Extended Architecture
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* This back-end is not the scope of this work

** Hardware DFT support           
(e.g., AXIOM board)

Dataflow 
Runtime 

(DRT)

Fig. 4.3.: The role of DRT in developing applications based on the DataFlow Threads (DFT) ex-
ecution model. In the top part, we show the current setup of DRT. In the bottom part,
we show the production framework that we envision. The idea is that DRT could help
develop a future DRT backend of a standard compiler.
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4.1.3 Introducing DRT

Developing a novel architecture may require considerable time when using an architectural
simulator [9, 62]. To reduce this development-cycle time, in the case of the dataflow execu-
tion model, we designed a tool that we call “Dataflow Run-Time” (DRT). The aim of the
DRT is to make it easier for the software community to use a dataflow program execution
model (here DF-Threads): by studying the simple examples that we propose, or building
new examples, the compiler experts could derive an appropriate compilation path, which
could target the DF-Threads PXM.

This tool is compatible with real machines like x86, AArch, RISC-V. DRT only requires the
installation of the GCC compiler for compiling and running DF-Threads programs.

DRT enables the fast development and debugging of the DF-Threads’ API and its data
exchange mechanism, which is based on frames (see 4.2).

According to an initial test done in DRT, we can reduce the development-cycle time from
minutes/hours to seconds (see Section 4.3).

As shown in Fig.4.3, we currently need to map manually (’manual coding into DFT syntax’)
high level programs (’.c code’) to the DF-Threads API. Then, the DRT enables a standard
compiler (GCC in our case) to generate a binary that can run on standard architectures.
The availability of DRT provides a basis for direct writing dataflow codes but also enables
compiler experts to further build on this workflow and integrate it in a compiler (lower part
of Fig.4.3, which is not in the scope of this work).

Similar efforts exist like the Delaware Adaptive Runtime System (DARTS) [183] and the
Open Community Runtime (OCR) [104], so we compare them with DRT in Section 4.3. DRT
is available as open-source at http://drt.sourceforge.net 1.

In Fig.4.4, as an illustrative example for analyzing the benchmark behavior, we show the
output of DRT when the debug level is set to three for the RFIB benchmark and its input
is n=4. The first line describes the command line for executing a dataflow code with DRT.
In the third line, the DRT initializes the environment and allocates the memory space for
storing the frames based on the application requirements. Lines 4 and 5 show the creation
of the scheduled function (the RFIB function, see Table 4.2) and the report function to
collect the results. In lines 6 and 7, the df_write writes the value (val) in the output frame
and decrements the associated synchronization count (sc).

Lines 10 to 19 describes the recursive calls of the RFIB functions. Finally, the current
DF-Thread will be terminated, and its input frame will be deallocated (line 20).

The list of ip and fp addresses that are shown in Fig.4.4 correspond to the same addresses
that can be retrieved through standard disassembler tools (e.g., objdump). However, the
usage of such tools gives us only a static view, while DRT enables a dynamic analysis
1Checkout the DRT repository by this command: svn co https://svn.code.sf.net/p/drt/code/
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1 ~/drt-code $ DRT_DEBUG=3 ./RFIB 4
2 computing Recursive Fibonacci(4)
3 -DRT: FRAME-MEM allocation+initialization done.
4 TS: fi=0 ip=0x403a46 fp=0x609f60 sc=1/1
5 TS: fi=1 ip=0x401795 fp=0x609fc0 sc=2/2
6 TW: fi=1 ip=0x401795 fp=0x609fc0 val=0x609f6000 sc=1/2
7 TW: fi=1 ip=0x401795 fp=0x609fc0 val=0x4 sc=0/2
8 ++main
9 -DRT: Starting Dataflow launcher.

10 TE: fi=1 ipnew=0x401795 fpnew=0x609fc0
11 TS: fi=2 ip=0x401795 fp=0x60a020 sc=2/2
12 TS: fi=3 ip=0x401795 fp=0x60a080 sc=2/2
13 TW: fi=2 ip=0x401795 fp=0x60a020 val=0x3 sc=1/2
14 TW: fi=3 ip=0x401795 fp=0x60a080 val=0x2 sc=1/2
15 TS: fi=4 ip=0x400d81 fp=0x60a0e0 sc=3/3
16 TW: fi=4 ip=0x400d81 fp=0x60a0e0 val=0x609f6000 sc=2/3
17 TW: fi=2 ip=0x401795 fp=0x60a020 val=0x60a0e001 sc=0/2
18 TW: fi=3 ip=0x401795 fp=0x60a080 val=0x60a0e002 sc=0/2
19 TD: fi=1 ip=0x401795 fp=0x609fc0 sc=2
20 TE: fi=2 ipnew=0x401795 fpnew=0x60a020
21 ++report
22 DF-Thread RFIB = 3
23 *** SUCCESS ***

Fig. 4.4.: DRT sample output. DRT_DEBUG is an environment variable for specifying the debug
level. The DF-Threads functions are mapped to internal operations where TS stands for
thread scheduling, TE stands for thread-end, TD stands for thread drop, TW stands for
thread write, ip stands for instruction pointer, and fp stands for frame pointer. Other de-
bugging information is fi for frame index, sc stands for synchronization count, ipnew/fpnew
are the ip/fp just freed.

void df_write(uint64_t *fp, uint64_t val)
{

*fp=val; //write the value
uint64_t *md=METADATA(fp); //retrieve metadata
md[MDSC]--; //decrement synchronization count
if (md[MDSC] == 0) //move the frame to READY QUEUE

TSETREADY(md[MDQSTATUS]);
}

Fig. 4.5.: An example of a modeled function in the DRT implementation, where METADATA
extracts the metadata pointer from the frame, MDSC is the offset of the synchronization
count, and MDQSTATUS is the offset of the status bits that indicate whether the frame is
in ready or waiting status.

58 Dataflow Runtime



59 Chapter 4 – Dataflow Runtime

Tab. 4.2.: The function name and its corresponding frame pointer address that are shown in Fig.4.4
(same as in objdump tool).

Frame pointer address Corresponding function

0x401795 RFIB
0x400d81 adder
0x403a46 report

showing the entire sequence of executed instructions with additional information about
the DF-Threads, memory, and queue status.

For example, the ip=0x401795 corresponds to the address of the code of the RFIB function
(see Table 4.2). All the corresponding functions and their fp addresses generated in the
function RFIB are shown in Table 4.2.

In order to show the effectiveness of the internal modeling of the DRT function, we consider
the implementation of the df_write function (see Fig.4.5). The df_write needs two arguments,
the pointer to the output frame (fp) and the value to write in such frame. Internally, the
df_write extracts the metadata pointer from the given frame and, based on the sc informa-
tion, df_write decides whether the DF-Thread is in ready or waiting status. Other useful
debugging information, not shown in this simple example for the sake of simplicity, are
the status of queues, the total number of allocated frames, the total number of writes, total
number of frames that are in ready or waiting status.

4.1.4 Evaluation

In this Section, we compare the performance of DRT against other similar environments,
namely OCR [104] and DARTS [183]. OCR and DARTS use a dataflow model to manage
threads, similarly to DRT: the common main idea is to decouple the higher layers of the
software stack from the underlying hardware by using a possibly universal interface. For
details about OCR, DARTS, and other related environments.

In this work we wrote some initial benchmarks manually due to the lack of a compiler.
Therefore, at this stage, we cannot afford to make more extensive tests with large bench-
marks.

To demonstrate the capabilities of the DRT, we selected two simple benchmarks:

• Recursive Fibonacci (RFIB) in order to generate a high number of threads easily.

• Blocked Matrix Multiplication (BMM) as it is a very commonly used kernel in many
applications (especially in Artificial Intelligence, Deep Neural Networks, etc.), and it
moves much data around.

4.1 DRT: A Lightweight Dataflow Runtime To Debug and Develop Dataflow
Programs 59
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The two benchmarks are using the same exact algorithm for all three frameworks. The
output of the benchmarks is validated against the output produced with other independent
tools executing the same benchmarks.

For the sake of simplicity, we analyze the sensitivity with the input set by using n=10, 15, 20,
25 for RFIB and s=128, 256, 512, 1024 for BMM, where n is the index of the corresponding
Fibonacci number and s is the size of the square matrices that are multiplied. For the block
size of the matrices, we used b=8, where b is the number of the elements inside a block.

The purpose of DRT is to explore the correctness of the dataflow execution, not to scale the
performance across cores. Nevertheless, to make a fair comparison against other environ-
ments, we restricted our evaluation to a single core execution.

For each of the three runtime frameworks (DRT, DARTS, and OCR), we measure the time
spent in the Region Of Interest (ROI) of each benchmark, and we repeat at least ten times
the experiments to obtain statistically valid measurements. We report the execution time
speedup by using DARTS as the baseline. As we can observe from Fig.4.6 and Fig.4.7, DRT
can outperform by one order of magnitude DARTS for smaller inputs. DRT outperforms
OCR by a factor of about 13x for n=25.

While the OCR and DARTS are well optimized, DRT can still be improved. However, as
stated before the main goal of DRT is just to provide a tool for developing DF-Thread
benchmarks and a future compiler; more performance could be achieved by using DF-
Thread native support as shown in Fig.4.3.
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Fig. 4.6.: RFIB execution time speedup comparison between DRT, DARTS and OCR runtime. Here
OCR is the baseline. DRT reaches better performance due to a simplified management of
the dataflow execution.

While it is possible to develop DF-Threads codes on a simulator or on an FPGA prototype,
we found that it is more productive to use a tool such as the DRT, a minimalistic API
written in around 300 lines of C code, through which it is possible to test and debug the
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Fig. 4.7.: Blocked Matrix Multiplication execution time speedup comparison between DRT and
DARTS and OCR, with the DARTS as baseline. While for larger Matrix sizes the execution
time tends to be the same for three tools, it is important to note that during the development-
cycle, we typically use smaller inputs. So, the shorter execution time of DRT during tests
helps focus on the development.

Tab. 4.3.: Comparing lightweight DRT with other tools for developing dataflow codes and the
related architectures. As we can see DRT, is using only 300 lines of C code.

DRT Simulator[94] FPGA[123]

SLOC of the framework ∼ 300 ∼ 112,000 ∼ 1,000,000

Openness the
development
framework

High (open-source) Medium (partly
open-source)

Limited (proprietary
tools)

Complexity of the
development-cycle Low (seconds) High (minutes) Very high (hours)

implementation of a specific feature in seconds, while doing that on an FPGA may require
days [64] (see Table 4.3). In Fig.4.8, we show the simulation time of the COTSon simulator
compared to the DRT. As we can see, we can obtain up to four orders of magnitude speedup
while executing a benchmark RFIB. The speedup in simulation time of a simulator is lower
compared to an FPGA, but the development-cycle time can bemuch higher; this is discussed
below.

