
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Measurements in the
Edge-Cloud Continuum:
Network Metrics and Energy
Consumption

Chiara Caiazza

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Measurements in the Edge-Cloud
Continuum: Network Metrics
and Energy Consumption

Chiara Caiazza

Advisor:

Prof. Alessio Vecchio

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Prof. Dario Bruneo, Università degli Studi di Messina
Prof. Vincenzo Mancuso, IMDEA Networks Institute

XXXIV ciclo — January 2022

To my family

ii

Acknowledgments
First and foremost I would like to thank my Advisor Prof. Alessio Vecchio for the
invaluable and patient guidance received duringmy Ph.D. I would also like to thank
Researcher Valerio Luconi for the valuable advice received during these 3 years. I
would like to thank the members of my Supervisory Committee Prof. Enzo Min-
gozzi and Researcher Raffaele Bruno for having provided useful recommendations
that helpedme to improvemywork. Then, I would also like to express my gratitude
to Prof. Silvia Giordano for providing me with a stimulating collaboration during
my period abroad despite the countless problems caused by the pandemic. Finally,
I would thank Regione Toscana for the Pegaso grant and Simona Altamura for her
administrative support.

iii

Abstract

Edge computing is an emerging network paradigm based on the idea of
moving computational and storage resources closer to the end users. This type
of architecture can bring a variety of benefits compared to the traditional cloud-
based one, such as lower latency, higher throughput, increased privacy, and re-
duced congestion of the Internet core. However, making an effective use of edge
computing requires to monitor the performance of the network, e.g. to take ap-
propriate decisions about if and where computation should be offloaded, or
which server in the edge-cloud continuum is more suitable for a given opera-
tion.

Most of the existing networkmeasurementmethods and tools are not specif-
ically designed to operate in an edge computing scenario. For this reason, mech-
anisms aimed at collecting network metrics in an edge environment have been
first designed and then used to collect experimental data in a realistic testbed.
Network measurements can also be useful at design time, e.g. to evaluate dif-
ferent edge/cloud solutions by means of trace-driven simulations, as discussed
in this thesis. The energy needed by client devices to communicate with edge or
cloud resources is another important aspect, since such devices, which include
smartphones and IoT nodes, are generally battery-operated. To better under-
stand how the edge computing paradigm impacts the energy needed to com-
municate, an analyticalmodel of a request-response communication schemehas
been defined. Themodel highlights that the improved latency of an edge server,
compared to a cloud one, can reduce the energy needed by clients. Energy sav-
ings are particularly significant when communication takes place according to
a connection-oriented protocol.

This thesis also looks at the path between client nodes and cloud resources
from a purely topological perspective. Traceroute is the most commonly used
tool, not only for network diagnostics, but also for discovering all the nodes
towards a server. We evaluated the discovery capability of three variations of
TCP-based traceroute. The first version is the classical one and uses SYN seg-
ments as probes. The other two versions operate on a connection already estab-
lishedwith a server and useDATA andACK segments as probes. This is done to
possibly bypass traceroute suppression mechanisms or firewalls. Experimental
results show that using different types of probes is useful to obtain a richer view
of the path towards network resources.

Contents

Contents 1

List of Figures 3

List of Tables 8

1 Introduction 11
1.1 Multi-access Edge Computing . 11
1.2 Understanding the paths towards remote cloud servers 13
1.3 Contributions . 14
1.4 Outline . 15

2 Background 17
2.1 Compare Edge- and cloud-based performance 17
2.2 Evaluating the energy consumption of a Terminal Node in an edge-

computing system . 23
2.3 Evaluating the paths towards the cloud 25

3 Collecting performance metrics in a MEC environment: challenges and
requirements 29
3.1 The MEC architecture . 29

4 A tool for collecting network metrics in a MEC environment 33
4.1 MECPerf architecture . 33
4.2 Validation . 43

5 Data collection and experimental results 49
5.1 Network setup . 49
5.2 MECPerf-active measurement results 55
5.3 DASH measurement results . 61
5.4 Lessons learned . 71

1

2 CONTENTS

6 UseMECPerf experimental results to build a simple trace-basednetwork
simulator 73
6.1 Using the experimental results to generate input traces 74
6.2 Use the NetworkTraceManager to implement a simple simulator . . . 78

7 Estimating the energy consumption of terminal nodes in edge/cloud sce-
narios 81
7.1 Modeling the LTE interface as a finite state machine 82
7.2 Estimating the energy consumption of a connectionless application . 84
7.3 Estimating the client-side energy consumption of a connection-oriented

application . 87
7.4 The Energy evaluator module . 91
7.5 The energy consumption of an ideal connectionless application 91
7.6 The energy consumption of a trace-based connection-oriented appli-

cation . 99

8 Evaluating the path to remote clouds 107
8.1 The camouflage traceroute software modules 108
8.2 The camouflage traceroute discovery capabilities 113

9 Conclusions 125

A Evaluating the computational load of MECPerf 129

B List of Acronyms 133

C Publications 137

Bibliography 141

List of Figures

3.1 The high-level architecture of a MEC network. 30
3.2 A path composed of three links with different utilization levels, available

bandwidths, and capacities. 30

4.1 The four components composing the MECPerf architecture and the in-
teraction between them during MECPerf-active, MECPerf-passive, self-
active, and self-passive measures. 34

4.2 The interaction between the MECPerf Client (MC), the MECPerf Ob-
server (MO), and the MECPerf Remote Server (MRS) during a generic
MECPerf-active measure. 37

4.3 The sequence diagram of a TCP MECPerf-active bandwidth measure. . . 38
4.4 The basic functioning mechanism behind the packet pair technique. . . . 39
4.5 The sequence diagramof aUDPMECPerf-active bottleneck capacitymea-

sure. 40
4.6 The sequence diagram of a MECPerf-active latency measure. 41
4.7 The setup used during the validation of the MECPerf collection system. . 43
4.8 The results of the validation for MECPerf-active latency measurement

methods. RTT values have been averaged among 10 repetitions. 44
4.9 The results of the validation for MECPerf-active TCP bandwidth and

UDP bottleneck capacity measurement methods. TCP bandwidth and
UDP bottleneck capacity values have been averaged among 10 repetitions. 45

5.1 The setup used during the collection of MECPerf-active metrics. 51
5.2 The setup used during the collection of MECPerf- and self-passive met-

rics for a DASH application. 53
5.3 The boxplots of MECPerf-active TCP bandwidth metrics computed dur-

ing Wi-Fi and LTE experiments. 56
5.4 The boxplots of MECPerf-active UDP and TCP latencymetrics computed

during Wi-Fi experiments. 58
5.5 The boxplots of MECPerf-active UDP and TCP latencymetrics computed

during LTE experiments. 59

3

4 LIST OF FIGURES

5.6 The results collected during UDP bottleneck capacity MECPerf-active
downlinkWi-Fi experiments considering a scenariowhere no cross-traffic
is injected into the access network. 60

5.7 The results collected during MECPerf-passive downlink bandwidth Wi-
Fi experiments considering different levels of cross-traffic injected into
the access network. The bandwidth values have been computed consid-
ering buckets of 0.5 seconds. 63

5.8 The results collected during MECPerf-passive downlink bandwidth LTE
experiments considering different levels of cross-traffic injected into the
access network. The bandwidth values have been computed considering
buckets of 0.5 seconds. 64

5.9 The boxplots of self-passive bandwidth metrics. The results are based on
Wi-Fi downlink experiments and consider a scenariowhere a cross-traffic
generator injects different levels of cross-traffic into the access network. . 65

5.10 The boxplots of self-passive bandwidth metrics. The results are based on
LTE downlink experiments and consider a scenario where a cross-traffic
generator injects different levels of cross-traffic into the access network. . 66

5.11 The uplink and downlink traffic during DASHWi-Fi experiments. 67
5.12 The boxplots ofMECPerf-passive downlink latencymetrics, representing

the performance of thewireless segment that connects the clients and the
AP. The results are based on Wi-Fi experiments and consider different
scenarios where a cross-traffic generator injects different levels of cross-
traffic into the access network. 68

5.13 The boxplots of MECPerf-passive uplink latency metrics, representing
the performance of thewired network segments that connect theAPwith
bothMEC and cloud servers. The results are based onWi-Fi experiments
and consider different scenarios where a cross-traffic generator injects
different levels of cross-traffic into the access network. 69

5.14 The uplink and downlink traffic during DASH LTE experiments. 70
5.15 The boxplots ofMECPerf-passive downlink latencymetrics, representing

the performance of thewireless segment that connects the clients and the
AP. The results are based on LTE experiments and consider a scenario
where a cross-traffic generator injects different levels of cross-traffic into
the access network. 70

6.1 The interaction between the MECperf collection tools, the MECPerf Li-
brary, and third-party software that requires metrics to compute simula-
tion or analysis activities. 74

6.2 The interaction between the MECPerf Library and a generic third-party
software components. 76

6.3 The simulated architecture. 79

LIST OF FIGURES 5

6.4 The 0,5, 0,75, 0,95 RTT quantiles for γ values that goes form 0 to 0,5. Val-
ues are plotted considering a 95% confidence interval. 79

7.1 The reference architecture considered in this Chapter. The client appli-
cation is running on TNs hosted in the access network using LTE con-
nections to communicate with servers located on both edge and cloud
networks. 82

7.2 The finite state machine of an LTE module. 82
7.3 The interaction between the client and the server considering a connec-

tionless application operating on an application period TI 85
7.4 The interaction between the client and the server, considering a connection-

oriented application operating on an application period TI 88
7.5 The TCP-based application used to collect TTX, TRX, and TW values in a

real environment. 89
7.6 The setup used to collect TTX, TRX, and TW values in a real environment

for a connection-oriented application. 90
7.7 The values of ρ obtained setting the amount of transmitted data and the

elaboration time, while variable RTTC and TI are adopted. The red area
identifies those configurations producing ρ values greater than 1. For
these points, using the cloud is the most convenient choice. Conversely,
for the blue area, the most convenient choice is using the edge. 93

7.8 The values of ρ obtained setting the application period and the elabora-
tion time, while a variable RTTC and a variable amount of transmitted
data are considered. The red area identifies those configurations pro-
ducing ρ values greater than 1. For these points, using the cloud is the
most convenient choice. Conversely, for the blue area, the most conve-
nient choice is using the edge. 96

7.9 The values of ρ obtained setting the application period and the amount of
transmitteddata, while variable RTTC and elaboration times are adopted.
The red area identifies those configurations producing ρ values greater
than 1. For these points, using the cloud is the most convenient choice.
Conversely, for the blue area, the most convenient choice is using the edge. 97

7.10 The values of ρ obtained setting the amount of transmitted data, while
variable elaboration times and application periods are adopted. The red
area identifies those configurations producing ρ values greater than 1.
For these points, using the cloud is the most convenient choice. Con-
versely, for the blue area, the most convenient choice is using the edge. . 98

7.11 The value of ρ collected for a connection-oriented applicationwhen an in-
creasing amount of data transferred is considered. The results are based
on TTX, TW , and TRX values collected at night. 100

6 LIST OF FIGURES

7.12 The mean energy consumption (EI) required to transmit data upon the
10 repetitions, considering a ∆RTT of 200 milliseconds and an applica-
tion period (TI) of 40 seconds. The TTX and TRX values were collected
during a set of measurements performed at night. The plot shows the
99% of confidence interval of the mean values. 101

7.13 The mean time required to transmit data upon the 10 repetitions, con-
sidering a ∆RTT of 200 milliseconds. The TTX and TRX values were col-
lected during a set of measurements performed at night. The plot shows
the 99% of confidence interval of the mean values. 102

7.14 The mean time required to transmit data upon the 10 repetitions, consid-
ering a ∆RTT of 200milliseconds. The TTX and TRX valueswere collected
during a set of measurements performed during the day. The plot shows
the 99% of confidence interval of the mean values. 104

7.15 The value of ρ collected for a connection-oriented applicationwhen an in-
creasing amount of data transferred is considered. The results are based
on TTX, TW , and TRX values collected during the day. 105

7.16 The mean energy consumption (EI) required to transmit data upon the
10 repetitions, considering a ∆RTT of 200 milliseconds and an applica-
tion period (TI) of 40 seconds. The TTX and TRX values were collected
during a set of measurements performed during the day. The plot shows
the 99% of confidence interval of the mean values. 106

8.1 The basic operating principles of camotrace. The source node combines
probes and legitimate HTTP GET requests, eliciting some ICMP Time
Exceeded messages from the intermediate routers. 108

8.2 The software components of the ACK-based version of camotrace and
their interactions. 112

8.3 The setup used to validate the data segment-based version of camotrace. 113
8.4 The 20 states where the majority of the targets are hosted and the dis-

tance in kilometers between the source and the target in the correspond-
ing country. 116

8.5 The eCDFof theASpath length using the data segment-based camotrace,
the ACK-based camotrace, and the TCP traceroute probing methods. . . 117

8.6 The eCDF of the number of interfaces per AS using the data segment-
based camotrace, theACK-based camotrace, and the TCP traceroute prob-
ing methods . 118

8.7 The upset plots of the number of unique IP interfaces, unique AS num-
bers, unique AS links found by the SYN-, the DATA-, and the ACK-based
methods. 119

LIST OF FIGURES 7

8.8 The percentage of paths for which differences in terms of number of hops
can be appreciated when (1) the DATA-based methods found at least
one hop that cannot be discovered using the SYN-based method, (2) the
SYN-based methods found at least one hop that cannot be discovered
using the DATA-based method, (3) both methods found at least one hop
that cannot be discovered using the other method, or (4) the two meth-
ods found the same hops. 120

8.9 The number of additional hops discovered. 121
8.10 The normalized position of groups of additional hops 122
8.11 An example of dk∗

M computation. 123

A.1 The setup used to assess the computational load of MECPerf. 129
A.2 The CPU usage rate measured on the MO during a set of experiments

aimed at evaluating the computational load of MECPerf. Precisely, each
value represents the average rate monitored for 1000 seconds during a
set of TCP uplink measures. 130

A.3 The CPU usage rate with and without the optimizations applied to the
measurement library. 131

List of Tables

2.1 A comparison between emulators and simulators in the field of edge
computing systems. The comparisonwas based on network-related char-
acteristics. 28

4.1 The values of the operational parameters used during the validation of
both MECPerf-active TCP bandwidth and MECPerf-active UDP bottle-
neck capacity methods. 45

4.2 The results obtainedduring the validation forMECPerf-passivemeasure-
ment methods. 47

5.1 The technical characteristics of the devices used during MECPerf-active,
MECPerf-passive, and self-passive experimental data collection. 50

5.2 The operational parameters used to collect MECPerf-active metrics. . . . 52
5.3 The operational parameters used to collect MECPerf- and self-passive

metrics. 55

7.1 The mean power consumption of the LTE interface adopted. 83
7.2 The maximum time spent in each state of the adopted FSM. 84
7.3 The setup used to compute the ρ values of Figure 7.7. 93
7.4 EW , EQ, and EI values for the edge- and the cloud-based configurations

considering a connectionless application with TI equal to 750 and 1 000
milliseconds, RTTC values ranging from 50 to 300 milliseconds, TELAB
equals to 150 milliseconds, RTTE equals to 40 milliseconds, and 16 000
bytes for both BTX and BRX. 95

7.5 The setup used to compute the ρ values of Figure 7.8. 96
7.6 The setup used to compute the ρ values of Figure 7.9. 97
7.7 The setup used to compute the ρ values of Figure 7.10. 98
7.8 The setup used to compute the ρ values of Figure 7.11. 100
7.9 The setup used to compute the ρ values of Figure 7.15. 105

8.1 δk∗ values obtained with the three different probing methods 124

A.1 The technical characteristics of the devices used to assess the computa-
tional load of MECPerf. 130

8

LIST OF TABLES 9

C.1 CRediT – Contributor Roles Taxonomy. 139

Chapter 1

Introduction

Over the past decade, the amount of data generated by mobile devices has seen a
significant growth, and this trend is expected to endure for the next years (Ericsson
Mobility Report, 2021). This increasing amount of data transmitted, combined with
the growing number of web services provided, has pushed the design of the Multi-
access EdgeComputing (MEC) architecture, which basically extends the centralized
cloud architecture, distributing computing and storage capabilities at the edges of
the network.

1.1 Multi-access Edge Computing
MEC (ETSI, 2018; Kekki et al., 2018) is a network paradigm that enables the shifting
of storage and computing capabilities from centralized remote clouds to points of
the network closer to end-users (Campbell, 2019; Pan andMcElhannon, 2018). Edge
servers may be placed on Base Station (BS) (Guo et al., 2018) or a few hops from
them (i.e., on Internet of Things (IoT) gateways (Bellavista et al., 2019) or on other
devices belonging to the network operator (Liu et al., 2020a)).

This kind of network architecture introduces several benefits when compared
with the classical cloud architecture (Campbell, 2019; Taleb et al., 2017; Filippou
et al., 2020). Firstly, edge servers provide lower latencies than cloud servers. This
is particularly important for applications that have particularly stringent latency re-
quirements such as online gaming (Zhang et al., 2019), Augmented Reality (AR)
(Braud et al., 2017a), Virtual Reality (VR) (Braud et al., 2017b), and connected ve-
hicles communications (Giust et al., 2018; 5GAA, 2017). Secondly, the use of edge
servers allows obtaining higher throughput, providing several advantages to appli-
cations that need to send or receive considerable amounts of data, such as real-time
video analytics (Wang et al., 2018) and other multimedia applications (Qadri et al.,
2020). Thirdly, when a client is communicating with an edge server, data packets
do not need to cross the public Internet. This has implications for the privacy of

11

12 Introduction

user’s data(Caprolu et al., 2019), which is a critical aspect for industrial 4.0 applica-
tions (Zheng and Cai, 2020; Krupitzer et al., 2020; Industrial Internet Consortium,
2019; 5G-ACIA, 2019; Reznik et al., 2018) or for other applications based on sensi-
tive data (i.e., healthcare applications (Nauman et al., 2020), facial/behavior recog-
nition (Wang et al., 2017), and so on). Furthermore, since the adoption of edge
servers ensures that data no longer has to leave the operator’s network, the use of
edge servers can diminish congestion within the core Internet network.

It should be also remarked that in this type of architecture the destination serv-
ers can be chosen among multiple servers placed in both edge and cloud networks.
Finding server placement and orchestration strategies that are local and globally
optimal is a convoluted optimization problem. Such optimization problems should
consider multiple factors such as application requirements, network load, energy
consumption, andprivacy constraints. However, current networkperformancemea-
surement strategies are designed for end-to-end applications running on cloud serv-
ers. In fact, in a MEC architecture, the client can interact with a myriad of servers
located in different parts of the infrastructure. For this reason, assessing the per-
formance of relevant network segments separately may be more beneficial than col-
lecting the performance of the entire path. For example, by considering the metrics
between the client and the BS and between the BS and a target server, it is possi-
ble to isolate the performance of the wireless link from that of the wired part of
the path. Using this type of knowledge, an orchestrator may take application place-
ment decisions without considering the wireless link, which is common to all the
possible paths between the client and both edge and cloud servers. Additionally, by
combining networkmetrics collected on different network segments, it is possible to
estimate the performance between the clients and both edge and cloud servers with-
out repeatingmeasures on some segments (e.g., the wireless link can bemeasured a
single time). Consequently, they do not provide measurement methodologies that
are appropriate for the systematic collection of metrics within the MEC environ-
ment. Consequently, they do not provide measurement methodologies that are ap-
propriate for the systematic collection of metrics within the MEC environment. For
example, runtime networkmetrics calculated between the client and the application
server can be used to assess whether the current deployment continues to meet the
application requirements or if some changes in the network conditions require to
relocate the application server. Alternatively, runtimemetrics collected between the
client andmultiple application servers can be compared to assesswhether a different
placement is able to introduce additional benefits (e.g, diminishing theworkload on
the edge node or decreasing the energy consumption). Similarly, metrics calculated
between edge and cloud servers can be used to assess the cost of propagating data.
Then, with the objective of gathering network performance metrics for the network
segments that connect Terminal Nodes (TNs) and application servers, running on

1.2 Understanding the paths towards remote cloud servers 13

both MEC and cloud networks, and the network segments that connect edge and
cloud servers a measurement tool called MECPerf was developed.

In the literature, several works attempt to study how the use of a MEC infras-
tructure can have an impact on the performance of applications running on TN. In
fact, offloading part of the operations to edge (or cloud) nodes can bring different
benefits to constrained devices such as smartphones, IoT nodes, and other similar
devices (Srinivasa et al., 2019). For example, the transfer of complex tasks allows
to run computationally demanding applications on devices that normally would
not have enough computational capabilities to run them (Hao and Wang, 2019; Za-
hed et al., 2020; Li et al., 2021a). Additionally, a node with sufficient computing
capacity may still choose to transfer a task in order to save power and extend its
battery life. In fact, it is important to note that constrained devices are generally
also battery-powered. Therefore, the reduction of energy consumption is often a
non-negligible requirement, while communication is an energy-demandingprocess.
Consequently, a trade-off between task offloading and the optimization of commu-
nication operations is required. Energy consumption optimization strategies in the
MEC environment are still an open research problem (Jiang et al., 2020) that could
affect not only the lifetime of the device but also the environmental impact of the
entire system. The second part of this thesis was devoted to evaluating how com-
munication latency can affect the energy consumption of a constrained Long Term
Evolution (LTE) end-device.

1.2 Understanding the paths towards remote cloud
servers

Finally, the last part of this thesis is aimed at studying network paths between TNs
and remote application services. Awidely adoptedmechanism for identifying hosts
belonging to the path that connects two hosts is the one based on traceroute. The
original implementation, developed by Van Jacobson, relies on UDP probes sent to
a target host, while other variants have been added in the following years. Basically,
the traceroute procedure is based on the use of IP packets, manipulating their Time
To Live (TTL) header fields. The procedure is based on the assumption that a packet
should be dropped whenever it is received by a router with TTL equal to 1. In ad-
dition, an ICMP Time Exceeded(Postel, 1981) message should be sent to the sender.
At this point, the sender can correlate the IP address of the source router, obtained
from the ICMP message, with the TTL value that elicited the ICMP message. In-
stead, different mechanisms are adopted to detect the target machine, depending
on the version of the traceroute used. For instance, the target hosts reply to UDP-
based probes using ICMP Port Unreachable messages, to TCP-based probes using

14 Introduction

a TCP SYN + ACK or a TCP RST packets, and to ICMP-based probes using ICMP
Echo Reply messages.

Investigating the topology of the Internet is a challenging task(Luckie et al., 2008a)
and numerous papers in the literature have attempted to use traceroute-basedmech-
anisms to carry out this type of investigation (claffy et al., 2009; Gregori et al., 2018;
Madhyastha et al., 2006; Shavitt and Shir, 2005; Luckie et al., 2008b). For example,
some routers may not send any ICMP packets, or they may only send them only
under specific conditions (e.g., when their workload is low or when a given request
rate was not exceeded). Additionally, firewalls, traffic shapers, and other similar
machines are capable of identifying traceroute traffic using deep packet inspection
techniques. Therefore, in some domains, probes and ICMP Time Exceeded mes-
sages can be eliminated according to completely arbitrary policies, even if these prac-
tices are prohibited within the European Union as they conflict with net neutrality
principles(Guidelines on the Implementation by National Regulators of European
Net Neutrality Rules , 2016). In any case, if packets are dropped at some point, the
last part of the Internet path will be undetectable by traceroute-based mechanisms.
Therefore it is important to implement mechanisms capable of circumventing these
classification and filtering mechanisms. With this objective, a traceroute variant has
been conceived. Basically, the main idea behind this mechanism is based on alter-
nating probe messages and legitimate application data. In other words, the probe
messages are sent together with the application data using an already established
TCP connection. The goal of this mechanism is to conceal the probes, making them
appear as genuine application data and bypassing possible classification and filter-
ing machines.

1.3 Contributions
In the following the contribution of this thesis will be outlined:

• A tool for the collection of network-related performance metrics in a MEC en-
vironment was designed. The tool, called MECPerf, was used during an ex-
tensive measurement campaign that involved various measurement methods.
Experiments were carried out in a testbed participating in a Fed4Fire+ project
funded by the European Commission within the H2020 program. Finally, the
dataset containing the collected metrics has been made publicly available.

• Two analytical models aimed at estimating the energy consumption of TNs
operating within a MEC environment using LTE connections were designed.
The former is an analytical model specifically designed for connectionless ap-
plications. Instead, the latter is a hybrid model designed for evaluating the
consumption of connection-oriented applications. Indeed, the hybrid model

1.4 Outline 15

integrates the ideas behind the analytical model with a set of experimental
measurements, in order to adapt to the increased complexity of TCP connec-
tions. These two models have been used to compare the energy consumption
of a TN communicating with an edge server and the energy consumption of
a TN communicating with a cloud server. Results show that in many cases an
edge-based placement of the server is more energy efficient.

• A traceroute variant operating at the application level has been proposed. The
tool called camouflage traceroute (camotrace) aimed to study the network
path that connects a source node and a destinationWeb server using as probes
HTTP requests and acknowledgment packets sent over previously established
TCP connections. Fundamentally, the purpose of this tracerouting mecha-
nismwas to persuade firewalls to classify probes as normal application traffic,
avoiding filtering events.

1.4 Outline
This thesis is organized as follows.

First, Chapter 2 summarizes the relevant literature concerning the comparison of
performance in edge- and cloud-based environments, analyzing offloading strate-
gies, publicly available datasets containing edge computing data, benchmarking
tools for edge computing platforms, and emulators and simulators of edge network
systems. Then, some works that attempt to assess the energy consumption of LTE
TNswill be discussed. Finally, this chapter will concludewith an overview of works
based on the study of the topology of the public Internet.

Chapter 3 will briefly illustrate the MEC architecture. Then the types of metrics
that can be collected and the main idea behind their collection will be explained.

Chapter 4 will present MECPerf. First of all, the software modules that compose
MECPerf and their integration within a MEC architecture will be explained. Then,
MECPerf was used during an experimental campaign aimed at collecting network
metrics according to different methods in a MEC environment. The design of the
experiments and the metrics collected will be debated in Chapter 5. Finally, some
considerations regarding the computational load of MECPerf will be given in Ap-
pendix A.

Chapter 6 will illustrate the MECPerf Library, an Application Programming In-
terface (API) developed to allowprogrammers to easily access theMECPerf dataset,
which contains all the metrics collected during the European project. This Chapter
will conclude with a simple example of the usage of the library.

Chapter 7 will investigate how an edge-based architecture can affect the energy
consumption of an LTE TN operating in aMEC environment according to a request-

16 Introduction

response schema. Precisely, first I will provide a Finite State Machine (FSM) model
of the LTE interface. Then, analytical and hybrid energy-consumption models will
be provided. The twomodels will be used to assess the energy consumption of both
connectionless and connection-oriented applications. Finally, the Chapter will con-
clude with a comparison of the consumption of a TN interacting with both edge and
cloud servers, considering multiple amounts of data transmitted, multiple applica-
tion periods, multiple server-side computation delays, and multiple RTTs.

Chapter 8 will illustrate the implementation details of camotrace, debating both
the HTTP- and the ACK-based probes methods. Then, after a validation measure-
ment campaign, the discovery capabilities of camotracewill be comparedwith those
of the TCP traceroute.

Finally, Chapter 9 will conclude this thesis.

Chapter 2

Background

In the last few years, the edge computing network paradigm(Bellavista et al., 2019)
has received considerable attention in different research fields, such as computation
offloadingmodeling (Lin et al., 2020a), resource management (Hong and Varghese,
2019), communication (Porambage et al., 2018), and service orchestration (Taleb
et al., 2017).

2.1 Compare Edge- and cloud-based performance
Some works tried to assess the advantages introduced by edge computing elements
quantitatively.

For example, Vilela et al. (2019) presented a 3-layer architecture for a Fog Com-
puting system in a healthcare environment. The proposed architecture was formed
by a sensor network, a middle (fog) layer, and a remote cloud infrastructure layer.
The results were compared with a traditional cloud computing solution. As a re-
sult, the authors found that the energy consumption and the communication la-
tencies can be reduced by executing the tasks into the fog layer. Another compar-
ison between edge computing and traditional cloud-based architectures was pre-
sented by Hu et al. (2016a). The benefits introduced by the edge-computing in-
frastructure have been evaluated regarding response time and energy consump-
tion metrics. The experiments were conducted considering the offloading of both
processing-intensive and latency-sensitive applications and using different network
configurations and access technologies (i.e., Wi-Fi and cellular technologies). The
results showed that all the considered metrics enhanced when computations were
offloaded to the edge nodes.

SOUL (Jang et al., 2016) is an application framework intended for Android de-
vices. It aimed to aggregate multiple sensors on different devices transparently to
the programmer, moving on edge nodes the computational load of sensor-based
applications. The SOUL architecture is based on two main blocks called SOUL en-

17

18 Background

gine and SOUL Core. The SOUL Engine is executed on mobile devices and was in
charge of aggregating virtual sensors and virtual actuators. Instead, the SOUL Core
is implemented in edge nodes, and it is in charge of applying access control policies,
storing into a database the data collected from sensors, and distributing the load
of constrained devices. Results based on micro-benchmarks have shown that over-
head, scalability, and power consumption metrics achieved by SOUL are better than
those achievable by standard approaches.

The adoption of an edge-based solution in vehicle-to-pedestrian systems has
been studied by Nguyen et al. (2020). In this type of environment, collision detec-
tion algorithms can use contextual information generated by cars and users’ smart-
phones to prevent dangerous situations. The study evaluated the cost and the ben-
efits of offloading tasks from the smartphone to the edge, considering battery con-
sumption and processing time. Then, otherworks concerning the benefits ofmigrat-
ing applications from remote clouds to edge nodes in a Vehicle to Everything (V2E)
scenario can be found in (Napolitano et al., 2019), (Emara et al., 2018), and (Quadri
et al., 2022). Precisely, Napolitano et al. (2019) presented a warning system capable
of gathering context information from all the road users, notifying vulnerable users
(e.g., pedestrians, bicyclists, and other non-motorized vehicles) whenever a poten-
tially dangerous situation is detected. The results showed that the introduction of
the edge can reduce the time needed to propagate information. Similarly, Emara
et al. (2018) studied the impact of a MEC infrastructure on end-to-end latency met-
rics. The simulation-based results demonstrated that the introduction of edge nodes
can reduce end-to-end latency by up to 80% when compared to the conventional
cellular network architecture. Finally, Quadri et al. (2022) studied the feasibility of
migrating platooning control applications from vehicles to edge hosts considering
the impact of delay metrics, packet losses, coverage holes, and the scalability of the
system.

To conclude, De Vita et al. (2021) show DeepLeaf, an Artificial Intelligence (AI)
application based onConvolutional Neural Networks (CNN) and deployed on edge
nodes. To fulfill the hardware constraint of edge nodes, the application uses a dy-
namic K-Means-based compression algorithm to reduce the memory footprint of its
Deep Neural Networks (DNN) model.

Offloading strategies
In recent years, a large number of articles concerning task offloading strategies have
been presented in the literature. For example, Xu et al. (2019a) shows an offload-
ing strategy for deep-learning applications. The offloading decisions are based on
a heuristic algorithm aimed at minimizing the offloading transmission delay and
maximizing the number of offloaded tasks. Instead, iTaskOffloading (Hao et al.,
2019) was another offloading decision scheme for AI applications. Differently from

2.1 Compare Edge- and cloud-based performance 19

the previous work, iTaskOffloading supports the offloading of tasks from TNs to
both edge and cloud nodes. Offloading decisions are computed using a cognitive
engine that considers a multiplicity of factors (i.e., latency, computing, and storage
requirements) to minimize the time needed to execute the task and the energy con-
sumption.

Cheng et al. (2020) presented an offloading strategy forAutomatic SpeechRecog-
nition (ASR). The tool provides two different offloading methods. In the first case,
the TNs can offload the task to the cloud, which executes the task entirely. Other-
wise, they can offload the task to an edge node, which only extracts the features of
the audio during a pre-processing phase. Then, the extracted features were sent to
the cloud for further processing. Instead, Yang et al. (2020) presented EdgeRNN,
a speech recognition tool developed to run on edge devices. EdgeRNN performed
speech recognition tasks by combining 1-Dimensional Convolutional Neural Net-
works (1-D CNN) with Recurrent Neural Networks (RNN) based on spatial and
temporal features.

Offloading strategies based on deep reinforcement learning solutions have been
studied by Rahman et al. (2020) and Nath and Wu (2020). Precisely, Rahman et al.
(2020) presented an offloading mechanism that minimized the overall latency, con-
sidering both power consumption and computing capabilities constraints. The re-
sults, obtained through simulation, showed that the proposed method can achieve
lower delays than other well-known benchmarking schemes. Instead, Nath andWu
(2020) presented an offloading strategy for cache-assisted MEC systems. Funda-
mentally, in this type of system, the edge nodes can store popular task data in their
caches. This reduces both the latency and the energy required to compute offloading
operations as popular tasks have not to be uploaded to edge nodes.

