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Summary. In this article, we develop a Bayesian hierarchical mixture regression model for studying the association between
a multivariate response, measured as counts on a set of features, and a set of covariates. We have available RNA-Seq and
DNA methylation data measured on breast cancer patients at different stages of the disease. We account for the heterogeneity
and over-dispersion of count data (here, RNA-Seq data) by considering a mixture of negative binomial distributions
and incorporate the covariates (here, methylation data) into the model via a linear modeling construction on the mean
components. Our modeling construction includes several innovative characteristics. First, it employs selection techniques
that allow the identification of a small subset of features that best discriminate the samples while simultaneously selecting
a set of covariates associated to each feature. Second, it incorporates known dependencies into the feature selection process
via the use of Markov random field (MRF) priors. On simulated data, we show how incorporating existing information via
the prior model can improve the accuracy of feature selection. In the analysis of RNA-Seq and DNA methylation data on
breast cancer, we incorporate knowledge on relationships among genes via a gene-gene network, which we extract from the
KEGG database. Our data analysis identifies genes which are discriminatory of cancer stages and simultaneously selects
significant associations between those genes and DNA methylation sites. A biological interpretation of our findings reveals
several biomarkers that can help understanding the effect of DNA methylation on gene expression transcription across
cancer stages.
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1. Introduction
In recent years, RNA sequencing (RNA-Seq), also known as
high throughput or next-generation sequencing, has emerged
as a powerful biotechnology for quantifying gene expression
(Wang et al., 2009). RNA-Seq data consist of non-negative
counts as number of reads observed in a region of interest (e.g.,
gene or exon) after genome mapping. Compared to microar-
ray data, RNA-Seq does not suffer from cross-hybridization
and poor quantification of low- and high-expressed genes
(Kukurba and Montgomery, 2015). However, RNA-Seq data
require specialized methods to take into account the skew-
ness and the heterogeneity typically observed in these data.
Initial modeling efforts were focused on data normalization
(Bullard et al., 2010; Hansen et al., 2012) and on the detection
of differentially expressed genes based on univariate testing
procedures (Anders and Huber, 2010; Robinson et al., 2010).
Recent contributions have employed methods for sample clas-
sification and clustering (Witten, 2011) and empirical Bayes
methods that use mixture models and hierarchical frameworks
for robust inference on gene expression changes (Lee et al.,
2015; Leng et al., 2015). A recent review on RNA-Seq data
analysis methods can be found in Conesa et al. (2016).

To our knowledge, few rigorous integrative modeling
approaches exist to study the relationship between RNA-
Seq and other genomic data, such as DNA methylation data.
Required for embryonic development, DNA methylation is a
process by which methyl groups are added to DNA. It typ-
ically acts to suppress gene transcription when located in a
gene promoter. Several epigenetic studies have revealed that
DNA methylation plays an important role in cancer since it
can influence gene expression, see for example Murrell et al.
(2005). Integrative analyses were conducted for example by
Ferrón et al. (2011), who linked DNA methylation to tissue-
specific gene expression in mice, and Xie et al. (2011), who
correlated DNA methylation variation between human tis-
sues with gene expression levels. Their results indicated that
DNA methylation influences tissue differentiation via regu-
lating gene expression. More recently, Tang et al. (2017) have
developed a Bayesian Gaussian regression model to measure
the relationship among DNA methylation, differential gene
expression and tumor suppressor gene status, and Ma et al.
(2017) have employed a multiple network framework for epi-
genetic studies. As the field of epigenomics expands to study
several types of normal and pathological processes, it has
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become increasingly significant to understand the role that
global genome-wide DNA methylation patterns play in influ-
encing RNA-Seq gene expression. However, the development
of statistical models for the understanding of DNA methyla-
tion in regulating gene expression is still limited.

