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stomatal flux-based standard and on real plant symptoms 
is more appropriated than the exposure-based method for 
protecting vegetation. From flux-effect relationships, we 
derived flux-based critical levels (CLef) for forest protection 
against visible foliar O3-like injury. We recommend CLef of 
5 and 12 mmol m−2 POD1 for broadleaved species and coni-
fers, respectively. Before using PODY as legislative stand-
ard in Europe, we recommend using the CLec for ≥ 25% of 
crown defoliation in a plot: 17,000 and 19,000 nmol mol−1 
h AOT40 for conifers and broadleaved species, respectively.

Keywords  POD · Critical levels · Ozone · Visible injury · 
Epidemiology

Introduction

Surface ozone (O3) is a major air quality issue worldwide 
(Sicard et al. 2013, 2016a, 2017, 2020) with harmful effects 
on forest trees (Sicard et al. 2016b; Mills et al. 2018; Feng 
et al. 2019). The adverse effects can be a reduction of leaf 
chlorophyll content (Dalstein et al. 2005), sluggishness or 
impairment of leaf stomata (Hoshika et al. 2015), visible 
foliar O3 injury (Calatayud and Cerveró 2007; Paoletti et al. 
2009; Schaub et al. 2010; Sicard et al. 2016c; Moura et al. 
2018), and a reduction of growth (Fares et al. 2013; Proietti 
et al. 2016; Braun et al. 2017; Cailleret et al. 2018). The O3 
exposure metric AOT40, i.e. the cumulated exposure to O3 
hourly concentrations exceeding 40 nmol mol−1 over the 
daylight hours during the growing season, is recommended 
for the protection of vegetation by the European Council 
Directive 2008/50/EC. For forest protection, an exposure-
based critical level of 5000 nmol mol−1 h AOT40 is recom-
mended by UNECE (2010).

Abstract  The European MOTTLES project set-up a new-
generation network for ozone (O3) monitoring in 17 plots 
in France, Italy and Romania. These monitoring stations 
allowed: (1) estimating the accumulated exposure AOT40 
and stomatal O3 fluxes (PODY) with an hourly threshold of 
uptake (Y) to represent the detoxification capacity of trees 
(POD1, with Y = 1 nmol O3 m−2 s−1 per leaf area); and (2) 
collecting data of forest-response indicators, i.e. crown defo-
liation and visible foliar O3-like injury over the time period 
2017–2019. The soil water content was the most important 
parameter affecting crown defoliation and was a key factor 
affecting the severity of visible foliar O3-like injury on the 
dominant tree species in a plot. The soil water content is thus 
an essential parameter in the PODY estimation, particularly 
for water-limited environments. An assessment based on 
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In Europe, the crown defoliation is recommended by the 
International Cooperative Programme on Assessment and 
Monitoring of Air Pollution Effects on Forests (ICP-Forests) 
as indicator of forest health in Europe (Fischer and Lorenz 
2011). The visible foliar O3 injury (e.g. stippling, necro-
sis) are the first indicator of phytotoxic O3 levels (Grulke 
2003), and can occur even for low AOT40 values e.g. in 
Lithuania (Araminienė et al. 2019). The O3 effects on forest 
trees depend not only on the O3 concentrations in ambi-
ent air, but also on O3 uptake through stomata (Paoletti and 
Manning 2007). The Phytotoxic Ozone Dose, defined as the 
amount of O3 absorbed into the leaves or needles through 
stomata over the growing season, and above a threshold Y 
of uptake (PODY), integrates the effects of climatic factors 
and vegetation characteristics on O3 uptake (Emberson et al. 
2000). Looking at the forest responses to O3, the stoma-
tal flux-based approach is more realistic compared to the 
exposure-based approach i.e. AOT40 (De Marco et al. 2015; 
Anav et al. 2016; Sicard et al. 2016c; Agathokleous et al. 
2018; Paoletti et al. 2019). For these reasons, PODY is under 
discussion as new legislative standard in Europe (Lefohn 
et al. 2018; Paoletti et al. 2019). Following the revision of 
the National Emission Ceiling Directive in 2016, consistent 
flux-based critical levels for forest protection against vis-
ible O3 damages are requested in a climate change context 
(De Marco et al. 2019). Epidemiological surveys of crown 
defoliation, visible foliar O3-like injury and environmental 
variables, including O3 metrics, can be used to derive robust 
stomatal flux-based critical levels (Mills et al. 2011; Braun 
et al. 2014; Sicard et al. 2016c; De Marco and Sicard 2019).