Zhao et al. (2020), Liu et al. (2020b), and Xu et al. (2019b) analyzed privacy-
related problems. The analysis conducted by Zhao et al. (2020) studied an offload-
ing strategy based on artificial neural networks and genetic algorithms. The model
was computed under the assumption of having an attacker capable of monitoring
the offloaded tasks by hacking the edge nodes. This vulnerability could lead to sev-
eral privacy-related problems. For example, by monitoring the frequency at which
the user offloads his tasks, an attacker may be able to discover the user’s identity.
Instead, Liu et al. (2020b) and Xu et al. (2019b) investigated about the secrecy of
the offloaded data. The former paper(Liu et al., 2020b) showed a framework, called
DataMix, strived to guarantee the privacy of the user data. DataMix was based on
the assumption that cloud servers should be considered malicious nodes unable to
meet privacy constraints, while edge nodes can be trusted. Consequently, the ma-
licious clouds should not receive user data in clear. However, they cannot be fully
decommissioned as edge nodes with poorer capabilities may not be sufficient to ex-
ecute users’ tasks. Then, to solve the problem, an inference process composed of

20 Background

three phases was proposed. During the first phase, raw inputs were sent in clear to
a trusted edge node. At this stage, the trusted edge is able to mix together multiple
different inputs in order to anonymize them. During the second phase, the mixed
data was then sent to a classifier running in the untrusted cloud. Finally, during
the third and last phase, the aggregated output is post-processed on an edge node
in order to generate a result for every single original input. Instead, an offloading
decision strategy based on a privacy entropymodelwas studied by Xu et al. (2019b).

Open Data on Edge Computing
In the following, some open datasets of edge applications will be discussed.

Toczé et al. (2020) used a prototype testbed to conduct a set of experiments aimed
to study Mixed Reality (MR) applications in an edge computing environment. The
data collected during the experiments was made publicly available for further stud-
ies. Similarly, Toczé et al. (2020) publicizedworkload traces regarding speech-based
andMR edge applications, while the dataset in (Rashed, 2019) contains data related
to both the placement and the execution of functions in a mixed cloud-edge clus-
ter. Similarly, the dataset in (Rashed and Rausch, 2020) published Machine Learn-
ing (ML) applications traces collected using a real testbed and several functions.
Then, the execution time and the time required to transmit the data were published
for each considered function. Furthermore, the collected traces were used to evalu-
ate different container scheduling strategies for serverless edge computing (Rausch
et al., 2021). A different dataset containing statistics about the edge-based architec-
ture can be found in (Apostolis, 2020). Instead, state machine replication perfor-
mance was analyzed in (Yan et al., 2020). Also for this case, the latency traces ob-
tainedweremade publicly available. However, differently from the previous works,
these traces belong to six different remote clouds and did not include any edge met-
rics. Finally, Lin et al. (2020b) presented a different approach based on generative
adversarial networks. Basically, the tool called DoppelGANger aimed to generate
synthetic datasets and required a minimal level of knowledge.

Benchmarking Edge Computing Platforms
EdgeBench (Das et al., 2019) is a benchmarking framework for serverless edge com-
puting systems. The paper shows a comparison between two commercial edge in-
frastructures (i.e., AWSGreengrass andAzure IoT Edge). Instead, a different bench-
marking framework calledDeFogwas presented byMcChesney et al. (2019). DeFog
aimed to compare the performance of fog- and cloud-based platforms. Benchmark-
ing operations were performed using various containerized applications, including
speech-to-text, real-time face recognition, and video streaming applications. Appli-
cations can be evaluated considering three different execution modes (i.e., a cloud-

2.1 Compare Edge- and cloud-based performance 21

only, a fog-only, and a mixed cloud-fog mode). In addition, the framework col-
lected heterogeneous metrics such as the latency observed, the number of CPUs/-
cores, the execution time, and the number of bytes transferred. Instead, a different
work (Yeganeh et al., 2020) studied the performance of cloud providers by consider-
ing three distinct connectivity options. Precisely, connections based on (i) the public
Internet, (ii) private Cloud connectivity, and (iii) third-party private providers had
been taken into account. However, the active metrics collected by this framework
did not focus specifically on the edge concept.

Finally, the lack of publicly available benchmarkswas highlighted byMcChesney
et al. (2019). The authors stated that this could make comparing fog/edge- and
cloud-based solutions more difficult.

Edge Computing Emulators and Simulators

Applications and network protocols can be tested through the emulation of an edge
network, while simulators are more suitable for evaluating, and possibly tuning, the
impact of both design choices and operational parameters. In the following, some
edge emulators and simulators will be analyzed.

openLEON (Fiandrino et al., 2019) is an emulator for edge data centers. More
in detail, openLEON uses srsLTE (Gomez-Miguelez et al., 2016) to emulate the
wireless segment that connects TNs and the edge data centers, while Container-
net (Peuster et al., 2016) is used to emulate the data center. However, it is relevant
to note that openLEON is not a fully-software solution as it includes some hardware
devices.

Fernández-Cerero et al. (2020) presented a simulator designed for experiment-
ing with orchestration strategies for clusters of edge nodes. The simulator supports
centralized, distributed, and hybrid orchestration models. Additionally, clusters
could be powered on and off independently from each other, using different strate-
gies based on efficiency and performance metrics at both network-/cluster-level.
FogNetSim++ (Qayyum et al., 2018) is an OMNeT++-based simulator. It allowed
researchers to evaluate task scheduling algorithms, and it considers a multiplicity
of factors such as fog nodes utilization, Service Level Agreements (SLAs), and han-
dover events. Instead, iFogSim (Gupta et al., 2017) aimed at evaluating the perfor-
mance of IoT fog applications, considering multiple cost metrics (e.g., power con-
sumption, latency, network congestion, etc.). In addition, different placement strate-
gies have been provided. EdgeCloudSim (Sonmez et al., 2018) is a CloudSim-based
simulator. It was intended for the evaluation of Virtual Machines (VMs) orchestra-
tion strategies, resource management, and task offloading. Finally, the YAFS (Lera
et al., 2019) simulatorwas aimed to study IoT fog scenarios. YAFS allows researchers
to define network topologies, even complex ones, by importing from CAIDA and

22 Background

BRITE. However, the defined network topology is characterized by links with fixed
bandwidth and latency metrics.

The key characteristics of both emulation and simulation platforms listed in this
Section have been summarized in Table 2.1. Observing the table it is evident that
most of the described tools have relatively simple network models. For example,
the transport, network, data-link, and physical layers are not included in the model
for most of the tools analyzed, while the communication is characterized by simple
(and often deterministic) bandwidth and delay models. However, links character-
ized by realistic bandwidth and latency metrics are decisive prerequisites for prop-
erly simulating an edge network. For example, wireless links connecting TNs and
edge nodes could introduce intermittent distortions that could provoke significant
changes in the observed metrics, while this variability has a smaller effect in a cloud
scenario characterized by longer-haul links with higher latency. In the literature,
there are some simulators characterized by more complex network models. For
example, ECSim++ (Nguyen and Huh, 2018), a simulator based on OmNET++,
simulates the network stack in its entirety. However, some parts of the MEC in-
frastructure may still not be easy to model (e.g., the backhaul connections and the
presence of cross-traffic).

Open problems and filling the gap
As debated in this Section, a number of articles compared the performance of edge-
and cloud-based solutions. However, such works sporadically took into account
the effect of different network conditions. Moreover, as explained by Kolosov et al.
(2020) most of the edge-based datasets are based on computing aspects and did not
represent the MEC environment realistically. In the literature, other works take into
account network parameters. For instance, Harutyunyan et al. (2019) investigated
the problem of finding a latency-aware placement of service function chains. The
model was computed using Integer Linear Programming (ILP) techniques under
the assumption of knowing the capacity of the links between edge nodes and the
centralized cloud. Instead, for hierarchical edge networks, bandwidth information
of relevant network segments was considered by Tong et al. (2016). These papers
highlight the importance of collecting networkmetrics at runtime in order to ensure
to the end-users an adequate Quality of Experience (QoE), especially when appli-
cations with strict latency or high bandwidth requirements are considered. Further-
more, these works show how important it is to have public datasets built upon real
experiments. In fact, for example, they make possible to compare different edge ap-
plications under the same scenario, or they can be used to evaluate the performance
of an application when there is no real edge infrastructure at all.

To fill this gap, an extensive measurement campaign strived to collect network
performance metrics in a MEC environment has been performed. The tool and the

2.2 Evaluating the energy consumption of a Terminal Node in an edge-computing
system 23

experimental setups adopted will be described in Chapters 4 and 5, respectively.
Moreover, the dataset containing all the collected metrics was distributed on Zen-
odo(MECPerf experimentation results, 2020).

2.2 Evaluating the energy consumption of a Terminal
Node in an edge-computing system

Energy evaluation of task offloading strategies

A performance evaluation of a three-tier fog network for IoT applications has been
presented by Sarkar et al. (2018). The proposed schema considered service latency,
power consumption, and CO2 emission metrics. In particular, the overall power
consumption has been split into the power consumed to forward packets, perform
computation, store data, and migrate applications to the cloud. In contrast, latency
has been divided into the time needed to transmit and process the data.

Pei et al. (2020), and Zhang et al. (2018) investigated upon task offloadingmech-
anism for hierarchical edge computing networks. Basically, in this sort of network,
the edge servers can be deployed on both Small Base Stations (SBSs) andMacro Base
Stations (MBSs). Generally, SBSs are placed nearby of TNs and are distinguished
by limited computing capabilities and low latencies. So they are more suitable for
computing tasks with strict latency requirements. Conversely, MBSs are generally
placed farther than SBSs, but they are also more powerful. This means that they
could be more appropriate for executing tasks with heavy computational and loose
latency requirements. In the former paper (Pei et al., 2020), tasks can be partially
offloaded to both SBSs andMBSs. The offloading strategy aimed to compute the op-
timal workload placement characterized by the minimum energy consumption and
constrained latency. Instead, the algorithm proposed in the latter paper (Zhang
et al., 2018) aimed to compute the optimal computation offloading that minimizes
the weighted sum of energy consumption and the task latency. Furthermore, the
model also considers the residual amount of energy stored in the battery of the TN.

The work presented by Hu et al. (2016b) tested multiple applications with dif-
ferent computational and communication requirements, considering a smartphone
with LTE and Wi-Fi connectivity capabilities. The results showed that an edge sce-
nario can diminish both the energy consumption and the response delaywhen com-
pared with the local execution of tasks. Conversely, when far cloud servers charac-
terized by high RTT are considered, the local execution is demonstrated to be the
best approach in terms of both response delay and energy consumption.

Finally, other works concerning optimal energy-aware offloading schemes in a
MEC environment can be found in (Mazouzi et al., 2019) and (Li et al., 2021b).

24 Background

Energy Models for an LTE Interface
An overview of thework concerningmodels for a generic LTE network interfacewill
be discussed in the following. These models make feasible to analytically estimate
the energy consumption of network transmission, a problem that would otherwise
require expensive and complex hardware devices such as the monsoon power mon-
itor (Monsoon Power Monitor, 2022).

In the literature, several works described the LTE interface as a 4-state FSM (Hu-
ang et al., 2012; Chen et al., 2015). For example, the former work (Huang et al.,
2012) has presented a methodology to infer the operational parameters of the FSM.
A subsequent validation phase showed that the model and the inferred parame-
ters exhibited an error rate below 6%. Instead, the latter work (Chen et al., 2015)
compared the energy consumption of Wi-Fi, LTE, and 3G interfaces. Precisely, the
CPU, GPU, and screen consumption have beenmodeled using utilization-basedmod-
els, which assume that a component’s energy consumption is strictly related to its
utilization level. Instead, the three network interfaces weremodeled using three dif-
ferent FSMs. Finally, the overall energy consumption has been computed using real
traces belonging to 1520 smartphones from 56 countries. This approach was used
to assess the relationship between users’ behaviors and energy consumption. As a
result, the authors found that Wi-Fi and cellular interfaces required approximately
7.0% and 24.4% of the overall energy, respectively.

Fundamentally, some states of the LTE FSM are based on the Discontinuous Re-
ception (DRX) mechanism, which basically consists in the interleaving of sleeping
and wake-up periods. The DRXmechanism is fundamental for lowering the energy
consumption of the interface, however, it must be not too aggressive to meet trans-
mission latency constraints. Therefore the balancing of DRX parameters is a crucial
problem widely investigated in the literature. For example, Tseng et al. (2016) used
an approach based on Markov chains to evaluate the impact of DRX parameters on
both power-saving and wake-up delay constraints. Instead, Zhou et al. (2008) and
Mehmood et al. (2019) used semi-Markov processes. In particular, the latter work
studied the DRXmechanism problem for theMachine Type Communication (MTC)
environment. Instead, the work in (Brand et al., 2020) used two ML algorithms to
predict the optimal sleeping intervals. The first algorithm was based on supervised
learning, while the second onewas based on reinforcement learning. Essentially, the
two algorithms aimed to turn off the interface as soon as possible while minimizing
the number of transmissions lost from the BS.

Open problems and filling the gap
The reduction of energy consumption represents an important aspect that is grad-
ually becoming more and more relevant. Most of the paper in the literature shows

2.3 Evaluating the paths towards the cloud 25

how task offloading strategies can be used to reduce the energy consumption of
edge and cloud networks. This kind of optimization can lessen both the economic
cost and the environmental impact of the server infrastructure. However, the en-
ergy consumption of TNs is generally not considered in these works. It should be
remarked that other numerous works aimed to assess the energy consumption of
terminal devices connected through LTE connections. However, these works do not
involve the MEC environment, and generally, they do not exhaustively explore the
relationships between the network metrics and the energy consumption of TNs.

To fill this gap, Chapter 7 will present two models used to compute the energy
consumption of an application running on a TN operating in a MEC environment.
Therefore, the relationship between network metrics and energy consumption will
be examined considering different application and network parameters.

2.3 Evaluating the paths towards the cloud
In the past 15-20 years, multiple works tried to study the Internet topology (Donnet,
2013). Most of these works are based on traceroute measurement campaigns, con-
sidering multiple abstraction levels (Cheswick et al., 1999). For example, Keys et al.
(2013) and Keys (2010) used the alias resolution techniques to evaluate the path at
the router level. Instead, Chang et al. (2001) used IP-to-AS mapping strategies to
assess paths in terms of AS. Moreover, traceroute measurements have been adopted
by multiple Internet mapping projects, such as CAIDAArk (claffy et al., 2009; ARK,
2019), iPlane (Madhyastha et al., 2006), DIMES (Shavitt and Shir, 2005), RIPE At-
las (RIPEAtlas, 2019), M-Lab (Mlab, 2019), and Portolan (Faggiani et al., 2014, 2012;
Gregori et al., 2013).

However, in the last years, traceroute implementation has led to several prob-
lems. In fact, the presence of load balancers, firewalls, or other middleboxes (Au-
gustin et al., 2006; Detal et al., 2013) can bias the outcome of Internet mapping mea-
surements. For example, load balancers can operate following per-destination, per-
flow, or per-packet strategies. Basically, a per-destination load balancer forwards all
packetswith the samedestination on the same route. Aper-flow load balancer sends
all packets with the same flow on the same route. Finally, a per-packet load balancer
disseminates the packets on multiple paths, regardless of their destination or their
flow. These three types of load balancers can lead classic tracerouting algorithms
to not detect some nodes (i.e., when packets with the same destination are always
forwarded on the same route) or to detect false paths (i.e., when probeswith consec-
utive TTLs are forwarded to different paths). Paris traceroute (Augustin et al., 2006,
2007; Vermeulen et al., 2018) and its multipath detection algorithm (MDA) have
been implemented to overcome this limitation. To be more precise, Paris traceroute
manipulates the probe’s header at the transport level, while the IP header is kept

26 Background

fixed. This means that all the probes belong to the same flow and follow the same
path in presence of a per-flow load balancer. However, the incoming ICMP packets
still contain enough information to link each probe with the correspondent elicited
ICMP packet. Instead, Tracebox (Detal et al., 2013) is a tool capable of discover-
ing the presence of middleboxes along the path between two hosts. In other words,
it can be identifying non-destination machines operating above the network level.
Marchetta and Pescapé (2013) studied the problem of identifying hidden routers
along a path. Basically, a hidden router is a device that forwards the incoming pack-
ets without decreasing their TTL values, making impossible for traditional tracer-
outing mechanisms to detect them. The developed tool, called DRAGO, solved this
problem using IP probes with the Timestamp (TS) option set. From the analysis
of the ICMP packets, DRAGO can detect the number of hosts that managed the TS
option, estimating the number and location of hidden routers.

Moors (2004) and Huang et al. (2020) presented two strategies strived at reduc-
ing the time needed to collect tracerouting information. The former work (Moors,
2004) takes advantage of a scout packet sent to the target. The source node uses the
TTL of the response to estimate the length of the path and speed up the probing
phase. Two different probing methods, called raceroute and aceroute, have been
proposed. Basically, raceroute tries to speed up the tracerouting process by send-
ing the probes in quick succession. Instead, aceroute tries to reduce the number of
probes by starting to explore from the target and progressively decreasing the TTL
value. The process is interrupted when a hop on a known path is reached. Instead,
the latter work (Huang et al., 2020) is intended for massive tracerouting campaigns.
The developed tool, called FlashRoute, explores the paths toward multiple destina-
tions with a high level of parallelism. FlashRoute supports both forward probing
(i.e., probing from the source to the destination using increasing TTL values) and
backward probing (i.e., probing from the destination to the source using decreas-
ing TTL values). Finally, the discovery capabilities of Flashroute were compared
with those of Yarrp(Beverly, 2016) and scamper (Luckie, 2010) during an extensive
experimental campaign. The results demonstrated that FlashRoute succeeded in
decreasing the time needed to complete an entire scan.

Finally, Morandi et al. (2019) presented Service traceroute. The tool listens for
application traffic in a passiveway. Then, it automatically selects an application flow
and injects its probes within the target application traffic. Service traceroute sup-
ports applications based on multiple concurrent flows and applications that adopt
UDP flows. The experimental phase shows that the probes sent by Service tracer-
oute have no effect on the performance of the target application flow.

2.3 Evaluating the paths towards the cloud 27

Open problems and filling the gap
These tools discussed in this section perform complex analyses to discover the path
between twohostswith high accuracy. However, they cannot bypass firewalls specif-
ically configured to block traceroute-based applications.

Tofill this gap, differently from similar tools (Sherwood and Spring, 2006), camo-
trace uses legitimately establishes TCP connections and HTTP-based probes to con-
ceal its traffic, making more complex for its probes to be identified by stateful fire-
walls.

28 Background

Table 2.1: A comparison between emulators and simulators in the field of edge com-
puting systems. The comparison was based on network-related characteristics.
Tool Based on Type Simulated/emulated

devices
Network model

openLEON
Fiandrino et al.
(2019)

srsLTE,
mininet

Emulator Edge data center, and
cloud data center

End-devices access technology: LTE.
Network topology: a real smartphone connects
to the eNB using dedicated hardware. The rest
of the network is emulated using Containernet.
Link characteristics: real, between user equip-
ment and eNB, emulated according to mininet
the rest.
Network stack: real.

SPHERE
Fernández-
Cerero et al.
(2020)

SCORE sim-
ulator

Simulator IoT, mobile devices,
independent clusters
of cloudlets and
clouds

End-devices access technology: not simulated.
Network topology: defined by the program-
mer.
Link characteristics: deterministic latency and
bandwidth.
Network stack: not simulated.

FogNetSim++
Qayyum et al.
(2018)

OMNeT++,
INET

Simulator IoT, mobile devices,
fog nodes, and cloud
data center

End-devices access technology: both wired
and wireless.
Network topology: defined through a GUI or a
configuration file.
Link characteristics: according to INET mod-
els.
Network stack: simulated physical, link-layer,
network, transport, and application layers.

iFogSim Gupta
et al. (2017)

CloudSim Simulator IoT, fog nodes, cloud
data center

End-devices access technology: wireless
Network topology: defined by through a GUI
or a configuration file.
Link characteristics: fixed latency and band-
width.
Network stack: not simulated.

EdgeCloudSim
Sonmez et al.
(2018)

CloudSim Simulator Mobile devices, edge
servers, and cloud
data center

End-devices access technology: wireless.
Network topology: defined through an XML
file.
Link characteristics: simple queue model, em-
pirically derived properties.
Network stack: not simulated.

YAFS Lera et al.
(2019)

Python,
Simpy, and
NetworkX

Simulator IoT, fog nodes, and
cloud data center

End-devices access technology: not simulated.
Network topology: defined through a configu-
ration file or imported (CAIDA, BRITE topolo-
gies).
Link characteristics: fixed latency and band-
width.
Network stack: not simulated.

ECSim++
Nguyen and
Huh (2018)

OMNeT++,
INET

Simulator Mobile devices, edge
nodes, and clouds

End-devices access technology: both wired
and wireless.
Network topology: defined through a GUI or a
configuration file.
Link characteristics: according to INET mod-
els.
Network stack: simulated physical, link-layer,
network, transport, and application layers.

Chapter 3

Collecting performance metrics in a
MEC environment: challenges and
requirements

As previously stated, in a MEC architecture TNs can communicate with application
servers placed at the edge of the network. As a result, edge servers bring lower com-
munication latency and higher bandwidth. Moreover, edge nodes can be used to re-
duce the amount of traffic directed towards cloud application servers. Conversely,
cloud servers generally provide higher computational capabilities. Finally, in many
cases, an edge server can interact with a centralized cloud server to retrieve or prop-
agate data. In the following, some suggestions regarding the approaches that can
be used during the collection of network metrics within a MEC infrastructure and
their possible usage will be provided.

3.1 The MEC architecture
Figure 3.1 illustrates the general architecture of a MEC network. In this type of net-
work three relevant network segments can be identified. The first one is the access-
MEC segment that connects TNs with edge servers hosted into the MEC networks.
The second one is theMEC-cloud segment that connects edge and cloud servers. Fi-
nally, the third one is the access-cloud segment that connects TNs and cloud servers.

Collected metrics and possible uses
For what concerns the network performance of a MEC network, three relevant met-
rics can be collected: the network latency, the bottleneck capacity, and the available
bandwidth. Basically, the network latency can be defined as the amount of time

29

30
Collecting performance metrics in a MEC environment: challenges and

requirements

MEC network Cloud

Internet

Cloud server

Access network

Terminal nodes Edge server

MEC-cloud segment
access-MEC segment

access-cloud segment

Figure 3.1: The high-level architecture of a MEC network.

Link 1 Link 2 Link 3

Link utilization level
Available bandwidth
Link capacity

Figure 3.2: A path composed of three links with different utilization levels, available
bandwidths, and capacities.

required to transfer a small amount of data across the network. Note that comput-
ing the network latency by collecting timestamps on different hosts is not a trivial
task. In fact, there is no guarantee that the clocks of the sender and the receiver are
synchronized. Hence, to avoid any synchronization problem, the network latency
is often computed considering the RTT between the two hosts.

network_latency =
RTT

2
(3.1)

Instead, both bottleneck capacity and bandwidth metrics provide a measure of the
amount of data that can be transmitted over a path in a time unit. These twometrics
may appear very similar to each other as they collect slightly different information.
In fact, the bottleneck capacity can be defined as the maximum data rate that can be

3.1 The MEC architecture 31

achieved upon a given path. In other words, it is the smallest capacity found along
the links that form the path. It describes a physical property of a sequence of links
and it is ideally independent from the presence of cross-traffic. Instead, the avail-
able bandwidth can be defined as the maximum data rate that is currently available
upon a given path. This means that bandwidth metrics are strongly affected by the
utilization level of all the links along the path. Figure 3.2 shows a simple example
composed of a path made up of 3 links. For each link i, the utilization level (Ui),
the available bandwidth (Bi), and the nominal capacity (Ci) are displayed. Then
we can compute the bottleneck capacity and the available bandwidth as follows.

bottleneck_capacity = min(Ci) i ∈ 1, 2, 3 (3.2)

available_bandwidth = min(Bi) i ∈ 1, 2, 3 (3.3)
Once collected these metrics can be used by orchestrators and other similar de-

vices to take awide range of decisions, depending on the segment onwhich they are
collected. Network metrics calculated on the network segments that connect a TN
with a candidate application server can be used to determine whether a given appli-
cation can satisfy the application requirements. For instance, latency metrics com-
puted on access-MEC/access-cloudnetwork segments can be used to assesswhether
a candidate application deployment can deliver an upper bound on the communi-
cation latency, meeting the needs of a generic real-time application. Similarly, band-
width and bottleneck capacity metrics computed on access-MEC/access-cloud net-
work segments can be employed to determine whether the candidate deployment
is able to fulfill the minimum requirements of a generic bandwidth-intensive ap-
plication such as a video streaming application. Instead, the metrics collected on
the MEC-cloud segment can be used to assess the cost of retrieving or propagating
applications and context data from centralized clouds to the edges and vice-versa.

Measurements methods and possible uses
Network metrics can be gathered following both active and passive approaches. Ba-
sically, an active measurement method is based on the injection of traffic onto the
segment that needs to be measured. Then, the injected traffic is used to collect the
desired metric. As can be easily guessed, active measurement methods have the
cons of generating additional traffic within the network however, they have the pros
of controlling how this traffic is sent. Conversely, passivemeasurementmethods are
aimed at collecting network metrics without injecting new packets into the network
or manipulating the existing ones.

MECPerf can gather network performancemetrics following both active and pas-
sive approaches. In the remaining of this thesis, wewill use the termsMECPerf-active

32
Collecting performance metrics in a MEC environment: challenges and

requirements

and MECPerf-passive to refer to these types of metrics. For example, the MECPerf-
active measurement methods can be used to check the actual network conditions
of a given network segment. This allows assessing whether a given deployment
is able to meet the requirements of an application before its placement. Instead,
MECPerf-passivemetrics can be computed by examining traffic traces received from
other devices. Therefore, to compute MECPerf-passive metrics which are represen-
tative of the current status of the network, packet sniffers or other similar devices
must be positioned at strategic points on the network so that all the traffic of inter-
est can be monitored. It is important to note that MECPerf-passive methods show
two advantages with respect to MECPerf-active measurement methods. In fact,
MECPerf-passive measurement methods do not increase the volume of traffic trans-
mitted within the network. Moreover, the traffic traces can be used to gather both
general network performance metrics, considering all the packets traveled within
the network, and application-specific network performance metrics that consider
only packets that match specific conditions (e.g, they can consider only the traf-
fic between two target hosts). In other words, these measurement methods can
be used by orchestrators to monitor the performance of a running application in
real-time and eventually implement relocation strategies. Finally, it should be noted
thatMECPerf-passivemeasurement methods have no knowledge about the internal
functioning mechanism of the application under analysis. Consequently, they can-
not take into account periods of legitimate inactivity. So it might be worthwhile to
permit an application of collecting its own metrics and sharing them with the col-
lection system. Note that also the application can compute its own metrics follow-
ing both active and passive approaches. Hereafter, we will use the terms self-active
and self-passive to refer to these types of metrics. Self-passive metrics can be used
jointly with the MECPerf-passive ones to conduct real-time monitoring and reloca-
tion activities as they collect the performance of a given application from different
viewpoints. In fact, MECPerf-passive metrics evaluate the performance of an appli-
cation from the outside and they are transparent to the application. In contrast, the
self-passive metrics enable the application to provide feedback on its own perfor-
mance. Furthermore, they represent the only reliable measurement methodology
for the monitoring of applications based on a sporadic communication schema and
characterized by the transmission of very small quantities of data.

Chapter 4

A tool for collecting network metrics
in a MEC environment

In the following will be illustrated MECPerf, a tool aimed at collecting and stor-
ing network metrics in a MEC environment. MECPerf aims to collect and share
network metrics in a MEC environment using multiple software components. As
rapidly stated in Chapter 1, MECPerf was developed during a Fed4Fire+ project
(FED4FIRE+ -MECPerf, 2022). Basically, Fed4Fire+ is a European project started in
January 2017 andfinanced by the EuropeanUnion under theHorizon 2020 program.
Fed4Fire+ offers a large set of open, accessible, and reliable federated Next Genera-
tion Internet (NGI) testbed facilities (Fed4Fire+, 2017; About Fed4Fire+, 2022). Ad-
ditionally, during the MECPerf project, was also conducted an extensive measure-
ment campaign that involved MECPerf-active, MECPerf-passive, and self-passive
measurementmethods. The experimentswere conducted usingNITOS (TheNITOS
facility, 2022), one of the federated Fed4Fire+ testbeds. Precisely, theNITOS testbed
is hosted at the University of Thessaly (Greece) and it provides three different de-
ployments that allow experimenters to test protocols and applications considering
outdoor, indoor, and office wireless scenarios. The testbed provides Software De-
finedNetworking (SDN) capabilities and the NITOS nodes supportWi-Fi, WiMAX,
and LTE communication technologies. In the following, the architecture ofMECPerf
will be illustrated considering its software components, their interaction, and the
collected metrics.

4.1 MECPerf architecture
The architecture of MECPerf is illustrated in Figure 4.1. MECPerf is composed of
a MECPerf Client (MC), a MECPerf Observer (MO), a MECPerf Remote Server
(MRS), and a MECPerf Aggregator (MA). The first three components cooperate in
collecting networkmetrics, while the last one has the purpose of storing and retriev-

33

34 A tool for collecting network metrics in a MEC environment

Third-party servers

MECPerf Observer

Third-party applications

MECPerf Client

Access network MEC network Cloud

Self-active and self-passive measurements
MECPerf-active measurements

Third-party application traffic
MECPerf-passive measurements

MECPerf Aggregator

MECPerf Remote Server

Third-party servers

Figure 4.1: The four components composing the MECPerf architecture and the in-
teraction between them during MECPerf-active, MECPerf-passive, self-active, and
self-passive measures.

ing them. The number of components involved in eachmeasure depends on the type
of metric collected. Basically, MECPerf supports MECPerf-active, MECPerf-passive,
self-active, and self-passive measurement methods. MECPerf-active measurement
methods are intended to measure the network performance independently from
the application executed on TNs, and they are based on additional traffic injected
into the network. MECPerf-passivemeasurement methods aim to compute network
metrics using traffic traces produced by third-party components. This method is in-
tended for measuring the network metrics of a specific application in a transparent
way. Finally, self-active and passive measurement methods allow third-party appli-
cations to store into MECPerf their self-computed metrics. More details about the
implementation of the measurement methods will be addressed in the following.

The MECPerf software components
The MECPerf Client (MC)
The MC is hosted in the access network, and it interacts only with the MO in order

4.1 MECPerf architecture 35

to collect MECPerf-active metrics for the access-MEC segment. Note that, due to its
location, the MC can be executed on both dedicated devices and user-owned TNs.

The MECPerf Observer (MO)
The MO resides on the MEC infrastructure of a network operator, and it interacts
with all the other components to collect and store bothMECPerf-active andMECPerf-
passive metrics. Precisely, during MECPerf-active measurement methods, the MO
interactswith theMC and theMRS to assess the performance of the access-MEC and
the MEC-cloud segments, respectively. Instead, during MECPerf-passive measure-
ment methods, the MO uses traffic traces to compute the performance of a specific
target application. Finally, theMOsends bothMECPerf-active andMECPerf-passive
metrics to the MA for storage.

The MECPerf Remote Server (MRS)
The MRS resides in the cloud network. The MRS is involved only during MECPerf-
activemeasurement methods, interactingwith theMO to computeMEC-cloudmet-
rics like the MC case.

The MECPerf Aggregator (MA)
The MA is the component entitled to collect, store, and distribute the network met-
rics collected from different components with different points of view. For both
MECPerf-active and MECPerf-passive measurement methods, the metrics are re-
ceived from the MO, while self-active and self-passive measurement metrics are
directly obtained from the third-party application that computes them. Finally, it
should be noted that the MA is never involved in any measure. This implies that it
can conceptually reside in any part of the network.

In this Section, we have seen how the MECPerf component can be used to collect
network performance metrics in a classical MEC architecture. However, it should
be noted that the architecture of MECPerf is generic enough that it can be employed
tomeasure the performance of different types of networks. For example, theMO can
be executed on hosts belonging to commercial edge networks such as those offered
by Cloudflare (Cloudflare - Security and innovation at the network edge, 2022),
Amazon (AWS for the Edge, 2022), and other similar content providers. Further-
more, the MO can be used also in a non-MEC scenario. For example, in this latter
case, the MO can be run in the cloud, near the MRS, to measure the performance
between different VMs hosted in the cloud(Liu et al., 2019).