Motivated by data measured on breast cancer patients at
different stages of the disease, in this article, we develop an
integrative Bayesian hierarchical mixture regression model
for studying the association between a multivariate response,
measured as counts on a set of features (i.e., RNA-Seq genes),
and a set of covariates (i.e., DNA probes). We account for the
heterogeneity and over-dispersion of the count data by con-
sidering a mixture of negative binomial regressions, where the
covariates are incorporated into the model via a linear mod-
eling construction on the mean components. Our modeling
framework includes several innovative characteristics. First,
it employs selection techniques that allow the identification
of a small subset of features that best discriminate the avail-
able sample groups, while simultaneously selecting a set of
covariates associated to each feature. Second, it incorporates
known dependencies into the feature selection process via the
use of Markov random field (MRF) priors. On simulated data,
we show how employing available information via the prior
model can improve the accuracy of feature selection. In the
analysis of RNA-Seq and DNA methylation data, we capture
existing relationships among genes via a gene-gene network,
which we extract from the KEGG database. Our data analysis
identifies genes which are discriminatory of cancer stages and
simultaneously selects significant associations of those genes
with DNA methylation sites. A biological interpretation of
our findings reveals several biomarkers that can help under-
standing the effect of DNA methylation on gene expression
transcription across cancer stages.

The remainder of the article is organized as follows. In
section 2, we introduce the model and the priors. In sec-
tion 3, we investigate results on the data analysis from a
case study on breast cancer. In Section 4, we assess perfor-
mances on simulated data and carry out comparisons with
two-stage approaches. Section 5 concludes the article with
some remarks.

2. Model

Let Y indicate a matrix of multivariate count data measured
on a set of p features (here, RNA-Seq data) on n subjects, and
let X indicate a n × R matrix of observations on R covariates
(here, DNA methylation data). Finally, let the vector z, with
zi = k, for k ∈ {1, . . . , K}, indicate the known sample alloca-
tions of the n subjects to K groups (here, cancer stages). A
graphical representation of the proposed model is given in
Figure 1.

2.1. Negative Binomial Mixture Model with Feature
Selection

We start by modeling the over-dispersed counts by a negative
binomial (NB) mixture model in which we incorporate feature
selection. For this, we first introduce a p × 1 vector γ of binary
latent indicators, with γj = 1 if feature j discriminates the
n samples within the K given groups, and γj = 0 otherwise.

Then, for sample i and γj = 0, we write

yij|γj

ind∼ NB(yij; λij0, φj), (1)

while for γj = 1 we have

yij|zi = k, γj

ind∼ NB(yij; λijk, φj), (2)

for i = 1, . . . , n, with NB(y; λ, φ) denoting a negative bino-
mial distribution for the random variable y, with expectation
λ and dispersion 1/φ. With this parametrization, the vari-
ance of the distribution can be written as λ + λ2/φ, allowing
to model over-dispersion. Our model formulation assumes
that counts mapping to non-discriminatory features are drawn
from a negative binomial distribution with mean λij0 (“null”
model), while any count that maps to a discriminatory feature
and belongs to group k is drawn from a negative bino-
mial distribution with mean λijk. In Section 2.2, we describe
how to incorporate covariates into the modeling construc-
tion via the mean components. We specify a prior for φj as
φj ∼ Ga(aφ, bφ).

Model (1) and (2) require a prior on the γj’s. A simple
choice in variable selection is to assume independent Bernoulli
priors, that is, γj ∼ Bern(α), where α can be either a fixed
hyperparameter or a random variable itself. For example,
a beta hyperprior can be imposed on α which leads to a
beta-binomial prior on the number of discriminatory features.
Recent contributions in the Bayesian variable selection mod-
eling of genomic data have made use of Markov random field
(MRF) priors that allow to incorporate external information
about dependencies among predictors (Li and Zhang, 2010;
Stingo and Vannucci, 2011). Here, we consider a MRF prior
on γ that takes into account dependencies among the features
(i.e., genes) as captured by a gene-gene interaction network
that we extract from the KEGG database (Zhang and Wie-
mann, 2009). Specifically, we write

p(γj|γ−j) =
exp

(
γj(d + f

∑
j′∈Nj

γj′)
)