The European MOTTLES project (LIFE15 ENV/
IT/000183), based on the O3 risks on forests, set-up a new-
generation network of 17 sites for O3 monitoring in France, 
Italy and Romania, as described in Paoletti et al. (2019), 
allowing estimating stomatal O3 fluxes (PODY) and col-
lecting forest-response indicators under real conditions, i.e. 
crown defoliation and visible foliar O3-like injury for the 
years 2017, 2018 and 2019 in order to derive proper critical 
levels for forest protection.

The aims of this study were (1) to determine the relative 
importance of different environmental variables in determin-
ing crown defoliation and visible O3-like injury on dominant 
trees in a plot; and (2) to suggest proper epidemiologically-
based O3 critical levels for forest protection against O3.

Materials and methods

Monitoring network

Seventeen forest sites were selected in France, Italy and 
Romania, representative of main biogeographical regions 
(Alpine, Atlantic, Continental and Mediterranean) along a 

gradient of O3 pollution: 4 plots in France, 9 in Italy, and 4 
in Romania (Table 1). Within the network, the dominant tree 
species in the plots are deciduous broadleaved species i.e. 
Alnus glutinosa, Fagus sylvatica, Phillyrea latifolia, Quercus 
cerris, Q. ilex, Q. petraea and Q. robur followed by conifer 
species i.e. Larix decidua, Picea abies, Pinus pinea and P. 
sylvestris. The meteorological and O3 data are continuously 
measured in open areas, while soil moisture at 10 cm depth 
and forest-health indicators are measured into the nearby for-
est (Paoletti et al. 2019). Each integrated station is equipped 
with sensors for air temperature and relative humidity, rain-
fall, atmospheric pressure, solar radiation, wind speed and 
direction, soil moisture, while ground-level O3 is recorded 
by an active monitor. The hourly averages are recorded by 
data loggers. A full description of the monitoring network 
set-up, with all information about equipment and sensors, is 
available in Paoletti et al. (2019).

Crown defoliation

In the 17 plots, 340 trees were investigated from the end 
of August to mid-September in 2017, 2018 and 2019. The 
assessment was based on the ICP-Forests Manual on Visual 
Assessment of Crown Condition (Eichhorn et al. 2016). 
Crown defoliation was assessed on 20 randomly selected 
trees of the dominant tree species per plot. Crown defolia-
tion was assessed in 5% steps. A tree with a crown defo-
liation ≥ 25% is usually considered as damaged (Eichhorn 
et al. 2016). For each plot, a mean crown defoliation was 
calculated from the 20 scored trees.

Visible foliar ozone injury

The assessment was based on the ICP-Forests Guidelines 
(Schaub et al. 2016). Surveys were carried out by the same 
two trained observers in each country from the end of 
August to early-mid September. The observers were involved 
in validation activities, attended field courses and performed 
annual inter-comparison exercises, organized by ICP-For-
ests. Foliar injury was compared with the reference picture 
atlas provided by the validation center for Southern Europe 
(www.ozone​injur​y.org) and for central Europe (www.wsl.
ch). At each plot, 5 trees were randomly selected. For each 
tree, 5 light-exposed branches with ≥ 30 needles/leaves per 
branch or needle age class were removed from the upper 
crown. For each branch, the percentage of total leaf/needle 
surface affected by visible foliar O3 injury was scored for 
current-year foliage (C), and one-year-old (C + 1) and two-
year-old (C + 2) needles. If injury was due to another factor, 
different from O3, the needle/leaf was excluded from scor-
ing. For each plot, a mean percentage of needle/leaf surface 
affected by visible foliar O3 injury was calculated.
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AOT40 calculation