36 A tool for collecting network metrics in a MEC environment

Collected measurement types

As stated earlier, MECPerf uses four different measurement methods to collect net-
work metrics. The first type of metric is based on MECPerf-active measurement
methods, used to collect access-MEC, access-cloud, and MEC-cloud network seg-
ment’s performance metrics without considering the specific application that needs
to be run. The second measurement mode is based on MECPerf-passive measure-
ment methods. These methods are designed to measure network metrics consider-
ing the traffic generated from the application. In other words, they can be used to
monitor the performance of a running application in real-time. Finally, the last two
types of measurement methods are based on network metrics computed by the ap-
plication itself following both self-active and self-passive approaches and shared with
the collection system. Note that both MECPerf-passive and self-passive metrics can
be used to conduct real-timemonitoring activities and eventually relocate the appli-
cation dynamically. However, these measurement methods collect the performance
of a given application from different viewpoints. In fact, MECPerf-passive metrics
evaluate the performance of an application from the outside and they are trans-
parent to the application. In contrast, the self-passive measured metrics enable the
application to provide feedback on its own performance.

MECPerf-active measurement methods

MECPerf supports four different types of MECPerf-active measurement methods:
TCP bandwidth, UDP bottleneck capacity, and both TCP and UDP latency. Addi-
tionally, metrics are collected for the two communication directions. For MECPerf-
active uplinkmeasures, additional traffic is injected from theMC to theMOand from
the MO to the MRS. Instead, the injected packets go from the MO to the MC and
from the MRS to the MO during MECPerf-active downlink measures.

The relevant interactions between the three components during aMECPerf-active
measure are shown in the sequence diagram of Figure 4.2. The MC always initiates
MECPerf-active measures. At the beginning of each measure, a request measurement
message is sent from the MC to the MO. The request specifies the metrics that have
to be collected and other measurement-specific parameters. Then, the MC and the
MO interact to measure the access-MEC segment. At this point, the MO uses the
MRS to repeat the measurements procedure on the second segment. Finally, the
MO collects the raw measurement data, sending them to the MA for storage. For
anymeasurementmethod, MECPerf performs up to three attempts to deal with fail-
ures. After that, the measure is aborted.

4.1 MECPerf architecture 37

MC MO
Request

Measurement

Execute
Measurement

MRS

Request
Measurement

Execute
Measurement

Measurement
Completed

Measurement
Completed

Figure 4.2: The interaction between the MECPerf Client (MC), the MECPerf Ob-
server (MO), and the MECPerf Remote Server (MRS) during a generic MECPerf-
active measure.

MECPerf-active measurement methods: TCP bandwidth and UDP bottleneck ca-
pacity
MECPerf computes both the TCP bandwidth of a data stream and the UDP bottle-
neck capacity. A TCP bandwidth measure computes the application-level through-
put of a TCP connection. The behavior of a TCP bandwidth measure is depicted
in Figure 4.3. At the beginning, the sender sends a request message containing the
type of measures requested (e.g., a TCP bandwidth measure), the desired direction
(i.e., uplink/downlink), and the number of bytes that need to be sent. Then, the
sender starts to send its traffic, while the receiver starts to read the bytes from the
TCP stream. The number n_bytes of bytes read, and the time t at which the opera-
tion completes are collected for each reading operation. Then, for the n-th reading
operation, the TCP bandwidth can be computed at the receiving node as the number

38 A tool for collecting network metrics in a MEC environment

Sender Receiver

Sending a
TCP stream

n_bytesn-1, tn-1
n_bytesn, tn
bandwidthn = n_bytesn

...

(tn - tn-1)

Figure 4.3: The sequence diagram of a TCP MECPerf-active bandwidth measure.

of bytes reads divided by the time elapsed from the previous read operation.

bandwidthn =
n_bytesn

tn − tn−1
(4.1)

Instead, the bottleneck capacity is defined as the capacity of the narrowest link
over a specific network path (Prasad et al., 2003). Thus, it can be used to estimate
the maximum obtainable throughput over a path. MECPerf computes bottleneck
capacity metrics using a well-known technique based on packet pairs which behave
as shown in Figure 4.4. At the beginning, the source host sends two packets of iden-
tical size back-to-back over a link characterized by a capacity C1. Each packet needs
a time equal to size(Pi)/C1 to be sent. At a certain point, a router receives P1 and
forwards the packet over a link characterized by a smaller capacity C2. Since the
capacity of the outbound link is smaller than the capacity of the inbound link, the
time needed to receive P2 is smaller than the time needed to transmit P1. Hence, it
is reasonable to assume that P1 and P2 are retransmitted back-to-back. Finally, the
two packets encounter a third link with higher capacity C3. In this circumstance,
the time required to receive P2 is greater than the time needed to transmit P1. There-
fore, the two packets cannot be forwarded back-to-back and the time between the
two packets can be used to infer the capacity of the narrowest link. Note that theMC,
the MO, and the MRS can behave as both sending and receiving nodes, depending
on the considered segment and the desired direction. For example, during an up-
link bottleneck capacity measure collected on the access-MEC network segment, the
source and the destination hosts are the MC and the MO, respectively. Conversely,

4.1 MECPerf architecture 39

Source host Destination

host

P1P2C
1

(a) The source host sends two packets back-to-back over a link with capacity C1.

Source host Destination

host

P1P2C
2

(b) The packets are forwarded over a link with a smaller capacity C2.

Source host Destination

host

P1P2 C
3

(c) The packets are forwarded over a link with a higher capacity C3.

Figure 4.4: The basic functioning mechanism behind the packet pair technique.

for a downlink bottleneck capacitymeasure collected on the same network segment,
the source host is the MO, while the MC is the destination host. The reader can find
a more detailed explanation of this technique on (Prasad et al., 2003) and (Gregori
et al., 2016).

Precisely, after the request message, two packets are sent back-to-back to the re-
ceiver. The receiver receives the two consecutive packets and stores the time t0 and
t1 of their reception. Then, the UDP bottleneck capacity is computed as the size of
a packet divided by the time elapsed between t0 and t1.

bottleneckcapacity =
packet_size

t1 − t0
(4.2)

The procedure is repeated a certain number of times to ensure that themeasurement
is affected by the minimum amount of cross-traffic. The number of repetitions k and
the size packet_size of each UDP packet are contained in the request message. The
execution of a UDP bottleneck measure execution is illustrated in Figure 4.5.

40 A tool for collecting network metrics in a MEC environment

Sender Receiver

t0t1
Bottleneck_capacity1 = packet_size
t0t1

t0t1

...

(t1 - t0)

Bottleneck_capacity2 = packet_size
(t1 - t0)

Bottleneck_capacityk = packet_size
(t1 - t0)

Figure 4.5: The sequence diagram of a UDP MECPerf-active bottleneck capacity
measure.

MECPerf-active measurement methods: TCP and UDP latency
Latency measurement methods can be based on both TCP and UDP packets. A
TCP-based latency measure can be considered as an application layer measurement
since TCP is equipped with connection-oriented and reliability mechanisms. Con-
versely, a UDP-based latency measure can be regarded as the network/transport
layer since UDP is best effort. However, differently from bandwidth measurement
methods, their functioning mechanism is similar. After the request message, the
sender sends a certain amount of bytes to the receiver, which sends back the data as
soon as possible. For TCP latency metrics, this is performed by sending data over
a previously established TCP stream. Instead, for UDP latency metrics, the data is
sent as a UDP packet payload. Finally, after receiving the packet, the sender can
compute the Round Trip Time (RTT). Then the procedure is iterated several times.
The number of repetitions k and the size of each packet are contained in the request
message. The execution of a genericMECPerf-active latencymeasure is summarized
in Figure 4.6.

MECPerf-passive measurement methods

MECPerf-passivemeasurementmethods involve only theMOand theMA, and they
are used to compute transparently the TCPbandwidth, theUDPbandwidth, and the
TCP latency metrics of third-party applications. Basically, the MO uses pcap files
containing traffic traces to compute the metrics. The pcap file may be generated in

4.1 MECPerf architecture 41

Sender Receiver
t0

t1RTT0 = t1 - t0

RTT1 = t1 - t0

RTTk = t1 - t0

...

t0

t1

t0

t1

Figure 4.6: The sequence diagram of a MECPerf-active latency measure.

different ways. For example, theymay be created by a packet sniffer able to intercept
all the application traffic. When a pcap file is received, the MO searches for packets
belonging to the target application. Then, for each selected packet, the MO collects
the timestamp and the size of the payload, using them to compute the bandwidth
of the target application at the application level. This methodology can be used to
compute bandwidth metrics for both TCP- and UDP-based applications.

Instead, latency metrics are calculated as the difference between the timestamp
of the ACK packet and the timestamp of the ACKed packet. Unfortunately, this
means that latency metrics can be computed only for TCP-based applications since
the UDP protocol lacks a mechanism for linking incoming and outgoing packets.

Finally, note that MECPerf-passive measures are computed from the MO, which
has no knowledge about the application behavior. This means that low throughput
metrics may be generated by legitimate idle periods. Consequently, applications
with intermittent transmission periods are not suitable for MECPerf-passive mea-
surement methods, whileMECPerf-passivemethods are more accurate in acquiring
metrics for applications with constant data stream transmissions.

Self-active and self-passive measurement methods

Finally, self-measuredmethods let third-party applications store their metrics to the
MA, the only component involved. This means that the application developers have

42 A tool for collecting network metrics in a MEC environment

to decide the metrics that need to be collected, implement their measurement meth-
ods, and whether to store them into the MECPerf collection system. Measurements
can be stored into the MA with HTTP POST requests, using the following JSON
object as payload.
{

"client_ip": "x.x.x.x",
"client_port": xxxx ,
"server_ip": "y.y.y.y",
"server_port": yyyy ,
"service": "<service_id >",
"protocol": "<protocol >",
"mode": "self -active "/"self -passive",
"uplink": {

"<timestamp >": value ,
...

},
"downlink": {

"<timestamp >": value ,
...

}
}

As can be seen, the JSON object contains the IP addresses and the ports used by the
client and the server, an ID that identifies the application to which the metrics refer,
the transport protocol used during the communication, and two arrays of metrics.
The first one contains the metrics for the uplink segment, while the second contains
the metrics for the downlink segment.

Note that self-passive measurement methods are more accurate than MECPerf-
passive ones as the application can compute the metrics only in relevant periods,
discarding the other ones. However, some developers may decide not to include
any self-passive metrics. Hence, MECPerf-passive measurement methods are also
needed.

Implementation details
The code of theMECPerf-active measurement methods is provided as a Java library,
shared between the MC, MO, and the MRS. Hence the code is the same for all the
components involved in measurements. Then, two different implementations of the
MCs have been provided. The first one is a command-line Java application that can
be used to perform automatic tests using dedicated hosts belonging to the network
operator. The second one is an Android app that requires human interaction. How-

4.2 Validation 43

Compute the metricsMC MO MRS

MA

Compute the metrics

Store the metrics
Host1 Host2

Host3

Figure 4.7: The setup used during the validation of the MECPerf collection system.

ever, the application can be easily adapted to be embedded into mobile applications
of network providers running on TNs. Finally, the MA is implemented as a python
Flask server(flask, 2021), while metrics are stored in aMySQL database. The source
code of the MECPerf components can be found on GitHub (The source code of the
MECPerf Collection system, 2021).

4.2 Validation
MECPerf has been validated in terms of both MECPerf-active andMECPerf-passive
methods. Instead, self measurements methods have not been validated as they are
under the application responsibility.

The validation of theMECPerf-basedmeasurementmethods has been conducted
by installing the MECPerf components on three machines belonging to the network
of the University of Pisa. Precisely theMCwas placed on Host1, the MOwas hosted
on Host2, while the MRS and the MA were deployed on Host3. The setup used
during the validation phase is depicted in Figure 4.7. Artificial restrictions were ap-
plied on the network interfaces of Host2 and Host3 employing tc-netem (tc (Traffic
Control), 2020; netem, 2020). These restrictions are always applied to the outgoing
interface. This means that they have to be configured on the node that sends the
measured traffic. Once the restriction was applied, we measured bandwidth and
latency metrics on the links that connected the MO and the MRS. Consequently, to
validate uplink and downlink bandwidth metrics computed on the link that con-
nects the MO and the MRS, rate-limiting constraints were applied on the outgoing
interface of Host2 and Host3, respectively. Instead, for both uplink and downlink
latency metrics computed on the MEC-cloud link, the artificial delays were applied
only on the interface of Host3. In fact, configuring the delay on a single host is suf-

44 A tool for collecting network metrics in a MEC environment

0 20 40 60 80 100 120 140 160 180 200
Additional delay (ms)

0

25

50

75

100

125

150

175

200

RT
T

(m
s)

Additional delay
UDP RTT measured

(a) MECPerf-active uplink UDP latency method

0 20 40 60 80 100 120 140 160 180 200
Additional delay (ms)

0

25

50

75

100

125

150

175

200

RT
T

(m
s)

Additional delay
UDP RTT measured

(b) MECPerf-active downlink UDP latency
method

0 20 40 60 80 100 120 140 160 180 200
Additional delay (ms)

0

25

50

75

100

125

150

175

200

RT
T

(m
s)

Additional delay
TCP RTT measured

(c) MECPerf-active uplink TCP latency method

0 20 40 60 80 100 120 140 160 180 200
Additional delay (ms)

0

25

50

75

100

125

150

175

200

RT
T

(m
s)

Additional delay
TCP RTT measured

(d) MECPerf-active downlink TCP latency
method

Figure 4.8: The results of the validation for MECPerf-active latency measurement
methods. RTT values have been averaged among 10 repetitions.

ficient to validate the two directions since both hosts must send a packet during a
latency measure. Finally, we compared the collected result and the expected one.

Validation experiments for MECPerf-active latency, TCP bandwidth, and UDP
bottleneck capacity have been repeated 10 times. The MECPerf-active latency val-
ues, measured on the link between theMO and theMRS for increasing delay restric-
tions (from 0 ms up to 200 ms), are shown in Figure 4.8. As can be seen, tangible
differences between the delays applied and the collected latency metrics cannot be
observed. Hence, the validation of latency methods succeeded. Instead, the ob-
served MECPerf-active bandwidth metrics and the bandwidth restriction applied
cannot be directly compared. In fact, MECPerf computes the bandwidth at the ap-
plication level, while tc restrictions are applied at the data link layer. Let rpkt be the
rate limit applied at the data link layer, Lpkt be the total length of data link packets,
and Lapp the amount of application-layer data in each packet. Then we can compute
the expected application-level bandwidth as

rapp =
Lapp

Lpkt
· rpkt (4.3)

Let HIP and HUDP be the lengths of the IPv4 and the UDP headers. We considered

4.2 Validation 45

0 20 40 60 80 100 120 140 160 180 200
Rate limit (KB/s)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt
h
(K

B/
s)

Application bandwidth limit
UDP bandwidth measured

(a) MECPerf-active uplink UDP bottleneck ca-
pacity

0 20 40 60 80 100 120 140 160 180 200
Rate limit (KB/s)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt
h
(K

B/
s)

Application bandwidth limit
UDP bandwidth measured

(b)MECPerf-active downlinkUDP bottleneck ca-
pacity

0 20 40 60 80 100 120 140 160 180 200
Rate limit (KB/s)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt
h
(K

B/
s)

Application bandwidth limit
TCP bandwidth measured

(c) MECPerf-active uplink TCP bandwidth

0 20 40 60 80 100 120 140 160 180 200
Rate limit (KB/s)

0

25

50

75

100

125

150

175

200

Ba
nd

wi
dt
h
(K

B/
s)

Application bandwidth limit
TCP bandwidth measured

(d) MECPerf-active downlink TCP bandwidth

Figure 4.9: The results of the validation for MECPerf-active TCP bandwidth and
UDP bottleneck capacity measurement methods. TCP bandwidth and UDP bottle-
neck capacity values have been averaged among 10 repetitions.

Parameter Size (bytes)
LappUDP 1024
MTU 1500
HIP 20
HTCP 20
HUDP 8
HETH 14
TETH 4

Table 4.1: The values of the operational parameters used during the validation of
both MECPerf-active TCP bandwidth andMECPerf-active UDP bottleneck capacity
methods.

Lapp values that are smaller than MTU − HIP − HUDP. Then, it is possible to as-
sume that the Operating System (OS) used a single packet to send the UDP data.
Consequently, the packet length Lpkt of each UDP datagram can be computed as

Lpkt = Lapp + HUDP + HIP + HETH + TETH (4.4)

where HETH and TETH are the lengths of the Ethernet header and trailer, respec-

46 A tool for collecting network metrics in a MEC environment

tively.
When TCP measures are considered, a stream of bytes is sent in a short amount

of time. This means that TCP packets can be assumed to be filled at their maximum
capacity. Then, the amount of application-level data contained in each packet can be
computed as theMaximumTransmissionUnit (MTU)minus the size of the headers.
In other words, Lapp and Lpkt can be computed as

Lapp = MTU − HIP − HTCP (4.5)

Lpkt = MTU + HETH + TETH (4.6)
where HTCP is the length of the TCP header.

The value of each parameter is reported in Table 4.1. Then, the application level
rate limit can be computed as

rapp_UDP = 0.957 · rpkt (4.7)

rapp_TCP = 0.962 · rpkt (4.8)
for UDP and TCP traffic, respectively.

Figure 4.9 compares theMECPerf-active bandwidthmetrics collected byMECPerf
during the validation and the correspondent expected rapp, considering rpkt values
that go from 10 KB/s to 200 KB/s. As canwe see, some differences can be noted only
for high rapp values. Moreover, more differences can be appreciated comparing the
TCP and the UDP case. This can be explained as the effect of the TCP slow-start
mechanism, which slightly reduces the average throughput. However, differences
between the measured bandwidth and the applied rapp limits are below 3%.

Finally, the MECPerf-passive measurement methods have been validated a sin-
gle time using an iperf TCP data transfer as target application and from 10 Mbps
to 50 Mbps of rate limits. Note that the amount of data transferred using iperf is
much greater than the amount of data used to validate MECPerf-active measure-
ment methods. Hence, since both the iperf and the MECPerf estimations are based
on a non-negligible amount of data, we decided not to repeat MECPerf-passive
experiments. Instead, latency measurement methods were validated using addi-
tional 10, 50, and 100 milliseconds of delay. The results of both MECPerf-passive
bandwidth and latency validation tests are summarized in Table 4.2. As expected,
bandwidth results are coherent with both the applied restriction and bandwidth
measured computed by iperf. Additionally, the latency measurements obtained
matched the additional delay imposed plus the latency computed when tc-netem
is disabled. Hence, also the validation of MECPerf-passive measurement methods
succeeded.

4.2 Validation 47

tc bandwidth restriction
(Mbps)

MECPerf result
(Mbps)

iperf result
(Mbps)

10.0 9.60 9.60
20.0 19.1 19.1
30.0 28.7 28.7
40.0 38.3 38.2
50.0 47.4 47.4

(a) MECPerf-passive TCP bandwidth results

tc artificial latency
(ms)

MECPerf result
(ms)

0 0.8
10 10.8
50 50.8
100 100.8

(b) MECPerf-passive TCP latency results
Table 4.2: The results obtained during the validation for MECPerf-passive measure-
ment methods.

Chapter 5

Data collection and experimental
results

The MECPerf collection tool explained in the previous Chapter has been used to
collect MECPerf-active, MECPerf-passive, and self-passive metrics in an edge envi-
ronment. To evaluate an edge environmentwas used theNITOS testbed, while some
machines deployed at theUniversity of Pisa have been used as cloud servers. NITOS
is a testbed facility hosted at the University of Thessaly (Greece) participating in the
Fed4Fire+ European federation of Next- Generation Internet testbeds (Fed4Fire+,
2017). NITOS makes available nodes equipped with Wi-Fi and LTE interfaces. This
allows comparing edge and cloud performances, considering TNs connected with
different access technologies.

In the following will be explained the setup employed to conduct the experi-
ments. Then, edge and cloud performance will be compared considering different
access technologies and network conditions. The dataset containing the metrics col-
lected during the experiments is available on Zenodo(MECPerf experimentation re-
sults, 2020).

5.1 Network setup
This sectionwill explain the setup used to collectMECPerf-active, MECPerf-passive,
and self-passive metrics. Table 5.1 summarizes the characteristics of both NITOS
nodes and cloud servers belonging to the University of Pisa.

MECPerf-active measurement setup
The first set of experiments pointed at collecting MECPerf-active metrics for the
access-MEC, MEC-cloud, and access-cloud network segments. To this purpose, two
networks were built inside the testbed. The first one was a wireless access network

49

50 Data collection and experimental results

NITOS Indoor RF Isolated Testbed details
Nodes 50 Icarus nodes
LTE connectivity 8 nodes equipped with LTE dongles
LTE dongles Huawei E392, Huawei E3272, and Huawei

E3372. LTE experiments were performed us-
ing theHuawei E3272 dongle characterized by
a maximum speed of 150 Mbps in download
and 50 Mbps in upload.

Topology Grid topology with adjacent nodes separated
by 1.2 meters

Icarus nodes details
OS Ubuntu 14.04.1 LTS for LTE nodes and

Ubuntu 12.04.1 LTS for the remaining nodes
CPU Intel® Core™ i7-2600 Processor, 8M Cache, at

3.40 GHz
RAM 8GiB DDR3
Wireless Interfaces Atheros 802.11a/b/g and Atheros

802.11a/b/g/n (MIMO)

University of Pisa cloud infrastructure details
Guest OS Ubuntu 18.04.3 LTS
Host CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
Number of allocated cores 2
Guest RAM 4GiB

Table 5.1: The technical characteristics of the devices used during MECPerf-active,
MECPerf-passive, and self-passive experimental data collection.

that hosted anMC and a cross-traffic generator. Instead, the second onewas awired
MEC network, which hosted a MO and a cross-traffic receiver. Depending on the
access technology employed, the hosts within the access network received network
connectivity from a Wi-Fi Access Point (AP) or an LTE BS. Precisely, for experi-
ments based on Wi-Fi connections, a NITOS node was configured to act as a Wi-Fi
AP. Instead, during LTE-based experiments, a dedicated LTE BS provided by the
testbed gave connectivity to a set of NITOS nodes equipped with LTE dongles. Fi-
nally, a secondMO, anMRS, and anMAwere hosted at the University of Pisa. Note
that the edge and the cloud networks were deployed in two different countries. This
setup is coherent with aMEC scenario composed of an edge network deployed near
the user and a far cloud network that involves transit on the public Internet. Then,

5.1 Network setup 51

Internet

Nitos testbed (Greece)

Cloud network - University of Pisa (Italy)

MECPerf
 Observer

Access network Edge network

Cross-traffic
receiver

Cross-traffic
generator

MECPerf Client AP/BS

MECPerf
Remote Server

MECPerf
Aggregator

MECPerf
Observer

Figure 5.1: The setup used during the collection of MECPerf-active metrics.

it should also be noted that the setup used during the experimental phase slightly
differs from the generic MECPerf architecture depicted in Figure 4.1 as two MOs
were employed. The first MO, hosted inside the edge network, was used to collect
the metrics on the access-MEC (i.e., between the MC and the MO) and the MEC-
cloud segments (i.e., between the MO and the MRS). Instead, the MO hosted at the
University of Pisa collected the access-cloud metrics (i.e., between the MC and the
MO). Figure 5.1 depicts the setup used to collect MECPerf-active metrics for the
considered segments.

configure the Wi-Fi AP/LTE BS;
connect the MC and the cross-traffic generator to the AP/BS;
for c ∈ [0, 10, 20, 30, 40, 50] do

configure the cross-traffic generator to inject c Mbps of cross-traffic;
for i ∈ [1, ..., 10] do

collect MECPerf-active metrics using the MO deployed in the edge
network;
collect MECPerf-active metrics using the MO deployed in the cloud
network;

end
end

Algorithm 1: The setup used to collect MECPerf-active metrics using the NITOS
testbed.

Each experiment was organized as shown in the pseudo-code of Algorithm 1.
At the beginning of a Wi-Fi experiment, a NITOS node was configured to act as an

52 Data collection and experimental results

Measurement
method

Measurement parameters
Payload size (bytes) Number of packets

TCP bandwidth 1420 1 TCP stream of 1024 packets
UDP bottleneck capacity 1420 25 packet pairs
TCP latency 1 25 RTT measures
UDP latency 1 25 RTT measures

Table 5.2: The operational parameters used to collect MECPerf-active metrics.

AP, providing connectivity to the MC and the cross-traffic generator. Similarly, at
the beginning of each LTE-based experiment, the dedicated LTE BS provided by the
testbed was connected with NITOS nodes equipped with LTE dongles. Then, the
cross-traffic generator used iPerf3 to inject cross-traffic into the access network. Once
the cross-traffic generator was configured, the MC started to use the MO hosted in
the edge network to collect uplink anddownlinkMECPerf-activemetrics on both the
access-MEC (between the MC and the MO) and the MEC-cloud segment (between
the MO and the MRS). Then, the MC repeated the same measures using the MO
hosted at the University of Pisa as target. As a result, access-cloud metrics were col-
lected, while metrics computed between the cloudMO and theMRSwere discarded
as they measured the performance of the wired University of Pisa’s network. For
each amount of cross-traffic, the MECPerf-active measurement methods were exe-
cuted 10 times. Then, the procedure was repeated considering an increasing quan-
tity of cross-traffic to evaluate the network metrics under different workload levels.
Note that the cross-traffic is consumed near the base station. This means that only
the wireless segment was affected by cross-traffic.

TCP bandwidth metrics were collected using a stream composed of 1024 pack-
ets with 1420 bytes of payload each. UDP capacity metrics were collected using 25
packet pairs, using packets with 1420 bytes of payload. Instead, TCP and UDP la-
tency metrics were computed using 25 RTT and packets with a payload of 1 byte.
The details of the MECPerf-active experiments are summarized in Table 5.2.

MECPerf-passive measurement setup: DASH application
MECPerf-passive experimentswere conducted considering a scenariowhere several
Dynamic Adaptive Streaming over HTTP protocol (DASH)(Sodagar, 2011) clients
and a DASH server are running on TNs and third-party application servers, respec-
tively. Basically, a DASH application behaves as follows. The DASH server provides
a video streaming service to multiple DASH clients, using videos encoded at differ-
ent bitrates. Instead, the goal of each DASH client is to download video chunks at
the maximum bitrate that does not generate re-buffering events. This task is accom-

5.1 Network setup 53

Internet

Nitos testbed (Greece)

Cloud network -University of Pisa (Italy)

MECPerf
 Observer

Access network Edge network

Cross-traffic
receiver

Cross-traffic
generator

DASH clients AP/BS

DASH server 2
MECPerf

Aggregator

DASH server 1

Sniffer
Application traffic pcap file

Figure 5.2: The setup used during the collection of MECPerf- and self-passive met-
rics for a DASH application.

plished using an Adaptive Bitrate (ABR) algorithm that can dynamically adapt the
bitrate of the requested video chunks to the status of the network. We had chosen
a DASH application for two reasons. Firstly, the video streaming application field
is one of the six relevant use cases identified by the European Telecommunications
Standards Institute (ETSI) for MEC (Hu et al., 2015). Secondly, a video streaming
application is well suited to be evaluated through MECPerf-passive measurements,
as it can generate a constant stream of data.

The setup used to collect MECPerf-passive metrics is shown in Figure 5.2. As
expected, the only MECPerf components involved in MECPerf-passive metrics col-
lection were the MO and the MA. Within the testbed, a wireless access network
and a wired MEC network were built similarly to the MECPerf-active experiments.
The access network hosted the cross-traffic generator and multiple TNs running the
DASH client. In addition, the Wi-Fi AP and the LTE BS have also been configured
as previously described. Instead, the MEC network hosted an MO, a cross-traffic
receiver, and a DASH server, while the cloud network contained a second applica-
tion server and theMA. Note that, also in this case, two application servers are used.
The first application serverwas used to compute the performance of the access-MEC
segment, while the second one was used to collect access-cloud metrics. Finally, to
generate the pcap file needed to compute MECPerf-passive metrics, a packet snif-

54 Data collection and experimental results

fer run on a network point where all the traffic between DASH clients and the ap-
plication server can be captured. For Wi-Fi experiments, the sniffer was a process
running into the AP. Instead, for LTE experiments, the sniffer process was executed
directly on the application server since the LTE BS cannot be configured to run such
software.

configure the Wi-Fi AP/LTE BS;
connect the DASH client and the cross-traffic generator to the AP/BS;
for each video v do

for c ∈ [0, 10, 20, 30, 40, 50] do
configure the cross-traffic generator to inject c Mbps of cross-traffic;
start the packet sniffer;
for s ∈ [DASH sever 1, DASH server 2] do

for i in [0, NUM_Clients] do
the i-th DASH client starts to download the video v from the
s-th DASH server;

end
waits for all the DASH clients to complete their download ;

end
end

end
Algorithm 2: The setup used during the collection of MECPerf- and self-passive
metrics using the NITOS testbed.

In detail, each experiment was performed as illustrated in the pseudo-code of
Algorithm 2. At the beginning of each experiment, the Wi-Fi (LTE) AP (BS) was
configured to give connectivity to the hosts inside the access network. At this point,
for each video hosted on the application servers and for each amount of cross-traffic
considered, the cross-traffic generator and the packet sniffer were started. Then, the
clients began to download the selected video from the edge server producing access-
MEC metrics. Once each client completed the first download, the clients started
downloading the video from the cloud server, collecting access-cloudmetrics. Then,
the cross-traffic generator is configured to inject a new level of cross-traffic into the
access network.

Passive experiments were repeated using up to 10 clients for Wi-Fi experiments
and 2 clients for LTE-based experiments. Moreover, from 0 Mbps (i.e., no cross-
traffic is injected into the access network) to 50Mbps of cross-trafficwere considered.
The two DASH servers provided four videos of 1, 5, 12, and 25 minutes each. Each
video is encoded using 3 different bit rates (i.e., 200 Kbps, 500 Kbps, and 700 Kbps).
The operational parameters of MECPerf-passive experiments have been reported in
Table 5.3.

5.2 MECPerf-active measurement results 55

Operational parameters parameters
File length 1, 5, 12, and 25 minutes
Encoding bitrate 200, 500, and 700 Kbps
Cross-traffic 0, 10, 20, 30, 40, and 50 MBps
Number of clients up to 2 for LTE-based experiments and up

to 10 for Wi-Fi-based experiments

Table 5.3: The operational parameters used to collectMECPerf- and self-passivemet-
rics.

Self-passive measurement setup: DASH application

DASH-basednetworkmetrics based on self-passivemeasurementmethods hadbeen
collected with the MECPerf-passive ones as the two methods do not interfere with
each other. In fact, when a video is downloaded, self-passive metrics are computed
directly by the client node. In contrast, MECPerf-passive methods are calculated
by the MO using pcap files generated on the AP (or on the application server for
LTE-based experiments). The only shared node is the MA, which only stores the
metrics and is not involved in any measure. This means that MECPerf- and self-
passive measured metrics could be gathered together within the same download.
This diminished the number of experiments that need to be performed, and conse-
quently, the time required to collect MECPerf- and self-passive metrics. Moreover,
MECPerf- and self-passive metrics can be compared as they refer to the same down-
load. Hence, the setup of Figure 5.2, the Algorithm 2, and the parameters of Table
5.3 are still valid.

5.2 MECPerf-active measurement results

TCP bandwidth results

TCP MECPerf-active bandwidth metrics are shown in Figure 5.3. The results are
expressed by means of boxplots where the median values are indicated by a hori-
zontal line inside the box, the interval Q1-Q3 is delimited by the borders of the box,
and IQR 1,5 interval is delimited by the whiskers. First of all, it can be seen that the
bandwidth metrics collected on the access-MEC segment are always higher than
those gathered on the access-cloud segment. This difference is particularly notice-
able for low cross-traffic values, while it is barely perceptible starting from 20 Mbps
of cross-traffic. This result was expected, and it can be mainly ascribed to the TCP
protocol. In fact, it is known that the throughput of a TCP connection is inversely
proportional to the RTT between the two endpoints. Hence, it is reasonable to as-

56 Data collection and experimental results

0 10 20 30 40 50
Cross-traffic (Mbps)

0

5

10

15

20

Ba
nd

wi
dt

h
(M

bp
s)

Access-MEC Access-Cloud

(a) Downlink Wi-Fi metrics

0 10 20 30 40 50
Cross-traffic (Mbps)

0

5

10

15

20

Ba
nd

wi
dt

h
(M

bp
s)

Access-MEC Access-Cloud

(b) Downlink LTE metrics

0 10 20 30 40 50
Cross-traffic (Mbps)

0

5

10

15

20

Ba
nd

wi
dt

h
(M

bp
s)

Access-MEC Access-Cloud

(c) Uplink Wi-Fi metrics

0 10 20 30 40 50
Cross-traffic (Mbps)

0

5

10

15

20

Ba
nd

wi
dt

h
(M

bp
s)

Access-MEC Access-Cloud

(d) Uplink LTE metrics

Figure 5.3: The boxplots of MECPerf-active TCP bandwidth metrics computed dur-
ing Wi-Fi and LTE experiments.

sume that the segment with the lower latency is the one with the higher bandwidth
values.