1 + exp
(
d + f

∑
j′∈Nj

γj′
) , (3)

with d and f hyperparameters to be chosen, γ−j denoting the
vector of γ excluding the j-th element, and Nj the set of direct
“neighbors” of feature j, as defined by the KEGG network.
Then, according to (3) neighboring features are more likely
to be jointly discriminatory. The joint prior on γ, up to its
normalizing constant, is

p(γ) ∝ exp(d11×pγ + fγT Gγ),

with G a p × p symmetric matrix with gjj′ = 1 if gene j and j′

have a direct link in the gene network, and gjj′ = 0 otherwise
(Hammersley and Clifford, 1971). Here d controls the sparsity
of the prior model, while f affects the probability of selection
of a feature according to the status of its neighbors. Note
that if a feature does not have any neighbor, its prior distri-
bution reduces to an independent Bernoulli with parameter
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Figure 1. A graphical representation of the proposed Bayesian negative binomial mixture regression model. Each node in
a circle refers to a parameter of the model and each node in a square refers to the observable data. Circle nodes in the dashed
block are fixed hyperparameters. The link between two nodes represents a direct probabilistic dependence.

ωγ = exp(d)/(1 + exp(d)), which is a logistic transformation
of d.

2.2. Mean Regression Model with Covariate Selection

We incorporate the covariates into the modeling construction
by specifying a log link model for the mean components, which
we write as

⎧⎨
⎩

log λij0 = α0j + xT
i βj if γj = 0

log λijk = α0j + αkj + xT
i βj if γj = 1 and zi = k.

(4)

In this formulation, α0j is the baseline process for feature j and
it is shared by all observations. Note that exp(α0j) can also
be considered as a scaling factor adjusting for feature-specific
levels across all observations. The group-specific parameter
αkj captures differential expression as a shift from the base-
line, shared by all observations that belong to group k, when
feature j is discriminatory; and it is set to zero, otherwise. To
avoid identifiability problems arising from the sum of the com-
ponents, we fix the mean shifts in the reference group, which
is usually the first group, to zero, that is, α1j = 0, j = 1, . . . , p.

The subject-specific coefficient vectors βj in (4) describe
the effect of the R covariates on the observed counts. Note
that our model formulation assumes a relationship between
the covariates and all the features, both discriminatory, that
is, for γj = 1, and non-discriminatory, that is, for γj = 0. How-
ever, we allow different sets of covariates to contribute to each
feature mean by specifying a spike-and-slab prior on each βrj

as

βrj|δrj, σ
2
βj ∼ (1 − δrj)I0(βrj) + δrjN(0, σ2

βj), (5)

with I0 a point mass distribution at βrj = 0 and δrj a binary
indicator. If δrj = 1, then covariate r is considered relevant
to explain the observed counts for feature j, and irrelevant
otherwise. In the application, this allows us to identify sig-
nificant associations between feature expression j (RNA-Seq
data) and covariate r (DNA methylation), via the selection of
the non-zero βrj coefficients, for all discriminatory and non-
discriminatory features. We assume independent Bernoulli
priors δrj|ω ∼ Bern(ω), with a beta hyperprior on ω.

We complete the model by imposing inverse-gamma hyper-
priors on the hyperparameters σ2

0j, σ2
αj, and σ2

βj, which leads
to marginal non-standardized Student’s t-distributions.

2.3. Model Fitting and Posterior Inference

We design a Markov chain Monte Carlo (MCMC) algorithm
based on stochastic search variable selection algorithms with
within-model updates (Savitsky and Vannucci, 2010). Full
details can be found in the Supplementary Material.