The O3 exposure index AOT40 (here in nmol/mol hour, abbre-
viated to nmol mol−1 h) was calculated as sum of the hourly 
exceedances above 40 nmol mol−1 for daylight hours when 
global radiation is higher than 50 W m−2 (CLRTAP 2017) dur-
ing the actual growing season of the dominant tree species at 
each site (Paoletti et al. 2019). In our study, the accumulation 
period started from the actual start date of the growing season 
(aSGS, as defined in Paoletti et al. 2019) until the day when 
the survey of forest-health responses was carried out at a site.

where [O3] is hourly O3 concentration (nmol mol−1) and dt 
is time step (1−h). The function “maximum” ensures that 
only values exceeding 40 nmol mol−1 are taken into account.

Phytotoxic ozone dose calculation

The actual stomatal conductance (gsto) was calculated as a spe-
cies-specific function where the maximum value of stomatal 
conductance (gmax) is reduced by limiting functions, scaled 
from 0 to 1 as described in Eq. 2.

where gmax is the maximum stomatal conductance to O3 
expressed on a total leaf surface area (mmol O3 m−2 s−1). 
The maximum stomatal conductance (gmax) is based on the 
average above the 90th or 98th percentile of gsto measure-
ments under optimum environmental conditions for stomatal 
opening (CLRTAP 2017).

The functions fphen, flight, ftemp, fVPD and fSWC, expressed in 
relative terms (i.e. values between 0 and 1), are the variation in 
gmax with leaf age, irradiance (photosynthetically flux density 
at the leaf surface, μmol photons m−2 s−1), air temperature 
(T,  °C), vapor pressure deficit estimated through the relative 
air humidity (VPD, kPa), and volumetric soil water content 
(SWC, m3 m−3), respectively. The function fmin is the minimum 
stomatal conductance, expressed as a fraction of gmax. The fol-
lowing formulas were applied:

(1)AOT40 =

surveydate

∫
t=aSGS

max
(([

O3

]
− 40

)
, 0
)
.dt

(2)
gsto = gmax × fphen × flight × max

{
fmin,

(
ftemp × fVPD × fSWC

)}

(3)flight = 1 − exp−lighta×PPFD

(4)ftemp =

�
T − Tmin

Topt − Tmin

�⎧⎪⎨⎪⎩

�
Tmax − T

Tmax − Topt

��
Tmax−T

Topt−Tmin

�⎫⎪⎬⎪⎭

where lighta is an a-dimensional constant; PPFD is hourly 
photosynthetic photon flux density estimated through the 
solar radiation; Topt, Tmin, and Tmax, represent the optimum, 
minimum, and maximum temperature for stomatal conduct-
ance, respectively; VPDmin and VPDmax are minimum and 
maximum vapor pressure deficit for stomatal conductance, 
respectively; WP is SWC at wilting point and FC is SWC 
at field capacity.

We assumed that fphen was 1 throughout the growing season, 
i.e. from the start date of the growing season (aSGS) until 
the time of the visible foliar O3 injury survey. Phenology for 
the survey accumulation periods was directly assessed at the 
Romanian sites. At the French and Italian sites, when no direct 
observation was carried out, we used a latitude model accord-
ing to CLRTAP (2017).

At each site, hourly air temperature, relative air humidity, 
solar radiation, wind speed and direction, SWC, and ground-
level O3 concentrations are measured. Furthermore, for each 
dominant tree species, we used the fixed species-specific flux 
parameterization (Table 2) available in literature (CLRTAP 
2017; Hoshika et al. 2018).