Secondly, we can see that themetrics collectedduringWi-Fi andLTE experiments
show different behavior. The highest bandwidth values are collected for Wi-Fi ex-
periments when no cross-traffic is injected into the access network. Then, when a
higher level of cross-traffic is considered, the bandwidthmetrics decrease. These re-
sults can be explained by the fact that the MC and the cross-traffic generator shared
the same wireless link. Hence, higher cross-traffic levels could lead to the satura-
tion of the wireless connection. Instead, the LTE results show different behavior.
As can be seen, access-MEC uplink metrics (Figure 5.3d) are similar to the metrics
collected during theWi-Fi experiments. When no cross-traffic is injected into the ac-

5.2 MECPerf-active measurement results 57

cess network, the access-MEC segment obtains higher metrics than those collected
for the access-cloud segment. When the cross-traffic was considered, the access-
MEC metrics stabilized on slightly lower values. Instead, metrics gathered on the
access-cloud segments appear to be wholly unaffected by the cross-traffic. More-
over, if we consider the downlink experiments of Figure 5.3b, it is possible to see
that the access-MEC bandwidth metrics increase when the level of cross-traffic in-
creases. Several reasons may contribute to this counter-intuitive result. Firstly, LTE
has a higher nominal capacity than Wi-Fi. This means that 50 Mbps of cross-traffic
may not be sufficient to saturate the link. Secondly, LTE scheduling mechanisms
may isolate the MC traffic and the cross-traffic. Moreover, other fluctuations may be
ascribed to other optimization mechanisms.

Latency results
The results of MECPerf-active latency experiments are shown in Figures 5.4 and 5.5
for Wi-Fi and LTE experiments, respectively. First, for both Wi-Fi and LTE results,
it can be noted that TCP and UDP metrics show similar behavior. During Wi-Fi ex-
periments, the latency metrics computed on the access-MEC segment are equal to a
fewmilliseconds and, as expected, seem to be affected by cross-traffic. Additionally,
it is possible to note that high cross-traffic values seem not to affect the MEC-cloud
segment. However, this last result is reasonable as the cross-traffic saturates only the
wireless link. Finally, it can be noted that latency values computed on the access-
cloud segments are just equal to the sum of access-MEC and MEC-cloud metrics.

When the LTE connection is involved, the access-MEC and the access-cloud seg-
ments obtain higher latency than those obtained duringWi-Fi experiments. Instead,
the latency values collected on theMEC-cloud segment are similar to those collected
during Wi-Fi experiments. This is an expected result as the MEC-cloud segment
did not include the wireless link. Then, it can be noted that LTE metrics are higher
when there is no cross-traffic injection into the access network. Instead, when there
is some cross-traffic into the access network, latencymetrics appear to be not affected
by the amount of cross-traffic. This result is coherent with the metrics collected dur-
ing TCP measurements. In fact, higher latency metrics are obtained when there is
no cross-traffic into the access network. Consequently, since the TCP throughput is
negatively affected by the RTT between the two endpoints, lower bandwidth values
are obtained. Furthermore, these results can confirm that LTE traffic optimization
mechanisms can introduce additional delays to packets in low traffic conditions.

UDP bottleneck capacity results
Finally, the results of UDP bottleneck capacity measures will be discussed in the fol-
lowing. As previously stated inChapter 4, UDPbottleneck capacitymeasures aimed

58 Data collection and experimental results

0M 10M 20M 30M 40M 50M
CrossTraffic (Mbps)

0

5

10

15

20

25

30

35

40

45

La
te

nc
y

(m
s)

TCPRTT: MEC -> Access
UDPRTT: MEC -> Access

TCPRTT: Cloud -> Access
UDPRTT: Cloud -> Access

TCPRTT: Cloud -> MEC
UDPRTT: Cloud -> MEC

(a) Downlink metrics

0M 10M 20M 30M 40M 50M
CrossTraffic (Mbps)

0

5

10

15

20

25

30

35

40

45

La
te

nc
y

(m
s)

TCPRTT: Access -> MEC
UDPRTT: Access -> MEC

TCPRTT: Access -> Cloud
UDPRTT: Access -> Cloud

TCPRTT: MEC -> Cloud
UDPRTT: MEC -> Cloud

(b) Uplink metrics

Figure 5.4: The boxplots ofMECPerf-active UDP and TCP latencymetrics computed
during Wi-Fi experiments.

to measure the capacity of the narrowest link of the network. To further investigate
UDP capacity metrics, we adopted a statistical approach known in the literature
(Dovrolis et al., 2004). Basically, the metrics collected using the packet pair tech-
nique follow amultimodal distribution, and in a lowworkload scenario, the highest
peak represents the best estimation of the bottleneck capacity.

Then, let us analyze the results of Wi-Fi experiments, considering a scenario
where there is no cross-traffic within the access network. The distribution of UDP
bottleneck capacity downlink metrics is illustrated in Figure 5.6. As can be seen,
the distribution of access-MEC and access-cloud metrics show their highest peaks

5.2 MECPerf-active measurement results 59

0M 10M 20M 30M 40M 50M
CrossTraffic (Mbps)

0

10

20

30

40

50

60

70

80

90

La
te

nc
y

(m
s)

TCPRTT: MEC -> Access
UDPRTT: MEC -> Access

TCPRTT: Cloud -> Access
UDPRTT: Cloud -> Access

TCPRTT: Cloud -> MEC
UDPRTT: Cloud -> MEC

(a) Downlink metrics

0M 10M 20M 30M 40M 50M
CrossTraffic (Mbps)

0

10

20

30

40

50

60

70

80

90

La
te

nc
y

(m
s)

TCPRTT: Access -> MEC
UDPRTT: Access -> MEC

TCPRTT: Access -> Cloud
UDPRTT: Access -> Cloud

TCPRTT: MEC -> Cloud
UDPRTT: MEC -> Cloud

(b) Uplink metrics

Figure 5.5: The boxplots ofMECPerf-active UDP and TCP latencymetrics computed
during LTE experiments.

between 8 and 20Mbps. This result is consistentwith the TCPMECPerf-active band-
width metrics of Figure 5.3a. Then, it is possible to note that the distribution has ad-
ditional peaks around approximately 800 and 1000Mbps. This result is not coherent
with the capacity of aWi-Fi link. However, the presence ofmultiple rightmost peaks
can be ascribed to buffering events that reduce the separation of the pair of packets.
Precisely, uplink packets may be buffered at the access point and subsequently sent
over a wired path characterized by higher capacity. Instead, for the downlink traffic,
the rightmost peaks can be generated by interrupt coalescence events on the receiver
interface. In other words, the incoming packets may be buffered at the receiving in-

60 Data collection and experimental results

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200
Measured capacity (Mbps)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

N
um

be
r o

f o
cc

ur
re

nc
es

(a) Access-MEC metrics

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200
Measured capacity (Mbps)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

N
um

be
r o

f o
cc

ur
re

nc
es

(b) Access-cloud metrics

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200
Measured capacity (Mbps)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

N
um

be
r o

f o
cc

ur
re

nc
es

(c) MEC-cloud metrics

Figure 5.6: The results collected during UDP bottleneck capacity MECPerf-active
downlinkWi-Fi experiments considering a scenariowhere no cross-traffic is injected
into the access network.

5.3 DASH measurement results 61

terface in order to reduce the number of interrupt events generated on the receiver
interface.

Finally, it can be noted that the MEC-cloud segment reached its highest peak at
about 750 Mbps. This result is much higher than that achievable through a TCP
connection. However, it must be remarked that TCP bandwidth and UDP bottle-
neck capacity measure two different properties of the path. In fact, TCP bandwidth
metrics measure the available bandwidth and they are subjected to slow-start, con-
gestion, and flow controlmechanisms. Instead, the UDP bottleneck capacitymetrics
measure the capacity of the narrowest link of a path. This means that it is reason-
able to assume that the TCP throughput is smaller than the bottleneck capacity of the
path. Moreover, both the NITOS hosts and the machines belonging to the Univer-
sity of Pisa are furnished with 1 Gbps network cards. Hence, a bottleneck capacity
of about 750 Mbps is coherent with a cabled high-speed network scenario. Finally,
it should be noted that there is an additional peak at about 10 Mbps. This behavior
is generally caused by cross-traffic packets interleaving the ones belonging to the
measure. Note that not considering the access network does not mean that there is
no cross-traffic as the MEC-cloud segment is affected by the interference caused by
legitimate Internet packets.

5.3 DASH measurement results
The results of self-passive and MECPerf-passive experiments will be illustrated be-
low, considering the impact on network performance of both the cross-traffic level
and the number of users.

Passive results will be evaluated in terms of both TCP latency and bandwidth
metrics. For a DASH application, the downlink traffic consists of video fragments
going from the server to the client. On the contrary, uplink traffic consists of only
a few sporadic DASH requests going in the opposite direction. Therefore, the up-
link traffic is not suitable for computingMECPerf-passive bandwidthmetrics due to
the too limited amount of traffic generated. For this reason, TCP bandwidth metrics
will be illustrated only for the downlink direction, while latencymetrics will be ana-
lyzed in both directions. Instead, self-passive results will consist only of bandwidth
metrics as the DASH client adopted did not compute any latency metric.

Evaluating the impact of different levels of cross-traffic
TCP bandwidth: MECPerf-passive results

TCP MECPerf-passive bandwidth metrics have been generated at the MECPerf ob-
server, considering the packet size and the time elapsed between the current packet
and the previous one. In other words, each bandwidth metric is computed upon a

62 Data collection and experimental results

single packet. However, a bandwidth estimation based on a single packet could lead
to estimation errors. To solve this problem, we grouped the raw bandwidth metrics
into buckets of 0.5 seconds. Then, for each bucket, a single bandwidth metric has
been computed.

Figure 5.7 shows the boxplot of MECPerf-passive bandwidth metrics obtained
during Wi-Fi experiments, considering from 0 to 50 Mbps of cross-traffic and the
four videos provided by the server. First, it can be noted that files of 5, 12, and 25
minutes present similar results, while the shortest video shows lower performance.
Note that the DASH protocol operates over TCP connections. Consequently, the
download starts with a modest bitrate due to the slow start mechanism. The first
file contains only 1minute of video, and it generally is downloaded in a few seconds,
which is not sufficient to let the TCP connection reach the steady-state throughput.
Then, the results obtained for this file will be omitted from now on.

Then, for the remaining files, it can be seen that the highest performance is ob-
tained when there are a small number of clients, and there is no additional cross-
traffic injected into the network. When moderate levels of cross-traffic are consid-
ered, the bandwidthmetrics start to decrease. For cross-traffic values greater than 20
Mbps, the performance generally remains stable. This result is similar to the one ob-
tained during MECPerf-active experiments, and it can be ascribed to the utilization
level of the wireless link. Note that, even when no cross-traffic is injected into the
access network, the bandwidth metrics decrease also when the number of clients
increases. For example, let us consider the bandwidth metrics obtained when 12
minutes of video is downloaded (Figure 5.7c), and no cross-traffic is injected. As
can be seen, when a single user is considered, median values of approximately 18
Mbps and 10 Mbps are obtained for the edge and cloud servers, respectively. In-
stead, the median values decrease to around 9 Mbps and 8 Mbps for two clients,
while the median values decrease to approximately 4 Mbps for three clients. Two
factors may contribute to this result. First, when the number of clients increases,
the server has to manage a higher number of simultaneous downloads. This means
that some requestsmay incur additional delays depending on the server’sworkload.
Secondly, the traffic generated by each client can be considered as cross-traffic for the
others. In other words, a higher number of clients leads to a higher utilization level
of the wireless link and, consequently, to higher interference between the clients.

Instead, Figure 5.8 shows theMECPerf-passive results for LTE experiments. LTE
experiments have been computed using up to 2 clients. This does not allow us to
evaluate how the server workload affects the performance. However, it was impos-
sible to collect data for a higher number of clients as they started to disconnect from
the BS. As can be noted access-MEC metrics are higher than those collected for the
access-cloud segment. Moreover, bandwidth values are generally slowerwhen there
is no cross-traffic injected into the access network and they do not seem to be affected

5.3 DASH measurement results 63

0 10 20 30 40 50
CrossTraffic (Mbps)

0

5

10

15

20

25

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(a) video length = 1 minute

0 10 20 30 40 50
CrossTraffic (Mbps)

0

5

10

15

20

25

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(b) video length = 5 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0

5

10

15

20

25

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(c) video length = 12 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0

5

10

15

20

25

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(d) video length = 25 minutes
Figure 5.7: The results collected during MECPerf-passive downlink bandwidth Wi-
Fi experiments considering different levels of cross-traffic injected into the access
network. The bandwidth values have been computed considering buckets of 0.5
seconds.

by other amounts of cross-traffic. This result is consistent with the MECPerf-active
ones of Figure 5.3b.

64 Data collection and experimental results

0 10 20 30 40 50
CrossTraffic (Mbps)

0
5

10
15
20
25
30
35
40
45
50
55
60

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(a) video length = 5 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
5

10
15
20
25
30
35
40
45
50
55
60

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(b) video length = 12 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
5

10
15
20
25
30
35
40
45
50
55
60

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(c) video length = 25 minutes
Figure 5.8: The results collected duringMECPerf-passive downlink bandwidth LTE
experiments considering different levels of cross-traffic injected into the access net-
work. The bandwidth values have been computed considering buckets of 0.5 sec-
onds.

TCP bandwidth: self-passive results

In this section, the bandwidthmetrics collected during self-passive experimentswill
be illustrated. Figure 5.9 shows themetrics collected duringWi-Fi experiments, con-
sidering from 0 to 50 Mbps of cross-traffic and up to 10 DASH clients. As stated be-
fore, self-passive andMECPerf-passive metrics have been collected during the same
experiments. Hence, Figures 5.9 and 5.7 can be directly compared. As can be seen,
the self-passive metrics are always higher than the MECPerf-passive ones. This dif-
ference reflects the differences between the twomeasurementmethods. Self-passive

5.3 DASH measurement results 65

0 10 20 30 40 50
CrossTraffic (Mbps)

0
5

10
15
20
25
30
35
40
45

Ba
nd

wi
dt

h
(M

bp
s)

MEC 1 client
Cloud 1 client

MEC 2 clients
Cloud 2 clients

MEC 4 clients
Cloud 4 clients

MEC 6 clients
Cloud 6 clients

MEC 8 clients
Cloud 8 clients

MEC 10 clients
Cloud 10 clients

(a) video length = 5 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
5

10
15
20
25
30
35
40
45

Ba
nd

wi
dt

h
(M

bp
s)

MEC 1 client
Cloud 1 client

MEC 2 clients
Cloud 2 clients

MEC 4 clients
Cloud 4 clients

MEC 6 clients
Cloud 6 clients

MEC 8 clients
Cloud 8 clients

MEC 10 clients
Cloud 10 clients

(b) video length = 12 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
5

10
15
20
25
30
35
40
45

Ba
nd

wi
dt

h
(M

bp
s)

MEC 1 client
Cloud 1 client

MEC 2 clients
Cloud 2 clients

MEC 4 clients
Cloud 4 clients

MEC 6 clients
Cloud 6 clients

MEC 8 clients
Cloud 8 clients

MEC 10 clients
Cloud 10 clients

(c) video length = 25 minutes
Figure 5.9: The boxplots of self-passive bandwidthmetrics. The results are based on
Wi-Fi downlink experiments and consider a scenario where a cross-traffic generator
injects different levels of cross-traffic into the access network.

measurement methods are collected directly from the client application, which has
the complete knowledge of the download status. This means that the client can
compute the metrics only when the application effectively performs network oper-
ations, discarding idle periods. Instead, MECPerf-passive metrics are calculated by
the MO and based on a network trace. The MO, which did not have any knowl-
edge about the application logic, computes the metrics upon the whole execution
as it cannot identify and discard idle periods. This explains why MECPerf-passive
bandwidth metrics are smaller than the self-passive ones. Moreover, this highlights
how self-passive measurement methods are required to compute bandwidth met-
rics, especially when applications with sporadic transmissions are considered.

As can we see from Figure 5.9 the median values of self-passive bandwidth met-
rics decrease as the amount of cross-traffic increases. This is coherent with the satu-

66 Data collection and experimental results

0 10 20 30 40 50
CrossTraffic (Mbps)

0

50

100

150

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(a) video length = 5 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0

50

100

150

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(b) video length = 12 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0

50

100

150

Ba
nd

wi
dt

h
(M

bp
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(c) video length = 25 minutes
Figure 5.10: The boxplots of self-passive bandwidth metrics. The results are based
on LTE downlink experiments and consider a scenario where a cross-traffic genera-
tor injects different levels of cross-traffic into the access network.

ration of the wireless link. Instead, considering a fixed amount of cross-traffic and a
high number of users, it can be noted that higher median values can be appreciated
when a cloud server is adopted. For example, let us consider a scenario in which
10 clients download the file of 25 minutes (Figure 5.9c). When no cross-traffic is
injected into the access networks and the edge server is involved, a median band-
width value of approximately 5 Mbps can be appreciated. Instead, when the DASH
server hosted into the cloud network is considered, the same scenario leads to a me-
dian value of approximately 18 Mbps. We believe that the higher computational
capabilities of the machines located at the University of Pisa lead to this result. Fi-
nally, Figure 5.10 shows the results of LTE self-passive experiments. Also in this case,

5.3 DASH measurement results 67

Access network Edge network

DASH server

DASH client
DASH server

Cloud network

AP +
sniffer

DASH requestes (uplink)
Video fragments (downlink)

Figure 5.11: The uplink and downlink traffic during DASHWi-Fi experiments.

bandwidthmetrics are higher than those obtained during theMECPerf-passive ones
(Figure 5.8). However, it can be noted that during self-passive experiments the met-
rics collected on the access-MEC and the access-cloud metrics show similar median
values. This behavior, which is different from the one observed during MECPerf-
passive experiments, can be explained by the client’s ability to discard idle times.
Finally, it can be noted that this behavior can also be observed for self-passive Wi-Fi
experiments when a limited number of clients are involved.

TCP latency: MECPerf-passive results
As stated in Section 4.1, MECPerf-passive latency metrics are computed as tACK −
tACKED, where tACK and tACKED are the timestamps at which the AP sees the ACK
and the ACKed packets, respectively. For Wi-Fi experiments, the traffic sniffer was
deployed on the AP as shown in Figure 5.11. Then, uplink and downlink latency
metrics can be computed as follows. Uplink latency metrics had been computed as
the time elapsed between the timestamp in which the AP sees the DASH request
sent from the client (tACKED) and the instant in which it receives the correspondent
acknowledgment from the server (tACK). Hence, they can compute the performance
on the wired segments connecting the AP with the MEC and the cloud DASH serv-
ers. Instead, downlink latency metrics were computed using video fragments sent
from the server to the client. Precisely, they are computed as the time elapsed be-
tween the timestamp in which the AP sees the packet that contains the video frag-
ment (tACKED) and the instant in which it receives the corresponding ACK from the
client (tACK). Hence, they can be used to evaluate the performance of the wireless
link that connects the client and the AP.

The results of downlink and uplink metrics for the Wi-Fi experiments are illus-
trated in Figures 5.12 and 5.13, respectively. As can be seen, downlink and uplink
metrics present two different behaviors. In fact, downlink metrics increases as the
amount of cross-traffic increase. Moreover, when more than 2 clients are consid-

68 Data collection and experimental results

0 10 20 30 40 50
CrossTraffic (Mbps)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

La
te

nc
y

(m
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(a) video length = 5 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

La
te

nc
y

(m
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(b) video length = 12 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

La
te

nc
y

(m
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(c) video length = 25 minutes
Figure 5.12: The boxplots of MECPerf-passive downlink latency metrics, represent-
ing the performance of the wireless segment that connects the clients and the AP.
The results are based onWi-Fi experiments and consider different scenarios where a
cross-traffic generator injects different levels of cross-traffic into the access network.

ered, their values become slightly higher and less variable. Conversely, uplink met-
rics increase when more clients are involved, while they appear to be marginally
affected by the amount of cross-traffic considered. Moreover, uplink latency metrics
are more variable than those computed using downlink traffic. Note that downlink
uplink and downlink metrics compute latency metrics on different parts of the net-
work. Downlinkmetrics are computed as the time needed to send a packet from the
AP to the client and receive back the relative acknowledgment. Basically, downlink
metrics reflect the performance of the access-MECwireless segment and do not con-
sider the server workload. As a consequence, this type of metric is highly affected

5.3 DASH measurement results 69

0 10 20 30 40 50
CrossTraffic (Mbps)

0
200
400
600
800

1000
1200
1400
1600

La
te

nc
y

(m
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(a) video length = 5 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
200
400
600
800

1000
1200
1400
1600

La
te

nc
y

(m
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(b) video length = 12 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0
200
400
600
800

1000
1200
1400
1600

La
te

nc
y

(m
s)

Edge: 1 client
Cloud: 1 client

Edge: 2 clients
Cloud: 2 clients

Edge: 4 clients
Cloud: 4 clients

Edge: 6 clients
Cloud: 6 clients

Edge: 8 clients
Cloud: 8 clients

Edge: 10 clients
Cloud: 10 clients

(c) video length = 25 minutes
Figure 5.13: The boxplots of MECPerf-passive uplink latency metrics, representing
the performance of thewired network segments that connect the APwith bothMEC
and cloud servers. The results are based on Wi-Fi experiments and consider differ-
ent scenarios where a cross-traffic generator injects different levels of cross-traffic
into the access network.

by the utilization level of the wireless link but does not consider delays that can be
attributed to a higher workload level on the server. Therefore, as can be noted in
Figure 5.12, this type of metric is strongly influenced by the utilization level of the
wireless link. Instead, uplink latency metrics evaluate the performance between the
AP and the two servers. Therefore, since cross traffic does not involve the wired
segment, it is easy to understand why the collected metrics are marginally affected
by cross-traffic. Moreover, uplink shows a strong dependence on the number of
customers and an increasing variability. This last behavior can be ascribed to two

70 Data collection and experimental results

Access network Edge network

DASH server

DASH client

DASH server

Cloud network

BS

DASH requestes (uplink)
Video fragments (downlink)

sniffer

sniffer

Figure 5.14: The uplink and downlink traffic during DASH LTE experiments.

0 10 20 30 40 50
CrossTraffic (Mbps)

0

50

100

150

La
te

nc
y

(m
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(a) video length = 12 minutes

0 10 20 30 40 50
CrossTraffic (Mbps)

0

50

100

150

La
te

nc
y

(m
s)

Edge: 1 client Cloud: 1 client Edge: 2 clients Cloud: 2 clients

(b) video length = 25 minutes
Figure 5.15: The boxplots of MECPerf-passive downlink latency metrics, represent-
ing the performance of the wireless segment that connects the clients and the AP.
The results are based on LTE experiments and consider a scenario where a cross-
traffic generator injects different levels of cross-traffic into the access network.

different reasons. First, a higher amount of clients generates a higher workload on
the server, introducing additional delays on incoming requests. Second, the traffic
generated increases when the number of clients increases, saturating some links in
the wired path.

As previously described, during LTE experiments the sniffer was placed in the
destination server. Consequently, downlink latencymetrics represent the time elapsed
from the timestamp in which the AP sees a fragment of the video (tACKED) and the

5.4 Lessons learned 71

instant in which it receives the corresponding ACK from the client (tACK). Hence,
they can be used to evaluate the performance of both the access-MEC and the access-
cloud segment. Conversely, uplink metrics are computed as the time that goes from
the timestamp in which the sniffer hosted on the server sees the request for a frag-
ment (tACKED) to the timestamp in which it detects the corresponding ACK (tACK).
Hence, it simply represents the time needed to generate an acknowledgment packet
on the server machine. Thus, they will be omitted. Figure 5.14 depicts the setup
used.

Figures 5.15 depicts the latency metrics observed during the LTE experiments.
As can be seen, the LTE latency metrics are generally stable for all the considered
amounts of cross-traffic considered. This result should not surprise as the cross-
traffic affect only the wireless part of the path, and also the MECPerf-active latency
metrics show the same trend.

5.4 Lessons learned
To conclude, in the following the main results displayed in this Chapter will be out-
lined.

As regards the MECPerf-active metrics, it was observed that the performance of
the network is strongly influenced by the placement, the state of the network, and
the technology used. The results of the experiments based on MECPerf-active la-
tency metrics demonstrated that access-MEC metrics are not only lower than those
collected on the access-cloud server but also less affected by the presence of cross-
traffic. Therefore, applicationswith stringent latency requirements should be placed
within the edge networks, whenever possible. In addition, WI-Fi-based latency
metrics showed values below 5 milliseconds, while latency metrics collected on the
MEC-cloud segments are approximately equal to 40 milliseconds. These results re-
vealed the benefits introduced by edge nodes but they also showed the high cost
of propagating context data between edge servers and centralized remote repos-
itories. Similarly, as expected, the access-MEC segment performs better than the
MEC-cloud segment in terms of MECPerf-active bandwidth metrics. Therefore, it
would be preferable to deploy application servers on edge nodes wherever possible.
However, it can also be noted that the difference in the bandwidth metrics collected
on the access-MEC and the access-cloud network segments is often smaller than the
differences exhibited by the latency metrics on those segments. Thus, in the pres-
ence of congested edge nodes, it may be preferable to relocate bandwidth-intensive
applications. Finally, the results of experiments based onMECPerf- and self-passive
measurement methods revealed that cloud servers provided higher performance in
terms of both bandwidth and latency metrics when a large number of clients was
considered. Fundamentally, this result is due to the higher computational capa-

72 Data collection and experimental results

bilities of cloud servers, which succeeded in compensating for the increased com-
munication latency. This result indicates how important it is to consider the server
workload during the deployment of application servers.

Chapter 6

Use MECPerf experimental results to
build a simple trace-based network
simulator

As stated in Chapter 2, most of the edge simulators currently available make use of
simple network models. For instance, some simulators consider bandwidth and/or
latency metrics as fixed characteristics of a link. Other frameworks are based on
the simulation of just a part of the network stack. However, these approaches may
not reflect the complexity of a real system. To fix this issue a trace-based simulator
can be employed. Essentially, a trace-based network simulator retrieves network
performance metrics from pre-generated traces. Therefore, to obtain noteworthy
results, it is necessary to use traces that are relevant for the scenario under analysis
and as complete as possible. This approach offers some advantages.

• The use of traces allows to include in the simulation phenomena that are dif-
ficult to consider. For example, they can introduce unexpected interactions
between hosts belonging to the system or they can reflect the influence of traf-
fic generated by hosts outside the system. Therefore, trace-based approaches
allow the performance evaluations of applications and placement strategies in
a real-world scenario.

• A trace advances over time in a totally deterministicway. This enables the eval-
uation of different applications and orchestration strategies under the same
network conditions.

• Trace-based simulators are less computationally demanding than other types
of simulators.

The rest of this Chapter is organized as follows. First, it will be presented the
MECPerf Library. Basically, the library provides an API to produce bandwidth and

73

74
Use MECPerf experimental results to build a simple trace-based network

simulator

Third-party servers

MECPerf
Observer

MECPerf Client

Access network MEC network

MECPerf
Aggregator

MECPerf
Remote Server

Cloud

MECPerf
Library

Measurements Storage Library

Simulation or analysis

G
et

 b
an

dw
id

th
/la

te
nc

y
tra

ce
s

Get raw metrics

Third-party
applications

Third-party
servers

Figure 6.1: The interaction between the MECperf collection tools, the MECPerf Li-
brary, and third-party software that requires metrics to compute simulation or anal-
ysis activities.

latency traces starting from the metrics stored in the dataset containing the results
of the experiments collected using MECPerf. Then, some insights about the usage
of the MECPerfLibrary will be provided.

6.1 Using the experimental results to generate input
traces

MECPerf was used to collect a set of network metrics in an edge environment under
different network conditions. The setup used to collect the metrics and the results
of the experimental campaign have been provided in Chapter 5. Moreover, a dataset
containing the results of the experiments conducted using MECPerf has been made
publicly available. However, for programmers can be challenging to access directly
to the raw metrics stored since this operation required a complete knowledge of
the dataset’s internal structure. This makes the metrics difficult to be used. Hence,
the MECPerfLibrary was developed with the goal of simplifying the access to the
metrics contained within the dataset as much as possible.

6.1 Using the experimental results to generate input traces 75

The MECPerfLibrary architecture
The library interacts withMECPerf as shown in Figure 6.1. The left side of the graph
shows the MECPerf components (i.e., the MC, the MO, the MRS, and the MA) and
how they interact to collectMECPerf-active, MECPerf-passive, and self-passivemet-
rics. The raw metrics collected during the MECPerf experiments have been stored
in a MySQL database administrated by the MECPerf Aggregator. Further details
about the interactions between the components and the collection methods have
been found in Chapter 4. Instead, the right side of the graph shows the MECPerfLi-
brary. As can be noted the library can access the raw metrics obtained through the
measurement campaign. Precisely, the MECPerf Library is composed of two differ-
ent components. The first one is a software utility that can be used to retrieve the
rawmetrics containedwithin the database, generating intermediate bandwidth and
latency input files. Instead, the second one is the NetworkTraceMenager class. Basi-
cally, this last component takes the intermediate input files, using them to produce
bandwidth and latency traces. Once generated, the traces can be used to emulate
a MEC network under specific network conditions (for example, when a particular
amount of cross-traffic is injected into the access network or when a specific access
technology is used to connect the TNs to the rest of the network). Finally, the Net-
workTraceManagermodule provides a set of APIs that can be used by programmers
to obtain trace-based network metrics.

The NetworkTraceManager module
TheNetworkTraceManager (NTM) class is the principalmodulewithin theMECPerf
library. It exposes APIs to generate the traces and obtain bandwidth and latency
metrics. Whenever a software component requires a new trace, it has to instantiate
a newNTM object. During the initialization, the NTM instance receives as input the
path of a JSON file, a network setup descriptor, and two seeds. The JSON file is used
to associate the rawmetricswith the setup used during the experiment that collected
them (e.g., it specifies the type of the experiment, the access technology used, the
amount of cross-traffic injected into the access network, etc.). The network setup
descriptor indicates the network configuration in which the caller is interested. It is
composed of the type of measurements, the transport layer protocol, the measured
network segment, the identity of the hosts involved in the measure, the direction of
communication, the access technology used to connect hosts in the access network,
and the amount of cross-traffic injected into the access network. However, not all the
parameters have to be specified. Finally, the two seeds are used to guarantee the re-
peatability of the experiments. The Library stores the rawmetrics intomultiple files,
where each of them contains homogeneous couples of <raw metrics, timestamps>
pairs collected under the same experiments and network conditions. After check-

76
Use MECPerf experimental results to build a simple trace-based network

simulator

Third party software component

MECPerf Library

1) Instantiate a new NTM object

2) Select a bandwidth and a latency input file

Bandwidth trace

Latency trace

3) Create a bandwidth and a latency trace

4) Choose a random starting point

5) ask for a metric at a

 given timestamp

6) metric

MECPerf Library

JSON

Figure 6.2: The interaction between the MECPerf Library and a generic third-party
software components.

ing the validity of the received input, the NTM instance uses the JSON files to select
all the input files with a setup that matches the network setup descriptor. Note that
several input files may be selected at this stage as experiments have been repeated
multiple times. Furthermore, the programmermay have expressed only a part of the
network setup descriptor. Consequently, input files containing raw values collected
under different configurations may be returned. At this point, the NTM instance
uses the seeds to initialize two random number generators. The first seed is used
to select one bandwidth and one latency input file among the ones available. Then,
the NTM instance generates bandwidth and latency traces from the two selected
files. Instead, the second seed is used to choose a starting point randomly within
the trace. Finally, it must be remarked that the traces had been generated starting
from real-world experiments. Thus, the collected metrics are not perfectly spaced
equally. Furthermore, some metrics may be missing due to unpredictable failures
during the collection phase. To bound the possible side effects introduced by pro-
tracted losses in the collection of metrics the two traces have been post-processed
so that two consecutive elements cannot differ by more than MAXTRACEGAP unit of
times. This completes the initialization of the NTM instance. From this time on, the
programmer can ask for network metrics using methods provided by the library.
Note that the raw metrics have been collected through experiments. Hence, only
some timestamps have associated metrics. To overcome this restriction, the traces
are managed following a sample-and-hold strategy. Finally, when the last trace el-

6.1 Using the experimental results to generate input traces 77

ement has been asked, the NTM shifts the timestamp associated with each value
contained in the trace. In other words, <raw metric, timestamp> couples are man-
aged as a circular array. The Library also aligns the bandwidth and latency traces
when collected samples are not perfectly synchronized. The behavior of the NTM
module is pictured in Figure 6.2.