In terms of evaluating the DRT in relation to other approaches for developing the initial
codes that use the dataflow execution model, we compare other tools for modeling new
architectures like the simulator and the FPGA prototype in Table 4.3. The usage of these
tools is necessary when exploring hardware support for the dataflow execution [62, 64].

We considered the following metrics:

4.1 DRT: A Lightweight Dataflow Runtime To Debug and Develop Dataflow
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Fig. 4.8.: Simulation time speedup comparison between DRT and the COTSon simulator by using
the RFIB example. DRT significantly decreases the development-cycle time to develop a
dataflow program.

• SLOC2: these are the source lines of code of the corresponding framework; these
numbers are all publicly available; for the simulator, we referred to the COTSon
simulator [94], and for the FPGA, we referred to the software stack of the AXIOM
board [123].

• Openness of the development framework: whileDRT can be downloaded and installed
in seconds, COTSon requires at least some hours to complete the setup and some days
to become familiar with the modeling of the components; moreover, some parts of the
code (AMD SimNow) are not open-source; regarding the FPGA-board, the software
stack is open-source, but the tools are typically proprietary and may require licensing
and complex setup procedures.

• The complexity of the development-cycle: while it is rather simple to make modi-
fications, test, and debug a program through the DRT tool, it may require minutes
to complete a full simulation in the COTSon simulator, and it may require hours to
modify and re-generate a full design in the FPGA framework [62].

2Source lines of code
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Proposal for a Distributed Large
Scale Graph Processing on
multi-FPGA Platform

5

„A man who dares to waste one hour of time has not
discovered the value of life.

— Charles Darwin
1802-1889

In the last year of the Smart Computing Ph.D. program, based on the ”borse Pegaso ciclo
34” rules, I had this opportunity to spend 6 months abroad Italy to study and collaborate
with a foreign university according to my Ph.D. goals. Therefore, I took this opportunity
to collaborate with the ”Custom Computing Research Group at Imperial College London”
and collaborate with Prof. Wayne Luk and Prof. Gaydadjiev as a visiting researcher. In
this period, we defined a project based on the Reconfigurable Graph Processing Model that
addresses the current challenges and is suitable to cover the Ph.D. goals. This study can
bring possibilities of large scale graph processing to the user and have many advantages
despite a few current ones in the literature. We are progressing with the implementation in
our laboratory.

5.1 Introduction

Processing large-scale graphs is a challenging concept due to the nature of the computation
that causes irregular memory accesses. Managing such irregular accesses may cause sig-
nificant performance degradation on both CPUs and GPUs. Thus, recent research trends
propose graph processing acceleration with FPGAs. Moreover, in the case of large-scale
graph processing, one major problem is that the graph does not fit into the limited amount
of on-chip memory resources available on a modern FPGA. Due to the limited capacity of
device memory, data would be transferred to and from the FPGA multiple times during
the computation, and this transfer between on-chip and off-chip memory would be greater
than the computation time. To maximize performance, it is necessary to overlap, hide and
customize the data transfers to the highest degree so that the FPGA accelerator is always
fully loaded. A possible way to overcome the limited resources on one FPGA accelera-
tor is to develop a distributed architecture on a multi-FPGA platform using an efficient
partitioning scheme. An efficient partitioning scheme aims to increase data locality and
minimize communication between the partitions. This work uses an offline partitioning
method to support the distributed large-scale graph processing concept. Our architecture
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uses Hadoop at the higher level to map a graph to the underlying hardware. The higher
layer of computation is responsible for gathering the blocks of data pre-processed and
stored on the host’s file system and distributing them to a lower layer of computation made
of FPGAs. In this work, we show how graph partitioning combined with a multi-FPGA
architecture will lead to high performance without limitation on the size of the graph, even
when the graph has trillions of vertices. Our performance analysis, in the case of PageRank,
forecasts performance improvement of up to 20 times and a cost-normalized improvement
of up to 12 times when comparing the proposed approach on one Xilinx Alveo U250 FPGA
accelerator against a state-of-the-art baseline graph processing software implementation on
a Intel Xeon server CPU with a 40-core processor at 2.50 GHz.

Traditionally Graphs have been studied within a variety of subjects. The structure of the
graphs made graph processing one of the most challenging applications among computer
scientists [171, 136, 114, 17, 112, 49]. In this context, computing a very large scale graph is
more challenging first and foremost because the whole graph size can not fit into the most
modern accelerator’s memory. Plus, the structure of the graphs is irregular and needs a high
amount of random and irregular access to the memory. These factors contribute to a lack of
data locality and the inability to achieve a high degree of parallelism. The literature study to
elaborate on these challenges using modern architecture is bulk, and many researchers have
used hardware accelerators to mitigate one of the following problems including modern
FPGA accelerators.

Graph Size: In contrast to CPUs and GPUs, which use a cache hierarchy memory model,
FPGAs have on-chip Block RAMs (BRAM). One of the most valuable features of BRAMs
is their ability to provide high-throughput random access to memory [53, 178]. However,
there are still some difficulties. The major problem is that the size of BRAMs in a single
FPGA is far smaller than the graph’s size or less than the size of the last level of cache on a
powerful CPU. One alternative is to use multi-FPGA boards to increase resources, but this
has the drawback of limiting connectivity between boards. However, the dual-port nature
of these memories allows for parallel, same-clock-cycle access to different locations [150].

Data Locality: The composition of most graphs is irregular, which means that a small
portion of the entire graph will have access to the most significant portion and have a
considerable impact on the total. As a result, in the vast majority of cases, data locality is a
significant problem. Moreover, graphs are usually created based on a natural phenomenon,
from Social Networks to Biological structures. Subsequently, the distribution of data in
these graphs follows the Power Law distributions, complicating the locality of data during
the computation [100, 37].

Irregular Data Access Pattern: In unstructured graphs, the data access pattern is entirely
irregular. As a result, each data access to a irregular position would dramatically reduce
the efficiency of overall computations [180, 177, 39].

Data Conflict: It’s not uncommon for vertices from different locations to read/write to
the same vertex simultaneously. As a result, a significant amount of data conflict must
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Tab. 5.1.: The cloud service cost based on Amazon cloud cost calculator for FPGA f1 instance cloud
servers.

Instance Name FPGAs vCPUs Instance
Memory (GiB)

SSD Storage
(GB)

On-Demand
Price/hr

f1.2xlarge 1 8 122 470 $1.65

f1.4xlarge 2 16 244 940 $3.30

f1.16xlarge 8 64 976 4 x 940 $13.20

Tab. 5.2.: The cloud service cost based on Amazon cloud cost calculator for CPU instance cloud
servers.

Instance Name vCPU Memory On-Demand
Price/hr

m6gd.xlarge 4 16 GiB $0.1808

m6gd.2xlarge 8 32 GiB $0.3616

m6gd.4xlarge 16 64 GiB $0.7232

m6gd.8xlarge 32 128 GiB $1.4464

m6gd.12xlarge 48 192 GiB $2.1696

be managed using memory model policies such as memory locks and atomic memory
operations [179].

After discussing about the most significant features of Graphs and the challenges, now
the question is, why we choose "Distributed FPGA" as a hardware structure for this
purpose?

To elaborate answering this question we show an example summarizing cost of using CPU,
FPGA and GPU resources. As an example, we target amazon AWS platform in this case.
As can be seen in Table 5.1 and Table 5.2, the cost of different instances of Amazon FPGA
and CPU cloud servers are listed. Assuming, FPGA is 10x faster than CPU to compute a
specific target. Subsequently, given an example of the execution time to compute a specific
algorithm on 10 CPU instances is about 600 hours, on 100 CPUs would be 60 hours, and on
10 FPGA instances will be 6 hours.

Therefore, in this case based on the cost listed in the Amazon AWS cloud servers choosing
the best CPU servers (m6gd.12xlarge with 192 GiB Memory) costs $216, whereas FPGA
(f1.16xlarge with 4 x 940 GiB Memory) will cost $79 for this case. This brief example shows
at the end FPGA cloud server will be almost 3 times cheaper than CPU instances, if the
implemented algorithm has a good level of speedup against CPU, which is important factor
to be considered as a big motivation and courage developing FPGA designs. This level of
speedup against CPU is trivial for FPGAs and this increasingly is improving since FPGA is
getting popularity among scientists.

5.1 Introduction 65
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5.2 Background and Motivation

The scale of recently proposed graph processing methods with a Multi-FPGA environment
is limited. For instance, in very recent studies on FPGA such as ThunderGP [30, 39, 137],
the size of the evaluated graph dataset is not very large datasets, and mostly are in the
mid-range graph processing scale. This scale does not satisfy the need to use accelerators
and the considerable development time on FPGAs rather than CPU and state-of-the-art
algorithms to compute such graphs sizes. So, the earlymotivation of our work is to increase
the scale of the graph, which has been eagerly looked for in very recent published papers
[14, 39, 137].

The secondmotivation is the integration of a High-level platform such as Hadoop to deploy
the distributed platform on top of the underlying hardware. The reason to choose Hadoop is
that the graph construction is a data-parallel problem. Hadoop (MapReduce) is well-suited
for this task. Moreover, Hadoop is a highly scalable storage platform since it can store
and distribute enormous data sets across hundreds of inexpensive servers that operate in
parallel.

As we know, Graph size is increasing rapidly and will be in order of Peta Bytes in the near
future. Consequently, this amount of data will not be fitted into the memory, and at this
point, the challenges of Graph Processing begins to find the method to partition the graph
before feeding it into the computing system and memory hierarchy. Finding a partitioning
algorithm suitable for distributed computing on FPGAs is the point.

The third motivation of this work is to emphasize this hardware as an underlying infras-
tructure for a cloud computing basis. As discussed in Section 5.1, one of our motivations is
to provide a cost-effective infrastructure for cloud computing applications. The proposed
method using FPGA must be fast enough rather than state-of-the-art CPU algorithms to
aim this. There were some bottlenecks to achieving this goal, such as longer development
cycle time and more difficulty developing FPGA programs. On the other hand, high-level
language developments on FPGA using HLS is growing quickly and efficiently. This ease
the development cycle time on FGPA to be much less and much flexible than before. In
this work, we use Xilinx Vitis HLS [150]. The Xilinx Vitis HLS (previously Xilinx Vivado
HLS) tool is a free High-Level Synthesis (HLS) tool created by Xilinx. Vitis HLS makes it
simple to write complicated FPGA-based algorithms with C/C++ code. It can handle a
wide range of data types (floating points, fixed points, etc.) as well as arithmetic functions.
It also supports AXI4-Stream, allowing data to be readily exchanged with other IPs.

5.3 Related Work

To handle medium graphs with a systematic framework, the studies propose a system that
leverages the edge-centric processing model for graph algorithms and the GAS (Global
Address Space) paradigm to address the FPGA chip’s memory space limitation. It employs a
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portion of the on-board DRAM as an update buffer, where it temporarily stores intermediate
processing results. The DRAM-based update buffer, on the other hand, creates a substantial
I/O overheads, lowering graph processing performance.