Once the stomatal conductance was computed, similarly to 
AOT40, the stomatal O3 flux PODY was accumulated from the 
actual start date of the growing season (aSGS) until the time 
of the visible foliar O3 injury survey. PODY (mmol m−2) was 
calculated from hourly data as:

where PODY is the accumulated stomatal O3 flux above a 
detoxification threshold Y per leaf area (nmol O3 m−2 s−1) 
over the accumulation period for hours with 50 W m−2 
solar radiation, gsto represents hourly values of stomatal 
conductance, [O3] is hourly O3 concentrations (ppb) and 
dt is the time step (1−h). We are able to calculate PODY 
with any Y uptake threshold, however we calculated PODY 
with Y = 1 nmol O3 m−2 s−1 per leaf area, below which it is 
assumed that any O3 molecule absorbed by the plant will be 
detoxified according to present knowledge, as recommended 
by CLRTAP (2017).

AOT40 and PODY were estimated by extrapolating the 
values measured at 2 m a.g.l. up to the top of the canopy, by 
making use of neutral stability profiles, from wind speed and 
O3 concentration at a height z, and aerodynamic resistance 
(CLRTAP 2017).

(5)

fVDP = min

[
1,max

{
fmin,

((
1 − fmin

)(
VPDmin − VPD

)
VPDmin − VPDmax

)
+ fmin

}]

(6)

fSWC = min

[
1,

(
fmin,

((
1 − fmin

)(SWC −WP

FC −WP

)
+ fmin

))]

(7)PODY =

surveydate

∫
t=aSGS

[((
gsto ×

[
O3

]
− Y

)
, 0
]
.dt

)
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Statistical analysis

The sites with at least 75% of validated hourly O3 and 
meteorological data per year were selected. The non-
parametric Spearman rank correlation test was applied to 
measure statistical dependence between pairs of variables. 
Random Forests Analysis (RFA) is a non-parametric tree-
based ensemble learning method for classification (Brei-
man 2001) and can be used to rank the importance of vari-
ables in a regression or classification (Vitale et al. 2014; 
Sicard and Dalstein-Richier 2015). RFA was performed 
to determine the importance of environmental variable 
averaged over the year-round and over the actual growing 
season (mean O3 concentrations, air temperature, relative 
humidity, solar radiation, rainfall, soil water content) in 
determining the severity of visible foliar O3 injury (i.e. 
surface affected by visible injury) and crown defoliation. 
The highest predictor importance is assigned a value of 
1, and the importance of all other predictors is expressed 
relative to the most important predictor (Breiman 2001). 
The non-parametric Spearman rank correlation test can be 
applied to a small dataset (here, n = 45) to assess the rela-
tionships between AOT40, POD1 and the crown defolia-
tion and visible O3 injury. We used Statgraphics Centurion 

for statistics analyses, and ArcGIS (Environmental Sys-
tems Research Institute) for PODY mapping.

Derivation of critical levels

Following the methodology established by Sicard et al. 
(2016c), we correlated AOT40 and POD1 to forest-response 
parameters (crown defoliation and visible foliar O3-like 
injury) by joining data from all sites and years to derive 
exposure-based (CLec) and flux-based (CLef) critical lev-
els. As a tree with defoliation above 25% is usually rated as 
damaged (Eichhorn et al. 2016), CLec was calculated based 
on a threshold of 25% crown defoliation. The CLef values 
were calculated from flux-effect functions for 0% and 15% 
of visible foliar O3-like injury (Sicard et al. 2016c).