The MECPerf library had been implemented in Python, and it is available on
GitHub(The source code of the MECPerf library, 2021).

A simple example of usage
The following code shows a simple example of the usage of the library.

1 import configparser
2 from network_trace_manager import NetworkTraceManager
3

4 config = configparser.ConfigParser()
5 config.read("conf.ini")
6

7 network_traces = NetworkTraceManager(config["configuration_name"])
8 print(network_traces.get_rtt(1))
9 print(network_traces.get_bandwidth(3.1))
10 print(network_traces.get_networkvalues(2.3))
11

12 for e in NetworkTraceManager.get_tracelist("inputFiles/mapping.json",
13 command="TCPRTT",
14 direction="upstream",
15 typeofmeasure="active"):
16 print (e)

At first, the programmermust provide an ini file containing the targeted network
setup. This operation is performed at Lines 4-5. Then, it is possible to call the Net-
workTraceManager constructor (Line 7). The constructor takes as input a network
configuration and returns a NetworkTraceManager object containing a bandwidth
and a latency trace. From this time on it is possible to ask for networkmetrics. The li-
brary provides three different methods that can be used by programmers to retrieve
network metrics.

• Line 8 - get_rtt(sec): gets as input a floating number sec and push forward the
simulated time by sec seconds. Returns a negative number if an error occurs.

78
Use MECPerf experimental results to build a simple trace-based network

simulator

Otherwise, it returns a python list composed of the latency metric associated
with the current simulated time, a datetime object containing the current simu-
lated time, and a datetime object containing the timestamp at which themetric
was collected.

• Line 9 - get_bandwidth(sec): gets as input a floating number sec and push
forward the simulated time by sec seconds. Returns a negative number if an
error occurs. Otherwise, it returns a python list composed of the bandwidth
metric associatedwith the current simulated time, a datetime object containing
the current simulated time, and a datetime object containing the timestamp at
which the metric was collected.

• Line 10 - get_networkvalues(sec): gets as input a floating number sec and
push forward the simulated time by sec seconds. Returns a negative number
if an error occurs. Otherwise, it returns a python list composed of both the
latency and the bandwidth metric associated with the current simulated time,
a datetime object containing the current simulated time, and a datetime object
containing the timestamp in which the metric was collected.

Finally, the library provides the get_tracelist() method, which takes as input the
path of the mapping file and other parameters. The method scans the mapping file
and returns the list of configuration that matches the provided input. Basically, this
method can be used by programmers to explore the set of available configurations.
An example of the usage of this method can be found in Lines 12-16.

6.2 Use the NetworkTraceManager to implement a
simple simulator

TheMECPerf Library had been used in a paper to implement a simple network sim-
ulator in an edge environment (Caiazza et al., 2021).

The work considered the scenario depicted in Figure 6.3 where a TN was ca-
pable of obtaining network connectivity from two different edge networks. In this
scenario, the MC was supposed to be running on the TN, while each edge network
is supposed to contain an MO and a MA. Finally, there was supposed to be present
an orchestrator capable of retrieving networkmetrics from the twoMAs in real-time
and capable of migrating a fraction of clients γ with the poorest performance from
one edge to the other one.

The paper presented a time-discrete simulation, performed considering 100 in-
dependent clients. Each client interleaved active and inactive periods and the du-
ration of each period was randomly chosen following an exponential distribution
with a mean of 10 slots. Precisely, at the beginning, each client obtained two latency

6.2 Use the NetworkTraceManager to implement a simple simulator 79

Edge network 1

MECPerf
 Observer

MECPerf
 Observer

MECPerf
 Aggregator

MECPerf
 Aggregator

Edge network 2

TN

Orchestrator

Figure 6.3: The simulated architecture.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.1 0.2 0.3 0.4 0.5

R
T
T
 (

m
s)

Fraction of users migrated per time slot (γ)

0.5 quantile 0.75 quantile 0.95 quantile

Figure 6.4: The 0,5, 0,75, 0,95 RTT quantiles for γ values that goes form 0 to 0,5.
Values are plotted considering a 95% confidence interval.

traces for the two edge networks. The setup used to generate each trace considered
both LTE andWi-Fi experiments and values of cross-traffic that go from 0Mbps to 50
Mbps. Then the TN was connected to an edge network randomly selected. Finally,
at the end of every slot, the orchestrator collected the latency metrics from the sub-
scribed clients. Then, a fraction γ of users characterized by high RTT metrics were
forced to migrate to the other operator, while the clients with smaller RTT values
were retained.

Figure 6.4 shows the 0,5, 0,75, and 0,95 quantiles of RTT computed upon 20 in-
dependent repetitions of each scenario. Values have been plotted considering a 95%

80
Use MECPerf experimental results to build a simple trace-based network

simulator

confidence interval and γ values that goes from 0 (i.e., no migration) to 0,5 (i.e., at
every time slot half clients are migrated to the peer operator). First, it is possible to
see that the RTT shows a non-monotone trend in each quantile. This indicates that
a low migration can keep the RTT low, while high migration obtains the opposite
result. For example, considering the 0.95 quantile, the RTT decreases from 50 mil-
liseconds to approximately 43 milliseconds where γ goes from 0 to 0,1. Then, when
γ increases, the RTT increases as well. For γ equal to or greater than 0,3 the RTT
returns to approximately 50 milliseconds. In general, the optimal values of γ are
equal to 0,1 for all the considered quantiles.

The results presented in (Caiazza et al., 2021)make clear how edge orchestration
strategies can benefit from the collected network metrics. The paper also demon-
strates how traces collected in the real world can be used to feed a simple simulator.

Chapter 7

Estimating the energy consumption of
terminal nodes in edge/cloud
scenarios

In this Chapter the energy consumption of a client-server application operating in
a MEC environment following a request-response scheme will be evaluated. Let
us consider the reference architecture of Figure 7.1. The application is assumed to
be running on TNs, which are hosted in the access network and connected to both
edge and cloud servers using LTE connections. Assessing the client-side energy
consumption helps to understand the server’s location’s impact on TN’s energy con-
sumption. As stated in Section 2.2, several offloading strategies have been proposed
in the literature. Most of them have been evaluated with the aim of minimizing
the energy consumption of the server infrastructure, while the energy consump-
tion of TNs is generally not sufficiently investigated in those works. However, it is
reasonable to assume that the energy consumption of a TN can be affected by the
communication latency between the device and the application server. Therefore,
a deeper understanding of the relationships between communication latency and
power consumption of TNs would allow improving the design of energy-efficient
application placement strategies.

The rest of this Chapter is organized as follows. First, the FSM of an LTE in-
terface is provided. Then, two models will be given. The first one is an analytical
model suited to evaluate the energy consumption of a connectionless application.
Instead, the second one is a hybrid model used to assess the energy consumption
of a connection-oriented client application. Finally, the energy consumption of the
two models will be estimated considering both edge and cloud servers.

81

82
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

Edge server

Cloud server
Scenario 1

Scenario 2

TN

Figure 7.1: The reference architecture considered in this Chapter. The client appli-
cation is running on TNs hosted in the access network using LTE connections to
communicate with servers located on both edge and cloud networks.

TC

CR

IDLE LONG DRX

Receive/send a packet
SHORT DRX

Receive/send a packet

T
S

TL

R
ec

ei
ve

/s
en

d
a

pa
ck

et DRXCR

R
ec

ei
ve

/s
en

d
a

pa
ck

et

Figure 7.2: The finite state machine of an LTE module.

7.1 Modeling the LTE interface as a finite state
machine

The LTE interface of TNs has been modeled using the FSM shown in (Huang et al.,
2012) and (Chen et al., 2015). Fundamentally, an LTE interface operates according
to two different modes. The former is the Continuous Reception (CR) mode, while
the latter is the DRX mode. During CR, the interface is continuously switched on,
waiting to send or receive packets. Therefore, CR is characterized by the highest
energy consumption level. Instead, during DRX, the interface alternates sleeping

7.1 Modeling the LTE interface as a finite state machine 83

Phase Symbol Mean power consumption (mW)
CR when sending PTX 1200
CR when receiving PRX 1000
CR when idle PC 1000
SHORT DRX PS 359.07
LONG DRX PL 163.23
IDLE PI 14.25
Promotion PPROM 1200

Table 7.1: The mean power consumption of the LTE interface adopted.

and wake-up periods. The sleeping periods reduce the energy consumption of the
network interface, but they also introduce additional delays since no packet can be
received during sleeping periods. The DRX mode is composed of three different
states characterized by different duty cycles. The first state is called SHORT DRX,
which is characterized by small sleeping periods. Hence, energy consumption is
lower than the one experienced during CR, however additional delays are also been
introduced. The second state is called LONG DRX. During this state, the sleeping
periods are longer than those experienced during SHORT DRX. Consequently, less
energy is needed to remain in the LONG DRX, but higher delays are introduced.
Finally, the third state is called IDLE. In this case, the interface sleeps most of its
time. As a result, the energy consumption is minimized and the highest delays are
introduced.

Figure 7.2 illustrates the FSM of the LTE interface. As can be seen, every time
a packet needs to be sent or received, the interface goes into CR. Once the packet
has been sent (or received), the interface remains in CR for an additional time TC. If
no transmission occurs during TC, the interface goes into SHORT DRX and starts to
interleave sleeping and wake-up periods. The interface remains into SHORT DRX
for at most TS units of time. If a packet is sent or received during SHORT DRX, the
interface returns to CR. Otherwise, it goes into LONG DRX. This state is similar to
SHORTDRX as it also operates according to a duty cycle. However, sleeping periods
are longer. Consequently, the energy consumption decreases while higher delays
may be applied on incoming packets. Finally, if no packets are sent or received for
TL, the interface enters into IDLE. In this last state, the interface sleeps for most of
the time. Consequently, this state is characterized by the smallest consumption, but
it can also introduce higher delays. Note that timers do not trigger any transition
from IDLE. Thus, the interface goes back to CR only when a new packet needs to be
sent or received.

In the rest of this Chapter, we will consider the LTE interface described by Chen
et al. (2015) and characterized by the following operational parameters. Let PC,

84
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

Phase Symbol Duration (ms)
CR when idle TC 200
SHORT DRX TS 400
LONG DRX TL 11000
Promotion TPROM 200

Table 7.2: The maximum time spent in each state of the adopted FSM.

PS, PL, and PI the power consumption needed to stay in CR without transmitting
any data, in SHORT DRX, in LONG DRX, and in IDLE, respectively. TC, TS, and
TL are equal to 200, 400, and 11000 milliseconds, respectively. When the interface
is idle in CR, then PC is equal to 1000 mW. Instead, the energy needed to stay in
CR during a data transmission depends on the Reference Signal Received Power
(RSRP). However, for simplicity, we considered amean power consumption of 1200
mW for the sending phase and 1000 mW for the receiving phase. During SHORT
DRX, the interface required 788 mW during a wake-up period of 41 ms and 61 mW
during the sleeping period. The interface wakes upwith a period of 100 ms. During
LONG DRX, the interface required 788 mW during a wake-up period of 45 ms and
61 mW during the sleeping period. The interface wakes up with a period of 320 ms.
Finally, in IDLE, the interface consumed 570 mW during the wake-up period of 32
ms, while the energy consumption during the sleeping phase is negligible. During
IDLE, the interface woke up with a period of 1280 ms. For simplicity, we considered
the mean power consumption of 359.07 mW, 163.23 mW, and 14.25 mW for PS , PL,
and PI , respectively. To conclude, it should be said that the transitions from SHORT
DRX and LONG DRX to CR are performed immediately. In contrast, transitions
from IDLE are completed only after a promotion period. The power consumption
needed to promote the interface from IDLE to CR is the same for both the sending
and the receiving phases. Hence, PPROMTX == PPROMRX == PPROM. The considered
interface has a PPROM equal to 1200 mW for 200 ms. Tables 7.1 and 7.2 summarized
the parameters of the considered interface.

7.2 Estimating the energy consumption of a
connectionless application

Modeling a connectionless request-response schema

The energy consumption of a connectionless application has been evaluated consid-
ering the request-response schema illustrated in Figure 7.3. Let TI be the application
period. As can be seen, at the beginning of each period, the client sends to the server

7.2 Estimating the energy consumption of a connectionless application 85

C S

TW

TRX

TELAB

TQ

TTX

TI

TTX

Figure 7.3: The interaction between the client and the server considering a connec-
tionless application operating on an application period TI .

amessage. Thismessage can represent a small request for a resource that needs to be
downloaded, or it can represent the upload of some data to a centralized repository.
In general, the message requires a time TTX to be transmitted. For a connection-
less communication, TTX depends on the amount of data that needs to be sent and
the bandwidth available on the wireless segment. Once the transmission has been
completed, the client remains idle for TW , waiting to receive a response from the
server. In other words, TW is the time between the end of TTX and the beginning
of TRX. We assumed to have an idle server capable of immediately processing in-
coming messages, generating a reply in a time TELAB. Then, TW can be rewritten as

TW = TELAB + RTT (7.1)

This suggests that TW depends on the location of the destination server. Conse-
quently, the energy consumption EW , needed during TW , depends on the server’s
location. Finally, once the response has been fully received in a time TRX, the client
remains idle for a time TQ, waiting for the beginning of a newperiod. In otherwords,
TQ can be written as:

TQ = TI − TTX − TRX − TW − TPROMTX − TPROMRX (7.2)

Then, given Equation 7.1 also TQ depends on the RTT. This means that also the en-
ergy consumption EQ, needed during TQ, depends on the server’s location.

86
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

Modeling the client-side energy consumption
Let ETX, EW , ERX, and EQ be the energy spent during TTX, TW , TRX, and TQ, re-
spectively. Instead, let EPROMTX and EPROMRX be the energy required during the
promotion period eventually needed before TTX and TRX, respectively.

The energy EI can be estimated as the sumof the energy spent during the periods
that form TI plus the energy employed to promote the interface from IDLE to CR
eventually. Then, EI can be computed as:

EI = ETX + EW + ERX + EQ + EPROMTX + EPROMRX (7.3)

First of all, ETX can be computed considering both the time needed to send the
message to the server and the power required to send data.

ETX = TTX · PTX (7.4)

Similarly, ERX can be computed as:

ERX = TRX · PRX (7.5)

Note that when packets need to be sent or received, the interface remains in CR.
Hence, ETX and ERX are always characterized by high power consumption.

To compute EW , two things have to be noted. Firstly, at the beginning of TW , the
interface is still in CR. Secondly, there are no packets transmitted during TW . Con-
sequently, depending on the length of TW , the FSMmay perform several transitions.
Precisely, if TW is smaller than TC, the interface remains in CR for the whole interval
TW . Hence, EW can be computed as:

EW = TW · PC

Otherwise, the interface stays in CR for TC. Then it goes in SHORT DRX for the
residual time. If TW is smaller than TC + TS the interface completed its TW in SHORT
DRX. In this case, EW can be computed as

EW = TC · PC + (TW − TC) · PS

Instead, if TW is larger than TC + TS, the interface goes from SHORT DRX to LONG
DRX. Then, if TW is shorter than TC + TS + TL the interface completes its TW when
it is still into LONG DRX. Then, EW can be computed as

EW = TC · PC + TS · PS + (TW − TC − TS) · PL

Finally, if TC + TS + TL is not sufficient to complete TW the interface enters into IDLE.
Note that the interface remains in IDLE until TW is concluded as the interface exits

7.3 Estimating the client-side energy consumption of a connection-oriented
application 87

from IDLE only when a packet is sent or received. In this last case, EW is computed
as

TC · PC + TS · PS + TL · PL + (TW − TC − TS − TL) · PI

To summarize, EW can be computed as

EW =



TW · PC if TW ≤ TC

TC · PC + (TW − TC) · PS if TC < TW ≤ (TC + TS)

TC · PC + TS · PS if (TC + TS) < TW ≤ (TC + TS + TL)

+(TW − TC − TS) · PL

TC · PC + TS · PS + TL · PL if (TC + TS + TL) < TW

+(TW − TC − TS − TL) · PI
(7.6)

Finally, TQ is the time that goes from the end of TRX to the beginning of a new
period, and it can be computed as previously shown in Equation 7.2. At this point,
it must be remarked that TW and TQ are similar as there are no network operations
during these intervals. Hence, the argumentation that leads to Equation 7.6 can also
be applied to compute EQ.

EQ =



TQ · PC if TQ ≤ TC

TC · PC + (TQ − TC) · PS if TC < TQ ≤ (TC + TS)

TC · PC + TS · PS if (TC + TS) < TQ ≤ (TC + TS + TL)

+(TQ − TC − TS) · PL

TC · PC + TS · PS + TL · PL if (TC + TS + TL) < TQ

+(TQ − TC − TS − TL) · PI
(7.7)

Finally, EPROMTX and EPROMRX are different from 0 only if the interface is into
IDLE at the beginning of TTX and TRX.

7.3 Estimating the client-side energy consumption of
a connection-oriented application

Modeling a connection-oriented request-response scheme
The energy consumption of a client application that periodically exchanges data
with a server using an existing TCP connection has been computed accordingly to

88
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

Uploading data

TW

TRX

TTX

TQ

C

Reply

S

TI

(a) Uploading a resource to the server.

TTX

TRX

TW

Request

TI
downloading data

C S

TQ

(b) Downloading a resource from the server.

Figure 7.4: The interaction between the client and the server, considering a
connection-oriented application operating on an application period TI .

twodifferent scenarios. The first one examines an application that periodically sends
a moderately large amount of data to the server, receiving a response of a few bytes.
The second scenario considers the opposite situation where the application sends
a small request, receiving a larger quantity of bytes. In both scenarios, the two ap-
plications operate with a period TI . These two applications can represent an IoT
scenario where some nodes upload collected data receiving a confirmationmessage
(scenario 1), and others periodically ask a server for some data (scenario 2). Figure
7.4 depicts the considered scenarios.

The energy consumption for the two scenarios was evaluated using a hybrid ap-
proach based on the integration of the analytical model shown in Section 7.2 and
experimental results collected in a realistic setting. This strategy was chosen to deal
with the TCP protocol, which is muchmore complex than UDP. In fact, multiple fac-
tors affect the TCP throughput. For instance, the flow control mechanism will limit
the throughput if the receiver cannotmanage the incoming traffic. In other cases, the
congestion control mechanism dominates the TCP throughput at the steady-state.
Various congestion control strategies have been shown in the literature (e.g., Reno,
Vegas, CUBIC, etc.), and multiple models have been proposed to estimate the max-
imum achievable TCP throughput (Mathis et al., 1997; Padhye et al., 1998; Cardwell
et al., 1998; Bao et al., 2010). However, these models are valid only under rigid as-
sumptions. Moreover, they make use of parameters whose values are not constant

7.3 Estimating the client-side energy consumption of a connection-oriented
application 89

POST

CONTINUE

File upload

TW

TRX

TTX

TQ

C

200 OK

ACK

S

TI

ACK

(a) Uploading a resource to the server.

200 OK

GET

TI download file

TTX

TQ

C

ACK

ACK

S

TW

TRX

(b) Downloading a resource from the server.

Figure 7.5: The TCP-based application used to collect TTX, TRX, and TW values in a
real environment.

over time and can only be collected through network measurements (such as the
packet loss probability and the RTT). Consequently, providing a reliable estimation
of TTX and TRX is not trivial.

Collecting TTX, TRX, and TW from a real environment
Wegathered TTX and TRX values from a set of experiments based onHTTP requests.
Precisely, the first application is accustomed to an HTTP POST request as depicted
in Figure 7.5a. For this case, TTX has been computed as the times between the HTTP
POST request and the last TCP acknowledgment received from the server. Instead,
TRX has been calculated as the time between the HTTP 200 OK message received
from the server and its acknowledgment. Conversely, the metrics for the second
scenario have been collected considering the HTTP GET request of Figure 7.5b. In
this case, TTX is the time that goes from the HTTP GET request to the reception of
the acknowledgment for the request packet, while TRX is the time needed to receive
the response from the server, considering the download of the resource, the HTTP
reply, and the acknowledgment packets. Finally, TW is computed as the time that
goes from the end of TTX and the beginning of TRX for both applications.

The experiments were performed using the setup of Figure 7.6. The client ap-
plication was hosted on a Raspberry Pi. We chose such a device as it has poorer

90
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

Raspberry
Pi

Server

Unipi network

Figure 7.6: The setup used to collect TTX, TRX, and TW values in a real environment
for a connection-oriented application.

computational capabilities with respect to a PC. Consequently, it is more similar to
a generic constrained TN. The Raspberry Pi gets the LTE connectivity from an An-
droid smartphone, connected using a USB cable. Instead, an NGINX server was
deployed on a machine belonging to the University of Pisa, which is considered the
edge server. To mimic a cloud server, 100 milliseconds of delay had been applied
on the server machine for both incoming and outgoing packets using tc. In other
words, for the cloud configuration, a ∆RTT equal to 200 ms had been used.

for i ∈ [1, ..., 10] do
for f ∈ [2, ..., 12] MB do

for s ∈ [serverEDGE, serverCLOUD] do
start the tshark session;
send an HTTP POST request, uploading a file of size f on server s;
send an HTTP GET request, downloading a file of size f from
server s;
stop the tshark session and store the cap file ;

end
end

end
Algorithm 3: The setup used to collect TTX, TRX, and TW values.

At the beginning of each experiment, the client starts a tshark(tshark, 2021) ses-
sion to sniff the packets between the client and the server. Then, the client applica-
tion uses curl to send an HTTP POST request to the server, uploading to the edge
a file of known size f . Once the first request is completed, the client uses curl to
send the GET requests, downloading a file of identical size. Finally, the client stops
the packet sniffer and stores the sniffed traffic trace into a cap file. At this point, the
procedure is repeated using the cloud server as target. The HTTP requests were re-

7.4 The Energy evaluator module 91

peated using files of different sizes (from 2MB to 12MB) and performed using up to
10 repetitions. The collection of the experimental data is outlined in the pseudocode
of Algorithm 3.

We performed 2 experiments. The first one was conducted during the day and
aimed to assess transfer times in a scenario where multiple devices are sharing the
radio resources. Instead, the second one was performed overnight to reduce the
probabilities of cell congestion interference. In other words, it aimed to assess a low
congestion scenario.

To conclude, the cap files had been post-processed to retrieve TTX, TRX, and TW
values. Then, to compute the energy consumption of a TCP-based application, the
collected values were used as input parameters for the model presented in Section
7.2.

7.4 The Energy evaluator module
The code used to assess the energy consumption of connectionless and connection-
oriented applications can be found on GitHub (The source code of the energy eval-
uator, 2021).

The EnergyEvaluator and LTEEnergy classes are the main modules within the
developed software. Basically, the EnergyEvaluator object is in charge of computing
all the components that compose the overall energy consumption and updating the
LTEEnergy object, which maintains the interface status. The code was developed
in C ++ and it uses the MATLAB Engine API for C ++ (MATLAB Engine API for
C++, 2021) for generating the graphs.

7.5 The energy consumption of an ideal
connectionless application

In the following, the consumption of an application that uses UDP sockets to ex-
change data accordingly to the schema of Figure 7.3 was evaluated. EI values will be
computed considering two different scenarios. The former involves an edge server,
while the latter includes a cloud server. Then, results will be expressed in terms of
the ρ index, which is computed as

ρ =
EE

I

EC
I

(7.8)

where EE
I is the energy consumption within a period when the edge server is con-

sidered, and EC
I is the energy required to run a period when the cloud server was

involved. Then, ρ values can be used to compare the two configurations. ρ values

92
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

smaller than 1 indicate that a lower amount of energy is required when the edge
server is used. Conversely, ρ values greater than 1 indicate that the cloud server is
the one that minimizes the energy consumption.

The analysis has been performed varying the application period TI , the elabo-
ration time TELAB, the RTT toward the cloud (hereafter RTTC), and the amount of
data transferred. Instead, the RTT toward the edge (RTTE) of 40 ms was adopted,
which is themedian latency value obtained using theMECPerf-active LTEmeasure-
ment method when no cross-traffic is injected into the access network (see Figure
5.5). We will define ∆RTT as the difference between the cloud and the edge RTT. In
other words, ∆RTT can be computed as

∆RTT = RTTC − RTTE (7.9)

Consequently, we can use Equation 7.1 to compute

TC
W = TE

W + ∆RTT (7.10)

where TE
W and TC

W are TW values computed when the edge and the cloud server are
involved, respectively. Then, if we consider Equation 7.2 we can compute

TC
Q = TE

Q − ∆RTT (7.11)

where TE
Q and TC

Q are TQ values computedwhen the edge and the cloud server are in-
volved, respectively. Then from Equations 7.10 and 7.11 it can be seen that the cloud
configuration is characterized by higher TW and lower TQ values. Consequently,
when the cloud is involved, higher EW and lower EQ will be obtained.

Finally, it should be noted that TTX and TRX are computed starting from the
amount of data transferred and the bitrate of the interface. Precisely, TTX has been
computed as

TTX =
8 · BTX

bitrateuplink
(7.12)

where BTX is the number of bytes sent during TTX, including both the application
data and the overhead introduced by the underlying network stack levels. Instead,
bitrateuplink is the bitrate of the interface in the uplink direction. It must be noted
that Equation 7.12 does not consider the RTT between the client and the server as
the UDP protocol lacks of any rate control mechanism. Hence, the time required
to send the data does not depend on the RTT. Then, considering Equation 7.4, it
can be easily concluded that also ETX is independent from the RTT. To compute
TTX and TRX an uplink bitrate bitrateuplink equals to 1 Mbps and a downlink bitrate
bitratedownlink equals to 0.8 Mbps were adopted, respectively. These bitrates comply
with those offered by a well-known Italian operator (Tim: Le tecnologie abilitanti
per l’IoT, 2021). Since low performance characterizes the adopted interface, it can

7.5 The energy consumption of an ideal connectionless application 93

Figure 7.7: The values of ρ obtained setting the
amount of transmitted data and the elaboration
time, while variable RTTC and TI are adopted.
The red area identifies those configurations pro-
ducing ρ values greater than 1. For these points,
using the cloud is the most convenient choice.
Conversely, for the blue area, the most convenient
choice is using the edge.

Sent data 16 000 B
Recv data 16 000 B
RTTE 40ms
RTTC from 50ms to 300ms
TELAB 150ms
TI from 750ms to 60s

Table 7.3: The setup used to com-
pute the ρ values of Figure 7.7.

be assumed that the bottleneck of the path between the client and the server will
be located on the wireless link that connects the client interface with the LTE BS.
Consequently, it is reasonable to assume that incoming packets are received back-
to-back during TRX. Then TRX can be considered independent from the RTT, and it
can be computed similarly to TTX.

TRX =
8 · BRX

bitratedownlink
(7.13)

where BRX is the amount of bytes receivedwithin a single period, including the data
introduced by the underlying network stack levels.

Evaluating ρ considering different combinations of application
periods and RTTC

First, the energy consumption of both the edge and the cloud configuration has been
evaluated considering a scenariowhere the amount of transmitteddata and the elab-
oration time are constant and the application period (TI) and the RTT toward the
cloud (RTTC) vary.

Figure 7.7 shows a 3D surface of ρ values, while Table 7.3 summarizes the setup
adopted. The red area of the surface identifies those combinations of parameters

94
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

that produce ρ values greater than 1. Thus, for the red area, the interaction with the
remote server is less energy demanding than the interaction with the edge server.
Conversely, the blue area of the surface indicates combinationswith ρ values smaller
than 1. Hence, interactingwith the edge server is themost convenient choice for this
area.

As can be seen, when low TI values and high RTTC values are considered, the
energy needed to interact with the remote server is lower than the energy required
to communicate with the edge server. Instead, when TI is greater than 750ms, the
edge server is always the best choice. Note that when the RTT increases ETX and
ERX do not change as they depend only on the amount of data transmitted and on
the bitrate of the interface. This means that all the differences between the two con-
figurations can be ascribed to EW and EQ. Let TE

W and TC
W be the TW computed for

the edge and the cloud configurations, respectively. As stated before, Equation 7.1
can be used to compute TW . With a TELAB of 150 milliseconds and a RTTE of 40
milliseconds, we obtain a TE

W equal to 190 milliseconds. Note that the considered in-
terface has a TC of 200milliseconds. Hence, since TE

W is smaller than TC, the interface
spent its TE

W entirely into CR. Instead, when the cloud server is considered, the RTT
increases. Consequently, TC

W becomes higher than TE
W . This means that EE

W is always
smaller than EC

W . When the cloud server is used, the interface stays in CR only for
10 milliseconds longer, while most of its ∆RTT is consumed in SHORT DRX (and
eventually in LONG DRX and in IDLE). In other words, the interface spent most of
its ∆RTT in a state characterized by lower power consumption. Instead, TQ is com-
puted as the time needed to complete the current period. Note that TI , TTX, and TRX
are fixed and TE

W is always smaller than TC
W (see Equation 7.10). Consequently, TE

Q
is always greater than TC

Q (see Equation 7.11). For TI equal to 750ms, TC
Q is equal

to a few milliseconds. This means that, when the edge configuration is considered,
the interface spent most of its ∆RTT into CR with the highest power consumption.
Consequently, when the edge server is considered, the additional energy spent in
TQ is higher than the energy saved during TW . Hence, the EE

I is greater than EC
I , and

ρ is higher than 1. The values EW , EQ, and EI for the two configurations, computed
using TI equal to 750 and 1 000 milliseconds are summarized in Table 7.4.

Instead, when large TI values are considered, the edge configuration is always
the most convenient. Note that TW is independent from TI . Consequently, when
a higher TI is considered EE

W and EC
W do not change. Instead, when TI increases,

TQ increases in both configurations. When TI is equal to 1 second, TC
Q is barely

sufficient to enter into SHORTDRX. Thismeans that the cloud configuration spends
a small portion of its ∆RTT into CR, while the edge configurations spend its ∆RTT
entirely into SHORT DRX. Consequently, at the end of the period, the additional
energy spent into TE

Q is lower than the additional energy spent into TC
W for a cloud

configuration. Thus, the edge configuration demonstrates to require lower energy.

7.5 The energy consumption of an ideal connectionless application 95

T
I
(m

s)
R
T
T

C
(m

s)
E

E W
(m

J)
E

C W
(m

J)
E

E Q
(m

J)
E

C Q
(m

J)
E

E I
(m

J)
E

C I
(m

J)

75
0

50
19

0.0
20

0.0
22

5.9
22

2.3
72

9.5
73

5.9
75

0
75

19
0.0

20
9.0

22
5.9

21
3.3

72
9.5

73
5.9

75
0

10
0

19
0.0

21
8.0

22
5.9

20
4.3

72
9.5

73
5.9

75
0

15
0

19
0.0

23
5.9

22
5.9

16
2.0

72
9.5

71
1.5

75
0

20
0

19
0.0

25
3.9

22
5.9

11
2.0

72
9.5

67
9.5

75
0

25
0

19
0.0

27
1.8

22
5.9

62
.0

72
9.5

64
7.4

75
0

30
0

19
0.0

28
9.8

22
5.9

12
.0

72
9.5

61
5.4

10
00

50
19

0.0
20

0.0
31

5.6
31

2.0
81

9.2
82

5.6
10

00
75

19
0.0

20
9.0

31
5.6

30
3.1

81
9.2

82
5.6

10
00

10
0

19
0.0

21
8.0

31
5.6

29
4.1

81
9.2

82
5.6

10
00

15
0

19
0.0

23
5.9

31
5.6

27
6.1

81
9.2

82
5.6

10
00

20
0

19
0.0

25
3.9

31
5.6

25
8.2

81
9.2

82
5.6

10
00

25
0

19
0.0

27
1.8

31
5.6

24
0.2

81
9.2

82
5.6

10
00

30
0

19
0.0

28
9.8

31
5.6

22
2.3

81
9.2

82
5.6

Table 7.4: EW , EQ, and EI values for the edge- and the cloud-based configurations
considering a connectionless applicationwith TI equal to 750 and 1 000milliseconds,
RTTC values ranging from 50 to 300 milliseconds, TELAB equals to 150 milliseconds,
RTTE equals to 40 milliseconds, and 16 000 bytes for both BTX and BRX.

Evaluating ρ considering different combinations of transmitted
data and RTTC

Figure 7.8 shows the ρ values computed considering different amounts of data trans-
ferred. The setup used to collect the results is summarized in Table 7.5. As can be

96
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

Figure 7.8: The values of ρ obtained setting the
application period and the elaboration time,
while a variable RTTC and a variable amount
of transmitted data are considered. The red
area identifies those configurations producing
ρ values greater than 1. For these points, using
the cloud is the most convenient choice. Con-
versely, for the blue area, the most convenient
choice is using the edge.