ForeGraph [40] provides a system that makes advantage of the on-board DRAM grid
representation of graphs and distributes the FPGA logic resources into many pipelines.
Each pipeline has two BRAM-based vertex buffers (the L1 cache) that preserve the source
and destination vertex intervals. The vertex intervals of contiguous edge blocks are first
loaded into the vertex buffers attached to the pipelines during processing, and then the edges
of these edge blocks are fed into the FPGA chip to be processed in parallel. The pipelines
interface directly with the on-board DRAM to exchange vertex data in this technique,
resulting in small pipeline delays and improving graph processing performance.

FabGraph [137] offers a second level (L2) of vertex cache that periodically stores vertex
intervals to enhance pipeline efficiency and graph processing speed. However, when
working with extremely sparse real-world graphs, the processing of streaming edges cannot
keep up with the communication between the two cache levels in FabGraphs.

FPGP [38] uses the grid format to describe a huge input graph and stores the graph’s
vertex and edge data in on-board and host DRAM, respectively. The edges are sent into the
FPGA through the host bus and processed during computation. The works [182] propose a
method for processing huge graphs with an FPGA-based accelerator, in which graph data is
immediately sent to the FPGA chip processing unit. According to the technique of directly
exchanging data between the host DRAM and the FPGA chip, the bandwidth of the host
bus determines the performance of graph processing, with low bandwidth resulting in
poor graph processing and low utilisation rates of the FPGA chip’s resources. Only two
pipelines are constructed in FPGP when the host PCIe Interface has a bandwidth of 0.8
GB/s.

Other research, apart from the above systems that use FPGA-based accelerators to process
small, medium, and big graphs, cover certain intriguing aspects. GraphOps [114], for
example, presents a modular way to building graph accelerators in FPGA written in MAXJ
on Maxeler platform. GraphGen [112] turns the input graph into an instruction stream that
may be processed by pipelines designed using an FPGA board’s logic resources.

GravF-M [48] provides a redesigned architecture from their previous work [49], that min-
imises communication across the inter-FPGA network considerably. Although network band-
width is the limiting factor for multi-FPGA performance onmost systems, this can lead to a potential
increase in overall system performance. A three-stage programming technique that allows for
this optimization while still giving the user freedom and making superstep synchronisation
easier. Low-overhead partitioning techniques improve load balancing among PEs and
FPGAs. The programming model for GravF-M is Migen, a Python-based tool to export
Verilog codes to be synthesize with conventional tools such as Vivado.

In [14] the authors introduced a large-scale graph processing on single FPGA. They imple-
mented the proposed work in Chisel [15] and synthesized using Vivado design suite. The
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evaluationwere conducted onAmazonAWS f1 instances, which include a Virtex UltraScale+
FPGA linked to the host PC through PCI express and four 16 GB DDR4 channels. The
contribution of the work is to eliminate cache misses and exploit the multi-die feature of
signle FPGA.

ThunderGP [30] provides an automated graph processing user interface. It is applicable
for the user to automate the process of the processing with the desired application. Thun-
derGP uses efficient methods to compute the appropriate number of kernels while staying
within the platform’s memory bandwidth and fitting the kernels into SLRs. ThunderGP, in
particular, bundles Scatter PEs, a shuffle, and Gather PEs into a kernel group known as a
"scatter-gather" kernel group since they are all in the same pipeline. It, on the other hand,
places Apply PEs in a separate kernel group called an apply kernel group. Each memory
channel on multi-SLR platforms with multiple memory channels has one scatter-gather
kernel group that buffers and processes the same set of destination vertices independently.

We briefly discussed about the most similar attempt to our methods, however, Table 5.3
shows a brief taxonomy of the selected studies, which are more close to our work.

Tab. 5.3.: Brief overview of the most related recent studies on FPGA accelerators and their features
compared to this work.

Work Distributed1 Language2 Implementation3 Evaluation
Size4 Public5 FPGA Platform Year

ForeGraph [40] 3 HDL Simulation Medium 7 Xilinx VCU110 2017

FabGraph [137] 7 HLS Simulation Medium 7
Xilinx VCU110 and
VCU118 2019

HitGraph [179] 7 HDL Hardware Small 3 Xilinx Virtex US+ 2019
ThunderGP [30] 7 HLS Hardware Medium 3 Alveo Family 2021

GraVF-M [48] 3 Python 5 Hardware Medium 3
Micron Pico se-6
platform 2019

GridGas [182] 3 HDL Hardware Medium 7 Xilinx Kintex 2018
FPGP [37] 7 HDL Hardware Medium 7 Xilinx Virtex-7 2016

Ref. [14] 7 Chisel Hardware Large 3
Xilinx Virtex US+ (AWS
Platform) 2021

GraphOps [114] 7 MAXJ Hardware Small 7 Maxeler Boards 2016

This Work 3 HLS/C++ Hardware Very Large 3 Alveo Family 2022
1Weather the algorithm is distributed or not.
2Which programming language is used.
3Weather the implementation is based on Software Simulation or on a Real Hardware.
4What is the scale of the evaluation graph dataset presented in the work.
5Weather the work is open-source and available for public.
6Migen, a Python-based tool to export Verilog codes to be synthesize with conventional tools such as Vivado.

Graph Partitioning

We need Edge partitioning, which provides chunk-based partition of edges for a certain
vertex and resides the graph data on the host filesystem. Chunks (or blocks) should not
relate to each other by any means, and the size of each block should be fit into the size of
BRAM of the target FPGA. Blocks will be read sequentially from memory by the Kernel,
and updated values will be written back to the memory. Graph partitioning is a well-
known problem in graph computing literature. Many works addressed novel techniques,
and algorithms for graph partitioning [181, 125, 162, 93]. We concluded with the Grid
partitioning [181]. This approach can give us a high data locality, avoid data conflict, and
can be mapped on the BRAM resources on the FPGA. The Scalability of Grid partitioning is
also high since the data can be mapped exactly on different resources.
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Fig. 5.1.: Graph partitioning scheme used in our system preprocessing method. Figure (a) shows a
sample graph, Figure (b) and Figure (c) show the partitioned edge into 2 chunks which
inside each chunk there are 2 blocks therefore in total we have 4 blocks of edge which is
shown in each block.

Table 5.4 summarizes the most useful graph partitioning we discovered in the literature.
Fig.5.1 gives an example graph, whose vertex set is partitioned into four equal-length
subsets, and its 2x2 grid representations. we can observe that a given G = (V, E), will be
partitioned into P2 blocks (P is the numbr of partitions the user asks for) according to the
source and destination vertices. Each edge is placed into a block using the following rule:
the source vertex determines the row of the block, and the destination vertex determines
the column of the block.

Distributed Graph Processing

As graph structures grow in size and complexity, they have already exceeded the computing
and memory capabilities of the most recent single processors. Distributed Parallel process-
ing seems to be required to overcome the resource restrictions of single processors in graph
calculations, given the success of parallel computing in many fields of scientific computing.
However, parallel graph computing is complicated because of many items we mentioned
earlier in Section 5.1. In the recent decade, developers had to use establish distributed
systems or create their own systems before introducing cloud computing and Hadoop,
which demanded extra work to offer fault tolerance and handle other parallel processing
issues. Nowadays is even more affordable to elaborate on distributed computing resources
with the growth of cloud computing servers and their tools. At this moment, researchers
already have a reliable tool to process massive data sets thanks to the MapReduce idea and
Hadoop (its open-source implementation) on CPUs and then less on GPU. However, on
FPGA resources and cloud computing, this is still an open space to research and investigate
the potential of a multi-FPGA platform to get the advantage of FPGA features compared to
CPU and GPU instances.

Hadoop Framework for Graph Processing
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Tab. 5.4.: Most recent and well-known graph partitioning suitable for FPGA implementation.

Graph
Partitioning
Algorithm

Methodology Programming
Language

Graph
partitioning

Source
code

Platform Year Adaptability
to Hadoop

GridGraph [181] Grid Partition of Edges C++ Store edge
partition
blocks on disk

Public CPU 2015 No

Lumos [162] Grid Partition of Edges
Plus cross-iteration
propagation values
support bulk
synchronous
processing

C++ Store edge
partitions as
blocks on disk

Public CPU 2020 No

FabGraph [136] Grid Partition of Edges
plus Hash partitioning
to support power Law
graphs

C++ Store partition
blocks on disk

not Public Multi-
FPGA

2019 No

PowerGraph [71] Vertex-cut partitioning C++, Java,
Scala

Partitioning
during
Runtime

Public CPU 2013 Yes

ThunderGP [30] Vertex-cut partitioning HLS-C/C++ Partitioning
during
Runtime

Public Single-
FPGA

2021 No

Foregraph [40] Shard-Interval HDL Partitioning
during
Runtime

not Public Multi-
FPGA

2017 No

Hadoop framework is a popular open-source, distributed platform and programmingmodel
for demanding big data analytics computations [8]. Hadoop map-reduce is a distributed
system of computation elements that uses a parallel programming model to handle massive
data. Data processing is decomposed into two primitives in this model: 1) a map function
that processes incoming data in key/value format in parallel and generates intermediate
data pairs, and 2) a reduce function that merges these pairs into meaningful outputs. In a
map-reduce architecture, a user application launches a Master controller and a sequence of
mappers and reducers distributed across several compute nodes. The root node coordinates
the generation of mappers and reducers and keeps track of their progress. A map() function
and a reduce() function are both included in a typical map-reduce application. Apache
Hadoop is a Java-based software framework for cluster-based distributed storage and
processing. In this work, the proposed architecture involves three stages: loading the input
graph, Mapping the Compute resources/workers, and Reducing the worker’s results. There
is an iteration phase to reach a good level of error. These steps must iterate over specific
iterations. The first stage loads the graph (e.g., Subgraph data 1, Subgraph data 2, etc.),
which various workers will process, e.g., worker 0 on CPU core 0, worker 1, CPU core 1, etc.
The second stage performs computation based on graph format and given condition and
performs various iterations on subgraph, e.g., Subgraph data part 1 on FPGA 1, Subgraph
data part 2 on FPGA 2. The high-level overview of the proposed Hadoop framework is
depicted in Fig. 5.2.

70 Proposal for a Distributed Large Scale Graph Processing on

multi-FPGA Platform



71 Chapter 5 – Proposal for a Distributed Large Scale Graph Processing on multi-FPGA Platform

Graph

Block(0,0)

Block(X,Y)

CPU/FPGA
Worker 1

CPU/FPGA
Worker 2

CPU/FPGA
Worker N

Block(N+1,M+1)

Su
b

-G
ra

p
h

-1
Su

b
-G

ra
p

h
-2

Block(N,M)

Block(K,J)

Su
b

-G
ra

p
h

-N Block(k+1,J+1)

Map Phase
Split Input

Result

CPU/FPGA
Worker 1

CPU/FPGA
Worker 2

CPU/FPGA
Worker N

Reduce Phase

Input Output

Iteration

Fig. 5.2.: The Hadoop framework for distributed graph processing high-level overview.