Results

Ozone metrics and forest‑response indicators

The highest O3 mean concentrations (55.7 nmol mol−1) 
were measured in central Italy (ABR1) while the low-
est concentrations (21.0 nmol mol−1) were observed in 
Romania (GORUN) over the time period 2017–2019 

Table 2   Summary of parameterizations for the dominant species at each MOTTES site

The gmax, maximum stomatal conductance; fmin minimum stomatal conductance; flight_a parameter determining the shape of the hyperbolic rela-
tionship of stomatal response to light (dl = dimensionless); Tmax, Topt and Tmin are maximum, optimal and minimum temperature; VPDmin and 
VPDmax are the vapor pressure deficit for attaining minimum and full stomatal aperture; FC and WP are the soil field capacity and wilting point 
and depend on the soil type

Site code Dominant tree species gmax
(mmol O3 
m−2 s−1)

fmin
(fraction)

flight_a
(dl)

Tmin
(°C)

Topt
(°C)

Tmax
(°C)

VPDmax
(kPa)

VPDmin
(kPa)

FC
(m3 m−3)

WP
(m3 m−3)

ABR1 Fagus sylvatica 145 0.02 0.0060 4 21 37 1.0 4.0 0.439 0.066
CPZ1 Quercus ilex 195 0.02 0.0120 1 23 39 2.2 4.0 0.439 0.066
CPZ2 Phillyrea latifolia 150 0.01 0.0016 0 23 40 1.2 5.3 0.404 0.067
CPZ3 Pinus pinea 130 0.03 0.0032 6 20 39 0.6 4.2 0.439 0.066
EMI1 Quercus petraea 265 0.13 0.0060 0 22 35 1.1 3.1 0.434 0.047
FAG Fagus sylvatica 145 0.02 0.0060 4 21 37 1.0 4.0 0.434 0.047
GORUN Quercus petraea 265 0.13 0.0060 0 22 35 1.1 3.1 0.434 0.047
LAZ1 Quercus cerris 265 0.13 0.0060 0 22 35 1.1 3.1 0.465 0.103
LCAS Larix decidua 140 0.10 0.0050 0 22 35 0.8 3.5 0.465 0.103
MNTFR Pinus sylvestris 180 0.10 0.0060 0 20 36 0.6 2.8 0.439 0.066
MOLID Picea abies 130 0.16 0.0100 0 14 35 0.5 3.0 0.439 0.066
MORV Alnus glutinosa 300 0.13 0.0024 5 29 40 1.8 5.7 0.439 0.066
PIE1 Fagus sylvatica 145 0.02 0.0060 4 21 37 1.0 4.0 0.439 0.066
REV Picea abies 130 0.16 0.0100 0 14 35 0.5 3.0 0.465 0.103
STEJAR Quercus robur 200 0.03 0.0035 0 22 50 0.8 7.0 0.434 0.047
TRE1 Picea abies 130 0.16 0.0100 0 14 35 0.5 3.0 0.434 0.047
VEN1 Fagus sylvatica 145 0.02 0.0060 4 21 37 1.0 4.0 0.465 0.103
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(Table 1). The highest AOT40 value was observed in Italy 
(39,800 nmol mol−1 hat TRE1) and the lowest value was 
in Romania (3700 nmol mol−1 h at GORUN). The highest 
POD1 mean value (26.0 mmol m−2 POD1) was found in 
Italy (VEN1) while the lowest POD1 value (6.2 mmol m−2 
POD1) was measured in Northern France (REV). The mean 
crown defoliation ranged from 9.3% (Alnus glutinosa in 
MORV) to 35.0% (Phillyrea latifolia in CPZ2) while the 
highest percentages of visible foliar O3 injury in the domi-
nant species (21.0%) were observed in a highly O3-sensitive 
tree species, i.e. Pinus sylvestris, in central France. As the 
data of 2017 were published in Paoletti et al. (2019), we 
present here the AOT40 and POD1 values for 2018 and 2019 
(Fig. 1). Results indicate a remarkable spatial inconsistency 
between both metrics, except for STEJAR in Romania and 
PIE1 in Italy.