Sent data from 100B to 256 000B
Recv data from 100B to 256 000B
RTTE 40ms
RTTC from 50 to 300 ms
TELAB 150ms
TI 5 000 ms

Table 7.5: The setup used to com-
pute the ρ values of Figure 7.8.

seen, for a low amount of data transferred, the edge configuration demonstrates to
be always the one that minimizes the energy consumption. This behavior is similar
to the one explained in the previous case. Since elaboration time is equal to 150 ms
and the RTT toward the edge is equal to 40 ms, the TE

W is equal to 190ms. Since TC
is equal to 200 milliseconds, the interface spent a small fraction of its ∆RTT into CR
when the cloud server is considered. If the amount of data transmitted is small, then
also TTX and TRX are small for both the configurations. Since TI is equal to 5 seconds,
then TQ is big enough to let the interface go into a state characterized by lower power
consumption. This means that the interface spends its ∆RTT entirely out of CR dur-
ing TE

Q. Consequently, the edge configuration demonstrates lower consumption at
the end of the period.

In addition, for a given amount of data transferred, it can be noted that ρ val-
ues decrease as the RTT toward the cloud server increases. This behavior can be
explained as follows. When the RTTC increases, the ∆RTT increases as the RTT to-
ward the edge is a fixed value. This means that the gain obtained during TE

W and
TC

Q increases. When the cloud server is considered, the interface spends a higher
fraction of its ∆RTT into SHORT DRX. Instead, when the edge configuration and
a small amount of data are considered, the interface spends this higher ∆RTT into
LONGDRX.Note that it was considered an interface characterized by amean power

7.5 The energy consumption of an ideal connectionless application 97

Figure 7.9: The values of ρ obtained setting the
application period and the amount of transmit-
ted data, while variable RTTC and elaboration
times are adopted. The red area identifies those
configurations producing ρ values greater than 1.
For these points, using the cloud is the most con-
venient choice. Conversely, for the blue area, the
most convenient choice is using the edge.

Sent data 16 000 B
Recv data 16 000 B
RTTE 40ms
RTTC from 50 to 300 ms
TELAB from 0 to 1500 ms
TI 5 000 ms

Table 7.6: The setup used to com-
pute the ρ values of Figure 7.9.

consumption of 163.23 mW and 359.07 mWwhen the interface is in LONGDRX and
SHORTDRX, respectively. Since LONGDRX has smaller consumption with respect
to SHORT DRX, it can be easily understood why ρ values decrease.

Finally, we can see that when a higher amount of data are considered, the cloud
configuration becomes the most favorable configuration. For example, when 100
bytes are transmitted and RTTC is equal to 150 milliseconds a ρ of 0.978 is obtained.
Instead, for 256 000 bytes transmitted and a RTTC of 150 milliseconds ρ is equal to
1.012. In fact, if the amount of data transmitted increases then TTX and TRX increase,
while TQ decreases. At a certain point, TQ becomes so tiny that the interface spends
a relevant part of its ∆RTT into CR when the edge is involved. As a consequence,
the edge configuration becomes the worst one.

Evaluating ρ considering different combinations of elaboration
time and RTTC

Figure 7.9 show the dependency of ρ values with different combination of TELAB
and RTTC, considering the setup of Table 7.6.

First, it can be noted that the edge configuration is always convenient when low
elaboration times are considered. This result can be explained as follows. When a
low elaboration time is considered, TE

W is small, and the interface stays in CR for a

98
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

Figure 7.10: The values of ρ obtained setting
the amount of transmitted data, while variable
elaboration times and application periods are
adopted. The red area identifies those configu-
rations producing ρ values greater than 1. For
these points, using the cloud is the most conve-
nient choice. Conversely, for the blue area, the
most convenient choice is using the edge.

Sent data 16 000 B
Recv data 16 000 B
RTTE 40ms
RTTC 170ms
TELAB from 0 to 1 500 ms
TI from 750ms to 60s

Table 7.7: The setup used to com-
pute the ρ values of Figure 7.10.

limited amount of time. Then, when the cloud configuration is considered, the in-
terface spent most of its ∆RTT into CR, consuming a relevant amount of power. If
we consider a TI of 5 seconds and a transfer of 16 000 bytes, TQ is sufficient to bring
the interface outside of CR. Consequently, the interface spent its ∆RTT in a power-
saving mode. This means that more energy is needed to interact with a far cloud
server during a single period. When TELAB increases, TE

W and TC
W increase. This

means that a smaller fraction of ∆RTTC is spent in CR. Consequently, the difference
between the EC

W and EE
W decreases, and ρ increases. Note that, if TELAB is sufficient

to bring the interface LONGDRX for both the two configurations, the additional en-
ergy spent during ∆RTTC and ∆RTTE is the same. Consequently, ρ becomes equal
to 1. In other words, the location of the destination server does not affect the energy
needed to run the application.

Evaluating ρ considering different combinations of elaboration
time and application period
Finally, the impact of both the elaboration time and the application period has been
evaluated, considering the setup of Table 7.7. Figure 7.10 depicts the results. As can
be noted, the cloud configuration demonstrated to be the best one for low TI values.
Conversely, the edge configuration brings benefits only when a short elaboration

7.6 The energy consumption of a trace-based connection-oriented application 99

time is involved. In general, for most of the considered combinations, the location
of the destination server does not affect the overall energy consumption. The reasons
that led to this result have been explained in the previous part of this section. When
a small TI is considered, TC

Q is small. Then, the interface spends a relevant fraction
of the ∆RTTE into CR, with consequently higher consumption. Instead, when the
elaboration time is small, the interface spends most of its ∆RTTC into CR. Thus, the
edge configuration exhibited the best behavior at the end of the period. However,
for most of the configuration, ∆RTTE and ∆RTTC are both spent into LONG DRX.
Hence, the additional energy consumed during ∆RTTE and ∆RTTC is the same.
Then, EE

I is equal to EC
I and ρ is equal to 1.

7.6 The energy consumption of a trace-based
connection-oriented application

Finally, this section contains the results for the two connection-oriented scenarios.
Let N be the number of experimental results collected for each configuration con-
sidered. Then, the values of ρ will be calculated as the ratio between the energy
required to perform N iterations using the edge-based experimental results and the
energy needed to run N iterations using the cloud-based experimental results. In
other words, ρ is computed as

ρ =
∑N

j=1 EE
I (j)

∑N
j=1 EC

I (j)
(7.14)

where EI(j) is the energy spent in the j-th iteration. Figure 7.11 shows the ρ

values computed considering the experimental TTX, TW , and TRX values gathered
during the night. Moreover, ρ values have been computed considering increasing
TI values and an increasing amount of data. The setup used to collect the ρ values
is summarized in Table 7.8. First of all, it can be noted that the edge configuration
is always the most convenient one as the ρ values are always smaller than 1. Figure
7.12 confirmed this result. The two plots show the mean energy consumption for
the two applications in both the edge- and cloud-based experiments, considering
the set of experiments conducted during the night using a period (TI) equal to 40
seconds. The 99% confidence intervals over the N repetitions are depicted. As can
be seen, the mean energy consumption over a period is lower when an edge server
is involved. In other words, EE

I is always smaller than EC
I . This was an expected

result since ρ values are always smaller than 1. Then, we can note that the EI values
computed for the second application (i.e., an application characterized by a con-
sistent download of data) have small confidence intervals in both the edge- and the
cloud-based scenarios. Instead, the EI values computed for the first application (i.e.,

100
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

(a) Application #1: uploading some data to the server during the
night.

(b) Application #2: downloading some data from the server during
the night.

Figure 7.11: The value of ρ collected for a connection-
oriented application when an increasing amount of
data transferred is considered. The results are based
on TTX, TW , and TRX values collected at night.

RTTE ≈ 85 ms
RTTC ≈ 285 ms
TI from 20 to 60 s

Table 7.8: The setup used
to compute the ρ values of
Figure 7.11.

an application based on a consistent upload of data) show higher variability when
a cloud server is involved. Anyway, for both applications, the results for the edge
and the cloud scenarios are well separated and there are no overlapping confidence
intervals.

7.6 The energy consumption of a trace-based connection-oriented application 101

2 4 6 8 10 12

Filesize (MB)

0

5

10

15

20

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

EDGE configuration (night)
Cloud configuration (night)

(a)Application #1: uploading somedata to the
server during the night.

2 4 6 8 10 12

File size (MB)

0

5

10

15

20

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

EDGE configuration (night)
CLOUD configuration (night)

(b) Application #2: downloading some data
from the server during the night.

Figure 7.12: The mean energy consumption (EI) required to transmit data upon the
10 repetitions, considering a ∆RTT of 200 milliseconds and an application period
(TI) of 40 seconds. The TTX and TRX values were collected during a set of mea-
surements performed at night. The plot shows the 99% of confidence interval of the
mean values.

Moreover, it can be pointed out that the ρ values obtained for a connection-
oriented application are lower than the ones obtained when a connectionless ap-
plication is considered. In fact, the ρ values depicted in Figures 7.7, 7.8, 7.9, and 7.10
never go below 0.90, while connection-oriented ρ values stay always below 0.68.
This means that, for a connection-oriented application, the edge brings higher ben-
efits. This result can be attributed to the dependency between the TCP throughput
and the RTT between the two end-points. In fact, when the edge server is involved,
the RTT is smaller, and consequently, the throughput is higher. This means that
a smaller amount of time is needed to send or receive a certain amount of data.
Consequently, TE

TX and TE
RX are shorter, and the interface stays in CR for a lower

amount of time. Note that the mean power consumption in CR is equal to 1200 mW
when the interface is transmitting and to 1000mWwhen the interface is receiving or
idle. Instead, the mean power consumption is equal to 359.07 mW, 163.23 mW, and
14.25mWwhen the interface is in SHORTDRX, LONGDRX, and IDLE, respectively.
Hence, since CR is the most consuming state, the time spent in TTX and in TRX has
a relevant impact on the overall energy consumption. To confirm this result, TTX
and TRX values have been plotted in Figure 7.13. As can be seen, TTX and TRX val-
ues collected considering an edge configuration are systematically lower than those
gathered considering a cloud-based scenario. For example, let us consider Figure
7.13a. When the edge server is involved, TTX values go from 2 to 8 seconds. Instead,
when the cloud server is considered, TTX values go from 4 to 16 seconds. The sec-

102
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

(a) Application #1: uploading some data to the
server.

(b) Application #2: downloading some data
from the server.

(c) The ratio between the time needed to transfer
a file of a given size to the edge server and to the
cloud server.

Figure 7.13: The mean time required to transmit data upon the 10 repetitions, con-
sidering a ∆RTT of 200milliseconds. The TTX and TRX values were collected during
a set of measurements performed at night. The plot shows the 99% of confidence
interval of the mean values.

ond application (Figure 7.13b) shows a similar behavior as TRX edge-based values
go from 1 to 4 seconds, while cloud-based values go from 4 to 16 seconds.

Then we can note that ρ values computed for connection-oriented and connec-
tionless applications have a different trend. This is evident if we compare Figure
7.11 and Figure 7.8. In fact, for each RTTC, the value of ρ computed considering
an application based on UDP increases as the amount of data transmitted increases.
Instead, the ρ values computed considering the first application remain quite stable,
while those computed considering the second application decrease. This difference
can be explained as follows. First, the setup used to evaluate the two applications is
slightly different. The model based on UDP considers an interface with a poorer bi-
trate and a smaller amount of data transmissions. Additionally, themodel considers
the number of bytes transmitted at the interface level. This includes the application-

7.6 The energy consumption of a trace-based connection-oriented application 103

level data and all the headers and trailers introduced by the underlying stack layers.
Instead, the data considered for the TCP-based model refers only to the application-
level data. Secondly, the values of TTX and TRX retrieved during the experimental
phase are based on the HTTP protocol, and they had been collected using existing
tools that may introduce additional overhead on both the Raspberry and the server.
Finally, the transmission rate of a TCP throughput is adapted to the status of the net-
work by several mechanisms. Instead, UDP does not have such mechanisms. This
means that TTX and TRX are ideally independent from the RTT. Consequently, when
a connectionless application is involved, TW and TQ are the only sources of differ-
ences, and the value of ρ is dominated by the minor differences that occur when the
interface is in a power-savingmode (i.e., SHORTDRX, LONGDRX, and IDLE). This
last factor also explains why the ρ values computed for a UDP connectionless appli-
cation are almost above 0.90. Instead, the application throughput is strictly related
to the RTT when a connection-oriented application is considered and differences in
the order of seconds can be observed during TTX and TRX. This means that a con-
sistent amount of energy can be saved by choosing a closer destination server. Note
that differences in the energy consumption during TW and TQ still arise. However,
they are generally negligible when compared with those observed during TTX and
TRX.

Finally, Figure 7.14 shows the TTX and the TRX values collected during the day.
As can be noted, the ratio between the time needed to upload a file to the edge
server and the time needed to upload a file of identical size to the cloud server is
higher than those collected overnight (Figure 7.13). In fact, TEDGE/TCLOUD metrics
go from 0.5 and to 0.8 during the day, while they go from 0.45 to 0.6 during the
night. This behavior can be ascribed to a higher utilization level of the wireless link,
which is generated by the higher number of clients connected to the cell during the
day. Then, Figure 7.15 shows the ρ values computed using the daytime results. As
expected, the uplink results depicted in Figures 7.15a and 7.11a shows a similar be-
havior. However, ρ values based on daytime metrics are higher. Finally, Figure 7.16
show themean energy consumption for the edge and the cloud configurations at the
99% of confidence intervals, considering the set of experiments conducted during
the day using an application period (TI) of 40 seconds. The mean energy consump-
tion values collected during the day and those collected during the night (Figure
7.12) show a similar trend. But daytime results show larger confidence intervals.
Additionally, they are coherent with both ρ values (Figure 7.15) and both TTX and
TRX values (7.14).

104
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

(a) Application #1: uploading some data to the
server.

(b) Application #2: downloading some data
from the server.

(c) The ratio between the time needed to transfer
a file of a given size to the edge server and to the
cloud sever.

Figure 7.14: The mean time required to transmit data upon the 10 repetitions, con-
sidering a ∆RTT of 200milliseconds. The TTX and TRX values were collected during
a set of measurements performed during the day. The plot shows the 99% of confi-
dence interval of the mean values.

7.6 The energy consumption of a trace-based connection-oriented application 105

(a) Application #1: uploading some data to the server.

(b) Application #2: downloading some data from the server.

Figure 7.15: The value of ρ collected for a connection-
oriented application when an increasing amount of
data transferred is considered. The results are based
on TTX, TW , and TRX values collected during the day.

RTTE ≈ 75 ms
RTTC ≈ 275 ms
TI from 20 to 60 s

Table 7.9: The setup used
to compute the ρ values of
Figure 7.15.

106
Estimating the energy consumption of terminal nodes in edge/cloud

scenarios

2 4 6 8 10 12

File size (MB)

0

5

10

15

20

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

EDGE configuration (day)
CLOUD configuration (day)

(a)Application #1: uploading somedata to the
server during the day.

2 4 6 8 10 12

File size (MB)

0

5

10

15

20

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

EDGE configuration (day)
CLOUD configuration (day)

(b) Application #2: downloading some data
from the server during the day.

Figure 7.16: The mean energy consumption (EI) required to transmit data upon the
10 repetitions, considering a ∆RTT of 200 milliseconds and an application period
(TI) of 40 seconds. The TTX and TRX values were collected during a set of measure-
ments performed during the day. The plot shows the 99% of confidence interval of
the mean values.

Chapter 8

Evaluating the path to remote clouds

Finally, this Chapter will propose an approach devised for analyzing the network
paths that separate a couple of hosts. A deeper understanding of the entire network
path between a TN and the target application server can be used by orchestrators to
adoptmore complex placement strategies. For example, this knowledge can be used
to discourage the deployment of an application on a server that would establish a
path that involves links that are already widely used by other applications. Alter-
natively, this information could be used to stimulate the use of servers that would
establish a path via links andASs that have alreadydemonstrated goodperformance
in other applications.

Traceroute is a widely adopted tool for investigating Internet paths between a
couple of hosts. Basically, traceroute sends to a target host IP packetswith increasing
TTL. Generally, TTL values start from 1, going up to a maximum value (hereafter
MAX_DEPTH). When a probe reaches an intermediate hop, an Internet Control
Message Protocol (ICMP) Time Exceeded packet is sent to the source node. Instead,
when the probe reaches the target, the source node receives a message that depends
on the type of the protocol used (i.e., UDP probes generate ICMP Port Unreachable
messages, ICMP probes generate ICMP Echo Reply messages, and TCP probes gen-
erate TCP RST or SYN + ACK messages). However, firewalls, traffic shapers, and
other similar devices placed close to the target can easily detect the traceroute data.
Then, these packets can be discarded for security reasons, for reducing the traffic
within the destination network, or for other arbitrary reasons. To solve this issue,
the following will present a connection-oriented probing methodology. Fundamen-
tally, the proposed method aims at concealing the probes, making them appear as
legitimateHTTP traffic andmasking the real intentions of themechanism. The basic
functioning mechanism of the proposed probing method is depicted in Figure 8.1.

The rest of this Chapter is organized as follows. First, the connection-based prob-
ing method will be presented. Then its performance will be compared with those
of the TCP traceroute.

107

108 Evaluating the path to remote clouds

Figure 8.1: The basic operating principles of camotrace. The source node combines
probes and legitimate HTTP GET requests, eliciting some ICMP Time Exceeded
messages from the intermediate routers.

8.1 The camouflage traceroute software modules
Two different kinds of probes are used to discover the intermediate hops along a
path. The first one is based on data segments, while the latter uses acknowledgment
packets. In the following, we will refer to these two probing methods as DATA- and
ACK-based methods, respectively. The source code of camotrace can be found as
open-source on bitbucket (The source code of camotrace, 2021).

The Data segment-based camouflage traceroute implementation
TheDATA-basedmethod usesHypertext Transfer Protocol (HTTP)GET requests as
probes. Therefore, the targetmust be listening forGET requests to function properly.

As already stated, camotrace operates in two phases. The first one is the connec-
tion phase, used to establish a TCP connection with the target host. Camotrace uses
the raw stream socket interface offered by the OS to make the connection handling
as easy as possible. Consequently, camotrace acts on packets only at the applica-
tion level for both outgoing and incoming traffic. Instead, the second phase is the
probing phase, summarized in the pseudo-code of Algorithm 4. For each value of x
between 1 and MAX_DEPTH, camotrace operates as follows. First, at Line 7, camo-
trace sets to x the TTL value associated with the socket between the sender and the
target. Then, the socket is used to send the following HTTP request:
"GET / HTTP/1.1\r\nHost: <target host name>\r\nConnection: Keep-Alive\r\n\r\n"

At Line 11, camotrace starts to consume the incoming traffic. If the path between the
sender and the target is longer than x hops, an ICMP time exceededmessagemay1 be
generated at the x-th hop. When camotrace receives an ICMPmessage, it associates
the IP address of the x-th router with the TTL value that elicited the ICMPmessage.
Then it immediately starts to probe the next hop. If the ICMP packet did not arrive

1For several reasons, some ICMP packets may not arrive (e.g., the intermediate router is config-
ured to send no ICMP messages).

8.1 The camouflage traceroute software modules 109

1 MAX_TTL← System default TTL
2 MAX_DEPTH← 40
3 MAX_ATTEMPT← 3
4

5 nAttempt = 0
6 for all x ∈ {1..MAX_DEPTH} do
7 setTTL(x)
8 send an HTTP request to the target host
9 start timer
10 setTTL(MAX_TTL)
11 while True do
12 try:
13 listen for incoming traffic
14 if ICMP Time Exceeded packets arrives then
15 store the IP address of the x-th host
16 nAttempt = 0
17 break
18 end
19 catch timer expired
20 break
21 end
22 if the server closes the socket then
23 establish a new connection with the server
24 end
25 if ICMP Time Exc. not received && nAttempt < N_ATTEMPT_MAX

then
26 x = x - 1
27 nAttempt = nAttempt + 1
28 end
29 if ICMP Time Exc. not received && nAttempt ≥ N_ATTEMPT_MAX

then
30 nAttempt = 0
31 end
32 end
33 end

Algorithm 4: Data-based Camouflage traceroute probing phase.

110 Evaluating the path to remote clouds

in time, the timer associatedwith the socket expires (Line 19), and a newprobewith
TTL equal to xwas sent. Camotrace sends up toMAX_ATTEMPT probes to discover
the x-th hop. Then it starts to probe the next hop. Note that the TTL associated with
the socket is restored to its original value immediately after sending the request
(Line 10). This allows interleaving probes and requests. In fact, the source will
not receive any acknowledgment for the probe. Consequently, at a certain point, the
message will be retransmitted using the default TTL. Finally, it should be noted that
camotrace cannot elicit any ICMP packet on the target machine. This means that it
is not able to detect the target host. Therefore, the algorithm always continues until
MAX_DEPTH is reached in its current implementation.

Managing unexpected connection closures

To function correctly, camotrace must have full control of the source machine. How-
ever, no assumptions can be made on the target machine that is owned by a third-
party organization. This means that the target server canmake arbitrary and unpre-
dictable decisions that need to be managed. A common problem is represented by
the closure of the connection by the server. To deal with the anomalous closure of
the connection between the two hosts, the following two improvements have been
introduced.

Managing non-persistent connections
As declared in the Request for Comments (RFC) 2616 (Nielsen et al., 1999) anHTTP
1.1 connection should be persistent. Using a limited number of TCP connections
brings several advantages. For example, using fewer connections allows saving
resources on the hosts, while reducing the number of TCP handshakes reduces
the number of packets transmitted and the communication latency. However, a
servermay still close the connection immediately after completing to serve a request.
Camotrace can use probes with two different payload types to manage anomalous
connection closures. The former consists of a full HTTP request as previously de-
scribed in Section 8.1. Instead, the latter uses only one byte of the original request
as payloads. Consequently, since the request was not fully received, the server is
dissuaded from closing the connection.

Managing other unexpected connection closures
Although the request has not been received in its entirety, the server can still decide
to close the connection with the client. This behavior can be due to multiple rea-
sons. For example, the connection could be closed because the server is subjected to
a high workload, or server-side timers could be triggered since too much time has
been elapsed between two consecutive requests. To manage these problems, camo-

8.1 The camouflage traceroute software modules 111

trace constantly checks the status of the connection (Line 22), establishing a new
connection when required.

The ACK-based camouflage traceroute
Similarly to the data segment-based version of camotrace, this version of camotrace
operates using an already established connection. However, this method is based
on ACK probes.

The ACK-based camotrace comprises two software modules residing in the ker-
nel and the user space. The kernel module was developed employing the Linux
Netfilter library (netfilter project home page, 2021), which provides hooks that can
be used to intercept packets at different levels of the network stack. The kernel-
space module is implemented as an FSM with 6 states: INITIALIZING, DISCON-
NECTED, CONNECTING, SEND_MODIFIED, SEND_UNMODIFIED, and CLOS-
ING. The kernel module behaves as a filter, intercepting the packets belonging to the
connection between the user code and the target web server. Then, it manipulates a
part of the acknowledgment packets. The TTL applied to the forged ACK is chosen
dynamically, depending on the information received from the user code during the
initialization, the internal state of FSM, and the information retrieved from the stack.
Instead, the user-space module always initiates the discovery procedure, and it is in
charge of consuming the ICMP time exceeded messages elicited by the forged ACK
packets.

Precisely, for each target, the two modules operate as follows. In the beginning,
the user-space module opens a Netlink socket (netlink, 7) to communicate with the
kernel filter. Then, the user-space module sends three parameters to the kernel.
The first parameter is the IP address of the target host (TARGET_IP), the second
parameter is the maximum number of hops that can be probed (TTL_MAX), and
the third parameter is the maximum number of attempts that can be performed at
each hop (N_ATTEMPT_MAX). The kernel module starts into INITIALIZING,
waiting to receive the parameters from the user module. Once the parameters have
been received, the START command is sent to the user space. Then themodule goes
into DISCONNECTED. Upon receiving the START command, the user code opens
a TCP connection with the target web server using a raw socket. Consequently, the
filter goes first into CONNECTING and, when the three-ways handshake is com-
pleted, in SEND_UNMODIFIED. At this point, the user-side code starts to send
HTTP requests, while the filter begins to intercept the outgoing acknowledgments.
If the filter is into SEND_UNMODIFIED, the ACK packet is sent without any mod-
ification, and the filter goes into SEND_MODIFIED. Otherwise, the filter changes
the TTL of the acknowledgment packet, computes a new IP header checksum for
the modified ACK, sends to the user module some information about the forged
packet, and finally goes back to SEND_UNMODIFIED. In other words, the filter

112 Evaluating the path to remote clouds

FI
N

M
O

D
IF

IE
D

A
C

K

S
Y

N

A
C

K

TA
R

G
E

T
_

IP

PA
R

A
M

E
N

T
E

R

R
E

C
E

IV
E

D

PA
C

K
E

T
_

T
T

L

N
_

A
T

T
E

M
P

T
_

M
A

X
T

T
L

_
M

A
X

PA
C

K
E

T
_

S
E

Q
#

PA
C

K
E

T
_

A
T

T
E

M
P

T
#

S
TA

R
T

K
E

R
N

E
L

 S
PA

C
E

T
IM

E
S

TA
M

P
IP

ID

A
C

K

FI
N

C
LO

S
IN

G

IN
IT

IA
L

IZ
IN

G

D
IS

C
O

N
N

E
C

T
E

D

C
O

N
N

E
C

T
IN

G

A
C

K

S
E

N
D

_
U

N
M

O
D

IF
IE

D

 S
Y

N

S
E

N
D

_
M

O
D

IF
IE

D

U
S

E
R

 S
PA

C
E

U
S

E
R

 S
PA

C
E

 A
P

P
L

IC
A

T
IO

N

TO THE NETWORK

S
T

O
P

 r
e

ce
iv

e
d

 f
ro

m
 t

h
e

 k
e

rn
e

l?

Ye
s

N
o

7
. W

a
it

 f
o

r
th

e
 la

st
 IC

M
P

 p
a

ck
e

ts

8
. Q

u
it

6
. P

ro
ce

ss
 p

e
n

d
in

g
 IC

M
P

 p
a

ck
e

ts

5
. W

a
it

 f
o

r
p

a
ck

e
t

in
fo

rm
a

ti
o

n

 f

ro
m

 t
h

e
 k

e
rn

e
l

4
. S

e
n

d
 a

n
 H

T
T

P
 r

e
q

u
e

st

3
. W

a
it

 f
o

r
th

e
 s

ta
rt

 s
ig

n
a

l

2
. S

e
n

d
 p

a
ra

m
e

te
rs

 t
o

 t
h

e
 k

e
rn

e
l

1
. S

o
ck

e
t

in
it

ia
li

za
ti

o
n

Figure 8.2: The software components of the ACK-based version of camotrace and
their interactions.

8.2 The camouflage traceroute discovery capabilities 113

Source Target
Web server

IIT-CNR network

Internet

Unipi network

Figure 8.3: The setup used to validate the data segment-based version of camotrace.

starts to alternate transitions between the SEND_UNMODIFIED and SEND_MOD-
IFIED states. Consequently, manipulated and regular ACKs are alternated as well.
Note that the modified ACKs are likely discarded before reaching the target, elicit-
ing ICMP packets. While the unmodified ACKs are required to maintain the TCP
connection alive. The two software components and their interactions have been
depicted in Figure 8.2.

8.2 The camouflage traceroute discovery capabilities

Validation
The data segment-based version of camotrace has been validated twice. The first val-
idation test aimed to assess whether camotrace is able to discover the path between
two nodes correctly. Instead, the second validation test was aimed to evaluate its
ability to bypass a firewall configured to identify and filter traceroute traffic.

The first validation test involved a source node, hosted at the University of Pisa,
and 17 target Web sites belonging to different Italian universities. First of all, we
checked that all the target Web servers were hosted within their University net-
works. This step guarantees that all the hosts involved in the validation are part
of the GARR network (Consortium GARR Home Page, 2021), which connects all
Italian universities and provides a publicly accessible map (The map of the GARR
network, 2021) of its network. Therefore, since the paths between the hosts are well
known, the correctness of the results obtained by camotrace can be easily checked.
As a result, all 17 paths were correctly discovered at the end of the validation.

For the second validation test, a machine belonging to the IIT-CNR network was
used as source, while the target Web server was hosted on a machine located at
the University of Pisa. Additionally, the IIT-CNR network hosted a Palo Alto fire-
wall (Palo Alto Networks, 2021). This firewall can identify traffic belonging to spe-

114 Evaluating the path to remote clouds

cific applications through deep packet inspection techniques. Then, depending on
the configured policies, a packet can be forwarded, shaped, or blocked. In detail,
the firewall is configured to block all the traceroute traffic between the source and
the target machine. Then we ran traceroute, using UDP, ICMP, TCP probes, and
camotrace between the two hosts. To make a fair comparison, the TCP version of
traceroute was launched using the destination port 80 since it is the same port used
by camotrace. As expected, the firewall blocked all the traceroute traffic. Instead,
camotrace succeeded in discovering all the hosts between the source and the tar-
get. In other words, camotrace could bypass a Palo Alto firewall configured to block
traceroute. The setup used to conduct this second validation experiment is shown
in Figure 8.3.

Experimental setup

We perform an experimental campaign aimed to compare traceroute (version 2.1.0
for Ubuntu) with both the DATA- and the ACK-based version of camotrace. As
source, a host belonging to the University of Pisa was used. This choice makes pos-
sible to simplify the setup of the experiment as much as possible while continuing
to provide reliable results2. Instead, the targets were selected as follows. First, ap-
proximately one million domains from the .it Top-Level Domain (TLD) were col-
lected. This list was resolved in approximately 800 000 IPv4 addresses while the
remaining 200 000 names, registered but not associated with any IP address, were
discarded. Then, the duplicate addresses were removed, obtaining a new set of
about 92 000 addresses. The fact that most of the IP addresses were duplicate is not
surprising. In fact, most of the domains are hosted on cloud or hosting services,
which generally execute multiple websites onto the same physical machine. Note
that traceroute and camotrace are time-consuming applications. Therefore, the set
of targets was reduced as much as possible so that experiments could be completed
in a reasonable amount of time. To this purpose, each IP addresswas associatedwith
its Autonomous System (AS) using the Team Cymru Whois service (Team Cymru,
2021). Then, for each AS in the list, only a single IP address was randomly selected.
At the end of this step, we obtained a set of approximately 3 260 targets Web serv-
ers, each one hosted on different machines belonging to a different ASes. Note that
selecting one IP for each AS significantly reduces the list of targets while the hetero-
geneity of the targets was preserved since it is reasonable to assume that policies are
homogeneous within a single AS. Finally, for 629 targets, camotrace was unable to
establish a Transmission Control Protocol (TCP) connection. Multiple reasons can
cause this: there may not be a Web server running on the target machine, the Web

2Results presented in a similar study that not included connection-based mechanisms(Luckie
et al., 2008a) showed that the vantage point does not significantly affect the results.

8.2 The camouflage traceroute discovery capabilities 115

server may be configured not to reply to GET requests, or a firewall may block all
the traffic between the source and the target. For 89.5% of these 629 targets, the TCP
traceroute could not discover the target interface. However, traceroute collected in-
formation about the intermediate nodes even if the target was not discovered. In
any case, the experiments were carried out in the remaining set of 2 323 targets for
which a TCP connection can be successfully established.

The experimentswere conducted using the TCP traceroute (hereafter SYN-based
method) and both the DATA- and ACK-based camotrace. To compare all the meth-
ods fairly, we configured traceroute as follows. Firstly, the traceroute can send only
one probe at a time since the DATA-based camotrace cannot send multiple probes
simultaneously. Secondly, the TCP traceroute has been configured to send probes
using destination port 80, the same as that used by the HTTP protocol. Generally,
traceroute has a defaultMAX_DEPTH of 30 hops. However, preliminary tests based
on traceroute showed that some paths are longer than 30 hops. For this reason, a
MAX_DEPTH equal to 40 hops was configured for all the considered methods. Fi-
nally, since camotrace cannot detect the target, we excluded the destination from the
traceroute results.

Experimental results
In the following, the results obtained during the experiment campaign are pre-
sented. First, to contextualize the set of targets used, the geographical location of
each target was analyzed. Then the discovery capabilities of camotrace were ana-
lyzed.