For posterior inference, our primary interest lies in the
identification of the discriminatory features, via the vector
γ, and the selection of the important covariates for each fea-
ture, via the vectors δj, j = 1, . . . , p. One way to summarize
the posterior distribution of the parameters of interest is via
maximum-a-posteriori (MAP) estimates. Alternatively, selec-
tion can be done by thresholding the estimated marginal
posterior probabilities of inclusion (PPI) of single features, or
covariates, obtained as the proportion of MCMC iterations,
after burn-in, in which the corresponding γj, or δrj, are equal
to 1. In choosing the threshold, we follow the procedure of
Newton et al. (2004), which guarantees the expected Bayesian
false discovery rate (BFDR) to be smaller than a pre-specified
threshold.
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3. Case Study on Breast Cancer

In this section, we illustrate an application of our method to
RNA-Seq gene expression and DNA methylation data from a
case study on breast cancer. Breast cancer is the most com-
mon cancer in women. The NCI currently estimates that 1
in 8 women will be diagnosed with breast cancer during their
lifetime, up from 1 in 10 in 1970s (Harbeck and Gnant, 2017).
When caught early, the 5-year survival rate of breast cancer is
over 90%. The disease becomes deadly when it metastasizes,
spreading to other organs or the bones. Cancer stages are
defined by tumor size and spread, with higher stages refer-
ring to a more severe form of the disease and to different
expected survival outcomes. Specifically, stage 0 and I breast
cancer diagnoses have a 5-year survival rate close to 100%,
stage II of about 93%, stage III of 72%, and, stage IV of 22%.

Here, we analyze data that we downloaded from The Can-
cer Genome Atlas (TCGA) data portal. In particular, we
focused our interest on genes belonging to the 60 KEGG path-
ways identified by Jiao et al. (2017) as being involved in breast
cancer. This resulted in the selection of RNA-Seq data on
p = 1, 439 genes. The dataset comprised n = 78 breast cancer
patients, of which n1 = 19 were in stage I, n2 = 27 in stage
II, n3 = 15 in stage III and n4 = 17 in stage IV. Addition-
ally, data on R = 29, 779 DNA methylation probes from the
same patients were available through TCGA. In the analy-
sis reported here, we focused in particular on associations of
genes with DNA methylation probes that map to the same
gene. These local associations are called associations in cis, as
opposed to associations in trans, that is, associations of genes
with probes that map far from the location of the gene of ori-
gin. Even though more than half of the genetically explained
variance in gene expression is due to trans acting variants,
many expression quantitative trait loci (eQTLs) studies have
focused on cis eQTLs, since reliable detection of trans eQTLs
has been challenging in humans (Pai et al., 2015). This is due
to the smaller effect size of trans-acting variants and thus
the necessity of a large sample size to establish statistical sig-
nificance. In our model formulation, the specification of the
MRF prior on γ requires a gene-gene interaction network. We
extracted this network from the KEGG database. Specifically,
we used the R package KEGGgraph of Zhang and Wiemann
(2009). Among the genes we selected for our analysis, 256 did
not have any neighbors. The resulting network is shown in
the Supplementary Material.

For prior specification, we set the hyperparameters that
control the MRF prior (3) to d = −4 and f = 1. Hence, for
a gene with no neighbors in the network, or whose neighbors
do not discriminate between the four groups, the prior proba-
bility of inclusion is e−4/(1 + e−4) ≈ 0.02. This setting follows
our assumption that only a small number of genes are differ-
entially expressed across the different cancer stages. We refer
to the simulation study and the sensitivity analysis reported
in the Supplementary Material for more details on the choices
of these parameters. As for the beta prior on the covari-
ate selection parameters ωδ, we set aω = 0.2 and bω = 1.8,
which implies a 10% expected prior probability. We used the
same flat hyperprior IG(2, 1), as prior choice for σ2

0j, σ2
αj, and

σ2
βj. Finally, we set the prior which controls the dispersion

of the negative binomial model to φj ∼ Ga(aφ = 1, bφ = 0.01),
which leads to an expected value of 100 and a relatively large

variance (10, 000). We ran 200,000 iterations with 100,000
sweeps as burn-in. Since we noticed that γ was converging
slower than δ, we performed multiple updates of γ within
each MCMC iteration. As previously noted, we restricted the
add and delete moves of the Metropolis search on δrj to in cis
probes. There were on average about 21 probes per gene in
the data, and a median of 16.