Analysis of the effect of environmental parameters 
on effect parameters

The defoliation severity was mainly influenced by the annual 
SWC, followed by the annual mean air temperature and the 
annual total amount of rainfall (Fig. 2). The RFA highlighted 
that the mean O3 concentrations and variables averaged over 

the growing season did not influence so much the defoliation 
severity. The most important factors determining the severity 
of visible O3-like injury were the annual SWC and global 
radiation over the entire year followed by the rainfall during 
the growing season, air temperature (annual and growing 
season) and the mean annual O3 concentrations, while the O3 
concentrations during the growing season was less influen-
tial. The severity of visible O3-like injury on leaves/needles 
was influenced by a combination of multiple climatic factors 
compared to crown defoliation (Fig. 2). The SWC was by far 
the most influential environmental parameter affecting the 
severity of visible O3-like injury and crown defoliation on 
dominant tree species.

Epidemiologically‑based critical levels for forest 
protection

AOT40 was better correlated with crown defoliation (r = 0.58 
for conifers and broadleaved species; p < 0.05) than visible 
injury (non-significant; p > 0.1). POD1 was better correlated 
with visible O3-like injury (r = 0.61 for conifers, r = 0.41 for 
broadleaved species; p < 0.05) than crown defoliation (non-
significant, p > 0.1). We thus selected crown defoliation as 
the effect parameter for defining CLec (Table 3) and visible 

Fig. 1   Annual AOT40 (nmol mol−1 h) and POD1 (mmol O3 m−2), i.e. the accumulated stomatal O3 flux above a threshold Y = 1 nmol O3 m−2 
s−1 (per leaf area) calculated over the actual growing season of the dominant tree species at each site for the years 2018 and 2019
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foliar O3-like injury as the effect parameter for deriving CLef 
values (Table 4). The average CLec, established for ≥ 25% 
of crown defoliation in a plot, was higher for deciduous 
broadleaves (19,000 nmol mol−1 h AOT40) than for coni-
fers (16,800 nmol mol−1 h AOT40). The average CLef was 

11.7–18.6 mmol m−2 POD1 and 4.8–9.0 mmol m−2 POD1 
for deciduous broadleaves and conifers, respectively, with 

Fig. 2   Random Forest Analysis - Relative importance of each envi-
ronmental variable, averaged year-round (annual) and over the grow-
ing season (GS), in determining severity of crown defoliation (mean 
percentage of missing tree crown per plot) and visible foliar O3 injury 
on the dominant tree species in a plot (mean percentage of injured 

light-exposed leaf surface) over the time period 2017–2019. The 
environmental variables are air temperature (Temp), relative humid-
ity (RH), solar radiation (S rad.), rainfall (Rain), soil water content 
(SWC), 24-h ozone concentrations (Ozone)

Table 3   Recommended exposure-based critical levels (CLec) for 
effects on forest tree species, calculated by joining all stations and 
years (n = number of data)

The response functions were calculated between AOT40 (variable Y) 
and the annual averages of crown defoliation for broadleaved species 
and conifers in a plot (variable X) over the time period 2017–2019. 
The CLec was established for ≥ 25% of crown defoliation in a plot. 
Spearman coefficients (r) and level of significance (p) for the expo-
sure–response relationship

Tree species CLec
(nmol mol−1 
h AOT40)

Response function r p value

Conifers (n = 15) 16,800 Y = 316.3X + 8909 0.58 0.032
Broadleaves 

(n = 30)
19,000 Y = 486.2X + 6842 0.58 0.002

Table 4   Recommended flux-based critical levels (CLef) established 
with two different thresholds of visible injury in a plot (0% and 15%) 
by joining all stations and years (n = number of data). The response 
functions were calculated between POD1 (variable Y) and the mean 
percentage of visible ozone injury on the dominant broadleaved spe-
cies and conifers in a plot (variable X) over the time period 2017–
2019. For conifers, the percentage of total needle surface affected by 
visible foliar O3 injury was scored in current-year (C), one-year-old 
(C + 1) and two-year-old needles (C + 2). Spearman coefficients (r) 
and level of significance (p) for the flux-response relationship