Evaluate the location of the targets

First of all, theMaxMindGeoLite2 Database(Maxmind, 2021)was used to geolocate
the targets. Although the target selection has been limited to Italian domains, the
targets can be located anywhere in the world. Then, the results obtained show that
the target machines are spread across 70 different countries. This means that some
of the targets are located outside the European Union. Additionally, for each target,
the distance from the source node was calculated using a delay-to-distance conver-
sion factor of ∼72 km/ms (Candela et al., 2019). The bar chart of Figure 8.4 shows
the ranking of the top 20 countries that hosts the larger number of targets, while the
box plot shows the estimated distance between the source and the targets in the cor-
responding country. It can be seen that the top 3 countries hosted a similar number
of targets, and only a tiny fraction of the targets were hosted in Italy. Moreover, the
second country for target density is a non-European country.

At this point, to better characterize the targets, the DATA-, the ACK-, and the
SYN-based methods were used to compute the empirical Cumulative Distribution

116 Evaluating the path to remote clouds

 0

 4000

 8000

 12000

 16000

D
is

ta
nc

e
(k

m
)

 0

 100

 200

 300

 400

IT US DE NL GB FR CHRU PL ES AT CZ DKRO SE BE CA UA TR SI

of

 ta
rg

et
s

Countries

Figure 8.4: The 20 stateswhere themajority of the targets are hosted and the distance
in kilometers between the source and the target in the corresponding country.

Function (eCDF) of the AS path length and the eCDF of the number of interfaces
per AS. The results are shown in Figures 8.5 and 8.6, respectively. First, we can see
that the three methods show similar distributions, and a significant portion of the
targets have short-length paths. For example, approximately 40% of the targets see
at most 3 ASes. This result is coherent with Figure 8.4 since most of the targets are
located in a European country. However, the number of long paths is not negligible
and can be reasonably attributed to targets located in other continents. Finally, only
one interfacewas identified for about half of the ASes considered. In general, almost
all the ASes contain less than 100 IP interfaces, while only a minority part of them
contains a relevant amount of interfaces. In particular, Cogent and Telia contain
approximately ∼800 and ∼400 interfaces, respectively. However, this result is not
surprising since these twoASes are the two upstream providers of the GARR,which
contain the source hosts.

Compare the discovery capabilities of a connection-based method

At first, we analyzed the discovery capabilities of camotrace in terms of unique IP
interfaces discovered. An UpSet plot(Lex et al., 2014), a visualization technique for

8.2 The camouflage traceroute discovery capabilities 117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
C

D
F

AS path length

SYN
DATA

ACK

Figure 8.5: The eCDFof theASpath length using the data segment-based camotrace,
the ACK-based camotrace, and the TCP traceroute probing methods.

analyzing sets and their intersections, was used to show this information. As can be
seen in Figure 8.7a, the intersection between the methods includes 7 113 distinct IP
interfaces. In other words, most of the interfaces are discovered by all the methods.
The first three rows represent the set of unique IP interfaces discovered by only one
method. Thus, we can appreciate that the SYN-based method can discover a higher
number of interfaces. In fact, using SYN-based probes, 101 distinct IP interfaces
were discovered, while only 33 and 51 interfaces were discovered using DATA- and
ACK-based probes, respectively. However, it can be noted that the union of the set
of interfaces discovered by the two connection-based methods ((DATA ∪ ACK)−
SYN) found 178 interfaces, while the SYN-basedmethod only 101. Precisely, the 178
interfaces are divided as follows: 33were found only by theDATA-basedmethod, 51
were found by the ACK-based method alone, and 94 were found by both the DATA-
based and the ACK-based method ((DATA ∩ ACK)− SYN). This indicates that a
connection-based method can discover a relevant amount of IP interfaces that tradi-
tional probe methods cannot identify. However, it is better to use multiple probing
methods to maximize the number of hops discovered.

The IP addresses have been converted into their AS numbers to investigate this
result better. Hence, the discovery capability of camotrace was assessed in terms of
bothAS numbers andAS links. TheUpSet plots of these results are shown in Figures
8.7b and 8.7c, respectively. As can we see, these results are coherent with those of
Figure 8.7a. In fact, the SYN-based method found more ASes and more AS links
than the connection-based methods. Precisely, the SYN-based methods discovered
21 unique ASes, while the DATA- and the ACK-based methods found 2 ASes each.

118 Evaluating the path to remote clouds

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100 1K

E
C

D
F

of interfaces

SYN
DATA

ACK

Figure 8.6: The eCDF of the number of interfaces per AS using the data segment-
based camotrace, the ACK-based camotrace, and the TCP traceroute probing meth-
ods

Instead, 77 AS links were uniquely discovered by the SYN-based method, while the
DATA- and theACK-basedmethods have found only 45 and 16 links. However, if we
considered the intersection between the two connection-based methods ((DATA ∩
ACK)− SYN), it is possible to note that a relevant amount of additional information
was obtained. In fact, the (DATA ∩ ACK)− SYN set contains 30 unique ASes and
75 AS links.

Finally, the right side of the UpSet plot shows the deviation of both the sets and
their intersections. It is possible to notice that exclusive sets have positive variations,
while intersections between couples of methods have negative ones. This indicates
that the sets aremore separated than expected. In otherwords, eachmethod appears
to be slightly more effective than the other two on a subset of targets.

Then, the discovery capabilities of camotrace were evaluated in terms of discov-
ered paths. First, we analyzed the number of paths for which differences emerged,
considering the DATA- and the SYN-based methods. Given methods M and N, we
say that method M detected an additional hop if ICMP messages from the i-th hop
were received only for probes belonging to method M. We additionally defined
IDATA and ISYN as the set of intermediate hops discovered in a path for the DATA-
based version of camotrace and the TCP traceroute, respectively. Then the following
four cases were identified:

• Case 1: set of paths for which only the DATA-based method has identified at
least an additional hop(IDATA ⊃ ISYN).

8.2 The camouflage traceroute discovery capabilities 119

(a) unique IP interfaces

(b) unique ASes

(c) unique AS links
Figure 8.7: The upset plots of the number of unique IP interfaces, unique AS num-
bers, unique AS links found by the SYN-, the DATA-, and the ACK-based methods.

120 Evaluating the path to remote clouds

0 10 20 30 40 50 60 70 80 90 100
Percentage of paths (%)

Case 4

Case 3

Case 2

Case 1

Figure 8.8: The percentage of paths forwhich differences in terms of number of hops
can be appreciated when (1) the DATA-based methods found at least one hop that
cannot be discovered using the SYN-based method, (2) the SYN-based methods
found at least one hop that cannot be discovered using the DATA-based method,
(3) both methods found at least one hop that cannot be discovered using the other
method, or (4) the two methods found the same hops.

• Case 2: set of paths for which only the SYN-based method has identified at
least an additional hop (IDATA ⊂ ISYN).

• Case 3: set of paths for which both the DATA- and ACK-based methods have
identified at least an additional hop (IDATA 6= ISYN and IDATA, ISYN ⊂ (IDATA∪
ISYN)).

• Case 4: set of paths for which no additional hops can be identified (IDATA =

ISYN).

The results have been plotted in Figure 8.8. First, we can see that about 83% of the
paths fall into case 4. This means that, for most of the targets, the DATA- and the
SYN-based methods can correctly detect the same number of hops, while only in
approximately 17% of the paths the chosen algorithm is able to discover additional
hops. Case 1 accounts for about 10% of the paths, whereas case 2 accounts for about
6%. This means that the DATA-based methods can provide more information than
the SYN-based method for a higher amount of targets. Finally, case 3 includes only
∼1% amount of paths.

Then, Figure 8.9 compares the number of additional hops discovered, consider-
ing paths towards the same destination obtained using different probing methods.

8.2 The camouflage traceroute discovery capabilities 121

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
of additional hops

0
20
40
60
80

100
120
140

of

 p
at

hs

Data-based
SYN-based

(a) Using the DATA- and the SYN-based meth-
ods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
of additional hops

0
20
40
60
80

100
120
140

of

 p
at

hs

ACK-based
SYN-based

(b) Using the ACK- and the SYN-basedmethods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
of additional hops

0
20
40
60
80

100
120
140

of

 p
at

hs

Data-based
ACK-based

(c) Using the DATA- and the ACK-based meth-
ods

Figure 8.9: The number of additional hops discovered.

As can be seen, only a few additional hops can be identified for most of the targets.
In other words, it is unlikely to find significant differences within a single path. In-
stead, Figure 8.10 shows where the additional hops are located. The positions are
expressed as a percentage so that paths of different lengths can be compared. Note
that the two connection-based methods found most of their additional hops in the
last 50% of the path. This behavior could be attributed to the presence of a firewall
placed in the target AS and configured to block traceroute traffic. Instead, in Fig-
ures 8.10a and 8.10c can be seen that both the ACK- and the SYN-based methods,
when compared with the DATA-based method, identified some additional hops in
the first 25% of the path. This means that the DATA-basedmethods failed in discov-
ering some hops located in the proximity of the source machine. This phenomenon
was further investigated employing Wireshark(The Wireshark Home Page, 2021),
detecting two anomalous behavior to which the DATA-based version of camotrace
is subjected. The first situation involved a set of servers that send a TCP window
update message immediately after the connection setup. Once a window update
message is received, the sender resets the TTL to its default value. This means that
the GET message is sent directly to the target, and no ICMP packet is elicited. Once
a GET request is received, these servers either send a new TCPwindow updatemes-
sage or close the connection. Thismeans that the followingGET requestswill also be

122 Evaluating the path to remote clouds

0-25 25-50 50-75 75-100
Starting position (%)

0
20
40
60
80

100
120
140

of

 g
ro

up
s o

f a
dd

iti
on

al
 h

op
s

Data-based
SYN-based

(a) Using the DATA- and the SYN-based meth-
ods

0-25 25-50 50-75 75-100
Starting position (%)

0
20
40
60
80

100
120
140

of

 g
ro

up
s o

f a
dd

iti
on

al
 h

op
s

ACK-based
SYN-based

(b) Using the ACK- and the SYN-basedmethods

0-25 25-50 50-75 75-100
Starting position (%)

0
20
40
60
80

100
120
140

of
 g
ro
up

s o
f a

dd
iti
on

al
 h
op

s

Data-based
ACK-based

(c) Using the DATA- and the ACK-based meth-
ods

Figure 8.10: The normalized position of groups of additional hops

sent directly to the target. At the end of the discovery procedure, the data segment-
based version of camotrace can only send GET requests with TTL equal to 64, and
consequently, no hop can be discovered. Instead, the second anomalous situation
involved servers that did not reply to GET requests despite accepting the TCP con-
nection. Let us try to understand in more detail the problem. At the beginning of
the discovery procedure, camotrace sends the first message using a TTL of 1 and
receives an ICMPmessage from the first intermediate router. Then, the TTL is set to
its default value (see Algorithm 4, Line10). This means that the TCP retransmission
of the GET request is sent to the target. However, it does not send any reply. This
forces the underlying TCP layer to waste time on retransmissions while queuing all
the following requests. Only one ICMP message was received from the first inter-
mediate routers. After a while, sometimes, the server sends a TCP reset, and the
connection is established for a second time. However, since the server maintains its
non-responsive behavior, only an additional intermediate node can be discovered.
Note that after N_ATTEMPT_MAX GET requests, camotrace starts to send probe
the x+1 intermediate node. At some point, after sending probes for TTL values from
1 to MAX_DEPTH, camotrace terminates, discovering very few nodes.

8.2 The camouflage traceroute discovery capabilities 123

HTTP GET request
ICMP Time exceeding message

Figure 8.11: An example of dk∗
M computation.

Evaluating the characteristics of the discovered paths

Finally, the characteristics of the paths between the source and the destination were
evaluated.

First of all, let us define a complete path as a path inwhich all the intermediate hops
have been discovered. First of all, for each method, the complete paths were calcu-
lated considering only one probe attempt. For example, using the SYN-, DATA-, and
ACK-based methods, 1024, 878, and 933 complete paths were found, respectively.
Instead, from the union of all methods (DATA∪ ACK∪ SYN), 1068 complete paths
were identified. Thismeans thatmost of the complete paths can be found using only
the TCP traceroute. However, the combination of multiple probingmechanisms can
still provide additional information. The increase in the number of complete paths
identified was further investigated. The detection of these additional paths can be
attributed to different probing mechanisms, or it may be due to multiple probing
attempts. For this purpose, the full paths for the TCP-based methods were calcu-
lated using a N_ATTEMPT_MAX equal to 3, discovering 1046 complete paths. Note
that, although the greater number of attempts has led to an increase in the number
of paths discovered, the use of three different probing methods continues to have
slightly better performance.

Finally, the length of each path was assessed. Let dk∗
M be the distance expressed

in terms of encountered intermediate routers between the source node and the last
responding hop, where M is the method used to probe the intermediate nodes and
k is the maximum number of not responding hops allowed. For example, the path
of Figure 8.11 has a d0∗

M of 2 since the third node did not respond and k is equal to 0
was used, d1∗

M is equal to 4 since the third, and the fifth router did not respond, and
k is equal to 1, etc.

Then, considering values of k belonging to the [0, 5] interval, we computed

δk∗
M =

∑∀ tk

[
dk∗

M −min
(
dk∗

SYN, dk∗
DATA, dk∗

ACK
)]

|tk|
(8.1)

where tk is the subset of targets for which differences in the dk∗ values arise. In

124 Evaluating the path to remote clouds

Method k
0 1 2 3 4 5

SYN-based 2.10 2.29 1.61 1.50 1.41 1.39
DATA-based 2.31 2.34 2.01 2.13 2.19 2.22
ACK-based 1.84 1.93 1.90 1.91 1.88 1.81

Table 8.1: δk∗ values obtained with the three different probing methods

other words, δk∗
M is the additional distance traveled by method M with respect to the

shortest one. The values of δk∗
M are summarized in Table 8.1. When low k values are

used, the SYN- and the DATA-based methods have similar performances, while the
ACK-based method shows poorer performance. Instead, when higher values of k
are considered, the SYN-based method obtains the poorer performance while the
DATA-based method remains the most successful method. Overall, this behavior
suggests using the connectionless traceroute mechanism to explore most of the net-
work (because of its simplicity and effectiveness), switching to DATA/ACK-based
probing in the presence of non-responsive segments of the path close to the desti-
nation.

Chapter 9

Conclusions

TheMEC architecture is a network paradigm based on shifting storage and comput-
ing capabilities from centralized remote clouds to the edge of the network. Basically,
the MEC architecture introduces lower latencies, higher throughput, improved pri-
vacy, and reduced network congestion compared to the classic cloud architecture.

In this thesis, amethodology aimed at collecting network performancemetrics in
a MEC network was presented. Precisely, the collection methodology makes use of
several software components, which cooperate to collect and storemetrics following
MECPerf-active, MECPerf-passive, self-active, and self-passive approaches. Each
of these different measurement methods enables the collection of network metrics
from a different perspective. Starting from this general idea, a tool called MECPerf
was developed. Then, MECPerf was used during an extensive set of edge-based
experiments performed using MECPerf-active, MECPerf-passive, and self-passive
measurement methods. Moreover, the experiments involved TNs connected both
via Wi-Fi and LTE connection and considered different network and server work-
loads. The results of MECPerf-active experiments displayed that slightly higher
bandwidth and significantly lower latency metrics can be achieved by considering
an edge server. Consequently, applications that require high bandwidth or strict
latency requirements should run on edge servers. Furthermore, bandwidth met-
rics collected considering TNs connected using a Wi-Fi connection were revealed
to be significantly affected by the presence of cross-traffic. The same did not occur
for experiments based on LTE connections. Finally, MECPerf- and self-passive ex-
periments had shown that higher bandwidth metrics can be achieved by using a
cloud server if the server was under a high workload. Furthermore, latency metrics
have also been shown to be affected by the number of users. This indicates that the
choice of server placement cannot be based only on networkmetrics but should also
take into account the system workload since cloud servers are generally equipped
with more computing power than edge servers. After the experimental phase, a last
series of measures aimed at evaluating the computational load of MECPerf was per-

125

126 Conclusions

formed. More details about this topic can be found in Appendix A. Finally, it was
presented a library, calledMECPerfLibrary, which provides an API for accessing the
results collected during the experimental phase. Precisely, the library is capable of
processing the raw metrics and generating bandwidth and latency traces based on
experimental results. These traces can be used by researchers to emulate a MEC
network under specific network conditions and do not require in-depth knowledge
of the structure of the database in which the results are stored.

Then, the impact of the communication latency upon the energy consumption of
an LTE TN operating in a MEC environment was investigated. This evaluation can
be particularly beneficial to all those applications that are concerned with battery-
powered devices as they need to optimize their overall power consumption as much
as possible. First, the FSM model of the LTE interface was provided and an analyt-
ical energy consumption model for connectionless applications had been provided.
Then, the analytical model had been integrated with real-world measurement re-
sults to deal with the complexities introduces by connection-oriented protocols. The
results revealed that in a connectionless scenario using an edge server is generally
the best choice and that the benefit introduced by edge servers are generally in the
order of 5%. However, there exist also some operating conditions where cloud serv-
ers proved to be the best choice. Instead, in a connection-oriented scenario, the best
choice in terms of energy consumption always involved the edge server, which can
introduce benefits in the order of 30-40%. These differences between connection-
less and connection-oriented applications can be explained as follows. The TCP
throughput is highly influenced by the RTT between the two end-points. As a con-
sequence, when the client interacts with a remote cloud server using a connection-
oriented application, the throughput grows more slowly because of the higher RTT.
In the end, the amount of time needed to send and receive the data using a cloud
server is higher, and the interface is forced to remain continuously turned on for a
longer interval, increasing the overall energy consumption. Instead, the same did
not emerge forUDP-based applications, as they lack rate-limitingmechanisms. Con-
sequently, the time required to send (or receive) some data is independent of the lo-
cation of the server, which had a marginal impact on the energy needed to transmit
the data.

Finally, a study aimed at evaluating the paths that separate a TN and an appli-
cation server was presented. Fundamentally, the main idea is to exploit pre-existing
TCP connections to mask probing mechanisms within HTTP traffic, to eventually
elude filtering mechanisms. This allowed us to deepen our knowledge of the net-
work paths that separate TNs from cloud servers. Furthermore, this type of knowl-
edge can be used by orchestrators to improve the complexity of placement strategies.
With this goalwas developed camotrace, a traceroutingmechanismbased on the use
of TCP connections. A set of experiments were then performed using the targetWeb

127

servers, and then the results obtained with the two versions of camotrace had been
compared with those obtained using the TCP traceroute. The results showed that
differences emerged only for some destinations. In fact, for approximately 10% of
the paths, the version of camotrace based on the usage of HTTP messages was able
to findmore information than TCP traceroute, while the opposite happened only for
about 6%of the targets. Furthermore, the two versions of camotracewere able to dis-
cover more IP interfaces, more ASs, andmore AS links than those found by the TCP
traceroute. These results demonstrate that connection-based probing methods are
capable of gathering information that could not be obtained through the traditional
TCP traceroute. However, it loses some other information. Hence, to get a complete
picture of the network, probing methods based on established connections should
be used in conjunction with classic connectionless traceroute approaches. Finally,
we found that most of the differences emerged in the last 50% of the path where
it is reasonable to assume that most of the classification and filtering systems are
located. This could confirm the presence of traceroute suppression mechanisms in
the proximity of the destination host.

Appendix A

Evaluating the computational load of
MECPerf

Finally, a last set of experiments aimed at evaluating the computational load of the
MECPerf collection systemwere performed. We executed theMECPerf components
on three machines belonging to the network of the University of Pisa. Precisely,
the first machine hosted an MC, the second hosted an MO, and finally the third
hosted anMRS and anMA. The technical characteristics of the three machines used
during the experiment are reported in Table A.1. The setup employed during the
experiments is pictured in Figure A.1.

Each experiment consists of a set of TCP MECPerf-active bandwidth measures
in the uplink direction. Each of these measures is initiated by the MC immediately
after the end of the previous one. Then, after the beginning of the first measure, a
CPU performance monitoring session was started on the MO. Note that a MECPerf-
active measurement can be initiated only by theMC and it assesses the performance
of both the access-MEC (i.e., the network segment that connects the MC and the

Compute the metricsMC MO MRS

MA

Compute the metrics

Store the metrics
Host1

Host2

Host3

sar

Figure A.1: The setup used to assess the computational load of MECPerf.

129

130 Evaluating the computational load of MECPerf

Table A.1: The technical characteristics of the devices used to assess the computa-
tional load of MECPerf.

Host 1 Host 2 Host 3
OS Ubuntu 18.04.3 LTS Ubuntu 18.04.6 LTS Ubuntu 18.04.3 LTS
CPU Intel(R) Xeon(R) Gold

5120 CPU @ 2.20GHz
Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz

Intel(R) Xeon(R) Gold 5120
CPU @ 2.20GHz

Number of cores 2 4 2
RAM 4GiB 8GiB 4GiB

0 2 4 6 8 10 12

Stream size (MB)

0

2

4

6

8

10

C
P

U
 u

sa
ge

 (
%

)

user
system
iowait
total

Figure A.2: The CPU usage rate measured on the MO during a set of experiments
aimed at evaluating the computational load of MECPerf. Precisely, each value rep-
resents the average rate monitored for 1000 seconds during a set of TCP uplinkmea-
sures.

MO) and the MEC-cloud network segment (i.e., the network segment that connects
the MO and the MRS). This means that the MO is always involved in a measure
or in the upload of the results of a measure. Hence, we decided to monitor the
performance of the MO as it is the node under the greatest computational load.
The CPU usage rate of the MO was monitored using sar(sar(1) — Linux manual
page, 2020), a tool contained in the sysstat package (sysstat - System performance
tools for the Linux operating system, 2022). Each monitoring session lasted 1000
seconds. The average CPU usage rates are shown in Figure A.2. As can be noted
only a marginal amount of CPU is used by the system, I/O, and other non-user
processes, while most of the CPU usage can be ascribed to the MO. In addition,
the amount of CPU required increases as the amount of data used to perform the

131

0 2 4 6 8 10 12

Stream size (MB)

0

2

4

6

8

10

C
P

U
 u

sa
ge

 (
%

)

user
user - no optimizations
total
total - no optimizations

Figure A.3: The CPU usage rate with and without the optimizations applied to the
measurement library.

measurements increases. If the MO would be hosted on constrained devices this
may become a problem. To overcome this problem we implemented an optimized
version of the measurement library. This latest version was still developed in Java
andmakes use of the SocketChannel and the ByteBuffer classes. Then, we ran a new
set of experiments to evaluate the CPU usage of theMECPerf collection system. The
results, shown in FigureA.3, demonstrate that the newversion of the library succeed
in reducing the amount of CPU used by the MECPerf collection system.

Appendix B

List of Acronyms

1-D CNN 1-Dimensional Convolutional Neural Networks

ABR Adaptive Bitrate

AI Artificial Intelligence

AR Augmented Reality

AS Autonomous System

AP Access Point

API Application Programming Interface

ASR Automatic Speech Recognition

BS Base Station

CNN Convolutional Neural Networks

CR Continuous Reception

133

134 List of Acronyms

DASH Dynamic Adaptive Streaming over HTTP protocol

DNN Deep Neural Networks

DRX Discontinuous Reception

eCDF empirical Cumulative Distribution Function

ETSI European Telecommunications Standards Institute

FSM Finite State Machine

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IoT Internet of Things

LTE Long Term Evolution

MA MECPerf Aggregator

MBS Macro Base Station

MC MECPerf Client

MEC Multi-access Edge Computing

ML Machine Learning

MO MECPerf Observer

135

MR Mixed Reality

MRS MECPerf Remote Server

MTC Machine Type Communication

MTU Maximum Transmission Unit

NGI Next Generation Internet

NTM NetworkTraceManager

OS Operating System

QoE Quality of Experience

RFC Request for Comments

RNN Recurrent Neural Networks

RSRP Reference Signal Received Power

RTT Round Trip Time

SBS Small Base Station

SDN Software Defined Networking

SLA Service Level Agreement

TCP Transmission Control Protocol

136 List of Acronyms

TLD Top-Level Domain

TN Terminal Node

TTL Time To Live

V2E Vehicle to Everything

VM Virtual Machine

VR Virtual Reality

Appendix C

Publications

Finally, the paper done during the Doctorate will be listed below. For each work,
the candidate’s contributions will be explicitly listed. The roles taxonomy adopted
is summarized in Table C.1 and it can be consulted at the following link 1.

Journal papers
1. C.Caiazza, V. Luconi, A. Vecchio, “TCP-based traceroute: An evaluation of dif-

ferent probingmethods”, Internet Technology Letters, pages: 6, 2020,Wiley, DOI:
https://doi.org/10.1002/itl2.134. Candidate’s contributions: Conceptu-
alization, Investigation,Methodology, Software, Validation,Writing –Original
Draft.

2. C. Caiazza, C. Cicconetti, V. Luconi, A. Vecchio, “Measurement-driven de-
sign and runtime optimization in edge computing: Methodology and tools”,
Computer Networks, pages: 108–140, 2021, Elsevier, DOI: https://doi.org/10.
1016/j.comnet.2021.108140. Candidate’s contributions: Software, Formal
analysis, Data curation, Writing – Original Draft, Visualization.

Peer reviewed conference papers
1. C. Caiazza, E. Gregori , V. Luconi, F. Mione, A. Vecchio, “Application-Level

Traceroute: Adopting Mimetic Mechanisms to Increase Discovery Capabili-
ties”, International Conference onWired/Wireless Internet Communications (WWIC),
pages: 66–77 , 2019, DOI: https://doi.org/10.1007/978-3-030-30523-9_6.
Candidate’s contributions: Conceptualization, Investigation, Methodology,
Software, Validation, Writing – Original Draft.

2. C. Caiazza, L. Bernardi, M. Bevilacqua, A. Cabras, C. Cicconetti, V. Luconi,
G. Sciurti, E. Senore, E. Vallati, A. Vecchio, “MECPerf: An Application-Level

1https://casrai.org/credit/

137

https://doi.org/10.1002/itl2.134
https://doi.org/10.1016/j.comnet.2021.108140
https://doi.org/10.1016/j.comnet.2021.108140
https://doi.org/10.1007/978-3-030-30523-9_6
https://casrai.org/credit/

138 Publications

Tool for Estimating the Network Performance in Edge Computing Environ-
ments”, Computers, Software, and Applications Conference (COMPSAC), pages:
1163–1168, 2020, IEEE, DOI: https://doi.org/10.1109/COMPSAC48688.2020.
00-99. Candidate’s contributions: Investigation,Methodology, Software,Writ-
ing – Original Draft

Other
1. C. Caiazza, S. Giordano, V. Luconi, A. Vecchio, “Edge Computing vs Cen-

tralized Cloud: Impact of Communication Latency on the Energy Consump-
tion of LTE Terminal Nodes”, ArXiv preprints, to be submitted to a journal,
https://arxiv.org/abs/2111.10076. Candidate’s contributions: Conceptu-
alization, Investigation,Methodology, Software, Validation,Writing –Original
Draft.

https://doi.org/10.1109/COMPSAC48688.2020.00-99
https://doi.org/10.1109/COMPSAC48688.2020.00-99
https://arxiv.org/abs/2111.10076

139

Conceptualization Ideas; formulation or evolution of overarching re-
search goals and aims.

Data curation Management activities to annotate (produce meta-
data), scrub data and maintain research data (includ-
ing software code, where it is necessary for interpret-
ing the data itself) for initial use and later re-use.

Formal analysis Application of statistical, mathematical, computa-
tional, or other formal techniques to analyze or syn-
thesize study data.

Investigation Conducting a research and investigation process,
specifically performing the experiments, or data/evi-
dence collection.

Methodology Development or design of methodology; creation of
models.

Software Programming, software development; designing com-
puter programs; implementation of the computer code
and supporting algorithms; testing of existing code
components.

Validation Verification, whether as a part of the activity or sep-
arate, of the overall replication/reproducibility of re-
sults/experiments and other research outputs.

Visualization Preparation, creation and/or presentation of the pub-
lished work, specifically visualization/data presenta-
tion.

Writing – original draft Preparation, creation and/or presentation of the pub-
lished work, specifically writing the initial draft (in-
cluding substantive translation).

Table C.1: CRediT – Contributor Roles Taxonomy.

Bibliography

5G-ACIA (2019). 5G Non-Public Networks for Industrial Scenarios. Technical Re-
port March.

5GAA(2017). Toward fully connected vehicles : Edge computingWhite Paper. Tech-
nical report.

About Fed4Fire+ (Last accessed May 2022). About Fed4Fire+. https://www.
fed4fire.eu/the-project/.

Apostolis, A. (2020). Results of theMECinFire experiment in Fed4FIRE+EUproject.
ARK (Accessed Oct 2019). The Cooperative Association for Internet Data Analysis
ArchipelagoMeasurement Infrastructure (CAIDAArk). http://www.caida.org/
projects/ark/.

Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M., Mag-
nien, C., and Teixeira, R. (2006). Avoiding Traceroute Anomalies with Paris
Traceroute. In Proc. ACM SIGCOMM IMC ’06, pages 153–158. ACM SIGCOMM
IMC ’06.

Augustin, B., Friedman, T., and Teixeira, R. (2007). Multipath tracing with Paris
traceroute. In Proc. IEEE/IFIP E2EMON ’07, pages 1–8. IEEE/IFIP E2EMON ’07.

AWS for the Edge (Last accessed May 2022). Aws for the edge. https://aws.
amazon.com/it/edge/.

Bao, W., Wong, V. W. S., and Leung, V. C. M. (2010). A Model for Steady State
Throughput of TCP CUBIC. In 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, pages 1–6.

Bellavista, P., Berrocal, J., Corradi, A., Das, S. K., Foschini, L., and Zanni, A. (2019).
A survey on fog computing for the Internet of Things. Pervasive and Mobile Com-
puting, 52:71–99.

Beverly, R. (2016). Yarrp’ing the internet: Randomized high-speed active topology
discovery. In Proceedings of the 2016 Internet Measurement Conference, IMC ’16, page
413–420, New York, NY, USA. Association for Computing Machinery.

141

https://www.fed4fire.eu/the-project/
https://www.fed4fire.eu/the-project/
http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/
https://aws.amazon.com/it/edge/
https://aws.amazon.com/it/edge/

142 BIBLIOGRAPHY

Brand, P., Falk, J., Ah Sue, J., Brendel, J., Hasholzner, R., and Teich, J. (2020). Adap-
tive Predictive Power Management for Mobile LTE Devices. IEEE Transactions on
Mobile Computing, pages 1–1.

Braud, T., Bijarbooneh, F. H., Chatzopoulos, D., and Hui, P. (2017a). Future Net-
workingChallenges: TheCase ofMobile AugmentedReality. In 2017 IEEE 37th In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 1796–1807.

Braud, T., Bijarbooneh, F. H., Chatzopoulos, D., and Hui, P. (2017b). Future Net-
workingChallenges: TheCase ofMobile AugmentedReality. In 2017 IEEE 37th In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 1796–1807.
IEEE.

Caiazza, C., Cicconetti, C., Luconi, V., and Vecchio, A. (2021). Measurement-driven
design and runtime optimization in edge computing: Methodology and tools.
Computer Networks, 194:108140.

Campbell, M. (2019). Smart Edge : The the Center of Data Gravity Out of the Cloud.
Computer, 52(December):99–102.

Candela, M., Gregori, E., Luconi, V., and Vecchio, A. (2019). Using RIPE Atlas for
Geolocating IP Infrastructure. IEEE Access, 7:48816–48829.

Caprolu, M., Di Pietro, R., Lombardi, F., and Raponi, S. (2019). Edge computing
perspectives: Architectures, technologies, and open security issues. In 2019 IEEE
International Conference on Edge Computing (EDGE), pages 116–123.

Cardwell, N., Savage, S., and Anderson, T. (1998). Modeling the performance of
short TCP connections. Techical Report.

Chang, H., Jamin, S., and Willinger, W. (2001). Inferring AS-level Internet Topol-
ogy from Router-Level Path Traces. In Proc. SPIE ITCom ’01, pages 196–207. SPIE
ITCom ’01.

Chen, X., Ding, N., Jindal, A., Hu, Y. C., Gupta, M., and Vannithamby, R. (2015).
Smartphone Energy Drain in the Wild: Analysis and Implications. SIGMETRICS
Perform. Eval. Rev., 43(1):151–164.

Cheng, S., Xu, Z., Li, X., Wu, X., Fan, Q., Wang, X., and Leung, V. C. M. (2020). Task
offloading for automatic speech recognition in edge-cloud computing based mo-
bile networks. In 2020 IEEE Symposium on Computers and Communications (ISCC),
pages 1–6.

Cheswick, B., Burch, H., and Branigan, S. (1999). Mapping the Internet. IEEE Com-
puter, 32(4):97–98, 102.

BIBLIOGRAPHY 143

claffy, k., Hyun, Y., Keys, K., Fomenkov, M., and Krioukov, D. (2009). Internet Map-
ping: From Art to Science. In Proc. DHS CATCH ’09, pages 205–211. DHS CATCH
’09.