To assess convergence, we ran four independent MCMC
chains. We computed pairwise Pearson correlation coefficients
of the marginal posterior probabilities of inclusion between
each pair of chains. The values ranged from 0.939 to 0.947 for
the γj’s, and from 0.950 to 0.955 for the δrj’s. The high cor-
relations indicated substantial agreement between the four
MCMC chains. We also used the Gelman and Rubin’s con-
vergence diagnostics (Gelman and Rubin, 1992) to inspect
for signs of non-convergence of the individual parameters.
We found that 95% of those statistics ranged from 1.003 to
1.101, clearly suggesting that the MCMC chains were run for
a sufficient number of iterations. Results we report here were
obtained by pooling together the outputs from the four chains.

3.1. Results

The primary interest of our analysis was to identify differen-
tial expression profiles associated to the cancer stages and
to study the association of each gene expression with the
covariates, that is, the DNA methylation probes. Accordingly,
we focus our presentation of the results on the inference on
the variable selection parameters, which allow the identifica-
tion of the discriminating genes and their association with
the DNA methylation probes. A plot of the the marginal
posterior probabilities of inclusion of γ, as estimated by our
method, is reported in Figure 2. Based on those probabilities,
a 5% BFDR threshold corresponded to a cut-off probability
of 0.774 and selected 227 genes, while a 1% BFDR threshold
corresponded to a cut-off probability of 0.949 and selected 149
genes. We focused on this smaller set of genes for a biological
interpretation of the results. Marginal posterior probabilities
of associations for this set of 149 genes with their corre-
sponding DNA methylation probes are shown in Figure 2.
The dots in the plot indicate the 37 associations, involving 32
genes, as selected with a 5% BFDR threshold. Estimates of
the regression coefficients βrj corresponding to the 37 selected
associations are also reported in the Figure. A large num-
ber of these selected associations are negative. Indeed, for a
specific gene, DNA methylation in the promoter is a potent
mechanism for silencing gene expression and, thus, a negative
association should be expected (Robertson, 2005). However,
positive associations have also been found in the literature,
especially in the gene body (Yang et al., 2014). We note that,
even though it is of greater scientific interest to study whether
there are DNA methylation effects which lead to a differen-
tial transcription across cancer stages, our method also allows
inference on the association with DNA methylation probes for
non-discriminating genes.

3.2. Biological Findings

In order to assess the biological relevance of our findings, we
first focused on the list of 149 selected genes, identified by
our method as discriminating features across the 4 cancer
stages, and conducted an enrichment analysis by employing
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Figure 2. Case study. Top row: Marginal posterior probabilities of inclusion of genes p(γj = 1|·)’s (left), with dots indicating
the 149 genes selected as discriminatory across cancer stages at a 1% BFDR threshold, and marginal posterior probabilities of
inclusion of DNA methylation probes for the 149 selected genes p(δrj = 1|γj = 1, ·)’s (right), with dots marking the 37 probes
selected at a 5% BFDR threshold. Bottom row: Boxplots of the strength of the 37 selected gene-probe associations. This
figure appears in color in the electronic version of this article, and color refers to that version.

the database for annotation visualization and integrated dis-
covery (DAVID) (Dennis et al., 2003). We selected significant
annotation terms at a 0.05 threshold applied to corrected p-
values (Benjamini and Hochberg, 1995). Several significant
terms were identified. For example, under the Pathways cate-
gory, focusing on the KEGG pathway sub-category, the term
Pathways in cancer showed the smallest p-value (2.5 × 10−32),
with the terms Neurotrophin signaling pathway and T cell
receptor signaling pathway following with the second and
third smallest p-values (5.0 × 10−18 and 2.9 × 10−13, respec-
tively). The gene-gene networks of these 3 pathways are
depicted in Figure 3. Genes highlighted in red correspond
to those selected by our method as discriminatory of cancer
stages, at a 1% BFDR cut-off level, and those highlighted

in green are genes selected as discriminatory that, in addi-
tion, show significant associations with DNA methylation. We
comment on interesting findings from these pathways in the
Supplementary Material. Additionally, it is of great scientific
interest to identify biomarkers that can help understanding
the effect of DNA methylation on gene transcription. Our
method has the desirable feature to be able to pinpoint at
specific CpG sites which may play a principal role in the
epigenetic mutation. Accordingly, we performed a literature
search on the 32 genes that showed significant association
with at least one DNA probe (see Figure 2). Results con-
firmed the relevance of our results, see the Supplementary
Material. Finally, we conducted a comparative evaluation of
the biological results obtained by our method and those from