Tree species CLef
(mmol m−2 
POD1)

Response function r p value

0% 15%

Conifers (n = 15) 4.8 9.0 Y = 0.28*X + 4.8 0.61 0.041
Broadleaves 

(n = 30)
11.7 18.6 Y = 0.46*X + 11.7 0.48 0.050
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0–15% thresholds of visible injury. By calculating the CLef 
exceedance, we obtained a higher correlation between the 
amount of visible O3 injury and the exceedance of the CLef 
established with 0% (r = 0.31; p < 0.1) than 15% (r = 0.11; 
p > 0.1) as threshold of visible injury. By using these CLef, 
POD1 values have largely exceeded the CLef in 2018 at 
MNTFR, TRE1, VEN1 and STEJAR, while no exceedance 
was observed at REV, LCAS, CPZ1, CPZ2, CPZ3, LAZ1, 
FAG and GORUN (Fig. 3). The spatial distribution of CLef 
exceedances in 2019 was similar to 2018, except at MOLID 
and ABR1 (Fig. 3). The highest percentages of visible foliar 
O3 injury on the dominant species (e.g. MNTFR) was asso-
ciated to high CLef exceedance (Table 1).

Discussion and conclusions

The crown defoliation is a response to different biotic and 
abiotic factors, including climatic conditions (e.g. drought, 
frozen), pests and diseases, deposition of air pollutants. 
The crown defoliation is thus an aspecific indicator of O3 
(Schaub et al. 2010). In broadleaved species, specific vis-
ible foliar injury caused by O3 is generally categorized as 

stipple, necrosis, chlorosis and bronzing. Specific O3 injury 
on conifer needles generally appears as tipburn or chlorotic 
mottling (Günthardt-Goerg and Vollenweider 2007; Schaub 
et al. 2010). The RFA allowed discerning the main variables 
influencing the severity of crown defoliation and severity of 
visible foliar O3-like injury, i.e. the surface affected by vis-
ible injury, under actual field conditions (Vitale et al. 2014). 
In this study, the most important variables determining the 
defoliation severity were SWC and surface air temperature, 
while the severity of visible foliar O3 injury on trees were 
influenced by a combination of multiple co-factors (e.g. 
SWC, air temperature, solar radiation, O3 concentration) 
through the entire year. The severity of visible O3-like injury 
depends on the O3 uptake through stomata, thus to O3 levels 
but also multiple climatic factors and environmental param-
eters, vegetation characteristics and soil conditions (Ember-
son et al. 2000; Matyssek et al. 2007; Hoshika et al. 2017), 
detoxification and repair processes (Musselman et al. 2006; 
Paoletti and Manning 2007). The RFA outputs highlighted 
the critical role of the soil water availability in determining 
the stomatal O3 uptake, and thus the SWC function is essen-
tial in the PODY estimation (De Marco et al. 2016; Anav 
et al. 2018), in particular for water-limited environments 

Fig. 3   Exceedance of the suggested AOT40-based critical levels 
(CLec: 17,000 and 19,000 nmol mol−1 h for conifers and broadleaved 
species) and flux-based critical levels (CLef: 5 and 12 mmol m−2 for 

conifers and broadleaved species) for dominant tree species at each 
site for the years 2018 and 2019
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such as the Mediterranean region (González-Fernández et al. 
2013; Ochoa-Hueso et al. 2017).