Cloudflare - Security and innovation at the network edge (Last accessed May
2022). Cloudflare - Security and innovation at the network edge. https://www.
cloudflare.com/edge/.

Consortium GARR Home Page (Accessed Aug 2021). Consortium garr home page.
https://www.garr.it/.

Das, A., Patterson, S., and Wittie, M. (2019). EdgeBench: Benchmarking edge com-
puting platforms. Proceedings - 11th IEEE/ACM International Conference on Utility
and Cloud Computing Companion, UCC Companion 2018, pages 175–180.

DeVita, F., Nocera, G., Bruneo, D., Tomaselli, V., Giacalone, D., andDas, S. K. (2021).
Porting deep neural networks on the edge via dynamic k-means compression: A
case study of plant disease detection. Pervasive and Mobile Computing, 75:101437.

Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., and Donnet, B. (2013). Re-
vealing Middlebox Interference with Tracebox. In Proc. ACM SIGCOMM IMC ’13,
pages 1–8. ACM SIGCOMM IMC ’13.

Donnet, B. (2013). Internet TopologyDiscovery. InData TrafficMonitoring and Analy-
sis: FromMeasurement, Classification, and Anomaly Detection to Quality of Experience,
pages 44–81. Data Traffic Monitoring and Analysis: FromMeasurement, Classifi-
cation, and Anomaly Detection to Quality of Experience, Springer Berlin Heidel-
berg.

Dovrolis, C., Ramanathan, P., and Moore, D. (2004). Packet-dispersion techniques
and a capacity-estimation methodology. IEEE/ACM Trans. Netw., 12(6):963–977.

Emara, M., Filippou, M., and Sabella, D. (2018). MEC-Assisted End-to-End Latency
Evaluations for C-V2X Communications. In Proc. EuCNC ’18, pages 157–161.

Ericsson Mobility Report (published on November 2021). Er-
icsson mobility report. https://www.ericsson.com/4ad7e9/
assets/local/reports-papers/mobility-report/documents/2021/
ericsson-mobility-report-november-2021.pdf.

ETSI (2018). Multi-access Edge Computing (MEC); Phase 2: Use Cases and Re-
quirements; ETSI GS MEC 002 V2.1.1. Technical report.

Faggiani, A., Gregori, E., Lenzini, L., Luconi, V., and Vecchio, A. (2014).
Smartphone-based crowdsourcing for network monitoring: Opportunities, chal-
lenges, and a case study. IEEE Commun. Mag., 52(1):106–113.

https://www.cloudflare.com/edge/
https://www.cloudflare.com/edge/
https://www.garr.it/
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf

144 BIBLIOGRAPHY

Faggiani, A., Gregori, E., Lenzini, L., Mainardi, S., and Vecchio, A. (2012). On the
feasibility of measuring the Internet through smartphone-based crowdsourcing.
In Proc. WiOpt ’12, pages 318–323. WiOpt ’12.

Fed4Fire+ (Project started on January 2017). Fed4Fire+. https://www.fed4fire.
eu/.

FED4FIRE+ - MECPerf (Last accessed May 2022). FED4FIRE+ - MECPerf. https:
//www.fed4fire.eu/demo-stories/oc6/mecperf/#presentations.

Fernández-Cerero, D., Fernández-Montes, A., Javier Ortega, F., Jakóbik, A., and
Widlak, A. (2020). Sphere: Simulator of edge infrastructures for the optimization
of performance and resources energy consumption. Simulation Modelling Practice
and Theory, 101:101966. Modeling and Simulation of Fog Computing.

Fiandrino, C., Blanco Pizarro, A., Jiménez Mateo, P., Andrés Ramiro, C., Ludant, N.,
and Widmer, J. (2019). openLEON: An end-to-end emulation platform from the
edge data center to the mobile user. Computer Communications, 148:17–26.

Filippou, M. C., Sabella, D., Emara, M., Prabhakaran, S., Shi, Y., Bian, B., and Rao,
A. (2020). Multi-Access Edge Computing: A Comparative Analysis of 5G System
Deployments and Service Consumption Locality Variants. IEEE Communications
Standards Magazine, 4(2):32–39.

flask (Accessed on: Aug 2021). Flask’s documentation. https://flask.
palletsprojects.com/en/2.0.x/.

Giust, F., Sciancalepore, V., Sabella, D., Filippou, M. C., Mangiante, S., Featherstone,
W., and Munaretto, D. (2018). Multi-access edge computing: The driver behind
thewheel of 5g-connected cars. IEEECommunications StandardsMagazine, 2(3):66–
73.

Gomez-Miguelez, I., Garcia-Saavedra, A., Sutton, P. D., Serrano, P., Cano, C., and
Leith, D. J. (2016). Srslte: An open-source platform for lte evolution and experi-
mentation. In Proceedings of the Tenth ACM International Workshop on Wireless Net-
work Testbeds, Experimental Evaluation, and Characterization, WiNTECH ’16, page
25–32, New York, NY, USA. Association for Computing Machinery.

Gregori, E., Improta, A., Lenzini, L., Luconi, V., Redini, N., and Vecchio, A. (2016).
Smartphone-based crowdsourcing for estimating the bottleneck capacity in wire-
less networks. Journal of Network and Computer Applications, 64:62 – 75.

Gregori, E., Lenzini, L., Luconi, V., and Vecchio, A. (2013). Sensing the Internet
through crowdsourcing. In Proc. PerMoby ’13, pages 248–254. PerMoby ’13.

https://www.fed4fire.eu/
https://www.fed4fire.eu/
https://www.fed4fire.eu/demo-stories/oc6/mecperf/#presentations
https://www.fed4fire.eu/demo-stories/oc6/mecperf/#presentations
https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/

BIBLIOGRAPHY 145

Gregori, E., Luconi, V., and Vecchio, A. (2018). Studying forwarding differences in
europeanmobile broadbandwith a net neutrality perspective. InEuropeanWireless
2018; 24th European Wireless Conference, pages 1–7.

Guidelines on the Implementation by National Regulators of European
Net Neutrality Rules (2016). (2016). Guidelines on the implemen-
tation by national regulators of european net neutrality rules (2016).
http://berec.europa.eu/eng/document_register/subject_matter/berec/
download/0/6160-berec-guidelines-on-the-implementationb_0.pdf.

Guo, H., Liu, J., and Zhang, J. (2018). ComputationOffloading forMulti-AccessMo-
bile Edge Computing in Ultra-Dense Networks. IEEE Communications Magazine,
56(8):14–19.

Gupta, H., VahidDastjerdi, A., Ghosh, S. K., and Buyya, R. (2017). ifogsim: A toolkit
for modeling and simulation of resource management techniques in the internet
of things, edge and fog computing environments. Software: Practice and Experience,
47(9):1275–1296.

Hao, P. and Wang, X. (2019). Integrating PHY Security Into NDN-IoT Networks
By Exploiting MEC: Authentication Efficiency, Robustness, and Accuracy En-
hancement. IEEE Transactions on Signal and Information Processing over Networks,
5(4):792–806.

Hao, Y., Jiang, Y., Chen, T., Cao, D., and Chen, M. (2019). itaskoffloading: Intelligent
task offloading for a cloud-edge collaborative system. IEEE Network, 33(5):82–88.

Harutyunyan, D., Shahriar, N., Boutaba, R., and Riggio, R. (2019). Latency-aware
service function chain placement in 5g mobile networks. In 2019 IEEE Conference
on Network Softwarization (NetSoft), pages 133–141.

Hong, C. H. and Varghese, B. (2019). Resource management in fog/Edge comput-
ing: A survey on architectures, infrastructure, and algorithms. ACM Computing
Surveys, 52(5).

Hu, W., Gao, Y., Ha, K., Wang, J., Amos, B., Chen, Z., Pillai, P., and Satyanarayanan,
M. (2016a). Quantifying the Impact of Edge Computing on Mobile Applications.
In Proc. ACM SIGOPS APSys ’16, pages 5:1–5:8.

Hu, W., Gao, Y., Ha, K., Wang, J., Amos, B., Chen, Z., Pillai, P., and Satyanarayanan,
M. (2016b). Quantifying the Impact of Edge Computing on Mobile Applications.
In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’16,
New York, NY, USA. Association for Computing Machinery.

http://berec.europa.eu/eng/document_register/subject_matter/berec/download/0/6160-berec-guidelines-on-the-implementationb_0.pdf
http://berec.europa.eu/eng/document_register/subject_matter/berec/download/0/6160-berec-guidelines-on-the-implementationb_0.pdf

146 BIBLIOGRAPHY

Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., and Young, V. (2015). Mobile edge
computing—a key technology towards 5g. ETSI white paper, 11(11):1–16.

Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., and Spatscheck, O. (2012).
A Close Examination of Performance and Power Characteristics of 4G LTE Net-
works. In Proceedings of the 10th International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’12, page 225–238, New York, NY, USA. Association
for Computing Machinery.

Huang, Y., Rabinovich, M., and Al-Dalky, R. (2020). Flashroute: Efficient traceroute
on amassive scale. In Proceedings of the ACM Internet Measurement Conference, IMC
’20, page 443–455, New York, NY, USA. Association for Computing Machinery.

Industrial Internet Consortium (2019). The Edge Computing Advantage. Technical
report.

Jang, M., Lee, H., Schwan, K., and Bhardwaj, K. (2016). SOUL: An Edge-Cloud
System for Mobile Applications in a Sensor-Rich World. In Proc. IEEE/ACM SEC
’16, pages 155–167.

Jiang, C., Fan, T., Gao, H., Shi, W., Liu, L., Cérin, C., and Wan, J. (2020). Energy
aware edge computing: A survey. Computer Communications, 151:556–580.

Kekki, S., Featherstone, W., Fang, Y., Kuure, P., Li, A., Ranjan, A., Purkayastha, D.,
Jiangping, F., Frydman, D., Verin, G., Wen, K.-W., Kim, K., Arora, R., Odgers, A.,
Contreras, L.M., and Scarpina, S. (2018). ETSIWhite Paper: MEC in 5G networks.
Technical Report 28, ETSI.

Keys, K. (2010). Internet-scale ip alias resolution techniques. ACMSIGCOMMCom-
put. Commun. Rev., 40(1):50–55.

Keys, K., Hyun, Y., Luckie, M., and Claffy, K. (2013). Internet-scale ipv4 alias reso-
lution with midar. IEEE/ACM Transactions on Networking, 21(2):383–399.

Kolosov, O., Yadgar, G., Maheshwari, S., and Soljanin, E. (2020). Benchmarking in
the dark: On the absence of comprehensive edge datasets. HotEdge 2020 - 3rd
USENIX Workshop on Hot Topics in Edge Computing.

Krupitzer, C., Wagenhals, T., Züfle, M., Lesch, V., Schäfer, D., Mozaffarin, A.,
Edinger, J., Becker, C., and Kounev, S. (2020). A survey on predictivemaintenance
for industry 4.0.

Lera, I., Guerrero, C., and Juiz, C. (2019). YAFS: A Simulator for IoT Scenarios in
Fog Computing. IEEE Access, 7:91745–91758.

BIBLIOGRAPHY 147

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H. (2014). UpSet:
Visualization of Intersecting Sets. IEEE Trans. Vis. Comput. Graph., 20(12):1983–
1992.

Li, W., Deng, W., She, R., Zhang, N., Wang, Y., and Ma, W. (2021a). Edge Comput-
ing Offloading Strategy Based on Particle Swarm Algorithm for Power Internet of
Things. In 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence
and Internet of Things Engineering (ICBAIE), pages 145–150.

Li, X., Zhao, L., Yu, K., Aloqaily, M., and Jararweh, Y. (2021b). A cooperative re-
source allocation model for iot applications in mobile edge computing. Computer
Communications, 173:183–191.

Lin, H., Zeadally, S., Chen, Z., Labiod, H., and Wang, L. (2020a). A survey on com-
putation offloadingmodeling for edge computing. Journal of Network and Computer
Applications, page 102781.

Lin, Z., Jain, A., Wang, C., Fanti, G., and Sekar, V. (2020b). Using gans for sharing
networked time series data: Challenges, initial promise, and open questions. In
Proceedings of the ACM Internet Measurement Conference, IMC ’20, page 464–483,
New York, NY, USA. Association for Computing Machinery.

Liu, J., Xiao, S., Li, Y., Song, H., Jin, D., and Su, L. (2019). Netwatch: End-to-end
network performance measurement as a service for cloud. IEEE Transactions on
Cloud Computing, 7(2):553–567.

Liu, Y., Peng,M., Shou, G., Chen, Y., andChen, S. (2020a). Toward Edge Intelligence:
Multiaccess EdgeComputing for 5G and Internet of Things. IEEE Internet of Things
Journal, 7(8):6722–6747.

Liu, Z., Wu, Z., Gan, C., Zhu, L., and Han, S. (2020b). Datamix: Efficient privacy-
preserving edge-cloud inference. In Vedaldi, A., Bischof, H., Brox, T., and Frahm,
J.-M., editors, Computer Vision – ECCV 2020, pages 578–595, Cham. Springer Inter-
national Publishing.

Luckie, M. (2010). Scamper: A scalable and extensible packet prober for active mea-
surement of the internet. In Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, IMC ’10, page 239–245, New York, NY, USA. Association for
Computing Machinery.

Luckie, M., Hyun, Y., and Huffaker, B. (2008a). Traceroute probe method and for-
ward ip path inference. In Proceedings of the 8th ACM SIGCOMM Conference on
Internet Measurement, IMC ’08, page 311–324, New York, NY, USA. Association for
Computing Machinery.

148 BIBLIOGRAPHY

Luckie, M., Hyun, Y., and Huffaker, B. (2008b). Traceroute Probe Method and For-
ward IP Path Inference. In Proceedings of the 8th ACM SIGCOMM Conference on
Internet Measurement, IMC ’08, pages 311–324.

Madhyastha, H. V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., and Venkataramani, A. (2006). iPlane: An Information Plane for Distributed
Services. In Proc. USENIX OSDI ’06, pages 367–380. USENIX OSDI ’06.

Marchetta, P. and Pescapé, A. (2013). Drago: Detecting, quantifying and locating
hidden routers in traceroute ip paths. In 2013 Proceedings IEEE INFOCOM, pages
3237–3242.

Mathis, M., Semke, J., Mahdavi, J., and Ott, T. (1997). The Macroscopic Behavior
of the TCP Congestion Avoidance Algorithm. SIGCOMM Comput. Commun. Rev.,
27(3):67–82.

MATLAB Engine API for C++ (Accessed on 2021). MATLAB Engine
API for C++ - Documentation. https://www.mathworks.com/help/matlab/
calling-matlab-engine-from-cpp-programs.html.

Maxmind (Accessed Aug 2021). MaxMind GeoLite2 Databases. https://dev.
maxmind.com/geoip/geoip2/geolite2/.

Mazouzi, H., Boussetta, K., andAchir, N. (2019). Maximizingmobiles energy saving
through tasks optimal offloading placement in two-tier cloud: A theoretical and
an experimental study. Computer Communications, 144:132–148.

McChesney, J., Wang, N., Tanwer, A., de Lara, E., and Varghese, B. (2019). Defog:
Fog computing benchmarks. In Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing, SEC ’19, page 47–58, New York, NY, USA. Association for Com-
puting Machinery.

MECPerf experimentation results (Dataset published on April 26, 2020). MECPerf
experimentation results. https://zenodo.org/record/4647753#.YGNLDnUzZH4.

Mehmood, Y., Zhang, L., and Förster, A. (2019). Power Consumption Modeling of
Discontinuous Reception for Cellular Machine Type Communications. Sensors,
19(3).

Mlab (Accessed Oct 2019). Measurement Lab (M-Lab). https://www.
measurementlab.net/.

Monsoon Power Monitor (Accessed Jan 2022). Monsoon Power Monitor. https:
//www.msoon.com/high-voltage-power-monitor.

https://www.mathworks.com/help/matlab/calling-matlab-engine-from-cpp-programs.html
https://www.mathworks.com/help/matlab/calling-matlab-engine-from-cpp-programs.html
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://zenodo.org/record/4647753#.YGNLDnUzZH4
https://www.measurementlab.net/
https://www.measurementlab.net/
https://www.msoon.com/high-voltage-power-monitor
https://www.msoon.com/high-voltage-power-monitor

BIBLIOGRAPHY 149

Moors, T. (2004). Streamlining traceroute by estimating path lengths. In 2004 IEEE
International Workshop on IP Operations and Management, pages 123–128.

Morandi, I., Bronzino, F., Teixeira, R., and Sundaresan, S. (2019). Service tracer-
oute: Tracing paths of application flows. In Choffnes, D. and Barcellos, M., edi-
tors, Passive and Active Measurement, pages 116–128, Cham. Springer International
Publishing.

Napolitano, A., Cecchetti, G., Giannone, F., Ruscelli, A., Civerchia, F., Kondepu, K.,
Valcarenghi, L., and Castoldi, P. (2019). Implementation of a MEC-based vulner-
able road user warning system. In Proc. AEIT AUTOMOTIVE ’19.

Nath, S. and Wu, J. (2020). Deep reinforcement learning for dynamic computation
offloading and resource allocation in cache-assisted mobile edge computing sys-
tems. Intelligent and Converged Networks, 1(2):181–198.

Nauman, A., Qadri, Y. A., Amjad, M., Zikria, Y. B., Afzal, M. K., and Kim, S. W.
(2020). Multimedia internet of things: A comprehensive survey. IEEE Access,
8:8202–8250.

netem (Accessed on: March 2020). NetEm - Network Emulator. http://man7.org/
linux/man-pages/man8/tc-netem.8.html.

netfilter project home page (Accessed Aug 2021). netfilter project home page.
https://www.netfilter.org/.

netlink(7) — Linux manual page (Accessed Aug 2021). netlink(7) — linux manual
page. https://man7.org/linux/man-pages/man7/netlink.7.html.

Nguyen, Q.-H., Morold, M., David, K., and Dressler, F. (2020). Car-to-pedestrian
communication with mec-support for adaptive safety of vulnerable road users.
Comput. Commun., 150:83 – 93.

Nguyen, T. D. and Huh, E. N. (2018). ECSim++: An INET-based simulation tool
for modeling and control in edge cloud computing. Proceedings - 2018 IEEE In-
ternational Conference on Edge Computing, EDGE 2018 - Part of the 2018 IEEE World
Congress on Services, pages 80–86.

Nielsen, H., Mogul, J., Masinter, L. M., Fielding, R. T., Gettys, J., Leach, P. J., and
Berners-Lee, T. (1999). Hypertext Transfer Protocol – HTTP/1.1. RFC 2616.

Padhye, J., Firoiu, V., Towsley, D., and Kurose, J. (1998). Modeling TCP Throughput:
A Simple Model and Its Empirical Validation. SIGCOMM Comput. Commun. Rev.,
28(4):303–314.

http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.netfilter.org/
https://man7.org/linux/man-pages/man7/netlink.7.html

150 BIBLIOGRAPHY

Palo Alto Networks (Accessed Aug 2021). Palo Alto Networks. https://www.
paloaltonetworks.com/.

Pan, J. and McElhannon, J. (2018). Future Edge Cloud and Edge Computing for
Internet of Things Applications. IEEE Internet of Things Journal, 5(1):439–449.

Pei, Y., Peng, Z., Wang, Z., Wang, H., and Fernandez-Veiga, M. (2020). Energy-
Efficient Mobile Edge Computing: Three-Tier Computing under Heterogeneous
Networks. Wirel. Commun. Mob. Comput., 2020.

Peuster, M., Karl, H., and van Rossem, S. (2016). Medicine: Rapid prototyping
of production-ready network services in multi-pop environments. In 2016 IEEE
Conference on Network Function Virtualization and Software Defined Networks (NFV-
SDN), pages 148–153.

Porambage, P., Okwuibe, J., Liyanage,M., Ylianttila, M., and Taleb, T. (2018). Survey
on multi-access edge computing for internet of things realization. IEEE Commu-
nications Surveys Tutorials, 20(4):2961–2991.

Postel, J. (1981). Internet Control Message Protocol – DARPA Internet Program Pro-
tocol Specification. RFC 792.

Prasad, R., Dovrolis, C., Murray, M., and Claffy, K. (2003). Bandwidth estimation:
metrics, measurement techniques, and tools. IEEE Network, 17(6):27–35.

Qadri, Y. A., Nauman, A., Zikria, Y. B., Vasilakos, A. V., and Kim, S. W. (2020). The
future of healthcare internet of things: A survey of emerging technologies. IEEE
Communications Surveys Tutorials, 22(2):1121–1167.

Qayyum, T., Malik, A. W., Khattak, M. A., Khalid, O., and Khan, S. U. (2018).
FogNetSim++: A Toolkit for Modeling and Simulation of Distributed Fog En-
vironment. IEEE Access, 6:63570–63583.

Quadri, C., Mancuso, V., Marsan, M. A., and Rossi, G. P. (2022). Edge-based platoon
control. Computer Communications, 181:17–31.

Rahman, G. M. S., Dang, T., and Ahmed, M. (2020). Deep reinforcement learning
based computation offloading and resource allocation for low-latency fog radio
access networks. Intelligent and Converged Networks, 1(3):243–257.

Rashed, A. (2019). Empirical measurements of function placements and executions
in a mixed cloud-edge cluster.

Rashed, A. and Rausch, T. (2020). Execution Traces of an MNIST Workflow on a
Serverless Edge Testbed.

https://www.paloaltonetworks.com/
https://www.paloaltonetworks.com/

BIBLIOGRAPHY 151

Rausch, T., Rashed, A., and Dustdar, S. (2021). Optimized container scheduling
for data-intensive serverless edge computing. Future Generation Computer Systems,
114:259 – 271.

Reznik, A., Sulisti, A., Artemenko, A., Fang, Y., Frydman, D., Giust, F., Lv, H., Sheikh,
S., Yu, Y., and Zheng, Z. (2018). Mec in an enterprise setting: A solution outline.
ETSI, Sophia Antipolis, France, White Paper, 2(30):1–20.

RIPE Atlas (Accessed Oct 2019). RIPE Atlas Built-in Measurements. https://
atlas.ripe.net/docs/built-in/.

sar(1) — Linux manual page (Last Modified Aug 2020). sar(1) — Linux manual
page. https://www.man7.org/linux/man-pages/man1/sar.1.html.

Sarkar, S., Chatterjee, S., and Misra, S. (2018). Assessment of the Suitability of Fog
Computing in the Context of Internet of Things. IEEE Transactions on Cloud Com-
puting, 6(01):46–59.

Shavitt, Y. and Shir, E. (2005). DIMES: Let the Internet Measure Itself. ACM SIG-
COMM Comput. Commun. Rev., 35(5):71–74.

Sherwood, R. and Spring, N. (2006). Touring the Internet in a TCP Sidecar. In
Proceedings of the 6th ACM SIGCOMMConference on Internet Measurement, IMC ’06,
pages 339–344.

Sodagar, I. (2011). The mpeg-dash standard for multimedia streaming over the
internet. IEEE MultiMedia, 18(4):62–67.

Sonmez, C., Ozgovde, A., and Ersoy, C. (2018). Edgecloudsim: An environment for
performance evaluation of edge computing systems. Trans. Emerg. Telecommun.
Technol., 29(11).

Srinivasa, R., Naidu, N. K. S., Maheshwari, S., Bharathi, C., and Hemanth Kumar,
A. R. (2019). Minimizing Latency for 5GMultimedia and V2XApplications using
Mobile Edge Computing. In 2019 2nd International Conference on Intelligent Com-
munication and Computational Techniques (ICCT), pages 213–217.

sysstat - System performance tools for the Linux operating system (Last commit
Apr 18 2022). sysstat - System performance tools for the Linux operating system.
https://github.com/sysstat/sysstat.

Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and Sabella, D. (2017).
On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge
CloudArchitecture andOrchestration. IEEE Communications Surveys and Tutorials,
19(3):1657–1681.

https://atlas.ripe.net/docs/built-in/
https://atlas.ripe.net/docs/built-in/
https://www.man7.org/linux/man-pages/man1/sar.1.html
https://github.com/sysstat/sysstat

152 BIBLIOGRAPHY

tc (Traffic Control) (Accessed on: March 2020). tc (Traffic Control). http://man7.
org/linux/man-pages/man8/tc.8.html.

TeamCymru (Accessed Aug 2021). Team cymru: IP to ASNmapping. http://www.
team-cymru.com/IP-ASN-mapping.html.

The map of the GARR network (Accessed Aug 2021). The map of the GARR net-
work. https://gins.garr.it/xWeathermap/mapgen.php?slice=garrx_top.

The NITOS facility (Last accessedMay 2022). The NITOS facility. https://nitlab.
inf.uth.gr/NITlab/nitos.

The source code of camotrace (Accessed Aug 2021). The source code of camotrace.
https://bitbucket.org/ChiaraCaiazza/camouflagetraceroute/src/master/.

The source code of the energy evaluator (Last updated on 13 May 2021). The
source code of the energy evaluator. https://github.com/ChiaraCaiazza/
EnergyEvaluator.

The source code of theMECPerf Collection system (AccessedAug 2021). The source
code of the MECPerf Collection system. https://github.com/MECPerf/MECPerf.

The source code of the MECPerf library (Accessed Aug 2021). The source code of
the MECPerf library. https://github.com/MECPerf.

TheWiresharkHomePage (AccessedAug 2021). TheWiresharkHomePage. https:
//www.wireshark.org/.

Tim: Le tecnologie abilitanti per l’IoT (Accessed: March 2021). Le tecnologie
abilitanti per l’IoT. https://www.gruppotim.it/tit/it/notiziariotecnico/
edizioni-2016/n-3-2016/capitolo-4.html.

Toczé, K., Lindqvist, J., and Nadjm-Tehrani, S. (2020). Characterization and mod-
eling of an edge computing mixed reality workload. Journal of Cloud Computing,
9(1):1–24.

Toczé, K., Schmitt, N., Kargén, U., Aral, A., and Brandic, I. (2020). Edge workload
traces from Aeneas, Julius, and MR- Leo.

Tong, L., Li, Y., andGao,W. (2016). A hierarchical edge cloud architecture formobile
computing. In Proc. IEEE INFOCOM ’16, pages 1–9.

Tseng, C., Wang, H., Kuo, F., Ting, K., Chen, H., and Chen, G. (2016). Delay and
Power Consumption in LTE/LTE-A DRXMechanismWith Mixed Short and Long
Cycles. IEEE Transactions on Vehicular Technology, 65(3):1721–1734.

http://man7.org/linux/man-pages/man8/tc.8.html
http://man7.org/linux/man-pages/man8/tc.8.html
http://www.team-cymru.com/IP-ASN-mapping.html
http://www.team-cymru.com/IP-ASN-mapping.html
https://gins.garr.it/xWeathermap/mapgen.php?slice=garrx_top
https://nitlab.inf.uth.gr/NITlab/nitos
https://nitlab.inf.uth.gr/NITlab/nitos
https://bitbucket.org/ChiaraCaiazza/camouflagetraceroute/src/master/
https://github.com/ChiaraCaiazza/EnergyEvaluator
https://github.com/ChiaraCaiazza/EnergyEvaluator
https://github.com/MECPerf/MECPerf
 https://github.com/MECPerf
https://www.wireshark.org/
https://www.wireshark.org/
https://www.gruppotim.it/tit/it/notiziariotecnico/edizioni-2016/n-3-2016/capitolo-4.html
https://www.gruppotim.it/tit/it/notiziariotecnico/edizioni-2016/n-3-2016/capitolo-4.html

BIBLIOGRAPHY 153

tshark (Accessed 2021). tshark - manual page. https://www.wireshark.org/docs/
man-pages/tshark.html.

Vermeulen, K., Strowes, S. D., Fourmaux, O., and Friedman, T. (2018). Multilevel
MDA-Lite Paris Traceroute. In Proc. ACM SIGCOMM IMC ’18, pages 29–42. ACM
SIGCOMM IMC ’18.

Vilela, P. H., Rodrigues, J. J., Solic, P., Saleem, K., and Furtado, V. (2019). Perfor-
mance evaluation of a Fog-assisted IoT solution for e-Health applications. Future
Gener. Comput. Syst., 97:379–386.

Wang, J., Amos, B., Das, A., Pillai, P., Sadeh, N., and Satyanarayanan, M. (2017). A
Scalable and Privacy-Aware IoT Service for Live Video Analytics. In Proceedings
of the 8th ACM on Multimedia Systems Conference - MMSys’17, pages 38–49, New
York, New York, USA. ACM Press.

Wang, J., Feng, Z., Chen, Z., George, S., Bala, M., Pillai, P., Yang, S., and Satya-
narayanan,M. (2018). Bandwidth-efficient live video analytics for drones via edge
computing. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages 159–
173.

Xu, X., Li, D., Dai, Z., Li, S., and Chen, X. (2019a). A heuristic offloading method
for deep learning edge services in 5g networks. IEEE Access, 7:67734–67744.

Xu, Z., Liu, X., Jiang, G., and Tang, B. (2019b). A time-efficient data offload-
ing method with privacy preservation for intelligent sensors in edge computing.
EURASIP Journal on Wireless Communications and Networking, 2019.

Yan, X., Yang, L., and Wong, B. (2020). Domino: Using network measurements to
reduce state machine replication latency in wans. In Proceedings of the 16th Inter-
national Conference on Emerging Networking EXperiments and Technologies, CoNEXT
’20, page 351–363, New York, NY, USA. Association for Computing Machinery.

Yang, S., Gong, Z., Ye, K., Wei, Y., Huang, Z., and Huang, Z. (2020). Edgernn: A
compact speech recognition network with spatio-temporal features for edge com-
puting. IEEE Access, 8:81468–81478.

Yeganeh, B., Durairajan, R., Rejaie, R., and Willinger, W. (2020). A first comparative
characterization of multi-cloud connectivity in today’s internet. In International
Conference on Passive and Active Network Measurement, pages 193–210. Springer.

Zahed, M. I. A., Ahmad, I., Habibi, D., and Phung, Q. V. (2020). Green and Secure
Computation Offloading for Cache-Enabled IoT Networks. IEEE Access, 8:63840–
63855.

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html

154 BIBLIOGRAPHY

Zhang, J., Hu, X., Ning, Z., Ngai, E. C. ., Zhou, L., Wei, J., Cheng, J., and Hu, B.
(2018). Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge
Computing Networks. IEEE Internet of Things Journal, 5(4):2633–2645.

Zhang, X., Chen, H., Zhao, Y., Ma, Z., Xu, Y., Huang, H., Yin, H., and Wu, D. O.
(2019). Improving Cloud Gaming Experience through Mobile Edge Computing.
IEEE Wireless Communications, 26(4):178–183.

Zhao, X., Peng, J., Li, Y., and Li, H. (2020). A privacy-preserving computation of-
floading method based on privacy entropy in multi-access edge computation. In
2020 IEEE 6th International Conference on Computer and Communications (ICCC),
pages 1016–1021.

Zheng, X. and Cai, Z. (2020). Privacy-preserved data sharing towards multiple par-
ties in industrial iots. IEEE Journal on Selected Areas in Communications, 38(5):968–
979.

Zhou, L., Xu, H., Tian, H., Gao, Y., Du, L., andChen, L. (2008). PerformanceAnalysis
of Power Saving Mechanism with Adjustable DRX Cycles in 3GPP LTE. In 2008
IEEE 68th Vehicular Technology Conference, pages 1–5.

	Contents
	List of Figures
	List of Tables
	Introduction
	Multi-access Edge Computing
	Understanding the paths towards remote cloud servers
	Contributions
	Outline

	Background
	Compare Edge- and cloud-based performance
	Evaluating the energy consumption of a Terminal Node in an edge-computing system
	Evaluating the paths towards the cloud

	Collecting performance metrics in a MEC environment: challenges and requirements
	The MEC architecture

	A tool for collecting network metrics in a MEC environment
	MECPerf architecture
	Validation

	Data collection and experimental results
	Network setup
	MECPerf-active measurement results
	DASH measurement results
	Lessons learned

	Use MECPerf experimental results to build a simple trace-based network simulator
	Using the experimental results to generate input traces
	Use the NetworkTraceManager to implement a simple simulator

	Estimating the energy consumption of terminal nodes in edge/cloud scenarios
	Modeling the LTE interface as a finite state machine
	Estimating the energy consumption of a connectionless application
	Estimating the client-side energy consumption of a connection-oriented application
	The Energy evaluator module
	The energy consumption of an ideal connectionless application
	The energy consumption of a trace-based connection-oriented application

	Evaluating the path to remote clouds
	The camouflage traceroute software modules
	The camouflage traceroute discovery capabilities

	Conclusions
	Evaluating the computational load of MECPerf
	List of Acronyms
	Publications
	Bibliography