187



6 Biometrics

Figure 3. Case study: The gene-gene interaction networks for the three most enriched pathways: (a) Pathways in cancer, (b)
Neurotrophin signaling pathway and (c) T cell receptor signaling pathway. The colored genes were selected by our method as
discriminatory across cancer stages using a 1% BFDR threshold, with the green ones were those genes showed significant asso-
ciation to DNA methylation. This figure appears in color in the electronic version of this article, and color refers to that version.

alternative approaches, based on findings from the enrichment
analyses. Such comparative study, reported in the Supplemen-
tary Material, showed an increased ability of our method to
identify groups of genes belonging to pathways clearly related
to cancer.

We conclude by comparing our results with those obtained
using an independent Bernoulli prior on γ, specifically γj ∼
Bern(0.02). With a 1% BFDR threshold, the Bernoulli prior
led to the selection of 24 discriminating genes, 18 of which
were in the list obtained by the model with the MRF prior.
Out of the 6 genes selected by the Bernoulli prior only, a lit-
erature search did not report any association to cancer for 3

of them. Additionally, an enrichment analysis on the whole
set of 24 genes selected with the Bernoulli prior found only
one statistically significant term. This was in contrast with
the many cancer-related terms identified when employing
the MRF prior, as described in the Supplementary Mate-
rial. In summary, employing a KEGG-informed MRF prior
aided the interpretation of the results and increased the abil-
ity to identify discriminating genes. This, however, does not
affect the selection of gene expression-methylation associa-
tions since the model assumes that the DNA methylation
effect on RNA-Seq gene expression is the same across different
conditions.
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Figure 4. Simulated data: Marginal posterior probabilities of inclusion p(γj = 1|·) with dots indicating truly discrimina-
tory features and the horizontal dotted lines indicating a threshold for a 5% BFDR, using (a) the MRF prior and (b) the
independent Bernoulli prior. Receiver operating characteristic (ROC) curves on the posterior probabilities of inclusion for
features and covariates, for different values of the threshold and 30 replicated datasets, using (c)(d) the MRF prior and (e)(f)
the independent Bernoulli prior. This figure appears in color in the electronic version of this article, and color refers to that
version.

4. Simulation Studies

In this section we use simulated data to assess the per-
formance of our model against alternative solutions and to
investigate the sensitivity to the prior choices. The dimension
of Y was set to n = 78 and p = 1,000. In order to test the abil-
ity of our method to discover relevant features in the presence
of a good amount of noise, we focused on a scenario where only
a few of the features were truly discriminatory (pγ = 20). We
generated a matrix X with n = 78 rows (i.e., samples) and

R = 5000 columns (i.e., covariates) by sampling each element
from a beta distribution Be(0.4, 0.6). As for the coefficient
matrix B, we arbitrarily set 10% of the entries to non-zero
values that we generated from a mixture of two uniform
distributions 0.7 × U(1, 2) + 0.3 × U(−2, −1). In generating
the response Y , we assumed K = 4 groups for those counts
that map to the 20 discriminatory features. Furthermore, we
induced correlation structure among the discriminatory fea-

tures as follows. We first generated the vectors λ
(γ)
i , with (γ)

189
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Figure 5. Simulated data: Comparison between ROC
curves for our methods and those obtained using four com-
peting methods for different p-values. All curves are averaged
over 30 replicated datasets. Results in plots (a) refer to the
identification of discriminating features of sample groups, and
those in plot (b) to the selection of significant associations to
the covariates. This figure appears in color in the electronic
version of this article, and color refers to that version.

indicating the elements of λi that correspond to γj = 1, from
a mixture of four (K = 4) multivariate normal densities

log λ
(γ)
i ∼ xT

i B(γ) + I(1 ≤ i ≤ 19)MN(μ1, �1) + I(20 ≤ i ≤ 46)