5.4 Hardware Implementation

We use vivado HLS language to implement our proposed method. Our target design
is Alveo boards from Xilinx . Fig.5.3a shows the Alveo U280 block diagram. We use
vivado design suite (Vitis version 2021.1) program to develop and implement the design
architecture. The implementation consists of two-phase, Kernel implementation and Host
program. As shown in Fig.5.3b, the source code includes host and kernel C/C++ codes.
The host code is responsible for implementing a software-based part of the design and will
be executed on the CPU. Moreover, the host code is responsible for loading and driving the
kernel code and executing it. On the other hand, kernel implementation is the hardware
kernels that use accelerator resources and is written in Vivado HLS. Host code will be
compiled with G++ compiler and Kernel source codes will be compiled with V++ Vitis
compiler with desired flags.

5.4.1 Host Program

As shown in Fig. 5.4 we divided the host program into a different section. The first section
is to receive the user’s graph and prepare the pre-process information and data. These
include the graph blocks path, the number of vertices, the number of edges, and the
number of partitions in a metadata file beside edges partitioned into blocks. Once the
graph information is received, the host program starts to further process data and fetch
blocks from the disk to the host RAM. This procedure is out of our measurement zone.
Other studies in this field also consider data already existing in the host RAM and already
prepared [137, 30]. The next step is to create aligned buffers to keep all data in the memory
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Fig. 5.3.: The Alveo card harwdare accelerator hardware and its compilation framework.

aligned. Otherwise, Xilinx Runtime (XRT) will complain about the memory misalignment,
and this will add extramemcpy during the runtime. To create aligned vectors, we use the
function shown in Listing 5.1.

After creating an aligned vector and fetching all necessary information and data in Host
RAM, we need to create the second stage, the bridge between host and kernels. This bridge
consists of buffers. In Listing 5.2, we show how to Create the OpenCL buffers between host
and kernel. In this snippet, vector<cl::Buffer> is an OpenCL namespace declaration
of the type Buffer and OCL_CHECK is a macro definition to check the OpenCL functions
declared return a successful value and does not have any error.

The last step is to instantiate the kernel(s) and set the kernel argument to be called within
the host code (see Listing 5.3).

5.4.2 FPGA Kernels

This design decided to directly exchange data between Host Memory and Kernel local
memory (array) using OpenCL functions. In this way, we have created small, efficient
OpenCL buffers located between Host and Kernels. Graph data will be injected into these
buffers and queued. The efficiency of the FPGA implementation is the main issue with
the local arrays. To implement local arrays, we need memory on FPGA Fabric. FPGA can
provide this memory as LUTs, BRAM blocks and Registers. However, these resources are
not enough to cover one or a few big local arrays. It might necessitate a more extensive
and more expensive FPGA chip. Using the DATAFLOW optimization and streaming the
data through small, fast FIFOs helps minimize the usage of block RAM, but this requires
the data to be consumed in a streaming sequential way and other complex optimizations.
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template <typename T>
struct aligned_allocator

3 {
using value_type = T;
T* allocate(std:: size_t num)

6 {
void* ptr = nullptr;
if (posix_memalign (&ptr ,4096, num*sizeof(T)))

9 throw std:: bad_alloc ();
return reinterpret_cast <T*>(ptr);

}
12 void deallocate(T* p, std:: size_t num)

{
free(p);

15 }
};

18 int main() {
... //rest of the main function
std::vector <uint32_t , aligned_allocator <uint32_t > > outdegree(vertices);

21 std::vector <EdgeId , aligned_allocator <EdgeId > > src(graph.edges);
std::vector <EdgeId , aligned_allocator <EdgeId > > dst(graph.edges);
std::vector <EdgeId , aligned_allocator <EdgeId > > buffer_out(vertices);

24 ... //rest of the main function
return 0;
}

Listing 5.1: The function declaration of creating aligned vectors.
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1 std::vector <cl::Buffer > outDegree(num_cu); // outdegree buffer
std::vector <cl::Buffer > edgeSrc(num_cu); // Source edges pre -processed
std::vector <cl::Buffer > edgeDst(num_cu); // Destination edges pre -processed

4 std::vector <cl::Buffer > output(num_cu); // PageRank output result to write
back into memory

std::vector <cl::Buffer > ffsize(num_cu); //Size of the each chunck of data
to be processes

7 for (int i = 0; i < num_cu; i++) {
/** Host buffers pointers */
OCL_CHECK(err ,

10 outDegree[i] =
cl:: Buffer(context ,

CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ,
13 DATA_SIZE * sizeof(uint32_t),

outdegree.data(),
&err)

16 );

OCL_CHECK(err ,
19 edgeSrc[i] =

cl:: Buffer(context ,
CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ,

22 DATA_SIZE * sizeof(EdgeId),
src.data(),
&err)

25 );

OCL_CHECK(err ,
28 edgeDst[i] =

cl:: Buffer(context ,
CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ,

31 DATA_SIZE * sizeof(EdgeId),
dst.data(),
&err)

34 );

OCL_CHECK(err ,
37 output[i] =

cl:: Buffer(context ,
CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ,

40 DATA_SIZE * sizeof(VertexId),
buffer_out.data(),

&err)
43 );

OCL_CHECK(err ,
ffsize[i] =

46 cl:: Buffer(context ,
CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ,
p2 * sizeof(VertexId),

49 fsize.data(),
&err)

);
52 }

Listing 5.2: The OpenCL commands used to create buffers between host and kernel.
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std::vector <cl::Kernel > krnls(num_cu); // num_cu is the number of compute
units

2 for (int i = 0; i < num_cu; i++) {
OCL_CHECK(err , krnls[i] = cl:: Kernel(program , "kernel_pagerank_0",

&err));
}

5

... //rest of the host program
for (int i = 0; i < num_cu; i++) {

8 int nargs = 0;
/** setting the kernel arguments */
OCL_CHECK(err , err = krnls[i]. setArg(nargs++, edgeSrc[i]));

11 OCL_CHECK(err , err = krnls[i]. setArg(nargs++, edgeDst[i]));
OCL_CHECK(err , err = krnls[i]. setArg(nargs++, output[i]));
OCL_CHECK(err , err = krnls[i]. setArg(nargs++, fsize[i]));

14 OCL_CHECK(err , err = krnls[i]. setArg(nargs++, vertices));
OCL_CHECK(err , err = krnls[i]. setArg(nargs++, partitions));

17 /** copy data to the device global memory */
OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ edgeSrc[i]}, 0 ));
OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ edgeDst[i]}, 0 ));

20 OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ outDegree[i]}, 0 )
);

OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ ffsize[i]}, 0 ));
}

23 for (int i = 0; i < num_cu; i++) {
/** Launch the Kernel */
OCL_CHECK(err , err = q.enqueueTask(krnls[i]));

26

}
OCL_CHECK(err , err = q.finish ()); //sync to execution

29 //and ensure all the execution is done till this point

Listing 5.3: The OpenCL commands to run the kernel using appropirate arguments and pointing
to created buffers in Listing 5.2.
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The following items highlight how to ensure that data access patterns result in the FPGA
implementation [170].

1) Reduce the number of data input reads. The data received into the block can read-
ily feed numerous parallel paths, but the hardware function’s inputs can become
performance bottlenecks.

2) If the data must be reused, read it once and employ a local cache.

3) Access to arrays, especially big arrays, should be kept to a minimum. Arrays are
implemented in block RAM, which, similar to I/O ports, has a limited number of
ports and can be a performance bottleneck. Arrays can be partitioned into smaller
arrays and even single registers, although dividing huge arrays will take a lot of
registers. To hold accumulations, use local localised caches and then write the final
result to the array.

4) Rather than conditionally executing jobs, including pipelined tasks, try to do condi-
tional branching inside pipelined tasks. Conditionals are implemented in the pipeline
as independent pathways. Allowing input from one task to flow into the next task
while applying the condition inside the next task will result in a more efficient system.

5) Shoud avoid writing unnecessary output for the same reason as input reads: ports
are bottlenecks. Replicating more accesses merely exacerbates the problem.

6) Consider using a coding style that encourages read-once/write-once to function
parameters in C code that processes data in a streaming fashion, since this guarantees
the function can be effectively implemented in an FPGA. It is more productive to write
a C method that results in a high-performance FPGA implementation than it is to
figure out why the FPGA isn’t doing as well as it should.

Fig. 5.5 shows a high-level overview of the design implementation. We used the Out of
order command queue to schedule better the commands from host to the kernel. Commands
from the Command queue can be issued in any order by the scheduler [150]. We explicitly
built up event dependencies and synchronizations in this manner. Listing 5.4 shows the
kernel declaration and its arguments.

Multi Kernel Implementation

The Vitis compiler builds a single hardware instance from a kernel. If the host program
executes the same kernel multiple times due to data processing requirements, it must
execute the kernel on the hardware accelerator sequentially. The order in which kernels
are executed has an influence on overall application performance. Vitis, on the other hand,
customises the kernel linking stage such that a single kernel can instantiate several hardware
compute units (CUs). The host software may now make several overlapping kernel calls,
executing kernels concurrently by running independent compute units, which can increase
performance. Using parameters in the v++ config file during linking, several CUs of a
kernel can be produced, as demonstrated in Listing 5.6.
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1 #define DAMPING_FACTOR 0.85
#define PE 16 // number of PEs
#define BUFFER_SIZE 64 //local arraye size

4 #define DATA_WIDTH 512

typedef ap_uint <DATA_WIDTH > pkt_data;
7 typedef unsigned int u32;

extern "C" {
10 void kernel_pagerank(

pkt_data *edge_src , //input 1 for source edges
pkt_data *edge_dst , //input 2 for destination edges

13 pkt_data *out_pr , // output pagerank value
int size , //size of the each block
int vertices ,

16 int partitions
) {

... //rest of implementation
19 }

}

Listing 5.4: The kernel function declaration.

1 [connectivity]
nk=pr:15: pr_1.pr_2.pr_3.pr_4.pr_5.pr_6.pr_7.pr_8.pr_9.pr_10.pr_11.pr_12.

pr_13.pr_14.pr_15
slr=pr_1:SLR0

4 slr=pr_2:SLR0
...
slr=pr_15:SLR2

7 sp=pr_1.m_axi_gmem:HOST [0]
sp=pr_2.m_axi_gmem:HOST [0]
...

10 sp=pr_15.m_axi_gmem:HOST [0]

Listing 5.5: The multi kernel configuration that enables running multiple instances of the kernel
in parallel from the host program.
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In this connectivity configuration, we also dedicate each kernel to the desired SLR (Super
Logic Region) of the FPGA and also dedicate the memory channel required. In our design
since host communicates with FPGA directly, all the kernel instances must be connected to
HOST[0]. As PCIe interface has 16 lanes, the FPGA provide only 15 lanes to be connected to
the kernel instances that can simultaneously communicate with the host. This technique
optimize the design significantly and we achieved close to 7x speedup while using multiple
kernel against one sequential kernel running on FPGA. Fig.5.6 shows the speedup gain we
achieve to execute the algorithm with multiple parallel kernels (in this case 15 kernels). The
real hardware implementation has been done on Alveo U250 from XACC Xilinx Adaptive
Compute Clusters in Eth Zürich. The server specifications and the hardware accelerator
with the resource utilization details is summarized in Table 5.5 and Table 5.6.