Between 2000 and 2014, Anav et  al. (2019) found a 
decline of AOT40 (−22%) and O3 concentrations (−1.6%) 
and an increase of POD1 (+7.3%) in Europe, mainly due to 
climate change (Fu et al. 2017; Anav et al. 2019). In addi-
tion to a longer growing season (Anav et al. 2019), higher 
air temperature and global radiation increase the stomatal 
conductance (Hoshika et al. 2017). The O3 precursors con-
trol strategies could be offset by climate change, leading 
to higher O3 risk to European forests (Proietti et al. 2016; 
Anav et al. 2019). To consistently protect forests against 
surface O3 pollution, proper standards (PODY) and realis-
tic critical levels (CLef), representative of real-world con-
ditions, are urgently needed (De Marco and Sicard 2019). 
Thanks to the new-generation network MOTTLES set-up 
at 17 plots in France, Italy and Romania, we (1) estimated 
AOT40 and PODY as descriptors of O3 risk for vegetation 
and (2) derived CLec and CLef from forest-health responses 
(crown defoliation and visible foliar O3-like injury). In pre-
vious studies, critical levels were derived under controlled 
conditions, that may be not representative of actual field 
conditions, and from biomass loss (Karlsson et al. 2006; Cal-
atayud et al. 2011; Büker et al. 2015) as aspecific indicator 
of O3 i.e. coupled with co-factors (e.g. nutrients and water 
availability). To overcome these issues, epidemiologically-
based flux-response functions were established between O3 
metrics and real-world plant symptoms. As PODY is better 
than AOT40 as metric for O3 risk assessment to European 
forests (De Marco et al. 2015; Sicard et al. 2016c; Paoletti 
et al. 2019), and due to the biological support for a Y = 1 to 
represent the detoxification capacity of trees (Karlsson et al. 
2007; CLRTAP 2017), we derived CLef from the flux-effect 
function between POD1 and visible foliar O3-like injury as 
specific indicator of phytotoxic O3 levels (Günthardt-Goerg 
and Vollenweider 2007; Schaub et al. 2010; Sicard et al. 
2016c).

For forest protection against visible O3 injury in Europe, 
we recommend CLef of 5 and 12 mmol m−2 POD1 for 
broadleaved species and conifers, respectively. At 54 plots in 
Southeastern France and Northwestern Italy in 2012–2013, 
Sicard et al. (2016c) found CLef of 7 and 9 mmol m−2 POD1 
for broadleaved tree species and conifers, respectively. Pre-
viously, critical levels were derived for the cumulative O3 
flux responsible for a reduction of 2% (Norway spruce) 
or 4% (beech and birch) in annual growth of young trees 
under experimental conditions: POD1 = 5.2 mmol m−2 for 
beech and birch, and 9.2 mmol m−2 for Norway spruce in 
continental and Atlantic areas; 13.7 mmol m−2 for decidu-
ous oaks in Mediterranean area (CLRTAP 2017). Braun 
et al. (2014) performed an epidemiological analysis of stem 
increment data for adult trees in Switzerland over the time 
period 1991–2011. They estimated 4.4% growth reduction 

for Fagus sylvatica at POD1 = 4.0 mmol m−2 and 1.9% of 
growth reduction for Picea abies at POD1 = 8.0 mmol m−2. 
To date, policymakers continue to use the AOT40 index 
in Europe, which is more practical in use, thus we recom-
mend using generic CLec of 17,000 and 19,000 nmol mol−1 
h AOT40 for conifers and broadleaved species, respec-
tively. Sicard et al. (2016c) suggested CLec of 15,000 and 
24,000 nmol mol−1 h AOT40 for coniferous and broad-
leaved tree species, respectively. They proposed CLec of 
12,000 nmol mol−1 h for high O3 sensitivity coniferous 
(Pinus cembra); 24,000 nmol mol−1 h for moderate O3 sen-
sitivity coniferous (Pinus halepensis); 21,000 nmol mol−1 
h for high O3 sensitivity broadleaved species (Fraxinus 
excelsior); and 23,000 nmol mol−1 h for moderate O3 sensi-
tivity broadleaved species (Fagus sylvatica). A monitoring 
network, like MOTTLES, but at larger scale and additional 
epidemiological studies are needed to refine the CLef by 
expanding the range of vegetation, climatic and soil charac-
teristics, and O3 data.
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