MN(μ2, �2) + I(47 ≤ i ≤ 61)MN(μ3, �3)

+ I(62 ≤ i ≤ 78)MN(μ4, �4),

where the first 19 observations were drawn from the first dis-
tribution, the second 27 from the second distribution, the
next 15 from the third and the last 17 from the fourth. We
set the means of the multivariate normal distributions equal
to μ1 = 3 × 1pγ

, μ2 = 5 × 1pγ
, μ3 = 4.5 × 1pγ

, μ4 = 3.5 × 1pγ
,

where 1pγ
is a unit vector of dimension pγ . We constructed

the four covariance matrices of the 20 discriminatory features
by first setting the diagonal elements to σ2

1 = σ2
2 = σ2

3 = 2
and σ2

4 = 3. We then induced correlation among the 20 fea-
tures by setting 0.5 to some of the off-diagonal elements of
the four covariance matrices. This induced a network among
the 20 features, with 4 features connected to two other fea-
tures, 10 connected to three others and 6 connected to four

others. For the 980 noisy features, we generated λ
(γc)
i , with

(γc) indicating the elements of λi that correspond to γj = 0,

as λ
(γc)
i ∼ xT

i B(γc) + MN(4 × 1p−pγ
, �0), with the diagonal and

the off-diagonal elements of the covariance matrix set to 1 and
0.1, respectively. Finally, we simulated the count data from
Negative Binomial distributions with parameters λij and φj

with φj ∼ Exp(1/10).

We used the same prior and algorithm settings as described
in Section 3. Figure 4 shows the marginal posterior proba-
bilities of inclusion of single features when using the MRF
prior with (d = −4, f = 1) and the independent Bernoulli
prior with ω = 0.02. The dots indicate the truly discrimina-
tory features and the horizontal dotted lines correspond to a
threshold that ensures an expected Bayesian false discovery
rate (BFDR) of 5%. This threshold resulted in a model that
included 21 features with the MRF prior, 19 of which were
in the set of truly discriminatory features, and 20 features
with the independent prior, 12 of which were in the set of
truly discriminatory features. We also observed that the PPIs
of the discriminatory features obtained with the MRF prior
were generally higher than those obtained with the indepen-
dent Bernoulli prior, a finding which suggests that employing
the MRF prior results in an increased ability to identify fea-
tures with strong discriminatory power. Other authors have
reported similar results, see for example Stingo and Van-
nucci (2011) and Li and Zhang (2010). Generally speaking,
the effect of the MRF prior depends on the concordance of
the prior network with the data, while an independent prior,
obtained for f = 0, is expected to lead best results if fea-
tures are independent. Figure 4 also reports receiver operating
characteristic (ROC) curves on the posterior probabilities
of inclusion of features and covariates under the two prior
settings, averaged over 30 simulated datasets. These plots
confirm the overall best performance of our method with the
MRF prior. The area under curve (AUC) is 0.998 and 0.969,
with and without MRF prior, respectively, for the discrimi-
nating features, and 0.979 and 0.979, respectively, for selection
of the covariates.

Unlike existing approaches, which typically employ multi-
step analyses, a novel characteristic of our integrative
modeling approach is the simultaneous identification of dis-
criminating features and their associations to covariates.
In setting up a comparison study, we therefore considered
two-stage methods that first identify discriminatory features
across sample groups and then regress them on the covari-
ates. For the first stage, we employed three popular differential
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gene expression (DGE) analysis methods implemented by the
R packages DESeq2 (Love et al., 2014), edgeR (McCarthy et
al., 2012), and limma (Ritchie et al., 2015). The former two
methods rely on the negative binomial distribution to model
the over-dispersed raw counts. The latter one employs a GLM
approach, assuming that counts are from a log-normal distri-
bution. All three methods produced thresholded p-values, to
control for false discover rate (FDR). In the second stage, we
used the lm() function in R to calculate p-values. Specifi-
cally, for each competing method, DESeq2, edgeR and limma,
we first identified those discriminating features whose p-values
were smaller than 0.05. Then, for non-discriminating features,
we centered the log-transformed counts to their mean across
all the samples, for each feature, and then applied lm() to
obtain the p-values for each covariate. For the discriminat-
ing features, we centered the log-transformed counts to their
corresponding group means and then applied lm(). As an
additional comparison, we also fit a negative binomial regres-
sion to each feature, that is, ignoring the mixture related to
cancer stages on the intercept term, by applying glm.nb() to
the raw counts.