22.1

240.2

2.8

20.6

1

10

100

LiveJournal UK

Sequential kernel
Multiple kernels

Fig. 5.6.: The speedup gained while using multiple kernel instances against running the application
using sequential kernel.

Tab. 5.5.: The XACC xilinx server used to evaluate the real implementation.

Instance Name CPU Freq No. of Cores Memory Hardware
Accl.

alveo2a.ethz.ch Intel® Xeon® Gold
6234 2.50 GHz 16 128 GiB Alveo U250

Tab. 5.6.: The alveo U250 resource utilization in this experiment.

Resources CLBs BRAM URAM DSP Power

Available 215777 2688 1280 12280 -

Used 55771 (25.85%) 580 (21.60%) 0 4 23.47 (w)

5.5 Evaluation and Performance Model

In order to evaluate the proposed method, we consider several steps. The first step is to
evaluate the model based on the theoretical values. We defined all the metrics, system char-
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Tab. 5.7.: The performance model report, which has been calculated based on the bottlenecks like
PCIe Rate, Computation time, Communication time, etc. Here the number of SLR regions
used is equal to 1.

Dataset Transfer Data
to Memory 1

Optimal
number of
Partitions

Computation
Time

Execution
Time DFE

Execution
Time Software
Baseline

Anticipated
Speedup

LiveJournal 0.81 24 2.95 3.76 12.86 3.42
UK 9.76 16 39.03 48.8 1347 27.6
Twitter 14.89 35 61.26 76.1 538.1 7.1
Yahoo 67.7 73 322.2 389.9 4719 12
1 Reported time is seconds.

Tab. 5.8.: The datasets for evaluating our proposed study. We choose them based on the size and
the structure of the datasets to be comparable with other works.

Graph dataset Vertices Edge Size (GB) Type

LiveJournal [98] 4.8 M 68.9 M 0.514 Social Web

Web-UK-2005 [18] 39 M 994 M 7.5 Web Graph

Twitter [18] 61.6 M 1.47 B 11 Web Graph

Yahoo [18] 1.41 B 6.64 B 51 Web Graph

acteristics and parameters and based on the selected datasets we achieved the performance
model evaluation values.

In the performance model step, we figure out the bounds, bottlenecks, parallelism, and
speedup we can achieve, and we implement the portion that needs to be mapped into FPGA
by software C/C++ implementation. This implementation needs to be precise and describes
exactly the FPGA execution. Then we provide some metrics to measure important elements,
like speedup compared to parallelism with no partitioning. Some of the predicted system
characteristics of the model has shown in Table 5.7. As can be seen, the anticipated speedup
is calculated based on the computation time, communication time and other overheads
and bottlenecks such as PCIe Rate (here, we consider 0.85 as the efficiency of the PCIe).
Note that here we use all the SLR regions in our design aim to exploit the all capacity of
resources available on the FPGA.

Based on this performance evaluation, we achieved close to ∼ 12 times better than baseline
studies on CPU [181]. However, the status of current implementation on single FPGA is
slightly slower than what we calculated and expected in the performance model. This
may have serveral reasons including: 1) The implementation is not percisely perform
enough parallelism or efficiency on hardware, 2) The software model is over optimistic
and some bottlenecks in not considered correctly. 3) Since we are highly dependant to
PCIe efficiency, the PCIe efficiency might be less than 0.85, which we considered in our
performance model.

In terms of evaluating the real hardware implementation, as mentioned before, we deploy
the implementation on Alveo U250 from XACC Xilinx Adaptive Compute Clusters in
Eth Zürich, Based on the Table 5.8, Livejournal and UK datasets have been chosen to
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Tab. 5.9.: The evaluation of the hardware implementation of the GridGraph algorithm on CPU and
FPGA platform.

Baseline on CPU Intel(R) Xeon(R)
Gold 6234 CPU @ 3.30GHz

(seconds)
FPGA works (seconds)

Dataset Sequential OpenMP GridGraph
Foregraph[40]
(simulation model
24 PE)

Fabgraph[137]
(simulation model
48 (2x24) PE)

Our work
(1 PE)

LiveJournal 27.01 18.96 3.54 0.578 0.27 2.78
UK 275.44 214.2 32.3 N/A N/A 20.6

evaluate the implementation. Table 5.9 shows a comparison of the of the executing the same
algorithm of GridGraph on CPU and FPGA.

5.6 Conclusion

In this work we presented a distributed large scale graph processing application. We show
the advantage of using FPGAs and the reason of their growth in datacenters and cloud
servers. Our architecture uses Hadoop at the higher level to map a graph to the underlying
hardware. The higher layer of computation is responsible for gathering the blocks of data
pre-processed and stored on the host’s file system and distributing them to a lower layer of
computation made of FPGAs. Some parts of the high-level implementation on Hadoop is
still undone and we aim to present it in our future studies. In this work, we show how graph
partitioning combined with a FPGA architecture will lead to high performance without
limitation on the size of the graph, even when the graph has trillions of vertices. This
method combined with a distributed high-level framework like Hadoop can significantly
increase the performance especially for large scale datasets. We have implemented the
proposed method on single FPGA and for the next step we extend it to the multi-FPGA
distributed platform. In the current architecture the host program communicate directly
with the FPGA using PCIe interface. Although network bandwidth is the limiting factor for
multi-FPGA performance on most systems, this can lead to a potential increase in overall
system performance. Based on the experiment that we have done on PCIe interconnection in
Alveo U250, the interconnect bandwidth is measured (with dummy data and 15 kernels) not
exceeding than 10 GB/s. This is less thann the best bandwidth measured on DRAM almost
14.2 GB/s. However, using directly communication within host enables many features and
simplifies the design and development time. Moreover, the projection of next generation
hardware accelerators with PCIe version 5.0 will provide almost 64 GB/s bandwidth which
is greatly help to eliminate this interconnect bandwidth as a bottleneck.

Based on our performance model in the case of PageRank, forecasts performance improve-
ment of up to 20 times and a cost-normalized improvement of up to 12 times when com-
paring the proposed approach on one Xilinx Alveo U250 FPGA accelerator against a state-
of-the-art baseline graph processing software implementation on a high-end CPU like a
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32-core processor at 2.2 GHz. We aim to extend our application to cover graph processing
benchmarks such as WCC, SSSP and SpMV.

5.6 Conclusion 81





Dataflow Case Studies 6
„Pure mathematics is, in its way, the poetry of logical

ideas.

— Albert Einstein
(German theoretical physicist)

6.1 A Dataflow Methodology for Accelerating FFT

The native implementation of the N-point digital Fourier Transform involves calculating the
scalar product of the sample buffer (treated as an N-dimensional vector) with N separate
basis vectors. Since each scalar product involves N multiplications and N additions, the
total time is proportional to N2, in other words, it’s an O(N2) algorithm. However, it turns
out that by cleverly re-arranging these operations, one can optimize the algorithm down
to O(Nlog2(N)), which for large N makes a huge difference. The optimized version of the
algorithm is called the Fast Fourier Transform, or the FFT. In this work, we discuss about
an efficient way to obtain Fast Fourier Transform algorithm (FFT). According to our study,
we can eliminate some operations in calculating the FFT algorithm thanks to property of
complex numbers and we can achieve the FFT in a better execution time due to a significant
reduction of N/8 of the needed twiddle factors and to additional factorizations.

6.1.1 Introduction and Theoretical background

Fast Fourier Transform (FFT) is an important signal processing algorithm widely adopted
in communication systems to efficiently compute the Discrete Fourier Transform (DFT) of a
signal. The computational problem for the discrete Fourier transform (DFT) is to compute
the sequence Xk of N complex-valued numbers from another sequence of data xn of length
N. In general, xn is also assumed to be complex valued. Given a finite sequence of N points
xn, n = 0, 1, . . . , N − 1, its DFT is by definition the finite sequence:

Xk =
N−1

∑
n=0

xn · e−j 2π
N kn, k = 0, 1, . . . , N − 1 (6.1)

where j =
√
−1 and ejϕ = cos ϕ + j sin ϕ is the Euler’s formula. In the following, instead

of the term e−j 2π
N kn of Eq. 6.1, we use its equivalent term Wkn

N called twiddle factor, which
represents one of the N roots of order N of the unity. The twiddle factor has three properties:
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(a) basic DIT butterfly. (b) simplified 2-point butterfly.

Fig. 6.1.: Twiddle factor position for a length-2 DFT.

• Periodicity: Wh+N
N = Wh

N

• Symmetry: Wh+N/2
N = −Wh

N

• Recursion: Wh
N/2 = W2h

N

DFT has a computational complexity of O(N2), since we need N2 complex multiplication
and N · (N − 1) complex additions [82]. Based on the Cooley-Tukey decomposition [34],
many FFT algorithms have been developed to reduce the number of the arithmetic opera-
tions to a computational complexity in the order of O(Nlog2N) or less [131, 26, 86, 45, 47].
Without loss of generality we can assume that N is a power of two.

Given an N-point sequence where N = 2ν ∈N with ν > 1, then the DFT can be broken into
two (N/2)-point DFT sequences. The decomposition can be performed ν− 1 times, until
each DFT length is 2. A length-2 DFT is also named butterfly for the shape of its data flow
graph. The overall result is called a radix-2 FFT and its computation only requires σ = logN
stages, each with N/2-point DFT butterflies. In the following, we address more details.

Radix-2 FFT computes the DFT by dividing the N-point sequence in the even-indexed and
odd-indexed points, and then combining these two results to produce the DFT of the whole
sequence. In this case, Eq.6.1 becomes:

Xk =
N−1
∑

n=0
xn.Wkn

N =

(N/2)−1
∑

n=0
x2n.Wkn

N/2 + Wk
N

(N/2)−1
∑

n=0
x2n+1.Wkn

N/2

(6.2)

We can derive a graphical representation of the FFT by rewriting Eq.6.2 as Ak + WN
kBk,

and x2n = a(m) and x2n+1 = b(m). Thus, DFT[a(m)] = A(k) for even-numbered samples,
and DFT[b(m)] = B(k) for odd-numbered samples. With this assumption, represent the
N/2-point DFTs of the sequences a(m) and b(m), respectively. Due to the periodicity of the
DFT, the outputs for N/2 ≤ k < N from a DFT of length N/2 are identical to the outputs
for 0 ≤ k < N/2. That is, A(k + N/2) = A(k) and B(k + N/2) = B(k) for 0 ≤ k < N/2. In
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addition, the factor Wk+N/2
N = −Wk

N thanks the to symmetrical property. Thus, the whole
DFT can be calculated as follows:

Xk = A(k) + Wk
N B(k)

Xk+N/2 = A(k)−Wk
N B(k)

0 ≤ k < N/2

(6.3)

Finally, by substituting A(k) with g and B(k) with h, X(k) with G and X(k + N/2) with H,
we obtain Fig.6.1a. By recursively applying this step we arrive to N = 2, with the simplified
implementation of Fig.6.1b. In the next sections, we describe our idea, its evaluation and
more related works.

6.1.2 Reducing the needed twiddle factors

In Fig.6.2 we can observe some properties of twiddle factors that can help understand
diminishing the number of operations.

Re

Im

1w−

1w

1v1v− 1w

1w−

1v

1v−

j-

Fig. 6.2.: Relationship among twiddle factors: W̃ means a rotation of −π/2, whilst W means the
conjugate.

Given Wk
N

def
== w1 − jv1, with 0 < k < N/2, let us define

W̃k
N

def
== (−j) ·Wk

N = −v1 − jw1 (6.4)

which represents a rotation of −π/2 on the Re-Im plane or, in terms of “butterfly”, the
following diagram:

Thus, given Eq. 6.4, we can then express the following seven twiddle factors based on the
single twiddle factor Wk

N as follows, where the overline represents the conjugate operation
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Fig. 6.3.: Eliminating Complex Multiplication based on our proposed method.
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As can be seen in Fig. 6.3, the complex multiplication with (−j) can be obtained by exchang-
ing the Re and Im parts and adjusting signs. Similarly, for the multiplications with the
twiddle factors in Eq. 6.5, we can perform just one single complex multiplication with Wk

N

and make the necessary re-arrangements of Re and Im parts as well as adjusting the signs of
additions and subtractions in the butterflies. So we can use just one twiddle factor instead
of eight: we reduced the needed twiddle factors by a factor of 8. To further explain how we
can exploit the above observations, in the next section we consider a simple example for
N = 8 together with its data-flow program graph.

6.1.3 The 8-point FFT Data-Flow Graph

According to section 6.1.1, we can arrange the operations of FFT algorithm to obtain the but-
terfly diagram of Fig.6.4. In that figure, black lines carry real values, green lines imaginary
values, and red lines complex numbers. Its Data-flow ProgramGraph (DPG) for the first two
stages is shown in Fig. 6.5. In the second stage, from semantic point of view, the twiddle
factor operator W1

4 = −j does not imply an actual arithmetic operation, but it only turns
into a signed imaginary number its incoming real value as explained in section 6.1.2. Then,
coupled to the respective real numbers in the addition and subtraction operations, these
imaginary numbers form the complex numbers inside the dashed boxes. Therefore, as an
example, the complex number a2

1 = (a1
1 − ja1

3), the complex number a2
3 = (a1

1 + ja1
3), and so

on. In the picture the π/2 rotations andminus operations are only shown for clarity reasons,
but they do not require any kind of operation, being conjugate values whose origin number
is the real value a1

3. It will be in the third stage that they actually acquire their meaning in
term of sign. In fact, let us consider the two complex product a2

5 ×W1
8 and a2

7 ×W3
8 . Set
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Fig. 6.4.: 8-point butterfly FFT.

Fig. 6.5.: Data-Flow Program Graph (DPG) for the first two steps.
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W1
8 = (w1 − jv1) and W3

8 = (−w3 − jv3), we have that |w1| = |v1| = |w3| = |v3|. Then, for
the two products we have the following equations:

a2
5 ×W1

8 = (a1
5 − ja1

7)× (w1 − jv1) = w1(a1
5 − a1

7)− jw1(a1
5 + a1

7) (6.6)

a2
7 ×W3

8 = (a1
5 + ja1

7)× (−w1 − jv1) = −w1(a1
5 − a1

7)− jw1(a1
5 + a1

7) (6.7)

If in the Eq. 6.6, we name σ the real value w1(a1
5 − a1

7) and τ the imaginary value −w1(a1
5 +

a1
7), then we have a2

5 ×W1
8 = (σ + jτ) and a2

7 ×W3
8 = (−σ + jτ). Consequently, the two

complex multiplications are reduced to two real multiplications and additions, where the
real values σ have opposite signs (π rotation) but same imaginary value τ. Now for σ we act
just like a1

3. Fig.6.6 shows the new DPG of the butterfly in Fig.6.3. In the new diagram of Fig.
6.6 the total operations on real numbers are reduced to 27 (Table 6.1). Previous work showed
that the number of mathematical operations can be reduced further [59, 46], however, here
we propose a practical implementation inspired by the data-flow graph instead of a purely
mathematical study. Even if not shown in Fig.6.6, we could have simplified further the DPG
by applying the relation X(k) = X(N − k) where required, thus saving four ADD/SUB
operations; we can save also the SUB before a2

6 thus obtaining the result reported in [59] for
an 8-point DIT (20 ADD/SUBs and 2 MULTs). This DPG in Fig. 6.6 has the advantage of
including only dyadic operators and the critical path is optimized: in the next section we
will show that this implementation leads to a better execution time compared to [34, 54],
when translated into C code.

Tab. 6.1.: Summarized number of different operations in DPG

Methodology Complex MULT Re and Im ADD/SUB Total ops.

Cooley-Tukey FFT [34] 12 31 43
Reduced FFT 2 25 27

6.1.4 Experimental validation

We compare the execution time of our 8-point modified algorithm,which is implemented
on Ryzen7 AMD 16 Core CPU running on 3.6 GHz clock. For measuring the performance
of this proposed FFT Data-Flow graph, we calculated the result by a C/C++ code [127].

As can be seen in Table 6.2, we implemented our proposed algorithm, FFT[34] and FFTW
version 3.3.8 [54] by using fftw_plan_dft_r2c_1d plan. The results show that our proposed
algorithm reduces the execution time significantly, compared to FFT and FFTW. The execu-
tion time in a our proposed methodology is 0.160µs while in FFTW is 1.5x and in FFT is 2.2x
slower. We used "gettimeofday" function to acquire these results and listed in Table 6.2.
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Fig. 6.6.: DPG after the third step.

Tab. 6.2.: Experiment Result for our proposed FFT Algorithm

Algorithm Compiler Time (µs)
Cooley-Tukey FFT [34] GCC 0.348

FFTW [54] GCC 0.248
Our Proposed FFT GCC 0.160

6.1.5 Related work

There are many studies about implementing FFT algorithm on FPGA’s and CPU’s, however
this study shows the efficiency of implementing FFT algorithm in a new way to eliminate
some operations to achieve high performance result. Just a few years after 1965whenCooley-
Tukey FFT algorithm published, many scientists around the world start to investigate this
interesting and useful algorithm in many different applications. As a result their work
made FFT literature highly immense. In [172] Yavne presented what became known as the
“split-radix” FFT algorithm for N=2m obtaining an improvement by 20% over the classic
“radix-2” algorithm presented by Cooley-Tukey. More recently, in [84] the Authors lowered
the operations number by a further 5.6%. Although the performance of FFTs on recent
computer hardware is determined by many factors besides pure arithmetic counts [3], there
still remains an intriguing unsolved mathematical question: what is the smallest number of
arithmetic operations required to compute a DFT of a given size? Other FFT algorithms,
such as radix-4[142], radix-8[26], radix-(4+2)[86], split-radix[47] algorithms, have been
proposed using the complex mathematical relationship to reduce the hardware complexity.
As the algorithms were derived based on intensive mathematical manipulation, it is not
straightforward to understand the mathematical meaning and apply them to derive new
FFT algorithms. The computational complexity and the hardware requirement are greatly
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dependent on the FFT algorithms in use. In[45], Despain showed a newmethod of deriving
very fast FFT algorithms to be implemented in a digital hardware. Accordingly, there
are other scientific researches worked on implementing algorithm on digital hardware for
different applications to accelerate computation time alongwith reducing the computational
complexity. In[147], authors showed the performance and energy efficiency of a processor-
integrated FFT accelerator, designed to support efficient integration of low-level and high
level signal, image, and video processing. In[27], authors show the design method of a
real-time FFT processor which introduced adaptive overflow control to avoid overflow
without interrupting the computing pipeline. In other hand, for Data-Flow programming,
in [158] authors present a new type of soft-core processor called the “Data-Flow Soft-Core”
that can be implemented through FPGA technology with adequate interconnect resources.
This processor provides data processing based on data-flow instructions rather than control
flow instructions [107]. Accordingly we inspired our data-flow computing procedure from
which authors discussed about it basically in [160].

6.1.6 Conclusion and future works

Fast Fourier Transform is a widely used kernel in many research fields. In this study, we
introduce a new methodology to reduce the arithmetic operations for a FFT algorithm,
then we show the experimental results for implementing this FFT data-flow. Results show
that the time required to reach the result by reducing the operations is 1.5x faster that
other well-known FFT algorithm such as FFTW. As our future work we will expand this
methodology to generalize the algorithm.
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A Custom Board To Perform
Distributed Computing

7

„Users do not care about what is inside the box, as long
as the box does what they need done.

— Jef Raskin
about Human Computer Interfaces

7.1 Gluon: The High-Speed Interconnect Solution

Heterogeneous systems are one of the most discussed architectures in computer science.
Their capabilities have provided many good features for researchers to use this kind of
structure in their state-of-the-art works. Heterogeneous systems are flexible, cost-efficient,
and well-supported by communities. They are widely used in artificial intelligence, au-
tomotive, IoT, and embedded applications. Moreover, there is also a challenge to have a
sufficient, cost-efficient, and flexible structure to use heterogeneous systems. In this section,
we present the Gluon board, which uses serial transceivers in Xilinx Ultrascale+ structure
and facilitates using GTH transceivers in high data rate transfer applications. The possible
solution would be a high data rate cluster network based on Zynq Ultrascale+ MPSoCs,
which can easily deploy a multi-node, multi-code structure at a reasonable cost [7].

In recent years, there are someworks to introduce a heterogeneous platform such as AXIOM
[63], which can provide flexible infrastructure for AI applications as well discussed in [64].
However, there was a need to exploit all serial transceivers of Xilinx Ultrascale+, plus, can
also capable of carrying fully operating support with a sufficient amount of memory. We
designed the Gluon board, which can provide all these requirements. As can be seen in
7.1, the idea is to provide necessary elements to build a FPGA based cluster to accelerate
applications such as AI, IoT, automotive and computing applications [68, 132, 3]. The worker
Nodes in this figure, can be connected to each other and can receive orders by the Root
node. The connection between each two nodes is up to 18 Gb/s and the topology of the
network can be define by the user and depends on the applications such as Mesh, Start,
Ring, 2D-Torus etc. This infrastructure, pave the road to have a distributed system, which is
applicable to develop and test many interesting ideas.