Figure 5 shows the ROC curves obtained with DESeq2,
edgeR and limma for different values of the threshold on the
p-values and averaged over 30 replicated datasets, together
with those from our methods with and without MRF prior.
For the identification of the discriminating features, the AUCs
were 0.659, 0.692, and 0.637, for DESeq2, edgeR, and limma,
respectively. For the selection of the covariates, the AUCs
were 0.952, 0.952 and 0.953, for DESeq2, edgeR and limma,
respectively. A negative binomial regression fitted to the raw
counts of each feature resulted in a AUC of 0.891. Our method
therefore showed the best performance.

Results on the sensitivity of our model to different prior
choices are reported in the Supplementary Material. These
show that the model is considerably robust to the choice of
d, when fixing f . As for the choice of f , even though the sen-
sitivity analysis suggested increased performances for larger
values, it is a general experience that allowing this parameter
to vary widely can lead to a phase transition problem, that is,
the expected number of variables equal to 1 can increase mas-
sively for small increments of f . This may lead to a drastic
change in the proportion of selected genes. Thus, in our anal-
yses we have set f = 1 as a conservative choice. As for the
parameters (a, b) of the inverse-gamma hyperpriors on σ2

0j,
σ2

αj, and σ2
βj, results show little sensitivity. In the applications

of the article, we have set a to 2, as this is the smallest number
such that the variance of the inverse-gamma is well-defined.

5. Conclusion

We have presented a Bayesian hierarchical mixture regression
model for studying the association between a multivariate
response, measured as counts on a set of features, and a
set of covariates. Our motivation has come from the analysis
of RNA-Seq and DNA methylation data from a breast can-
cer study. We have employed a mixture of negative binomial
distributions, incorporating the covariates via a linear con-
struction on the mean components. Our proposed approach
allows a simultaneous selection of discriminatory features
and relevant covariates. We have also incorporated structural

dependencies among genes via the use of Markov random
field priors. Our results have identified several biomarkers
that can help understanding the effect of DNA methylation
on gene transcription. We have also demonstrated improved
performances over alternative approaches.

Several extensions of our model are worth investigating.
First, even though in our application only 2.6% counts were
zeros, RNA-Seq count data can sometimes have an excess
of zeros, because of insufficient sequencing depth or a large
amount of short RNAs. This feature can be taken into account
by considering zero-inflated models. Next, our approach can
be extended to infinite mixture models that cluster the obser-
vations, for the discovery of cancer sub-types, and estimate
the number of clusters directly from the data (Muller et al.,
2015). Also, in the data analysis, we restricted our attention to
associations of genes with DNA methylation probes that map
to the same gene. Other interesting analyses are possible, for
example by considering pre-defined lists of promoter regions
or data driven choices, such as regions of dense CpG clusters.
When appropriate, correlation structures among methylation
sites can be incorporated, for example, via selection priors
similar to those used in Cassese et al. (2014), that allow for
associations between individual genes and groups of correlated
probes. Finally, model-based methods that characterize base-
level RNA-Seq reads within each transcript (Hu et al., 2011;
SUN et al., 2013) could be considered, to obtain a more accu-
rate quantification of transcript-level data, and joint models
of RNA-seq and DNA-methylation could be used for simulta-
neous inference on both types of variables/processes.

6. Supplementary Materials

Web appendices, tables, and figures referenced in Sections 2,
3, and 4 are available with this article at the Biometrics web-
site on Wiley Online Library. Software coded in R/C++ is avail-
able at https://github.com/liqiwei2000/BayesNBMixReg.
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