The speed rate of GTH transceivers has been calculated by a running full Ubuntu AXIOM
software stack [4] by using netperf measurement between two board using variety of
payloads. As can be seen from Fig.7.2b, we measured payload sizes from 1024 to 524280
bytes starting with 2 software threads. Then we increased the number of threads up to
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Fig. 7.1.: The cluster of FPGAs using Gluon boards. The network is capable of creating different
network topologies such as Mesh, Star, 2D-Torus etc.
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Fig. 7.2.: Gluon board block diagram and throughput to test the functionality of the board.

32 threads and see how the workload can saturate the network and reach its maximum
performance. For the future work we have planned to add some useful features to Gluon
board, that can cover more area of computing science some applications [3, 159]. Another
future study is the RISC-V core implementation and experiment by using our dataflow
execution model can be achievable by a significantly reasonable cost.
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7.2 Conclusion

We designed and presented the first version of the Gluon board (see Fig.7.2a), which
provides necessary elements to fully exploit Giga Transceivers of Xilinx Ultrascale+modules.
This structure is cost-effective, reliable, and flexible, a different number of modules of Xilinx
MPSoCs can embark on this carrier board based on the budget of the user and just need to
check the compatibility of the module with the carrier board.

Gluon board is the modified and enhanced version of the TEBT0808 board from Trenz
Company [69], which with the new design is able to power up the FPGAmodule with unix-
based operating system. Gluon enables serial transceivers in Xilinx Ultrascale+ structure
and facilitates using GTH transceivers in high data rate transfer applications.

7.2 Conclusion 93





Conclusion and Future Studies 8
„What we know is a drop, what we don’t know is a

ocean.

— Isaac Newton
(1643-1727)

In this section, we conclude the discussion of this thesis. Herewe point out the achievements
and what has been left and couldn’t cover during the Ph.D. period. A critical aspect of
the thesis is that while it is essential to analyze the theoretical bounds of algorithms, it
is also necessary that the algorithms perform well in practice. Therefore, we focused on
establishing a solid baseline with notable benchmarks to stress the potential of the execution
models. We performed different evaluations on the selected benchmarks and got practical
conclusions within these experiments. We achieved several results regarding our Dataflow
Execution Model compared to other well-known programming models, similar to our
execution model. We outperform Cilk and OpenMPI with different experiments. The
outstanding investigation against Cilk and OpenMPI leads us to believe the following
facts:

1) Even though DF-threads do not have compiler support and has an overhead of trans-
lated function compiled by GCC compiler, it can outperform well-known parallel
programming models in both multi-core and multi-node fashion.

2) DF-Threads has a great potential to be distributed over a multi-node platform. This is
challenging for many parallel programming models.

3) DF-Threads performs parallelism in fine-grained level and shows great potential to
execute many fine-grained elements without losing the performance.

We are particularly interested in heterogeneous platforms in this thesis. Heterogeneous
systems are adaptable, cost-effective, and popular among communities. Our research
focuses on CPU+FPGA heterogeneous systems, typically consisting of a general-purpose
CPU (x86 or ARM) running alongside an FPGA accelerator in a general-purpose Operating
System. A state-of-the-art, highly efficient graph processing software implementation on a
high-end CPU such as a 32-core processor at 2.2 GHz against a Xilinx Alveo U250 FPGA
accelerator. We design and fabricate the GLUON board, which employs serial transceivers
in the Xilinx Ultrascale+ Heterogeneous accelerator and supports GTH transceivers in high
rate data transfer applications, a necessity in our hardware platform structure.

Moreover, a practical application is shown to illustrate the usefulness of the suggested exe-
cution paradigm and tools. We design and demonstrate a graph processing implementation
aim to cover very large scale graph sizes. We first choose a graph partitioning method from
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the literature to do this. We ended up GridGraph partitioning method to partition the input
graph and reside the chunks and other helpful information in the preprocessing phase on
the file system. We use this information and data as the input files of the hardware accelera-
tor. At a higher level, Hadoop is used to translate a graph to the underlying hardware in our
design. The higher computing layer is in charge of gathering and distributing preprocessed
and stored data blocks from the host’s file system to a lower layer of computation made up
of FPGAs.

In future work we plan to optimize the hardware kernels and deploy or hardware architec-
ture on real cloud platform (which was one of the main motivations of this work). Another
future development is to deploy our Dataflow-Threads execution model on our Gluon het-
erogeneous platform. In this regard, a potential RISC-V implementation of the DF-Thread
on Gluon structure will be implemented and evaluated as a prototype to describe the ca-
pability of the DF-thread as a next generation of exascale high performance computing
framework.
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A

A.1 MPI profiling with mpiP

mpiP[1] is an open-source library that provides lightweight profiling of MPI applications.
It uses statistical sampling to record profiling data, thus is not as accurate as other profiling
tools but it is lightweight and trace files are much smaller particularly for very large MPI
process runs. No code changes are required to use mpiP but a re-link is required. From the
performance data provided by the tools, the POP performance metrics can be calculated.
The code should be compiled with the -g flag and linked with the mpiP library. The link
line is shown below:

#!/bin/bash
2

mpicc -g bmm -mpi.c -o bmm -mpi -L/user/mpiP/installation/dir/ -lmpiP
export LD_PRELOAD =/user/mpiP/installation/dir/libmpiP.so

5 export MPIP="-c -d -p -y -k 0"

export LD_LIBRARY_PATH =/user/mpiP/installation/dir/: $LD_LIBRARY_PATH

Listing A.1: How to compile and set environment variables for mpiP profiling tool

The code is executed as normal with mpirun and the performance report is saved to a file.
The file name will be printed at the end of the application run. The performance report
contains the following sections:

1) MPI%: The percentage of time each rank is spending in MPI (which includes MPI-IO)
and non-MPI;

2) Sites: Call sites which are locations in the code containing MPI calls;

3) AppTime: The overall time that application spent in each rank.

4) The top 20 call sites that spend the most time in MPI;

5) The top 20 calls sites that send themost data;

6) MPI call site statistics which include number of times called, averagemaxmin time
spent, and percentage of time in code and MPI;

7) MPI call site statistics which include number of bytes sent, and averagemaxmintotal
bytes sent.
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1 call MPI_INIT( ierr )
call MPI_PCONTROL( 0 ) ! 1. disable profiling
[ ... ] ! 2. The initial body of the Application

4 call MPI_PCONTROL( 1 ) ! 3. enable profiling
for i = 1, Ni ! 4. region of interest that is doing
[ ... ] ! computation and communication

7 end for
call MPI_PCONTROL( 0 ) ! 5. disable profiling
[ ... ] ! 6. some other computation

10 call MPI_FINALIZE( ierr )

Listing A.2: The command specifications to specify the region of interest to profile with mpiP

Regions of interest (ROI) in the code can be enclosed with MPI_PCONTROL to switch onoff
profiling. The example code below shows how to control profiling of regions of interest:
The following Listing A.3 shows the experimental results performed on tfx2 machine and
profiles withmpiP, theMPIin thewhole algorithm, as you can see the percentage varies from
rank to rank and this is a good example of weak scheduler of the Linux system (of course
this behavior depends on the Linux kernel and the tuning parameters, therefore using batch
manager which perform tuned scheduling with MPI will eliminate this problem). Note that
MPI time also includes MPI-IO subroutine calls (including parallel NetCDF and parallel
HDF5) but not POSIX I/O. The AppTime field includes MPI time, so to calculate user-code
time, It is subtracted MPITime from AppTime. The data in second part and UsrTime have
been manually calculated and are not included in the output of mpiP.

1 @--------------MPI Time (seconds) ---------------
Task AppTime MPITime MPI% UsrTime
0 17 1.55 9.13 15.45

4 1 17 2.2 12.94 14.8
2 17 2.14 12.60 14.86
3 17 2.18 12.84 14.82

7 4 17 2.17 12.76 14.83
5 17 2.07 12.22 14.93
6 17 1.03 6.05 15.97

10 7 17 1.39 8.21 15.61
8 17 1.64 9.68 15.36
9 17 0.753 4.43 16.24

13 10 17 2.04 12.02 14.96
11 17 2.39 14.09 14.61
12 17 4.03 23.73 12.97

16 13 17 4.06 23.91 12.94
14 17 4.06 23.91 12.94
total 255 33.7 13.23( Avg) 221.29

19 @--------------Manually Calculated --------------
max 17 4.06 23.91 16.26
min 17 0.753 4.43 12.94

22 avg 17 2.24 13.23 14.7

Listing A.3: The output of profiling the OpenMPI benchmark with mpiP from LLNL repository.
The results show the MPI overhead and UsrTime compared to the overall execution
time.
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The other kind of report that can be collected with mpiP profiling is shown below, in this
profiling experiment, we changed the environment variables for the mpiP and let it collect
the aggregate data based on each type of MPI calls, like Send, Receive, Barrier and Bcast,
the report is shown in listing A.4.

@ mpiP
2 @ Command : ./bmm -mpi 2000

@ Version : 3.5.0
@ MPIP Build date : Jul 26 2021, 23:39:46

5 @ Start time : 2021 08 30 14:46:58
@ Stop time : 2021 08 30 14:47:15
@ Timer Used : PMPI_Wtime

8 @ MPIP env var : -c -d -p -y -k 0
@ Collector Rank : 0
@ Collector PID : 1939

11 @ Final Output Dir : .
@ Report generation : Single collector task
---------------------------------------------------------------------------

14 @--- Task Time Statistics (seconds) ---------------------------------------
---------------------------------------------------------------------------

AppTime MPITime MPI% App Task MPI Task
17 Max 17.028874 0.970338 0 11

Mean 16.994485 0.824369
Min 16.990061 0.189923 2 0

20 Stddev 0.009534 0.188070
Aggregate 254.917268 12.365537 4.85
---------------------------------------------------------------------------

23 @--- Aggregate Time (top twenty , descending , milliseconds) ----------------
---------------------------------------------------------------------------
Call Site Time App% MPI% Count

26 Recv 135 8.44e+03 3.31 68.29 28
Send 148 1.87e+03 0.73 15.13 28
Bcast 8 1.77e+03 0.69 14.29 30

29 Barrier 7 283 0.11 2.29 15
---------------------------------------------------------------------------
@--- Aggregate Point -To -Point Sent (top twenty , descending) ---------------

32 ---------------------------------------------------------------------------
Call MPI Sent % Comm Size Data Size
Send 11.1 8 - 15 2097152 - 4194303

35 ---------------------------------------------------------------------------
@--- End of Report --------------------------------------------------------
--------------------------------------------------------------------------

Listing A.4: The aggregate collective report from mpiP profiling, matrix size 2000 and number of
workers 15

The graphical plot of the MPI overhead (MPI% section in Listing A.3) has been illustrated
in Figure A.1.

Based on the raw data profiled with mpiP, the user can calculate useful metrics to see how
the profiling help to understand better the performance of the MPI application. As listed
below there are three metrics that can be achieved using this raw data,
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Fig. A.1.: Results of profiling BMM with MPI shows an example of the MPI overhead over 15 cores,
it can be seen from the results that most of the workers have unbalanced MPI overhead
across available resources, and in this case not having a ideal speedup. (Experiment has
been done on TFX2)

1) Load Balance (LB)

2) Communication Efficiency (CommE)

3) Parallel Efficiency (PE)

The mentioned metrics can be calculated as follows: The load balance (LB)metric can be
calculated by the average user-code time (average of all MPI processes) divided by the
maximum user-code time. For the above example, this is going to be calculated as follows:

LoadBalance = Average user code
Maximum user code

× 100 =
14.7
16.26

= 90.4% (A.1)

The communication efficiency (CommE) can be calculated by maximum user code time
divided by the runtime:

CommEffeciency =Maximum user code
Runtime

× 100 =
16.26

17
= 95.6% (A.2)

The runtime can be measured in the mpiP output log, just need to subtract the two stop
and start timers as follows:
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@ mpiP
2 @ Command : ./bmm -mpi 1728

@ Version : 3.5.0
@ Start time : 13:54:49

5 @ Stop time : 13:55:06
--> @ Runtime : 17.0

Listing A.5: The mpiP output log and how to calculate manually the runtime, this runtime time is
not a part of the mpiP output log.

The last metric that can be investigated is Parallel Efficiency (PE); The parallel efficiency is
a product of load balance and communication efficiency (the last two metrics):

ParallelEffeciency =(LB× CommE)/100 = (90.4× 95.6)/100 = 86.42% (A.3)

The above metrics can be measured with different problem sizes, different number of
processors and different environments and the user can plot them in a figure to see the
behavior of the algorithm on different aspects and learn lessons from this numbers.

A.2 Pure OpenMPI on Hyper threaded Hardware

As an extension to our measurement, we studied the impact of dedicating MPI processes to
one Hardware thread, it turns out for small sizes of the task (i.e., Matrix size of 512) it works
fine. However, while the problem size is increased, the impact of using hwthread will slow
down the performance. Note that here we leave everything to Linux Scheduler to schedule
the acquisition of hwthread on cores and migrate the jobs between hwthread, and the
OpenMPI options left as default except –use-hwthread-cpus, since pining the MPI process
to the specific hwthread and use MPI options like –map-by core/hwthread or bind them
using –bind-to core/hwthreadwill impact more negatively on the overall performance.
There are some –MCA1 options to give more direction to the MPI processing like –mca btl
self,sm, however these options are dependent to the algorithm implementation and the
hardware used, In our case none of these option were changed the execution performance.

Figure A.2 shows the speedup for BMM on an hyper threaded machine, the specification
of the machine has been listed in Table A.1. As can be seen from Figure A.2 the trend
of the speedup for all the chosen matrix sizes is close to the linear speedup, this trend
continues until each hwthread from each core is used by the execution model, then (after
16 No. of processors in this case) the second hwthread on each core will be used in our
experiment. It can be seen a significant slow down with big number of matrix size 4096
and no impact within small size 512. It can be due the fact that this implementation of pure
1An MCA framework uses the MCA’s services to find and load component sat run time. An MCA component
is a stand-alone collection of codes that can be inserted into the Open MPI code base at run-time and/or
compile-time
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Tab. A.1.: The configurations of the experiment that has been done on TFX3 a Single Multi-core Machine.

Title Description
Operating system Ubuntu 20.04.3 LTS

OpenMPI version 2.1.1

OpenMPI options mpirun -n $j –use-hwthread-cpus –hostfile ∼/hosts ./executable $i

GCC Version version 9.3.0

GCC Flags -O3

Kernel 5.11.0-27-generic

CPUs 32

Processor AMD Ryzen Threadripper 1950X 16-Core

Hyper threading Enabled (2 Threads per Core)

L1d cache: 512 KiB

L1i cache: 1 MiB

L2 cache: 8 MiB

L3 cache: 32 MiB

Network Single Multi-core Machine

two-sided point-to-point OpenMPI can not exploit the shared memory for two hwthread in
one core (L1,L2 and L3). This must be developed with the especial primitives of OpenMPI
to exploit shared memory environments as discussed in detail in [87]. On the other hand,
by monitoring the execution of the experiment by Linux tools like htop, can be seen that the
kernel activity suddenly increases a lot once the second hwthread of the core is called by
the execution model of the experiment. This works[87, 128, 73] discuss the implementation
of OpenMPI to manage the shared memory resources in hyper threading environments.
One can try OpenMPI+X, where X can be OpenMPI as a well-known shared memory
programming model or shared-memory MPI implementation of the given algorithm.

A.3 Scripts

To do the experiments I use some scripts to collect the data from the execution, I keep all the
benchmarks with the same scripts, the output will be a csv file that includes the execution
time for ‘average’, ‘minimum’ and ‘maximum’ numbers, and a PNG file which is output of
the GNUPLOT for the given csv file, I plot the bar chart plus error bars for each experiment.
The user can collect the csv files and plot different figures based on the needs. A sample of
the script is shown in the listing A.6,

1 #!/bin/bash
host=‘hostname -s‘
release=‘lsb_release -r | awk ’NR==1{ printf $2}’ | cut -c -2‘

4 distro=‘lsb_release -d | awk ’NR==1{ print $2.$3}’ | cut -c -1‘
date=‘date +%Y%m%d%H%M | cut -c 3-‘
core=‘getconf _NPROCESSORS_ONLN ‘

7 wdir=‘pwd ‘
toolname=‘pwd | awk -F/ ’{print $5$6}’‘
cpath="run_bmm.sh" #command path

10 size="3978" # input range

118 Appendix B - Parallel Programming Models Notes



119 Chapter A – Appendix B - Parallel Programming Models Notes

1

4

7

10

13

16

19

22

25

28

31

1 6 11 16 21 26 31

Sp
ee

d
u

p

No. of processors

Matrix size 512

Matrix size 1024

Matrix size 2048

Matrix size 4096

Ideal speedup

HyperthreadingPhysical Cores

Fig. A.2.: Results obtained from the BMM with OpenMPI with different Matrix sizes. It turns
out while the second thread of the core is calling, the performance decreases due to the
shared-memory resources that Pure OpenMPI implementation can not manage it and
moreover kernel scheduler is not optimized for this execution model, However on logical
cores the trend is almost linear.
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irange="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20"
mstring="EXECUTION TIME" # matching string

13 mcolumn="5" # matching column
nrep="10" #number of repetition of the test
if [ ! -d "$wdir" ]; then

16 echo "ERROR: cannot find ’$wdir ’"; exit 1
fi
if [ ! -s "$wdir/$cpath" ]; then

19 echo "ERROR: cannot find ’$cpath ’ in ’$wdir ’"; exit 1
fi
cd $wdir

22 FILENAME=$toolname -$host$distro$release"C"$core -$date
re=’^[0 -9]+$’
fl= ’^[+ -]?[0 -9]+\.?[0 -9]*$’

25 echo "pwd=‘pwd ‘"
echo "create log and plot file name: $FILENAME.csv"
echo "logs and plots will store into $wdir/logs/"

28 echo ""
declare -a value
for i in $irange; do

31 a="0"; min=""; max="0"
for r in ‘seq $nrep ‘; do

output =‘./ $cpath $size $i 2>error.log ‘
34 val=‘echo "$output"|awk "/$mstring /{ print \\$5}" c=$mcolumn ‘

if ! [[ $val =~ $re ]] ; then echo "ERROR: The output is not a number
! (input=$i,output=’$val ’)" >&2; exit 1; fi

if [ 1 = ‘echo "$val > $max"|bc ‘ ]; then max="$val"; fi
37 if [ "$min" = "" ]; then min="$val"; a="$val" else

if [ 1 = ‘echo "$val < $min"|bc ‘ ]; then min="$val"; fi fi
i1=‘expr $i - 1‘

40 a=‘echo "define trunc(x) { auto s; s=scale; scale =0; x=x/1; scale=s;
return x } trunc($a * $i1 / $i + $val / $i)"|bc -l‘

if [ "$i1" = "0" ]; then value="$a" fi
b=‘echo "define trunc(x) { scale =2; x=x/1.0; return x } trunc($value/
$a)"|bc -l‘ #speedup

43 done
echo "$i,$a,$min ,$max ,$b" #printf the index , avg , min , max and speedup
printf %s’\n’ "$i ,$a ,$min ,$max ,$b" >> $FILENAME.csv done

Listing A.6: The script to iterate the experiment of a loop and collect the numbers, producing a
suitable csv file that can be used for reports

To plot the desired ‘csv’ file as the output of the experiment, I prepared a GNUPLOT script
as can be seen from Listing A.8, which is prepared to plot the speed and execution time.
Dealing with GNUPLOT is straightforward, however, there are some ticks that the user
should carefully consider them to have a nice graph.

for FILE in ${FILENAME }.csv; do
gnuplot <<- EOF

3 set xlabel "Numebr of workers"
set ylabel "Execution time (ms)"
set key left
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6 set term png
set style histogram cluster gap 1
set style fill solid 0.5

9 set boxwidth 0.9
set style histogram errorbars linewidth 1
set errorbars linecolor black

12 red = "#FF0000"; green = "#00 FF00"; blue = "#0000FF"; skyblue = "#87
CEEB" ; violet = "#FF00FF"; purple = "#440154" ;
set grid ytics
set format y ’10^{%L}’

15 set logscale y
set autoscale x
set yrange [1:]

18 set output "${FILENAME }.png"
set datafile separator ","
set style data histogram

21 plot "${FILENAME }.csv" using 2:3:4: xtic (1) title "Execution time (ns)"
linecolor rgb purple linewidth 0
EOF

done

Listing A.7: The script to fetch numbers from a generated csv file and plot it using GNUPLOT

1 #!/usr/bin/gnuplot -p
set terminal pngcairo size 800 ,800
set size square

4 matrixsize =’45+5’
filename=’RFIB -CILK -TFX3 ’
set title sprintf(’%s, size %s’, filename ,matrixsize)

7 set xlabel "Number of Workers" font "Times -Roman ,16"
set ylabel "Execution time (s)" font "Times -Roman ,16" offset 0
set style increment default

10 set offsets 0.05, 0.05, 0, 0
set style function linespoints
set bmargin 6

13 unset colorbox
set key left
#set term png

16 set logscale y
set grid x y
set output sprintf(’%s.png ’, filename)

19 set datafile separator ","
set style line 101 lc black lt 1 lw 2 pt 6 pi -1 ps 1
set key samplen 3 spacing 1.5 font " ,12"

22 set key box width -2
set pointintervalbox 3
plot "RFIB -cilk -tfx3.csv" using 2:xtic(int($0)%2==0 ? strcol (1):’’) with

linespoints ls 101 title "execution time"

Listing A.8: The GNUPLOT script uses to create graphs using the csv file output. The user should
take care of the name of the csv file and other decorations such as title, fonts, etc.
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